More stories

  • in

    Revisiting implementation of multiple natural enemies in pest management

    Model equationsOur host-parasite mathematical model involves the following host population components: ‘susceptible’ hosts denoted by (S), and hosts infected by k distinct types of parasites ((k=1,2,…,n)), the corresponding population numbers of infected hosts are denoted by (I_{i_1,i_2,…,i_k}), where each index (i_j) can take a value from 1, …, n (to avoid repeated counting of the same infection configuration, we require throughout the paper that (i_1 More

  • in

    Multiproxy study of 7500-year-old wooden sickles from the Lakeshore Village of La Marmotta, Italy

    Snir, A. et al. The origin of cultivation and proto-weeds, long before Neolithic farming. PLoS ONE 10(7), e0131422. https://doi.org/10.1371/journal.pone.0131422 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Groman-Yaroslavski, I., Weiss, E. & Nadel, D. Composite sickles and cereal harvesting methods at 23,000-years-old Ohalo II Israel. PLoS ONE 11(11), e0167151. https://doi.org/10.1371/journal.pone.0167151 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, P. C. A 14000 year-old hunter-gatherer’s toolkit. Antiquity 81(314), 865–876. https://doi.org/10.1017/S0003598X0009596X (2007).Article 

    Google Scholar 
    Le Dosseur, G. Bone Objects in the Southern Levant from the Thirteenth to the Fourth Millennia. Bulletin du Centre de recherche français à Jérusalem 12, 111–125 (2003).
    Google Scholar 
    Garrard, A., & Yazbeck, C. The Natufian of Moghr el-Ahwal in the Qadisha valley, northern Lebanon. in Natufian Foragers in the Levant. International Monographs in Prehistory (eds. Bar-Yosef, O. & Valla, F. R.). 17–47. (Michigan, Ann Arbor, 2013).Belfer-Cohen, A. The Natufian in the Levant. Annu. Rev. Anthropol. 20, 167–186. https://doi.org/10.1146/annurev.an.20.100191.001123 (1991).Article 

    Google Scholar 
    Stordeur, D. Le Natoufien et son évolution à travers les artefacts en os in Natufian Foragers in the Levant. International Monographs in Prehistory (eds. Bar-Yosef, O. & Valla, F. R.). 457–482. (Michigan, Ann Arbor, 2013).Rosen, S. A. Lithics after the Stone Age: a handbook of stone tools from the Levant. (Rowman Altamira, 1997).Anderson, P. C. Prehistory of agriculture: new experimental and ethnographic approaches. (Cotsen Institute of Archaeology Press, 1999).Ibáñez, J. J., González Urquijo, J. E., & Rodríguez, A. The evolution of technology during the PPN in the Middle euphrates. A view from use wear analysis of lithic tools. in Systèmes techniques et communautés du Néolithique Préceramique au Proche Orient. Technical Systems and Near Eastern PPN Communities (eds. Astruc, L., Binder, D. & Briois, F.) 153–165 (Editions APDCA, 2007).Maeda, O., Lucas, L., Silva, F., Tanno, K. I. & Fuller, D. Q. Narrowing the harvest: Increasing sickle investment and the rise of domesticated cereal agriculture in the Fertile Crescent. Quatern. Sci. Rev. 145, 226–237. https://doi.org/10.1016/j.quascirev.2016.05.032 (2016).ADS 
    Article 

    Google Scholar 
    Pichon, F. Exploitation of the cereals during the Pre-pottery Neolithic of Dja’de-el-Mughara: Preliminary results of the functional study of the glossy blades. Quatern. Int. 427, 138–151. https://doi.org/10.1016/j.quaint.2016.01.064 (2017).Article 

    Google Scholar 
    Borrell, F., & Molist, M. Projectile Points, Sickle Blades and Glossed Points. Tools and Hafting Systems at Tell Halula (Syria) during the 8th millennium cal. BC Paléorient, 33(2), 59–77 (2007). https://doi.org/10.2307/41496812.Douka, K., Efstratiou, N., Hald, M., Henriksen, P. & Karetsou, A. Dating Knossos and the arrival of the earliest Neolithic in the southern Aegean. Antiquity 91(356), 304–321. https://doi.org/10.15184/aqy.2017.29 (2017).Article 

    Google Scholar 
    Perlès, C. From the Near East to Greece: Let’s reverse the focus. Cultural elements that didn’t transfer. in How did farming reach Europe? (ed. Lichter, C.) 275–290 (Istanbul, Ege Yayınları, 2005).Gijn A.L. van & Wentink K. The role of flint in mediating identities: The microscopic evidence. in Mobilty, meaning & transformations of things, shifting contexts of material culture through time and space. (eds. Hahn, H.P. & Weiss, H.) 120–132 (Oxford, Oxbow Books, 2013).Guilaine, J. The neolithic transition: From the Eastern to the Western Mediterranean. in Times of Neolithic Transition along the Western Mediterranenn. (eds. O., García-Puchol & D. C., Salazar-García) 15–31 (New York, Springer, 2017). https://doi.org/10.1007/978-3-319-52939-4_2.Forenbaher, S. & Miracle, P. T. The spread of farming in the Eastern Adriatic. Antiquity 79(305), 514–528 (2005).Article 

    Google Scholar 
    Gabriele, M. et al. Long-distance mobility in the North-Western Mediterranean during the Neolithic transition using high resolution pottery sourcing. J. Archaeol. Sci. Rep. 28, 102050. https://doi.org/10.1016/j.jasrep.2019.102050 (2019).Article 

    Google Scholar 
    Manen, C., Perrin, T., Guilaine, J., Bouby, L., Bréhard, S., Briois, F., Durand, F., Marinval, P. & Vigne, J. D. The Neolithic transition in the western Mediterranean: A complex and non-linear diffusion process—the radiocarbon record revisited. Radiocarbon 61(2), 531–571 (2019). https://doi.org/10.1017/RDC.2018.98Ibáñez, J. J., Clemente Conte, I., Gassin, B., Gibaja, J. F., Gonzáles Urquijo, J. E., Márquez, B., Philibert, S., Rodríguez Rodríguez, A. Harvesting technology during the Neolithic in south-west Europe. in Prehistoric technology 40 years later: functional studies and the Russian legacy (eds. Longo L. & Skakun, N.) 183–95 (Oxford, Archaeopress, 2008).Gibaja, J. F., Ibáñez, J. J., González Urquijo, J. E. Neolithic Sickles in the Iberian Peninsula. in Exploring and Explaining Diversity in Agricultural Technology, EARTH 2 (eds. van Gijn, A., Whittaker, P. & Anderson, P.) 112–118 (Oxford, Oxbow Books, 2014).Mazzucco, N., Capuzzo, G., Petrinelli-Pannocchia, C., Ibáñez, J. J., Gibaja, J. F. Harvesting tools and the spread of the Neolithic into the Central-Western Mediterranean area. Quat. Int. 470(Part B), 511–528 (2018). https://doi.org/10.1016/j.quaint.2017.04.018.Mazzucco, N., Guilbeau, D., Kačar, S., Podrug, E., Forenbaher, S., Radić, D., Moore, A. T. M. The time is ripe for a change. The evolution of harvesting technologies in Central Dalmatia during the Neolithic period (6th millennium cal BC). J. Anthropol. Archaeol. 51, 88–103 (2018). https://doi.org/10.1016/j.jaa.2018.06.003Mazzucco, N. et al. Migration, adaptation, innovation: The spread of Neolithic harvesting technologies in the Mediterranean. PLoS ONE 15(4), e0232455. https://doi.org/10.1371/journal.pone.0232455 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fugazzola Delpino, M. A., D’Eugenio, G. & Pessina, A. “La Marmotta” (Anguillara Sabazia, RM): Scavi 1989—un abitato perilacustre di età Neolitica. Bull. Paletnol. Ital. 84, 181–315 (1993).
    Google Scholar 
    Fugazzola Delpino, M. A., Pessina, A. Le village néolithique submergé de La Marmotta (lac de Bracciano, Rome). in Le Néolithique du Nord-Ouest méditerranéen (ed. Vaquer, J.) 35–38 (Société préhistorique française, Paris, 1999)Fugazzola Delpino, M. A. La Marmotta. in Le ceramiche impresse nel Neolitico antico. Italia e Mediterraneo (eds. Fugazzola, M.A., Pessina, A. & Tiné, V) 373–395 (Istituto Poligrafico e Zecca dello Stato, Roma, 2002).Grantham, G. L. faucille et la faux. Études rurales 151–152, 103–131 (1999).Article 

    Google Scholar 
    Sigaut, F. Identification des techniques de récolte des graines alimentaires. J. Agric. Trad. Bot. Appl. 25(3), 145–161 (1978).
    Google Scholar 
    Anderson, P. C., Sigaut, F. Introduction: reasons for variability in harvesting techniques and tools. in Exploring and Explaining Diversity in Agricultural Technology, EARTH 2 (eds. van Gijn, A., Whittaker, P. & Anderson, P.) 85–93 (Oxford, Oxbow Books, 2014).Halstead, P. Two oxen ahead: Pre-mechanized farming in the Mediterranean (John Wiley & Sons, 2014).Book 

    Google Scholar 
    Fugazzola Delpino, M. A. & Mineo, M. La piroga neolitica di Bracciano (La Marmotta 1). Bull. Paletnol. Ital. 86, 197–266 (1995).
    Google Scholar 
    Fugazzola Delpino, M. A., Tinazzi, O. Dati di cronologia da un villaggio del Neolitico Antico. Le indagini dendrocronologiche condotte sui legni de La Marmotta (lago di Bracciano-Roma). in Miscellanea in ricordo di Francesco Nicosia, 1–10 (Studia Erudita, Fabrizio Serra Editore, 2010).Salavert, A. et al. Direct dating reveals the early history of opium poppy in western Europe. Sci. Rep. 10, 20263. https://doi.org/10.1038/s41598-020-76924-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghiselli, L. et al. Nutritional characteristics of ancient Tuscan varieties of Triticum aestivum L. Ital. J. Agron. 11(4), 237–245 (2016).Article 

    Google Scholar 
    Pichon, F. Une moisson expérimentale de céréales, Séranon (août 2016), ArchéOrient – Le Blog, 14 octobre2016, (2016). https://archeorient.hypotheses.org/6667.Banks, W. E. & Kay, M. High-resolution casts for lithic use-wear analysis. Lithic Technol. 28(1), 27–34. https://doi.org/10.1080/01977261.2003.11721000 (2003).Article 

    Google Scholar 
    Ibáñez, J. J., Anderson, P. C., Gonzalez-Urquijo, J. & Gibaja, J. Cereal cultivation and domestication as shown by microtexture analysis of sickle gloss through confocal microscopy. J. Archaeol. Sci. 73, 62–81. https://doi.org/10.1016/j.jas.2016.07.011 (2016).Article 

    Google Scholar 
    Caruso Fermé, L. Modalidades de adquisición y uso del material leñoso entre grupos cazadores-recolectores patagónicos (Argentina). Métodos y técnicas de estudios del material leñoso arqueológico. PhD Dissertation (Universidad Autónoma de Barcelona, Barcelona, 2012).Caruso Fermé, L., Clemente, I., Civalero, M.T. A use-wear analysis of wood technology of patagonian hunter-gatherers. The case of Cerro Casa de Piedra 7, Argentina. J. Archaeol. Sci. 15, 315–321 (2015). https://doi.org/10.1016/j.jas.2015.03.015.Caruso Fermé, L., Aschero, C. Manufacturing and use of the wooden artifacts. A use-wear analysis of wood technology in hunter-gatherer groups (Cerro Casa de Piedra 7 site, Argentina). J. Archaeol. Sci. 31, 102291 (2020). https://doi.org/10.1016/j.quaint.2020.10.067.Schweingruber, F. H. Anatomy of European wood: An atlas for the identification of European trees, shrubs and dwarf shrubs (Paul Haupt, 1990).
    Google Scholar 
    Rageot, M. et al. Birch bark tar production: Experimental and biomolecular approaches to the study of a common and widely used prehistoric adhesive. J. Archaeol. Method Theory 26, 276–312. https://doi.org/10.1007/s10816-018-9372-4 (2019).Article 

    Google Scholar 
    Rageot, M. et al. New insights into Early Celtic consumption practices: Organic residue analyses of local and imported pottery from Vix-Mont Lassois. PLoS ONE 14(6), e0218001. https://doi.org/10.1371/journal.pone.0218001 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arobba, D., Caramiello, R., Martino, G. P. Analisi paleobotaniche di resine dal relitto navale romano del Golfo Dianese. Rivista di Studi Liguri, LXIII-LXIV: 339–355 (1999).Marshall, D. M. Archaeological pollen: extraction from ancient resins. The American Association of Stratigraphic Palynologists. Prog. and Abstr., 38th Ann. Mtg., 34 (2005).Berglund, B. E., Ralska-Jasiewiczowa, M. Pollen analysis and pollen diagrams. in Handbook of Holocene Palaeoecology and Palaeohydrology. (eds. Berglund, B. E.) 455–484 (Chichester, Wiley, 1986).Traverse, A. Paleopalynology. Second Edition, 813 p. (Dordrecht, Springer, 2007).Punt W. (ed.) The Northwest European pollen flora (NEPF), vol. 2 (1980), vol. 3 (1981), vol. 4 (1984) vol. 5 (1988), vol. 6 (1991), vol. 7 (1996), vol. 8 (2003) (Elsevier, Wim Punt, Amsterdam, 1980–2003)Fægri, K. & Iversen, J. Textbook of pollen analysis (John Wiley and Sons, 1989).
    Google Scholar 
    Moore, P. D., Webb, J. A. & Collinson, M. E. Pollen analysis 2nd edn. (Blackwell, 1991).
    Google Scholar 
    Beug, H.-J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (Pfeil, 2004).
    Google Scholar 
    Reille, M. Pollen et spores d’Europe et d’Afrique du Nord. (Marseille, Laboratoire de Botanique Historique et Palynologie, 1992).Katz, O. et al. Rapid phytolith extraction for analysis of phytolith concentrations and assemblages during an excavation: An application at Tell es-Safi/Gath Israel. J. Archaeol. Sci. 37(7), 1557–1563. https://doi.org/10.1016/j.jas.2010.01.016 (2010).Article 

    Google Scholar 
    Brown, D. A. Prospects and limits of a phytolith key for grasses in the central United States. J. Archaeol. Sci. 11, 345–368. https://doi.org/10.1016/0305-4403(84)90016-5 (1984).Article 

    Google Scholar 
    Rosen, A. M. Preliminary identification of silica skeletons from Near Eastern archaeological sites: an anatomical approach. in Phytolith Systematics: Emerging Issues, Advances in Archaeological and Museum Science (eds. Rapp, G. Jr. & Mulholland, S. C.) 129–148 (New York, Plenum Press, 1992)Mulholland, S. C., Rapp Jr. G. A morphological classification of grass silica-bodies. in Phytolith Systematics: Emerging Issues, Advances in Archaeological and Museum Science (eds. Rapp, G. Jr. & Mulholland, S. C.) 65–89 (New York, Plenum Press, 1992)Piperno, D. R. Phytoliths: A comprehensive Guide for Archaeologists and Paleoecologists (Altamira Press, 2006).
    Google Scholar 
    Albert, R. M., & Weiner, S. Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. in Phytoliths: applications in earth sciences and human history, (eds. Meunier, J.D. & Colin, F.) 251–266 (Tokyo, Balkema Publisher, 2001)Albert, R. M. et al. Phytolith-rich layers from the Late Bronze and Iron Ages at Tel Dor (Israel): Mode of formation and archaeological significance. J. Archaeol. Sci. 35(1), 57–75. https://doi.org/10.1016/j.jas.2007.02.015 (2008).Article 

    Google Scholar 
    Albert, R. M., Ruíz, J. A. & Sans, A. PhytCore ODB: A new tool to improve efficiency in the management and exchange of information on phytoliths. J. Archaeol. Sci. 68, 98–105 (2016).Article 

    Google Scholar 
    Portillo, M., Kadowaki, S., Nishiaki, Y. & Albert, R. M. Early Neolithic household behavior at Tell Seker al-Aheimar (Upper Khabur, Syria): A comparison to ethnoarchaeological study of phytoliths and dung spherulites. J. Archaeol. Sci. 42, 107–118 (2014).Article 

    Google Scholar 
    Tsartsidou, G. et al. The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. J. Archaeol. Sci. 34, 1262–1275. https://doi.org/10.1016/j.jas.2006.10.017 (2007).Article 

    Google Scholar 
    Neumann, K., Strömberg , A. E. C., Ball, T., Albert, R. M., Vrydaghs, L. Scott-Cummings, L. (International Committee for Phytolith Taxonomy ICPT). International Code for Phytolith Nomenclature (ICPN) 2.0. Annals of Botany, 124(2): 189–199 (2019).Anderson, P. C. Insight into plant harvesting and other activities at Hatoula, as revealed by microscopic functional analysis of selected chipped stone tools. Le site de Hatoula en Judée occidental. (eds. Lechevallier, M. & Ronen, A.) 277–293 (Paris, Association Paléorient, 1994)Fugazzola Delpino, M.A. La vita quotidiana del Neolitico. Il sito della Marmotta sul Lago di Bracciano. in Settemila anni fa il primo pane. Ambienti e culture delle società neolitiche (eds. Pessina, A. & Muscio G.) 185–192 (Udine, Museo Friulano di Storia Naturale, 1998–1999)Mineo, M. Monossili d’Europa: costruite anche per le rotte marine? in Ubi minor: le isole minori del Mediterraneo centrale: dal Neolitico ai primi contatti coloniali (eds. Guidi, A., Cazzella, A. & Nomi, F.). Scienze dell’Antichità 22, 453–475 (2016)Helwig, K., Monahan, V. & Poulin, J. The identification of hafting adhesive on a slotted antler point from a southwest Yukon ice patch. Am. Antiq. 73, 279–288. https://doi.org/10.1017/S000273160004227X (2008).Article 

    Google Scholar 
    Steigenberger, G. & Herm, C. Natural resins and balsams from an eighteenth-century pharmaceutical collection analysed by gas chromatography/mass spectrometry. Anal. Bioanal. Chem. 401, 1771–1784. https://doi.org/10.1007/s00216-011-5169-y (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    van den Berg, K. J., Boon, J. J., Pastorova, I. & Spetter, L. F. M. Mass spectrometric methodology for the analysis of highly oxidized diterpenoid acids in Old Master paintings. J. Mass Spectrom. 35, 512–533. https://doi.org/10.1002/(SICI)1096-9888(200004)35:4%3c512::AID-JMS963%3e3.0.CO;2-3 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Behre K. E. Anthropogenic Indicators in Pollen Diagrams, A.A. (Rotterdam, Balkema, 1986).Mercuri, A. M. et al. Anthropogenic Pollen Indicators (API) from archaeological sites as local evidence of human-induced environments in the Italian peninsula. Ann. Bot. 3, 143–153 (2013).
    Google Scholar 
    Andersen, S.-T., Identification of wild grass and cereal pollen. in Danmarks Geologiske Undersøgelse (ed. Aaby, B.) 69–92 (Geological Survey of Denmark, 1978).Bottema, S. Cereal-type pollen in the Near East as indicators of wild or domestic crops. in Préhistoire de l’agriculture: nouvelles approches expérimentales et ethnographiques (ed. Anderson P. C.) 95–106 (Paris, CRA, 1992). https://doi.org/10.1007/BF00217499.Lagerås, P. Long-term history of land-use and vegetation at Femtingagölen—a small lake in the Småland Uplands, southern Sweden. Veg. Hist. Archaeobot. 5, 215–228 (1996).Article 

    Google Scholar 
    Joly, C., Barillé, L., Barreau, M., Mancheron, A. & Visset, L. Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses. Rev. Palaeobot. Palynol. 146, 221–233. https://doi.org/10.1016/j.revpalbo.2007.04.003 (2007).Article 

    Google Scholar 
    Punt, W. Umbelliferae. Rev. Palaeobot. Palynol. 42, 155–364 (1984).Article 

    Google Scholar 
    Ellis, M. B. & Ellis, J. P. Microfungi of Land Plants. An Identification Handbook (London, Croom Helm, 1985) (Figure 1270).Ellis, M. B. & Ellis, J. P. Microfungi of Land Plants. An Identification Handbook (London, Croom Helm, 1985) (Figures 174; 176).Rottoli, M., Pessina, A. Neolithic agriculture in Italy: an update of archaeobotanical data with particular emphasis on northern settlements. in The Origins and Spread of Domestic Plants in Southwest Asia and Europe. (eds. Colledge, S. & Conolly, J.) 141–154 (Routledge, New York, 2016)Gurova, M. Prehistoric sickles in the collection of the National Museum of Archaeology in Sofia. in Southeast Europe and Anatolia in Prehistory: Essays in Honor of Vassil Nikolov on his 65th Anniversary (eds. Bacvarov, K. & Gleser, E.) 159–165 (Bonn, Verlag Dr. Rudolf Habelt GmbH, 2016)Sidéra, I. Nouveaux éléments d’origine proche-orientale dans le Néolithique ancien balkanique. in Analyse de l’industrie osseuse. in Préhistoire d’Anatolie. Genèse de deux mondes (ed. Otte, M.), 215–239 (Liège, ERAUL, 1997)Mellaart, J. Excavations at Hacılar: Fourth preliminary report, 1960. Anat. Stud. Anat. Stud. 11, 39–75 (1961).Article 

    Google Scholar 
    Nag, P. K., Goswami, A., Ashtekar, S. P. & Pradhan, C. K. Ergonomics in sickle operation. Appl. Ergon. 19(3), 233–239 (1988).CAS 
    Article 

    Google Scholar 
    Astruc, L., Tkaya, M. B. & Torchy, L. D. l’efficacité des faucilles néolithiques au Proche-Orient: approche expérimentale. Bulletin de la Société préhistorique française 109(4), 671–687 (2012).Article 

    Google Scholar 
    Sigaut, F. Les techniques de récolte des grains : identification, localisation, problèmes d’interprétation. in Rites et rythmes agraires (ed. Cauvin, M.-C.) 31–43 (Lyon, Maison de l’Orient et de la Méditerranée Jean Pouilloux, 1991)Magri, D. Late Quaternary vegetation history at Lagaccione near Lago di Bolsena (central Italy). Rev. Palaeobot. Palynol. 106(3–4), 171–208 (1999).Article 

    Google Scholar 
    Gale, R., & Cutler, D. F. Plants in archaeology: identification manual of vegetative plant materials used in Europe and the Southern Mediterranean to c. 1500 (Westbury and Royal Botanic Gardens, Kew, 2000).Chabal, L. & Feugère, M. L. Le mobilier organique des puits antiques et autres contextes humides de Lattara. Lattara 18, 137–188 (2005).
    Google Scholar 
    Chabal, L. (ed.) Quatre puits de l’agglomération routière gallo-romaine d’Ambrussum (Villetelle, Hérault). Supplément. Revue Archéologique de Narbonnaise, 42: 65–71 (2013).Caruso Fermé, L. & Piqué Huerta, R. Landscape and forest exploitation at the ancient Neolithic site of La Draga (Banyoles, Spain). The Holocene, 24(3): 266 (2014).Boschian, G. Il Riparo “Ermanno de Pompeis” presso l’Eremo di San Bartolomeo di Legio. Scavi 1990–1999. in Atti della XXXVI Riunione Scientifica IIPP, Preistoria e Protostoria dell’Abruzzo, Chieti-Celano, 27–30 settembre 2001, 105–116 (IIPP; Firenze, 2003).Radi, G. & Danese, E. L’abitato di Colle Santo Stefano di Ortucchio (L’Aquila). in Atti della XXXVI Riunione Scientifica IIPP, Preistoria e Protostoria dell’Abruzzo, Chieti-Celano, 27–30 settembre 2001, 145–161 (IIPP; Firenze, 2003).De Francesco, A. M., Bocci, M., Crisci, G. M., & Francaviglia, V. Obsidian provenance at several Italian and Corsican archaeological sites using the non-destructive X-ray fluorescence method. in Obsidian and ancient manufactured glass (eds. Liritzis, I., & Stevenson, C. M.) 115–129 (Albuquerque, UNM Press, 2012).Degano, I. et al. Hafting of Middle Paleolithic tools in Latium (central Italy): New data from Fossellone and Sant’Agostino caves. PLoS ONE 14, e0213473 (2019).CAS 
    Article 

    Google Scholar 
    Nardella, F. et al. Chemical investigations of bitumen from Neolithic archaeological excavations in Italy by GC/MS combined with principal component analysis. Anal. Methods 11, 1449–1459. https://doi.org/10.1039/c8ay02429d (2019).CAS 
    Article 

    Google Scholar 
    Rageot, M. et al. Management systems of adhesive materials throughout the Neolithic in the North-West Mediterranean. J. Archaeol. Sci. 126, 105309 (2021).Article 

    Google Scholar 
    Binder, D., Bourgeois, G., Benoist, F. & Vitry, C. Identification de brai de bouleau (betula) dans le néolithique de Giribaldi (Nice, France) par la spectrométrie de masse. Revue d’Archéométrie 14, 37–42 (1990).Article 

    Google Scholar 
    Vuorela, I. Relative pollen rain around cultivated fields. Acta Bot. Fenn. 102, 1–27 (1973).
    Google Scholar 
    Robinson, M. & Hubbard, R. N. L. B. The transport of pollen in the bracts of hulled cereals. J. Archaeol. Sci. 4(2), 197–199. https://doi.org/10.1016/0305-4403(77)90067-X (1977).Article 

    Google Scholar 
    Hall, V.A., The role of harvesting techniques in the dispersal of pollen grains of Cerealia. Pollen et Spores, XXX, 2, pp. 265–270.Portillo, M., Llergo, Y., Ferrer, A. & Albert, R. M. Tracing microfossil residues of cereal processing in the archaeobotanical record: an experimental approach. Veg. Hist. Archaeobot. 26(1), 59–74. https://doi.org/10.1007/s00334-016-0571-1 (2017).Article 

    Google Scholar 
    Negri, G. Nuovo erbario figurato (Hoepli ed., Milano, 1981).Paris R. R. & Moyse H. Matière Médicale. Vol 2°, (Masson, Paris. 1976).Bulgarelli, G. & Flamigni, S. Le piante tossiche e velenose (Hoepli ed., Milano, 2010).Les, D. H. Aquatic Dicotyledons of North America: Ecology, Life History, and Systematics (CRC Press, 2017).Book 

    Google Scholar 
    Curti, L. Herbarium, un’inedita collezione di piante del XVIII secolo conservata presso l’orto Botanico dell’Università di Padova (Offset Invicta S.p.A., Padova, 1992).Rottoli, M. Zafferanone selvatico (Carthamus lanatus) e cardo della Madonna (Silybum marianum), piante raccolte o coltivate nel Neolitico antico a “La Marmotta”? Bollettino di Paletnologia Italiana, 91–92, 47–61 (2000–2001).Rottoli, M. “La Marmotta”, Anguillara Sabazia (RM), scavi 1989. Analisi paletnobotaniche: prime risultanze. Bullettino di Paletnologia Italiana 84, 305–315 (1993).Van Geel, B. Non-pollen palynomorphs. in Tracking Environmental Change Using Lake Sediments: Terrestrial, vol. 3. (ed. Smol, J. P., Birks, H. J. B., Last W. M.) 99–119 (Algal and Siliceous Indicators, New York, 2001)Hawksworth, David L., van Geel, Bas, Wiltshire, Patricia E. J. The enigma of the Diporotheca palynomorph. Rev. Palaeobot. Palynol. 235, 94–98 (2016). https://doi.org/10.1016/j.revpalbo.2016.09.010.Krug, J. C., Benny, G. L., Keller, H. W. Coprophilous fungi. In Biodiversity of Fungi. Inventory and Monitoring Methods (ed. Foster M., Bill, G.) 467–499 (Elsevier Science, Amsterdam, 2004). More

  • in

    Efficient carbon and nitrogen transfer from marine diatom aggregates to colonizing bacterial groups

    Smith, D. C., Simon, M., Alldredge, A. L. & Azam, F. Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142. https://doi.org/10.1038/359139a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Alldredge, A. L. & Gotschalk, C. C. Direct observations of the mass flocculation of diatom blooms: Characteristics, settling velocities and formation of diatom aggregates. Deep Sea Res. A 36, 159–171. https://doi.org/10.1016/0198-0149(89)90131-3 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Jackson, G. A. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res. A 37, 1197–1211. https://doi.org/10.1016/0198-0149(90)90038-w (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiørboe, T., Lundsgaard, C., Olesen, M. & Hansen, J. L. S. Aggregation and sedimentation processes during a spring phytoplankton bloom: A field experiment to test coagulation theory. J. Mar. Res. 52, 297–323. https://doi.org/10.1357/0022240943077145 (1994).Article 

    Google Scholar 
    Jackson, G. Coagulation Theory and Models of Oceanic Plankton Aggregation (CRC Press, 2005).
    Google Scholar 
    Grossart, H. P., Kiorboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: Growth and interactions. Appl. Environ. Microb. 69, 3500–3509. https://doi.org/10.1128/aem.69.6.3500-3509.2003 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Kiorboe, T., Tang, K., Grossart, H. P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: Colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047. https://doi.org/10.1128/AEM.69.6.3036 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: Carbon cycling in the northeast pacific. Deep Sea Res. A 34, 267–285. https://doi.org/10.1016/0198-0149(87)90086-0 (1987).ADS 
    CAS 
    Article 

    Google Scholar 
    Buesseler, K. O. et al. VERTIGO (vertical transport in the global ocean): A study of particle sources and flux attenuation in the North Pacific. Deep Sea Res. II 55, 1522–1539. https://doi.org/10.1016/j.dsr2.2008.04.024 (2008).ADS 
    Article 

    Google Scholar 
    Grossart, H. P., Tang, K. W., Kiorboe, T. & Ploug, H. Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol. Lett. 266, 194–200. https://doi.org/10.1111/j.1574-6968.2006.00520.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martinez, J., Smith, D. C., Steward, G. F. & Azam, F. Variability in ectohydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10, 223–230. https://doi.org/10.3354/ame010223 (1996).Article 

    Google Scholar 
    Kellogg, C. T. E. et al. Evidence for microbial attenuation of particle flux in the Amundsen Gulf and Beaufort Sea: Elevated hydrolytic enzyme activity on sinking aggregates. Polar Biol. 34, 2007–2023. https://doi.org/10.1007/s00300-011-1015-0 (2011).Article 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599. https://doi.org/10.1038/nrmicro2386 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiao, N. & Zheng, Q. The microbial carbon pump: From genes to ecosystems. Appl. Environ. Microbiol. 77, 7439–7444. https://doi.org/10.1128/AEM.05640-11 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & Gonzalez, J. M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698. https://doi.org/10.1038/nrmicro3326 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl. Acad. Sci. USA 113, 1576–1581. https://doi.org/10.1073/pnas.1512307113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Secchi, E. et al. The effect of flow on swimming bacteria controls the initial colonization of curved surfaces. Nat. Commun. 11, 2851. https://doi.org/10.1038/s41467-020-16620-y (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acinas, S. G., Antón, J. & Rodríguez-Valera, F. Diversity of free-living and attached bacteria in offshore Western Mediterranean Waters as depicted by analysis of genes encoding 16S rRNA. Appl. Environ. Microb. 65, 514–522 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Grossart, H. P., Levold, F., Allgaier, M., Simon, M. & Brinkhoff, T. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860–873. https://doi.org/10.1111/j.1462-2920.2005.00759.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl. Acad. Sci. USA 115, E6799–E6807. https://doi.org/10.1073/pnas.1802470115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rieck, A., Herlemann, D. P., Jurgens, K. & Grossart, H. P. Particle-associated differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6, 1297. https://doi.org/10.3389/fmicb.2015.01297 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziervogel, K., Steen, A. D. & Arnosti, C. Changes in the spectrum and rates of extracellular enzyme activities in seawater following aggregate formation. Biogeosciences 7, 1007–1015. https://doi.org/10.5194/bg-7-1007-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl. Acad. Sci. USA 105, 4209–4214. https://doi.org/10.1073/pnas.0709765105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lopez-Perez, M. et al. Genomes of surface isolates of Alteromonas macleodii: The life of a widespread marine opportunistic copiotroph. Sci. Rep. 2, 696. https://doi.org/10.1038/srep00696 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiele, S., Fuchs, B. M., Amann, R. & Iversen, M. H. Colonization in the photic zone and subsequent changes during sinking determine bacterial community composition in marine snow. Appl. Environ. Microbiol. 81, 1463–1471. https://doi.org/10.1128/AEM.02570-14 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bachmann, J. et al. Environmental drivers of free-living vs particle-attached bacterial community composition in the mauritania upwelling system. Front. Microbiol. 9, 2836. https://doi.org/10.3389/fmicb.2018.02836 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39, 91–100. https://doi.org/10.1016/s0168-6496(01)00206-9 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M. et al. Comparison of bacterial communities on limnic versus coastal marine particles reveals profound differences in colonization. Environ. Microbiol. 17, 3500–3514. https://doi.org/10.1111/1462-2920.12466 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 4354. https://doi.org/10.1126/sciadv.aaz4354 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. ISME J. 15, 1695–1708. https://doi.org/10.1038/s41396-020-00880-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ploug, H., Grossart, H. P., Azam, F. & Jørgensen, B. B. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: Implications for the carbon cycle in the ocean. Mar. Ecol. Prog. Ser. 179, 1–11. https://doi.org/10.3354/meps179001 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: Respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475. https://doi.org/10.4319/lo.2000.45.7.1467 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. Proc. Natl. Acad. Sci. USA 116, 23309–23316. https://doi.org/10.1073/pnas.1908512116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates. Limnol. Oceanogr. 46, 267–277. https://doi.org/10.4319/lo.2001.46.2.0267 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965. https://doi.org/10.1038/ncomms11965 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiorboe, T., Grossart, H. P., Ploug, H. & Tang, K. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68, 3996–4006. https://doi.org/10.1128/AEM.68.8.3996-4006.2002 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vaqué, D., Duarte, C. M. & Marrasé, C. Influence of algal population dynamics on phytoplankton colonization by bacteria: Evidence from two diatom species. Mar. Ecol. Prog. Ser. 65, 201–203. https://doi.org/10.3354/meps065201 (1990).ADS 
    Article 

    Google Scholar 
    Grossart, H.-P. & Ploug, H. Bacterial production and growth efficiencies: Direct measurements on riverine aggregates. Limnol. Oceanogr. 45, 436–445. https://doi.org/10.4319/lo.2000.45.2.0436 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Duhamel, S. et al. Growth and specific P-uptake rates of bacterial and phytoplanktonic communities in the Southeast Pacific (BIOSOPE cruise). Biogeosciences 4, 941–956. https://doi.org/10.5194/bg-4-941-2007 (2007).ADS 
    Article 

    Google Scholar 
    Kirchman, D. L. Growth rates of microbes in the oceans. Annu. Rev. Mar. Sci. 8, 285–309. https://doi.org/10.1146/annurev-marine-122414-033938 (2016).ADS 
    Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: Bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527. https://doi.org/10.3389/fmars.2020.00527 (2020).Article 

    Google Scholar 
    Thomas, T. et al. Analysis of the Pseudoalteromonas tunicata genome reveals properties of a surface-associated life style in the marine environment. PLoS ONE 3, e3252. https://doi.org/10.1371/journal.pone.0003252 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varbanets, L. D. et al. The black sea bacteria-producers of hydrolytic enzymes. Mikrobiol. Z. 73, 9–15 (2011).CAS 
    PubMed 

    Google Scholar 
    Sapp, M. et al. Species-specific bacterial communities in the phycosphere of microalgae?. Microb. Ecol. 53, 683–699. https://doi.org/10.1007/s00248-006-9162-5 (2007).Article 
    PubMed 

    Google Scholar 
    Sarmento, H. & Gasol, J. M. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ. Microbiol. 14, 2348–2360. https://doi.org/10.1111/j.1462-2920.2012.02787.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gram, L., Grossart, H. P., Schlingloff, A. & Kiorboe, T. Possible quorum sensing in marine snow bacteria: Production of acylated homoserine lactones by Roseobacter strains isolated from marine snow. Appl. Environ. Microbiol. 68, 4111–4116. https://doi.org/10.1128/AEM.68.8.4111 (2002).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N. et al. Warming the phycosphere: Differential effect of temperature on the use of diatom-derived carbon by two copiotrophic bacterial taxa. Environ. Microbiol. 22, 1381–1396. https://doi.org/10.1111/1462-2920.14954 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sarmento, H., Morana, C. & Gasol, J. M. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: Quantity is more important than quality. ISME J 10, 2582–2592. https://doi.org/10.1038/ismej.2016.66 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H. P. & Simon, M. Bacterial colonization and microbial decomposition of limnetic organic aggregates (lake snow). Aquat. Microb. Ecol. 15, 127–140. https://doi.org/10.3354/ame015127 (1998).Article 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318. https://doi.org/10.4319/lo.2001.46.6.1309 (2001).ADS 
    Article 

    Google Scholar 
    Chakraborty, S. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat. Commun. 12, 4085. https://doi.org/10.1038/s41467-021-23875-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hygum, B. H., Petersen, J. W. & Søndergaard, M. Dissolved organic carbon released by zooplankton grazing activity-a high-quality substrate pool for bacteria. J. Plankton Res. 19, 97–111. https://doi.org/10.1093/plankt/19.1.97 (1997).CAS 
    Article 

    Google Scholar 
    Suttle, C. A. Marine viruses–major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812. https://doi.org/10.1038/nrmicro1750 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bizic-Ionescu, M., Ionescu, D. & Grossart, H. P. Organic particles: Heterogeneous hubs for microbial interactions in aquatic ecosystems. Front. Microbiol. 9, 2569. https://doi.org/10.3389/fmicb.2018.02569 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arandia-Gorostidi, N., Weber, P. K., Alonso-Saez, L., Moran, X. A. & Mayali, X. Elevated temperature increases carbon and nitrogen fluxes between phytoplankton and heterotrophic bacteria through physical attachment. ISME J. 11, 641–650. https://doi.org/10.1038/ismej.2016.156 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worrich, A. et al. Mycelium-mediated transfer of water and nutrients stimulates bacterial activity in dry and oligotrophic environments. Nat. Commun. 8(1), 15472. https://doi.org/10.1038/ncomms15472 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Ballast minerals and the sinking carbon flux in the ocean: Carbon-specific respiration rates and sinking velocity of marine snow aggregates. Biogeosciences 7, 2613–2624. https://doi.org/10.5194/bg-7-2613-2010 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E. & Herndl, G. J. Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic. Limnol. Oceanogr. 54, 182–193. https://doi.org/10.4319/lo.2009.54.1.0182 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Schneider, B., Schlitzer, R., Fischer, G. & Nöthig, E.-M. Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean. Glob. Biogeochem. Cycles https://doi.org/10.1029/2002gb001871 (2003).Article 

    Google Scholar 
    Jannasch, H. W. & Wirsen, C. O. Microbial activities in undecompressed and decompressed deep-seawater samples. Appl. Environ. Microbiol. 43, 1116–1124. https://doi.org/10.1128/AEM.43.5.1116-1124.1982 (1982).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000m water column in the NW Mediterranean. Deep Sea Res. II(49), 2109–2123. https://doi.org/10.1016/s0967-0645(02)00030-9 (2002).ADS 
    Article 

    Google Scholar 
    Iversen, M. H. & Ploug, H. Temperature effects on carbon-specific respiration rate and sinking velocity of diatom aggregates: Potential implications for deep ocean export processes. Biogeosciences 10, 4073–4085. https://doi.org/10.5194/bg-10-4073-2013 (2013).ADS 
    Article 

    Google Scholar 
    Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms I Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239. https://doi.org/10.1139/m62-029 (1962).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Amann, R. I., Krumholz, L. & Stahl, D. A. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172, 762–770 (1990).CAS 
    Article 

    Google Scholar 
    Daims, H., Brühl, A., Amann, R., Schleifer, K. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 11 (1999).Article 

    Google Scholar 
    Eilers, H., Pernthaler, J., Glockner, F. O. & Amann, R. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66, 3044–3051 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Manz, W., Amann, R., Vancanneyt, M., Schleifer, K.-H. & Ludwig, W. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum cytophaga-flavobacter-bacteroides in the natural environment. Microbiology 142, 1097–1106. https://doi.org/10.1099/13500872-142-5-1097 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amann, R. I., Ludwig, W. & Schleifer, K. H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169. https://doi.org/10.1128/mr.59.1.143-169.1995 (1995).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925. https://doi.org/10.1128/AEM.56.6.1919-1925.1990 (1990).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musat, N. et al. A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc. Natl. Acad. Sci. USA 105, 17861–17866. https://doi.org/10.1073/pnas.0809329105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polerecky, L. et al. Look@NanoSIMS: A tool for the analysis of nanoSIMS data in environmental microbiology. Environ. Microbiol. 14, 1009–1023. https://doi.org/10.1111/j.1462-2920.2011.02681.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Musat, N. et al. The effect of FISH and CARD-FISH on the isotopic composition of (13)C- and (15)N-labeled Pseudomonas putida cells measured by nanoSIMS. Syst. Appl. Microbiol. 37, 267–276. https://doi.org/10.1016/j.syapm.2014.02.002 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meyer, N. R., Fortney, J. L. & Dekas, A. E. NanoSIMS sample preparation decreases isotope enrichment: Magnitude, variability and implications for single-cell rates of microbial activity. Environ. Microbiol. https://doi.org/10.1111/1462-2920.15264 (2020).Article 
    PubMed 

    Google Scholar  More

  • in

    Genetic, maternal, and environmental influences on sociality in a pedigreed primate population

    Study subjectsSubjects in our study are individually recognized wild capuchins found in and around the Lomas Barbudal Biological Reserve in Guanacaste, Costa Rica. This population has been under observation since 1990 (Perry 2012; Perry et al. 2012), including near continuous observation from January 2002 through March 2020.Data collectionWe use proximity data on subjects collected during group scan sampling between January 2001 and March 2020 (Altmann 1974). Included in scans are the identity of the subject, and the identity of other individuals within approximately 4 meters of them. Scans have been collected on all individuals in study groups since 2002, and on all adults and subadults since 2001. Scans are taken opportunistically, without regard to time of day. At least 10 min separate consecutive scans of the same individual to reduce the non-independence of scans taken close in time.Data in this manuscript were collected by 124 observers, with an average of 7.1 data collectors per month. Observers typically work in teams of two to three and rotate across different groups to reduce potential observer bias. Observers also rotate across observer teams to avoid observer drift in coding, since observer teams could potentially start to code behaviors differently from each other in the absence of overlap in observer composition.Initial pedigree constructionOf the 376 individuals in our behavioral dataset, 280 (74.5%) were first seen within three months of their births, and we could confidently assign maternity to them based on demographic (pregnancies) and behavioral data (primary nursing) even prior to genotyping. Of the remaining individuals, 41 (10.9%) were males of unknown origin that immigrated into our study population, while the rest were natal to our study groups but were first seen as older infants ( >3 months), juveniles, or (sub)adults (14.6%) and required genotyping to assign/confirm maternity. Paternity was assigned based on genetic information when possible (but see Non-genotyped individuals).In total, 287 subjects (76.3%) had two assigned parents, 37 had one assigned parent (9.8%), and 52 (13.8%) had no assigned parent based on demographic, behavioral, and/or genetic parentage information. Most individuals with no assigned parents were immigrant males (78.9%).GenotypingInformation on genetic parentage assignment (at up to 18 microsatellite loci) in our study population is available from previously published work (1996–2005 (Muniz et al. 2006), 2005–2012 (Godoy et al. 2016b)). Partial genotypes (up to 14 loci) have been generated for individuals in this study which more recently entered the study population through birth or immigration (n = 91, 2012–2020) (See SI File 1). Briefly, DNA was extracted primarily from non-invasively collected fecal samples, and occasionally from tissue samples obtained from deceased individuals, then amplified at up to 18 autosomal tetranucleotide microsatellite loci (Muniz and Vigilant 2008) using either a 1-step or 2-step PCR protocol (Arandjelovic et al. 2009). There were no significant deviations from Hardy-Weinberg equilibrium, and no evidence of linkage disequilibrium between loci was found (Muniz 2008).DNA samples were run at a minimum in triplicate, but additional PCRs were performed on low quality samples (e.g., with low quantities of DNA). Genotypes at each of the loci were assigned to be heterozygous when each allele was seen at least twice in independent PCRs, and assigned as homozygous when the allele was seen in at least three independent PCRs in absence of a second allele.Amplicons were analyzed using an ABI PRISM3100 automated sequencer and GeneMapper Software (Applied Biosystems, Foster City, CA, USA). Likelihood-based parentage assignments were performed using CERVUS 2.0 or 3.0 (Marshall et al. 1998; Kalinowski et al. 2007). The average exclusionary power of the 18 microsatellites was 0.9888 for the first parent and 0.9998 for second parent (Muniz et al. 2006).Individuals with unknown parents (e.g., immigrant males, founders) were genotyped twice (i.e., using two independent DNA samples) following the procedures described above to guard against sample mix up. Known mother-offspring pairs were confirmed by ascertaining the absence of Mendelian mismatches across all loci for the pair, though one mismatch was allowed to account for null alleles, mutations, and genotyping errors. We detected one null allele in the population in 19 individuals and traced it back to a male who was either the father or grandfather of those individuals (Muniz et al. 2006; Godoy et al. 2016b).Candidate males for paternity assignment were chosen based on group membership around the time of an infant’s conception (typically 1–10 males). In cases when conceptions occurred prior to the habituation of a study group, we used the identities of all adult males present when the group was first observed. Candidate mothers were similarly chosen for individuals that were first seen as older infants, juveniles, or (sub)adults. For individuals born post-group habituation, CERVUS has always assigned paternity from the pool of potential candidate fathers. Parent-offspring pairs and trios were allowed one mismatch (excluding those at the locus with the known null allele).Pedigree updatingNon-genotyped individualsDuring stable tenures, alpha males in our population sire approximately 73% of infants born in their groups, including 90% of offspring born to unrelated females (Godoy et al. 2016a). There is strong evidence of inbreeding avoidance between alpha males and their female descendants, with relatedness to females as the primary factor constraining alpha male monopolization of paternity within groups (Muniz et al. 2006, 2010; Godoy et al. 2016a, 2016b; Wikberg et al. 2017, 2018). We used this information to update our pedigree, filling missing father information with the identity of the alpha male around the time of a non-genotyped individual’s conception, but only if their mother was not the daughter or granddaughter of the alpha male (i.e., with inbreeding avoidance). This approach allowed us to assign presumed paternity to 21 non-genotyped individuals (5.6% of subjects) who were natal to our study groups.Individuals with missing or incomplete parentageOut of the original four study groups (from which fissions led to eight additional study groups), we lacked parentage information (i.e., neither parent was sampled) for 12 individuals first seen at the time of habituation. We had incomplete parentage on an additional 11 adults (i.e., only one parent was sampled). We used the software program COLONY version 2.0.6.7 to look for evidence of whether these individuals were related to each other at the level of full sibling (Jones and Wang 2010). We also looked for potential full sibling pairs among the non-natal immigrant males in the population, since co-migrant males are typically kin (Perry 2012; Wikberg et al. 2014, 2018). We assigned five full sibling pairs among co-migrant males, and four full sibling pairs among natal founders. For any remaining co-migrant males and natal founder pairs that were not assigned as full siblings, we assumed these to be either paternal (migrants) or maternal (natal) half siblings, as is typical in this study population (Perry 2012). These assignments are likely to have some error. However, based on what we know about kinship in capuchins, it would introduce more error to assume that these pairs are unrelated.We pruned our modified population pedigree using the R package pedantics version 1.01 (Morrissey and Wilson 2010), to include only individuals that were linked to the subjects in our behavioral dataset. The reduction in missing data can improve convergence and mixing of models (Hadfield 2010). The pruned pedigree contained 419 individuals, with 353 maternities, 354 paternities, 209 full sibships, 413 maternal half sibships, and 1496 paternal half sibships. Maximum pedigree depth was six generations (mean = 3.03).Sociality measures (response variables)We generated two related proximity-based measures of sociality—(1) whether an individual was seen in proximity of another monkey (within ~4 meters) during a scan (i.e., they were not alone), and (2) the number of partners an individual has nearby (within ~4 meters) during a scan. The former is measure of the propensity of an individual to be social versus alone, while the latter is more indicative of the gregariousness of an individual. These two phenotypes are not independent, as they are generated from the same data (Fig. 1a).Fig. 1: Distribution of sociality, sampling, group size, and alpha tenure length.The scatterplot in a shows the proportion of scans per individual per month where the subjects were recorded in proximity of others on the x-axis, and the average number of social partners per scan per month for subjects on the y-axis. The sizes of the circles in a are proportional to sample size (range: 5–317 scans per data point). The figure in b shows the number of calendar years of data sampling per subject (range: 1–20), c variation in group size, and d the number of calendar years represented by different alpha tenures in the dataset. Note that d does not represent the full diversity of alpha tenure lengths in the population, only within the dataset: some tenure lengths are left-truncated as data from 1990–2000 are not included in this dataset. Figure produced in R using ggplot2 version 3.3.5 (Wickham 2016) and cowplot version 1.1.1 (Wilke 2020). The capuchin image was generated in R using sketcher version 0.1.3 (Tsuda 2020) based on an image taken by Nicholas Schleissmann.Full size imageWe compiled the scans of individuals by month (mean: 31.9, range: 5–317 scans per month) so that we had counts of (1) the total number of scans where an individual was social and (2) the total number of partners an individual had. With these counts we could look at the (1) proportion of time spent social (versus alone) and (2) the average number of partners an individual had, while still preserving information about sampling density (number of scans).To be included in any month, subjects needed to have at least five scan samples in that period. As we are interested in the repeatability of our measures of social behavior, subjects had to have at least six months of data to be included.We excluded dependent infants (less than one year of age) as potential social partners of their mothers. We also excluded these dependent infants as subjects, since an infant is expected to be in close proximity of its mother, particularly during the first half of their first year of life (Godoy 2010; Perry 2012). Including data from infants would likely introduce upward bias to heritability estimates, because mothers and their dependent offspring (whom share high relatedness) would often be in close proximity of each other, and their measures of proximity to others would thus also be highly correlated.On average, subjects spent just over half of their sampled time within approximately four meters of another monkey (mean: 0.539, standard deviation: 0.193) and had approximately one social partner per scan (mean: 1.057, standard deviation: 0.619) (Fig. 1a). Our dataset consisted of 22,138 monthly sociality scores on 376 subjects generated from 641 140 scans (mean: 56.5 months per subject, range: 6–184 months per subject). Almost all subjects (99.7%, i.e., all but one) were represented by data across more than one calendar year (25, 50, 75% quantiles: 4, 7, 10 different years of data collection) (Fig. 1b).Fixed effectsWe included age (as a cubic function) and sex in our models, as well as their interaction to account for differences in how male and female capuchins sexually mature and age. Age in our dataset was right-skewed with higher representation at younger ages (mean: 9.3 years, standard deviation: 6.9) (Fig. 2). To put the ages in developmental context, mean age at first live birth is around 6.3 years for females in this population, though females can begin reproducing in their 5th year (Perry et al. 2012). Males as young as six years old have been known to sire offspring (Godoy et al. 2016b), but males tend to not reach full adult size until their 10th year (Jack et al. 2014).Fig. 2: Sociality as a function of age and sex.Circles represent individual monthly data. The sizes of the circles are proportional to sample size (range: 5–317 shows per data point). Circles in a represent the proportion of time individuals were seen in proximity of others (not alone) per month, while in b represent the average number of partners for individuals per month. Solid lines represent estimated sociality scores based on age and sex, with all other fixed effects set to the mean. The two x-axes represent age as z-scores and in years. Figure produced in R using ggplot2 version 3.3.5 (Wickham 2016).Full size imageSeasonal environmental changes, such as in food abundance, or temperature and rain, can lead to changes in how individuals cluster near others, for example, because of how food resources become distributed in the environment. For example, in black-crested gibbons (Nomascus concolor), group averages of dyadic proximity have been documented to decrease from the dry season to wet season, with increased average group proximity during cold months and lowered proximity during warm months (Guan et al. 2013). We account for seasonal variation by modelling monthly changes as a sine wave, through inclusion of the sine and cosine functions of a transformed month variable (See SI File 1 for further details).Central America is a region of ENSO-related precipitation, where the El Niño-Southern Oscillation (ENSO) has an impact on large scale patterns of temperature and precipitation (Ropelewski and Halpert 1987). Bimonthly rainfall anomalies are linked with both the warm El Niño and cool La Niña phases in a neighboring tropical dry forest in Costa Rica, where long-term monitoring of wild white-faced capuchins has shown declines in reproductive output associated with El Niño-like conditions (Campos et al. 2015). To account for the large-scale influence of ENSO on group dynamics, we included a factor variable for three different ENSO phases (Average/Neutral, Cool/La Niña, and Warm/El Niño). We used the bi-monthly Multivariate El Niño/Southern Oscillation (ENSO) index (MEI.v2) obtained from the Physical Sciences Laboratory of the National Oceanic and Atmospheric Administration (https://psl.noaa.gov/enso/mei/, retrieved: 2021-11-06) to determine the different phases. MEI.v2 is a composite index of five different variables (sea level pressure, sea surface temperature, surface zonal winds, surface meridional winds, and Outgoing Longwave Radiation) used to create a time series of ENSO conditions from 1979 to present (Zhang et al. 2019). Warm phases correspond to MEI.v2 values of 0.5 or higher, while cool phases correspond to values of −0.5 or lower.Demographic differences between groups and within groups across time can also lead to variation in behavior. For example, group size has been found to correlate with the amount of time that individuals spend grooming in various primate species (Dunbar 1991; Lehmann et al. 2007). Group size is also associated with higher sociality measures such as both the number of strong and weak ties that individuals form in diverse clades of primates (Schülke et al. 2022). We attempt to account for variation that arises from such demographic differences by including group size (mean: 24.7, standard deviation: 7.9) (Fig. 1c) as a fixed effect.In our models, group size and cubic age were centered and scaled to a mean of zero and a standard deviation of one.Random effectsAll models include the identity of the subject (VID, n = 376) as a random factor, as well as subject identity nested within year (VID:Year, n = 3150), the identity of each subject’s mother (VM, n = 142), maternal identity nested within group of residence within year of data collection (VM:GroupAlpha:Year, n = 2085), and a special variable known as the animal term to account for additive genetic variance (VA). These components contribute to long- and/or short-term repeatability of individuals. All models also include year of data collection (VYear, n = 20), month nested within year (VMonth:Year, n = 224), and the identity of each subject’s group of residence both across years (VGroupAlpha, n = 56) and within years (VGroupAlpha:Year, n = 200).VID in the models (since the models also additionally estimate VM and VA) can be thought of as estimating the “permanent environment variance” (i.e., VPE) of an individual, which is the “individual-specific variation in environmental conditions that permanently affect the phenotype (e.g. early-life conditions)” (Dingemanse et al. 2010). VID:Year captures the variance explained by the repeated sampling of the same individuals within a particular year. We use it to estimate the proportion of the phenotypic variance due to similarity in the trait within individuals from data taken closer in time (within the same year). During such a relatively short period, individuals are more likely to be stable in important social traits such as kin availability, dominance rank for adults, and maternal dominance rank for infants and young juveniles.VM estimates the variance explained by maternal effects (m2), specifically similarity between maternal siblings. Maternal identities were not available for all subjects, namely 11 immigrant males of unknown origin who were not assigned by COLONY as having a full sibling. We created unique dummy codes for their maternal identities, so that no two of these individuals shared the same mother. We additionally nested maternal identities (VM:GroupAlpha:Year) to account for similarity between maternal siblings residing in the same group in the same year. Such a nested structure might capture potential upward biases on heritability due to maternal kin biases in spatial association among siblings residing in the same group.We estimate h2 in our models by fitting a random effects term (VA), referred to as the animal term, which in the R package MCMCglmm links to the identities of individuals in our population pedigree (Hadfield 2010; see below for details on the implementation of the models in MCMCglmm). Inclusion of the animal term provides our models with an additive genetic variance component based on the estimated coefficients of relatedness between individuals in our pedigree. In short, if animals that share more alleles are also more like each other in their behavior, then variation in the behavior may well be due to genetic variation in the population (under the assumption that phenotypic similarity is not due to a shared environment, or is adequately controlled for by fixed and random effects in the model).VYear and VMonth:Year were included in order to account for temporal variation in sociality scores not captured by the fixed effects of seasonality or ENSO phase. These could arise from, for example, observer drift in coding (i.e., measurement error) or prevailing environmental conditions (e.g., drought) that could lead to changes to how individuals cluster near others. There were 218 unique observer combinations across the 224 months represented in the dataset, so VMonth:Year should also capture variance due to any differences between observer teams, though we cannot separate out the unique influence of observers.VGroupAlpha represents variance arising from the different alpha tenures within groups in our study population. VGroupAlpha captures both variance due to group of residence effects and the additional influence of alpha tenures within those groups. In capuchins, alpha males are ‘keystone’ individuals, whose influence is disproportionate relative to that of others in the population, and thus play important roles in establishing group dynamics (Jack and Fedigan 2018). Including group of residence, as defined by alpha tenure, is also important because it helps to account for the higher relatedness within groups within alpha tenures which results from high male reproductive skew toward alpha males. At Lomas Barbudal, males can remain in their alpha position for upwards of 18 years. Alpha tenures in this dataset spanned one to 14 years (Fig. 1d), so we additionally nested the identity of alpha males per group within years (VGroupAlpha:Year) so as to separate the within-year and across-year influences of group of residence.Statistical methodsWe ran analyses in R 4.1.2 (R Core Team 2021), using a Bayesian method with the R package MCMCglmm version 2.32 (Hadfield 2010). Data and code used to run all models is provided in the Supplementary Information.For our binary response variable (social versus alone), which was pooled into monthly units, we fit models with a binomial distribution and logit link function (family = “multinomial2”), with the number of scans each individual was documented social (‘successes’) versus the number of times alone (‘failures’).For our other response variable (number of partners), which was also pooled into monthly units, we fit models with a Poisson distribution (family = “poisson”), with the total number (sum) of partners per month. We included the natural log of the number of scans per month as a fixed effect to account for sampling effort. We set a strong prior for the log of sampling effort so that the rate at which events occurred was 1 (i.e., we could look at average number of partners per scan).We used a parameter-expanded prior (V = 1, nu = 1, alpha.mu = 0, alpha.V = 1000) and two inverse Wishart priors (V = 1, nu = 0.002; V = 1, nu = 0.02) for the G structures in our models (i.e., random effects variance components). The prior on the residual variance component was set to one for both the binomial and Poisson models. Estimates for variance components were robust against the choice of prior (SI Fig. 3). We therefore only report findings from models run with parameter-expanded priors in the main text.Pilot runs (thin = 10, burnin = 3000, nitt = 13,000) indicated that autocorrelation values would remain high for some variance components in models run with parameter-expanded priors, even with large thinning intervals. We therefore increased the number of iterations to guarantee effective sample sizes of at least 1000, but ideally closer to 4000. All models were run with a long burn-in period of at least 10,000 iterations.We ran multiple chains (n = 4) of each model and assessed convergence of the chains visually (SI Files 2a-b), as well as through the Gelman-Rubin criterion implemented via the ‘gelman.diag’ function from the coda package in R (version 0.19-4) (Plummer et al. 2006). Scale reduction factors were below 1.02, signifying good convergence. We used Heidelberger and Welch’s convergence diagnostic test for stationarity to check convergence of each chain using the ‘heidel.diag’ function from the coda package. Results are presented from the first chain of each model.Reduced modelsInclusion of fixed effects can potentially have an impact on the estimates of variance components in models because total phenotypic variance (VP) is estimated (and partitioned among the different random effects) after conditioning on the fixed effects. Heritability estimates, for example, can be higher because the variance explained by the fixed effects structure (VFE) is not included in VP, thus making the relative contribution of VA to VP larger compared to the same model without fixed effects (Wilson 2008). Conversely, not adequately controlling for relevant fixed effects that contribute to phenotypic variance among and within individuals may potentially lead to an underestimation of VA and associated heritability (h2).We ran multiple reduced versions of our models to look at the impact of fixed effects on our variance components. We began with an intercept-only version (i.e., no fixed effects), then built-up complexity by adding in versions with the properties of the individuals first (age, sex), then properties of the group (group size), and subsequently environmental properties (seasonality, ENSO phases). Outputs for these reduced models are provided in the Supplementary Information (SI Table 2, SI Table 3).We provide the deviance information criterion (DIC) values for models (automatically generated by the MCMCglmm package). DIC is a generalization for multi-level models of the Akaike Information Criterion (AIC); and as in AIC, lower DIC values indicate better fit.Transformations from unobserved latent scale to observed data scaleOutputs from our MCMCglmm models were on the unobserved latent scale. We used the R package QGglmm (version 0.7.4) to additionally compute parameters of interest on the observed data scale (de Villemereuil et al. 2016; de Villemereuil 2018). We used the functions ‘QCicc’ to compute Intra-Class Correlation (ICC) coefficients and ‘QGparams’ to compute additive genetic variance and thus narrow-sense heritability (h2) on the observed data scale. We implemented the ‘QGparams’ and ‘QGicc’ functions with parameters model = ‘binomN.logit’ and n.obs = 32 (the average number of scans per subject per month in our dataset) for the binomial model and model = ‘Poisson.log’ for the Poisson model. The choice of value for n.obs is somewhat arbitrary, and we show the consequences for changes in values of this parameter (i.e., higher estimates with increasing values of n.obs) in SI Fig. 4.Closed form solutions in QGglmm are not available for integrating over posterior distributions generated from binomial models with logit link functions (de Villemereuil 2016). Consequently, using the ‘QGicc’ function is particularly slow. We therefore estimate ICCs from our binomial models using a random subset of the posterior (n = 1000 iterations).The code used for transforming the MCMCglmm outputs from the latent scale to the original data scale are available online (see DATA AVAILABILITY).Repeatability and the proportion of variance explained by variance componentsTotal phenotypic variance (VP) was the sum of estimates from all variance components and residual variance in a model (VP = VID + VID:Year + VM + VM:GroupAlpha:Year + VA + VGroupAlpha + VGroupAlpha:Year + VMonth:Year + VYear + Vresidual). The proportion of variance explained by each variance component was calculated by including its estimate in the numerator while including total phenotypic variance in the denominator. So, for example the proportion of variance explained by year of data collection was calculated as (left( {frac{{V_{Year}}}{{V_P}}} right)).Long-term repeatability was calculated with the sum of VID, VM, and VA in the numerator. Short-term repeatability was calculated similarly but with inclusion of within-series variances (VID + VM + VA + VID:Year + VM:GroupAlpha:Year) in the numerator to capture additional consistency in among-individual differences resulting from greater environmental similarity within a time series (i.e., year).We report posterior modes and 95% Highest Posterior Density intervals (i.e., 95HPDI in square brackets). Unless mentioned otherwise, we present results on the unobserved latent scale, and without the variance from the fixed effects (VFE) incorporated into VP. For completeness, estimates with VFE included in VP and transformations to the observed data scale are also provided in SI Table 3. More

  • in

    The establishment of ecological conservation for herpetofauna species in hotspot areas of South Korea

    Giovanelli, J. G. R., Haddad, C. F. B. & Alexandrino, J. Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. Biol. Invas. 10, 585–590. https://doi.org/10.1007/s10530-007-9154-5 (2008).Article 

    Google Scholar 
    Sillero, N. Modelling suitable areas for Hyla meridionalis under current and future hypothetical expansion scenarios. Amphib. Reptil. 31, 37–50. https://doi.org/10.1163/156853810790457948 (2010).Article 

    Google Scholar 
    Foley, D. H. et al. Geographic distribution, evolution, and disease importance of species within the Neotropical Anopheles albitarsis Group (Diptera, Culicidae). J. Vector Ecol. 39, 168–181. https://doi.org/10.1111/j.1948-7134.2014.12084.x,Pubmed:24820570 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brito, J. C. et al. Biogeography and conservation of viperids from North-West Africa: An application of ecological niche-based models and GIS. J. Arid Environ. 75, 1029–1037. https://doi.org/10.1016/j.jaridenv.2011.06.006 (2011).ADS 
    Article 

    Google Scholar 
    Kim, J., Seo, C., Kwon, H., Ryu, J. & Kim, M. A study on the species distribution modeling using national ecosystem survey data. J. Environ. Impact Assess. 21, 593–607 (2012) (in Korean with English abstract).
    Google Scholar 
    Brown, J. L. et al. Spatial biodiversity patterns of Madagascar’s amphibians and reptiles. PLoS One 11, e0144076. https://doi.org/10.1371/journal.pone.0144076,Pubmed:26735688 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Do, M. S. et al. Spatial distribution patterns and prediction of hotspot area for endangered herpetofauna species in Korea. Korean J. Environ. Ecol. 31, 381–396. https://doi.org/10.13047/KJEE.2017.31.4.381 (2017).Article 

    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Padoa-Schioppa, E. From introduction to the establishment of alien species: bioclimatic differences between presence and reproduction localities in the slider turtle. Divers. Distrib. 15, 108–116. https://doi.org/10.1111/j.1472-4642.2008.00516.x (2009).Article 

    Google Scholar 
    Sillero, N. Modelling a species in expansion at local scale: Is Hyla meridionalis colonising new areas in Salamanca, Spain. Acta Herpetol. 4, 37–46 (2009).
    Google Scholar 
    Yun, S., Lee, J. W. & Yoo, J. C. Host-parasite interaction augments climate change effect in an avian brood parasite, the lesser cuckoo Cuculus poliocephalus. Glob. Ecol. Conserv. 22, e00976. https://doi.org/10.1016/j.gecco.2020.e00976 (2020).Article 

    Google Scholar 
    Katayama, N., Amano, T., Fujita, G. & Higuchi, H. Spatial overlap between the intermediate egret Egretta intermedia and its aquatic prey at two spatiotemporal scales in a rice paddy landscape. Zool. Stud. 51, 1105–1112 (2012).
    Google Scholar 
    Katayama, N. et al. Indirect positive effects of agricultural modernization on the abundance of Japanese tree frog tadpoles in rice fields through the release from predators. Aquat. Ecol. 47, 225–234. https://doi.org/10.1007/s10452-013-9437-0 (2013).Article 

    Google Scholar 
    Valencia-Aguilar, A., Cortés-Gómez, A. M. & Ruiz-Agudelo, C. A. Ecosystem services provided by amphibians and reptiles in Neotropical ecosystems. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 9, 257–272. https://doi.org/10.1080/21513732.2013.821168 (2013).Article 

    Google Scholar 
    Cortes, A. M., Ruiz-Agudelo, C. A., Valencia-Aguilar, A. & Ladle, R. J. Ecological functions of Neotropical amphibians and reptiles: A review. Univ. Sci. 20, 229–245. https://doi.org/10.11144/Javeriana.SC20-2.efna (2015).Article 

    Google Scholar 
    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 (2006).Article 

    Google Scholar 
    Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485. https://doi.org/10.1038/nature09670,Pubmed:21350480 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899. https://doi.org/10.1126/science.1184695,Pubmed:20466932 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Penman, T. D., Pike, D. A., Webb, J. K. & Shine, R. Predicting the impact of climate change on Australia’s most endangered snake, Hoplocephalus bungaroides. Divers. Distrib. 16, 109–118. https://doi.org/10.1111/j.1472-4642.2009.00619.x (2010).Article 

    Google Scholar 
    Blank, L. & Blaustein, L. Using ecology niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693, 157–167. https://doi.org/10.1007/s10750-012-1101-5 (2012).Article 

    Google Scholar 
    de Pous, P., Beukema, W., Weterings, M., Dümmer, I. & Geniez, P. Area prioritization and performance evaluation of the conservation area network for the Moroccan herpetofauna: A preliminary assessment. Biodivers. Conserv. 20, 89–118. https://doi.org/10.1007/s10531-010-9948-0 (2011).Article 

    Google Scholar 
    NIBR (National Institute of Biological Resources). National List of Species (Reptiles and amphibians). https://www.kbr.go.kr/stat/ktsnfiledown/downpopup.do (2020).Ministry of the Environment. List of Prohibited Wildlife Such as Capture and Harvesting (Ministry of the Environment, 2015).NIBR (National Institute of Biological Resources). Red Data Book of Republic of Korea. Amphibians and Reptiles (NIBR, Incheon), 110–117 (2019).Kim, J. B. Taxonomic list and distribution of Korean Amphibians. Korean J. Herpetol. 1, 1–13 (2009) (in Korean with English abstract).
    Google Scholar 
    Song, J. Y. & Lee, I. Elevation distribution of Korean Amphibians. Korean J. Herpetol. 1, 15–19 (2009) (in Korean with English abstract).
    Google Scholar 
    Jang, H. J. & Suh, J. H. Distribution of Amphibian species in South Korea. Korean J. Herpetol. 2, 45–51 (2010) (in Korean with English abstract).
    Google Scholar 
    Do, M. S. et al. Anuran Community Patterns in the rice fields of the mid-western region of the Republic of Korea. Glob. Ecol. Conserv. 26, e01448. https://doi.org/10.1016/j.gecco.2020.e01448 (2021).Article 

    Google Scholar 
    Kim, I. H., Son, S. H., Kang, S. W. & Kim, J. B. Distribution and habitat characteristics of the endangered Suweon-tree frog (Hyla suweonensis). Korean J. Herpetol. 4, 15–22 (2012) (in Korean with English abstract).
    Google Scholar 
    Do, M. S., Lee, J. W., Jang, H. J., Kim, D. I. & Yoo, J. C. Interspecific competition and spatial ecology of three species of vipers in Korea: An application of ecological niche-based models and GIS1a. Korean J. Environ. Ecol. 30, 173–184. https://doi.org/10.13047/KJEE.2016.30.2.173 (2016) (in Korean with English abstract).Article 

    Google Scholar 
    Do, M. S. et al. The study on habitat analysis and ecological niche of Korean Brown Frogs (Rana dybowskii, R. Coreana and R. huanrensis) using the species distribution model. Korean J. Herpetol. 9, 1–11 (2018).
    Google Scholar 
    Do, M. S., Choi, S., Jang, H. J. & Suh, J. H. Predicting the Distribution of three Korean pit viper Species (Gloydius brevicaudus, G. ussuriensis and G. intermedius) under Climate Change. Russ. J. Herpetol. (2022)Koo, K. S., Park, D. & Oh, H. S. Analyzing habitat characteristics and predicting present and future suitable habitats of Sibynophis chinensis based on a climate change scenario. J. Asia Pac. Biodivers. 12, 1–6. https://doi.org/10.1016/j.japb.2018.11.001 (2019).Article 

    Google Scholar 
    Kim, H. W., Adhikari, P., Chang, M. H. & Seo, C. Potential distribution of amphibians with different habitat characteristics in response to climate change in South Korea. Animals (Basel) 11, 2185. https://doi.org/10.3390/ani11082185 (2021).Article 

    Google Scholar 
    Shin, Y. et al. How threatened is Scincella huanrenensis? An update on threats and trends. Conservation 1, 58–72. https://doi.org/10.3390/conservation1010005 (2021).Article 

    Google Scholar 
    Lee, S. Y. et al. Distribution prediction of Korean Clawed Salamander (Onychodactylus koreanus) according to the climate change. Korean J. Environ. Ecol. 35, 480–489. https://doi.org/10.13047/KJEE.2021.35.5.480 (2021).Article 

    Google Scholar 
    Ra, N. Y. Habitat and Behavioral Characteristics, Captive Breeding and Recovery Strategy of the Endangered Gold-Spotted Pond Frog (Rana Plancyi Chosenica). PhD thesis (Kangwon Natl Univ., 2010).Borzée, A., Kim, J. Y. & Jang, Y. Asymmetric competition over calling sites in two closely related treefrog species. Sci. Rep. 6, 32569. https://doi.org/10.1038/srep32569,Pubmed:27599461 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Song, W. Habitat analysis of Hyla suweonensis in the breeding season using species distribution modeling. J. Korean Environ. Res. Tech. 18, 71–82 (2015) (in Korean with English abstract).
    Google Scholar 
    Ahn, J. Y., Choi, S., Kim, H., Suh, J. H. & Do, M. S. Ecological niche and interspecific competition of two frog species (Pelophylax nigromaculatus and P. chosenicus) in South Korea using the geographic information system. KJEE 54, 363–373 (2021).Article 

    Google Scholar 
    Lee, J. H., Jang, H. J. & Suh, J. H. Ecological Guide Book of Herpetofauna in Korea (NIER, 2011) (in Korean).Lee, J. H. & Park, D. Spatial ecology of translocated and resident Amur ratsnakes (Elaphe schrenckii) in two mountain valleys of South Korea. Asian Herpetol. Res. 2, 223–229 (2012).Article 

    Google Scholar 
    Do, M. S., Nam, K. B. & Yoo, J. C. First observation on courtship behavior of short-tailed viper snake, Gloydius saxatilis (Squamata: Viperidae) in Korea. J. Asia Pac. Biodivers. 10, 583–586. https://doi.org/10.1016/j.japb.2017.08.003 (2017).Article 

    Google Scholar 
    Do, M. S. & Nam, K. B. Distribution patterns and ecological niches of the red-tongued pit viper (Gloydius ussuriensis) and the Central Asian pit viper (Gloydius intermedius) in Cheonmasan Mountain, South Korea. Russ. J. Herpetol. 28, 348–354. https://doi.org/10.30906/1026-2296-2021-28-6-348-354 (2021).Article 

    Google Scholar 
    Do, M. S. Habitat use and hiding behavior of Central Asian pit viper (Gloydius intermedius). Korean J. Herpetol. 12, 1–8 (2021).
    Google Scholar 
    Min, M. S. et al. Discovery of the first Asian plethodontid salamander. Nature 435, 87–90. https://doi.org/10.1038/nature03474,Pubmed:15875021 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Song, J. Y. Current status and distribution of reptiles in the Republic of Korea. Korean J. Environ. Biol. 25, 124–138 (2007).
    Google Scholar 
    Jang, H. J., Kim, D. I. & Jang, M. H. Distribution of reptiles in South Korea: based on the 3rd National Ecosystem Survey. Korean J. Herpetol. 7, 30–35 (2016) (in Korean with English abstract).
    Google Scholar 
    Seo, C. W., Choi, T. Y., Choi, Y. S. & Kim, D. Y. A study on wildlife habitat suitability modeling for goral (Nemorhaedus caudatus raddeanus) in Seoraksan national park. J. Korean Environ. Res. Reveg Tech. 11, 28–38 (2008) (in Korean with English abstract).
    Google Scholar 
    Kown, H. S. Integrated Evaluation Model of Biodiversity for Conservation Planning: Focused on MT, PhD thesis (Mt Deokyu and MT: Jiri, 2011, 2011). Gaya Regions (Graduate School, Seoul Natl Univ., 2011).Urbina-Cardona, J. N. & Loyola, R. D. Applying niche-based models to predict endangered-hylid potential distributions: Are Neotropical protected areas effective enough?. Trop. Conserv. Sci. 1, 417–445. https://doi.org/10.1177/194008290800100408 (2008).Article 

    Google Scholar 
    Korea Forest Service. Forest area by administrative district. https://www.forest.go.kr/kfsweb/cop/bbs/selectBoardList.do?mn=NKFS_04_05_10&pageIndex=1&pageUnit=10&searchtitle=title&searchcont=&searchkey=&searchwriter=&searchdept=&searchWrd=&ctgryLrcls=CTGRY070&ntcStartDt=&ntcEndDt=&bbsId=BBSMSTR_1016 (2015).Statistics Korea. Population and housing census results in South Korea. https://www.kostat.go.kr/portal/korea/kor_nw/1/2/2/index.board (2020).Hyun, J. Brokering science, blaming culture: The US–South Korea ecological survey in the Demilitarized Zone, 1963–8. Hist. Sci. 59, 315–343. https://doi.org/10.1177/0073275320974209,Pubmed:33287575 (2021).Article 
    PubMed 

    Google Scholar 
    Choung, E. H. A theoretical study on the landscape of the Korean DMZ and its spatial significance. Inter-Asian Cult. Stud. 22, 16–35. https://doi.org/10.1080/14649373.2021.1886465 (2021).Article 

    Google Scholar 
    Ministry of the Environment. Report on Biodiversity in the DMZ (Demilitarized Zone) Area. Seocheon-Gun (Ministry of the Environment, 2016).Statistics Korea. Status of species investigation by national park in South Korea. https://kosis.kr/statHtml/statHtml.do?orgId=355&tblId=TX_35501_A069&conn_path=I3 (2021).Koo, K. S., Kwon, S., Do, M. S. & Kim, S. Distribution characteristics of exotic turtles in Korean wild-Based. Korean J Ecol. Environ. 50, 286–294. https://doi.org/10.11614/KSL.2017.50.3.286 (2017).Article 

    Google Scholar 
    National Institute of Ecology. 30 Years of the Natural Environment Survey 1986–2015 (National Inst. of Ecology, Seocheon, 2017).Korea National Park Research Institute. Report on Natural Resource Study. https://www.knps.or.kr/ (2021).GBIF. Global Biodiversity Information Facility Home. http://www.gbif.org/ (2020).Kim, D. I. Species Distribution Modeling, Microhabitat Use, and Morphological Variation of the Schlegel’s Japanese Gecko (Gekko japonicus). PhD thesis (Graduate School, Kangwon Natl Univ., 2019).Borzée, A. et al. Yellow Sea mediated segregation between North East Asian Dryophytes species. PLoS One 15, e0234299. https://doi.org/10.1371/journal.pone.0234299,Pubmed:32579561 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    NGII (National Geographic Information Institute). Digital Topographic Map. https://www.ngii.go.kr (2013).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    Pradhan, P. Strengthening MaxEnt modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8, 29–34 (2016).
    Google Scholar 
    Yi, Y. J., Cheng, X., Yang, Z. F. & Zhang, S. H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 92, 260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010 (2016).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2013).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Phillips, S., Dudik, M. & Schapire, R. A maximum entropy approach to species distribution modeling. In Proceeding of the 21st International Conference on Machine Learning 655–662 (ACM Pr., 2004).Marchessaux, G., Lüskow, F., Sarà, G. & Pakhomov, E. A. Predicting the current and future global distribution of the invasive freshwater hydrozoan Craspedacusta sowerbii. Sci. Rep. 11, 23099. https://doi.org/10.1038/s41598-021-02525-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    VanderWal, J., Shoo, L. P., Graham, C. & Williams, S. E. Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know?. Ecol. Modell. 220, 589–594. https://doi.org/10.1016/j.ecolmodel.2008.11.010 (2009).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).Article 

    Google Scholar 
    Yaworsky, P. M., Vernon, K. B., Spangler, J. D., Brewer, S. C. & Codding, B. F. Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS One 15, e0239424. https://doi.org/10.1371/journal.pone.0239424,Pubmed:33002016 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harte, J. Maximum Entropy and Ecology: A Theory of Abundance, Distribution, and Energetics (OUP, 2011).Book 

    Google Scholar 
    Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29, 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x (2006).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Article 

    Google Scholar 
    Zacarias, D. & Loyola, R. Climate change impacts on the distribution of venomous snakes and snakebite risk in Mozambique. Clim. Change 152, 195–207. https://doi.org/10.1007/s10584-018-2338-4 (2019).ADS 
    Article 

    Google Scholar 
    del Castillo Domínguez, S. L. et al. Predicting the invasion of the acoustic niche: potential distribution and call transmission efficiency of a newly introduced frog in Cuba. Perspect. Ecol. Conserv. 19, 90–97. https://doi.org/10.1016/j.pecon.2020.12.002 (2021).Article 

    Google Scholar 
    Lee, J. W. et al. Spatial patterns, ecological niches, and interspecific competition of avian brood parasites: Inferring from a case study of Korea. Ecol. Evol. 4, 3689–3702. https://doi.org/10.1002/ece3.1209,Pubmed:25478158 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x (2005).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).Article 

    Google Scholar 
    Segal, R. D., Massaro, M., Carlile, N. & Whitsed, R. Small-scale species distribution model identifies restricted breeding habitat for an endemic island bird. Anim. Conserv. 24, 959–969. https://doi.org/10.1111/acv.12698 (2021).Article 

    Google Scholar 
    Mori, E. et al. How the South was won: Current and potential range expansion of the crested porcupine in Southern Italy. Mamm. Biol. 101, 11–19. https://doi.org/10.1007/s42991-020-00058-2 (2021).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293. https://doi.org/10.1126/science.3287615,Pubmed:3287615 (1988).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Townsend Peterson, A., Papeş, M. & Eaton, M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x (2007).Article 

    Google Scholar 
    Jiménez-Valverde, A., Lobo, J. M. & Hortal, J. Not as good as they seem: The importance of concepts in species distribution modelling. Divers. Distrib. 14, 885–890. https://doi.org/10.1111/j.1472-4642.2008.00496.x (2008).Article 

    Google Scholar 
    Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x (2008).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197. https://doi.org/10.1890/07-2153.1,Pubmed:19323182 (2009).Article 
    PubMed 

    Google Scholar 
    Bosso, L. et al. Loss of potential bat habitat following a severe wildfire: A model-based rapid assessment. Int. J. Wildland Fire 27, 756–769. https://doi.org/10.1071/WF18072 (2018).Article 

    Google Scholar 
    Zhuang, H. et al. Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case. Biodivers. Sci. 26, 931–940. https://doi.org/10.17520/biods.2018059 (2018).Article 

    Google Scholar 
    NGII (National Geographic Information Institute). Geographical Extent of the Conservation Area in South Korea. https://www.ngii.go.kr (2021).Bosso, L. et al. A gap analysis for threatened bat populations on Sardinia hystrix, the Italian. J. Mammal. 27, 212–214 (2016).
    Google Scholar 
    Ahmadi, M. et al. Species and space: A combined gap analysis to guide management planning of conservation areas. Landsc. Ecol. 35, 1505–1517. https://doi.org/10.1007/s10980-020-01033-5 (2020).Article 

    Google Scholar  More

  • in

    Body size has primacy over stoichiometric variables in nutrient excretion by a tropical stream fish community

    Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    Harpole, W. S. et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 14, 852–862 (2011).PubMed 
    Article 

    Google Scholar 
    Atkinson, C. L., Capps, K. A., Rugenski, A. T. & Vanni, M. J. Consumer-driven nutrient dynamics in freshwater ecosystems: From individuals to ecosystems. Biol. Rev. 92, 2003–2023 (2016).PubMed 
    Article 

    Google Scholar 
    Vanni, M. J. Nutrient cycling by animals in freshwater ecosystems. Annu. Rev. Ecol. Syst. 33, 341–370 (2002).Article 

    Google Scholar 
    Vanni, M. J., Boros, G. & McIntyre, P. B. When are fish sources vs. sinks of nutrients in lake ecosystems?. Ecology 94(10), 2195–206 (2013).PubMed 
    Article 

    Google Scholar 
    Lovell, T. Nutrition and Feeding of Fish Vol. 260 (Van Nostrand Reinhold, 1989).Book 

    Google Scholar 
    Hood, J. M., Vanni, M. J. & Flecker, A. S. Nutrient recycling by two phosphorus-rich grazing catfish: The potential for phosphorus-limitation of fish growth. Oecologia 146, 247–257 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Schramski, J. R., Dell, A. I., Grady, J. M., Sibly, R. M. & Brown, J. H. Metabolic theory predicts whole-ecosystem properties. Proc. Nat. Acad. Sci. USA 112(8), 2617–2622 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alves, J. M. et al. Stoichiometry of benthic invertebrate nutrient recycling: Interspecific variation and the role of body mass. Aquat. Ecol. 44, 421–430 (2010).CAS 
    Article 

    Google Scholar 
    Hall, R. O. J., Koch, B. J., Marshall, M. C., Taylor, B. W. & Tronstad, L. M. In How Body Size Mediates the Role of Animals in Nutrient Cycling in Aquatic Ecosystems (eds Hildrew, A. G. et al.) 286–305 (Cambridge University Press, 2007).
    Google Scholar 
    Allgeier, J. E., Wenger, S. J., Rosemond, A. D., Schindler, D. E. & Layman, C. A. Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proc. Nat. Acad. Sci. USA 112, 2640–2647 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Vanni, M. J. & McIntyre, P. B. Predicting nutrient excretion of aquatic animals with metabolic ecology and ecological stoichiometry: A global synthesis. Ecology 97, 3460–3471 (2016).PubMed 
    Article 

    Google Scholar 
    Burel, C. et al. Effects of temperature on growth and metabolism in juvenile turbot. J. Fish Biol. 49, 678–692 (1996).Article 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Towards an integration of ecological stoichiometry and the metabolic theory of ecology to better understand nutrient cycling. Ecol. Lett. 12(5), 369–384 (2009).PubMed 
    Article 

    Google Scholar 
    McIntyre, P. B., Jones, L. E., Flecker, A. S. & Vanni, M. J. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Nat. Acad. Sci. USA 104, 4461–4466 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barneche, D. R. & Allen, A. P. Embracing general theory and taxon-level idiosyncrasies to explain nutrient recycling. Proc. Nat. Acad. Sci. USA 112, 6248–6249 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glaholt, S. P. Jr. & Vanni, M. J. Ecological responses to simulated benthic-derived nutrient subsidies mediated by omnivorous fish. Freshw. Biol. 50, 1864–1881 (2005).CAS 
    Article 

    Google Scholar 
    McIntyre, P. B. & Flecker, A. S. Ecological Stoichiometry as an integrative framework in stream fish ecology. Am. Fish. Soc. Symp. 73, 539–558 (2010).
    Google Scholar 
    Pough, F. H., Janis, C. M. & Heiser, J. B. Vertebrate Life (Prentice-Hall, 2005).
    Google Scholar 
    Griffiths, D. The direct contribution of fish to lake phosphorus cycles. Ecol. Freshw. Fish 15, 86–95 (2006).Article 

    Google Scholar 
    McIntyre, P. B. et al. Fish distributions and nutrient cycling in streams: can fish create biogeochemical hotspots?. Ecology 89(8), 2335–2346 (2008).PubMed 
    Article 

    Google Scholar 
    Cross, W. F., Benstead, J. P., Rosemond, A. D. & Wallace, J. B. Consumer-resource stoichiometry in detritus-based streams. Ecol. Lett. 6, 721–732 (2003).Article 

    Google Scholar 
    Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: implications for nutrient recycling. Ecology 78(6), 1816–1831 (1997).Article 

    Google Scholar 
    Vanni, M. J., Flecker, A. S., Hood, J. M. & Headworth, J. L. Stoichiometry of nutrient recycling by vertebrates in a tropical stream: Linking species identity and ecosystem processes. Ecol. Lett. 5, 285–293 (2002).Article 

    Google Scholar 
    Fritschie, K. J. & Olden, J. D. Disentangling the influences of mean body size and size structure on ecosystem functioning: an example of nutrient recycling by a non-native crayfish. Ecol. Evol. 6, 159–169 (2016).PubMed 
    Article 

    Google Scholar 
    Dodds, P. S., Rothman, D. H. & Weitz, J. S. Re-examination of the “3/4-law” of metabolism. J. Theor. Biol. 209, 9–27 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    White, C. R. & Seymour, R. S. Mammalian basal metabolic rate is proportional to body mass2/3. Proc. Natl Acad. Sci. USA 100, 4046–4049 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capellini, I., Venditti, C. & Barton, R. A. Phylogeny and metabolic scaling in mammals. Ecology 91, 2783–2793 (2010).PubMed 
    Article 

    Google Scholar 
    DeLong, J. P., Okie, J. G., Moses, M. E., Sibly, R. M. & Brown, J. H. Shifts in metabolic scaling, production, and efficiency across major evolutionary transitions of life. Proc. Natl. Acad. Sci. USA 107, 12941–12945 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tátrai, I. Influence of temperature, rate of feeding and body weight on nitrogen metabolism of bream Abramis brama L. Comp. Biochem. Physiol. 83A, 543–547 (1986).Article 

    Google Scholar 
    Tsui, T. K. N. et al. Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus. J. Exp. Biol. 205, 651–659 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zakés, Z., Szczepkowski, M., Demska-Zakés, K. & Jesiolowski, M. Oxygen consumption and ammonia excretion by juvenile pike, Esox lucius L. Arch. Pol. Fish. 15, 79–92 (2007).
    Google Scholar 
    Liu, F., Yang, S. & Chen, H. Effect of temperature, stocking density and fish size on the ammonia excretion in palmetto bass (Morone saxatilis x M. chrysops). Aquac. Res. 40, 450–455 (2009).CAS 
    Article 

    Google Scholar 
    Currie, S. et al. Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment. Can. J. Zool. 88, 43–58 (2010).CAS 
    Article 

    Google Scholar 
    Dockray, J. J., Reid, S. D. & Wood, C. M. Effects of elevated summer temperatures and reduced pH on metabolism and growth of juvenile rainbow trout (Oncorhynchus mykiss) on unlimited ration. Can. J. Fish. Aquat. Sci. 53, 2752–2763 (1996).Article 

    Google Scholar 
    Oliveira-Cunha, P. et al. Effects of incubation conditions on nutrient mineralisation rates in fish and shrimp. Freshw. Biol. 63(9), 1107–1117 (2018).CAS 
    Article 

    Google Scholar 
    Pilati, A. & Vanni, M. J. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116, 1663–1674 (2007).Article 

    Google Scholar 
    Moody, E. K., Corman, J. R., Elser, J. J. & Sabo, J. L. Diet composition affects the rate and N: P ratio of fish excretion. Fresh. Biol. 60, 456–465 (2015).CAS 
    Article 

    Google Scholar 
    Chew, S. F. & Ip, Y. K. Excretory nitrogen metabolism and defense against ammonia toxicity in air-breathing fishes. J. Fish Biol. 84, 603–638 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helder, C. Subsídios para Gestão dos Recursos Hídricos das bacias hidrográficas dos rios Macacu, São João, Macaé e Macabu (Secretaria do Meio Ambiente, 1999).
    Google Scholar 
    Mazzoni, R., Moraes, M., Rezende, C. F. & Miranda, J. C. Alimentação e padrões ecomorfológicos das espécies de peixes de riacho do alto rio Tocantins, Goiás, Brasil. Iheringia. Série Zool. 100, 2 (2010).
    Google Scholar 
    Menezes, N. A., Weitzman, S. H.,Weitzman, M. J., Oyakawa, O. T., Lima, F. C. T. & Castro, R. M. C. Peixes de água doce da Mata Atlantica. Museu de Zoologia, Universidade de São Paulo, 1ª edição. ISBN: 9788587735034 (2007).Oyakawa, O. T., Akama, A., Mautari, K. C. & Nolasco, J. Peixes de Riachos da Mata Atlântica. Editora Neotropica, 1ª edição. ISBN: 859904902x (2006).Fogaça, F. N. O., Aranha, J. M. R. & Esper, M. D. L. P. Ictiofauna do rio do Quebra (Antonina, PR, Brasil): ocupação espacial e hábito alimentar. Interciencia 28(3), 168–173 (2003).
    Google Scholar 
    Holmes, R. M., Aminot, A., Kerouel, R., Hooker, B. A. & Peterson, B. J. A simple and precise method for measuring ammonium in marine and freshwater ecosystems. Can. J. Fish. Aquat. Sci. 56(10), 1801–1808. https://doi.org/10.1139/f99-128 (1999).CAS 
    Article 

    Google Scholar 
    Taylor, B. W. et al. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. J. North Am. Benthol. Soc. 26, 167–177 (2007).Article 

    Google Scholar 
    Gotherman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwater (Blackwell, 1978).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48 (2015).Article 

    Google Scholar 
    Quinn, G. P. & Keough, M. J. Experimental Design and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    Faraday, J. J. Linear Models with R (CRC Press, 2009).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82(13), 1–26 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. More

  • in

    A functional vulnerability framework for biodiversity conservation

    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., et al. (2021).Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 31, 4132–4138.e3 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change 11, 492–500 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turner, B. L. et al. A framework for vulnerability analysis in sustainability science. Proc. Natl Acad. Sci. USA 100, 8074–8079 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jarić, I., Lennox, R. J., Kalinkat, G., Cvijanović, G. & Radinger, J. Susceptibility of European freshwater fish to climate change: Species profiling based on life‐history and environmental characteristics. Glob. Change Biol. 25, 448–458 (2018).ADS 
    Article 

    Google Scholar 
    Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718–722 (2017).ADS 
    Article 

    Google Scholar 
    Song, H. et al. Thresholds of temperature change for mass extinctions. Nat. Commun. 12, 4694 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, A. J. Certainty and uncertainty in climate change predictions: what use are climate models? Environ. Resour. Econ. 39, 37–44 (2008).Article 

    Google Scholar 
    Field, C. B. et al. Summary for policymakers. Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1–32 (2014).Shiogama, H. et al. Predicting future uncertainty constraints on global warming projections. Sci. Rep. 6, 18903 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, S. et al. The Pacific Decadal Oscillation is less predictable under greenhouse warming. Nat. Clim. Change 10, 30–34 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).PubMed 
    Article 

    Google Scholar 
    Mbaru, E. K., Graham, N. A. J., McClanahan, T. R. & Cinner, J. E. Functional traits illuminate the selective impacts of different fishing gears on coral reefs. J. Appl. Ecol. 57, 241–252 (2020).Article 

    Google Scholar 
    Francalanci, S., Paris, E. & Solari, L. On the vulnerability of woody riparian vegetation during flood events. Environ. Fluid Mech. 20, 635–661 (2020).Article 

    Google Scholar 
    Pellegrini, A. F. A. et al. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecol. Lett. 20, 307–316 (2017).PubMed 
    Article 

    Google Scholar 
    Jørgensen, L. L., Planque, B., Thangstad, T. H. & Certain, G. Vulnerability of megabenthic species to trawling in the Barents Sea. ICES J. Mar. Sci. 73, i84–i97 (2016).Article 

    Google Scholar 
    Certain, G., Jørgensen, L. L., Christel, I., Planque, B. & Bretagnolle, V. Mapping the vulnerability of animal community to pressure in marine systems: disentangling pressure types and integrating their impact from the individual to the community level. ICES J. Mar. Sci. 72, 1470–1482 (2015).Article 

    Google Scholar 
    Albouy, C. et al. Global vulnerability of marine mammals to global warming. Sci. Rep. 10, 548 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Staudt, A. et al. The added complications of climate change: understanding and managing biodiversity and ecosystems. Front. Ecol. Env. 11, 494–501 (2013).Article 

    Google Scholar 
    Korpinen, S. & Andersen, J. H. A global review of cumulative pressure and impact assessments in marine environments. Front. Mar. Sci. 3, 153 (2016).Article 

    Google Scholar 
    O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).ADS 
    Article 

    Google Scholar 
    Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecol. Appl. 16, 1267–1276 (2006).PubMed 
    Article 

    Google Scholar 
    Soranno, P. A. et al. Quantifying regional reference conditions for freshwater ecosystem management: a comparison of approaches and future research needs. Lake Reserv. Manag. 27, 138–148 (2011).Article 

    Google Scholar 
    Cinner, J. E. et al. Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world. Science 368, 307–311 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    D’agata, S. et al. Marine reserves lag behind wilderness in the conservation of key functional roles. Nat. Commun. 7, 12000 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Beyer, H. L., Venter, O., Grantham, H. S. & Watson, J. E. M. Substantial losses in ecoregion intactness highlight urgency of globally coordinated action. Cons. Lett. 13, 1–9 (2020).Article 

    Google Scholar 
    Williams, B. A. et al. Global rarity of intact coastal regions. Cons. Biol. c13874, 1–12 (2022).Kültz, D. Defining biological stress and stress responses based on principles of physics. J. Exp. Zool. A: Ecol. Integr. Physiol. 333, 350–358 (2020).Article 

    Google Scholar 
    Tinker, J., Lowe, J., Pardaens, A., Holt, J. & Barciela, R. Uncertainty in climate projections for the 21st century northwest European shelf seas. Prog. Oceanogr. 148, 56–73 (2016).ADS 
    Article 

    Google Scholar 
    Xu, L. et al. Potential precipitation predictability decreases under future warming. Geophys. Res Lett. 47, e2020GL090798 (2020).ADS 

    Google Scholar 
    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).PubMed 
    Article 

    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 
    Article 

    Google Scholar 
    Trindade-Santos, I., Moyes, F. & Magurran, A. E. Global change in the functional diversity of marine fisheries exploitation over the past 65 years. Proc. R. Soc. B. 287, 20200889 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McLean, M. et al. Trait structure and redundancy determine sensitivity to disturbance in marine fish communities. Glob. Change Biol. 25, 3424–3437 (2019).ADS 
    Article 

    Google Scholar 
    Walker, B. H. Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–23 (1992).Article 

    Google Scholar 
    McWilliam, M. et al. Biogeographical disparity in the functional diversity and redundancy of corals. Proc. Nat. Acad. Sci. USA 115, 3084–3089 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murgier, J. et al. Rebound in functional distinctiveness following warming and reduced fishing in the North Sea. Proc. R. Soc. B. 288, 20201600 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lavergne, S., Thuiller, W., Molina, J. & Debussche, M. Environmental and human factors influencing rare plant local occurrence, extinction and persistence: a 115-year study in the Mediterranean region: environmental factors influencing the distribution of rare plants. J. Biogeogr. 32, 799–811 (2005).Article 

    Google Scholar 
    Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).PubMed 
    Article 

    Google Scholar 
    Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Nat. Acad. Sci. USA 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waldock, C. et al. A quantitative review of abundance-based species distribution models. Ecography 2022, e05694 (2022).Article 

    Google Scholar 
    Global Biodiversity Information Facility. available at: https://www.gbif.org/Ocean Biodiversity Information System. available at: https://obis.org/Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, G. J. et al. Reef life survey: establishing the ecological basis for conservation of shallow marine life. Biol. Conserv. 252, 108855 (2020).Article 

    Google Scholar 
    Cinner, J. E. et al. Gravity of human impacts mediates coral reef conservation gains. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS ONE 8, e81847 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    United Nations Framework Convention on Climate Change. Paris Agreement. United Nations (2015).Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).PubMed 
    Article 

    Google Scholar 
    Peterson, G. et al. Uncertainty, climate change, and adaptive management. Conserv. Ecol. 1, art4 (1997).
    Google Scholar 
    Dewulf, A. & Biesbroek, R. Nine lives of uncertainty in decision-making: strategies for dealing with uncertainty in environmental governance. Policy Soc. 37, 441–458 (2018).Article 

    Google Scholar 
    Parravicini, V. et al. Global mismatch between species richness and vulnerability of reef fish assemblages. Ecol. Lett. 17, 1101–1110 (2014).PubMed 
    Article 

    Google Scholar 
    Bartomeus, I. & Godoy, O. Biotic controls of plant coexistence. J. Ecol. 106, 1767–1772 (2018).Article 

    Google Scholar 
    Beissinger, S. R. & Riddell, E. A. Why are species’ traits weak predictors of range shifts? Annu. Rev. Ecol. Evol. Syst. 52, 47–66 (2021).Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    ICES (2021). Working Group for the Assessment of Demersal Stocks in the North Sea and Skagerrak (WGNSSK). ICES Scientific Reports. Report. https://doi.org/10.17895/ices.pub.8211.Frid, C. L. J., Harwood, K. G., Hall, S. J. & Hall, J. A. Long-term changes in the benthic communities on North Sea fishing grounds. ICES J. Mar. Sci. 57, 1303–1309 (2000).Article 

    Google Scholar 
    Montero‐Serra, I., Edwards, M. & Genner, M. J. Warming shelf seas drive the sub tropicalization of European pelagic fish communities. Glob. Change Biol. 21, 144–153 (2014).ADS 
    Article 

    Google Scholar 
    Guillen, J. et al. A review of the European union landing obligation focusing on its implications for fisheries and the environment. Sustainability 10, 900 (2018).Article 

    Google Scholar 
    Mouillot, D. et al. The dimensionality and structure of species trait spaces. Ecol. Lett. 24, 1988–2009 (2021).PubMed 
    Article 

    Google Scholar 
    Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Nat. Acad. Sci. USA 117, 24345–24351 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: taking stock of the threats. Biol. Cons. 221, 44–58 (2018).Article 

    Google Scholar 
    Petchey, O. L. Functional diversity: back to basics and looking forward. Ecol Lett. 9, 741–758 (2006).Lefcheck, J. S., Bastazini, V. A. G. & Griffin, J. N. Choosing and using multiple traits in functional diversity research. Environ. Conserv. 42, 104–107 (2015).Article 

    Google Scholar 
    Zhu, L. et al. Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Sci. Rep. 7, 3643 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Carmona, C. P., Guerrero, I., Morales, M. B., Oñate, J. J. & Peco, B. Assessing vulnerability of functional diversity to species loss: a case study in Mediterranean agricultural systems. Funct. Ecol. 31, 427–435 (2017).Article 

    Google Scholar 
    Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).PubMed 
    Article 

    Google Scholar 
    de Bello, F., Carmona, C. P., Leps, J., Szava-Kovats, R. & Pärtel, M. Functional diversity through the mean trait dissimilarity: resolving shortcomings with existing paradigms and algorithms. Oecologia 180, 933–940 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Boyer, A. G. & Jetz, W. Extinctions and the loss of ecological function in island bird communities. Glob. Ecol. Biogeogr. 23, 679–688 (2014).Article 

    Google Scholar 
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    D’agata, S. et al. Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr. Biol. 24, 555–560 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    United Nations General Assembly. Transforming our world: The 2030 Agenda for Sustainable Development, 21 October 2015, A/RES/70/1. United Nations. https://www.refworld.org/docid/57b6e3e44.html (2015).Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of trait spaces: assessing trait space quality. Glob. Ecol. Biogeogr. 24, 728–740 (2015).Article 

    Google Scholar 
    Villéger, S., Mason, N. W. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).PubMed 
    Article 

    Google Scholar 
    Grenié, M., Denelle, P., Tucker, C. M., Munoz, F. & Violle, C. funrar: an R package to characterize functional rarity. Divers. Distrib. 23, 1365–1371 (2017).Article 

    Google Scholar 
    Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (2011).Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Functional ecology of fish: current approaches and future challenges. Aquat. Sci. 79, 783–801 (2017).Article 

    Google Scholar 
    Beukhof, E., Dencker, T. S., Palomares, M. L. D. & Maureaud, A. A trait collection of marine fish species from North Atlantic and Northeast Pacific continental shelf seas. PANGAEA, https://doi.org/10.1594/PANGAEA.900866 (2019).Liu, G. et al. Reef-scale thermal stress monitoring of coral ecosystems: new 5-km global products from NOAA coral reef watch. Remote Sens. 6, 11579–11606 (2014).ADS 
    Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).PubMed 
    Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, 1–11 (2019).Article 

    Google Scholar 
    Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Oliver, E. C. J. et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 6, 734 (2019).Article 

    Google Scholar 
    Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    Stekhoven, D. J. & Bürhlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Detection of human pathogenic bacteria in rectal DNA samples from Zalophus californianus in the Gulf of California, Mexico

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop. 78, 103–116 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, T. et al. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: A review. Ambio 46, 18–29 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morens, D. M., Folkers, G. K. & Fauci, A. S. Emerging infections: A perpetual challenge. Lancet Infect. Dis. 8, 710–719 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cunningham, A. A. A walk on the wild side—emerging wildlife diseases. BMJ 331, 1214–1215 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Epidemic dynamics at the interface, humal.-animal. Science 326, 1362–1368 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, Z. et al. Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome 6, 1–14 (2018).Article 

    Google Scholar 
    Sczyrba, A. et al. Critical assessment of metagenome interpretation: A benchmark of metagenomics software. Nat. Methods 14, 1063–1071 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Álvarez-Romero, J. G., Pressey, R. L., Ban, N. C., Torre-Cosío, J. & Aburto-Oropeza, O. Marine conservation planning in practice: Lessons learned from the gulf of California. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 483–505 (2013).Article 

    Google Scholar 
    Hazen, E. L. et al. Marine top predators as climate and ecosystem sentinels. Front. Ecol. Environ. 17, 565–574 (2019).Article 

    Google Scholar 
    Sergio, F. et al. Top predators as conservation tools: Ecological rationale, assumptions, and efficacy. Annu. Rev. Ecol. Evol. Syst. 39, 1–19 (2008).Article 

    Google Scholar 
    Deepak, D. et al. Pinniped zoonoses: A review. Int. J. Livest. Res. 9, 1 (2019).Article 

    Google Scholar 
    Hermosilla, C. et al. Gastrointestinal parasites and bacteria in free-living South American sea lions (Otaria flavescens) in Chilean Comau Fjord and new host record of a Diphyllobothrium scoticum-like cestode. Front. Mar. Sci. 5, 1–13 (2018).Article 

    Google Scholar 
    Oxley, A. P. A., Powell, M. & McKay, D. B. Species of the family Helicobacteraceae detected in an Australian sea lion (Neophoca cinerea) with chronic gastritis. J. Clin. Microbiol. 42, 3505–3512 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waltzek, T. B., Cortés-Hinojosa, G., Wellehan, J. F. X. & Gray, G. C. Marine mammal zoonoses: A review of disease manifestations. Zoonoses Public Health 59, 521–535 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dans, S. L., Crespo, E. A. & Coscarella, M. A. Wildlife tourism: Underwater behavioral responses of South American sea lions to swimmers. Appl. Anim. Behav. Sci. 188, 91–96 (2017).Article 

    Google Scholar 
    Creer, S. et al. The ecologist’s field guide to sequence-based identification of biodiversity. Methods Ecol. Evol. 7, 1008–1018 (2016).Article 

    Google Scholar 
    Fuks, G. et al. Combining 16S rRNA gene variable regions enables high-resolution microbial community profiling. Microbime 6, 1–13 (2018).Article 

    Google Scholar 
    Barb, J. J. et al. Development of an analysis pipeline characterizing multiple hypervariable regions of 16S rRNA using mock samples. PLoS ONE 11, e0148047 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vargas-Albores, F. et al. Bacterial biota of shrimp intestine is significantly modified by the use of a probiotic mixture: A high throughput sequencing approach. Helgol. Mar. Res. 71, 1–10 (2017).Article 

    Google Scholar 
    Brooks, J. P. et al. The truth about metagenomics: Quantifying and counteracting bias in 16S rRNA studies Ecological and evolutionary microbiology. BMC Microbiol. 15, 1–14 (2015).Article 

    Google Scholar 
    Ramirez-delgado, D. et al. Multi-locus evaluation of gastrointestinal bacterial communities from Zalophus californianus pups in the Gulf of California, México. PeerJ https://doi.org/10.7717/peerj.13235 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chakravorty, S., Helb, D., Burday, M. & Connell, N. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods 69, 330–339 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsen, F. A., Kodner, R. B. & Armbrust, E. V. pplacer: Linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 11, 538 (2010).Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sperling, J. L. et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick. Borne. Dis. 8, 453–461 (2017).PubMed 
    Article 

    Google Scholar 
    Gold, Z. et al. Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem. Mol. Ecol. Resour. 21, 2546–2564 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alnajar, S. & Gupta, R. S. Phylogenomics and comparative genomic studies delineate six main clades within the family Enterobacteriaceae and support the reclassification of several polyphyletic members of the family. Infect. Genet. Evol. 54, 108–127 (2017).PubMed 
    Article 

    Google Scholar 
    Jiang, L. et al. Jejubacter calystegiae gen. nov., sp. nov., moderately halophilic, a new member of the family Enterobacteriaceae, isolated from beach morning glory. J. Microbiol. 58, 357–366 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Janda, J. M. & Abbott, S. L. The changing face of the family enterobacteriaceae (Order: Enterobacterales): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clin. Microbiol. Rev. 34, 1–45 (2021).Article 

    Google Scholar 
    Shi, R. et al. Pathogenicity of Shigella in chickens. PLoS ONE 9, 1–7 (2014).
    Google Scholar 
    Roy, B., Tousif Ahamed, S. K., Bandyopadhyay, B. & Giri, N. Development of quinolone resistance and prevalence of different virulence genes among Shigella flexneri and Shigella dysenteriae in environmental water samples. Lett. Appl. Microbiol. 71, 86–93 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarkson, K. A. et al. Immune response characterization in a human challenge study with a Shigella flexneri 2a bioconjugate vaccine. EBioMedicine 66, 103308 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khalil, I. A. et al. Morbidity and mortality due to shigella and enterotoxigenic Escherichia coli diarrhoea: The Global Burden of Disease Study 1990–2016. Lancet Infect. Dis. 18, 1229–1240 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, L. et al. Detection of Shigella in milk and clinical samples by magnetic immunocaptured-loop-mediated isothermal amplification assay. Front. Microbiol. 9, 1–7 (2018).Article 

    Google Scholar 
    Maurelli, A. T. et al. Shigella infection as observed in the experimentally inoculated domestic pig, Sus scrofa domestica. Microb. Pathog. 25, 189–196 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mukarati, N. L. et al. A serological survey of Bacillus anthracis reveals widespread exposure to the pathogen in free-range and captive lions in Zimbabwe. Transbound. Emerg. Dis. 68, 1676–1684 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, C. J. et al. The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nat. Microbiol. 4, 1337–1343 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Norris, M. H. et al. Laboratory strains of Bacillus anthracis lose their ability to rapidly grow and sporulate compared to wildlife outbreak strains. PLoS ONE 15, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    Conesa, A., Garofolo, G., Di Pasquale, A. & Cammà, C. Monitoring AMR in Campylobacter jejuni from Italy in the last 10 years (2011–2021): Microbiological and WGS data risk assessment. EFSA J. 20, 1–12 (2022).Article 
    CAS 

    Google Scholar 
    Buettner, S., Wieland, B., Staerk, K. D. C. & Regula, G. Risk attribution of Campylobacter infection by age group using exposure modelling. Epidemiol. Infect. 138, 1748–1761 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz-Sanchez, S., Hanning, I., Pendleton, S. & D’Souza, D. Next-generation sequencing: The future of molecular genetics in poultry production and food safety. Poult. Sci. 92, 562–572 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dingle, K. E. et al. Multilocus sequence typing system for Campylobacter jejuni. J. Clin. Microbiol. 39, 14–23 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yekani, M. et al. To resist and persist: Important factors in the pathogenesis of Bacteroides fragilis. Microb. Pathog. 149, 104506 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wexler, H. M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 20, 593–621 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wareham, D. W., Wilks, M., Ahmed, D., Brazier, J. S. & Millar, M. Anaerobic sepsis due to multidrug-resistant Bacteroides fragilis: Microbiological cure and clinical response with linezolid therapy. Clin. Infect. Dis. 40, 67–68 (2005).Article 

    Google Scholar 
    Yoshino, Y. et al. Clinical features of Bacteroides bacteremia and their association with colorectal carcinoma. Infection 40, 63–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Frith, M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 
    CAS 

    Google Scholar 
    Edgar, R. C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 34, 2371–2375 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Committee on Biological Agents (ABAS). TRBA 466 Classification of Prokaryotes (Bacteria and Archaea) into Risk Groups (2010).Benson, D. A. et al. GenBank. Nucleic Acids Res. 41, 36–42 (2013).Article 
    CAS 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 1–7 (2015).Article 

    Google Scholar  More