More stories

  • in

    Dogs suppress a pivotal function in the food webs of sandy beaches

    Hughes, J. & Macdonald, D. W. A review of the interactions between free-roaming domestic dogs and wildlife. Biol. Cons. 157, 341–351 (2013).Article 

    Google Scholar 
    Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Cons. 210, 56–59 (2017).Article 

    Google Scholar 
    Young, J. K., Olson, K. A., Reading, R. P., Amgalanbaatar, S. & Berger, J. Is wildlife going to the dogs? Impacts of feral and free-roaming dogs on wildlife populations. Bioscience 61, 125–132 (2011).Article 

    Google Scholar 
    Ritchie, E. G., Dickman, C. R., Letnic, M., Vanak, A. T. & Gommper, M. Dogs as predators and trophic regulators. Free-ranging dogs and wildlife conservation, 55–68 (2014).Gompper, M. E. In Free-ranging dogs and wildlife conservation, Oxford University Press (2014).Somaweera, R., Webb, J. K. & Shine, R. It’sa dog-eat-croc world: Dingo predation on the nests of freshwater crocodiles in tropical Australia. Ecol. Res. 26, 957–967 (2011).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. In Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.) (ed Matthew E Gompper) Ch. 4, 94–113 (Oxford University Press, 2013).Zapata-Ríos, G. & Branch, L. C. Altered activity patterns and reduced abundance of native mammals in sites with feral dogs in the high Andes. Biol. Cons. 193, 9–16 (2016).Article 

    Google Scholar 
    Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536 (2006).PubMed 
    Article 

    Google Scholar 
    Gingold, G., Yom-Tov, Y., Kronfeld-Schor, N. & Geffen, E. Effect of guard dogs on the behavior and reproduction of gazelles in cattle enclosures on the Golan Heights. Anim. Conserv. 12, 155–162 (2009).Article 

    Google Scholar 
    Fernández-Juricic, E. & Tellería, J. L. Effects of human disturbance on spatial and temporal feeding patterns of Blackbird Turdus merula in urban parks in Madrid, Spain. Bird Study 47, 13–21 (2000).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Dogs Canis familiaris as carnivores: Their role and function in intraguild competition. Mammal Rev. 39, 265–283 (2009).Article 

    Google Scholar 
    Silva-Rodríguez, E. A. & Sieving, K. E. Domestic dogs shape the landscape-scale distribution of a threatened forest ungulate. Biol. Cons. 150, 103–110 (2012).Article 

    Google Scholar 
    Banks, P. B. & Bryant, J. V. Four-legged friend or foe? Dog walking displaces native birds from natural areas. Biol. Let. 3, 611–613 (2007).Article 

    Google Scholar 
    Langston, R., Liley, D., Murison, G., Woodfield, E. & Clarke, R. What effects do walkers and dogs have on the distribution and productivity of breeding European Nightjar Caprimulgus europaeus?. Ibis 149, 27–36 (2007).Article 

    Google Scholar 
    Lenth, B. E., Knight, R. L. & Brennan, M. E. The effects of dogs on wildlife communities. Nat. Areas J. 28, 218–227 (2008).Article 

    Google Scholar 
    Weston, M. A. & Stankowich, T. Dogs as agents of disturbance. Free-Ranging Dogs and Wildlife Conservation. ME Gompper (ed.), 94–113 (2013).Letnic, M., Ritchie, E. G. & Dickman, C. R. Top predators as biodiversity regulators: The dingo Canis lupus dingo as a case study. Biol. Rev. 87, 390–413 (2012).PubMed 
    Article 

    Google Scholar 
    Maguire, G. S., Miller, K. K. & Weston, M. A. In Impacts of Invasive Species on Coastal Environments 397–412 (Springer, 2019).Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8, 927–939 (2006).Article 

    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).Article 

    Google Scholar 
    Díaz, S., Fargione, J., Chapin, F. S. III. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol 4, e277 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).Article 

    Google Scholar 
    Nel, R. et al. The status of sandy beach science: Past trends, progress, and possible futures. Estuar. Coast. Shelf Sci. 150, 1–10 (2014).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Golden opportunities: A horizon scan to expand sandy beach ecology. Estuar. Coast. Shelf Sci. 157, 1–6 (2015).ADS 
    Article 

    Google Scholar 
    Schlacher, T. A. et al. Key ecological function peaks at the land–ocean transition zone when vertebrate scavengers concentrate on ocean beaches. Ecosystems 23, 1–11 (2019).MathSciNet 

    Google Scholar 
    Lockwood, J. L. & Maslo, B. In Coastal Convervation (eds Brooke Maslo & JL Lockwood) 1–10 (Cambridge University Press, 2014).Morin, D. J., Lesmeister, D. B., Nielsen, C. K. & Schauber, E. M. The truth about cats and dogs: Landscape composition and human occupation mediate the distribution and potential impact of non-native carnivores. Glob. Ecol. Conserv. 15, e00413 (2018).Article 

    Google Scholar 
    Cortés, E. I., Navedo, J. G. & Silva-Rodríguez, E. A. Widespread presence of domestic dogs on sandy beaches of Southern Chile. Animals 11, 161 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burger, J., Jeitner, C., Clark, K. & Niles, L. J. The effect of human activities on migrant shorebirds: Successful adaptive management. Environ. Conserv. 31, 283–288 (2004).Article 

    Google Scholar 
    Dowling, B. & Weston, M. A. Managing a breeding population of the Hooded Plover Thinornis rubricollis in a high-use recreational environment. Bird Conserv. Int. 9, 255–270 (1999).Article 

    Google Scholar 
    Vanak, A. T. & Gompper, M. E. Interference competition at the landscape level: The effect of free-ranging dogs on a native mesocarnivore. J. Appl. Ecol. 47, 1225–1232 (2010).Article 

    Google Scholar 
    Marzluff, J. M., McGowan, K. J., Donnelly, R. & Knight, R. L. In Avian ecology and conservation in an urbanizing world 331–363 (Springer, 2001).Handler, A., Lonsdorf, E. V. & Ardia, D. R. Evidence for red fox (Vulpes vulpes) exploitation of anthropogenic food sources along an urbanization gradient using stable isotope analysis. Can. J. Zool. 98, 79–87 (2020).Article 

    Google Scholar 
    Prange, S., Gehrt, S. D. & Wiggers, E. P. Demographic factors contributing to high raccoon densities in urban landscapes. The J. Wildlife Manag. 67, 324–333 (2003).Article 

    Google Scholar 
    Méndez, A. et al. Adapting to urban ecosystems: unravelling the foraging ecology of an opportunistic predator living in cities. Urban Ecosyst. 23, 1117–1126 (2020).Article 

    Google Scholar 
    Rees, J., Webb, J., Crowther, M. & Letnic, M. Carrion subsidies provided by fishermen increase predation of beach-nesting bird nests by facultative scavengers. Anim. Conserv. 18, 44–49 (2015).Article 

    Google Scholar 
    Kimber, O. et al. The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea. Glob. Ecol. Conserv. 23, e01071 (2020).Article 

    Google Scholar 
    Ruxton, G. D. & Houston, D. C. Obligate vertebrate scavengers must be large soaring fliers. J. Theor. Biol. 228, 431–436 (2004).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Cortés-Avizanda, A., Jovani, R., Donázar, J. A. & Grimm, V. Bird sky networks: How do avian scavengers use social information to find carrion?. Ecology 95, 1799–1808 (2014).PubMed 
    Article 

    Google Scholar 
    Harel, R., Spiegel, O., Getz, W. M. & Nathan, R. Social foraging and individual consistency in following behaviour: Testing the information centre hypothesis in free-ranging vultures. Proc. Royal Soc. B: Biol. Sci. 284, 20162654 (2017).Article 

    Google Scholar 
    Soulsbury, C. D., Iossa, G., Baker, P. J., White, P. C. & Harris, S. Behavioral and spatial analysis of extraterritorial movements in red foxes (Vulpes vulpes). J. Mammal. 92, 190–199 (2011).Article 

    Google Scholar 
    Johnson, C. N. & VanDerWal, J. Evidence that dingoes limit abundance of a mesopredator in eastern Australian forests. J. Appl. Ecol. 46, 641–646 (2009).Article 

    Google Scholar 
    Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171, 761–772 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Schlacher, T. A., Strydom, S. & Connolly, R. M. Multiple scavengers respond rapidly to pulsed carrion resources at the land–ocean interface. Acta Oecologica 48, 7–12 (2013).ADS 
    Article 

    Google Scholar 
    Dunbrack, T. R. & Dunbrack, R. L. Why take your dog on a picnic: presence of a potential predator (Canis lupus familiaris) reverses the outcome of food competition between northwestern crows (Corvus caurinus) and glaucous-winged gulls (Larus glaucescens). Northwest. Nat. 91, 94–98 (2010).Article 

    Google Scholar 
    Jiménez, J. et al. Restoring apex predators can reduce mesopredator abundances. Biol. Cons. 238, 108234 (2019).Article 

    Google Scholar 
    Bhadra, A. et al. The meat of the matter: A rule of thumb for scavenging dogs?. Ethol. Ecol. Evol. 28, 427–440 (2016).Article 

    Google Scholar 
    Turner, K. L., Abernethy, E. F., Conner, L. M., Rhodes, O. E. Jr. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 
    Article 

    Google Scholar 
    Ogada, D., Torchin, M., Kinnaird, M. & Ezenwa, V. Effects of vulture declines on facultative scavengers and potential implications for mammalian disease transmission. Conserv. Biol. 26, 453–460 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Bryan, C. J. et al. The contribution of predators and scavengers to human well-being. Nat. Ecol. & Evol. 2, 229–236 (2018).Article 

    Google Scholar 
    Gómez-Serrano, M. Á. Four-legged foes: Dogs disturb nesting plovers more than people do on tourist beaches. Ibis 163, 338–352 (2021).Article 

    Google Scholar 
    Stantial, M., Cohen, J., Darrah, A., Farrell, S. & Maslo, B. The effect of top predator removal on the distribution of a mesocarnivore and nest survival of an endangered shorebird. Avian Conserv. Ecol. https://doi.org/10.5751/ACE-01806-160108 (2021).Article 

    Google Scholar 
    Mahon, P. S. Targeted control of widespread exotic species for biodiversity conservation: The red fox (Vulpes vulpes) in New South Wales, Australia. Ecol. Manag. Restor. 10, S59–S69 (2009).ADS 
    Article 

    Google Scholar 
    Colwell, M. A. In The Population Ecology and Conservation of Charadrius Plovers 127–147 (CRC Press, 2019).Huijbers, C. M. et al. Limited functional redundancy in vertebrate scavenger guilds fails to compensate for the loss of raptors from urbanized sandy beaches. Divers. Distrib. 21, 55–63 (2015).Article 

    Google Scholar 
    Huijbers, C. M., Schlacher, T. A., Schoeman, D. S., Weston, M. A. & Connolly, R. M. Urbanisation alters processing of marine carrion on sandy beaches. Landsc. Urban Plan. 119, 1–8 (2013).Article 

    Google Scholar 
    Meek, P. et al. Recommended guiding principles for reporting on camera trapping research. Biodivers. Conserv. 23, 2321–2343 (2014).Article 

    Google Scholar 
    Kolowski, J. M. & Forrester, T. D. Camera trap placement and the potential for bias due to trails and other features. PLoS ONE 12, e0186679 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burton, A. C. et al. Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article 

    Google Scholar 
    Selva, N. & Fortuna, M. A. The nested structure of a scavenger community. Proc. Royal Soc. B: Biol. Sci. 274, 1101–1108 (2007).Article 

    Google Scholar 
    Olson, Z. H., Beasley, J. C. & Rhodes, O. E. Jr. Carcass type affects local scavenger guilds more than habitat connectivity. PLoS ONE 11, e0147798 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, M. J. Permutation tests for univariate or multivariate analysis of variance and regression. Can. J. Fish. Aquat. Sci. 58, 626–639 (2001).Article 

    Google Scholar 
    Team, R. D. C. R: A language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria (2013).Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar 
    Schlacher, T. A. et al. Conservation gone to the dogs: When canids rule the beach in small coastal reserves. Biodivers. Conserv. 24, 493–509 (2015).Article 

    Google Scholar 
    Lewin, W.-C., Freyhof, J., Huckstorf, V., Mehner, T. & Wolter, C. When no catches matter: Coping with zeros in environmental assessments. Ecol. Ind. 10, 572–583 (2010).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: a practical information-theoretic approach. 488 (Springer Science & Business Media, 2002).Bolker, B. & Team, R. (R package version 0.9, 2010).Barton, K. & Barton, M. K. Package ‘mumin’. Version 1, 439 (2015).Wickham, H., Francois, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 0.4. 3. R Found. Stat. Comput., Vienna. https://CRAN. R-project. org/package= dplyr (2015).Wickham, H., Chang, W. & Wickham, M. H. Package ‘ggplot2’. Create Elegant Data Visualisations Using the Grammar of Graphics. Version 2, 1–189 (2016). More

  • in

    Predictors of psychological stress and behavioural diversity among captive red panda in Indian zoos and their implications for global captive management

    Influence of independent variables on the extent of stereotyped behaviourThe overall level of stereotypy we observed was low, suggesting that the pandas in our study were not seriously stressed. The variables that we found to be correlated with stereotypy are consistent with what we know of pandas’ natural history. Our study reports that variables like logs on the ground, nest, sociality, zoo, tree density, age and tree height used by pandas are the driving force for stereotypy in captive pandas involved in the study.Making the captive environment more naturalistic by integrating enrichment into the enclosure seems to be a promising way of alleviating stress and improving both welfare and reintroduction success41. It also helps to improve reproductive rate and overall health39. Improved health reduces stress and gives greater control over the environment increasing the chances of survival and longevity both in captivity and following release into the wild5. It is generally accepted that enrichment of the captive environment increases animals’ ability to cope with challenges and positive use of the environment reduces or eliminates aberrant behaviour23. Lack of enclosure enrichments and less complex enclosures can cause stereotypy and other atypical behaviours24, while providing enrichment increases the frequency of natural behaviours25 and thereby reduces stress, which in turn decreases stereotypy27. But enrichment needs to be appropriate for the species of animal concerned. Abnormal behaviours are often associated with captive conditions that deviate greatly from the species’ natural environment. Consistent with this argument we found that though dead and fallen logs on the ground are one of the important characteristics of the panda habitats in the wild42,43,44,45, merely providing them in captivity does not ensure the species’ welfare: in fact, stereotypy increased with log density in our study subjects. This could be due to the fact that four individuals that showed more stereotypy were housed in the small barren enclosures with no trees but more logs as a part of enrichment. Without those four individuals, the linear relation between stereotypy and log density was not statistically significant. This clearly suggested that merely providing logs in the small enclosures does not maintain welfare.
    When animals are housed in enclosures designed to resemble their natural habitat by considering their natural history (provision of vegetation, shelter, pool, etc.), there is a reduction or elimination of abnormal patterns of behaviour such as stereotypies, increased fitness and improved health, all of which may influence reproduction25,46,47,48. For many species, nests, shelter or burrows in enclosures will serve as retreat and hiding places, which are essential to cope with environmental stressors10. Gerbils, mice and rabbits have all shown less stereotyped behaviour when retreats are provided9,49,50,51. Such retreats can mitigate the effects of zoo visitors, who can serve as a source of stress for species that rarely interact with humans in the wild. Consistent with these previous results, we found that with provision of nests, the extent of stereotypy decreased in captive pandas. Many species prefer nests both for rearing the young as well as for resting and shelter, and pandas follow this pattern, so providing nests in adequate numbers will supports their natural behaviour as well as provide relief from environmental stressors. Zidar recommends providing one more nest than there are individuals in an enclosure52.Although pandas are an asocial species, our study showed that pandas show more stereotyped behaviour when housed alone than when with another individual or in group. Being a solitary species in the wild might encourage management to house them singly in captivity, but not every activity and habit of species in the wild can be used in captivity. For example, polar bears are also a solitary species, and it was at one time thought best to manage them alone, but it was found that managing them in a social setting reduces stereotypic pacing behaviour53, consistent with this study. Importantly, managers of zoo should note that living in group is greatly influenced by the individuals’ compatibility and hence this should be kept in mind while pairing.Similarly, we found that the presence of trees, and greater mean tree height use by pandas, reduced stereotypy. Pandas’ preferred high elevation habitat is favourable for taller trees20, and Shrestha et al. found that canopy cover was an important factor in habitats for pandas in the wild54. In European zoos, pandas spend 90% of their time off the ground37. Consistent with these previous findings, our study reveals that more and taller trees support natural behaviours in panda. The Central Zoo Authority (CZA) of India enrichment manual recommends taller tree provision in panda enclosures, and again we provide empirical support for its recommendation.We found that with increasing age stereotypy increased in pandas. The older the individuals the more time spent in captivity with its associated risks of stereotypic behaviour. The same trend has been observed in other species: for example in captive bears stereotypic behaviour increased with age55. In another study Asiatic black bear and sun bear showed more stereotypy with age56.Influence of independent variables on behavioural diversityAs noted in the “Introduction” section, in a species like the panda, high daytime behavioural diversity is not necessarily a positive indication of good welfare. However, our comparison of behavioural diversity with stereotypy showed a negative trend (though not significant), suggesting that low behavioural diversity might be associated with poorer welfare.Nonetheless, we found some results that suggested that lower diversity might in fact be associated with a more natural lifestyle. Because of the amount of time that wild pandas spend foraging57 and sleeping or inactive, they cannot show much behavioural diversity, and in our sample of captive individuals, they showed the same trend. For example, behavioural diversity was lower when pandas were provided with more trees in the enclosure. This suggests that when appropriate conditions are maintained in captivity, panda prefer to be inactive during the day, as is consistent with their natural history57. As pandas are essentially arboreal mammals, naturally they also spend most of the time inactive (e.g. sleeping) on the trees57. Indeed, providing larger trees would promote inactive behaviours and hence lower behaviour diversity in captivity, this captures their natural behaviour. This is consistent with our results where increased tree height used by pandas decreased behavioural diversity.We found behavioural diversity was greater when there are more logs in the enclosure. In the Yele Reserve in Sichuan, China, Wei et al. found 107 of 185 panda dropping sites (57.8%) on shrub branches, 49 (26.5%) on fallen logs, and only 29 (15.7%) on the forest floor44. Droppings were found mostly on elevated structures ranging from 1 to 3 m above the forest floor and occasionally on trees over 12 m. Moreover, microhabitats selected by pandas were also characterized by fallen logs and tree stumps42,45. Wei and Zhang mention that to access bamboo leaves easily, pandas usually use some elevated objects, such as shrub branches, fallen logs, or tree stumps to lift their body43. Hence, providing tree logs in the vicinity supports their natural behaviour. But at the same time management should keep in mind that merely providing logs in the enclosure would not guarantee species welfare, as discussed in previous section with respect to stereotypy.Temperature is an important element of microclimate for animals, and influences the activity level of captive animals10. When temperature rises, many species show distress in captivity10. The red panda inhabits low-temperature areas20, so it is unlikely that higher temperatures would support natural behaviours. We found that with increased temperature behavioural diversity decreased in captive pandas. Similarly, we found that pandas showed higher behavioural diversity in the winter season, where temperatures are low as compared to summer season.Studies that have tried to relate behavioural diversity and stereotypy in captive animals have varied in their interpretation; many have found significantly inverse relationships between the two19. In this study our multivariate model suggested that behavioural diversity is negatively influenced by stereotypy in captive pandas, confirming previous research.Other factors associated with variations in behavioural diversity are less easy to identify with welfare, positive or negative. Behavioural diversity also decreases with age of pandas and increases with distance to cage mate, number of visitors and quantum of bamboo provided, though these effects were not significant in the REVS model.Taken together, these results suggest that higher behavioural diversity is not a straightforward indicator of better welfare in all captive animals. The overall non-significant relationship between stereotyped behaviour and diversity we observed could well be the result of a mixture of factors operating in opposite directions. To interpret diversity correctly, it would be helpful to know what level of diversity the species shows in the wild, and such data are rarely available—a limitation of our study as of many others. Although there are dissenting voices58, arguably what matters most both in terms of welfare and in terms of potential reintroduction to the wild, is that a captive animal’s time budget approximates as closely as possible that of a wild animal. It is not diversity as such that is important, but the behaviours that the animal exhibits.Differences between zoosOur study showed that both the extent of stereotyped behaviour and behavioural diversity varied significantly among zoos. However, Zoo 2, an important breeding centre, housed only a female and her two cubs; this may lead to many factors being confounded and is thus a limitation to our study. Captive animals rely on the zoo environment, its routine and husbandry practices to limit their stress levels, and any failure to provide suitable resources will certainly disturb them and lead to distress10. Controlling such variables appropriately will help reduce stress among captive animals, and we can rely to some extent on our knowledge of the species’ natural history to guide us through this challenge. Our study was able to identify some of the factors that are associated with better welfare, but even with these factors taken into account, significant differences among the three zoos remained. These are presumably due to subtler variations in the zoos’ environment or management regimes. Since the panda is endemic to high elevations, we considered whether differences between the elevations of the zoos might be relevant, but the biggest differences were between Zoos 1 and 3, which are at essentially the same elevation.In Zoo 1 pandas showed lower stereotypy and higher behavioural diversity then the other two zoos. Again, these differences may be due to subtle differences between the management regimes in the three zoos; possibilities include keepers’ attitudes and the zoo’s experience in managing pandas. It is notable that Zoo 1 has longer and wider experience in the management of red pandas than the other two zoos, which have joined the captive breeding programme more recently and have fewer animals. Other notable differences were that in Zoo 1, pandas are fed twice a day as compared to the other two zoos where feed is given all at one time (both bamboo and supplementary diet); and that in Zoo 1 the enclosures were of a good size for a small mammal like the red panda, and were well maintained with much natural vegetation. The other two zoos had a large enclosure with poor vegetation (trees and grass), or a small enclosure with a barren floor and no trees at all. Location of the enclosure also needs to be considered: in two of the enclosures at Zoo 3 the sun shone directly on the animals with no shade as such, keeping the temperature higher than would be natural for pandas. Any of these factors could be the reason the pandas performed comparatively well in Zoo 1, and it would be necessary to study a wider (and, therefore, cross-national) sample of zoos holding pandas to identify which of them are the most important. More

  • in

    Rapid evolution of a novel protective symbiont into keystone taxon in Caenorhabditis elegans microbiota

    Samuel, B. S., Rowedder, H., Braendle, C., Félix, M. A. & Ruvkun, G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl. Acad. Sci. USA 113, E3941–E3949 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, K. M., Smith, A. H. & Russell, J. A. Defensive symbiosis in the real world: Advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct. Ecol. 28, 341–355 (2014).
    Google Scholar 
    King, K. C. Defensive symbionts. Curr. Biol. 29, R78–R80 (2019).CAS 
    PubMed 

    Google Scholar 
    Foster, K. R., Schluter, J., Coyte, K. Z. & Rakoff-Nahoum, S. The evolution of the host microbiome as an ecosystem on a leash. Nature 548, 43–51 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ford, S. A., Kao, D., Williams, D. & King, K. C. Microbe-mediated host defence drives the evolution of reduced pathogen virulence. Nat. Commun. 7, 13430 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Litvak, Y. et al. Commensal Enterobacteriaceae protect against Salmonella colonization through oxygen competition. Cell Host Microbe 25, 128–139 (2019).CAS 
    PubMed 

    Google Scholar 
    Pimentel, A. C., Cesar, C. S., Martins, M. & Cogni, R. The antiviral effects of the symbiont bacteria Wolbachia in insects. Front. Immunol. 11, 626329 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Becker, M. H., Brucker, R. M., Schwantes, C. R., Harris, R. N. & Minbiole, K. P. C. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl. Environ. Microbiol. 75, 6635–6638 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bates, K. A., Bolton, J. S. & King, K. C. A globally ubiquitous symbiont can drive experimental host evolution. Mol. Ecol. 30, 3882–3892 (2021).CAS 
    PubMed 

    Google Scholar 
    Dahan, D., Preston, G. M., Sealey, J. & King, K. C. Impacts of a novel defensive symbiosis on the nematode host microbiome. BMC Microbiol. 20, 1–10 (2020).
    Google Scholar 
    Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Keystone taxa as drivers of microbiome structure and functioning. Nat. Rev. Microbiol. 16, 567–576 (2018).CAS 
    PubMed 

    Google Scholar 
    Zheng, Y. et al. Exploring biocontrol agents from microbial keystone taxa associated to suppressive soil: A new attempt for a biocontrol strategy. Front. Plant Sci. 12, 655673 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Tudela, H., Claus, S. P. & Saleh, M. Next generation microbiome research: Identification of keystone species in the metabolic regulation of host-gut microbiota interplay. Front. Cell Dev. Biol. 9, 719072 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Mateos-Hernández, L. et al. Anti-tick microbiota vaccine impacts Ixodes ricinus performance during feeding. Vaccine 8, 1–21 (2020).
    Google Scholar 
    Mateos-Hernández, L. et al. Anti-microbiota vaccines modulate the tick microbiome in a taxon-specific manner. Front. Immunol. 12, 704621 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dirksen, P. et al. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 14, 38 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Berg, M. et al. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J. 10, 1998–2009 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, F. et al. Caenorhabditis elegans as a model for microbiome research. Front. Microbiol. 8, 485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    King, K. C. et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. ISME J. 10, 1915–1924 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 

    Google Scholar 
    Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228 (2017).CAS 
    PubMed 

    Google Scholar 
    Röttjers, L. & Faust, K. From hairballs to hypotheses–biological insights from microbial networks. FEMS Microbiol. Rev. 42, 761–780 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Agler, M. T. et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 14, e1002352 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hou, Y. et al. Hierarchical microbial functions prediction by graph aggregated embedding. Front. Genet. 11, 608512 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo-Katz, S., Huang, H., Appel, M. D., Berg, M. & Shapira, M. Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect. Immun. 81, 514–520 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 7, 852–857 (2019).
    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    Yarza, P. et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645 (2014).CAS 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (RStudio, PBC, 2020).
    Google Scholar 
    Bastian, M., Heymann, S. & Jacomy, M. Gephi: An open-source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media (2009).Lhomme, S. NetSwan: Network Strengths and Weaknesses Analysis. R Pack Version (2015).Peschel, S., Müller, C. L., von Mutius, E., Boulesteix, A. L. & Depner, M. NetCoMi: Network construction and comparison for microbiome data in R. Brief Bioinform. 22, bbaa290 (2021).PubMed 

    Google Scholar 
    Kanehisa, M. Goto, S, KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).CAS 
    PubMed 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lin, H. & Peddada, S. D. Analysis of microbial compositions: A review of normalization and differential abundance analysis. npj Biofilms Microbiomes 6, 60 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ploner, A. Heatplus: Heatmaps with Row and/or Column Covariates and Colored Clusters. R package version 3.2. (2021).Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948).Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 

    Google Scholar 
    Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 12, 42 (1943).
    Google Scholar 
    Ford, S. A. & King, K. C. Harnessing the power of defensive microbes: Evolutionary implications in nature and disease control. PLoS Pathog. 12, e1005465 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).CAS 
    PubMed 

    Google Scholar 
    Wu-Chuang, A. et al. Thermostable keystone bacteria maintain the functional diversity of the Ixodes scapularis microbiome under heat stress. Microb. Ecol. https://doi.org/10.1007/s00248-021-01929-y (2021).Article 
    PubMed 

    Google Scholar 
    Ford, S. A. & King, K. C. In vivo microbial coevolution favors host protection and plastic downregulation of immunity. Mol. Biol. Evol. 38, 1330–1338 (2021).CAS 
    PubMed 

    Google Scholar 
    Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Q. et al. The microbial network property as a bio-indicator of antibiotic transmission in the environment. Sci. Total Environ. 758, 143712 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Morais, U. L. A look at the way we look at complex networks’ robustness and resilience. https://arxiv.org/ftp/arxiv/papers/1909/1909.06448.pdf (2017).Carlson, J. M. & Doyle, J. Complexity and robustness. Proc. Natl. Acad. Sci. USA 99, 2538–2545 (2002).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estrada-Peña, A., Cabezas-Cruz, A. & Obregón, D. Resistance of tick gut microbiome to anti-tick vaccines, pathogen infection and antimicrobial peptides. Pathogens 9, 309 (2020).PubMed Central 

    Google Scholar 
    Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Investig. 120, 3179–3190 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dey, A. K., Gel, Y. R. & Poor, H. V. What network motifs tell us about resilience and reliability of complex networks. Proc. Natl. Acad. Sci. USA 116, 19368–19373 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nemergut, D. R. et al. Patterns and processes of microbial community assembly. Microbiol. Mol. 77, 342–356 (2013).
    Google Scholar 
    Coyte, K. Z., Rao, C., Rakoff-Nahoum, S. & Foster, K. R. Ecological rules for the assembly of microbiome communities. PLoS Biol. 19, e3001116 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: Networks, competition, and stability. Science 350, 663–666 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McLoughlin, K., Schluter, J., Rakoff-Nahoum, S., Smith, A. L. & Foster, K. R. Host selection of microbiota via differential adhesion. Cell Host Microbe 19, 550–559 (2016).CAS 
    PubMed 

    Google Scholar 
    Sheridan, K. J. et al. Ergothioneine biosynthesis and functionality in the opportunistic fungal pathogen, Aspergillus fumigatus. Sci. Rep. 6, 1–17 (2016).
    Google Scholar 
    Rothfork, J. M. et al. Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: New role for the NADPH oxidase in host defense. Proc. Natl. Acad. Sci. USA 101, 13867–13872 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaupp, R., Ledala, N. & Somerville, G. A. Staphylococcal response to oxidative stress. Front. Cell. Infect. Microbiol. Microbiol. 2, 33 (2012).
    Google Scholar 
    Matchado, M. S. et al. Network analysis methods for studying microbial communities: A mini review. Comput. Struct. Biotechnol. J. 19, 2687–2698 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, D. et al. Microbiome multi-omics network analysis: Statistical considerations, limitations, and opportunities. Front. Genet. 10, 995 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, C. et al. Co-occurrence networks reveal more complexity than community composition in resistance and resilience of microbial communities. Nat. Commun. 13, 3867 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mammeri, M. et al. Cryptosporidium parvum infection depletes butyrate producer bacteria in goat kid microbiome. Front. Microbiol. 16, 548737 (2020).
    Google Scholar 
    Foo, J. L., Ling, H., Lee, Y. S. & Chang, M. W. Microbiome engineering: Current applications and its future. Biotechnol. J. 12, 1600099 (2017).Inda, M. E., Broset, E., Lu, T. K. & de la Fuente-Nunez, C. Emerging frontiers in microbiome engineering. Trends Immunol. 40, 952–973 (2019). More

  • in

    Ecological analysis of Pavlovian fear conditioning in rats

    Watson, J. B. & Morgan, J. J. B. Emotional reactions and psychological experimentation. Am. J. Psychol. 28, 163–174 (1917).Article 

    Google Scholar 
    Watson, J. B. & Rayner, R. Conditioned emotional reactions. J. Exp. Psychol. 3, 1–14 (1920).Article 

    Google Scholar 
    LeDoux, J. Fear and the brain: where have we been, and where are we going. Biol. Psychiatry 44, 1229–1238 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fendt, M. & Fanselow, M. S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maren, S. & Quirk, G. J. Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–852 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouton, M. E., Mineka, S. & Barlow, D. H. A modern learning theory perspective on the etiology of panic disorder. Psychol. Rev. 108, 4–32 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, J. J. & Jung, M. W. Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci. Biobehav. Rev. 30, 188–202 (2006).PubMed 
    Article 

    Google Scholar 
    Watson, J. B. Psychology as the behaviorist views it. Psychological Rev. 20, 158–177 (1913).Article 

    Google Scholar 
    Pavlov, I. P. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex (Oxford University Press, 1927).Guthrie, E. R. Conditioning as a principle of learning. Psychological Rev. 37, 412–428 (1930).Article 

    Google Scholar 
    Kamin, L. J. in Miami Symposium on the Prediction of Behavior (ed. Jones, M. R.) 9–33 (University of Miami Press, 1968).Rescorla, R. A. Probability of shock in the presence and absence of CS in fear conditioning. J. Comp. Physiol. Psychol. 66, 1–5 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, A. R., Logan, F. A., Haberlandt, K. & Price, T. Stimulus selection in animal discrimination learning. J. Exp. Psychol. 76, 171–180 (1968).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rescorla, R. A. & Wagner, A. R. A Theory of Pavlovian Conditioning: Variations in the Effectiveness of Reinforcement and Nonreinforcement 64–99 (Appleton-Century-Crofts, 1972).Josselyn, S. A. & Tonegawa, S. Memory engrams: recalling the past and imagining the future. Science 367, https://doi.org/10.1126/science.aaw4325 (2020).Tovote, P., Fadok, J. P. & Luthi, A. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foa, E. B. & Rothbaum, B. O. Treating the Trauma of Rape: Cognitive Behavioral Therapy for PTSD (Guilford Press, 1998).Butler, A. C., Chapman, J. E., Forman, E. M. & Beck, A. T. The empirical status of cognitive-behavioral therapy: a review of meta-analyses. Clin. Psychol. Rev. 26, 17–31 (2006).PubMed 
    Article 

    Google Scholar 
    Delgado, M. R., Olsson, A. & Phelps, E. A. Extending animal models of fear conditioning to humans. Biol. Psychol. 73, 39–48 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mahan, A. L. & Ressler, K. J. Fear conditioning, synaptic plasticity and the amygdala: implications for posttraumatic stress disorder. Trends Neurosci. 35, 24–35 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Craske, M. G. et al. What is an anxiety disorder? Focus 9, 20 (2011).
    Google Scholar 
    LeDoux, J. E. The Emotional Brain: the Mysterious Underpinnings of Emotional Life (Simon & Schuster, 1996).Fanselow, M. S. From contextual fear to a dynamic view of memory systems. Trends Cogn. Sci. 14, 7–15 (2010).PubMed 
    Article 

    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation—a review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Bednekoff, P. A. Foraging in the Face of Danger 305–329 (University of Chicago Press, 2007).Stephens, D. W. Decision ecology: foraging and the ecology of animal decision making. Cogn. Affect Behav. Neurosci. 8, 475–484 (2008).PubMed 
    Article 

    Google Scholar 
    Beckers, T., Krypotos, A. M., Boddez, Y., Effting, M. & Kindt, M. What’s wrong with fear conditioning? Biol. Psychol. 92, 90–96 (2013).PubMed 
    Article 

    Google Scholar 
    Mobbs, D. & Kim, J. J. Neuroethological studies of fear, anxiety, and risky decision-making in rodents and humans. Curr. Opin. Behav. Sci. 5, 8–15 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pellman, B. A. & Kim, J. J. What can ethobehavioral studies tell us about the Brain’s fear system. Trends Neurosci. 39, 420–431 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thorndike, E. Biological Lectures from the Marine Laboratory at Woods’ Holl, USA, for 1899. Nature 62, 411 (1900).Bolles, R. C. Species-specific defense reactions and avoidance learning. Psychol. Rev. 77, 32–48 (1970).Choi, J. S. & Kim, J. J. Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. Proc. Natl Acad. Sci. USA 107, 21773–21777 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zambetti, P. R., Schuessler, B. P. & Kim, J. J. Sex differences in foraging rats to naturalistic aerial predator stimuli. iScience 16, 442–452 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yilmaz, M. & Meister, M. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell 141, 692–703 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilensky, A. E., Schafe, G. E. & LeDoux, J. E. The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J. Neurosci. 20, 7059–7066 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, T. & Kim, J. J. Differential effects of cerebellar, amygdalar, and hippocampal lesions on classical eyeblink conditioning in rats. J. Neurosci. 24, 3242–3250 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stiedl, O. & Spiess, J. Effect of tone-dependent fear conditioning on heart rate and behavior of C57BL/6N mice. Behav. Neurosci. 111, 703–711 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guimaraes, F. S., Hellewell, J., Hensman, R., Wang, M. & Deakin, J. F. Characterization of a psychophysiological model of classical fear conditioning in healthy volunteers: influence of gender, instruction, personality and placebo. Psychopharmacology 104, 231–236 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackintosh, N. J. The Psychology of Animal Learning (Academic Press, 1974).Bouton, M. E. Learning and Behavior (Sinauer Associates 2007).Sheafor, P. J. “Pseudoconditioned” jaw movements of the rabbit reflect associations conditioned to contextual background cues. J. Exp. Psychol. Anim. Behav. Process 1, 245–260 (1975).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rescorla, R. A. Behavioral studies of Pavlovian conditioning. Annu. Rev. Neurosci. 11, 329–352 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson, R. F. & Krupa, D. J. Organization of memory traces in the mammalian brain. Annu. Rev. Neurosci. 17, 519–549 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fanselow, M. S. & Wassum, K. M. The origins and organization of vertebrate pavlovian conditioning. Cold Spring Harb. Perspect. Biol. 8, a021717 (2015).PubMed 
    Article 

    Google Scholar 
    Lee, H. J., Berger, S. Y., Stiedl, O., Spiess, J. & Kim, J. J. Post-training injections of catecholaminergic drugs do not modulate fear conditioning in rats and mice. Neurosci. Lett. 303, 123–126 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palgi, Y., Gelkopf, M. & Berger, R. The inoculating role of previous exposure to potentially traumatic life events on coping with prolonged exposure to rocket attacks: a lifespan perspective. Psychiatry Res. 227, 296–301 (2015).PubMed 
    Article 

    Google Scholar 
    Somer, E. et al. Israeli civilians under heavy bombardment: prediction of the severity of post-traumatic symptoms. Prehosp. Disaster Med. 24, 389–394 (2009).PubMed 
    Article 

    Google Scholar 
    Alexander, B. K., Beyerstein, B. L., Hadaway, P. F. & Coambs, R. B. Effect of early and later colony housing on oral ingestion of morphine in rats. Pharm. Biochem. Behav. 15, 571–576 (1981).CAS 
    Article 

    Google Scholar 
    Gage, S. H. & Sumnall, H. R. Rat Park: how a rat paradise changed the narrative of addiction. Addiction 114, 917–922 (2019).PubMed 
    Article 

    Google Scholar 
    Fanselow, M. S. & Lester, L. S. A Functional Behavioristic Approach to Aversively Motivated Behavior: Predatory Imminence as a Determinant of the Topography of Defensive Behavior 185–212 (Lawrence Erlbaum Associates Inc, 1988).Cain, C. & LeDoux, J. Brain mechanisms of Pavlovian and instrumental aversive conditioning. Handb. Behav. Neurosci. 17, 103–124 (2008).Article 

    Google Scholar 
    Choi, J. S., Cain, C. K. & LeDoux, J. E. The role of amygdala nuclei in the expression of auditory signaled two-way active avoidance in rats. Learn Mem. 17, 139–147 (2014).Article 

    Google Scholar 
    Steimer, T. The biology of fear- and anxiety-related behaviors. Dialogues Clin. Neurosci. 4, 231–249 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fanselow, M. S. The role of learning in threat imminence and defensive behaviors. Curr. Opin. Behav. Sci. 24, 44–49 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fanselow, M. S. Associative vs topographical accounts of the immediate shock freezing deficit in rats—implications for the response selection-rules governing species-specific defensive reactions. Learn. Motiv. 17, 16–39 (1986).Article 

    Google Scholar 
    Landeira-Fernandez, J., DeCola, J. P., Kim, J. J. & Fanselow, M. S. Immediate shock deficit in fear conditioning: effects of shock manipulations. Behav. Neurosci. 120, 873–879 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hull, C. L. A functional interpretation of the conditioned reflex. Psychol. Rev. 36, 498–511 (1929).Article 

    Google Scholar 
    Lazarus, A. A. Behavior Therapy and Beyond (McGraw-Hill Companies, 1971).Öhman, A. & Mineka, S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol. Rev. 108, 483–522 (2001).PubMed 
    Article 

    Google Scholar 
    Lee, H. & Kim, J. J. Amygdalar NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J. Neurosci. 18, 8444–8454 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 21, 1281–1289 (2018).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Cell death responses to acute high light mediated by non-photochemical quenching in the dinoflagellate Karenia brevis

    Brand, L. E., Campbell, L. & Bresnan, E. Karenia: The biology and ecology of a toxic genus. Harmful Algae 14, 156–178 (2012).
    Google Scholar 
    Hetland, R. D. & Campbell, L. Convergent blooms of Karenia brevis along the Texas coast. Geophys. Res. Lett. 34, 1–5 (2007).
    Google Scholar 
    Liu, G., Janowitz, G. S. & Kamykowski, D. A biophysical model of population dynamics of the autotrophic dinoflagellate Gymnodinium breve. Mar. Ecol. Prog. Ser. 210, 101–124 (2001).ADS 
    CAS 

    Google Scholar 
    Walsh, J. J. et al. Red tides in the Gulf of Mexico: Where, when, and why?. J. Geophys. Res. 111, C11003 (2006).ADS 

    Google Scholar 
    Bidle, K. D. The molecular ecophysiology of programmed cell death in marine phytoplankton. Ann. Rev. Mar. Sci. 7, 341–375 (2015).PubMed 

    Google Scholar 
    Bidle, K. D. & Bender, S. J. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. Eukaryot. Cell 7, 223–236 (2008).CAS 
    PubMed 

    Google Scholar 
    Bidle, K. D., Haramaty, L., Barcelos, R. J. & Falkowski, P. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi. Proc. Natl. Acad. Sci. 104, 6049–6054 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vardi, A. et al. Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 9, 1061–1064 (1999).CAS 
    PubMed 

    Google Scholar 
    Zuppini, A., Andreoli, C. & Baldan, B. Heat stress: An inducer of programmed cell death in Chlorella saccharophila. Plant Cell Physiol. 48, 1000–1009 (2007).CAS 
    PubMed 

    Google Scholar 
    Britt, A. B. DNA damage and repair in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 75–100 (1996).CAS 
    PubMed 

    Google Scholar 
    Jimenez, C. et al. Different ways to die: Cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. J. Exp. Bot. 60, 815–828 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moharikar, S., D’Souza, J. S., Kulkarni, A. B. & Rao, B. J. Apoptotic-like cell death pathway is induced in unicellular chlorophyte chlamydomonas reinhardtii (Chlorophyceae) cells following UV irradiation: Detection and functional analyses. J. Phycol. 42, 423–433 (2006).CAS 

    Google Scholar 
    Li, Z., Wakao, S., Fischer, B. B. & Niyogi, K. K. Sensing and responding to excess light. Annu. Rev. Plant Biol. 60, 239–260 (2009).CAS 
    PubMed 

    Google Scholar 
    Niyogi, K. K. Photoprotection revisited: Genetic and molecular approaches. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 333–359 (1999).CAS 
    PubMed 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).CAS 
    PubMed 

    Google Scholar 
    Müller, P., Li, X. & Niyogi, K. K. Non-photochemical quenching. A response to excess light energy. Plant Physiol. 125, 1558–1566 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    Bidle, K. D. Programmed cell death in unicellular phytoplankton. Curr. Biol. 26, R594–R607 (2016).CAS 
    PubMed 

    Google Scholar 
    McKay, L., Kamykowski, D., Milligan, E., Schaeffer, B. & Sinclair, G. Comparison of swimming speed and photophysiological responses to different external conditions among three Karenia brevis strains. Harmful Algae 5, 623–636 (2006).CAS 

    Google Scholar 
    Miller-Morey, J. S. & Van Dolah, F. M. Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 138, 493–505 (2004).
    Google Scholar 
    Tilney, C. L., Shankar, S., Hubbard, K. A. & Corcoran, A. A. Is Karenia brevis really a low-light-adapted species?. Harmful Algae 90, 101709 (2019).CAS 
    PubMed 

    Google Scholar 
    Yuasa, K., Shikata, T., Kuwahara, Y. & Nishiyama, Y. Adverse effects of strong light and nitrogen deficiency on cell viability, photosynthesis, and motility of the red-tide dinoflagellate Karenia mikimotoi. Phycologia 57, 525–533 (2018).CAS 

    Google Scholar 
    Krause, G. H. & Jahns, P. Non-photochemical energy dissipation determined by chlorophyll fluorescence quenching: Characterization and function. In Chlorophyll a Fluorescence 463–495 (Springer, Netherlands, Cham, 2004).
    Google Scholar 
    Evens, T. J. Photophysiological responses of the toxic red-tide dinoflagellate Gymnodinium breve (Dinophyceae) under natural sunlight. J. Plankton Res. 23, 1177–1194 (2001).CAS 

    Google Scholar 
    Heil, C. A. et al. Influence of daylight surface aggregation behavior on nutrient cycling during a Karenia brevis (Davis) G. Hansen & Ø Moestrup bloom: Migration to the surface as a nutrient acquisition strategy. Harmful Algae 38, 86–94 (2014).CAS 

    Google Scholar 
    Errera, R. Response of the Toxic Dinoflagellate Karenia Brevis to Current and Projected Environmental Conditions. (Texas A&M University, PhD dissertation, 2013).Guillard, R. R. L. & Hargraves, P. E. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32, 234–236 (1993).
    Google Scholar 
    Dingman, J. E. & Lawrence, J. E. Heat-stress-induced programmed cell death in Heterosigma akashiwo (Raphidophyceae). Harmful Algae 16, 108–116 (2012).
    Google Scholar 
    Lin, Q. et al. Differential cellular responses associated with oxidative stress and cell fate decision under nitrate and phosphate limitations in Thalassiosira pseudonana: Comparative proteomics. PLoS ONE 12(9), e0184849 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Choi, C. J., Brosnahan, M. L., Sehein, T. R., Anderson, D. M. & Erdner, D. L. Insights into the loss factors of phytoplankton blooms: The role of cell mortality in the decline of two inshore Alexandrium blooms. Limnol. Oceanogr. 62, 1742–1753 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, J. G., Janech, M. G. & Van Dolah, F. M. Caspase-like activity during aging and cell death in the toxic dinoflagellate Karenia brevis. Harmful Algae 31, 41–53 (2014).CAS 
    PubMed 

    Google Scholar 
    Jauzein, C. & Erdner, D. L. Stress-related responses in Alexandrium tamarense cells exposed to environmental Changes. J. Eukaryot. Microbiol. 60, 526–538 (2013).CAS 
    PubMed 

    Google Scholar 
    Severin, T. & Erdner, D. L. The phytoplankton taxon-dependent oil response and its microbiome: Correlation but not causation. Front. Microbiol. 10, 1–14 (2019).
    Google Scholar 
    Ralph, P. J. & Gademann, R. Rapid light curves: A powerful tool to assess photosynthetic activity. Aquat. Bot. 82, 222–237 (2005).CAS 

    Google Scholar 
    Suzuki, N. & Mittler, R. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 126, 45–51 (2006).CAS 

    Google Scholar 
    Krause, G. H. & Weis, E. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).CAS 

    Google Scholar 
    Gechev, T. S. & Hille, J. Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168, 17–20 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, G., Suzuki, N., Ciftci-Yilmaz, S. & Mittler, R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant. Cell Environ. 33, 453–467 (2010).CAS 
    PubMed 

    Google Scholar 
    Purvis, A. C. Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol. Plant. 100, 165–170 (1997).CAS 

    Google Scholar 
    Demmig-Adams, B. & Adams Iii, W. W. Photoprotection and other responses of plants to high light stress. Annu. Rev. Plant Biol. 43, 599–626 (1992).CAS 

    Google Scholar 
    Cui, Y., Zhang, H. & Lin, S. Enhancement of non-photochemical quenching as an adaptive strategy under phosphorus deprivation in the Dinoflagellate Karlodinium veneficum. Front. Microbiol. 8, 1–14 (2017).
    Google Scholar 
    Cassell, R. T., Chen, W., Thomas, S., Liu, L. & Rein, K. S. Brevetoxin, the dinoflagellate neurotoxin, localizes to thylakoid membranes and interacts with the light-harvesting complex II (LHCII) of photosystem II. ChemBioChem 16, 1060–1067 (2015).CAS 
    PubMed 

    Google Scholar 
    Milne, A., Davey, M. S., Worsfold, P. J., Achterberg, E. P. & Taylor, A. R. Real-time detection of reactive oxygen species generation by marine phytoplankton using flow injection-chemiluminescence. Limnol. Oceanogr. Methods 7, 706–715 (2009).CAS 

    Google Scholar 
    Berman-Frank, I. et al. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium trichodesmium. Science (80-) 294, 1534–1537 (2001).ADS 
    CAS 

    Google Scholar 
    Triantaphylidès, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Y. & Erdner, D. L. Dynamics of cell death across growth stages and the diel cycle in the dinoflagellate Karenia brevis. J. Eukaryot. Microbiol. https://doi.org/10.1111/jeu.12874 (2021).Article 
    PubMed 

    Google Scholar 
    Xu, K., Jiang, H., Juneau, P. & Qiu, B. Comparative studies on the photosynthetic responses of three freshwater phytoplankton species to temperature and light regimes. J. Appl. Phycol. 24, 1113–1122 (2012).CAS 

    Google Scholar 
    Yamori, W., Makino, A. & Shikanai, T. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci. Rep. 6, 20147 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berman-Frank, I., Bidle, K. D., Haramaty, L. & Falkowski, P. G. The demise of the marine cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49, 997–1005 (2004).ADS 

    Google Scholar  More

  • in

    Adaptive phenotypic plasticity is under stabilizing selection in Daphnia

    Scheiner, S. M. Genetics and evolution of phenotypic plasticity. Annu. Rev. Ecol. Syst. 24, 35–68 (1993).Article 

    Google Scholar 
    Via, S. et al. Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol. Evol. 10, 212–217 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghalambor, C. K. et al. Adaptive versus non‐adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    King, J. G. & Hadfield, J. D. The evolution of phenotypic plasticity when environments fluctuate in time and space. Evol. Lett. 3, 15–27 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newman, R. A. Genetic variation for phenotypic plasticity in the larval life history of spadefoot toads (Scaphiopus couchii). Evolution 48, 1773–1785 (1994).PubMed 

    Google Scholar 
    Nussey, D. H. et al. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiner, S. Selection experiments and the study of phenotypic plasticity 1. J. Evol. Biol. 15, 889–898 (2002).Article 

    Google Scholar 
    Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reger, J. et al. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evol. 2, 100–107 (2018).PubMed 
    Article 

    Google Scholar 
    Sommer, R. J. Phenotypic plasticity: from theory and genetics to current and future challenges. Genetics 215, 1–13 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brakefield, P. M. & Reitsma, N. Phenotypic plasticity, seasonal climate and the population biology of Bicyclus butterflies (Satyridae) in Malawi. Ecol. Entomol. 16, 291–303 (1991).Article 

    Google Scholar 
    Rountree, D. & Nijhout, H. Hormonal control of a seasonal polyphenism in Precis coenia (Lepidoptera: Nymphalidae). J. Insect Physiol. 41, 987–992 (1995).CAS 
    Article 

    Google Scholar 
    Scheiner, S. M. & Holt, R. D. The genetics of phenotypic plasticity. X. Variation versus uncertainty. Ecol. Evol. 2, 751–767 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonamour, S. et al. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B 374, 20180178 (2019).Article 

    Google Scholar 
    Fox, R.J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2018.0174 (2019).Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. B 277, 503–511 (2010).PubMed 
    Article 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yampolsky, L. Y., Schaer, T. M. & Ebert, D. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc. R. Soc. B 281, 20132744 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119, 214–225 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charlesworth, B., Lande, R. & Slatkin, M. A neo-Darwinian commentary on macroevolution. Evolution 36, 474–498 (1982).PubMed 

    Google Scholar 
    Lynch, M. The rate of morphological evolution in mammals from the standpoint of the neutral expectation. Am. Nat. 136, 727–741 (1990).Article 

    Google Scholar 
    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).Article 

    Google Scholar 
    West-Eberhard, M. J. Developmental plasticity and the origin of species differences. Proc. Natl Acad. Sci. USA 102, 6543–6549 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turelli, M. & Barton, N. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Noble, D. W., Radersma, R. & Uller, T. Plastic responses to novel environments are biased towards phenotype dimensions with high additive genetic variation. Proc. Natl Acad. Sci. USA 116, 13452–13461 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Draghi, J. A. & Whitlock, M. C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66-9, 2891–2902 (2012).Article 

    Google Scholar 
    Houle, D. How should we explain variation in the genetic variance of traits? Genetica 102, 241–253 (1998).PubMed 
    Article 

    Google Scholar 
    Tollrian, R. Predator‐induced morphological defenses: costs, life history shifts, and maternal effects in Daphnia pulex. Ecology 76, 1691–1705 (1995).Article 

    Google Scholar 
    Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63 (1999).CAS 
    Article 

    Google Scholar 
    Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity: morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15, 1309–1318 (1993).Article 

    Google Scholar 
    Dennis, S. et al. Phenotypic convergence along a gradient of predation risk. Proc. R. Soc. B 278, 1687–1696 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammill, E. & Beckerman, A. P. Reciprocity in predator–prey interactions: exposure to defended prey and predation risk affects intermediate predator life history and morphology. Oecologia 163, 193–202 (2010).PubMed 
    Article 

    Google Scholar 
    Hammill, E., Rogers, A. & Beckerman, A. P. Costs, benefits and the evolution of inducible defences: a case study with Daphnia pulex. J. Evol. Biol. 21, 705–715 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnard-Kubow, K. et al. Polygenic variation in sexual investment across an ephemerality gradient in Daphnia pulex. Mol. Bio. Evol. 39, msac121 (2022).Article 

    Google Scholar 
    Deng, H.-W. & Lynch, M. Inbreeding depression and inferred deleterious-mutation parameters in Daphnia. Genetics 147, 147–155 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seyfert, A. L. et al. The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics 178, 2113–2121 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, S. et al. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29, 763–769 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Collyer, M. L. & Adams, D. C. Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix 24, 75 (2013).
    Google Scholar 
    Adams, D.C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. et al. Geomorph: software for geometric morphometric analyses (University of New England, 2016); https://hdl.handle.net/1959.11/21330Adams, D. C. & Collyer, M. L. Comparing the strength of modular signal, and evaluating alternative modular hypotheses, using covariance ratio effect sizes with morphometric data. Evolution 73, 2352–2367 (2019).PubMed 
    Article 

    Google Scholar 
    Richards, C. L., Bossdorf, O. & Pigliucci, M. What role does heritable epigenetic variation play in phenotypic evolution? BioScience 60, 232–237 (2010).Article 

    Google Scholar 
    Latta, L. C. IV et al. The phenotypic effects of spontaneous mutations in different environments. Am. Nat. 185, 243–252 (2015).PubMed 
    Article 

    Google Scholar 
    Lind, M. I. et al. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B 282, 20151651 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laforsch, C. & Tollrian, R. Inducible defenses in multipredator environments: cyclomorphosis in Daphnia cucullata. Ecology 85, 2302–2311 (2004).Article 

    Google Scholar 
    Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tollrian, R. & Harvell, C.D. The Ecology and Evolution of Inducible Defenses (Princeton Univ. Press, 1999).Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Via, S. & Lande, R. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522 (1985).PubMed 
    Article 

    Google Scholar 
    Kvist, J. et al. Temperature treatments during larval development reveal extensive heritable and plastic variation in gene expression and life history traits. Mol. Ecol. 22, 602–619 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Siepielski, A. M. et al. Differences in the temporal dynamics of phenotypic selection among fitness components in the wild. Proc. R. Soc. B 278, 1572–1580 (2011).PubMed 
    Article 

    Google Scholar 
    Muschick, M. et al. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol. Biol. 11, 116 (2011).Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halligan, D. L. & Keightley, P. D. Spontaneous mutation accumulation studies in evolutionary genetics. Annu. Rev. Ecol. Evol. Syst. 40, 151–172 (2009).Article 

    Google Scholar 
    Houle, D., Morikawa, B. & Lynch, M. Comparing mutational variabilities. Genetics 143, 1467–1483 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eberle, S. et al. Hierarchical assessment of mutation properties in Daphnia magna. G3 Genes Genomes Genetics 8, 3481–3487 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297, 1292–1296 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yan, N. D. et al. Long-term trends in zooplankton of Dorset, Ontario, lakes: the probable interactive effects of changes in pH, total phosphorus, dissolved organic carbon, and predators. Can. J. Fish. Aquat. Sci. 65, 862–877 (2008).CAS 
    Article 

    Google Scholar 
    Reed, T. E., Schindler, D. E. & Waples, R. S. Interacting effects of phenotypic plasticity and evolution on population persistence in a changing climate. Conserv. Biol. 25, 56–63 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    ASTM, Standard Guide for Conducting Acute Toxicity Tests with Fishes, Macroinvertebrates, and Amphibians (American Society for Testing and Materials, 1988).Baym, M. et al. Inexpensive multiplexed library preparation for megabase-sized genomes. PLoS ONE 10, e0128036 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, J. et al. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).MarkDuplicates v.2.20 (Broad Institute, 2019); http://broadinstitute.github.io/picardMcKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poplin, R. et al. Scaling accurate genetic variant discovery to tens of thousands of samples. Preprint at bioRxiv https://doi.org/10.1101/201178 (2018).Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beckerman, A. P., Rodgers, G. M. & Dennis, S. R. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79, 1069–1076 (2010).PubMed 
    Article 

    Google Scholar 
    Naraki, Y., Hiruta, C. & Tochinai, S. Identification of the precise kairomone-sensitive period and histological characterization of necktooth formation in predator-induced polyphenism in Daphnia pulex. Zool. Sci. 30, 619–625 (2013).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scrucca, L. et al. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2018).Ben-Shachar, M. S., Lüdecke, D. & Makowski, D. effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020).Article 

    Google Scholar 
    Collyer, M. L. & Adams, D. C. RRPP: an r package for fitting linear models to high‐dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).Article 

    Google Scholar 
    Collyer, M., Adams, D. & and Collyer, M.M. RRPP: linear model evaluation with randomized residuals in a permutation procedure. R package version 1.3 https://CRAN.R-project.org/package=RRPP (2021).Smirnov, P. robcor: Robust correlations. R package version 0.1-6.1 https://CRAN.R-project.org/package=ropcor (2014).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Yang, J. et al. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).Villanueva, R., Chen, Z. & Wickham, H. ggplot2: Elegant Graphics for Data Analysis Using the Grammar of Graphics (Springer-Verlag, 2016).Wilke, C. cowplot: Streamlined plot theme and plot annotations for ‘ggplot2’. R package version 0.9. 2 https://CRAN.R-project.org/package=cowplot (2020).Dowle, M. et al. data.table: Extension of ‘data.frame‘. R package version 1.14.0 https://CRAN.R-project.org/package=data.table (2021).Daniel, M. foreach: Provides foreach looping construct. R package version 1.5.1 https://CRAN.R-project.org/package=foreach (2020).Weston, S. doMC: Foreach parallel adaptor for ‘parallel’. R package version 1.3.7 https://CRAN.R-project.org/package=doMC (2020).Clarke, E. & Sherrill-Mix, S. Ggbeeswarm: Categorical scatter (violin point) plots. R package version 0.6. 0 https://CRAN.R-project.org (2017).Garnier, S. et al. viridis: Default color maps from ‘matplotlib’. R package version 0.5.1 (2018). More

  • in

    Mount Everest’s harsh heights shelter a rich array of life

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Niche conservatism and evolution of climatic tolerance in the Neotropical orchid genera Sobralia and Brasolia (Orchidaceae)

    Darwin, C. On the Origin of Species. Facsimile of the First Edition (Harvard University Press, 1859).
    Google Scholar 
    Grafen, A. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B Biol. Sci. 326, 119–157 (1989).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sillero, N., Reis, M., Vieira, C. P., Vieira, J. & Morales-Hojas, R. Niche evolution and thermal adaptation in the temperate species Drosophila americana. J. Evol. Biol. 27, 1549–1561 (2014).CAS 
    PubMed 

    Google Scholar 
    Ramos, R. et al. Global spatial ecology of three closely-related gadfly petrels. Sci. Rep. 6, 23447 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, B., Cheng, J., Ge, D., Xia, L. & Yang, Q. Phylogeography and ecological niche modeling unravel the evolutionary history of the Yarkand hare, Lepus yarkandensis (Mammalia: Leporidae), through the Quaternary. BMC Evol. Biol. 19, 113 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. 36, 519–539 (2005).
    Google Scholar 
    Losos, J. B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol. Lett. 11, 995–1003 (2008).PubMed 

    Google Scholar 
    Crisp, M. D. & Cook, L. G. Phylogenetic niche conservatism: What are the underlying evolutionary and ecological causes?. New Phytol. 196, 681–694 (2012).PubMed 

    Google Scholar 
    Qian, H. & Ricklefs, R. E. Geographical distribution and ecological conservatism of disjunct genera of vascular plants in eastern Asia and eastern North America. J. Ecol. 92, 253–265 (2004).
    Google Scholar 
    Vitt, L. J., Zani, P. A. & Espósito, M. C. Historical ecology of Amazonian lizards: Implications for community ecology. Oikos 87, 286–294 (1999).
    Google Scholar 
    Rice, N. H., Martínez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: A phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).
    Google Scholar 
    Jost, L. Explosive local radiation of the genus Teagueia (Orchidaceae) in the Upper Pastaza Watershed of Ecuador. Lyonia 7, 42–47 (2004).
    Google Scholar 
    Antonelli, A., Verola, C. F., Parisod, C. & Gustafsson, A. L. S. Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biol. J. Linn. Soc. 100, 597–607 (2010).
    Google Scholar 
    Johnson, S. D., Linder, H. P. & Steiner, K. E. Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am. J. Bot. 85, 402–411 (1998).CAS 
    PubMed 

    Google Scholar 
    Kolanowska, M., Grochocka, E. & Konowalik, K. Phylogenetic climatic niche conservatism and evolution of climatic suitability in Neotropical Angraecinae (Vandeae, Orchidaceae) and their closest African relatives. PeerJ 5, e3328 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Dressler, R. L., Blanco, M. A., Pupulin, F. & Neubig, K. M. Proposal to conserve the name Sobralia (Orchidaceae) with a conserved type. Taxon 60, 907–908 (2011).
    Google Scholar 
    Baranow, P., Dudek, M. & Szlachetko, D. L. Brasolia, a new genus highlighted from Sobralia (Orchidaceae). Plant Syst. Evol. 303, 853–871 (2017).CAS 

    Google Scholar 
    Dressler, R. L. The major sections or groups within Sobralia, with four new species from Panama and Costa Rica, S. crispissima, S. gloriana, S. mariannae and S. nutans. Lankesteriana 5, 9–15 (2002).
    Google Scholar 
    Pridgeon, A. M., Cribb, P. J., Chase, M. W. & Rasmussen, F. N. Genera Orchidacearum Vol. 4: Epidendroideae Part 1 (Oxford University Press, 2005).
    Google Scholar 
    Van der Cingel, N. A. An Atlas of Orchid Pollination: America, Africa, Asia and Australia (Balkema, 2001).
    Google Scholar 
    Dodson, C. H. Why are there so many orchid species. Lankesteriana 7, 99–103 (2003).
    Google Scholar 
    Van Der Pijl, L. & Dodson, C. H. Orchid Flowers: Their Pollination and Evolution (University of Miami Press, 1966).
    Google Scholar 
    Neubig, K. M. Systematics of Tribe Sobralieae (Orchidaceae): Phylogenetics, Pollination, Anatomy, and Biogeography of a Group of Neotropical Orchids (University of Florida, 2012).
    Google Scholar 
    Neubig, K. M. et al. Preliminary molecular phylogenetics of Sobralia and relatives (Orchidaceae; Sobralieae). Lankesteriana 11, 307–317 (2011).
    Google Scholar 
    Ramírez, S. R., Roubik, D. W., Skov, C. & Pierce, N. E. Phylogeny, diversification patterns and historical biogeography of euglossine orchid bees (Hymenoptera: Apidae). Biol. J. Linn. Soc. 100, 552–572 (2010).
    Google Scholar 
    Gregory-Wodzicki, K. M. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Am. Bull. 112, 1091–1105 (2000).ADS 

    Google Scholar 
    Sundell, K. E., Saylor, J. E., Lapen, T. J. & Horton, B. K. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci. Rep. 9, 4877 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mescua, J. F. et al. Middle to late miocene contractional deformation in Costa Rica triggered by plate geodynamics. Tectonics 36, 2936–2949 (2017).ADS 

    Google Scholar 
    Kolanowska, M., Mystkowska, K., Kras, M., Dudek, M. & Konowalik, K. Evolution of the climatic tolerance and postglacial ranges of the most primitive orchids (Apostasioideae) within Sunduland, Wallacea and Sahul. PeerJ 4, e2384 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Arnal, P. et al. The evolution of climate tolerance in conifer-feeding aphids in relation to their host’s climatic niche. Ecol. Evol. 9, 11657–11671 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zangiabadi, S., Zaremaivan, H., Brotons, L., Mostafavi, H. & Ranjbar, H. Using climatic variables alone overestimate climate change impacts on predicting distribution of an endemic species. PLoS ONE 16, e0256918. https://doi.org/10.1371/journal.pone.0256918 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).Article 

    Google Scholar 
    Bonetti, M. F. & Wiens, J. J. Evolution of climatic niche specialization: a phylogenetic analysis in amphibians. Proc. Biol. Sci. 281, 20133229. https://doi.org/10.1098/rspb.2013.3229 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    George, P. M., Walter, E. W. & Yeuh-Lih, Y. Realized versus fundamental niche functions in a model of chaparral response to climatic change. Ecol. Modell. 7, 261–277 (1992).
    Google Scholar 
    Hijmans, R. J., Schreuder, M., Cruz, J. & Guarino, L. Using GIS to check co-ordinates of genebank accessions. Genet. Resour. Crop Evol. 46, 291–296 (1999).
    Google Scholar 
    Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. In ICML ’04. Proceedings of the Twenty-First International Conference on MACHINE LEARNing, 655–662 (ACM, New York, 2004).Phillips, S. J., Anderson, R. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Modell. 222, 1810–1819 (2011).
    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Brown, J. L. SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol. Evol. 5, 694–700 (2014).
    Google Scholar 
    Feng, X., Park, D. S., Liang, Y., Pandey, R. & Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. https://doi.org/10.1002/ece3.5555 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hosmer, D. W. & Lemeshow, S. Applied Logistic Regression (Wiley, 2000).MATH 

    Google Scholar 
    Mason, S. J. & Graham, N. E. Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128, 2145–2166 (2002).ADS 

    Google Scholar 
    Evangelista, P. H. et al. Modelling invasion for a habitat generalist and a specialist plant species. Divers. Distrib. 14, 808–817 (2008).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Warren, D. L. et al. ENMTools 1.0: An R package for comparative ecological biogeography. Ecography 44, 504–511 (2021).
    Google Scholar 
    Schoener, T. W. The Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49, 704–726 (1968).
    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution 62, 2868–2883 (2008).PubMed 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).
    Google Scholar 
    Heibl, C. & Calenge, C. Phyloclim: integrating phylogenetics and climatic niche modeling. R package version 0.9-4. http://CRAN.R-project.org/package=phyloclim (2013).Evans, M. E., Smith, S. A., Flynn, R. S. & Donoghue, M. J. Climate, niche evolution, and diversification of the ‘“bird-cage”’ evening primroses (Oenothera, sections Anogra and Kleinia). Am. Nat. 173, 225–240 (2009).PubMed 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 

    Google Scholar 
    Galtier, N., Gouy, M. & Gautier, C. SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. 12, 543–548 (1996).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. MUSCLE: Mulitiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nylander, J. A. A. MrModeltest v2 (Uppsala University, 2004).
    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MRBAYES: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 

    Google Scholar 
    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Givnish, T. et al. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.1553 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More