Even modest climate change may lead to major transitions in boreal forests
Price, D. T. et al. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 21, 322–365 (2013).Article
Google Scholar
Wang, Y., Hogg, H. E., Price, T. D., Edwards, J. & Williamson, T. Past and projected future changes in moisture conditions in the Canadian boreal forest. Forestry Chron. 90, 678–691 (2014).Article
Google Scholar
Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Chang. Biol. 25, 1922–1940 (2019).ADS
MathSciNet
Article
Google Scholar
Lu, P., Parker, W. C., Colombo, S. J. & Skeates, D. A. Temperature-induced growing season drought threatens survival and height growth of white spruce in southern Ontario, Canada. Forest Ecol. Manag. 448, 355–363 (2019).Article
Google Scholar
Giorgi, F., Raffaele, F. & Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 10, 73–89 (2019).ADS
Article
Google Scholar
Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).ADS
CAS
Article
Google Scholar
Seager, R. et al. Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Clim. 27, 7921–7948 (2014).ADS
Article
Google Scholar
Tam, B. Y. et al. CMIP5 drought projections in Canada based on the Standardized Precipitation Evapotranspiration Index. Can. Water Resour. J. 44, 90–107 (2019).Article
Google Scholar
Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Chang. Biol. 17, 927–942 (2011).ADS
Article
Google Scholar
Zhao, J., Hartmann, H., Trumbore, S., Ziegler, W. & Zhang, Y. High temperature causes negative whole-plant carbon balance under mild drought. New Phytol. 200, 330–339 (2013).CAS
Article
Google Scholar
Reich, P. B. et al. Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature 562, 263–267 (2018).ADS
CAS
Article
Google Scholar
Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).Article
Google Scholar
Girardin, M. P. et al. No growth stimulation of Canada’s boreal forest under half-century of combined warming and CO2 fertilization. Proc. Natl Acad. Sci. USA 113, E8406–E8414 (2016).CAS
Article
Google Scholar
Sulla-Menashe, D., Woodcock, C. E. & Friedl, M. A. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 13, 014007 (2018).ADS
Article
Google Scholar
Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).ADS
Article
Google Scholar
Ma, Z. et al. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl Acad. Sci. USA 109, 2423–2427 (2012).ADS
CAS
Article
Google Scholar
Ju, J. & Masek, J. G. The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sens. Environ. 176, 1–16 (2016).ADS
Article
Google Scholar
D’Orangeville, L. et al. Beneficial effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213 (2018).ADS
Article
Google Scholar
Johnstone, J. F. et al. Changing disturbance regimes, ecological memory and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).Article
Google Scholar
Rodgers, V. L., Smith, N. G., Hoeppner, S. S. & Dukes, J. S. Warming increases the sensitivity of seedling growth capacity to rainfall in six temperate deciduous tree species. AoB Plants 10, ply003 (2018).Article
Google Scholar
Moyes, A. B., Castanha, C., Germino, M. J. & Kueppers, L. M. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia 171, 271–282 (2013).ADS
Article
Google Scholar
Balducci, L. et al. How do drought and warming influence survival and wood traits of Picea mariana saplings? J. Exp. Bot. 66, 377–389 (2015).CAS
Article
Google Scholar
Reich, P. B. et al. Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nat. Clim. Chang. 5, 148–152 (2015).ADS
CAS
Article
Google Scholar
Coursolle, C. et al. Moving towards carbon neutrality: CO2 exchange of a black spruce forest ecosystem during the first 10 years of recovery after harvest. Can. J. Forest Res. 42, 1908–1918 (2012).CAS
Article
Google Scholar
Khomik, M., Williams, C. A., Vanderhoof, M. K., MacLean, R. G. & Dillen, S. Y. On the causes of rising gross ecosystem productivity in a regenerating clearcut environment: leaf area vs. species composition. Tree Physiol. 34, 686–700 (2014).Article
Google Scholar
Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS
CAS
Article
Google Scholar
Friedman, S. K. & Reich, P. B. Regional legacies of logging: departure from presettlement forest conditions in northern Minnesota. Ecol. Appl. 15, 726–744 (2005).Article
Google Scholar
Burrill, E. A. et al. The Forest Inventory and Analysis Database: Database Description and User Guide Version 9.0.1 for Phase 2 https://www.fia.fs.fed.us/library/database-documentation/ (Forest Service, US Department of Agriculture, 2022).Cumming, S. G. et al. A gap analysis of tree species representation in the protected areas of the Canadian boreal forest: applying a new assemblage of digital Forest Resource Inventory data. Can. J. Forest Res. 45, 163–173 (2015).Article
Google Scholar
Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W. & Blomqvist, L. Does the terrestrial biosphere have planetary tipping points? Trends Ecol. Evol. 28, 396–401 (2013).Article
Google Scholar
Reyer, C. P. O. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).ADS
Article
Google Scholar
Stralberg, D. et al. Climate‐change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article
Google Scholar
Etterson, J. R., Cornett, M. W., White, M. A. & Kavajecz, L. C. Assisted migration across fixed seed zones detects adaptation lags in two major North American tree species. Ecol. Appl. 30, e02092 (2020).Article
Google Scholar
Solarik, K. A., Cazelles, K., Messier, C., Bergeron, Y. & Gravel, D. Priority effects will impede range shifts of temperate tree species into the boreal forest. J. Ecol. 108, 1155–1173 (2020).Article
Google Scholar
Stefanski, A., Bermudez, R., Sendall, K. M., Montgomery, R. A. & Reich, P. B. Surprising lack of sensitivity of biochemical limitation of photosynthesis of nine tree species to open‐air experimental warming and reduced rainfall in a southern boreal forest. Glob. Chang. Biol. 26, 746–759 (2020).ADS
Article
Google Scholar
Perala, D. A. How endemic injuries affect early growth of aspen suckers. Can. J. Forest Res. 14, 755–762 (1984).Article
Google Scholar
Buckman, R. E. Effects of prescribed burning on hazel in Minnesota. Ecology 45, 626–629 (1964).Article
Google Scholar
Harvey, B. D. & Bergeron, Y. Site patterns of natural regeneration following clear-cutting in northwestern Quebec. Can. J. Forest Res. 19, 1458–1469 (1989).Article
Google Scholar
Harris, I. et al. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article
Google Scholar
Peters, M. P., Prasad, A. M., Matthews, S. N. & Iverson, L. R. Climate Change Tree Atlas, Version 4 https://www.nrs.fs.fed.us/atlas (Northern Research Station and Northern Institute of Applied Climate Science, US Forest Service, 2020)Niinemets, Ü. & Valladares, F. Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecol. Monogr. 76, 521–547 (2006).Article
Google Scholar More