More stories

  • in

    Divergent changes in particulate and mineral-associated organic carbon upon permafrost thaw

    Study sites, experimental design, and field samplingThe Tibetan alpine permafrost region, the largest area of permafrost in the middle and low latitudes of the Northern Hemisphere64, stores substantial soil C (15.3–46.2 Pg C within 3 m depth)65,66,67. With continuous climate warming, permafrost thaw has triggered the formation of widespread thermokarst landscapes across this permafrost area13,68. To explore the impacts of thermokarst formation and development on soil C dynamics, we collected topsoil samples (0–15 cm) from a thaw sequence in 2014 and from five additional sites spread across the region in 2020. The thermokarst landscape was characterized as thermo-erosion gullies (Supplementary Table 2). The elevation of these six sites is between 3515 and 4707 m. The mean annual temperature across this area ranges from −3.1 to 2.6 °C, and the average annual precipitation varies from 353 to 436 mm. The vegetation type across these sites is swamp meadow, with the dominant species being Kobresia tibetica, Kobresia royleana and Carex atrofuscoides. Although the dominant species did not change after permafrost collapse, the forb coverage increased along the thaw sequence and across the five additional thermokarst-impacted sites. The main soil type is Cryosols on the basis of the World Reference Base for Soil Resources69, with soil pH ranging from 5.6 to 7.3 (Supplementary Fig. 1e). The active layer thickness varies between 0.7 and 1.1 m across the six study sites and the underlying soil parent material is either siliciclastic sedimentary or unconsolidated sediments (Supplementary Table 2).To evaluate the dynamics of soil C fractions after permafrost collapse, we collected soil samples across the Tibetan alpine permafrost region based on the following two steps (Supplementary Fig. 5). In the first step, we established six collapsed plots (~15 × 10 m) along a thaw sequence (located in Shaliuhe close to Qinghai Lake, Qinghai Province, China), which had been collapsed for 1, 3, 7, 10, 13, and 16 years before the sampling year of 201413. The collapse time of each plot was estimated by dividing the distance between the collapsed plot and the gully head by the retreat rate (~8.0 m year−1; the rate of the head-wall retreat was determined by Google Earth satellite images and in situ monitoring)13. Then, we set up six paired control (non-collapsed) plots adjacent to these collapsed plots. To limit experimental costs, we selected three paired control and collapsed plots (collapsed for 1, 10, and 16 years, representing the early, middle, and late stages of collapse) to examine the responses of POC, MAOC and OC-Fe to permafrost collapse (Supplementary Fig. 5). Within each collapsed plot, we collected topsoil (0–15 cm) samples from all vegetated patches (Supplementary Fig. 6), and then evenly selected 10 vegetated patches for this study considering the heavy workload and high cost. In each selected vegetated patch, 5–8 soil cores were sampled and completely mixed as one replicate. Within each control plot, topsoil samples were randomly collected from five quadrats at the center and four corners of the plot. In each quadrat, 15–20 soil cores were sampled and mixed as one replicate. Thereby, ten replicates were acquired in each collapsed plot (n = 10), and five replicates were obtained in each control plot (n = 5). In total, we acquired 45 soil samples, including 30 samples from the three collapsed plots and 15 samples from the non-collapsed control for subsequent analysis.In the second step, to further verify the universality of collapse effects on SOC fractions, we collected topsoil (0–15 cm) samples from an additional five similar sites located near the towns of Ebo, Mole, Huashixia, and Huanghe across a 550 km permafrost transect in August 2020 (Fig. 1). Specifically, paired collapsed and control plots (15 × 10 m) were established at the end of a gully and in adjacent non-collapsed areas in each site (Supplementary Fig. 5). In the collapsed plot, we set five 5 × 3 m quadrats at the center and four corners of the plot, and then collected topsoil samples within all the vegetated patches in these quadrats. In each quadrat, all the collected soil cores (15–20 cores) were completely mixed as one replicate, and finally, five replicates were acquired in each collapsed plot (n = 5). Similarly, five replicates were obtained from the five quadrats in each control plot (n = 5). In total, we collected 50 topsoil samples across these five thermokarst-impacted sites. After transportation to the laboratory, all the soil samples were handpicked to remove surface vegetation, roots and gravels, and sieved (2 mm) for subsequent analysis.It should be noted that the space for time approach was only used for the permafrost thaw sequence, not for the other five sites over the regional scale. Across these five sites, we focused on the impact of permafrost collapse on POC, MAOC as well as OC-Fe by comparing soil C fractions inside and outside the gully in each site rather than among the study sites. Given the low coefficient of variation of parameters (i.e., edaphic variables and soil minerals) in the control plot of each site (Supplementary Table 3), the pristine soils in each site could also be regarded as homogeneous70, and the differences in parameters inside and outside the gully could be attributed to the effects of permafrost collapse. Along the permafrost thaw sequence, to verify whether the plots with different collapse times (1, 10, and 16 years) were comparable, we analyzed a series of parameters (i.e., vegetation biomass, edaphic variables, and soil minerals) for the three control plots which were located outside the gully but adjacent to three collapsed plots within the gully (Supplementary Fig. 5). By comparing aboveground biomass, belowground biomass, SOC, soil moisture, pH, bulk density, soil texture, and soil minerals (see below for details of the analytical method), we observed that the above parameters were not significantly different among the three control plots along the thaw sequence (all P  > 0.05; Supplementary Fig. 7). These comparisons demonstrated that the study area was homogeneous before permafrost thaw and thus it was reasonable to adopt the space for time approach along the permafrost thaw sequence.It should also be noted that the collected topsoil samples used in this study were less affected by physical mixing and translocation due to thaw phenomena at the thermokarst-impacted sites. Specifically, to examine changes in soil properties upon permafrost thaw, we chose to collect topsoil within the vegetated patches rather than from the exposed soil areas in the collapsed plots (Supplementary Fig. 6). These vegetated patches (40–60 cm thickness) are formed during the landscape fragmentation after permafrost collapse13. Although permafrost collapse inevitably led to soil translocation, these vegetated patches maintained their original shapes, especially for the topsoil because it is protected by mattic epipedon in this swamp meadow ecosystem on the Tibetan Plateau (which has an intensive root network protecting soils against interference)71,72. Moreover, we collected 0–15 cm of topsoil within the vegetated patches, in which soil cores were at least 10 cm away from the edge of the patch. Due to these two points, topsoil should not be mixed with the subsoil in our case. To test this deduction, we compared the non-collapsed (control) plot with the collapsed plot occurring for 1 year (the early stage of the permafrost thaw sequence), and observed no significant differences in soil properties such as bulk density, SOC, pH, soil texture and soil minerals (all P  > 0.05; Supplementary Fig. 8). These comparisons illustrated that permafrost collapse did not cause soil physical mixing for the topsoil samples involved in this study, and soil layers were comparable between the collapsed and control plots.SOC fractionationWe separated POC and MAOC from bulk soils using a fractionation method based on a combination of density and particle size18 using the following three steps. First, 10 g of soil was put into a 100 mL centrifuge tube, and added with 50 mL of 1.6 g cm−3 NaI. After being completely mixed, the mixture was sonicated and then centrifuged at 1800 × g. The floating particulate organic matter, together with the supernatant, was poured into a GF/C filter membrane for filtration, completely washed with deionized water, and then dried at 60 °C to constant weight. Then, the C content of the particulate organic matter was determined as POC. Second, deionized water were added to the remaining soils in the tube to wash out any residual NaI. The washed soils were then separated with a 53-μm sieve. The residues on the sieve ( >53 μm) were dried and determined as heavy POC. Third, the organic matter that passed through the sieve ( More

  • in

    Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds

    Cuthill, I. C. et al. The biology of color. Science 357, eaan0221 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Caro, T. & Koneru, M. Towards an ecology of protective coloration. Biol. Rev. 96, 611–641 (2021).PubMed 
    Article 

    Google Scholar 
    Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. 139, S125–S153 (1992).Article 

    Google Scholar 
    Endler, J. A. Some general comments on the evolution and design of animal communication systems. Philos. Trans. R. Soc. Lond. Ser. B 340, 215–225 (1993).ADS 
    CAS 
    Article 

    Google Scholar 
    Endler, J. A. The color of light in forests and its implications. Ecol. Monogr. 63, 1–27 (1993).Article 

    Google Scholar 
    Ödeen, A. & Håstad, O. The phylogenetic distribution of ultraviolet sensitivity in birds. BMC Evol. Biol. 13, 36 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lind, O., Mitkus, M., Olsson, P. & Kelber, A. Ultraviolet vision in birds: the importance of transparent eye media. Proc. R. Soc. Lond. Ser. B 281, 20132209 (2014).
    Google Scholar 
    Nicolaï, M. P. J., Shawkey, M. D., Porchetta, S., Claus, R. & D’Alba, L. Exposure to UV radiance predicts repeated evolution of concealed black skin in birds. Nat. Commun. 11, 2414 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stevens, M. & Cuthill, I. C. Hidden messages: are ultraviolet signals a special channel in avian communication? Bioscience 57, 501–507 (2007).Article 

    Google Scholar 
    Hausmann, F., Arnold, K. E., Marshall, N. J. & Owens, I. P. Ultraviolet signals in birds are special. Proc. R. Soc. Lond. Ser. B 270, 61–67 (2003).Article 

    Google Scholar 
    Eaton, M. D. & Lanyon, S. M. The ubiquity of avian ultraviolet plumage reflectance. Proc. R. Soc. Lond. Ser. B 270, 1721–1726 (2003).Article 

    Google Scholar 
    Gomez, D. & Théry, M. Influence of ambient light on the evolution of colour signals: comparative analysis of a Neotropical rainforest bird community. Ecol. Lett. 7, 279–284 (2004).Article 

    Google Scholar 
    Mullen, P. & Pohland, G. Studies on UV reflection in feathers of some 1000 bird species: are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? Ibis 150, 59–68 (2008).Article 

    Google Scholar 
    Burns, K. J. & Shultz, A. J. Widespread cryptic dichromatism and ultraviolet reflectance in the largest radiation of Neotropical songbirds: Implications of accounting for avian vision in the study of plumage evolution. Auk 129, 211–221 (2012).Article 

    Google Scholar 
    Ödeen, A., Pruett-Jones, S., Driskell, A. C., Armenta, J. K. & Hastad, O. Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc. R. Soc. Lond. Ser. B 279, 1269–1276 (2012).
    Google Scholar 
    Bleiweiss, R. Physical alignments between plumage carotenoid spectra and cone sensitivities in ultraviolet-sensitive (UVS) birds (Passerida: Passeriformes). Evolut. Biol. 41, 404–424 (2014).Article 

    Google Scholar 
    Lind, O. & Delhey, K. Visual modelling suggests a weak relationship between the evolution of ultraviolet vision and plumage coloration in birds. J. Evol. Biol. 28, 715–722 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, A. T. D. & Cuthill, I. C. Ultraviolet vision in birds: what is its function? Vis. Res 34, 1471–1478 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doucet, S. M., Mennill, D. J. & Hill, G. E. The evolution of signal design in manakin plumage ornaments. Am. Nat. 169, S62–S80 (2007).PubMed 
    Article 

    Google Scholar 
    Delhey, K. Revealing the colourful side of birds: spatial distribution of conspicuous plumage colours on the body of Australian birds. J. Avian Biol. 51, e02222 (2020).Article 

    Google Scholar 
    Dale, J., Dey, C. J., Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage colouration. Nature 527, 367–370 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooney, C. R. et al. Sexual selection predicts the rate and direction of colour divergence in a large avian radiation. Nat. Commun. 10, 1773 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Miller, E. T., Leighton, G. M., Freeman, B. G., Lees, A. C. & Ligon, R. A. Ecological and geographical overlap drive plumage evolution and mimicry in woodpeckers. Nat. Commun. 10, 1602 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maia, R., Rubenstein, D. R. & Shawkey, M. D. Key ornamental innovations facilitate diversification in an avian radiation. Proc. Natl Acad. Sci. USA 110, 10687–10692 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoddard, M. C. & Prum, R. O. How colorful are birds? Evolution of the avian plumage color gamut. Behav. Ecol. 22, 1042–1052 (2011).Article 

    Google Scholar 
    Cooney, C. R. et al. Mega-evolutionary dynamics of the adaptive radiation of birds. Nature 542, 344–347 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 15, 555–560 (2018).Article 
    CAS 

    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Christin, S., Hervet, É. & Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 10, 1632–1644 (2019).Article 

    Google Scholar 
    Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A. & Tsuboi, M. Computer vision, machine learning, and the promise of phenomics in ecology and evolutionary biology. Front. Ecol. Evol. 9, 642774 (2021).Article 

    Google Scholar 
    Aljabar, P., Heckemann, R. A., Hammers, A., Hajnal, J. V. & Rueckert, D. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Baiker, M. et al. Atlas-based whole-body segmentation of mice from low-contrast Micro-CT data. Med. Image Anal. 14, 723–737 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Meijering, E. Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29, 140–145 (2012).ADS 
    Article 

    Google Scholar 
    Kumar, Y. H. S., Manohar, N. & Chethan, H. K. Animal classification system: a block based approach. Procedia Computer Sci. 45, 336–343 (2015).Article 

    Google Scholar 
    Unger, J., Merhof, D. & Renner, S. Computer vision applied to herbarium specimens of German trees: testing the future utility of the millions of herbarium specimen images for automated identification. BMC Evol. Biol. 16, 248 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohler, R. A segmentation system based on thresholding. Computer Graph. Image Process. 15, 319–338 (1981).Article 

    Google Scholar 
    Adams, R. & Bischof, L. Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 18, 641–647 (1994).Article 

    Google Scholar 
    Chan, T. F. & Vese, L. A. Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Boykov, Y. Y. & Jolly, M. P. Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. in Proceedings Eighth IEEE International Conference on Computer Vision (2001).Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F. & Adam, H. Encoder-decoder with atrous separable convolution for semantic image segmentation. arXiv 1802, 02611 (2018).
    Google Scholar 
    Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K. & Yuille, A. L. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv 1606, 00915 (2017).
    Google Scholar 
    Chen, L. C., Papandreou, G., Schroff, F. & Adam, H. Rethinking atrous convolution for semantic image segmentation. arXiv 1706, 05587 (2017).
    Google Scholar 
    Everingham, M. et al. The PASCAL Visual Object Classes challenge—a retrospective. Int. J. Computer Vis. 111, 98–136 (2015).Article 

    Google Scholar 
    Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. in Advances In Neural Information Processing Systems (2012).He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).Szegedy, C. et al. Going deeper with convolutions. arXiv 1409, 4842 (2014).ADS 

    Google Scholar 
    Newell, A., Yang, K. & Deng, J. Stacked hourglass networks for human pose estimation. arXiv 1603, 06937 (2016).
    Google Scholar 
    Wei, S. E., Ramakrishna, V., Kanade, T. & Sheikh, Y. Convolutional pose machines. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016).Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. in 2016 IEEE Conference on Computer Vision and Pattern Recognition (2015).Stoddard, M. C. & Prum, R. O. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. Nat. 171, 755–776 (2008).PubMed 
    Article 

    Google Scholar 
    Lynch, M. Methods for the analysis of comparative data in evolutionary biology. Evolution 45, 1065–1080 (1991).PubMed 
    Article 

    Google Scholar 
    Gomez, D. & Théry, M. Simultaneous crypsis and conspicuousness in color patterns: comparative analysis of a Neotropical rainforest bird community. Am. Nat. 169, S42–S61 (2007).PubMed 
    Article 

    Google Scholar 
    Delhey, K. A review of Gloger’s rule, an ecogeographical rule of colour: definitions, interpretations and evidence. Biol. Rev. Camb. Philos. Soc. 94, 1294–1316 (2019).PubMed 

    Google Scholar 
    Passarotto, A., Rodríguez‐Caballero, E., Cruz-Miralles, Á., Avilés Jesús, M. & Sheard, C. Ecogeographical patterns in owl plumage colouration: Climate and vegetation cover predict global colour variation. Glob. Ecol. Biogeogr. 31, 515–530 (2022).Article 

    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galván, I., Rodríguez-Martínez, S., Carrascal, L. M. & Portugal, S. Dark pigmentation limits thermal niche position in birds. Funct. Ecol. 32, 1531–1540 (2018).Article 

    Google Scholar 
    Delhey, K., Dale, J., Valcu, M. & Kempenaers, B. Reconciling ecogeographical rules: rainfall and temperature predict global colour variation in the largest bird radiation. Ecol. Lett. 22, 726–736 (2019).PubMed 
    Article 

    Google Scholar 
    Håstad, O., Victorsson, J. & Ödeen, A. Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc. Natl Acad. Sci. USA 102, 6391–6394 (2005).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lind, O., Henze, M. J., Kelber, A. & Osorio, D. Coevolution of coloration and colour vision? Philos. Trans. R. Soc. Lond. Ser. B 372, 20160338 (2017).Article 
    CAS 

    Google Scholar 
    Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. arXiv 01105, 2017 (1612).
    Google Scholar 
    Zoph, B. et al. Rethinking pre-training and self-training. arXiv 2006, 06882 (2020).
    Google Scholar 
    Chang, Y. L. & Li, X. Adaptive image region-growing. IEEE Trans. Image Process. 3, 868–872 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, J., Yau, D. K. Y., Elmagarmid, A. K. & Aref, W. G. Automatic image segmentation by integrating color-edge extraction and seeded region growing. IEEE Trans. Image Process. 10, 1454–1466 (2001).ADS 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Joulin, A., van der Maaten, L., Jabri, A. & Vasilache, N. Learning visual features from large weakly supervised data. arXiv 1511, 02251 (2015).
    Google Scholar 
    Hestness, J. et al. Deep learning scaling is predictable, empirically. arXiv 1712, 00409 (2017).
    Google Scholar 
    Hudson, L. N. et al. Inselect: automating the digitization of natural history collections. PLoS ONE 10, e0143402 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hussein, B. R., Malik, O. A., Ong, W.-H. & Slik, J. W. F. Semantic segmentation of herbarium specimens using deep learning techniques. in Computational Science and Technology (2020).Cordts, M. et al. The Cityscapes dataset for semantic urban scene understanding. arXiv 01685, 2016 (1604).
    Google Scholar 
    Deng, J. et al. ImageNet: a large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition (2009).Andriluka, M., Pishchulin, L., Gehler, P. & Schiele, B. 2D human pose estimation: new benchmark and state of the art analysis. in 2014 IEEE Conference on Computer Vision and Pattern Recognition (2014).Bradski, G. The OpenCV Library. Dr Dobb’s J. Softw. Tools 120, 122–125 (2000).
    Google Scholar 
    Ruder, S. An overview of gradient descent optimization algorithms. arXiv 1609, 04747 (2016).
    Google Scholar 
    Kingma, D. P. & Ba, J. L. ADAM: a method for stochastic optimisation. arXiv 1412, 6980 (2014).ADS 

    Google Scholar 
    Loshchilov, I. & Hutter, F. SGDR: stochastic gradient descent with warm restarts. arXiv 1608, 03983 (2016).
    Google Scholar 
    Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv 1603, 04467 (2016).
    Google Scholar 
    He, Y. et al. Code for: Deep learning image segmentation reveals patterns of UV reflectance evolution in passerine birds. https://doi.org/10.5281/zenodo.6916988 (2022).Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. R. Improving neural networks by preventing co-adaptation of feature detectors. arXiv 1207, 0580 (2012).
    Google Scholar 
    van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, J. S. Digital image smoothing and the signam filter. Computer Vis., Graph., Image Process. 24, 255–269 (1983).Article 

    Google Scholar 
    Haralick, R. M., Sternberg, S. R. & Zhuang, X. Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9, 532–550 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst., Man, Cybern. 9, 62–66 (1979).Article 

    Google Scholar 
    Sezgin, M. & Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146–165 (2004).ADS 
    Article 

    Google Scholar 
    Kass, M., Witkin, A. & Terzopoulos, D. Snakes: active contour models. Int. J. Computer Vis. 1, 321–331 (1988).MATH 
    Article 

    Google Scholar 
    Coffin, D. DCRAW V. 9.27. https://www.cybercom.net/~dcoffin/dcraw/ (2016).Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, Y. PhenoLearn v.1.0.1. https://doi.org/10.5281/zenodo.6950322 (2022).Hijmans, R. J. raster: geographic data analysis and modeling. R package version 3.4-5. https://CRAN.R-project.org/package=raster (2020).Maia, R., Gruson, H., Endler, J. A., White, T. E. & O’Hara, R. B. pavo 2: new tools for the spectral and spatial analysis of colour in R. Methods Ecol. Evolution 10, 1097–1107 (2019).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jablonski, N. G. & Chaplin, G. Human skin pigmentation as an adaptation to UV radiation. Proc. Natl Acad. Sci. USA 107, 8962–8968 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beckmann, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 5, 372–383 (2014).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Ödeen, A., Håstad, O. & Alström, P. Evolution of ultraviolet vision in the largest avian radiation—the passerines. BMC Evol. Biol. 11, 313 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. Lond. Ser. B 281, 20140298 (2014).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar  More

  • in

    Multi-queen breeding is associated with the origin of inquiline social parasitism in ants

    Hölldobler, B. & Wilson, E. O. The number of queens: An important trait in ant evolution. Naturwissenschaften 64, 8–15 (1977).Article 
    ADS 

    Google Scholar 
    Maynard Smith, J. & Szathmáry, E. Major Transitions in Evolution (Oxford University Press, 1995).
    Google Scholar 
    Keller, L. Queen Number and Sociality in Insects (Oxford Science Publications, 1994).
    Google Scholar 
    Keller, L. Levels of Selection in Evolution (Princeton University Press, 1999).
    Google Scholar 
    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3191–3207 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3, 193–232 (1972).Article 

    Google Scholar 
    Borowiec, M. L. et al. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol. Phylogenet. Evol. 134, 111–121 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, W. O. H., Ratnieks, F. L. W. & Oldroyd, B. P. Multiple paternity or multiple queens: Two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 21, 1090–1095 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. The Insect Societies (Belknap Press of Harvard University Press, 1971).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, 1995).
    Google Scholar 
    Giraud, T., Blatrix, R., Poteaux, C., Solignac, M. & Jaisson, P. High genetic relatedness among nestmate queens in the polygynous ponerine ant Gnamptogenys striatula in Brazil. Behav. Ecol. Sociobiol. 49, 128–134 (2001).Article 

    Google Scholar 
    Schmid-Hempel, P. & Crozier, R. H. Ployandry versus polygyny versus parasites. Philos. Trans. R. Soc. B Biol. Sci. 354, 507–515 (1999).Article 

    Google Scholar 
    Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (W. W. Norton & Company, 2009).
    Google Scholar 
    Trunzer, B., Heinze, J. & Hölldobler, B. Cooperative colony founding and experimental primary polygyny in the ponerine ant Pachycondyla villosa. Insectes Soc. 45, 267–276 (1998).Article 

    Google Scholar 
    Rüppell, O. & Heinze, J. Alternative reproductive tactics in females: The case of size polymorphism in winged ant queens. Insectes Soc. 46, 6–17 (1999).Article 

    Google Scholar 
    Hughes, W. O. H. & Boomsma, J. J. Genetic royal cheats in leaf-cutting ant societies. Proc. Natl. Acad. Sci. U.S.A. 105, 5150–5153 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hannonen, M. & Sundström, L. Worker nepotism among polygynous ants. Nature 421, 910 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Pedersen, J. S. & Boomsma, J. J. Effect of habitat saturation on the number and turnover of queens in the polygynous ant, Myrmica sulcinodis. J. Evol. Biol. 12, 903–917 (1999).Article 

    Google Scholar 
    Rüppell, O., Strätz, M., Baier, B. & Heinze, J. Mitochondrial markers in the ant Leptothorax rugutulus reveal the population genetic consequences of philopatry at different hierarchial levels. Mol. Ecol. 12, 795–801 (2003).PubMed 
    Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Alternative reproductive tactics in the queen-size-dimorphic ant Leptothorax rugatulus (Emery) and their consequences for genetic population structure. Behav. Ecol. Sociobiol. 50, 189–197 (2001).Article 

    Google Scholar 
    Pamilo, P. Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70, 472–480 (1993).Article 

    Google Scholar 
    Qian, Z. Q. et al. Intraspecific support for the polygyny-vs.-polyandry hypothesis in the bulldog ant Myrmecia brevinoda. Mol. Ecol. 20, 3681–3691 (2011).CAS 
    PubMed 

    Google Scholar 
    Keller, L. & Reeve, H. K. Partitioning of reproduction in animal societies. Trends Ecol. Evol. 9, 98–102 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).Book 

    Google Scholar 
    Bartz, S. H. & Hölldobler, B. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behav. Ecol. Sociobiol. 10, 137–147 (1982).Article 

    Google Scholar 
    Rissing, S. W., Pollock, G. B., Higgins, M. R., Hagen, R. H. & Smith, D. R. Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338, 420–422 (1989).Article 
    ADS 

    Google Scholar 
    Boomsma, J. J., Huszár, D. B. & Pedersen, J. S. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92, 241–252 (2014).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Intracolonial patterns of reproduction in the queen-size dimorphic ant Leptothorax rugatulus. Behav. Ecol. 13, 239–247 (2002).Article 

    Google Scholar 
    Buschinger, A. Sympatric speciation and radiative evolution of socially parasitic ants—Heretic hypotheses and their factual background. Z. für Zool. Syst. und Evol. 28, 241–260 (1990).Article 

    Google Scholar 
    Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants. Biol. J. Linn. Soc. 43, 157–178 (1991).Article 

    Google Scholar 
    Rabeling, C. Social parasitism. In Encyclopedia of Social Insects (ed. Starr, C.) 838–858. https://doi.org/10.1007/978-3-319-90306-4_175-1 (Springer, 2020).Chapter 

    Google Scholar 
    Huang, M. H. & Dornhaus, A. A meta-analysis of ant social parasitism: Host characteristics of different parasitism types and a test of Emery’s rule. Ecol. Entomol. 33, 589–596 (2008).Article 

    Google Scholar 
    Ward, P. S. A new workerless social parasite in the ant genus Pseudomyrmex (Hymenoptera: Formicidae), with a discussion of the origin of social parasitism in ants. Syst. Entomol. 21, 253–263 (1996).Article 

    Google Scholar 
    Jansen, G., Savolainen, R. & Vepsäläinen, K. Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 56, 294–304 (2010).PubMed 
    Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Genetic divergence between the sympatric queen morphs of the ant Myrmica rubra. Mol. Ecol. 24, 2463–2476 (2015).PubMed 
    Article 

    Google Scholar 
    Nettel-Hernanz, A., Lachaud, J. P., Fresneau, D., López-Muñoz, R. A. & Poteaux, C. Biogeography, cryptic diversity, and queen dimorphism evolution of the Neotropical ant genus Ectatomma Smith, 1958 (Formicidae, Ectatomminae). Org. Divers. Evol. 15, 543–553 (2015).Article 

    Google Scholar 
    Rabeling, C., Schultz, T. R., Pierce, N. E. & Bacci, M. A social parasite evolved reproductive isolation from its fungus-growing ant host in sympatry. Curr. Biol. 24, 2047–2052 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savolainen, R. & Vepsäläinen, K. Sympatric speciation through intraspecific social parasitism. Proc. Natl. Acad. Sci. U.S.A. 100, 7169–7174 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Sumner, S., Hughes, W. O. H. & Boomsma, J. J. Evidence for differential selection and potential adaptive evolution in the worker caste of an inquiline social parasite. Behav. Ecol. Sociobiol. 54, 256–263 (2003).Article 

    Google Scholar 
    Prebus, M. Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae). BMC Evol. Biol. 17, 1–22 (2017).Article 

    Google Scholar 
    Fischer, G. et al. Socially parasitic ants evolve a mosaic of host-matching and parasitic morphological traits. Curr. Biol. 30, 3639-3646.e4 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, J. D. & Rissing, S. W. Molecular evidence for the origin of workerless social parasites in the ant genus Pogonomyrmex. Evolution 56, 2017–2028 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shoemaker, D. D. W., Ahrens, M. E. & Ross, K. G. Molecular phylogeny of fire ants of the Solenopsis saevissima species-group based on mtDNA sequences. Mol. Phylogenet. Evol. 38, 200–215 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fournier, D. et al. Social structure and genetic distance mediate nestmate recognition and aggressiveness in the facultative polygynous ant Pheidole pallidula. PLoS ONE 11, e0156440 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Beye, M., Neumann, P., Chapuisat, M., Pamilo, P. & Moritz, R. F. A. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43, 67–72 (1998).Article 

    Google Scholar 
    Starks, P. T., Watson, R. E., Dipaola, M. J. & Dipaola, C. P. The effect of queen number on nestmate discrimination in the facultatively polygynous ant Pseudomyrmex pallidus (Hymenoptera: Formicidae). Ethology 104, 573–584 (1998).Article 

    Google Scholar 
    Hora, R. R. et al. Facultative polygyny in Ectatomma tuberculatum (Formicidae, Ectatomminae). Insectes Soc. 52, 194–200 (2005).Article 

    Google Scholar 
    Dahan, R. A., Grove, N. K., Bollazzi, M., Gerstner, B. P. & Rabeling, C. Decoupled evolution of mating biology and social structure in Acromyrmex leaf-cutting ants. Behav. Ecol. Sociobiol. 76, 7 (2022).Article 

    Google Scholar 
    Buschinger, A. Evolution of social parasitism in ants. Trends Ecol. Evol. 1, 155–160 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keller, L. & Reeve, H. K. Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48, 694–704 (1994).PubMed 
    Article 

    Google Scholar 
    Frumhoff, P. C. & Ward, P. S. Individual-level selection, colony-level selection, and the association between polygyny and worker monomorphism in ants. Am. Nat. 139, 559–590 (1992).Article 

    Google Scholar 
    Rissing, S. W. & Pollock, G. B. Pleometrosis and polygyny in ants. In Interindividual Behavioral Variability in Social Insects (ed. Jeanne, R. L.) 179–222 (Westview Press, 1988).
    Google Scholar 
    Keller, L. & Passera, L. Physiologie des sexués femelles de fourmis (Hymenoptera: Formicidae) en relation avec le mode the fondation. Actes des Colloq. Insectes Sociaux 5, 63–68 (1989).
    Google Scholar 
    Foitzik, S. & Heinze, J. Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav. Ecol. 9, 367–375 (1998).Article 

    Google Scholar 
    Schär, S. & Nash, D. R. Evidence that microgynes of Myrmica rubra ants are social parasites that attack old host colonies. J. Evol. Biol. 27, 2396–2407 (2014).PubMed 
    Article 

    Google Scholar 
    Gallardo, A. Notes systématique et éthologiques sur les fourmis attines de la République Argentine. An. del Mus Nac. Hist. Nat. Buenos Aires 28, 317–344 (1916).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Ridley, M. The Explanation of Organic Diversity: The Comparative Methods and Adaptations for Mating (Oxford Science Publications, 1983).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, 2021).Wolf, J. I. & Seppä, P. Queen size dimorphism in social insects. Insectes Soc. 63, 25–38 (2015).Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Mating isolation between the ant Myrmica rubra and its microgynous social parasite. Insectes Soc. 63, 79–86 (2016).Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & Rabeling, C. Two new species of socially parasitic Nylanderia ants from the southeastern United States. Zookeys 921, 23–48 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabeling, C. et al. Acromyrmex fowleri: A new inquiline social parasite species of leaf-cutting ants from South America, with a discussion of social parasite biogeography in the Neotropical region. Insectes Soc. 66, 435–451 (2019).Article 

    Google Scholar 
    Grüter, C., Jongepier, E. & Foitzik, S. Insect societies fight back: The evolution of defensive traits against social parasites. Philos. Trans. R. Soc. B Biol. Sci. 373, 1. https://doi.org/10.1098/rstb.2017.0200 (2018).Article 

    Google Scholar 
    Davies, N. B., Bourke, A. F. G., De, L. & Brooke, M. Cuckoos and parasitic ants: Interspecific brood parasitism as an evolutionary arms race. Trends Ecol. Evol. 4, 274–278 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herbers, J. M. & Foitzik, S. The ecology of slavemaking ants and their hosts in north temperate forests. Ecology 83, 148–163 (2002).Article 

    Google Scholar 
    Foitzik, S. & Herbers, J. M. Colony structure of a slavemaking ant. II. Frequency of slave raids and impact on the host population. Evolution 55, 316–323 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. Tropical social parasites in the ant genus Pheidole, with an analysis of the anatomical parasitic syndrome (Hymenoptera: Formicidae). Insectes Soc. 31, 316–334 (1984).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Complex determination of queen body size in the queen size dimorphic ant Leptothorax rugatulus (Formicidae: Hymenoptera). Heredity 87, 33–40 (2001).PubMed 
    Article 

    Google Scholar 
    Nonacs, P. & Tobin, J. E. Selfish larvae: Development and the evolution of parasitic behavior in the Hymenoptera. Evolution 46, 1605–1620 (1992).PubMed 
    Article 

    Google Scholar 
    Wolf, J. I. & Seppä, P. Dispersal and mating in a size-dimorphic ant. Behav. Ecol. Sociobiol. 70, 1267–1276 (2016).Article 

    Google Scholar 
    Elmes, G. W. Miniature queens of the ant Myrmica rubra L. (Hymenoptera, Formicidae). Entomologist 106, 133–136 (1973).
    Google Scholar 
    Feitosa, R. M., Hora, R. R., Delabie, J. H. C., Valenzuela, J. & Fresneau, D. A new social parasite in the ant genus Ectatomma F. Smith (Hymenoptera, Formicidae, Ectatomminae). Zootaxa 52, 47–52 (2008).
    Google Scholar 
    Seifert, B. Taxonomic description of Myrmica microrubra n. sp.—A social parasitic ant so far known as the microgyne of Myrmica rubra (L.). Abhandlungen Berichte des Nat. Görlitz 67, 9–12 (1993).
    Google Scholar 
    Rabeling, C. & Bacci, M. A new workerless inquiline in the Lower Attini (Hymenoptera: Formicidae), with a discussion of social parasitism in fungus-growing ants. Syst. Entomol. 35, 379–392 (2010).Article 

    Google Scholar 
    Trible, W. & Kronauer, D. J. C. Caste development and evolution in ants: It’s all about size. J. Exp. Biol. 220, 53–62 (2017).PubMed 
    Article 

    Google Scholar 
    Aron, S., Passera, L. & Keller, L. Evolution of miniaturisation in inquiline parasitic ants: Timing of male elimination in Plagiolepis pygmaea, the host of Plagiolepis xene. Insectes Soc. 51, 395–399 (2004).Article 

    Google Scholar 
    West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (a review). Proc. Natl. Acad. Sci. 83, 1388–1392 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Schultz, T. R., Bekkevold, D. & Boomsma, J. J. Acromyrmex insinuator new species: An incipient social parasite of fungus-growing ants. Insectes Soc. 45, 457–471 (1998).Article 

    Google Scholar 
    Hakala, S. M., Seppä, P. & Helanterä, H. Evolution of dispersal in ants (Hymenoptera: Formicidae): A review on the dispersal strategies of sessile superorganisms. Myrmecol. News 29, 35–55 (2019).
    Google Scholar 
    Leppänen, J., Vepsäläinen, K. & Savolainen, R. Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecol. Evol. 1, 46–62 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & LaPolla, J. S. Nylanderia deceptrix sp. n., a new species of obligately socially parasitic formicine ant (Hymenoptera, Formicidae). Zookeys 552, 49–65 (2016).Article 

    Google Scholar 
    Lopez-Osorio, F., Perrard, A., Pickett, K. M., Carpenter, J. M. & Agnarsson, I. Phylogenetic tests reject Emery’s rule in the evolution of social parasitism in yellowjackets and hornets (Hymenoptera: Vespidae, Vespinae). R. Soc. Open Sci. https://doi.org/10.1098/rsos.150159 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81 (2015).Article 

    Google Scholar 
    Heinze, J., Buschinger, A., Poettinger, T. & Suefuji, M. Multiple convergent origins of workerlessness and inbreeding in the socially parasitic ant genus Myrmoxenus. PLoS ONE 10, 1–10 (2015).Article 
    CAS 

    Google Scholar 
    Suefuji, M. & Heinze, J. Degenerate slave-makers, but nevertheless slave-makers? Host worker relatedness in the ant Myrmoxenus kraussei. Integr. Zool. 10, 182–185 (2015).PubMed 
    Article 

    Google Scholar 
    Talbot, M. The natural history of the workerless ant parasite, Formica talbotae. Psyche 83, 282–288 (1976).Article 

    Google Scholar 
    Wilson, E. O. The first workerless parasite in the ant genus Formica (Hymenoptera: Formicidae). Psyche 83, 277–281 (1976).Article 

    Google Scholar 
    Borowiec, M. L., Cover, S. P. & Rabeling, C. The evolution of social parasitism in Formica ants revealed by a global phylogeny. Proc. Natl. Acad. Sci. 118, e2026029118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aanen, D. K. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jaeggi, A. V. & Gurven, M. Natural cooperators: food sharing in humans and other primates. Evol. Anthropol. 22, 186–195 (2013).PubMed 
    Article 

    Google Scholar 
    Van Der Maas, H. L., Kan, K.-J., Marsman, M. & Stevenson, C. E. Network models for cognitive development and intelligence. J. Intell. 5, 16 (2017).PubMed Central 
    Article 

    Google Scholar 
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).Article 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).PubMed 
    Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. Network resilience. Phys. Rep. 971, 1–108 (2022).Article 

    Google Scholar 
    Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pocock, M. J., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl Acad. Sci. USA 107, 5334–5338 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    May, R. M., Levin, S. A. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–894 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Biggs, R. O., Peterson, G. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. 23, 3 (2018).Article 

    Google Scholar 
    Walker, B. & Meyers, J. A. Thresholds in ecological and social-ecological systems: a developing database. Ecol. Soc. 9, 2 (2004).
    Google Scholar 
    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in earth’s biosphere. Nature 486, 52–58 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 

    Google Scholar 
    Lever, J. J. et al. Foreseeing the future of mutualistic communities beyond collapse. Ecol. Lett. 23, 2–15 (2020).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).PubMed 
    Article 

    Google Scholar 
    Dudney, J. & Suding, K. N. The elusive search for tipping points. Nat. Ecol. Evol. 4, 1449–1450 (2020).PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S., Deffuant, G. & Calabrese, J. M. in Viability and Resilience of Complex Systems (eds. Deffuant, G., & Gilbert, N.) 15–36 (Springer, 2011).Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, C., Yang, S., Shea, K. & Albert, R. Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Phys. Rev. E 86, 021924 (2012).Article 
    CAS 

    Google Scholar 
    Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Ecological correlates of species’ roles in highly invaded seed dispersal networks. Proc. Natl Acad. Sci. USA 118, (2021).Whanpetch, N. et al. Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar. Coast. Shelf Sci. 87, 246–252 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Dai, L., Vorselen, D., Korolev, K. S. & Gore, J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V., van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).PubMed 
    Article 

    Google Scholar 
    van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wright, D. H. A simple, stable model of mutualism incorporating handling time. Am. Nat.134, 664–667 (1989).Article 

    Google Scholar 
    Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).Jiang, J. et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc. Natl Acad. Sci. USA 115, E639–E647 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).Article 

    Google Scholar 
    Moreno, Y., Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Critical load and congestion instabilities in scale-free networks. Europhys. Lett. 62, 292–298 (2003).CAS 
    Article 

    Google Scholar 
    Martinez, N. D., Williams, R. J., Dunne, J. A. & Pascual, M. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds. Pascual, M., Dunne, J. A., & Dunne, J. A.) 163–185 (Oxford University Press, 2006).Chen, S., O’Dea, E. B., Drake, J. M. & Epureanu, B. I. Eigenvalues of the covariance matrix as early warning signals for critical transitions in ecological systems. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).Article 

    Google Scholar 
    Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    Marsh, H. et al. Optimizing allocation of management resources for wildlife. Conserv. Biol. 21, 387–399 (2007).PubMed 
    Article 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reyer, C. P. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).Article 

    Google Scholar 
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).PubMed 
    Article 

    Google Scholar 
    Hurwicz, L. The design of mechanisms for resource allocation. Am. Econ. Rev. 63, 1–30 (1973).
    Google Scholar 
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).Article 

    Google Scholar 
    Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).PubMed 
    Article 

    Google Scholar 
    Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).Article 

    Google Scholar 
    Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Web of Life, Ecological Networks Database (Bascompte Lab, accessed 12 June 2017); http://www.web-of-life.es/map.php?type=5/Gleeson, J. P., Melnik, S., Ward, J. A., Porter, M. A. & Mucha, P. J. Accuracy of mean-field theory for dynamics on real-world networks. Phys. Rev. E 85, 026106 (2012).Article 
    CAS 

    Google Scholar 
    Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).Vázquez, D. P. Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes PhD thesis, University of Tennessee (2002).Kaiser-Bunbury, C. N., Vázquez, D. P., Stang, M. & Ghazoul, J. Determinants of the microstructure of plant-pollinator networks. Ecology 95, 3314–3324 (2014).Article 

    Google Scholar 
    Memmott, J. The structure of a plant-pollinator food web. Ecol. Lett. 2, 276–280 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dicks, L., Corbet, S. & Pywell, R. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).Article 

    Google Scholar 
    SMITH-RAMÍREZ, C., Martinez, P., Nunez, M., González, C. & Armesto, J. J. Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot. J. Linn. Soc. 147, 399–416 (2005).Article 

    Google Scholar 
    Dupont, Y. L., Hansen, D. M. & Olesen, J. M. Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26, 301–310 (2003).Article 

    Google Scholar 
    Dupont, Y. L. & Olesen, J. M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol. 78, 346–353 (2009).PubMed 
    Article 

    Google Scholar  More

  • in

    Swallows shrink as climate warms

    Gardner, J. L., Heinsohn, R. & Joseph, L. Proc. R. Soc. B 276, 3845–3852 (2009).Article 

    Google Scholar 
    Shipley, J. R., Twining, C. W., Taff, C. C., Vitousek, M. N. & Winkler, D. W. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01457-8 (2022).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. Nature 421, 37–42 (2003).CAS 
    Article 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Gardner, J. L. et al. Proc. R. Soc. B 286, 20192258 (2019).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Trends Ecol. Evol. 36, 1036–1048 (2021).Article 

    Google Scholar 
    Millien, V. et al. Ecol. Lett. 9, 853–869 (2006).Article 

    Google Scholar  More

  • in

    Distribution of SOCD along different offshore distances in China's fresh-water lake-Chaohu under different habitats

    Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597. https://doi.org/10.1007/s10980-012-9758-8 (2013).Article 

    Google Scholar 
    Koehler, A. K., Sottocornola, M. & Kiely, G. How strong is the current carbon sequestration of an Atlantic blanket bog?. Glob. Change Biol. 17, 309–319. https://doi.org/10.1111/j.1365-2486.2010.02180.x (2015).ADS 
    Article 

    Google Scholar 
    Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17, 1–12. https://doi.org/10.1029/2002GB001917 (2003).CAS 
    Article 

    Google Scholar 
    Dong, H. Y., Qian, L. W., Yan, J. F. & Wang, L. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Environ. Monit. Assess. 192, 585. https://doi.org/10.1007/s10661-020-08547-0 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zaher, H., Sabir, M., Benjelloun, H. & Paul-Igor, H. Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. J. Environ. Manage. 254, 109544. https://doi.org/10.1016/j.jenvman.2019.109544 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Friborg, T. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 30, 2129. https://doi.org/10.1029/2003GL017797 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Dayathilake, D., Lokupitiya, E. & Wijeratne, V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation. Wetlands. https://doi.org/10.1007/s13157-021-01424-7 (2021).Article 

    Google Scholar 
    Li, X. W. et al. How important are the wetlands in the middle-lower Yangtze River region: An ecosystem service valuation approach. Ecosyst. Serv. 10, 54–60. https://doi.org/10.1016/j.ecoser.2014.09.004 (2014).Article 

    Google Scholar 
    Liu, K. et al. Diversity of vascular plant and classification system of vegetation in wetlands of Anhui Province. Acta Ecol. Sin. 34, 5434–5444. https://doi.org/10.5846/stxb201301160109 (2014).Article 

    Google Scholar 
    Liu, H., Zheng, L., Wu, J. & Liao, Y. H. Past and future ecosystem service trade-offs in Poyang Lake Basin under different land use policy scenarios. Arab. J. Geosci. 13, 46. https://doi.org/10.1007/s12517-019-5004-x (2020).Article 

    Google Scholar 
    Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35. https://doi.org/10.1016/j.biocon.2015.10.023 (2016).Article 

    Google Scholar 
    Yang, X., Liu, S., Jia, C., Liu, Y. & Yu, C. C. Vulnerability assessment and management planning for the ecological environment in urban wetlands. J. Environ. Manag. 298, 113540. https://doi.org/10.1016/j.jenvman.2021.113540 (2021).Article 

    Google Scholar 
    Ghosh, S. & Das, A. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sens. Appl. Soc. Environ. 13, 191–203. https://doi.org/10.1016/j.rsase.2018.10.014 (2019).Article 

    Google Scholar 
    Means, M. M., Ahn, C., Korol, A. R. & Williams, L. D. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland. J. Environ. Manag. 165, 133–139. https://doi.org/10.1016/j.jenvman.2015.09.016 (2016).Article 

    Google Scholar 
    Fenstermacher, D. E., Rabenhorst, M. C., Lang, M. W., McCarty, G. W. & Needelman, B. A. Carbon in natural, cultivated, and restored depressional wetlands in the Mid-Atlantic Coastal Plain. J. Environ. Qual. 45, 743–750. https://doi.org/10.2134/jeq2015.04.0186 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abegaz, A., Winowiecki, L. A., Vågen, T., Langan, S. & Smith, J. U. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands. Agric. Ecosyst. Environ. 34, 190–208. https://doi.org/10.1016/j.agee.2015.11.019 (2016).CAS 
    Article 

    Google Scholar 
    Xie, E., Zhang, Y., Huang, B., Zhao, Y. & Qu, M. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 205, 104763. https://doi.org/10.1016/j.still.2020.104763 (2021).Article 

    Google Scholar 
    Jackson, R. B. et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article 

    Google Scholar 
    Sun, K. K., Chen, X., Dong, X. H. & Yang, X. D. Spatiotemporal patterns of carbon sequestration in a large shallow lake, Lake Chaohu: Evidence from multiple-core records. Limnologica 81, 125748. https://doi.org/10.1016/j.limno.2020.125748 (2020).CAS 
    Article 

    Google Scholar 
    Chen, X., Yang, X. D., Dong, X. H. & Liu, E. F. Environmental changes in Lake Chaohu (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica. 43, 10–17. https://doi.org/10.1016/j.limno.2012.03.002 (2013).CAS 
    Article 

    Google Scholar 
    Yu, J. H. et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China. J. Lake Sci. 33, 1467–1477. https://doi.org/10.18307/2021.0514 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, M. & Kong, F. X. The process, spatial and temporal distrbition and mitigation strategies of the eutrophication of Lake Chaohu (1984–2013). J. Lake Sci. 27, 791–798. https://doi.org/10.18307/2015.0505 (2015).Article 

    Google Scholar 
    Teng, Z., Cao, X. Q., Sun, M. Y., Li, P. X. & Xu, X. N. Effect of different ecological restoration patterns on soil labile organic carbon and carbon pool management index of lakeside wetland of Lake Chaohu. Ecol. Environ. Sci. 28, 752–760. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2019).Article 

    Google Scholar 
    Wang, J. J. et al. Effects of simulated nitrogen deposition on soil microbial biomass and community function in subtropical evergreen broad-leaved forest. For. Syst. 28, e018. https://doi.org/10.5424/fs/2019283-15404 (2019).Article 

    Google Scholar 
    Yang, Y. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 14, 1592–1599. https://doi.org/10.1111/J.1365-2486.2008.01591.X (2008).ADS 
    Article 

    Google Scholar 
    Li, J. et al. The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland. Acta Ecologica Sinica 40, 8928–8935. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2020).Article 

    Google Scholar 
    Ma, W. W. et al. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai wetland, China. Chin. J. Appl. Ecol. 29, 3900–3906. https://doi.org/10.13287/j.1001-9332.201812.003 (2018).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Cao, L. et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress. Chin. J. Appl. Ecol. 24, 2040–2048. https://doi.org/10.1038/ngeo1123 (2013).CAS 
    Article 

    Google Scholar 
    Liao, X. J. et al. Distribution pattern of soil organic carbon contents in the coastal wetlands in Eastern Fujian. Wetl. Sci. 11, 192–197. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    Kong, F. L., Min, X. I., Yue, L. I., Li-Hua, X. U. & Feng, X. M. Distribution and storage of DOC in a typical annular wetland of Sanjiang Plain. Bull. Soil Water Conserv. 33, 176–179. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    He, L. P., Meng, G. T., Li, G. X., Li, P. R. & Chai, Y. Soil organic carbon and its distribution characteristics in the soil profile under different vegetation recovery modes in toutang small watershed of Jinsha river. Resour. Environ. Yangtze Basin 25, 476–485. https://doi.org/10.13248/j.cnki.wetlandsci.2013.02.003 (2016).Article 

    Google Scholar 
    Bernal, B. & Mitsch, W. J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 34, 311–323. https://doi.org/10.1016/j.ecoleng.2008.09.005 (2008).Article 

    Google Scholar 
    Dong, J. et al. A novel organic carbon accumulation mechanism in croplands in the Yellow River Delta, China. Sci. Total Environ. 806, 150629. https://doi.org/10.1016/j.scitotenv.2021.150629 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, S., Adhikari, K., Wang, Q., Jin, X. & Li, H. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecol. Indic. 84, 263–272. https://doi.org/10.1016/j.ecolind.2017.08.046 (2018).CAS 
    Article 

    Google Scholar 
    Zhao, Q. et al. Soil organic carbon content and stock in wetlands with different hydrologic conditions in the Yellow River Delta, China. Ecohydrol. Hydrobiol. 20, 537–547. https://doi.org/10.1016/j.ecohyd.2019.10.008 (2020).Article 

    Google Scholar 
    Weishampel, P., Kolka, R. & King, J. Y. Carbon pools and productivity in a 1-km2 heterogeneous forest and peatland mosaic in Minnesota, USA. For. Ecol. Manag. 257, 747–754. https://doi.org/10.1016/j.foreco.2008.10.008 (2009).Article 

    Google Scholar 
    Yu, D. S., Shi, X. Z., Wang, H. J., Sun, W. X. & Zhao, Y. C. Regional patterns of soil organic carbon stocks in China. J. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).CAS 
    Article 

    Google Scholar 
    Wu, Y. et al. Elevation gradient characteristics and impact factors of soil carbon fractions in the Pinus taiwanensis Hayata forests of Daiyun Mountain. Acta Ecol. Sinica. 40, 5761–5770. https://doi.org/10.5846/stxb201908161713 (2020).Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627. https://doi.org/10.1126/science.1097396 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Selection counteracts developmental plasticity in body-size responses to climate change

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).
    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 

    Google Scholar 
    Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).
    Google Scholar 
    Jirinec, V. et al. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743 (2021).
    Google Scholar 
    Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2019).
    Google Scholar 
    Gardner, J. L. et al. Australian songbird body size tracks climate variation: 82 species over 50 years. Proc. R. Soc. B 286, 20192258 (2019).
    Google Scholar 
    McNab, B. K. Extreme Measures: The Ecological Energetics of Birds and Mammals (Univ. of Chicago Press, 2012).West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138 (2013).
    Google Scholar 
    Shipley, J. R. et al. Climate change shifts the timing of nutritional flux from aquatic insects. Curr. Biol. (2022).Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. London B 363, 1635–1645 (2008).
    Google Scholar 
    Conway, C. J. & Martin, T. E. Evolution of passerine incubation behavior: influence of food, temperature, and nest predation. Evolution 54, 670–685 (2000).CAS 

    Google Scholar 
    Martin, T. E., Tobalske, B., Riordan, M. M., Case, S. B. & Dial, K. P. Age and performance at fledging are a cause and consequence of juvenile mortality between life stages. Sci. Adv. 4, eaar1988 (2018).
    Google Scholar 
    Naef‐Daenzer, B. & Grüebler, M. U. Post‐fledging survival of altricial birds: ecological determinants and adaptation. J. Field Ornithol. 87, 227–250 (2016).
    Google Scholar 
    Cox, A. R., Robertson, R. J., Fedy, B. C., Rendell, W. B., & Bonier, F. Demographic drivers of local population decline in tree swallows (Tachycineta bicolor) in Ontario, Canada. Condor Ornithol. Appl. 120, 842–851 (2018).
    Google Scholar 
    Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Google Scholar 
    Karasov, W. H. & del Rio, C. M. Physiological Ecology (Princeton Univ. Press, 2007).Ricklefs, R. The energetics of reproduction in birds. Avian Energetics 15, 152–297 (1974).
    Google Scholar 
    Mainwaring, M. C. & Hartley, I. R. The energetic costs of nest building in birds. Avian Biol. Res. 6, 12–17 (2013).
    Google Scholar 
    Williams, J. B. Energetics of Avian Incuation. in Avian Energetics and Nutritional Ecology (ed Carey, C.) 375–415 (Springer, Boston, 1996).Williams, T. D. Mechanisms underlying the costs of egg production. Bioscience 55, 39–48 (2005).
    Google Scholar 
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA 116, 21609–21615 (2019).CAS 

    Google Scholar 
    Dawson, R. D., Lawrie, C. C. & O’Brien, E. L. The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507 (2005).
    Google Scholar 
    Andrew, S., Hurley, L., Mariette, M. & Griffith, S. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).CAS 

    Google Scholar 
    Andreasson, F., Nord, A. & Nilsson, J.-Å. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. J. Avian Biol. 49 https://doi.org/10.1111/jav.01620 (2018).Nilsson, J. F., Stjernman, M. & Nilsson, J. Å. Experimental reduction of incubation temperature affects both nestling and adult blue tits Cyanistes caeruleus. J. Avian Biol. 39, 553–559 (2008).
    Google Scholar 
    Ardia, D. R., Pérez, J. H. & Clotfelter, E. D. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proc. R. Soc. B https://doi.org/10.1098/rspb.2009.2138 (2010).Marra, P. P. et al. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. B 282, 20150624 (2015).
    Google Scholar 
    Shipley, J. R. et al. Birds advancing lay dates with warming springs face greater risk of chick mortality. Proc. Natl Acad. Sci. USA (2020).Robinson, R. A., Baillie, S. R. & Crick, H. Q. Weather‐dependent survival: implications of climate change for passerine population processes. Ibis 149, 357–364 (2007).
    Google Scholar 
    Winkler, D. W. et al. Full lifetime perspectives on the costs and benefits of lay date variation in tree swallows. Ecology (2020).Twining, C. W., Shipley, J. R. & Winkler, D. W. Aquatic insects rich in omega‐3 fatty acids drive breeding success in a widespread bird. Ecol. Lett. 21, 1812–1820 (2018).
    Google Scholar 
    Millet, A., Pelletier, F., Bélisle, M. & Garant, D. Patterns of fluctuating selection on morphological and reproductive traits in female tree swallow (Tachycineta bicolor). Evolut. Biol. 42, 349–358 (2015).
    Google Scholar 
    Bitton, P.-P., O’Brien, E. L. & Dawson, R. D. Plumage brightness and age predict extrapair fertilization success of male tree swallows, Tachycineta bicolor. Anim. Behav. 74, 1777–1784 (2007).
    Google Scholar 
    Whittingham, L. A. & Dunn, P. O. Experimental evidence that brighter males sire more extra‐pair young in tree swallows. Mol. Ecol. 25, 3706–3715 (2016).
    Google Scholar 
    Kempenaers, B., Everding, S., Bishop, C., Boag, P. & Robertson, R. J. Extra-pair paternity and the reproductive role of male floaters in the tree swallow (Tachycineta bicolor). Behav. Ecol. Sociobiol. 49, 251–259 (2001).
    Google Scholar 
    Lessard, A., Bourret, A., Bélisle, M., Pelletier, F. & Garant, D. Individual and environmental determinants of reproductive success in male tree swallow (Tachycineta bicolor). Behav. Ecol. Sociobiol. 68, 733–742 (2014).
    Google Scholar 
    Jetz, W. et al. Biological Earth observation with animal sensors. Trends Ecol. Evol. 37, 293–298 (2022).
    Google Scholar 
    Williams, H. J. et al. Future trends in measuring physiology in free-living animals. Philos. Trans. R. Soc. B 376, 20200230 (2021).CAS 

    Google Scholar 
    Twining, C. W. et al. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proc. Natl Acad. Sci. (2016).Naef‐Daenzer, B. & Grüebler, M. U. Post‐fledging survival of altricial birds: ecological determinants and adaptation. J. Field Ornithol. 87, 227–250 (2016).
    Google Scholar 
    Chamberlain, S., Hocking, D. & Anderson, B. rnoaa: NOAA Weather Data from R. R version 1.3.8 http://cran.auckland.ac.nz/web/packages/rnoaa/rnoaa.pdf (2021).Cumbie-Ward, R. V. & Boyles, R. P. Evaluation of a high-resolution SPI for monitoring local drought severity. J. Appl. Meteorol. Climatol. 55, 2247–2262 (2016).
    Google Scholar 
    Guttman, N. B. Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA J. Am. Water Resour. Assoc. 35, 311–322 (1999).
    Google Scholar 
    Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R version 3 (2017).Canty, A. & Ripley, B. Package ‘boot’. Bootstrap Funct. Ver. 1, 3–20 (2017).
    Google Scholar 
    Bates, D. et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Software 67, 1–48 (2015).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: tests in linear mixed effects models. J. Stat. Software 82, 1–26 (2017).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).
    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).Allaire, J. et al. rmarkdown: Dynamic Documents for R. R version 1 (2018).Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    Boyle, W. A., Winkler, D. W. & Guglielmo, C. G. Rapid loss of fat but not lean mass prior to chick provisioning supports the flight efficiency hypothesis in tree swallows. Funct. Ecol. 26, 895–903 (2012).
    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R version 0.2 4 (2019).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    Arnqvist, G. Mixed models offer no freedom from degrees of freedom. Trends Ecol. Evol. (2020). More

  • in

    Age as a primary driver of the gut microbial composition and function in wild harbor seals

    Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tanaka, M. & Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66, 515–522 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol. 19, 1–10 (2019).Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagpal, R. et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird’s-eye view. Front. Microbiol. 8, 1–9 (2017).Article 

    Google Scholar 
    Smith, S. C., Chalker, A., Dewar, M. L. & Arnould, J. P. Y. Age-related differences revealed in Australian fur seal Arctocephalus pusillus doriferus gut microbiota. FEMS Microbiol. Ecol. 86, 246–255 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Janiak, M. C. et al. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. Microbiome 9, (2021).Toro-Valdivieso, C., Toro, F., Stubbs, S., Castro-Nallar, E. & Blacklaws, B. Patterns of the fecal microbiota in the Juan Fernández fur seal (Arctocephalus philippii). MicrobiologyOpen 10, 1–19 (2021).Article 
    CAS 

    Google Scholar 
    Medeiros, A. W. et al. Characterization of the faecal bacterial community of wild young South American (Arctocephalus australis) and Subantarctic fur seals (Arctocephalus tropicalis). FEMS Microbiol. Ecol. 92, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Numberger, D., Herlemann, D. P. R., Jürgens, K., Dehnhardt, G. & Schulz-Vogt, H. Comparative analysis of the fecal bacterial community of five harbor seals (Phoca vitulina). MicrobiologyOpen 5, 782–792 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pacheco-Sandoval, A. et al. The Pacific harbor seal gut microbiota in Mexico: Its relationship with diet and functional inferences. PlosOne 14, (2019).Nelson, T. M., Rogers, T. L., Carlini, A. R. & Brown, M. V. Diet and phylogeny shape the gut microbiota of Antarctic seals: A comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Glad, T. et al. Ecological characterisation of the colonic microbiota in Arctic and sub-Arctic seals. Microbiol. Ecol. 60, 320–330 (2010).Article 
    CAS 

    Google Scholar 
    Delport, T. C., Power, M. L., Harcourt, R. G., Webster, K. N. & Tetu, S. G. Colony location and captivity influence the gut microbial community composition of the Australian sea lion (Neophoca cinerea). Appl. Environ. Microbiol. 82, 3440–3349 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stoffel, M. A. et al. Early sexual dimorphism in the developing gut microbiome of northern elephant seals. Mol. Ecol. 29, 2109–2122 (2020).PubMed 
    Article 

    Google Scholar 
    Tian, J., Du, J., Han, J., Song, X. & Lu, Z. Age-related differences in gut microbial community composition of captive spotted seals (Phoca largha). Mar. Mamm. Sci. 36, 1231–1240 (2020).Article 

    Google Scholar 
    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bigg, M. A. Harbour seal: Phoca vitulina and P. largha. In Handbook of Marine Mammals Vol. 2 (eds Ridgeway, S. H. & Harrison, R. J.) 1–27 (Academic Press, 1981).
    Google Scholar 
    Parracho, H., McCartney, A. L. & Gibson, G. R. Probiotics and prebiotics in infant nutrition. Proc. Nutr. Society 66, 405–411 (2007).Article 

    Google Scholar 
    Marques, T. M. et al. Programming infant gut microbiota: Influence of dietary and environmental factors. Curr. Opin. Biotechnol. 21, 149–156 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, 1556–1573 (2007).Article 
    CAS 

    Google Scholar 
    Mitsuoka, T. Intestinal flora and aging. Nutr. Rev. 50, 438–446 (1992).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bowen, W., Oftedal, O. & Boness, D. Mass and energy transfer during lactation in a small phocid, the harbor seal (Phoca vitulina). Physiol. Zool. 65, 844–866 (1992).Article 

    Google Scholar 
    Bowen, W. D., Boness, D. J. & Iverson, S. J. Diving behaviour of lactating harbour seals and their pups during maternal foraging trips. Can. J. Zool. 77, 978–988 (1999).Article 

    Google Scholar 
    Jørgensen, C., Lydersen, C., Brix, O. & Kovacs, K. M. Diving development in nursing harbour seal pups. J. Exp. Biol. 204, 3993–4004 (2001).PubMed 
    Article 

    Google Scholar 
    Muelbert, M. M. C. & Bowen, W. D. Duration of lactation and postweaning changes in mass and body composition of harbour seal, Phoca vitulina, pups. Can. J. Zool. 71, 1405–1414 (1993).Article 

    Google Scholar 
    Kim, M., Cho, H. & Lee, W. Y. Distinct gut microbiotas between southern elephant seals and Weddell seals of Antarctica. J. Microbiol. 58, 1018–1026 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kershaw, J. L. & Hall, A. J. Seasonal variation in harbour seal (Phoca vitulina) blubber cortisol—A novel indicator of physiological state?. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Madison, A. & Kiecolt-Glaser, J. K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci. 28, 105–110 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, P. M., Miller, D., Cooper, R. & Hammond, P. S. Changes in the distribution and activity of female harbour seals during the breeding season: implications for their lactation strategy and mating patterns. J. Anim. Ecol. 63, 24 (1994).Article 

    Google Scholar 
    Raulo, A. et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2018).PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2013, 1–22 (2013).
    Google Scholar 
    Fernández-Martin, E. M., Heckel, G., Schramm, Y. & García-Aguilar, M. C. The timing of pupping and molting of the Pacific harbor seal, Phoca vitulina richardii, at Punta Banda Estuary, Baja California, Mexico. Cienc. Mar. 42, 195–208 (2016).Article 

    Google Scholar 
    Oates, S. C. Survival, movements, and diet of juvenile harbor seals along central California. [Master’s thesis, San Jose State University]. (2005). https://doi.org/10.31979/etd.ra96-xhge.Germain, L. R., Mccarthy, M. D., Koch, P. L. & Harvey, J. T. Stable carbon and nitrogen isotopes in multiple tissues of wild and captive harbor seals (Phoca vitulina) off the California coast. Mar. Mamm. Sci. 28, 542–560 (2012).Article 
    CAS 

    Google Scholar 
    Brassea-Pérez, E., Schramm, Y., Heckel, G., Chong-Robles, J. & Lago-Lestón, A. Metabarcoding analysis of the Pacific harbor seal diet in Mexico. Mar. Biol. 166, (2019).Davis, T. A., Nguyen, H. V., Costa, D. P. & Reeds, P. J. Amino acid composition of pinniped milk. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 110, 633–639 (1995).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sauvé, C. C., van de Walle, J., Hammill, M. O., Arnould, J. P. Y. & Beauplet, G. Stomach temperature records reveal nursing behaviour and transition to solid food consumption in an unweaned mammal, the harbour seal pup (Phoca vitulina). PLoS ONE 9, (2014).Fernández Martín, E. M. Fenología de los nacimientos, estado de salud de las crías, y estructura genética poblacional de Phoca vitulina richardii en México [Doctoral thesis, Universidad Autónoma de Baja California, Mexico]. (2018).Gresse, R. et al. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 25, 851–873 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ni, Y. et al. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. ISME J. 15, 3207–3220 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pacífico, C. et al. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms 9, 1–23 (2021).Article 
    CAS 

    Google Scholar 
    Fenn, K. et al. Quinones are growth factors for the human gut microbiota. Microbiome 5, 161 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Disease 26, (2015).Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).Article 

    Google Scholar 
    van Parijs, S. M., Thompson, P. M., Tollit, D. J. & Mackay, A. Distribution and activity of male harbour seals during the mating season. Anim. Behav. 54, 35–43 (1997).Article 

    Google Scholar 
    Bjorkland, R. H. et al. Stable isotope mixing models elucidate sex and size effects on the diet of a generalist marine predator. Mar. Ecol. Prog. Ser. 526, 213–225 (2015).ADS 
    Article 

    Google Scholar 
    Schwarz, D. et al. Large-scale molecular diet analysis in a generalist marine mammal reveals male preference for prey of conservation concern. Ecol. Evol. 8, 9889–9905 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulva, J. Temporal variations in birth period and characteristics of newborn harbour seals. Rapports et procPs-verbaux, Reunions du Conseil International pour I’Exploration de la Mer 169, 405–408 (1975).
    Google Scholar 
    Bhute, S. S., Ghaskadbi, S. S. & Shouche, Y. S. Rare biosphere in human gut: A less explored component of human gut microbiota and its association with human health. In Mining of Microbial Wealth and MetaGenomics (eds Kalia, V. C. et al.) 133–142 (Springer Nature Singapore Ptd Ltd, 2017). https://doi.org/10.1007/978-981-10-5708-3.Chapter 

    Google Scholar 
    Brown, R. F. & Mate, B. R. Abundance, movements, and feeding habits of harbor seals, Phoca vitulina, at Netarts and Tillamook Bays, Oregon. Fishery Bull. 81, 291–301 (1983).
    Google Scholar 
    Higgins, R. Bacteria and fungi of marine mammals: A review. Can. Veterinary J. 41, 105–116 (2000).CAS 

    Google Scholar 
    Gilbert, M. J. et al. Campylobacter blaseri sp. nov., isolated from common seals (Phoca vitulina). Int. J. Syst. Evolut. Microbiol. 68, 1787–1794 (2018).Article 
    CAS 

    Google Scholar 
    Agnese, E. D. et al. Comparative microbial community analysis of fur seals and salmon aquaculture in Tasmania. Authorea. https://doi.org/10.22541/au.160253843.32636436/v1 (2020).Article 

    Google Scholar 
    Rivas, A. J., Lemos, M. L. & Osorio, C. R. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front. Microbiol. 4, 1–6 (2013).Article 

    Google Scholar 
    Fouz, B., Toranzo, A. E., Milan, M. & Amaro, C. Evidence that water transmits the disease caused by the fish pathogen Photobacterium damselae subsp. damselae. J. Appl. Microbiol. 88, 531–535 (2000).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hundenborn, J., Thurig, S., Kommerell, M., Haag, H. & Nolte, O. Severe Wound Infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Rep. Med. 2013, (2013).Lubinsky-Jinich, D., Schramm, Y. & Heckel, G. The Pacific Harbor Seal’s (Phoca vitulina richardii) breeding colonies in Mexico: Abundance and distribution. Aquat. Mamm. 43, 73–81 (2017).Article 

    Google Scholar 
    Arias-Del Razo, A. et al. Distribution of four pinnipeds (Zalophus californianus, Arctocephalus philippii townsendi, Phoca vitulina richardii, and Mirounga angustirostris) on Islands off the west coast of the Baja California Peninsula, Mexico. Aquat. Mamm. 43, 40–51 (2017).Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 108, 4516–4522 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Robertson, K. M., Lauf, M. L. & Morin, P. A. Genetic sexing of pinnipeds: A real-time, single step qPCR technique. Conserv. Genet. Resour. 10, 213–218 (2018).Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019). Accessed 3 June 2021.McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, (2013).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-4. https://cran.r-project.org/package=vegan (2019). Accessed 3 June 2021.Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. https://doi.org/10.1101/299537 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Salinas, H. & Ramirez-Delgado, D. ecolTest: Community Ecology Tests. (2021).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 
    Article 

    Google Scholar 
    Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. (2020).Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes-A 2019 update. Nucleic Acids Res. 48, D455–D463 (2020).Article 
    CAS 

    Google Scholar  More