More stories

  • in

    Spatial autocorrelation signatures of ecological determinants on plant community characteristics in high Andean wetlands

    Rudnick, D. A. et al. The role of landscape connectivity in planning and implementing conservation and restoration priorities. Issues Ecol. 16, 1–23 (2012).
    Google Scholar 
    Brudvig, L. A. Interpreting the effects of landscape connectivity on community diversity. J. Veg. Sci. 27, 4–5 (2016).Article 

    Google Scholar 
    Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 

    Google Scholar 
    Leibold, M. A., Chase, J. M. & Ernest, S. K. M. Community assembly and the functioning of ecosystems: how metacommunity processes alter ecosystems attributes. Ecology 98, 909–919 (2017).PubMed 
    Article 

    Google Scholar 
    Kuczynski, L. & Grenouillet, G. Community disassembly under global change: Evidence in favor of the stress-dominance hypothesis. Global Change Biol. 24, 4417–4427 (2018).ADS 
    Article 

    Google Scholar 
    Münkemüller, T. et al. From diversity indices to community assembly processes: A test with simulated data. Ecography 35, 468–480 (2012).Article 

    Google Scholar 
    Seabloom, E. W., BJørnstad, O. N., Bolker, B. M. & Reichman, O. J. Spatial signature of environmental heterogeneity, dispersal, and competition in successional grasslands. Ecol. Monogr. 75, 199–214 (2005).Article 

    Google Scholar 
    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).PubMed 
    Article 

    Google Scholar 
    Fortin, M. J. & Dale, M. Spatial Analysis: A Guide for Ecologist (Cambridge Univ. Press., 2005).McIntire, E. J. B. & Fajardo, A. Beyond description: the active and effective way to infer processes from spatial patterns. Ecology 90, 46–56 (2009).PubMed 
    Article 

    Google Scholar 
    Smith, T. W. & Lundholm, J. T. Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography 33, 648–655 (2010).Article 

    Google Scholar 
    Dray, S. et al. Community ecology in the age of multivariate multiscale spatial analysis. Ecol. Monogr. 82, 257–275 (2012).Article 

    Google Scholar 
    Dray, S. A new perspective about moran’s coefficient: Spatial autocorrelation as a linear regression problem. Geogr. Anal. 43, 127–141 (2011).Article 

    Google Scholar 
    Biswas, S. R., Mallik, A. U., Braithwaite, N. T. & Wagner, H. H. A conceptual framework for the spatial analysis of functional trait diversity. Oikos 125, 192–200 (2016).Article 

    Google Scholar 
    Biswas, S. R., MacDonald, R. L. & Chen, H. Y. H. Disturbance increases negative spatial autocorrelation in species diversity. Landsc. Ecol. 32, 823–834 (2017).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).Article 

    Google Scholar 
    Biswas, S. R., Xiang, J. & Li, H. Disturbance effects on spatial autocorrelation in biodiversity: An overview and a call for study. Diversity 13, 167 (2021).Article 

    Google Scholar 
    Bertin, A. et al. Effects of wind-driven spatial structure and environmental heterogeneity on high-altitude wetland macroinvertebrate assemblages with contrasting dispersal modes. Freshw. Biol. 60, 297–310 (2015).Article 

    Google Scholar 
    Bertin, A. et al. Genetic variation of loci potentially under selection confounds species-genetic diversity correlations in a fragmented habitat. Mol. Ecol. 26, 431–443 (2017).PubMed 
    Article 

    Google Scholar 
    Souvignet, M., Oyarzún, R., Verbist, K. M. J., Gaese, H. & Heinrich, J. Hydro-meteorological trends in semi-arid north-central Chile (29–32°S): Water resources implications for a fragile Andean region. Hydrol. Sci. J. 57, 479–495 (2012).Article 

    Google Scholar 
    Montecinos, S., Gutiérrez, J. R., López-Cortés, F. & López, D. Climatic characteristics of the semi-arid Coquimbo Region in Chile. J. Arid Environ. 126, 7–11 (2016).ADS 
    Article 

    Google Scholar 
    Gilbert, B. & Levine, J. M. Ecological drift and the distribution of species diversity. Proc. Biol. Sci. 284, 1–10 (2017).
    Google Scholar 
    Ruzzier, E. et al. From island biogeography to conservation: A multi-taxon and multi-taxonomic rank approach in the Tuscan archipelago. Land 10, 486 (2021).Article 

    Google Scholar 
    Siqueira, T. et al. Community size can affect the signals of ecological drift and niche selection on biodiversity. Ecology 101, e03014 (2020).PubMed 
    Article 

    Google Scholar 
    Anthelme, F. & Dangles, O. Plant–plant interactions in tropical alpine environments. Perspect. Plant Ecol. 14, 363–372 (2012).Article 

    Google Scholar 
    Gavini, S. S., Ezcurra, C. & Aizen, M. A. Plant–plant interactions promote alpine diversification. Evol. Ecol. 33, 195–209 (2019).Article 

    Google Scholar 
    Callaway, R. M. et al. Positive interactions among alpine plants increase with stress. Nature 417, 844–848 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kikvidze, Z. et al. The effects of foundation species on community assembly: A global study on alpine cushion plant communities. Ecology 96, 2064–2069 (2015).PubMed 
    Article 

    Google Scholar 
    Zhao, R. M., Zhang, H. & An, L. Z. Spatial patterns and interspecific relationships of two dominant cushion plants at three elevations on the Kunlun Mountain, China. Environ. Sci. Pollut. Res. 27, 17339–17349 (2020).CAS 
    Article 

    Google Scholar 
    Pugnaire, F. I., Losapio, G. & Schöb, C. Interacciones entre especies y el papel de las plantas cojín en ecosistemas de alta montaña bajo un clima cambiante. Ecosistemas 30, 2186 (2021).Article 

    Google Scholar 
    Cadotte, M. W. Dispersal and species diversity: A meta-analysis. Am. Nat. 167, 913–924 (2006).PubMed 
    Article 

    Google Scholar 
    Vellend, M. et al. Drawing ecological inferences from coincident patterns of population- and community-level biodiversity. Mol. Ecol. 23, 2890–2901 (2014).PubMed 
    Article 

    Google Scholar 
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 

    Google Scholar 
    Leibold, M. A. & Chase, J. M. Metacommunity Ecology (Princeton University Press, 2018).Wilsey, B. & Stirling, G. Species richness and evenness respond in a different manner to propagule density in developing prairie microcosm communities. Plant Ecol. 190, 259–273 (2007).Article 

    Google Scholar 
    Schamp, B. S., Arnott, S. E. & Joslin, K. L. Dispersal strength influences zooplankton co-occurrence patterns in experimental mesocosms. Ecology 96, 1074–1083 (2015).PubMed 
    Article 

    Google Scholar 
    Troncoso, A. J., Bertin, A., Osorio, R., Arancio, G. & Gouin, N. Comparative population genetics of two dominant plant species of high Andean wetlands reveals complex evolutionary histories and conservation perspectives in Chile’s Norte Chico. Conserv. Genet. 18, 1047–1060 (2017).Article 

    Google Scholar 
    Pfeiffer, V. W. et al. Partitioning genetic and species diversity refines our understanding of species–genetic diversity relationships. Ecol. Evol. 8, 12351–12364 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bello, F. D. et al. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 36, 393–402 (2013).Article 

    Google Scholar 
    Moritz, C. et al. Disentangling the role of connectivity, environmental filtering, and spatial structure on metacommunity dynamics. Oikos 122, 1401–1410 (2013).
    Google Scholar 
    Wilsey, B. J. & Potvin, C. Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 81, 887–892 (2000).Article 

    Google Scholar 
    Stirling, G. & Wilsey, B. Empirical relationships between species richness, evenness, and proportional diversity. Am. Nat. 158, 286–299 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stevens, R. D. & Willig, M. R. Geographical ecology at the community level: Perspectives on the diversity of new world bats. Ecology 83, 545–560 (2002).Article 

    Google Scholar 
    Wilsey, B. J. & Polley, H. W. Effects of seed additions and grazing history on diversity and productivity of subhumid grasslands. Ecology 84, 920–931 (2003).Article 

    Google Scholar 
    Ma, M. Species richness vs evenness: Independent relationship and different responses to edaphic factors. Oikos 111, 192–198 (2005).Article 

    Google Scholar 
    Schmitz, O. J. Effects of predator hunting mode on grassland ecosystem function. Science 319, 952–954 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stomp, M., Huisman, J., Mittelbach, G. G., Litchman, E. & Klausmeier, C. A. Large-scale biodiversity patterns in freshwater phytoplankton. Ecology 92, 2096–2107 (2011).PubMed 
    Article 

    Google Scholar 
    Zhang, H. et al. The relationship between species richness and evenness in plant communities along a successional gradient: A study from sub-alpine meadows of the eastern Qinghai-Tibetan plateau, China. PLoS ONE 7, e49024 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001).
    Google Scholar 
    Young, K. R. in Climate Change and Biodiversity in the Tropical Andes (eds Herzog, S. K., Martinez, R., Jørgensen, P. M. & Tiessen, H.) Ch. 8, 128–140 (Inter-American Institute for Global Change Research, 2011).López-Angulo, J. et al. Determinants of high mountain plant diversity in the Chilean Andes: From regional to local spatial scales. PLoS ONE 13, e0200216 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, 1967).
    Google Scholar 
    Hanski, I. Metapopulation Ecology (Oxford University Press, 1999).
    Google Scholar 
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).PubMed 
    Article 

    Google Scholar 
    Kunte, K. Competition and species diversity: Removal of dominant species increases diversity in Costa Rican butterfly communities. Oikos 117, 69–76 (2008).Article 

    Google Scholar 
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article 

    Google Scholar 
    Kikvidze, Z. et al. Linking patterns and processes in alpine plant communities: A global study. Ecology 86, 1395–1400 (2005).Article 

    Google Scholar 
    Hill, M. O. Diversity and evenness: A unifying notation and its consequences. Ecology 54, 427–432 (1973).Article 

    Google Scholar 
    Heip, C. H. R., Herman, P. M. J. & Soetaert, K. Indices of diversity and evenness. Océanis 4, 61–87 (1998).
    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88, 2427–2439 (2007).PubMed 
    Article 

    Google Scholar 
    Jost, L. The relation between evenness and diversity. Diversity 2, 207–232 (2010).Article 

    Google Scholar 
    Pallmann, P. et al. Assessing group differences in biodiversity by simultaneously testing a user-defined selection of diversity indices. Mol. Ecol. Resour. 12, 1068–1078 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: Insights for ecological applications from the german biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beisel, J.-N., Usseglio-Polatera, P., Bachmann, V. & Moreteau, J.-C. A comparative analysis of evenness index sensitivity. Int. Rev. Hydrobiol. 88, 3–15 (2003).Article 

    Google Scholar 
    Fedor, P. & Zvaríková, M. in Encyclopedia of Ecology (ed Brian Fath) 337–346 (2019).Gatti, R. C., Amoroso, N. & Monaco, A. Estimating and comparing biodiversity with a single universal metric. Ecol. Model. 424, 8 (2020).
    Google Scholar 
    Lin, L., Deng, W., Huang, X. & Kang, B. Fish taxonomic, functional, and phylogenetic diversity and their vulnerabilities in the largest river in southeastern China. Ecol. Evol. 11, 11533–11548 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Squeo, F. A., Warner, B. G., Aravena, R. & Espinoza, D. Bofedales: High altitude peatlands of the central Andes. Rev. Chil. Hist. Nat. 79, 245–255 (2006).Article 

    Google Scholar 
    Villagrán-Mella, R., Aguayo, M., Parra, L. E. & González, A. Relación entre características del hábitat y estructura del ensamble de insectos en humedales palustres urbanos del centro-sur de Chile. Rev. Chil. Hist. Nat. 79, 195–211 (2006).Article 

    Google Scholar 
    Coronel, J. S., Declerck, S., Maldonado, M., Ollevier, F. & Brendonck, L. Temporary shallow pools in high-Andes ‘bofedal’ peatlands. Arch. Sci. 57, 85–96 (2004).CAS 

    Google Scholar 
    Wakeling, I. N. & Morris, J. J. A test of significance for partial least squares regression. J. Chemom. 7, 291–304 (1993).CAS 
    Article 

    Google Scholar 
    Foltête, J.-C., Clauzel, C. & Vuidel, G. A software tool dedicated to the modelling of landscape networks. Environ. Modell. Softw. 38, 316–327 (2012).Article 

    Google Scholar 
    Ricotta, C., Stanisci, A., Avena, G. C. & Blasi, C. Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Community Ecol. 1, 89–94 (2000).Article 

    Google Scholar 
    Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1979).Article 

    Google Scholar 
    Urban, D. & Keitt, T. Landscape connectivity: A graph-theoretic perspective. Ecology 82, 1205–1218 (2001).Article 

    Google Scholar 
    Bodin, Ö. & Saura, S. Ranking individual habitat patches as connectivity providers: Integrating network analysis and patch removal experiments. Ecol. Model. 221, 2393–2405 (2010).Article 

    Google Scholar 
    Gotelli, N. J., Hart, E. M. & Ellison, A. M. EcoSimR: Null model analysis for ecological data. R package version 0.1.0. (R Foundation for Statistical Computing, 2015).Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Dray, S. et al. adespatial: multivariate multiscale spatial analysis. R package version 0.3-8. (R Foundation for Statistical Computing, 2020)Wagner, H. H. & Dray, S. Generating spatially constrained null models for irregularly spaced data using Moran spectral randomization methods. Methods Ecol. Evol. 6, 1169–1178 (2015).Article 

    Google Scholar 
    Monecke, A. & Leisch, F. semPLS: Structural equation modeling using partial least squares. J. Stat. Softw. 48, 1–32 (2012).Article 

    Google Scholar 
    Zhao, X., Li, Y., Song, H., Jia, Y. & Liu, J. Agents affecting the productivity of pine plantations on the Loess Plateau in China: A study based on structural equation modeling. Forests 11, 1328 (2020).Article 

    Google Scholar 
    Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M. & Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 48, 159–205 (2005).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Gower, J. C. & Legendre, P. Metric and euclidean properties of dissimilarity coefficients. J. Classif. 3, 5–48 (1986).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).Article 

    Google Scholar 
    Lumley, T. & Miller, A. leaps: Regression subset selection. R package version 2.7. http://CRAN.R-project.org/package=leaps (2004).AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). R package version 2.3-1. (2019).Freestone, A. L. & Inouye, B. D. Dispersal limitation and environmental heterogeneity shape scale-dependent diversity patterns in plant communities. Ecology 87, 2425–2432 (2006).PubMed 
    Article 

    Google Scholar 
    Li, F., Tonkin, J. D. & Haase, P. Local contribution to beta diversity is negatively linked with community-wide dispersal capacity in stream invertebrate communities. Ecol. Indic. 108, 105715 (2020).Article 

    Google Scholar 
    Vilmi, A., Karjalainen, S. M. & Heino, J. Ecological uniqueness of stream and lake diatom communities shows different macroecological patterns. Divers. Distrib. 23, 1042–1053 (2017).Article 

    Google Scholar 
    Baldeck, C. A., Tupayachi, R., Sinca, F., Jaramillo, N. J. E. & Asner, G. P. Environmental drivers of tree community turnover in western Amazonian forests. Ecography 39, 1089–1099 (2016).Article 

    Google Scholar 
    Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. B. 366, 2351–2363 (2011).Article 

    Google Scholar 
    Segre, H. et al. Competitive exclusion, beta diversity, and deterministic vs. stochastic drivers of community assembly. Ecol. Lett. 17, 1400–1408 (2014).PubMed 
    Article 

    Google Scholar 
    Ceschin, F., Bini, L. M. & Padial, A. A. Correlates of fish and aquatic macrophyte beta diversity in the Upper Paraná River floodplain. Hydrobiologia 805, 377–389 (2018).CAS 
    Article 

    Google Scholar 
    Heino, J. et al. Unravelling the correlates of species richness and ecological uniqueness in a metacommunity of urban pond insects. Ecol. Indic. 73, 422–431 (2017).Article 

    Google Scholar 
    Leão, H., Siqueira, T., Torres, N. R. & Montag, L. F. D. A. Ecological uniqueness of fish communities from streams in modified landscapes of Eastern Amazonia. Ecol. Indic. 111, 106039 (2020).Article 

    Google Scholar 
    Vega-Álvarez, J., García-Rodríguez, J. A. & Cayuela, L. Facilitation beyond species richness. J. Ecol. 107, 722–734 (2019).Article 

    Google Scholar  More

  • in

    Drivers of avian habitat use and detection of backyard birds in the Pacific Northwest during COVID-19 pandemic lockdowns

    Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 3, 564–570 (2020).Article 

    Google Scholar 
    Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plan. 74, 46–69 (2006).Article 

    Google Scholar 
    Rosenberg, K. V. et al. Decline of the North American avifauna. Science (1979) 366, 120–124 (2019).CAS 

    Google Scholar 
    Isaksson, C. Impact of Urbanization on Birds https://doi.org/10.1007/978-3-319-91689-7_13 (2018).Article 

    Google Scholar 
    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–760. https://doi.org/10.1126/science.1150195 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pipoly, I. et al. Extreme hot weather has stronger impacts on Avian reproduction in forests than in cities. Front. Ecol. Evol. 10, 1 (2022).Article 

    Google Scholar 
    Newberry, G. N., O’Connor, R. S. & Swanson, D. L. Urban rooftop-nesting Common Nighthawk chicks tolerate high temperatures by hyperthermia with relatively low rates of evaporative water loss. Condor 123, 016 (2021).Article 

    Google Scholar 
    da Silva, A., Valcu, M. & Kempenaers, B. Light pollution alters the phenology of dawn and dusk singing in common European songbirds. Philos. Trans. R. Soc. B: Biol. Sci. 370, 126 (2015).Article 

    Google Scholar 
    Welbers, A. A. M. H. et al. Artificial light at night reduces daily energy expenditure in breeding great tits (Parus major). Front. Ecol. Evol. 5, 55 (2017).Article 

    Google Scholar 
    van Doren, B. M. et al. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl. Acad. Sci. USA. 114, 11175–11180 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Miller, M. W. Apparent effects of light pollution on singing behavior of American Robins. Condor 108, 130–139 (2006).Article 

    Google Scholar 
    Nemeth, E. & Brumm, H. Birds and anthropogenic noise: Are urban songs adaptive?. Am. Nat. 176, 465 (2010).PubMed 
    Article 

    Google Scholar 
    Nemeth, E. et al. Bird song and anthropogenic noise: Vocal constraints may explain why birds sing higher-frequency songs in cities. Proc. R. Soc. B: Biol. Sci. 280, 20122798 (2013).Article 

    Google Scholar 
    Senzaki, M., Yamaura, Y., Francis, C. D. & Nakamura, F. Traffic noise reduces foraging efficiency in wild owls. Sci. Rep. 6, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    Ortega, C. P. Effects of noise pollution on birds: A brief review of our knowledge. Ornithol. Monogr. 74, 6–22 (2012).Article 

    Google Scholar 
    Sanderfoot, O. V. & Holloway, T. Air pollution impacts on avian species via inhalation exposure and associated outcomes. Environ. Res. Lett. 12, 832. https://doi.org/10.1088/1748-9326/aa8051 (2017).CAS 
    Article 

    Google Scholar 
    Eeva, T. & Lehikoinen, E. Egg shell quality, clutch size and hatching success of the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca) in an air pollution gradient. Oecologia 102, 312–323 (1995).ADS 
    PubMed 
    Article 

    Google Scholar 
    Tablado, Z. et al. Effect of human disturbance on bird telomere length: An experimental approach. Front. Ecol. Evol. 9, 1 (2022).Article 

    Google Scholar 
    Kang, W., Minor, E. S., Park, C. R. & Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 18, 857–870 (2015).Article 

    Google Scholar 
    Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).Article 

    Google Scholar 
    Estela, F. A. et al. Changes in the nocturnal activity of birds during the covid–19 pandemic lockdown in a neotropical city. Anim. Biodivers. Conserv. 44, 1 (2021).
    Google Scholar 
    Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108665. https://doi.org/10.1016/j.biocon.2020.108665 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159. https://doi.org/10.1038/s41559-020-1237-z (2020).Article 
    PubMed 

    Google Scholar 
    Czech, K., Davy, A. & Wielechowski, M. Does the covid-19 pandemic change human mobility equally worldwide? Cross-country cluster analysis. Economies 9, 182 (2021).Article 

    Google Scholar 
    Galeazzi, A. et al. Human mobility in response to COVID-19 in France, Italy and UK. Sci. Rep. 11, 1 (2021).Article 
    CAS 

    Google Scholar 
    Joshi, Y. V. & Musalem, A. Lockdowns lose one third of their impact on mobility in a month. Sci. Rep. 11, 1 (2021).Article 
    CAS 

    Google Scholar 
    Dobbie, L. J., Hydes, T. J., Alam, U., Tahrani, A. & Cuthbertson, D. J. The impact of the COVID-19 pandemic on mobility trends and the associated rise in population-level physical inactivity: Insights From International Mobile Phone and National Survey Data. Front. Sports Active Living 4, 80 (2022).Article 

    Google Scholar 
    Basu, B. et al. Investigating changes in noise pollution due to the COVID-19 lockdown: The case of Dublin, Ireland. Sustain. Cities Soc. 65, 102597 (2021).Article 

    Google Scholar 
    Lecocq, T. et al. Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. Science (1979) 369, 1338 (2020).
    Google Scholar 
    Terry, C., Rothendler, M., Zipf, L., Dietze, M. C. & Primack, R. B. Effects of the COVID-19 pandemic on noise pollution in three protected areas in metropolitan Boston (USA). Biol. Cons. 256, 109039 (2021).Article 

    Google Scholar 
    Venter, Z. S., Aunan, K., Chowdhury, S. & Lelieveld, J. COVID-19 lockdowns cause global air pollution declines. Proc Natl Acad Sci U S A 117, 18984 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Archer, C. L., Cervone, G. & Golbazi, M. Changes in air quality and human mobility in the US during the COVID-19 pandemic. Bull. Atmosp. Sci. Technol. 1, 491–541. https://doi.org/10.1007/s42865-020-00019-0 (2020).Article 

    Google Scholar 
    Jiang, Z. et al. Modeling the impact of COVID-19 on air quality in Southern California: Implications for future control policies. Atmosp. Chem. Phys. Discuss. https://doi.org/10.5194/acp-2020-1197 (2020).Shi, Z. et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Sci. Adv. 7, 6696 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Hentati-Sundberg, J., Berglund, P. A., Hejdström, A. & Olsson, O. COVID-19 lockdown reveals tourists as seabird guardians. Biol. Conserv. 254, 108950 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science (1979) 370, 575 (2020).CAS 

    Google Scholar 
    Schrimpf, M. B. et al. Reduced human activity during COVID-19 alters avian land use across North America. Sci. Adv. 7, 5073 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    MacKenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2252 (2002).Article 

    Google Scholar 
    Gordo, O., Brotons, L., Herrando, S. & Gargallo, G. Rapid behavioural response of urban birds to COVID-19 lockdown. Proc. R. Soc. B: Biol. Sci. 288, 20202513 (2021).CAS 
    Article 

    Google Scholar 
    Johnson, D. H. In defense of indices: The Case of Bird Surveys. J. Wildl. Manag. 72, 857–868 (2008).Article 

    Google Scholar 
    Sanderfoot, O. V. & & Gardner, B.,. Wildfire smoke affects detection of birds in Washington State. Ornithol. Appl. 123, 28 (2021).
    Google Scholar 
    Sumasgutner, P. et al. Raptor research during the COVID-19 pandemic provides invaluable opportunities for conservation biology. Biol. Conserv. 260, 109149 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crimmins, T. M., Posthumus, E., Schaffer, S. & Prudic, K. L. COVID-19 impacts on participation in large scale biodiversity-themed community science projects in the United States. Biol. Conserv. 256, 109017 (2021).Article 

    Google Scholar 
    Basile, M., Russo, L. F., Russo, V. G., Senese, A. & Bernardo, N. Birds seen and not seen during the COVID-19 pandemic: The impact of lockdown measures on citizen science bird observations. Biol. Conserv. 256, 109079 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kishimoto, K. & Kobori, H. COVID-19 pandemic drives changes in participation in citizen science project “City Nature Challenge” in Tokyo. Biol. Conserv. 255, 109001 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282 (2009).Article 

    Google Scholar 
    Pacifici, K., Simons, T. R. & Pollock, K. H. Effects of vegetation and background noise on the detection process in auditory avian point-count surveys. Auk 125, 600–607 (2008).Article 

    Google Scholar 
    Mitchell, M. S. et al. Testing a priori hypotheses improves the reliability of wildlife research. J. Wildl. Manag. 82, 1568. https://doi.org/10.1002/jwmg.21568 (2018).Article 

    Google Scholar 
    Sells, S. N. et al. Increased scientific rigor will improve reliability of research and effectiveness of management. J. Wildl. Manag. 82, 485. https://doi.org/10.1002/jwmg.21413 (2018).Article 

    Google Scholar 
    Strimas-Mackey, M., E. Miller, and W. Hochachka. auk: eBird Data Extraction and Processing with AWK. R package version 0.3.0. (2018) https://cornelllabofornithology.github.io/auk/R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.org/.U.S. Environmental Protection Agency (EPA). Air Quality System Data Mart (2020). https://www.epa.gov/airdataKaragulian, F. et al. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 120, 475. https://doi.org/10.1016/j.atmosenv.2015.08.087 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Ito, K., Thurston, G. D. & Silverman, R. A. Characterization of PM25, gaseous pollutants, and meteorological interactions in the context of time-series health effects models. J. Exposure Sci. Environ. Epidemiol. 17, S45–S60 (2007).CAS 
    Article 

    Google Scholar 
    Google LLC “Google COVID-19 Community Mobility Reports”. https://www.google.com/covid19/mobility/ Accessed: November 1, 2020.Waze “Global Mobility Report”. https://www.waze.com Accessed: May 22, 2020.Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. R package version 1.17 (2019). https://CRAN.R-project.org/package=ncdf4Esri “USA NLCD Land Cover” [imagery layer]. Esri Inc (2019). https://www.arcgis.com/home/item.html?id=3ccf118ed80748909eb85c6d262b426f.Esri Inc. ArcMap (Version 10.8.1). Esri Inc. Redlands, California, USA (2020). https://desktop.arcgis.com/en/arcmap/.Fiske, I. & Chandler, R. unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43(10), 1–23 (2011).Article 

    Google Scholar 
    Efford, M. G. & Dawson, D. K. Occupancy in continuous habitat. Ecosphere 3, 1 (2012).Article 

    Google Scholar 
    Lee, B. P. Y. H., Davies, Z. G. & Struebig, M. J. Smoke pollution disrupted biodiversity during the 2015 El Niño fires in Southeast Asia. Environ. Res. Lett. 12, 094022 (2017).ADS 
    Article 

    Google Scholar 
    Leonard, R. J. & Hochuli, D. F. Exhausting all avenues: why impacts of air pollution should be part of road ecology. Front. Ecol. Environ. 15, 443. https://doi.org/10.1002/fee.1521 (2017).Article 

    Google Scholar 
    Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 1 (2019).CAS 
    Article 

    Google Scholar 
    Cleary, G. P. et al. Avian assemblages at bird baths: A comparison of urban and rural bird baths in Australia. PLoS ONE 11, e0150899 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bailey, L. L., Mackenzie, D. I. & Nichols, J. D. Advances and applications of occupancy models. Methods Ecol. Evol. 5, 1269 (2014).Article 

    Google Scholar 
    Leong, M., Dunn, R. R. & Trautwein, M. D. Biodiversity and socioeconomics in the city: a review of the luxury effect. Biol. Lett. 14, 1. https://doi.org/10.1098/rsbl.2018.0082 (2018).Article 

    Google Scholar  More

  • in

    Context-specific emergence and growth of the SARS-CoV-2 Delta variant

    These authors contributed equally: John T. McCrone, Verity Hill, Sumali Bajaj, Rosario Evans PenaThese authors jointly supervised this work: Oliver G. Pybus, Andrew Rambaut, Moritz U.G. KraemerA list of authors and their affiliations appears in the Supplementary InformationInstitute of Evolutionary Biology, University of Edinburgh, Edinburgh, UKJohn T. McCrone, Verity Hill, Ben Jackson, Rachel Colquhoun, Áine O’Toole & Andrew RambautDepartment of Zoology, University of Oxford, Oxford, UKSumali Bajaj, Rosario Evans Pena, Rhys Inward, Alexander E. Zarebski, Jayna Raghwani, Nuno R. Faria, Louis du Plessis, Oliver G. Pybus & Moritz U. G. KraemerDepartment of Computer Science, University of Oxford, Oxford, UKBen C. LambertMRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UKRhys Inward, Samir Bhatt, Erik Volz & Nuno R. FariaSection of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, DenmarkSamir BhattMolecular Immunity Unit, Department of Medicine, Cambridge University, Cambridge, UKChristopher RuisSpatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, BelgiumSimon DellicourDepartment of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, BelgiumSimon Dellicour & Guy BaeleGoogle, Mountain View, CA, USAAdam Sadilek, Neo Wu & Aaron SchneiderDepartment of Mathematics, School of Science & Engineering, Tulane University, New Orleans, LA, USAXiang JiDepartment of Infectious Disease, Imperial College London, London, UKThomas P. Peacock & Wendy S. BarclayUK Health Security Agency, London, UKThomas P. Peacock, Kate Twohig, Simon Thelwall, Gavin Dabrera, Richard Myers & Meera ChandInstituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, BrazilNuno R. FariaBlueDot, Toronto, CanadaCarmen Huber & Kamran KhanDivisions of Internal Medicine & Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, CanadaIsaac I. BogochDepartment of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, ON, CanadaIsaac I. Bogoch & Kamran KhanLi Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, CanadaKamran KhanDepartment of Biosystems Science and Engineering, ETH Zurich, Zurich, SwitzerlandLouis du PlessisWellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UKJeffrey C. Barrett & David M. AanensenBig Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UKDavid M. AanensenPathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UKThomas ConnorSchool of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff, UKThomas ConnorQuadram Institute, Norwich, UKThomas ConnorInstitute of Microbiology and Infection, University of Birmingham, Birmingham, UKNicholas J. LomanDepartments of Biostatistics, Biomathematics and Human Genetics, University of California, Los Angeles, Los Angeles, CA, USAMarc A. SuchardDepartment of Pathobiology and Population Sciences, Royal Veterinary College London, London, UKOliver G. PybusPandemic Sciences Institute, University of Oxford, Oxford, UKOliver G. Pybus & Moritz U. G. Kraemer More

  • in

    A new Cretaceous thyreophoran from Patagonia supports a South American lineage of armoured dinosaurs

    Dinosauria—Owen, 184225,Ornithischia—Seeley, 188726,Thyreophora—Nopcsa, 191527,Jakapil kaniukura gen. et sp. nov. (Figs. 1, 2, 3, 4, Suppl. Figs. 2, 3).Figure 1Holotype of Jakapil kaniukura (MPCA-PV-630), skull bones. (a) Skull bones in right lateral view (dashed contours based on Scelidosaurus10); (b) basisphenoid in left lateral view. af anterior foramen, btp basipterygoid process, bt basal tubera, cp cultriform process, df double foramen, ene external naris edge, jf jugal facet of the maxilla, Mx maxilla, mxe maxillary emargination, Pmx premaxilla, vc Vidian canal, vp ventral process.Full size imageFigure 2Holotype of Jakapil kaniukura (MPCA-PV-630), lower jaw bones. (a) left mandible in lateral view; (b) left mandible in lateral view, interpreted bone contours; (c) left mandible in medial view; (d) left mandible in medial view, interpreted bone contours; (e) right surangular in lateral view (mirrored); (f) transversal section of the posterior half of the left mandible, cranial view; (g) articular bone in occlusal view; (h) predentary bone in occlusal view. A angular, af adductor fossa, Ar articular, Ar (gl) glenoid fossa of the articular, ce coronoid eminence, D dentary, de dentary emargination, dfo dentary foramen, dmp dorsomedial process of the articular, dr dentary rugosities, hi subhorizontal inflection (dashed line), imf internal mandibular fenestra, lp lateral process of the predentary, mc Meckelian canal, Pa prearticular, Pd predentary, rp retroarticular process, S surangular, saf surangular facet for the glenoid articulation, safo surangular foramen (canal), Sp splenial, st surangular tubercle, sy mandibular symphysis, vmc ventral mandibular crest.Full size imageFigure 3Holotype of Jakapil kaniukura (MPCA-PV-630), teeth. Maxillary teeth in labial (a,b) and lingual (c,d); (d) highlight the wear facet) views; dentary teeth in lingual (e,g–j); (h,j) highlight the wear facets) and labial (f) views. dwf dentary tooth wear facet, me prominent mesial edge, mwf maxillary tooth wear facet.Full size imageFigure 4Holotype of Jakapil kaniukura (MPCA-PV-630), postcranial bones. Speculative silhouette showing preserved elements (a); osteoderm distribution is speculative and partial to show non-osteodermal elements); dorsal vertebra elements in dorsal (b), right lateral (c) and anterior (d,e) views; sacral vertebra in left lateral view (f); mid-caudal vertebra in left lateral view (g); fragment of the mid-shaft of a dorsal rib in posterior view (the enlarged, broken posterior edge is highlighted (h); expanded distal ends of two dorsal ribs (i); left scapula in lateral view (j); right scapula in lateral view (k); right coracoid in lateral view (l); left and right humeri in anterior view (m); probable right ulna in lateral view (n); metacarpals, non-ungual and ungual phalanx in dorsal views (o); left femur elements in anterior view (p); proximal end of the right fibula in lateral view (q); distal end of the left tibia in anterior view (r); ischial elements in side view (s); cervical osteoderms in dorsal view (t), flat scutes in dorsal view (u), spine-like osteoderm in side view (v) and ossicle in dorsal view (w). ac acromial crest, aco asymmetrical cervical osteoderm, alp anterolateral process, ap acromial process, at anterior trochanter, bb basal bone, ebr expanded broken rib edge, di diapophysis, dpc deltopectoral crest, ft fourth trochanter, gl glenoid, mc metacarpals, nc neural canal, ncs neurocentral suture, ph non-ungual phalanx, pp pubic peduncle, poz postzygapophyses, rug marginal rugosities, sb scapular blade, sc scute, tp transverse process, uph ungual phalanx.Full size imageEtymologyThe genus, Jakapil (Ja-Kapïl: shield bearer), comes from the ‘gananah iahish’, Puelchean or northern Tehuelchean language. The specific epithet, comprising kaniu (crest) and kura (stone), refers to the diagnostic ventral crest of the mandible, and comes from the Mapudungun language. These languages, currently spoken by more than 200,000 people, have been combined as a tribute to both of the coexisting native populations of North Patagonia, South America.HolotypeMPCA-PV-630 is a partial skeleton of a subadult individual (see Supplementary Information) that preserves fragments of some cranial bones (premaxilla, maxilla and basisphenoid), approximately 15 partial teeth and fragments, a nearly complete left lower jaw plus an isolated surangular, 12 partial vertebral elements, a complete dorsal rib and fifteen rib fragments, a partial coracoid, a nearly complete left scapula, a partial right scapula, two partial humeri, a possible partial right ulna, a complete and a partial metacarpal bone, three ischial and two femoral fragments, the distal end of a right tibia, the proximal end of a right fibula, three pedal phalanges, and more than forty osteoderms.Referred specimensMPCA-PV-371, two partial conical osteoderms.Locality and horizonUpper beds of the Candeleros Formation, early Late Cretaceous (Cenomanian, ~ 94–97 My, see16, and references therein), locality of Cerro Policía, Río Negro Province, North Patagonia, Argentina (Suppl. Fig. 1).DiagnosisJakapil differs from all other thyreophorans in having: a large, ventral crest on the posterior half of the lower jaw, which is composed of the dentary, the angular and the splenial (medially hidden by the crest); a dorsomedially directed process in the short retroarticular process; leaf-shaped tooth crowns with a prominent mesial edge on their labial surface; maxillary and dentary tooth crowns differ from each other in their apical contour, the former being pointed and strongly asymmetrical, and the latter slightly curved distally with a more rounded and less asymmetrical contour; elongated (articular surface almost or completely beyond the posterior centrum face) and slender (width of less than a half postzygapophyses length) postzygapophyses in dorsal vertebrae; a strongly reduced humerus relative to the femur (proximal humeral width smaller than distal femoral width, see Supplementary Information), with a deep proximal fossa distally delimited by a curved ridge; a very large fibula relative to the femur (anteroposterior length of the proximal end almost comparable to the distal width of the femur); flattened and thin disk-like postcranial osteoderms.Summarized descriptionA detailed description of the holotype is provided in the Supplementary Information. Jakapil is a small thyreophoran dinosaur (the subadult holotype is estimated to have been less than 1.5 m in body length and to have weighed 4.5–7 kg; see Supplementary Information, femoral description), with several novelties for a thyreophoran dinosaur.A short skull is suggested by the size of the skull and jaw bones, and the reduced number of dentary tooth positions (eleven), compared with most non-ankylosaurid thyreophorans28,29. The antorbital and mandibular fenestrae seem absent, as in ankylosaurs29 (Fig. 1a; the mandibular fenestra is also absent in Scelidosaurus10). Dentary and maxillary emarginations are present, as usual in ornithischians30 (Fig. 1a). The block-like basisphenoid is strongly similar to that of Scelidosaurus10, with Vidian canals opened posterodorsally to the basipterygoid processes, the basipterygoid processes lateroventrally projected (unlike the anteriorly directed processes of stegosaurs28 and ankylosaurs29), and a strong cultriform process (as in Lesothosaurus31, Thescelosaurus32 and probably Scelidosaurus10; Fig. 1b).Jakapil also bears the first predentary bone (Fig. 2a–d) with a plesiomorphic shape in a thyreophoran. It is subtriangular and quite similar to that of Lesothosaurus31, and externally it is ornamented by sulci and foramina, suggesting the presence of a keratinous beak. A beak is also supported in the edentulous and subtly ornamented preserved part of the premaxilla, as in derived thyreophorans28,29. The posterior half of the short lower jaw (Fig. 2a–f) is strongly dorsoventrally expanded, resembling the general shape of the heterodontosaurid33 and basal ceratopsian jaws34. This expansion is composed of a well-developed coronoid eminence (Fig. 2a–d, ce; similar to that in the stegosaur Huayangosaurus35 and most ankylosaurs36) and a large ventral crest at the dentary-angular contact that is unique among thyreophorans (Fig. 2a–d,f, vmc; resembling that of some ceratopsians, see SI). The dentary symphysis is slightly spout-shaped, as in most ornithischians37. Anteriorly, the dentary oral margin is subhorizontal in lateral view (Fig. 2a–d, D), unlike the strongly downturned line of most thyreophorans30,37. There is no evidence of a mandibular osteoderm as occurs in Scelidosaurus and ankylosaurs10. A surangular tubercle (Fig. 2a, st) adjacent to the glenoid fossa seems anteriorly continued by a subtly developed subhorizontal inflection of the anterior lamina (Fig. 2e, hi), in the position of the surangular ridge (synapomorphy of Thyreophora37), though the first is poorly developed. The glenoid fossa is roughly aligned with the tooth row in lateral view (Fig. 2a–d). The short retroarticular process bears a dorsomedially directed process resembling that of several theropods (Fig. 2g, dmp; see Discussion). This process is absent in all other thyreophorans 9,10,35,36.The tooth crowns are leaf-shaped as in basal ornithischian and thyreophorans10,28,29,38 (Fig. 3). The tooth crowns are swollen labially at their base and lack both cingulum and ornamentation, unlike those of derived eurypodans28,29, heterodontosaurids33 and most neornithischians30,32. The mesial edge of the labial surface in the maxillary and dentary tooth crowns is prominent as in Scelidosaurus10, and ends distally in a denticle-like structure in Jakapil (Fig. 3, me). This prominent edge delimits anteriorly the wear facets of the dentary teeth. A striking difference with respect to most thyreophorans is that the maxillary and dentary tooth crowns are quite different (see Supplementary Information). The maxillary teeth (Fig. 3a–d) show seven/eight mesial and four distal denticles, a vertical apical denticle, and a straighter mesial denticle row (resembling those of non-ankylosaurid and non-stegosaurid thyreophorans10,35,36). The dentary teeth (Fig. 3e–j) bear seven mesial and five/six distal denticles, and a distally curved apical-most denticle. Also, the mesial denticle row is lingually recurved, as in Huayangosaurus35. Large, high-angled wear facets are present (Fig. 3d,h,j; dwf and mwf).The axial elements are similar to those of Scelidosaurus39 (Fig. 4). The posterior articular surface of an isolated cervical centrum is flattened and seems almost as wide as high. A large foramen is placed just posteroventral to the parapophysis. The dorsal centra are cylindrical and elongated, with subcircular articular surfaces, and are biconcave (Fig. 4c,e). The neural arch is low but the neural canal is larger (Fig. 4d,e, nc). A dorsal neurocentral suture is visible (Fig. 4c, ncs). The diapophyses are laterodorsally directed almost 40° from the horizontal (Fig. 4d, di), at a lower angle than in stegosaurs28 and most ankylosaurs29, unlike the horizontal processes of basal ornithischians38. The postzygapophyses are medially fused in a slender (width of less than a half postzygapophyses length) and strongly elongated posteriorly structure (Fig. 4b, poz; more than in some ankylosaurs, such as Euoplocephalus and Polacanthus; see40,41). An isolated mid-caudal vertebra shows an equidimensional centrum in lateral view, with concave, oval articular surfaces (Fig. 4g). Transverse processes are very small and button-like (Fig. 4g, tp). Postzygapophyses are medially fused and do not extend beyond the centrum edge (Fig. 4g, poz). Proximally, the cross-section of the dorsal ribs is T-shaped. The low curvature of the shaft suggests a wide torso, as occurs in Emausaurus42, Scelidosaurus39, and ankylosaurs29. Some rib fragments with expanded (though broken) posterior edges suggest the presence of intercostal bones (Fig. 4h, ebr), as in Scelidosaurus39, Huayangosaurus43,44, some ankylosaurids45 (and references therein) and some basal ornithopods46. Some ribs are distally expanded (Fig. 4i) like the anterior dorsal ribs of Scelidosaurus39 and Huayangosaurus43.Girdle and limb bones (see also Suppl. Figs. 2, 3) are mostly broken and with boreholes (probably due to bioerosion) at their ends. The scapular blade (Fig. 4j, sb) is elongated and parallel-sided, without distal expansion, an overall shape that resembles that of several theropods47, contrasting the distally expanded condition in most ornithischians30. A straight and parallel sided scapular blade is common in ankylosaurids29,40. The proximal scapular plate with a high acromial process (Fig. 4j,k, ap) is stegosaurian-like, and the lateral acromial crest (Fig. 4j,k, ac) is developed as in Huayangosaurus43. A low distinct ridge rises posterior to the glenoid fossa and represents the insertion site for the muscle triceps longus caudalis, as occur in ankylosaurids 40. The incomplete coracoid (Fig. 4l) is much shorter than the scapula, unlike that of ankylosaurs29,40, which bear a large coracoid. The coracoid and the scapula are not fused. The partial humeri (Fig. 3m) are strongly reduced in size, with overall limb proportions resembling those of basal ornithischians3,38 and several theropods47. A possible proximal end of the ulna (Fig. 4n) resembles that of other basal ornithischians, though more strongly laterally compressed. The anterolateral process is present (Fig. 4n, alp), and the olecranon process seems absent or poorly developed, as in Scutellosaurus9 and Scelidosaurus39. The ischia are poorly preserved (Fig. 4s). The pubic peduncle is separated from the iliac articulation, unlike the continuous cup-shaped structure of most ankylosaurs29. The shaft of the ischium is straight and parallel-edged, as in Scutellosaurus9 and Scelidosaurus39, and distally tapers as in stegosaurs28. The preserved femoral pieces (Fig. 4p) resemble those of basal ornithischians38,39. The bases of both the broken anterior and fourth trochanters (Fig. 4p, at, ft) are large, suggesting large elements; the fourth trochanter is proximally placed on the femoral shaft (near the height of the base of the anterior trochanter); and the distal end of the femur is slightly curved posteriorly. The proximal end of the right fibula (Fig. 4q) is much larger than that of all other thyreophorans (compared with both the femoral and tibial distal ends) and bears a large anterior curved crest. The block-like non-ungual phalanges and a bluntly pointed hoof-like ungual (Fig. 4o, ph, uph) are similar to those of Scelidosaurus39.At least five osteoderm types are preserved in the holotype of Jakapil. The cervical elements are composed of an external, low-crested scute (Fig. 4t, sc) over a fused, smooth bone base (Fig. 4t, bb), as in Scelidosaurus48 and several ankylosaurs2,49. A probable cervical element is also composed of a concave base of smooth bone fused to a high, asymmetrical osteoderm (Fig. 4t, aco). The bases of these dermal elements present strong rugosities at one edge, suggesting a sutural contact between (Fig. 4t, rug), as in Scelidosaurus48 and some ankylosaurs (such as Pinacosaurus and Scolosaurus40,49,50). Scute-like post-cervical osteoderms (Fig. 4u) are strongly flattened, disk-shaped, and suboval with a very low crest, resembling those of few ankylosaurs such as Gastonia and Gargoyleosaurus51 (‘body osteoderms’ sensu Kinneer et al.52; see also49). Only one scute shows a high triangular cross-section like those of Scelidosaurus48. Also present are a few conical, spike-like osteoderms with deep concave bases (Fig. 4v), and many flat, disk-shaped, minute (7–10 mm) ossicles without crests (Fig. 4w).PhylogenyThe phylogenetic analysis using the matrix of Soto-Acuña et al.5 recovers Jakapil within Thyreophora, as the sister taxon of Ankylosauria (Fig. 5). The branch support for the basal thyreophorans is considerably lower than that obtained by Soto-Acuña et al.5, although the support of Stegosauria and some less inclusive eurypodan clades is slightly better (ceratopsians and pachycephalosaurs also show a lower support). The Jakapil autapomorphies in this analysis are: ventrally orientated basipterygoid processes (char. 134; shared with Agilisaurus, Hypsilophodon, Zalmoxes, Tenontosaurus, Dryosaurus, Liaoceratops, Yamaceratops, Leptoceratops, Bagaceratops and Protoceratops); lateral orientation of the basipterygoid process articular facet (char. 136; shared with Homalocephale, Prenocephale, Stegoceras and Yinlong); a straight dentary tooth row in lateral view (char. 166; shared with the ornithischians Lesothosaurus, Eocursor, Scutellosaurus, Pinacosaurus, Euoplocephalus, heterodontosaurids and neornithischians); the presence of a ventral flange on the dentary (char. 170; shared with Psittacosaurus, Yamaceratops and Protoceratops); a well-developed coronoid process (char. 174; shared with heterodontosaurids and neornithischians); a surangular length of more than 50% the mandibular length (char. 183; shared with Stegoceras, Psittacosaurus, Yinlong, Chaoyangsaurus and Hualianceratops); less than 15 dentary teeth (char. 204; shared with heterodontosaurids, Gasparinisaura, Hypsilophodon, Wannanosaurus, Tenontosaurus, Dryosaurus and ceratopsians); apicobasally tall and blade-like cheek teeth crowns (char. 205; shared with Laquintasaura, Psittacosaurus, Yinlong, Chaoyangsaurus and Hualianceratops). Alternative phylogenetic analyses using the data matrices of Maidment et al.4, Norman6 and Wiersma and Irmis8 recover Jakapil as the sister taxon of Eurypoda (Stegosauria + Ankylosauria) and as a basal ankylosaur, respectively (see Supplementary Information). Being recovered either as an ankylosauromorph or a stem-eurypodan, Jakapil is closely related to Scelidosaurus in all analyses. Detailed phylogenetic results and discussion are provided in the Supplementary Information.Figure 5Time-calibrated strict consensus of 26,784 most parsimonious trees (L = 1267) with the Soto-Acuña et al.5 matrix. CI 0.359, RI: 0.708. Branch supports are figured (Bremer/bootstrap). Record ages references are listed in the Supplementary Information (Suppl. Fig. 4).Full size image More

  • in

    Invasion stages help resolve Darwin’s naturalization conundrum

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Omer, A. et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants https://doi.org/10.1038/s41477-022-01216-9 (2022). More

  • in

    Large carnivores and naturalness affect forest recreational value

    Nash, R. Wilderness and the American Mind (Yale University Press, 1982).
    Google Scholar 
    Kirchhoff, T. & Vicenzotti, V. A historical and systematic survey of European perceptions of wilderness. Environ. Values 23, 443–464 (2014).Article 

    Google Scholar 
    Aplet, G., Thomson, J. & Wilbert, M. Indicators of wildness: Using attributes of the land to assess the context of wilderness in Wilderness Science in a Time of Change (eds. McCool, S.F., Cole, D.N., Borrie, W.T., O’Loughlin, J.) 89–98 (USDA Forest Service, RMRS-P-15-Vol-2, 2000).Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watson, J. E. et al. Protect the last of the wild. Nature 563, 27–30 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hayward, M. W. et al. Reintroducing rewilding to restoration: Rejecting the search for novelty. Biol. Conserv. 233, 255–259 (2019).Article 

    Google Scholar 
    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soulé, M. & Noss, R. Rewilding and biodiversity: Complementary goals for continental conservation. Wild Earth 8, 18–28 (1998).
    Google Scholar 
    Torres, A. et al. Measuring rewilding progress. Philos. Trans. R. Soc. Lond. B 373, 20170433 (2018).Article 

    Google Scholar 
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Fish, R., Church, A. & Winter, M. Conceptualising cultural ecosystem services: A novel framework for research and critical engagement. Ecosyst. Serv. 21B, 208–217 (2016).Article 

    Google Scholar 
    Nilsson, K. et al. Forests, Trees and Human Health (Springer, 2011).Book 

    Google Scholar 
    Cheesbrough, A. E., Garvin, T. & Nykiforuk, C. I. J. Everyday wild: Urban natural areas, health, and well-being. Health Place 56, 43–52 (2019).PubMed 
    Article 

    Google Scholar 
    Child, M. F. Wildness, infinity and freedom. Ecol. Econ. 186, 107055 (2021).Article 

    Google Scholar 
    Lev, E., Kahn, P. H. Jr., Chen, H. & Esperum, G. Relatively wild urban parks can promote human resilience and flourishing: A case study of Discovery Park, Seattle, Wasshington. Front. Sustain. Cities 2, 2 (2020).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).PubMed 
    Article 

    Google Scholar 
    Giergiczny, M., Czajkowski, M., Żylicz, T. & Angelstam, P. Choice experiment assessment of public preferences for forest structural attributes. Ecol. Econ. 119, 8–23 (2015).Article 

    Google Scholar 
    Sabatini, F. M. et al. Where are Europe’s last primary forests?. Divers. Distrib. 24, 1426–1439 (2018).Article 

    Google Scholar 
    Kirby, K. & Watkins, C. Europe’s changing woods and forests: from wildwood to managed landscapes. CABI (2015).Schirpke, U., Meisch, C. & Tappeiner, U. Symbolic species as a cultural ecosystem service in the European Alps: Insights and open issues. Landsc. Ecol. 33, 711–730 (2018).Article 

    Google Scholar 
    Bruskotter, J. T. & Wilson, R. S. Determining where the wild things will be: Using psychological theory to find tolerance for large carnivores. Conserv. Lett. 7, 158–165 (2014).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617 (2021).Article 

    Google Scholar 
    Røskaft, E., Händel, B., Bjerke, T. & Kaltenborn, B. P. Human attitudes towards large carnivores in Norway. Wildl. Biol. 13, 172–186 (2007).Article 

    Google Scholar 
    Arbieu, U. et al. Attitudes towards returning wolves (Canis lupus) in Germany: Exposure, information sources and trust matter. Biol. Conserv. 234, 202–210 (2019).Article 

    Google Scholar 
    Gundersen, V. S. & Frivold, L. H. Public preferences for forest structures: A review of quantitative surveys from Finland, Norway and Sweden. Urban For. Urban Green. 7, 241–258 (2008).Article 

    Google Scholar 
    Filyushkina, A., Agimass, F., Lundhede, T., Strange, N. & Jacobsen, J. B. Preferences for variation in forest characteristics: Does diversity between stands matter?. Ecol. Econ. 140, 22–29 (2017).Article 

    Google Scholar 
    Lozano, J. et al. Human-carnivore relations: A systematic review. Biol. Conserv. 237, 480–492 (2019).Article 

    Google Scholar 
    Rode, J., Flinzberger, L., Karutz, R., Berghöfer, A. & Schröter-Schlaack, C. Why so negative? Exploring the socio-economic impacts of large carnivores from a European perspective. Biol. Conserv. 255, 108918 (2021).Article 

    Google Scholar 
    Gren, M., Häggmark-Svensson, T., Elofsson, K. & Engelmann, M. Economics of wildlife management—An overview. Eur. J. Wildl. Res. 64, 1–6 (2018).Article 

    Google Scholar 
    Wilson, E. O. Biophilia and the conservation ethic in The Biophilia Hypothesis (eds. Kellert, S.R. & Wilson, E.O.) 31–41 (Island Press, 1993).Thompson, S. C. G. & Barton, M. A. Ecocentric and anthropocentric attitudes toward the environment. J. Environ. Psychol. 14, 149–157 (1994).Article 

    Google Scholar 
    Kaltenborn, B. P. & Bjerke, T. Associations between environmental value orientations and landscape preferences. Landsc. Urban Plan. 59, 1–11 (2002).Article 

    Google Scholar 
    Bjerke, T. & Kaltenborn, B. P. The relationship of ecocentric and anthropocentric motives to attitudes toward large carnivores. J. Environ. Psychol. 19, 415–421 (1999).Article 

    Google Scholar 
    Johansson, M., Ferreira, I. A., Støen, O. G., Frank, J. & Flykt, A. Targeting human fear of large carnivores—Many ideas but few known effects. Biol. Conserv. 201, 261–269 (2016).Article 

    Google Scholar 
    Bauer, N., Wallner, A. & Hunziker, M. The change of European landscapes: Human–nature relationships, public attitudes towards rewilding, and the implications for landscape management in Switzerland. J. Environ. Manag. 90, 2910–2920 (2009).Article 

    Google Scholar 
    Arts, K., Fischer, A. & Van der Wal, R. The promise of wilderness between paradise and hell: A cultural-historical exploration of a Dutch National Park. Landsc. Res. 37, 239–256 (2012).Article 

    Google Scholar 
    De Groot, W. T. & van den Born, R. J. G. Visions of nature and landscape preferences:an exploration in the Netherlands. Landsc. Urban Plan. 63, 127–138 (2003).Article 

    Google Scholar 
    Bombieri, G. et al. Brown bear attacks on humans: A worldwide perspective. Sci. Rep. 9, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Johansson, M., Sjöström, M., Karlsson, J. & Brännlund, R. Is human fear affecting public willingness to pay for the management and conservation of large carnivores?. Soc. Nat. Resour. 25, 610–620 (2012).Article 

    Google Scholar 
    Dressel, S., Sandström, C. & Ericsson, G. A meta-analysis of studies on attitudes toward bears and wolves across Europe 1976–2012. Conserv. Biol. 29, 565–574 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trajçe, A. et al. All carnivores are not equal in the rural people’s view. Should we develop conservation plans for functional guilds or individual species in the face of conflicts?. Glob. Ecol. Conserv. 19, e00677 (2019).Article 

    Google Scholar 
    Eriksson, M., Sandström, C. & Ericsson, G. Direct experience and attitude change towards bears and wolves. Wildl. Biol. 21, 131–137 (2015).Article 

    Google Scholar 
    Methorst, J., Arbieu, U., Bonn, A., Böhning-Gaese, K. & Müller, T. Non-material contributions of wildlife to human well-being: A systematic review. Environ. Res. Lett. 15, 093005 (2020).ADS 
    Article 

    Google Scholar 
    Russell, R. et al. Humans and nature: How knowing and experiencing nature affect well-being. Annu. Rev. Environ. Resour. 38, 473–502 (2013).Article 

    Google Scholar 
    Maller, C., Mumaw, L. & Cooke, B. Health and social benefits of living with ‘wild’ nature in Rewilding (eds. Pettorelli, N., Durant, S. M. & du Toit, J. T.) 165–181 (Cambridge University Press, 2019).Nevin, O. T., Swain, P. & Convery, I. Bears, place-making, and authenticity in British Columbia. Nat. Areas J. 34, 216–221 (2014).Article 

    Google Scholar 
    Schnitzler, A. Towards a new European wilderness: Embracing unmanaged forest growth and the decolonisation of nature. Landsc. Urban Plan. 126, 74–80 (2014).Article 

    Google Scholar 
    Hensher, D., Rose, J. & Greene, D. Applied Choice Analysis (Cambridge University Press, 2005).MATH 
    Book 

    Google Scholar 
    Johnston, R. J. et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 4, 319–405 (2017).
    Google Scholar 
    Riera, P. et al. Non-market valuation of forest goods and services: Good practice guidelines. J. For. Econ. 18, 259–270 (2012).
    Google Scholar 
    Larsen, J. B. & Nielsen, A. B. Nature-based forest management: Where are we going? Elaborating forest development types in and with practice. For. Ecol. Manag. 238, 107–117 (2007).Article 

    Google Scholar 
    Ferrini, S. & Scarpa, R. Designs with a priori information for nonmarket valuation with choice experiments: A Monte Carlo study. J. Environ. Econ. Manag. 53, 342–363 (2007).MATH 
    Article 

    Google Scholar 
    McFadden, D. The measurement of urban travel demand. J. Public Econ. 3, 303–328 (1974).Article 

    Google Scholar 
    Train, K. Discrete Choice Methods with Simulation (Cambridge University Press, 2009).MATH 

    Google Scholar  More

  • in

    The role of phylogenetic relatedness on alien plant success depends on the stage of invasion

    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).Article 

    Google Scholar 
    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vilà, M. & Hulme, P. E. in Impact of Biological Invasions on Ecosystem Services Vol. 12 Invading Nature – Springer Series in Invasion Ecology (eds Vilà, M. & Hulme, P. E.) 1–14 (Springer, 2017).Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).PubMed Central 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Bacher, S. et al. Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol. Evol. 9, 159–168 (2018).Article 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 27, 970–982 (2021).CAS 
    Article 

    Google Scholar 
    Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40, 111–124 (2003).Article 

    Google Scholar 
    Thuiller, W., Richardson, D. M. & Midgley, G. F. in Biological Invasions (ed. Nentwig, W.) 197–211 (Springer, 2007).Hobbs, R. J. in Invasive Species in a Changing World (eds Mooney, H. A. & Hobbs, R. J.) 55–64 (Island Press, 2000).Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).PubMed 
    Article 

    Google Scholar 
    Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bucharova, A. & van Kleunen, M. Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J. Ecol. 97, 230–238 (2009).Article 

    Google Scholar 
    Ordonez, A., Wright, I. J. & Olff, H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 24, 1353–1361 (2010).Article 

    Google Scholar 
    van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).PubMed 
    Article 

    Google Scholar 
    van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).PubMed 
    Article 

    Google Scholar 
    Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winkler, D. E., Gremer, J. R., Chapin, K. J., Kao, M. & Huxman, T. E. Rapid alignment of functional trait variation with locality across the invaded range of Sahara mustard (Brassica tournefortii). Am. J. Bot. 105, 1188–1197 (2018).PubMed 
    Article 

    Google Scholar 
    Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Banerjee, A. K., Prajapati, J., Bhowmick, A. R., Huang, Y. & Mukherjee, A. Different factors influence naturalization and invasion processes – a case study of Indian alien flora provides management insights. J. Environ. Manag. 294, 113054 (2021).Article 

    Google Scholar 
    Ni, M. et al. Invasion success and impacts depend on different characteristics in non-native plants. Divers. Distrib. 27, 1194–1207 (2021).Article 

    Google Scholar 
    Fristoe, T. S. et al. Dimensions of invasiveness: links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proc. Natl Acad. Sci. USA 118, e2021173118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Omer, A. et al. Characteristics of the naturalized flora of Southern Africa largely reflect the non-random introduction of alien species for cultivation. Ecography 44, 1812–1825 (2021).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015).PubMed 
    Article 

    Google Scholar 
    Omer, A., Kordofani, M., Gibreel, H. H., Pyšek, P. & van Kleunen, M. The alien flora of Sudan and South Sudan: taxonomic and biogeographical composition. Biol. Invasions 23, 2033–2045 (2021).Article 

    Google Scholar 
    Duncan, R. P. & Williams, P. A. Darwin’s naturalization hypothesis challenged. Nature 417, 608–609 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pyšek, P. Is there a taxonomic pattern to plant invasions? Oikos 82, 282–294 (1998).Article 

    Google Scholar 
    Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Resident–invader phylogenetic relatedness, not resident phylogenetic diversity, controls community invasibility. Am. Nat. 186, 59–71 (2015).PubMed 
    Article 

    Google Scholar 
    Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article 

    Google Scholar 
    Loiola, P. P. et al. Invaders among locals: alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).Article 

    Google Scholar 
    Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015).Article 

    Google Scholar 
    Marx, H. E., Giblin, D. E., Dunwiddie, P. W. & Tank, D. C. Deconstructing Darwin’s naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers. Distrib. 22, 318–331 (2016).Article 

    Google Scholar 
    Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).Procheş, Ş., Wilson, J. R. U., Richardson, D. M. & Rejmánek, M. Searching for phylogenetic pattern in biological invasions. Glob. Ecol. Biogeogr. 17, 5–10 (2008).
    Google Scholar 
    Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G. & Duncan, R. P. Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674–681 (2008).PubMed 
    Article 

    Google Scholar 
    Cadotte, M. W., Campbell, S. E., Li, S. P., Sodhi, D. S. & Mandrak, N. E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu Rev. Plant Biol. 69, 661–684 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).Article 

    Google Scholar 
    Park, D. S., Feng, X., Maitner, B. S., Ernst, K. C. & Enquist, B. J. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl Acad. Sci. USA 117, 10904–10910 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diez, J. M. et al. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 12, 1174–1183 (2009).PubMed 
    Article 

    Google Scholar 
    Malecore, E. M., Dawson, W., Kempel, A., Müller, G. & van Kleunen, M. Nonlinear effects of phylogenetic distance on early-stage establishment of experimentally introduced plants in grassland communities. J. Ecol. 107, 781–793 (2019).Article 

    Google Scholar 
    Schaefer, H., Hardy, O. J., Silva, L., Barraclough, T. G. & Savolainen, V. Testing Darwin’s naturalization hypothesis in the Azores. Ecol. Lett. 14, 389–396 (2011).PubMed 
    Article 

    Google Scholar 
    Strauss, S. Y., Webb, C. O. & Salamin, N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA 103, 5841–5845 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, S.-p. et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).PubMed 
    Article 

    Google Scholar 
    Pellock, S., Thompson, A., He, K., Mecklin, C. & Yang, J. Validity of Darwin’s naturalization hypothesis relates to the stages of invasion. Community Ecol. 14, 172–179 (2013).Article 

    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 
    Article 

    Google Scholar 
    van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Broennimann, O. et al. Distance to native climatic niche margins explains establishment success of alien mammals. Nat. Commun. 12, 2353 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carboni, M. et al. What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2016).PubMed 
    Article 

    Google Scholar 
    Milbau, A. & Stout, J. C. Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv. Biol. 22, 308–317 (2008).PubMed 
    Article 

    Google Scholar 
    Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009).Article 

    Google Scholar 
    Rejmánek, M. in Invasive Species and Biodiversity Management (eds Schei, P. J. & Vilken, A.) 79–102 (Kluwer Academic, 1998).Rejmánek, M. A theory of seed plant invasiveness: the first sketch. Biol. Conserv. 78, 171–181 (1996).Article 

    Google Scholar 
    Maurel, N., Hanspach, J., Kuhn, I., Pysek, P. & van Kleunen, M. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 25, 1500–1509 (2016).Article 

    Google Scholar 
    Glen, H. F. Cultivated Plants of Southern Africa: Botanical Names, Common Names, Origins, Literature (National Botanical Institute, 2002).Reichard, S. H. & White, P. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51, 103–113 (2001).Article 

    Google Scholar 
    Faulkner, K. T., Robertson, M. P., Rouget, M. & Wilson, J. R. U. Understanding and managing the introduction pathways of alien taxa: South Africa as a case study. Biol. Invasions 18, 73–87 (2016).Article 

    Google Scholar 
    Dodd, A. J., Burgman, M. A., McCarthy, M. A. & Ainsworth, N. The changing patterns of plant naturalization in Australia. Divers. Distrib. 21, 1038–1050 (2015).Article 

    Google Scholar 
    Lambdon, P.-W. et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101–149 (2008).
    Google Scholar 
    Bennett, B. M. Naturalising Australian trees in South Africa: climate, exotics and experimentation. J. South. Afr. Stud. 37, 265–280 (2011).Article 

    Google Scholar 
    Richardson, D. M. et al. in Biological Invasions in South Africa (eds van Wilgen, B. W. et al.) 67–96 (Springer, 2020).Li, S.-p. et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52, 89–99 (2015).CAS 
    Article 

    Google Scholar 
    Duarte, M., Verdú, M., Cavieres, L. A. & Bustamante, R. O. Plant–plant facilitation increases with reduced phylogenetic relatedness along an elevation gradient. Oikos 130, 248–259 (2021).Article 

    Google Scholar 
    Verdú, M., Rey, P. J., Alcántara, J. M., Siles, G. & Valiente-Banuet, A. Phylogenetic signatures of facilitation and competition in successional communities. J. Ecol. 97, 1171–1180 (2009).Article 

    Google Scholar 
    Valiente-Banuet, A. & Verdu, M. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 347–366 (2013).Article 

    Google Scholar 
    Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016).PubMed 
    Article 

    Google Scholar 
    Dostál, P. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).PubMed 
    Article 

    Google Scholar 
    Levin, S. C., Crandall, R. M., Pokoski, T., Stein, C. & Knight, T. M. Phylogenetic and functional distinctiveness explain alien plant population responses to competition. Proc. R. Soc. B 287, 20201070 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, E. W., Zeldin, J., Semski, W. R., Hipp, A. L. & Larkin, D. J. Phylogenetic distance and resource availability mediate direction and strength of plant interactions in a competition experiment. Oecologia 197, 459–469 (2021).PubMed 
    Article 

    Google Scholar 
    Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O. & Van der Bank, M. Revisiting Darwin’s naturalization conundrum: explaining invasion success of non-native trees and shrubs in Southern Africa. J. Ecol. 103, 871–879 (2015).Article 

    Google Scholar 
    Trotta, L. B., Siders, Z. A., Sessa, E. B. & Baiser, B. The role of phylogenetic scale in Darwin’s naturalization conundrum in the critically imperilled pine rockland ecosystem. Divers. Distrib. 27, 618–631 (2021).Article 

    Google Scholar 
    Sol, D. et al. A test of Darwin’s naturalization conundrum in birds reveals enhanced invasion success in the presence of close relatives. Ecol. Lett. 25, 661–672 (2022).PubMed 
    Article 

    Google Scholar 
    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    Henderson, L. Comparisons of invasive plants in Southern Africa originating from southern temperate, northern temperate and tropical regions. Bothalia 36, 201–222 (2006).Article 

    Google Scholar 
    Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (R Foundation for Statistical Computing, Vienna, 2019).Weigelt, P., König, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).Article 

    Google Scholar 
    van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019).PubMed 
    Article 

    Google Scholar 
    Zengeya, T. A. & Wilson, J. R. (eds) The Status of Biological Invasions and Their Management in South Africa in 2019 (South African National Biodiversity Institute and DSI-NRF Centre of Excellence for Invasion Biology, 2021).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing v.3.6.1 (R Foundation for Statistical Computing, 2019).Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).Article 

    Google Scholar 
    rcompanion: Functions to support extension education program evaluation v. 2.4.1 (R Foundation for Statistical Computing, 2021).Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 

    Google Scholar  More

  • in

    Accurate phenology analyses require bud traits and energy budgets

    Peñuelas, J. & Filella, I. Phenology. Responses to a warming world. Science 294, 793–795 (2001).PubMed 
    Article 

    Google Scholar 
    Peñuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).PubMed 
    Article 

    Google Scholar 
    Ramos-Jiliberto, R., Moisset de Espanés, P., Franco-Cisterna, M., Petanidou, T. & Vázquez, D. P. Phenology determines the robustness of plant-pollinator networks. Sci. Rep. 8, 14873 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chuine, I. Why does phenology drive species distribution? Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3149–3160 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chmielewski, F.-M. in Phenology: An Integrative Environmental Science 2nd edn (ed. Schwartz M. D.) 539–561 (Springer, 2013).Morellato, L. P. C. et al. Linking plant phenology to conservation biology. Biol. Conserv. 195, 60–72 (2016).Article 

    Google Scholar 
    Katelaris, C. H. & Beggs, P. J. Climate change: allergens and allergic diseases. Intern. Med. J. 48, 129–134 (2018).PubMed 
    Article 

    Google Scholar 
    Schwartz, M. D. (ed.) Phenology: An Integrative Environmental Science 2nd edn (Springer, 2013).Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A. & Schwartz, M. D. Shifting plant phenology in response to global change. Trends Ecol. Evol. 22, 357–365 (2007).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 23, 1255–1263 (2014).Article 

    Google Scholar 
    Jeong, S.-J., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Glob. Change Biol. 17, 2385–2399 (2011).Article 

    Google Scholar 
    Liu, Q. et al. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Glob. Change Biol. 22, 3702–3711 (2016).Article 

    Google Scholar 
    Vitasse, Y. et al. Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses. Agric. For. Meteorol. 149, 735–744 (2009).Article 

    Google Scholar 
    Wang, S. et al. Temporal trends and spatial variability of vegetation phenology over the Northern Hemisphere during 1982-2012. PLoS ONE 11, e0157134 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, M. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat. Ecol. Evol. 1, 1649–1654 (2017).PubMed 
    Article 

    Google Scholar 
    Peaucelle, M. et al. Spatial variance of spring phenology in temperate deciduous forests is constrained by background climatic conditions. Nat. Commun. 10, 5388 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zohner, C. M., Mo, L., Pugh, T. A. M., Bastin, J.-F. & Crowther, T. W. Interactive climate factors restrict future increases in spring productivity of temperate and boreal trees. Glob. Change Biol. https://doi.org/10.1111/gcb.15098 (2020).Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. Proc. Natl Acad. Sci. USA 117, 10397–10405 (2020).Zohner, C. M., Benito, B. M., Svenning, J.-C. & Renner, S. S. Day length unlikely to constrain climate-driven shifts in leaf-out times of northern woody plants. Nat. Clim. Change 6, 1120–1123 (2016).Article 

    Google Scholar 
    Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol. 161, 837–846 (2004).PubMed 
    Article 

    Google Scholar 
    Papagiannopoulou, C. et al. Vegetation anomalies caused by antecedent precipitation in most of the world. Environ. Res. Lett. 12, 74016 (2017).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Fu, Y. H. et al. Nutrient availability alters the correlation between spring leaf-out and autumn leaf senescence dates. Tree Physiol. 39, 1277–1284 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seyednasrollah, B., Swenson, J. J., Domec, J.-C. & Clark, J. S. Leaf phenology paradox: why warming matters most where it is already warm. Remote Sens. Environ. 209, 446–455 (2018).Article 

    Google Scholar 
    Chuine, I., Morin, X. & Bugmann, H. Warming, photoperiods, and tree phenology. Science 329, 277–278 (2010).PubMed 
    Article 

    Google Scholar 
    Vitasse, Y. & Basler, D. What role for photoperiod in the bud burst phenology of European beech. Eur. J. For. Res 132, 1–8 (2013).Article 

    Google Scholar 
    Way, D. A. & Montgomery, R. A. Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ. 38, 1725–1736 (2015).PubMed 
    Article 

    Google Scholar 
    Caffarra, A., Donnelly, A. & Chuine, I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Clim. Res. 46, 159–170 (2011).Article 

    Google Scholar 
    Körner, C. & Basler, D. Plant science. Phenology under global warming. Science 327, 1461–1462 (2010).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).Article 

    Google Scholar 
    Singh, R. K., Svystun, T., AlDahmash, B., Jönsson, A. M. & Bhalerao, R. P. Photoperiod- and temperature-mediated control of phenology in trees – a molecular perspective. New Phytol. 213, 511–524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flynn, D. F. B. & Wolkovich, E. M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytol. 219, 1353–1362 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brelsford, C. C., Nybakken, L., Kotilainen, T. K. & Robson, T. M. The influence of spectral composition on spring and autumn phenology in trees. Tree Physiol. 39, 925–950 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Strømme, C. B. et al. UV-B and temperature enhancement affect spring and autumn phenology in Populus tremula. Plant Cell Environ. 38, 867–877 (2015).PubMed 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: effects of chilling, precipitation and insolation. Glob. Change Biol. 21, 2687–2697 (2015).Article 

    Google Scholar 
    Huang, Y., Jiang, N., Shen, M. & Guo, L. Effect of preseason diurnal temperature range on the start of vegetation growing season in the Northern Hemisphere. Ecol. Indic. 112, 106161 (2020).Article 

    Google Scholar 
    Meng, F. et al. Opposite effects of winter day and night temperature changes on early phenophases. Ecology 100, e02775 (2019).PubMed 
    Article 

    Google Scholar 
    Zhang, S., Isabel, N., Huang, J.-G., Ren, H. & Rossi, S. Responses of bud-break phenology to daily-asymmetric warming: daytime warming intensifies the advancement of bud break. Int. J. Biometeorol. 63, 1631–1640 (2019).PubMed 
    Article 

    Google Scholar 
    Meng, L. et al. Divergent responses of spring phenology to daytime and nighttime warming. Agric. For. Meteorol. 281, 107832 (2020).Article 

    Google Scholar 
    Bigler, C. & Vitasse, Y. Daily maximum temperatures induce lagged effects on leaf unfolding in temperate woody species across large elevational gradients. Front. Plant Sci. 10, 398 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y. H. et al. Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees. New Phytol. 212, 590–597 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piao, S. et al. Leaf onset in the northern hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vitasse, Y. et al. Impact of microclimatic conditions and resource availability on spring and autumn phenology of temperate tree seedlings. New Phytol. https://doi.org/10.1111/nph.17606 (2021).Azeez, A. et al. EARLY BUD-BREAK 1 and EARLY BUD-BREAK 3 control resumption of poplar growth after winter dormancy. Nat. Commun. 12, 1123 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamer, P. The heat balance of apple buds and blossoms. Part I. Heat transfer in the outdoor environment. Agric. For. Meteorol. 35, 339–352 (1985).Article 

    Google Scholar 
    Landsberg, J. J., Butler, D. R. & Thorpe, M. R. Apple bud and blossom temperatures. J. Horticultural Sci. 49, 227–239 (1974).Article 

    Google Scholar 
    Grace, J. The temperature of buds may be higher than you thought. N. Phytol. 170, 1–3 (2006).Article 

    Google Scholar 
    Muir, C. D. tealeaves: an R package for modelling leaf temperature using energy budgets. AoB Plants 11, plz054 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knohl, A., Schulze, E.-D., Kolle, O. & Buchmann, N. Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany. Agric. For. Meteorol. 118, 151–167 (2003).Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bailey, B. N., Stoll, R., Pardyjak, E. R. & Miller, N. E. A new three-dimensional energy balance model for complex plant canopy geometries: Model development and improved validation strategies. Agric. For. Meteorol. 218-219, 146–160 (2016).Article 

    Google Scholar 
    Michaletz, S. T. & Johnson, E. A. A heat transfer model of crown scorch in forest fires. Can. J. For. Res. 36, 2839–2851 (2006).Article 

    Google Scholar 
    Sanchez‐Lorenzo, A. et al. Reassessment and update of long‐term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 120, 9555–9569 (2015).Pfeifroth, U., Sanchez‐Lorenzo, A., Manara, V., Trentmann, J. & Hollmann, R. Trends and variability of surface solar radiation in Europe based on surface‐ and satellite-based data records. J. Geophys. Res. Atmos. 123, 1735–1754 (2018).Article 

    Google Scholar 
    Richardson, A. D. et al. Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Glob. Change Biol. 18, 566–584 (2012).Article 

    Google Scholar 
    Liu, Q. et al. Extension of the growing season increases vegetation exposure to frost. Nat. Commun. 9, 426 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ma, Q., Huang, J.-G., Hänninen, H. & Berninger, F. Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob. Change Biol. 25, 351–360 (2019).Article 

    Google Scholar 
    Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1920816117 (2020).Xiao, L. et al. Estimating spring frost and its impact on yield across winter wheat in China. Agric. For. Meteorol. 260–261, 154–164 (2018).Article 

    Google Scholar 
    Unterberger, C. et al. Spring frost risk for regional apple production under a warmer climate. PLoS ONE 13, e0200201 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Leolini, L. et al. Late spring frost impacts on future grapevine distribution in Europe. Field Crops Res. 222, 197–208 (2018).Article 

    Google Scholar 
    Greco, S. et al. Late spring frost in mediterranean beech forests: extended crown dieback and short-term effects on moth communities. Forests 9, 388 (2018).Article 

    Google Scholar 
    Augspurger, C. K. Spring 2007 warmth and frost: phenology, damage and refoliation in a temperate deciduous forest. Funct. Ecol. 23, 1031–1039 (2009).Article 

    Google Scholar 
    Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H. & Zhang, Y. P. Biophysical homoeostasis of leaf temperature: a neglected process for vegetation and land-surface modelling. Glob. Ecol. Biogeogr. 26, 998–1007 (2017).Article 

    Google Scholar 
    Jones, H. G. Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology (Cambridge Univ. Press, 2013).University Of East Anglia Climatic Research Unit (CRU) & Harris, I. C. CRU JRA v1.1: a forcings dataset of gridded land surface blend of Climatic Research Unit (CRU) and Japanese reanalysis (JRA) data; Jan.1901–Dec.2017, 2019; https://catalogue.ceda.ac.uk/uuid/13f3635174794bb98cf8ac4b0ee8f4edDupleix, A., Sousa Meneses, D., de, Hughes, M. & Marchal, R. Mid-infrared absorption properties of green wood. Wood Sci. Technol. 47, 1231–1241 (2013).CAS 
    Article 

    Google Scholar 
    Howard, R. & Stull, R. IR radiation from trees to a ski run: a case study. J. Appl. Meteorol. Climatol. 52, 1525–1539 (2013).Article 

    Google Scholar 
    Monteith, J. L. & Unsworth, M. H. Principles of Environmental Physics. Plants, Animals, and the Atmosphere 4th edn (Elsevier/Academic Press, 2013).Bergman, T. L., Incropera, F. P. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (J. Wiley & Sons, 2011).Jacobs, A., Heusinkveld, B. G. & Kessel, G. Simulating of leaf wetness duration within a potato canopy. NJAS Wagening. J. Life Sci. 53, 151–166 (2005).Article 

    Google Scholar 
    Gerlein-Safdi, C. et al. Dew deposition suppresses transpiration and carbon uptake in leaves. Agric. For. Meteorol. 259, 305–316 (2018).Article 

    Google Scholar 
    Muñoz Sabater, J. Copernicus Climate Change Service: ERA5-Land hourly data from 1981 to present, 2019; https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-landKusch, E. & Davy, R. KrigR – A tool for downloading and statistically downscaling climate reanalysis data. Environ. Res. Lett. 17, 024005 (2022).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/ More