Nitrogen use aggravates bacterial diversity and network complexity responses to temperature
Hwang, H. Y. et al. Effect of cover cropping on the net global warming potential of rice paddy soil. Geoderma 292, 49–58 (2017).ADS
CAS
Article
Google Scholar
IPCC. Climate change 2013: The physical science basis. The Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2013).
Google Scholar
Cardoso, R. M., Soares, P. M. M., Lima, D. C. A. & Miranda, P. M. A. Mean and extreme temperatures in warming climate: EURO CORDEX and WRF regional climate high-resolution projection for Portugal. Clim. Dyn. 52, 129–157 (2019).Article
Google Scholar
Ding, T., Gao, H. & Li, W. J. Extreme high-temperature event in southern China in 2016 and the possible role of cross-equatorial flows. Int. J. Climatol. 38, 3579–3594 (2018).Article
Google Scholar
Escalas, A. et al. Functional diversity and redundancy across fish gut, sediment, and water bacterial communities. Environ. Microbiol. 19, 3268–3282 (2017).Article
Google Scholar
Philippot, L. et al. Loss in microbial diversity affects nitrogen cycling in soil. ISME J. 7, 1609–1619 (2013).CAS
Article
Google Scholar
Li, Y. B. et al. Serratia spp. Are responsible for nitrogen fixation fueled by As(III) oxidation, a novel biogeochemical process identified in mine tailings. Environ. Sci. Technol 56, 2033–2043 (2022).ADS
Article
Google Scholar
Jia, M., Gao, Z. W., Gu, H. J., Zhao, C. Y. & Han, G. D. Effects of precipitation change and nitrogen addition on the composition, diversity, and molecular ecological network of soil bacterial communities in a desert steppe. PLoS ONE 16, e0248194. https://doi.org/10.1371/journal.pone.0248194 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
Waghmode, T. R. et al. Response of nitrifier and denitrifier abundance and microbial community structure to experimental warming in an agricultural ecosystem. Front. Microbiol. 9, 474. https://doi.org/10.3389/fmicb.2018.00474 (2018).Article
PubMed
PubMed Central
Google Scholar
Hu, Y. L., Wang, S., Niu, B., Chen, Q. & Zhang, G. Effect of increasing precipitation and warming on microbial community in Tibetan alpine steppe. Environ. Res. 189, 109917. https://doi.org/10.1016/j.envres.2020.109917 (2020).CAS
Article
PubMed
Google Scholar
Li, H. et al. Responses of soil bacterial communities to nitrogen deposition and precipitation increment are closely linked with aboveground community variation. Microb. Ecol. 71, 974–989 (2016).CAS
Article
Google Scholar
Wang, H. et al. Experimental warming reduced topsoil carbon content and increased soil bacterial diversity in a subtropical planted forest. Soil Biol. Biochem. 133, 155–164 (2019).CAS
Article
Google Scholar
Haumann, F. A., Gruber, N. & Münnich, M. Sea-Ice Induced Southern Ocean Subsurface Warming and Surface Cooling in a Warming Climate. AGU Advances 1, e2019AV000132. https://doi.org/10.1029/2019AV000132 (2020).ADS
Article
Google Scholar
Ji, F., Wu, Z. H., Huang, J. P. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Chang. 4, 462–466 (2014).ADS
Article
Google Scholar
Sabri, N. S. A., Zakaria, Z., Mohamad, S. E., Jaafar, A. B. & Hara, H. Importance of soil temperature for the growth of temperate crops under a tropical climate and functional role of soil microbial diversity. Microbes Environ. 33, 144–150 (2018).Article
Google Scholar
McGrady-Steed, J. & Morin, P. T. Biodiversity, density compensation, and the dynamics of populations and functional groups. Ecology 81, 361–373 (2000).Article
Google Scholar
Jiang, L. Density compensation can cause no effect of biodiversity on ecosystem function. Oikos 116, 324–334 (2007).Article
Google Scholar
Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538. https://doi.org/10.1038/nrmicro283 (2012).CAS
Article
PubMed
Google Scholar
Gao, X. X. et al. Revegetation significantly increased the bacterial-fungal interactions in different successional stages of alpine grasslands on the Qinghai-Tibetan Plateau. CATENA 205, 105385. https://doi.org/10.1016/j.catena.2021.105385 (2021).CAS
Article
Google Scholar
Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. Nat. Commun. 8, 14349. https://doi.org/10.1038/ncomms14349 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).Article
Google Scholar
Pržulj, N. & Malod-Dognin, N. Network analytics in the age of big data. Science 353, 123–124 (2016).ADS
Article
Google Scholar
Ratzke, C., Barrere, J. M. R. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).Article
Google Scholar
Fuhrman, J. A. Microbial community structure and its functional implications. Nature 45, 193–199 (2009).ADS
Article
Google Scholar
Zhao, M. X., Cong, J., Cheng, J. M., Qi, Q. & Zhang, Y. G. Soil microbial community assembly and interactions are constrained by nitrogen and phosphorus in broadleaf forests of southern China. Forest 11, 285. https://doi.org/10.3390/f11030285 (2020).Article
Google Scholar
Wan, X. L. et al. Biogeographic patterns of microbial association networks in paddy soil within Eastern China. Soil Biol. Biochem. 142, 07696. https://doi.org/10.1016/j.soilbio.2019.107696 (2020).CAS
Article
Google Scholar
Yuan, M. M., Guo, X., Wu, L., Zhang, Y. & Zhou, J. Climate warming enhances microbial network complexity and stability. Nat. Clim. Change 11, 343–348 (2021).ADS
Article
Google Scholar
Lassaletta, L. et al. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 11, 225–241 (2014).Article
Google Scholar
Phoenix, G. K. et al. Impacts of atmospheric nitrogen deposition: Responses of multiple plant and soil parameters across contrasting ecosystems in long-term field experiments. Glob. Change Biol. 18, 1197–1215 (2012).ADS
Article
Google Scholar
Nakaji, T., Fukami, M., Dokiya, Y. & Izuta, T. Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees-Struct. Funct. 15, 453–461 (2001).CAS
Article
Google Scholar
Wang, H. Y. et al. Reduction in nitrogen fertilizer use results in increased rice yields and improved environmental protection. Int. J. Agric. Sustain. 15, 681–692 (2017).Article
Google Scholar
Zhou, X. G. & Wu, F. Z. Land-use conversion from open field to greenhouse cultivation differently affected the diversities and assembly processes of soil abundant and rare fungal communities. Sci. Total Environ. 788, 147751. https://doi.org/10.1016/j.scitotenv.2021.147751 (2021).ADS
CAS
Article
PubMed
Google Scholar
Guo, H. et al. Long-term nitrogen & phosphorus additions reduce soil microbial respiration but increase its temperature sensitivity in a Tibetan alpine meadow. Soil Biol. Biochem. 113, 26–34 (2017).CAS
Article
Google Scholar
Zhang, C. et al. Effects of simulated nitrogen deposition on soil respiration components and their temperature sensitivities in a semiarid grassland. Soil Biol. Biochem. 75, 113–123 (2014).CAS
Article
Google Scholar
Zhang, J. J. et al. Different responses of soil respiration and its components to nitrogen and phosphorus addition in a subtropical secondary forest. For. Ecosyst. 8, 37. https://doi.org/10.1186/s40663-021-00313-z (2021).Article
Google Scholar
Norse, D. & Ju, X. T. Environmental costs of China’s food security. Agric. Ecosyst. Environ. 209, 5–14 (2015).Article
Google Scholar
Xu, H. F., Du, H., Zeng, F. P., Song, T. Q. & Peng, W. X. Diminished rhizosphere and bulk soil microbial abundance and diversity across succession stages in Karst area, southwest China. Appl. Soil Ecol. 158, 103799. https://doi.org/10.1016/j.apsoil.2020.103799 (2020).Article
Google Scholar
Li, Y. B. et al. Arsenic and antimony co-contamination influences on soil microbial community composition and functions: Relevance to arsenic resistance and carbon, nitrogen, and sulfur cycling. Environ. Int. 153, 106522. https://doi.org/10.1016/j.envint.2021.106522 (2021).CAS
Article
PubMed
Google Scholar
Zhou, J. & Fong, J. J. Strong agricultural management effects on soil microbial community in a non-experimental agroecosystem. Appl. Soil Ecol. 165, 103970. https://doi.org/10.1016/j.apsoil.2021.103970 (2021).Article
Google Scholar
Bárcenas-Moreno, G., Gómez-Brandón, M., Rousk, J. & Bååth, E. Adaptation of soil microbial communities to temperature: Comparison of fungi and bacteria in a laboratory experiment. Glob. Chang. Biol. 15, 2950–2957 (2009).ADS
Article
Google Scholar
Tan, E. H., Zou, W., Zheng, Z., Yan, X. & Kao, S. J. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation. Nat. Clim. Change 10, 349–355 (2020).ADS
CAS
Article
Google Scholar
Supramaniam, Y., Chong, C. W., Silvaraj, S. & Tan, K. P. Effect of short term variation in temperature and water content on the bacterial community in a tropical soil. Appl Soil Ecol. 107, 279–289 (2016).Article
Google Scholar
Zhu, Y. Z., Li, Y. Y., Zheng, N. G., Chapman, S. J. & Yao, H. Y. Similar but not identical resuscitation trajectories of the soil microbial community based on either DNA or RNA after flooding. Agronomy 10, 502. https://doi.org/10.3390/agronomy10040502 (2020).CAS
Article
Google Scholar
Donhauser, J., Qi, W., Bergk-Pinto, B. & Frey, B. High temperatures enhance the microbial genetic potential to recycle C and N from necromass in high-mountain soils. Glob. Chang. Biol. 27, 1365–1386 (2021).ADS
Article
Google Scholar
Santoyo, G., Hernandez-Pacheco, C., Hernandez-Salmeron, J. & Hernandez-Leon, R. The role of abiotic factors modulating the plant-microbe-soil interactions: Toward sustainable agriculture. A review. Span. J. Agric. Res. 15, e03R01-e11. https://doi.org/10.5424/sjar/2017151-9990 (2017).Article
Google Scholar
Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936. https://doi.org/10.1038/ncomms7936 (2015).ADS
CAS
Article
PubMed
Google Scholar
Cardinale, B. J. et al. Corrigendum: Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS
CAS
Article
Google Scholar
Ma, B., Wang, H., Dsouza, M., Lou, J. & Xu, J. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 10, 1891–1901 (2016).CAS
Article
Google Scholar
Trivedi, C. et al. Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biol. Biochem. 135, 267–274 (2019).CAS
Article
Google Scholar
Melanie, K. et al. Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol. Ecol. 82, 551–562 (2012).Article
Google Scholar
Zheng, H. F., Liu, Y., Chen, Y., Zhang, J. & Chen, Q. Short-term warming shifts microbial nutrient limitation without changing the bacterial community structure in an alpine timberline of the eastern Tibetan Plateau. Geoderma 360, 113985. https://doi.org/10.1016/j.geoderma.2019.113985 (2020).ADS
CAS
Article
Google Scholar
Finlay, B. J. & Cooper, J. L. Microbial diversity and ecosystem function. CEH Integrating Fund second progress report to the Director, Centre for Ecology and Hydrology Nov 1996–Sept (1997).Xing, X. Y. et al. Warming shapes nirS- and nosZ-type denitrifier communities and stimulates N2O emission in acidic paddy soil. Appl. Environ. Microbiol. 87, e02965-e3020. https://doi.org/10.1128/AEM.0296520 (2021).CAS
Article
PubMed Central
Google Scholar
Lin, Y. T., Whitman, W. B., Coleman, D. C., Jien, S. H. & Chiu, C. Y. Soil bacterial communities at the treeline in subtropical alpine areas. CATENA 201, 105205. https://doi.org/10.1016/j.catena.2021.105205 (2021).CAS
Article
Google Scholar
Wang, J. C. et al. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl. Soil Ecol. 112, 42–50 (2017).Article
Google Scholar
Chacón, J. M., Shaw, A. K. & Harcombe, W. R. Increasing growth rate slows adaptation when genotypes compete for diffusing resources. PLoS Comput. Biol. 16, e1007585. https://doi.org/10.1371/journal.pcbi.1007585 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article
Google Scholar
Baath, E. Growth rates of bacterial communities in soils at varying pH: A comparison of the thymidine and leucine incorporation techniques. Microb. Ecol. 36, 316–327 (1998).CAS
Article
Google Scholar
Qin, H. L. et al. Soil moisture and activity of nitrite- and nitrous oxide-reducing microbes enhanced nitrous oxide emissions in fallow paddy soils. Biol. Fertil. Soils 56, 53–67 (2020).CAS
Article
Google Scholar
Chen, Z. et al. Impact of long term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil. Microb. Ecol. 60, 850–861 (2010).CAS
Article
Google Scholar
Wei, G. S. et al. Similar drivers but different effects lead to distinct ecological patterns of soil bacterial and archaeal communities. Soil Biol. Biochem. 144, 107759. https://doi.org/10.1016/j.soilbio.2020.107759 (2020).CAS
Article
Google Scholar
Bastian, F., Bouziri, L., Nicolardot, B. & Ranjard, A. L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem. 41, 262–275 (2009).CAS
Article
Google Scholar
Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton University Press, 1968).Book
Google Scholar More