More stories

  • in

    The early arrival of spring doesn’t boost annual tree growth

    Dow, C. et al. Nature 608, 552–557 (2022).Article 

    Google Scholar 
    Friedlingstein, P. et al. Earth Syst. Sci. Data 12, 3269–3340 (2020).Article 

    Google Scholar 
    Menzel, A. & Fabian, P. Nature 397, 659 (1999).Article 

    Google Scholar 
    Piao, S. et al. Nature Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Cuny, H. E. et al. Nature Plants 1, 15160 (2015).PubMed 
    Article 

    Google Scholar 
    Körner, C. Curr. Opin. Plant Biol. 25, 107–114 (2015).PubMed 
    Article 

    Google Scholar 
    Gessler, A. & Treydte, K. New Phytol. 209, 1338–1340 (2016).PubMed 
    Article 

    Google Scholar 
    Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. New Phytol. 232, 25–41 (2021).PubMed 
    Article 

    Google Scholar 
    Jiang, M. et al. Nature 580, 227–231 (2020).PubMed 
    Article 

    Google Scholar 
    Guillemot, J. et al. New Phytol. 214, 180–193 (2017).PubMed 
    Article 

    Google Scholar 
    Fatichi, S., Pappas, C., Zscheischler, J. & Leuzinger, S. New Phytol. 221, 652–668 (2019).PubMed 
    Article 

    Google Scholar 
    Friend, A. D. et al. Annu. For. Sci. 76, 49 (2019).Article 

    Google Scholar 
    Zuidema, P. A., Poulter, B. & Frank, D. C. Trends Plant Sci. 23, 1006–1015 (2018).PubMed 
    Article 

    Google Scholar 
    Martínez-Sancho, E., Treydte, K., Lehmann, M. M., Rigling, A. & Fonti, P. New Phytol. https://doi.org/10.1111/nph.18224 (2022).Article 

    Google Scholar  More

  • in

    Statistically enriched geospatial datasets of Brazilian municipalities for data-driven modeling

    The procedure began by obtaining the boundaries of Brazil’s municipalities, which are the most precise spatial reference units available from the Brazilian Ministry of Health of data records on diseases and health events. The boundaries were obtained from the geographic database of the Brazilian Institute of Geography and Statistics (IBGE)11, corresponding to the territorial grid of 2015, with a total of 5,570 Brazilian municipalities.A broad and diverse set of thematic data was used to compose the datasets, spanning a range of time periods (from 1981 to 2021) according to the temporal regularity of individual layers (annual, quinquennial, atemporal, or without temporal regularity), thus covering spatial and temporal variations over Brazil’s territory. It is worth noticing that during the period of 1981 to 2021 the number of municipalities grew from 3991 to 557012, which of course led to major changes to their boundaries, in addition to the creation of the state of Tocantins in 1988 as a result of the division of the state of Goiás13. Most of the changes, though, are subdivisions of one municipality into two or more municipalities. To provide statistics that are invariant over the period we would have to resort to using clusters of municipalities (“artificial municipalities”) by means of the Minimum Comparable Areas (MCA) strategy14. Due to the time-consuming process we preferred to characterize only the current territorial division, thus providing the most refined statistical characterization of Brazil’s municipalities. Still, one can find it useful to aggregate our characterization according to an MCA territorial division; for that we refer the reader to the article by Ehrl14.A total of 19 thematic layers were used, obtained from different Brazilian government and international agencies (Tables 1 and 2, illustrated by Figs. 1–4). Each layer may have multiple thematic classes or variables, depending on the nature of the theme, totaling 642 thematic classes or variables. For each class, 18 descriptive statistics were calculated (9 raw statistics plus 9 normalized by municipality’s area–Table 3) for all the available years, totaling 11,556 attributes per municipality.Table 1 Thematic layers comprising the dataset collection.Full size tableTable 2 Original data format, resulting geometry, unit and scale/resolution of the thematic layers.Full size tableFig. 1Examples of thematic layers with annual temporality in the territorial extension of the municipality of Rio de Janeiro.Full size imageFig. 2Examples of atemporal and no temporal regularity thematic layers in the territorial extension of the municipality of Rio de Janeiro.Full size imageFig. 3Examples of bioclimatic variables from Worldclim in the territorial extension of the municipality of Rio de Janeiro.Full size imageFig. 4Climate data for total precipitation, maximum, mean and minimum temperature from Worldclim in the territorial extension of the municipality of Rio de Janeiro for the month of January.Full size imageTable 3 Statistics calculated for the features/variables in the scope of the municipalities.Full size tableThe annual thematic layers for land use and land cover include 25 thematic classes from 1985 to 2020 for the entire Brazilian territory with spatial resolution of 30 m. (Except for the Fernando de Noronha archipelago, municipality geocode 260545, for which there is no land user/cover data due to the absence of historical series Landsat satellite images for that region.) These layers were produced and made available by the online platform MapBiomas15, collection 6.0. Annual land use and land cover maps were produced via automatic classification processes applied to Landsat satellite images16. The MapBiomas Project is a multi-institutional initiative coordinated by the Greenhouse Gas Emissions Estimation System (SEEG) from the Climate Observatory’s and consists of a collaborative network of cocreators including nongovernmental organizations (NGOs), universities, and companies. The objective is to produce annual land cover and land use maps of Brazil from 1985 to the present.The annual temperature and precipitation layers include 19 different types of data from 1981 to 2020 for the entire land surface, with spatial resolution of 5 km (0.05°). These fields were derived from two different observational gridded datasets, one for precipitation and another for temperature. The observed precipitation came from the Climate Hazards Group Infrared Precipitation with Stations data (CHIRPS)17, with a daily temporal resolution and a spatial resolution of approximately 5 km (0.05°). The observed temperature drawn from the NCEP Climate Forecast System Reanalysis (NCEP/CFSR)18 at a 6-hour temporal resolution and a spatial resolution of approximately 50 km (0.5°). The NCEP/CFSR gridded dataset was spatially downscaled to a higher spatial resolution of 5 km (0.05°) using bilinear interpolation in order to have the same spatial resolution as CHIRPS. (As with land use and land cover, there is no temperature/precipitation data for the Fernando de Noronha archipelago (geocode 260545).)The quinquennial layers for Population Count and Population Density were obtained from the Socioeconomic Data and Applications Center (SEDAC)19 through NASA’s Earth Observing System Data and Information System (EOSDIS), and is hosted by the Center for International Earth Science Information Network (CIESIN) at Columbia University. This dataset estimates the population count for the years 2000, 2005, 2010, 2015 and 2020, based on national censuses and population records, and is available in raster graphics with spatial resolution of 1 km. The official population demographics data from IBGE census is not used because it is available only as a tabular data aggregate count per census sector or municipality and therefore cannot yield meaningful descriptive statistics.Atemporal data include the following themes: Climatological Normals for Temperature; Altitude; Geomorphology; Soils; Phytophysiognomies; and Biome boundaries. Climatological Normals for Temperature came from Worldclim20 and correspond to observational data, representative of 1950 to 2000, which were interpolated to a resolution of 1 km. These temperature values are in degree Celsius, but for historical reasons they are scaled by a factor of 10. The used mean, minimum and maximum values of temperature include information from different remote sensors onboard the MODIS and NOAA satellites which operate to jointly capture surface temperature and air humidity values. Besides the annual temperature data, we also included climatological normal data because they provide monthly mean values for temperature. These values complement the annual information (considerably influenced by climate events like El Niño and La Niña) and serve as an important reference on seasonal temperature variation patterns, a factor that directly influences the reproduction and survival dynamics of species such as vectors. The altitude data came from NASA’s Shuttle Radar Topography Mission digital elevation model (SRTM) 1 ArcSecond Global, conceived to provide consistent high-quality near-global elevation data21. The original data are radar images with spatial resolution of 30 m, version 3, reprocessed to fix inconsistencies and fill missing data (“voids”). The other themes–Geomorphology, Soils, Phytophysiognomies, and Biome boundaries–were obtained from IBGE22. These provides regional details, and were constructed from interpretation of satellite images and various field studies throughout Brazil beginning in 199023.The layers without temporal regularity include: Mining Areas; Roads; Railways; Waterways or watercourses; Hydroelectric Plants; Dams; Conservation Units; Indigenous Lands; and Zone Climates and Regional Subunits. The Mining Areas layer has 336 classes, representing the different types of minerals explored in Brazil’s territory, provided by the Brazilian National Mining Agency (ANM). The boundaries of Conservation Units were provided by the Brazilian Ministry of Environment (MMA). The other layers are single classes of Roads, Railways, Waterways/watercourses, Hydroelectric Plants, Dams, obtained from the Continuous Cartographic Bases24 and Indigenous lands and Quilombola territories25, all this datasets from IBGE. The roads category comprises all its available classifications, covering data from subcategories such as highways and dirt roads. The same unification was adopted for the railways and waterways categories. The layer on Zone Climates and Regional Subunits represents the different climate zones in Brazil’s territory, grouped by temperature and humidity. This layer also identifies the climate types, characterized by shades and hues: tropical, subtropical, mild mesothermal, and median mesothermal26.Considering the heterogeneity of the data sources and the structural particularities of the thematic layers acquired, it was essential to conduct a pre-processing and structuring stage with the datasets in order to proceed with the calculation of the descriptive statistics. All the raw data, whose total size amounted to 195 GB, were pre-processed in QGIS v3.1027. This stage required standardizing the geospatial data’s cartographic characteristics, correcting topological errors, eliminating duplicate information, and uniformizing the attribute tables. The data were generally organized in two major groups: vector data and matrix data (raster).To be able to process the Land Use and Land Cover features at the original 30 m spatial resolution, we had first to break down each annual raster (1985 to 2020) into 5,569 smaller raster pieces, one for each municipality, by using the gdalwarp tool from the Geospatial Data Abstraction Library (GDAL). Next, we converted all the resulting rasters to vector format (geopackage) via the script gdal_polygonize.py, also from GDAL. The conversion was necessary because the vector format (geopackage) allowed the calculation of the polygons’ statistics for all the Land Use and Land Cover features, which is not possible with the raster format with the techniques and functions used (described in the Code availability section). All that pre-processing took about 600 hours running in parallel on an Intel Core i7 computer with 8 physical CPU cores and 64 GB of RAM.The data on Temperature, Precipitation, Population Count/Density, Altitude, and Climatological Normals, also provided in matrix format, were converted to point geometry, since they are inherently points but which had been interpolated by their sources before making them available. The conversion of Altitude from raster to vector was the most computationally demanding operation due to the need to process 10.6 billion points (spread across 821 tiles of 3601 × 3601 points each) at the resolution of 30 m. It took about one month of uninterrupted parallel processing on a 20-core Intel Xeon E5-2690 machine with 128 GB of RAM.For the vector data, it was first necessary to homogenize the cartographic references using South America Albers Equal Area Conic (EPSG:102033) for data requiring calculation of areas (polygons), South America Equidistant Conic (EPSG:102032) for data requiring calculation of distances (lines), and SIRGAS 2000 Geodetic Reference (EPSG:4674) for data with restricted localization (points)28. It was also necessary to correct some topological errors in the vector data regarding the line and polygon geometries, which are artifacts introduced during the data construction/vectorization stage. The vector data correspond to the following themes: Geomorphology; Soils; Phytophysiognomies; Biome Boundaries; Mining Areas; Roads; Railways; Waterways or watercourses; Hydroelectric Plants; Dams; Conservation Units; Indigenous lands and Quilombola territories; Zone Climates and Regional Subunits.For the statistical description of the municipalities’ socioenvironmental characteristics, we calculated the measures of central tendency such as mean and median, and measures of dispersion such as maximum and minimum values, standard deviation, and percentiles. For each descriptive statistic we also calculated a corresponding normalized statistic, simply dividing the original statistics value by the municipality’s area. The values were normalized due to the wide variation in the territorial area of Brazil’s municipalities. For example, Altamira, in the state of Pará, is Brazil’s largest municipality, with an area of 159,533 km2, while Santa Cruz de Minas, in the state of Minas Gerais, is the smallest one, with only 3,565 km2 29. This wide territorial variability might otherwise skew the modeling towards the identification of distorted correlations, such as the identification of relations between higher proportions of natural or anthropic features and higher concentration of cases, which is merely due to the municipality’s larger territorial dimensions.Based on structuring of the graphic, we executed a spatial data intersection with the municipal boundaries by means of different routines from PostGIS30, an extension that adds spatial and geographic objects to the PostgreSQL object-relational database.Calculation of the descriptive statisticsThe meaning of the statistics described in Table 3 actually depends on both feature’s geometry and unit of measurement, which are reported in Table 2 for each thematic layer.For polygons, such as conservation units, the area of each unit is computed in square meters and the set of all conservation units’ areas in the municipality forms the statistical population upon which the descriptive statistics will be calculated for that municipality. This means that the minimum statistic will refer to the smallest area among the conservation units in the municipality, the mean statistic to the average area, the count statistic will refer to the number of conservation units in the municipality, and so forth. Analogously, when the feature type is line, e.g. roads, the set of all road stretches’ lengths (in meters) is the statistical population.The procedure differs a bit for point features, such as altitude and temperature. In this case, except for the count statistic (which refers to the number of points in the municipality), the actual value at each feature point is taken; for instance, the altitude and temperature at a given location. Differently from the polygons and line cases, the associated unit cannot be predefined (in square meters or meters), and it will depend on the actual unit of the underlying layer–for altitude it is meters, but for temperature it could be either Celsius or Kelvin. Some point-type features, such as hydroelectric plants, do not have a unit per se, i.e. they merely refer to a quantity. Once the set of all point-type feature values are taken, we have a statistical population of values and the calculation of the statistics proceeds exactly as described with the other two feature types.For each descriptive statistic, there is a corresponding normalized one which is calculated by dividing the statistic by the municipality’s area (in m2). Those normalized statistics complement the set of descriptive information and provide the notion of proportion or density. As an example, the statistic sum_normalized corresponds to the percentage of occupation of a given polygon-type thematic layer in the municipality, or an estimation of density for line-type layers such as roads. More

  • in

    Increased genetic diversity loss and genetic differentiation in a model marine diatom adapted to ocean warming compared to high CO2

    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281:237–40. https://doi.org/10.1126/science.281.5374.237CAS 
    Article 
    PubMed 

    Google Scholar 
    Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9. https://doi.org/10.1126/science.1153213CAS 
    Article 
    PubMed 

    Google Scholar 
    Gattuso J-P, Magnan A, Billé R, Cheung WWL, Howes EL, Joos F, et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 2015;349:aac4722. https://doi.org/10.1126/science.aac4722Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Cocco V, et al. Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosciences. 2010;7:979–1005. https://doi.org/10.5194/bg-7-979-2010CAS 
    Article 

    Google Scholar 
    Henson SA, Cael BB, Allen SR, Dutkiewicz S. Future phytoplankton diversity in a changing climate. Nat Commun. 2021;12:5372. https://doi.org/10.1038/s41467-021-25699-wCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8. https://doi.org/10.1126/science.1224836CAS 
    Article 
    PubMed 

    Google Scholar 
    Collins S, Boyd PW, Doblin MA. Evolution, microbes, and changing ocean conditions. Annu Rev Mar Sci. 2020;12:181–208. https://doi.org/10.1146/annurev-marine-010318-095311Article 

    Google Scholar 
    Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719. https://doi.org/10.1038/s41467-018-03906-5CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lohbeck KT, Riebesell U, Reusch TBH. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci. 2012;5:346–51. https://doi.org/10.1038/ngeo1441CAS 
    Article 

    Google Scholar 
    Jin P, Gao K, Beardall J. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution. 2013;67:1869–78. https://doi.org/10.1111/evo.12112CAS 
    Article 
    PubMed 

    Google Scholar 
    Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30. https://doi.org/10.1038/nclimate2379CAS 
    Article 

    Google Scholar 
    Listmann L, LeRoch M, Schlüter L, Thomas MK, Reusch TBH. Swift thermal reaction norm evolution in a key marine phytoplankton species. Evol Appl. 2016;9:1156–64. https://doi.org/10.1111/eva.12362Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167. https://doi.org/10.1016/j.scitotenv.2021.145167CAS 
    Article 
    PubMed 

    Google Scholar 
    Brennan GL, Colegrave N, Collins S. Evolutionary consequences of multidriver environmental change in an aquatic primary producer. Proc Natl Acad Sci USA. 2017;114:9930–5. https://doi.org/10.1073/pnas.1703375114CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang S, Wu Y, Lin L, Wang D. Molecular insights into the circadian clock in marine diatoms. Acta Oceano Sin. 2022;41:1–12. https://doi.org/10.1007/s13131-021-1962-4Article 

    Google Scholar 
    Nagelkerken I, Connell SD. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proc Natl Acad Sci USA. 2015;112:13272–7. https://doi.org/10.1073/pnas.1510856112CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso JP, Havenhand J, et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-a review. Glob Change Biol. 2018;24:2239–61. https://doi.org/10.1111/gcb.14102Article 

    Google Scholar 
    Matsuda Y, Nakajima K, Tachibana M. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth Res. 2011;109:191–203. https://doi.org/10.1007/s11120-011-9623-7CAS 
    Article 
    PubMed 

    Google Scholar 
    Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, et al. CO2-cAMP-responsive cis-elements targeted by a transcription factor with CREB/ATF-like basic zipper domain in the marine diatom Phaeodactylum tricornutum. Plant Physiol. 2012;158:499–513. https://doi.org/10.1104/pp.111.190249CAS 
    Article 
    PubMed 

    Google Scholar 
    Hennon GMM, Ashworth J, Groussman RD, Berthiaume C, Morales RL, Baliga NS, et al. Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. Nat Clim Change. 2015;5:761–5. https://doi.org/10.1038/nclimate2683CAS 
    Article 

    Google Scholar 
    Toseland A, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84. https://doi.org/10.1038/nclimate1989CAS 
    Article 

    Google Scholar 
    Gao K, Beardall J, Häder DP, Hall-Spencer JM, Gao G, Hutchins DA. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front Mar Sci. 2019;6:322. https://doi.org/10.3389/fmars.2019.00322Article 

    Google Scholar 
    Tu L, Su P, Zhang Z, Gao L, Wang J, Hu T, et al. Genome of Tripterygium wilfordii and identification of cytochrome P450 involved in triptolide biosynthesis. Nat Commun. 2020;11:971. https://doi.org/10.1038/s41467-020-14776-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Treves H, Siemiatkowska B, Luzarowska U, Murik O, Fernandez-Pozo N, Moraes TA, et al. Multi-omics reveals mechanisms of total resistance to extreme illumination of a desert alga. Nat Plants. 2020;6:1031–43. https://doi.org/10.1038/s41477-020-0729-9CAS 
    Article 
    PubMed 

    Google Scholar 
    Van den Bergh B, Swings T, Fauvart M, Michels J. Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiol Mol Biol Rev. 2018;82:e00008–18.PubMed 
    PubMed Central 

    Google Scholar 
    Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet. 2003;4:457–69. https://doi.org/10.1038/nrg1088CAS 
    Article 
    PubMed 

    Google Scholar 
    Colegrave N, Collins S. Experimental evolution: experimental evolution and evolvability. Heredity. 2008;100:464–70. https://doi.org/10.1038/sj.hdy.6801095CAS 
    Article 
    PubMed 

    Google Scholar 
    Jin P, Ji Y, Huang Q, Li P, Pan J, Lu H, et al. A reduction in metabolism explains the trade‐offs associated with the long‐term adaptation of phytoplankton to high CO2 concentrations. N Phytol. 2022;233:2155–67. https://doi.org/10.1111/nph.17917CAS 
    Article 

    Google Scholar 
    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proc Natl Acad Sci USA. 2013;110:9824–9. https://doi.org/10.1073/pnas.1307701110CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, Mcllvin MR, et al. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide. Nat Commun. 2015;6:8155. https://doi.org/10.1038/ncomms9155Article 
    PubMed 

    Google Scholar 
    Padfield D, Yvon-Durocher G, Buckling A, Jennings S, Yvon-Durocher G. Rapid evolution of metabolic traits explains thermal adaptation in phytoplankton. Ecol Lett. 2016;19:133–42.Article 

    Google Scholar 
    Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358:1149–54. https://doi.org/10.1126/science.aan5712CAS 
    Article 
    PubMed 

    Google Scholar 
    Linnen CR, Kingsley EP, Jensen JD, Hoekstra HE. On the origin and spread of an adaptive allele in deer mice. Science. 2009;325:1095–8. https://doi.org/10.1126/science.1175826CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van’t Hof AE, Campagne P, Rigden DJ, Yung CJ, Lingley J, Quail MA, et al. The industrial melanism mutation in British peppered moths is a transposable element. Nature. 2016;534:102–5. https://doi.org/10.1038/nature17951CAS 
    Article 
    PubMed 

    Google Scholar 
    Bitter MC, Kapsenberg L, Gattuso JP, Pfister CA. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat Commun. 2019;10:5821. https://doi.org/10.1038/s41467-019-13767-1CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lai YT, Yeung CK, Omland KE, Pang EL, Hao Y, Liao BY, et al. Standing genetic variation as the predominant source for adaptation of a songbird. Proc Natl Acad Sci USA. 2019;116:2152–7. https://doi.org/10.1073/pnas.1813597116Armbrust EV. The life of diatoms in the world’s oceans. Nature. 2009;459:185–92. https://doi.org/10.1038/nature08057CAS 
    Article 
    PubMed 

    Google Scholar 
    Rastogi A, Vieira FRJ, Deton-Cabanillas AF, Veluchamy A, Cantrel C, Wang G, et al. A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom Phaeodactylum tricornutum. ISME J. 2020;14:347–63. https://doi.org/10.1038/s41396-019-0528-3Article 
    PubMed 

    Google Scholar 
    Jin P, Agustí S. Fast adaptation of tropical diatoms to increased warming with trade-offs. Sci Rep. 2018;8:17771. https://doi.org/10.1038/s41598-018-36091-yCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barton S, Jenkins J, Buckling A, Schaum CE, Smirnoff N, Raven JA, et al. Evolutionary temperature compensation of carbon fixation in marine phytoplankton. Ecol Lett. 2020;23:722–33.Article 

    Google Scholar 
    Guillard RR, Ryther JH. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol. 1962;8:229–39. https://doi.org/10.1139/m62-029CAS 
    Article 
    PubMed 

    Google Scholar 
    Huysman MJ, Martens C, Vandepoele K, Gillard J, Rayko E, Heijde M, et al. Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol. 2010;11:R17. https://doi.org/10.1186/gb-2010-11-2-r17CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    IPCC. Summary for policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Switzerland: IPCC; 2021.Jiang H, Gao K. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol. 2004;40:651–4. https://doi.org/10.1111/j.1529-8817.2004.03112.xCAS 
    Article 

    Google Scholar 
    Pérez EB, Pina IC, Rodríguez LP. Kinetic model for growth of Phaeodactylum tricornutum in intensive culture photobioreactor. Biochem Eng J. 2008;40:520–5. https://doi.org/10.1016/j.bej.2008.02.007CAS 
    Article 

    Google Scholar 
    Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, et al. Marine phytoplankton temperature versus growth responses from polar to tropical waters-outcome of a scientific community-wide study. PLoS One. 2013;8:e63091 https://doi.org/10.1371/journal.pone.0063091CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zeng X, Jin P, Jiang Y, Yang H, Zhong J, Liang Z, et al. Light alters the responses of two marine diatoms to increased warming. Mar Environ Res. 2020;154:104871. https://doi.org/10.1016/j.marenvres.2019.104871CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.CAS 
    Article 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. https://doi.org/10.1093/bioinformatics/btp324CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. https://doi.org/10.1093/nar/gkq603CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. https://doi.org/10.1038/nmeth.1923CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60. https://doi.org/10.1038/nmeth.3317CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33:290–5. https://doi.org/10.1038/nbt.3122CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11:1650–67. https://doi.org/10.1038/nprot.2016.095CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gifford RM. Plant respiration in productivity models: conceptualisation, representation and issues for global terrestrial carbon-cycle research. Funct Plant Biol. 2003;30:171–86. https://doi.org/10.1071/FP02083Article 
    PubMed 

    Google Scholar 
    Jassby AD, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol Oceanogr. 1976;21:540–7. https://doi.org/10.4319/lo.1976.21.4.0540CAS 
    Article 

    Google Scholar  More

  • in

    Author Correction: High and rising economic costs of biological invasions worldwide

    Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, FranceChristophe Diagne, Anne-Charlotte Vaissière & Franck CourchampUnité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA, UMR 7208), Muséum national d’Histoire naturelle, Sorbonne Université, Université de Caen Normandie, CNRS, IRD, Université des Antilles, Paris, FranceBoris LeroyISEM, Univ. Montpellier, CNRS, IRD, Montpellier, FranceRodolphe E. GozlanMIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, FranceDavid RoizInstitute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech RepublicIvan JarićDepartment of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech RepublicIvan JarićCEE-M, UMR5211, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, FranceJean-Michel SallesGlobal Ecology, College of Science and Engineering, Flinders University, Adelaide, South Australia, AustraliaCorey J. A. Bradshaw More

  • in

    Long-term study on survival and development of successive generations of Mytilus galloprovincialis cryopreserved larvae

    Short-term experimentsPotential toxic and cryoprotection effects of different CPA combinationsFocusing on toxicity bioassays (Figs. 1A, 2A), although there were certain CPA combinations that yielded significant abnormality percentages compared to controls, in general the CPA combinations did not yield any significant toxic effect. The use of Milli-Q Water instead of FSW did not enhance normal larval development after CPA exposure, neither did the addition of PVP at the concentrations tested, even in combination with trehalose (TRE) (p  > 0.05). In fact, the highest concentrations of PVP used in this experiment (9 and 12%) yielded significant abnormal development on exposed trochophores (Fig. 1A) (p  More

  • in

    Direct evidence for phosphorus limitation on Amazon forest productivity

    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).CAS 
    Article 

    Google Scholar 
    Wright, S. J. et al. Plant responses to fertilization experiments in lowland, species rich, tropical forests. Ecology 99, 1129–1138 (2018).PubMed 
    Article 

    Google Scholar 
    Turner, B. L. et al. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Fleischer, K. et al. Amazon forest response to CO2 fertilization depend on plant phosphorus acquisition. Nat. Geosci. 12, 736–741 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    Goll, D. S. et al. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9, 3547–3569 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    Sun, Y. et al. Diagnosing phosphorus limitation in natural terrestrial ecosystems in carbon cycle models. Earths Future 5, 730–749 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhang, Q. et al. Nitrogen and phosphorus limitations significantly reduce allowable CO2 emissions. Geophys. Lett. 41, 632–637 (2014).CAS 
    Article 
    ADS 

    Google Scholar 
    Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystem: a meta analysis. Ecology 87, 53–63 (2006).PubMed 
    Article 

    Google Scholar 
    Jordan, C. F. The nutrient balance of an Amazonian rainforest. Ecology 63, 647–654 (1982).CAS 
    Article 

    Google Scholar 
    Walker, T. W. & Syers, J. K. The fate of phosphorus during pedogenesis. Geoderma 15, 1–19 (1976).CAS 
    Article 
    ADS 

    Google Scholar 
    Crews, T. E. et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76, 1408–1424 (1995).Article 

    Google Scholar 
    Hedin, L. O. et al. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).Article 

    Google Scholar 
    Dalling, J. W. et al. in Tropical Tree Physiology (Springer, 2016).Herrera, R. R. & Medina, E. Amazon ecosystems, their structure and functioning with particular emphasis on nutrients. Interciencia 3, 223–231 (1978).
    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).CAS 
    Article 
    ADS 

    Google Scholar 
    Quesada, C. A. et al. Basin wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).Article 
    ADS 

    Google Scholar 
    Mercado, L. et al. Variations in Amazon forest productivity correlated with foliar nutrients and modelled rates of photosynthetic carbon supply. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 3316–3329 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Yang, X. et al. The effects of phosphorus cycle dynamics carbon sources and sink in the Amazon region: a modelling study using ELM v1. J. Geophys. Res. Biogeosci. 124, 3686–3698 (2019).CAS 
    Article 

    Google Scholar 
    Sollins, P. Factors influencing species composition in tropical lowland rain forest: does soil matter? Ecology 79, 23–30 (1998).Article 

    Google Scholar 
    Alvarez-Clare, S. et al. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 94, 1540–1551 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, S. J. et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 92, 1616–1625 (2011).PubMed 
    Article 

    Google Scholar 
    Sayer, E. J. et al. Variable responses of lowland tropical forest nutrient status to fertilization and litter manipulation. Ecosystems 15, 387–400 (2012).CAS 
    Article 

    Google Scholar 
    Ganade, G. & Brown, V. Succession in old pastures of central Amazonia: role of soil fertility and plant litter. Ecology 83, 743–754 (2002).Article 

    Google Scholar 
    Markewitz, D. et al. Soil and tree response to P fertilization in a secondary tropical forest supported by an Oxisol. Biol. Fertil. Soils 48, 665–678 (2012).Article 

    Google Scholar 
    Davidson, E. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).Article 

    Google Scholar 
    Massad, T. et al. Interactions between fire, nutrients, and insect herbivores affect the recovery of diversity in the southern Amazon. Oecologia 172, 219–229 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    Newbery, D. M. et al. Does low phosphorus supply limit seedling establishment and tree growth in groves of ectomycorrhizal trees in a central African rainforest? New Phytol. 156, 297–311 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mirmanto, E. et al. Effects of nitrogen and phosphorus fertilization in a lowland evergreen rainforest. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354, 1825–1829 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lugli, L. F. et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2020).Article 
    CAS 

    Google Scholar 
    Quesada, C. A. et al. Soils of Amazonia with particular reference to the rainfor sites. Biogeosciences 8, 1415–1440 (2011).CAS 
    Article 
    ADS 

    Google Scholar 
    Giardina, C. et al. Primary production and carbon allocation in relation to nutrient supply in a tropical experiment forest. Glob. Change Biol. 9, 1438–1450 (2003).Article 
    ADS 

    Google Scholar 
    Rowland, L. et al. Scaling leaf respiration with nitrogen and phosphorus in tropical forests across two continents. New Phytol. 214, 1064–1077 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vicca, S. et al. Fertile forests produce biomass more efficiently. Ecol. Lett. 15, 520–526 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–826 (2004).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hinsinger, P. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv. Agron. 64, 225–265 (1998).CAS 
    Article 

    Google Scholar 
    Van Langehove, L. et al. Rapid root assimilation of added phosphorus in a lowland tropical rainforest of French Guiana. Soil Biol. Biochem. 140, 107646 (2019).Article 
    CAS 

    Google Scholar 
    Martins, N. P. et al. Fine roots stimulate nutrient release during early stages of litter decomposition in a central Amazon rainforest. Plant Soil 469, 287–303 (2021).CAS 
    Article 

    Google Scholar 
    Cordeiro, A. L. et al. Fine root dynamics vary with soil and precipitation in a low-nutrient tropical forest in the central Amazonia. Plant Environ. Interact. 220, 3–16 (2020).Article 

    Google Scholar 
    Yavitt, J. Soil fertility and fine root dynamics in response to four years of nutrient (N,P, K) fertilization in a lowland tropical moist forest, Panamá. Austral. Ecol. 36, 433–445 (2011).Article 

    Google Scholar 
    Wurzburger, N. & Wright, S. J. Fine root responses to fertilization reveal multiple nutrient limitation in a lowland tropical forest. Ecology 96, 2137–2146 (2015).PubMed 
    Article 

    Google Scholar 
    Waring, B. G., Aviles, D. P., Murray, J. G. & Powers, J. S. Plant community responses to stand level nutrient fertilization in a secondary tropical dry forest. Ecology 100, e02691 (2019).PubMed 
    Article 

    Google Scholar 
    Jansens, I. A. et al. Reductions of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315–322 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Alvarez Claire, S. et al. Do foliar, litter, and root nitrogen and phosphorus concentration reflect nutrient limitation in a lowland tropical wet forest? PLoS ONE 10, e0123796 (2015).Article 
    CAS 

    Google Scholar 
    Bouma, T. in Advances in Photosynthesis and Respiration Vol. 18 (eds Lambers, H. & Ribas-Carbo, M.) 177–194 (Springer, 2005).Malhi, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Change Biol. 15, 1255–1274 (2009).Article 
    ADS 

    Google Scholar 
    Aragão, L. E. O. et al. Above and below ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6, 2759–2778 (2009).Article 
    ADS 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Quesada, C. A. & Lloyd, J. in Interactions Between Biosphere, Atmosphere and Human Land Use in the Amazon Basin (eds Nagy, L. et al.) 267–299 (Springer, 2016).Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary production, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. 93, 223–247 (2018).PubMed 
    Article 

    Google Scholar 
    De Oliveira, A. & Mori, S. A. A central Amazonia terra firme forest. I. High tree species richness on poor soils. Biodivers. Conserv. 8, 1219–1244 (1999).Article 

    Google Scholar 
    Ferreira, S. J. F., Luizão, F. J. & Dallarosa, R. L. G. Throughfall and rainfall interception by an upland forest submitted to selective logging in Central Amazonia [Portuguese]. Acta Amaz. 35, 55–62 (2005).Article 

    Google Scholar 
    Tanaka, L. D. S., Satyamurty, P. & Machado, L. A. T. Diurnal variation of precipitation in central Amazon Basin. Int. J. Climatol. 34, 3574–3584 (2014).Article 

    Google Scholar 
    Duque, A. et al. Insights into regional patterns of Amazonian forest structure and dominance from three large terra firme forest dynamics plots. Biodivers. Conserv. 26, 669–686 (2017).Article 

    Google Scholar 
    Martins, D. L. et al. Soil induced impacts on forest structure drive coarse wood debris stocks across central Amazonia. Plant Ecol. Divers. 8, 229–241 (2014).Article 

    Google Scholar 
    Metcalfe, D. B. et al. A method for extracting plant roots from soil which facilitates rapid sample processing without compromising measurent accuracy. New Phytol. 174, 697–703 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chave, J. et al. Improved allometric to estimate the above ground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).Article 
    ADS 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    Zanne, A. E. et al. Global Wood Density Database https://doi.org/10.5061/dryad.234 (2009).Higuchi, N. & Carvalho, J. A. in Anais do Seminário: Emissão e Sequestro de CO2—Uma Nova Oportunidade de Negócios para o Brasil (CVRD, 1994).Brienen, R. J. W., Philips, O. L. & Zagt, R. J. Long term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Malhado, A. C. M. et al. Seasonal leaf dynamics in an Amazonian tropical forest. Forest Ecol. Manag. 258, 1161–1165 (2009).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Bates, D., Marcher, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Moraes, A. C. M. et al. Fine Litterfall Production and Nutrient Composition Data from a Fertilized Site in Central Amazon, Brazil (NERC, 2020).Cunha, H. F. V. et al. Fine Root Biomass in Fertilised Plots in the Central Amazon, 2017–2019 (NERC Environmental Information Data Centre, 2021).Cunha, H. F. V. et al. Tree Census and Diameter Increment in Fertilised Plots in the Central Amazon, 2017–2020 (NERC Environmental Information Data Centre, 2021).Cunha, H. F. V. et al. Leaf Area Index (LAI) in Fertilised Plots in the Central Amazon, 2017–2018 (NERC Environmental Information Data Centre, 2021). More

  • in

    Reviewing the ecological impacts of offshore wind farms

    International Energy Agency. Offshore Wind Outlook 2019. https://iea.blob.core.windows.net/assets/495ab264-4ddf-4b68-b9c0-514295ff40a7/Offshore_Wind_Outlook_2019.pdf (2019).United Nations. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. (E/CN.3/2016/2/Rev.1). 49. (New York: United Nations Economic and Social Council, 2016).Copping, A. et al. Annex IV State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. https://tethys.pnnl.gov/sites/default/files/publications/Annex-IV-2016-State-of-the-Science-Report_MR.pdf. Accessed 27 Feb 2020. (2016).Dean, N. Performance factors. Nature Energy 5, 5–5 (2020).Article 

    Google Scholar 
    Global Wind Energy Council. Globarl offshore wind report 2020. https://gwec.net/wp-content/uploads/dlm_uploads/2020/08/GWEC-offshore-wind-2020-5.pdf (2020).Jansen, M. et al. Offshore wind competitiveness in mature markets without subsidy. Nat. Energy 5, 614–622 (2020).Article 

    Google Scholar 
    IRENA. Global Renewables Outlook: Energy transformation 2050 (Edition: 2020), International Renewable Energy Agency, Abu Dhabi. ISBN 978-92-9260-238-3. www.irena.org/publications (2020).Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by 2050. Nat. Energy 6, 555–565 (2021).Article 

    Google Scholar 
    IRENA. Future of wind: Deployment, investment, technology, grid integration and socio-economic aspects (A Global Energy Transformation paper), International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf (2019).European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 11.12.2019 COM(2019) 640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (2019).European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. An EU Strategy to harness the potential of offshore renewable energy for a climate neutral future. Brussels, 19.11.2020 COM(2020) 741 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2020%3A741%3AFIN (2020).European Parliament. European Parliament resolution of 14 March 2019 on climate change – a European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy in accordance with the Paris Agreement (2019/2582(RSP)). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019IP0217 (2019).Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882–30891 (2020).CAS 
    Article 

    Google Scholar 
    Copping, A. E., Freeman, M. C., Gorton, A. M. & Hemery, L. G. Risk Retirement—Decreasing Uncertainty and Informing Consenting Processes for Marine Renewable Energy Development. J. Marine Sci. Eng. 8, 172 (2020).Article 

    Google Scholar 
    WWF. Environmental Impacts of Offshore Wind Power Production in the North Sea. A Literature Overview. https://tethys.pnnl.gov/sites/default/files/publications/WWF-OSW-Environmental-Impacts.pdf (2014).Cook, A. S. C. P., Humphreys, E. M., Bennet, F., Masden, E. A. & Burton, N. H. K. Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environ. Res. 140, 278–288 (2018).CAS 
    Article 

    Google Scholar 
    Willsteed, E. A., Jude, S., Gill, A. B. & Birchenough, S. N. R. Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renew. Sustain. Energy Rev. 82, 2332–2345 (2018).Article 

    Google Scholar 
    Stelzenmüller, V. et al. Operationalizing risk-based cumulative effect assessments in the marine environment. Sci. Total Environ. 724, 138118 (2020).Article 
    CAS 

    Google Scholar 
    Ehler, C. & Douvere, F. in Intergovernmental Oceanographic Commission and Man and the Biosphere Programme. IOC Manual and Guides No. 53, ICAM Dossier No. 6. Paris: UNESCO. 99pp. (2009).Borja, A. et al. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? Marine Pollut. Bull. 76, 16–27 (2013).CAS 
    Article 

    Google Scholar 
    Peters, J. L., Remmers, T., Wheeler, A. J., Murphy, J. & Cummins, V. A systematic review and meta-analysis of GIS use to reveal trends in offshore wind energy research and offer insights on best practices. Renew. Sustain. Energy Rev. 128, 109916 (2020).Article 

    Google Scholar 
    Gasparatos, A., Doll, C. N. H., Esteban, M., Ahmed, A. & Olang, T. A. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renew. Sustain. Energy Rev. 70, 161–184 (2017).Article 

    Google Scholar 
    Xiao, Y. & Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Education Res. 39, 93–112 (2017).Article 

    Google Scholar 
    Mengist, W., Soromessa, T. & Legese, G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020).Article 

    Google Scholar 
    Pullin, A. & Stewart, G. Guidelines for Systematic Review in Environmental Management. Conserv. Biol. 20, 1647–1656 (2007).Article 

    Google Scholar 
    van der Molen, J., Smith, H. C. M., Lepper, P., Limpenny, S. & Rees, J. Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem. Continental Shelf Res. 85, 60–72 (2014).Article 

    Google Scholar 
    De Backer, A., Van Hoey, G., Coates, D., Vanaverbeke, J. & Hostens, K. Similar diversity-disturbance responses to different physical impacts: Three cases of small-scale biodiversity increase in the Belgian part of the North Sea. Marine Pollut. Bull. 84, 251–262 (2014).Article 
    CAS 

    Google Scholar 
    Floeter, J. et al. Pelagic effects of offshore wind farm foundations in the stratified North Sea. Prog. Oceanograph. 156, 154–173 (2017).Article 

    Google Scholar 
    Lindeboom, H. J. et al. Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; A compilation. Environ. Res. Lett. 6, 035101 (2011).Article 

    Google Scholar 
    Bray, L. et al. Expected effects of offshore wind farms on Mediterranean Marine Life. J. Marine Sci. Eng. 4, 18 (2016).Article 

    Google Scholar 
    Dannheim, J. et al. Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Marine Sci. 77, 1092–1108 (2019).Article 

    Google Scholar 
    Wilson, J. C. & Elliott, M. The habitat-creation potential of offshore wind farms. Wind Energy 12, 203–212 (2009).Article 

    Google Scholar 
    Hall, R., João, E. & Knapp, C. W. Environmental impacts of decommissioning: Onshore versus offshore wind farms. Environ. Impact Assess. Rev. 83, 106404 (2020).Article 

    Google Scholar 
    Crain, C. M., Kroeker, K. & Halpern, B. S. Interactive and cumulative effects of multiple human stressors in marine systems. Ecol. Lett. 11, 1304–1315 (2008).Article 

    Google Scholar 
    Korpinen, S. & Andersen, J. H. A Global Review of Cumulative Pressure and Impact Assessments in Marine Environments. Front. Marine Sci. 3, 00153 (2016).Article 

    Google Scholar 
    Nõges, P. et al. Quantified biotic and abiotic responses to multiple stress in freshwater, marine and ground waters. Sci. Total Environ. 540, 43–52 (2016).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 755, 142564 (2021).CAS 
    Article 

    Google Scholar 
    Gușatu, L. F. et al. Spatial and temporal analysis of cumulative environmental effects of offshore wind farms in the North Sea basin. Sci. Rep. 11, 10125 (2021).Article 
    CAS 

    Google Scholar 
    Gissi, E. et al. Addressing uncertainty in modelling cumulative impacts within maritime spatial planning in the Adriatic and Ionian region. PLoS ONE 12, e0180501 (2017).Article 
    CAS 

    Google Scholar 
    Vaissière, A. C., Levrel, H., Pioch, S. & Carlier, A. Biodiversity offsets for offshore wind farm projects: The current situation in Europe. Marine Policy 48, 172–183 (2014).Article 

    Google Scholar 
    Iglesias, G., Tercero, J. A., Simas, T., Machado, I. & Cruz, E. Environmental Effects. In Wave and Tidal Energy (eds Greaves, D. & Iglesias, G.). https://doi.org/10.1002/9781119014492.ch9 (2018).Causon, P. D. & Gill, A. B. Linking ecosystem services with epibenthic biodiversity change following installation of offshore wind farms. Environ. Sci. Policy 89, 340–347 (2018).Article 

    Google Scholar 
    Copping, A. E. & Hemery, L. G. OES-Environmental 2020 State of the Science Report: Environmental Effects of Marine Renewable Energy Development Around the World. Report for Ocean Energy Systems (OES). 323 pp., (2020).Gill, A. B. Offshore renewable energy: ecological implications of generating electricity in the coastal zone. J. Appl. Ecol. 42, 605–615 (2005).Article 

    Google Scholar 
    Scheidat, M. et al. Harbour porpoises (Phocoena phocoena) and wind farms: A case study in the Dutch North Sea. Environ. Res. Lett. 6, 025102 (2011).Article 

    Google Scholar 
    Skov, H. et al. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biol. Lett. 12, 20160804 (2016).Article 

    Google Scholar 
    Vanermen, N. et al. Attracted to the outside: a meso-scale response pattern of lesser black-backed gulls at an offshore wind farm revealed by GPS telemetry. ICES J. Marine Sci. 77, 701–710 (2020).Article 

    Google Scholar 
    Frank, B. Research on marine mammals summary and discussion of research results. In Offshore Wind Energy: Research on Environmental Impacts. 77–86 https://doi.org/10.1007/978-3-540-34677-7_8 (2006).Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. Royal Soc. B.: Biol Sci. 284, 20170829 (2017).Article 

    Google Scholar 
    Wilson, J. C. et al. Coastal and Offshore Wind Energy Generation: Is It Environmentally Benign? Energies 3, 1383–1422 (2010).Article 

    Google Scholar 
    Busch, M., Kannen, A., Garthe, S. & Jessopp, M. Consequences of a cumulative perspective on marine environmental impacts: Offshore wind farming and seabirds at North Sea scale in context of the EU Marine Strategy Framework Directive. Ocean Coastal Manag. 71, 213–224 (2013).Article 

    Google Scholar 
    Garthe, S., Markones, N. & Corman, A.-M. Possible impacts of offshore wind farms on seabirds: a pilot study in Northern Gannets in the southern North Sea. J. Ornithol. 158, 345–349 (2017).Article 

    Google Scholar 
    Brandt, M. J., Diederichs, A., Betke, K. & Nehls, G. Responses of harbour porpoises to pile driving at the Horns Rev II offshore wind farm in the Danish North Sea. Marine Ecol. Prog. Ser. 421, 205–216 (2011).Article 

    Google Scholar 
    Wilhelmsson, D., Malm, T. & Öhman, M. C. The influence of offshore windpower on demersal fish. ICES J. Marine Sci. 63, 775–784 (2006).Article 

    Google Scholar 
    Bergström, L., Sundqvist, F. & Bergström, U. Effects of an offshore wind farm on temporal and spatial patterns in the demersal fish community. Marine Ecol. Progr. Ser. 485, 199–210 (2013).Article 

    Google Scholar 
    van Hal, R., Griffioen, A. B. & van Keeken, O. A. Changes in fish communities on a small spatial scale, an effect of increased habitat complexity by an offshore wind farm. Marine Environ. Res. 126, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Degraer, S. et al. Offshore wind farm artificial reefs affect ecosystem structure and functioning: A synthesis. Oceanography 33, 48–57 (2020).Article 

    Google Scholar 
    Zettler, M. L. & Pollehne, F. The Impact of Wind Engine Constructions on Benthic Growth Patterns in the Western Baltic. In Offshore Wind Energy: Research on Environmental Impacts (eds Köller, J., Köppel, J. & Peters, W.). 201–222 (Springer Berlin Heidelberg, 2006).Wilhelmsson, D. Marine environmental aspects of offshore wind power development. (Nova Science Publishers, Inc, 2010).Teilmann, J. & Carstensen, J. Negative long term effects on harbour porpoises from a large scale offshore wind farm in the Baltic – Evidence of slow recovery. Environ. Res. Lett. 7, 045101 (2012).Article 

    Google Scholar 
    Halouani, G. et al. A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. J. Marine Syst. 212, 103434 (2020).Article 

    Google Scholar 
    Reubens, J. T., Degraer, S. & Vincx, M. The ecology of benthopelagic fishes at offshore wind farms: a synthesis of 4 years of research. Hydrobiologia 727, 121–136 (2014).CAS 
    Article 

    Google Scholar 
    Wilber, D. H., Carey, D. A. & Griffin, M. Flatfish habitat use near North America’s first offshore wind farm. J. Sea Res. 139, 24–32 (2018).Article 

    Google Scholar 
    Welcker, J. & Nehls, G. Displacement of seabirds by an offshore wind farm in the North Sea. Marine Ecol. Prog. Ser. 554, 173–182 (2016).Article 

    Google Scholar 
    Vallejo, G. C. et al. Responses of two marine top predators to an offshore wind farm. Ecol. Evol. 7, 8698–8708 (2017).Article 

    Google Scholar 
    Tougaard, J., Henriksen, O. D. & Miller, L. A. Underwater noise from three types of offshore wind turbines: Estimation of impact zones for harbor porpoises and harbor seals. J. Acoustical Soc. Am. 125, 3766–3773 (2009).Article 

    Google Scholar 
    Kastelein, R. A., Jennings, N., Kommeren, A., Helder-Hoek, L. & Schop, J. Acoustic dose-behavioral response relationship in sea bass (Dicentrarchus labrax) exposed to playbacks of pile driving sounds. Marine Environ. Res. 130, 315–324 (2017).CAS 
    Article 

    Google Scholar 
    Vanermen, N. et al. Assessing seabird displacement at offshore wind farms: power ranges of a monitoring and data handling protocol. Hydrobiologia 756, 155–167 (2015).Article 

    Google Scholar 
    Wahlberg, M. & Westerberg., H. Hearing in fish and their reactions to sounds from offshore wind farms. Marine Ecol. Prog. Ser. 288, 295–309 (2005).Article 

    Google Scholar 
    Desholm, M. Avian sensitivity to mortality: Prioritising migratory bird species for assessment at proposed wind farms. J. Environ. Manag. 90, 2672–2679 (2009).Article 

    Google Scholar 
    Vanermen, N. et al. Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea. Hydrobiologia 756, 51–61 (2015).Article 

    Google Scholar 
    Brandt, M. J. et al. Disturbance of harbour porpoises during construction of the first seven offshore wind farms in Germany. Marine Ecol. Prog. Ser. 596, 213–232 (2018).Article 

    Google Scholar 
    Masden, E. A., Haydon, D. T., Fox, A. D. & Furness, R. W. Barriers to movement: Modelling energetic costs of avoiding marine wind farms amongst breeding seabirds. Marine Pollut. Bull. 60, 1085–1091 (2010).CAS 
    Article 

    Google Scholar 
    Lloret, J. et al. Unravelling the ecological impacts of large-scale offshore wind farms in the Mediterranean Sea. Sci. Total Environ. 824, 153803 (2022).CAS 
    Article 

    Google Scholar 
    Everaert, J. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. Bird Study 61, 220–230 (2014).Article 

    Google Scholar 
    Rice, J. et al. Indicators for Sea-floor Integrity under the European Marine Strategy Framework Directive. Ecol. Indicators 12, 174–184 (2012).Article 

    Google Scholar 
    Teixeira, H. et al. A Catalogue of Marine Biodiversity Indicators. Front. Marine Sci. 3, 00207 (2016).Article 

    Google Scholar 
    Brabant, R., Vanermen, N., Stienen, E. & Degraer, S. Towards a cumulative collision risk assessment of local and migrating birds in North Sea offshore wind farms. Hydrobiologia 756, 63–74 (2015).Article 

    Google Scholar 
    Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).Article 

    Google Scholar 
    Kelsey, E. C., Felis, J. J., Czapanskiy, M., Pereksta, D. M. & Adams, J. Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf. J. Environ. Manag. 227, 229–247 (2018).Article 

    Google Scholar 
    Graham, I. et al. Harbour porpoise responses to pile-driving diminish over time. R. Soc. Open Sci. 6, 190335 (2019).Article 

    Google Scholar 
    Lindeboom, H. J. & Degraer, S. In Long-term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy (eds Gijs van Kuik & Joachim Peinke) 77–81 (Springer International Publishing, 2016).Stenberg, C. et al. Long-term effects of an offshore wind farm in the North Sea on fish communities. Marine Ecol. Prog. Ser. 528, 257–265 (2015).Article 

    Google Scholar 
    Salvador, S., Gimeno, L. & Sanz Larruga, F. J. The influence of regulatory framework on environmental impact assessment in the development of offshore wind farms in Spain: Issues, challenges and solutions. Ocean Coastal Manag. 161, 165–176 (2018).Article 

    Google Scholar 
    Bailey, H., Brookes, K. L. & Thompson, P. M. Assessing environmental impacts of offshore wind farms: lessons learned and recommendations for the future. Aquatic Biosyst. 10, 8 (2014).Article 

    Google Scholar 
    Apolonia, M., Fofack-Garcia, R., Noble, D. R., Hodges, J. & Correia da Fonseca, F. X. Legal and Political Barriers and Enablers to the Deployment of Marine Renewable Energy. Energies 14, 4896 (2021).Article 

    Google Scholar 
    Borja, A. et al. Moving Toward an Agenda on Ocean Health and Human Health in Europe. Front. Marine Sci. 7, 00037 (2020).Article 

    Google Scholar 
    European Commission, Directorate-General for Environment, Guidance document on wind energy developments and EU nature legislation, Publications Office of the European Union https://data.europa.eu/doi/10.2779/095188 (2021).O’Hagan, A. M. & Lewis, A. W. The existing law and policy framework for ocean energy development in Ireland. Marine Policy 35, 772–783 (2011).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Marine Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Borgwardt, F. et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Sci. Total Environ. 652, 1396–1408 (2019).Article 
    CAS 

    Google Scholar 
    Copping, A., Hanna, L., Van Cleve, B., Blake, K. & Anderson, R. M. Environmental Risk Evaluation System-an Approach to Ranking Risk of Ocean Energy Development on Coastal and Estuarine Environments. Estuaries Coasts 38, S287–S302 (2015).Article 

    Google Scholar 
    Lüdeke, J. Offshore Wind Energy: Good Practice in Impact Assessment, Mitigation and Compensation. J. Environ. Assess. Policy Manag. 19, 1750005 (2017).Article 

    Google Scholar 
    Boehlert, G. W. & Gill, A. B. Environmental and ecological effects of ocean renewable energy development: a current synthesis. J. Oceanograph. 23, 68–81 (2010).Article 

    Google Scholar 
    Hammar, L., Wikström, A. & Molander, S. Assessing ecological risks of offshore wind power on Kattegat cod. Renew. Energy 66, 414–424 (2014).Article 

    Google Scholar 
    Nunneri, C., Lenhart, H. J., Burkhard, B. & Windhorst, W. Ecological risk as a tool for evaluating the effects of offshore wind farm construction in the North Sea. Reg Environ. Change 8, 31–43 (2008).Article 

    Google Scholar 
    Hutchison, Z. L. et al. Offshore Wind Energy and Benthic Habitat Changes: Lessons from Block Island Wind Farm. Oceanography 33, 58–69 (2020).Article 

    Google Scholar 
    Pirttimaa, P. & Cruz, E. Ocean energy and the environment: Research and strategic actions. European Technology and Innovation Platform for Ocean Energy (ETIP Ocean), pp.36. https://www.etipocean.eu/assets/Uploads/ETIP-Ocean-Ocean-energy-and-the-environment.pdf (2020).Hooper, T., Beaumont, N. & Hattam, C. The implications of energy systems for ecosystem services: A detailed case study of offshore wind. Renew. Sustain. Energy Rev. 70, 230–241 (2017).Article 

    Google Scholar 
    Mangi, S. C. The Impact of Offshore Wind Farms on Marine Ecosystems: A Review Taking an Ecosystem Services Perspective. Proceedings of the IEEE 101, 999–1009, (2013).Pınarbaşı, K. et al. A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Sci. Total Environ. 667, 306–317 (2019).Article 
    CAS 

    Google Scholar 
    Maldonado, A. D. et al. A Bayesian Network model to identify suitable areas for offshore wave energy farms, in the framework of ecosystem approach to marine spatial planning. Sci. Total Environ. 838, 156037 (2022).CAS 
    Article 

    Google Scholar 
    Stelzenmüller, V., Gimpel, A., Letschert, J., Kraan, C. & DÖRING, R. Research for PECH Committee – Impact of the use of offshore wind and other marine renewables on European fisheries. European Parliament, Policy Department for Structural and Cohesion Policies, Brussels. https://www.europarl.europa.eu/RegData/etudes/STUD/2020/652212/IPOL_STU(2020)652212_EN.pdf (2020).Galparsoro, I. et al. A new framework and tool for ecological risk assessment of wave energy converters projects. Renew. Sustain. Energy Rev. 151, 111539 (2021).Article 

    Google Scholar 
    Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L. & Lehikoinen, A. Bayesian Networks in Environmental Risk Assessment: A Review. Integr. Environ. Assess. Manag. 17, 62–78 (2020).Article 

    Google Scholar 
    González, D. A., Gleeson, J. & McCarthy, E. Designing and developing a web tool to support Strategic Environmental Assessment. Environ. Modell. Softw. 111, 472–482 (2019).Article 

    Google Scholar 
    Pınarbaşı, K. et al. Decision support tools in marine spatial planning: Present applications, gaps and future perspectives. Marine Policy 83, 83–91 (2017).Article 

    Google Scholar 
    Pınarbaşı, K., Galparsoro, I. & Borja, Á. End users’ perspective on decision support tools in marine spatial planning. Marine Policy 108, 103658 (2019).Article 

    Google Scholar  More

  • in

    A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia

    Lee, J.-W. & McKibbin, W. J. Globalization and disease: the case of SARS. Asian Economic Pap. 3, 113–131 (2004).Article 

    Google Scholar 
    Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peiris, J. S. M., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nat. Med. 10, S88–S97 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raj, V. S., Osterhaus, A. D. M. E., Fouchier, R. A. M. & Haagmans, B. L. MERS: emergence of a novel human coronavirus. Curr. Opin. Virol. 5, 58–62 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhou, L. et al. The re-emerging of SADS-CoV infection in pig herds in Southern China. Transbound. Emerg. Dis. 66, 2180–2183 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daszak, P., Keusch, G. T., Phelan, A. L., Johnson, C. K. & Osterholm, M. T. Infectious disease threats: a rebound to resilience. Health Aff. 40, 204–211 (2021).Article 

    Google Scholar 
    Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8, e00373-17 (2017).Li, W. D. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wang, L. F. & Eaton, B. T. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission (eds J. E. Childs, J. S. Mackenzie, & J. A. Richt) 325–344 (Springer Berlin Heidelberg, 2007).Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. MERS-CoV spillover at the camel-human interface. eLife 7, e31257 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Li, H. et al. Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosaf. Health 1, 84–90 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, N. et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sin. 33, 104–107 (2018).Article 

    Google Scholar 
    Wasik, B. R. et al. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 374, 20190017 (2019).CAS 
    Article 

    Google Scholar 
    Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Gray, G. C., Robie, E. R., Studstill, C. J. & Nunn, C. L. Mitigating future respiratory virus pandemics: new threats and approaches to consider. Viruses 13, 637 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    McFarlane, R., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9, 24–35 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-1, https://www.iucnredlist.org (2021).Ruiz-Aravena, M. et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 20, 299–314 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coker, R. J., Hunter, B. M., Rudge, J. W., Liverani, M. & Hanvoravongchai, P. Emerging infectious diseases in southeast Asia: regional challenges to control. Lancet 377, 599–609 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horby, P. W., Pfeiffer, D. & Oshitani, H. Prospects for emerging infections in East and Southeast Asia 10 years after severe acute respiratory syndrome. Emerg. Infect. Dis. 19, 853–860 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).CAS 
    Article 

    Google Scholar 
    Delaune, D. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12, 6563 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    World Health Organization. WHO-convened global study of origins of SARS-CoV-2: China Part. (2021).Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 

    Google Scholar 
    Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160129 (2017).Article 

    Google Scholar 
    Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Petrovan, S. O. et al. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol. Rev. 96, 2694–2715 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roche, B. et al. Was the COVID-19 pandemic avoidable? A call for a “solution-oriented” approach in pathogen evolutionary ecology to prevent future outbreaks. Ecol. Lett. 23, 1557–1560 (2020).PubMed 
    Article 

    Google Scholar 
    Naguib, M. M., Ellström, P., Järhult, J. D., Lundkvist, Å. & Olsen, B. Towards pandemic preparedness beyond COVID-19. Lancet Microbe 1, e185–e186 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muylaert, R. L. et al. Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Proc. Roy. Soc. B., 289, 20220397 (2022).Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e2193 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, L.-L. et al. A novel SARS-CoV-2 related coronavirus with complex recombination isolated from bats in Yunnan province, China. Emerg. Microbes Infect. 10, 1683–1690 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pormohammad, A. et al. Comparison of confirmed COVID-19 with SARS and MERS cases – Clinical characteristics, laboratory findings, radiographic signs and outcomes: A systematic review and meta-analysis. Rev. Med. Virol. 30, e2112 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brehm, T. T. et al. Comparison of clinical characteristics and disease outcome of COVID-19 and seasonal influenza. Sci. Rep. 11, 5803 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wolfe, N. D. et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc. Natl Acad. Sci. USA 102, 7994–7999 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Nikolay, B. et al. Transmission of Nipah virus—14 Years of investigations in Bangladesh. N. Engl. J. Med. 380, 1804–1814 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, A. W. et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open 10, e039856 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wolfe, N. D. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937 (2004).PubMed 
    Article 

    Google Scholar 
    Mildenstein, T., Tanshi, I. & Racey, P. A. Exploitation of bats for bushmeat and medicine. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 12, 325–375 (Springer International Publishing, 2016).Low, M.-R. et al. Bane or blessing? Reviewing cultural values of bats across the Asia-Pacific region. J. Ethnobiol. 41, 18–34 (2021).Article 

    Google Scholar 
    Kingston, T. Cute, creepy, or crispy—How values, attitudes, and norms shape human behavior toward bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 571–595 (Springer International Publishing, 2016).Li, H. et al. Knowledge, attitude, and practice regarding zoonotic risk in wildlife trade, Southern China. EcoHealth 18, 95–106 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, K. & Threlfall, C. G. Urbanisation and its effects on bats—A global meta-analysis. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 2, 13–33 (Springer International Publishing, 2016).Latinne, A. et al. Characterizing and quantifying the wildlife trade network in Sulawesi, Indonesia. Glob. Ecol. Conserv. 21, e00887 (2020).Article 

    Google Scholar 
    Huong, N. Q. et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLOS ONE 15, e0237129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Virachith, S. et al. Low seroprevalence of COVID-19 in Lao PDR, late 2020. Lancet Regional Health – West. Pac. 13, 100197 (2021).Article 

    Google Scholar 
    Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swadling, L. et al. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 601, 110–117 (2022).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Liu, K. et al. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 184, 3438–3451.e3410 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Philavong, C. et al. Perception of health risks in Lao market vendors. Zoonoses Public Health 67, 796–804 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, C. J. et al. The future of zoonotic risk prediction. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200358 (2021).CAS 
    Article 

    Google Scholar 
    Bell, D., Roberton, S. & Hunter, P. R. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 359, 1107–1114 (2004).Article 

    Google Scholar 
    He, J. F. et al. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    Tu, C. et al. Antibodies to SARS-Coronavirus in Civets. Emerg. Infect. Dis. 10, 2244–2248 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Freuling, C. et al. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg. Infect. Dis. 26, 2982–2985 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    OIE-World Organisation for Animal Health. Infection with SARS-CoV-2 in animals. https://www.oie.int/app/uploads/2021/11/en-factsheet-sars-cov-2-20211025.pdf (2021).Oreshkova, N. et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 25, 2001005 (2020).PubMed Central 
    Article 

    Google Scholar 
    Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Daszak, P. et al. Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services. (Bonn, Germany, 2020).Chinese Academy of Engineering. Report on sustainable development strategy of China’s wildlife farming industry. (2017).Becker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. The Lancet Microbe, https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).Wacharapluesadee, S. et al. Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand. Virol. J. 15, 38 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, Y. et al. Longitudinal surveillance of Betacoronaviruses in fruit bats in Yunnan Province, China during 2009–2016. Virologica Sin. 33, 87–95 (2018).CAS 
    Article 

    Google Scholar 
    Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Epstein, J. H. et al. Nipah virus dynamics in bats and implications for spillover to humans. Proc. Natl Acad. Sci. USA 117, 29190 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, C. W. et al. Preserve a voucher specimen! The critical need for integrating natural history collections in infectious disease studies. mBio 12, e02698–02620 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phelps, K. L. et al. Bat research networks and viral surveillance: gaps and opportunities in Western Asia. Viruses 11, 240 (2019).PubMed Central 
    Article 

    Google Scholar 
    Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Robertson, K. et al. Rabies-related knowledge and practices among persons at risk of bat exposures in Thailand. Plos Negl. Trop. Dis. 5, e1054 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wacharapluesadee, S. et al. Group C Betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1352 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suwannarong, K. et al. Risk factors for bat contact and consumption behaviors in Thailand; a quantitative study. BMC Public Health 20, 841 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valitutto, M. T. et al. Detection of novel coronaviruses in bats in Myanmar. PLoS ONE 15, e0230802 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phelps, K., Jose, R., Labonite, M. & Kingston, T. Assemblage and species threshold responses to environmental and disturbance gradients shape bat diversity in disturbed cave landscapes. Diversity 10, 55 (2018).Article 

    Google Scholar 
    Quibod, M. N. R. M. et al. Diversity and threats to cave-dwelling bats in a small island in the southern Philippines. J. Asia-Pac. Biodivers. 12, 481–487 (2019).Article 

    Google Scholar 
    Furey, N. M. & Racey, P. A. Conservation ecology of cave bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds C. C. Voigt & T. Kingston) 463–500 (Springer International Publishing, 2016).Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types (Version 001), https://doi.org/10.5281/zenodo.3666246 (2020).Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat: dilution or amplification. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160173 (2017).Article 

    Google Scholar 
    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).Article 

    Google Scholar 
    Hassell, J. M. et al. Towards an ecosystem model of infectious disease. Nat. Ecol. Evol. 5, 907–918 (2021).PubMed 
    Article 

    Google Scholar 
    Winter, D. J. rentrez: An R package for the NCBI eUtils API. R. J. 9, 520–526 (2017).Article 

    Google Scholar 
    South, A. rworldmap: A New R package for Mapping Global Data. R. J. 3, 35–43 (2011).Article 

    Google Scholar 
    Olival, K. J. et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLOS Pathog. 16, e1008758 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evolution 3, vex012 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murakami, S. et al. Detection and characterization of Bat Sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg. Infect. Dis. 26, 3025–3029 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, L. et al. Multilocus phylogeny and species delimitation within the philippinensis group (Chiroptera: Rhinolophidae). Zoologica Scr. 47, 655–672 (2018).Article 

    Google Scholar 
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats. (Lynx Edicions, 2019).Srinivasulu, B. & Srinivasulu, C. In plain sight: Bacular and noseleaf morphology supports distinct specific status of Roundleaf Bats Hipposideros pomona Andersen, 1918 and Hipposideros gentilis Andersen, 1918 (Chiroptera: Hipposideridae). J. Threatened Taxa 10, 12018–12026 (2018).Article 

    Google Scholar 
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2633–2641 (2011).Article 

    Google Scholar 
    IUCN. Habitats Classification Scheme (Version 3.1), https://www.iucnredlist.org/resources/habitat-classification-scheme (2021).Williams, P. & Fong, Y. T. World Map of Carbonate Rock Outcrops v3.0 (ed The University of Auckland) (2010).Ross, N. fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3 (2020).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4-5. (2020).Chamberlain, S. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5, https://doi.org/10.7287/peerj.preprints.3304v1 (2017).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0 (2022).GBIF.org. GBIF Occurrence Download, https://doi.org/10.15468/dl.8w26d8 (2021).Feng, X. et al. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019).PubMed 
    Article 

    Google Scholar 
    Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).Article 

    Google Scholar 
    WorldPop. Unconstrained global mosaic 2020 (1km resolution), https://doi.org/10.5258/SOTON/WP00647 (2018).Greenberg, J. A. & Mattiuzzi, M. gdalUtils: Wrappers for the Geospatial Data Abstraction Library (GDAL) Utilities. R package version 2.0.3.2. (2020).Carnell, R. lhs: Latin Hypercube Samples. R package version 1.1.1. (2020).Signorell, A. et al. DescTools: Tools for Descriptive Statistics v. 0.99.41 (2021).Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R Package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).Article 

    Google Scholar 
    Tan, C. W. et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 38, 1073–1078 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tang, F. et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186, 7264 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Computers Simul. 55, 271–280 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. sensitivity: Global Sensitivity Analysis of Model Outputs. R package version 1.25.0. (2021).Monod, H., Naud, C. & Makowski, D. Uncertainty and sensitivity analysis for crop models. In Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications (eds Wallach, D., Makowski, D. & Jones, J.) (Elsevier Science, 2006).Janon, A., Klein, T., Lagnoux, A., Nodet, M. & Prieur, C. Asymptotic normality and efficiency of two Sobol index estimators. ESAIM: Probab. Stat. 18, 342–364 (2014).MathSciNet 
    MATH 
    Article 

    Google Scholar  More