More stories

  • in

    Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas

    Roberson, L. A., Watson, R. A. & Klein, C. J. Over 90 endangered fish and invertebrates are caught in industrial fisheries. Nat. Commun. 11, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dent, F. & Clarke, S. State of the global market for shark products. FAO Fish. Aquac. Tech. Pap. No. 590. 187 (2015).FAO. 2008. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome (2008).Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: improved management or over fishing? Fish Fish 17, 438–458 (2016).Article 

    Google Scholar 
    Clarke, S. C. et al. Global estimates of shark catches using trade records from commercial markets. Ecol. Lett. 9, 1115–1126 (2006).PubMed 
    Article 

    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’ s sharks and rays. Elife 3, 1–35 (2014).Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture. Sustainability in action. Rome https://doi.org/10.4060/ca9229en (2020).Smith, H. et al. Ecology and the science of small-scale fisheries: A synthetic review of research effort for the Anthropocene. Biol. Conserv. 254, 108895 (2021).Article 

    Google Scholar 
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).Article 

    Google Scholar 
    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Leurs, G. et al. Industrial fishing near West African marine protected areas and its potential effects on mobile marine predators. Fron. Mar. Sci. 8, 1–13 (2021).ADS 

    Google Scholar 
    White, W. T. et al. Shark longline fishery of Papua New Guinea: Size and species composition and spatial variation of the catches. Mar. Freshw. Res. 71, 662–669 (2020).Article 

    Google Scholar 
    Jacquet, J. & Pauly, D. Funding priorities: Big barriers to small-scale fisheries. Conserv. Biol. 22, 832–835 (2008).PubMed 
    Article 

    Google Scholar 
    Moore, J. E. et al. An interview-based approach to assess marine mammal and sea turtle captures in artisanal fisheries. Biol. Conserv. 143, 795–805 (2010).Article 

    Google Scholar 
    Soykan, C. U. et al. Why study bycatch? An introduction to the Theme Section on fisheries bycatch. Endanger. Species Res. 5, 91–102 (2008).Article 

    Google Scholar 
    Haque, A. B. et al. Socio-ecological approach on the fishing and trade of rhino rays (Elasmobranchii: Rhinopristiformes) for their biological conservation in the Bay of Bengal, Bangladesh. Ocean Coast. Manag. 210, 105690 (2021).Article 

    Google Scholar 
    Barausse, A. et al. The role of fisheries and the environment in driving the decline of elasmobranchs in the nor-thern Adriatic Sea. ICES J. Mar. Sci. 71, 1593–1603 (2014).Article 

    Google Scholar 
    Pérez-Jiménez, J. C. & Mendez-Loeza, I. The small-scale shark fisheries in the southern Gulf of Mexico: Understanding their heterogeneity to improve their management. Fish. Res. 172, 96–104 (2015).Article 

    Google Scholar 
    Saidi, B., Enajjar, S. & Bradai, M. N. Elasmobranch captures in shrimps trammel net fishery off the Gulf of Gabès (Southern Tunisia, Mediterranean Sea). J. Appl. Ichthyol. 32, 421–426 (2016).Article 

    Google Scholar 
    Vögler, R., González, C. & Segura, A. M. Spatio-temporal dynamics of the fish community associated with artisanal fisheries activities within a key marine protected area of the Southwest Atlantic (Uruguay). Ocean Coast. Manag. 190, 105175 (2020).Dulvy, N. K. et al. Challenges and priorities in Shark and Ray conservation. Curr. Biol. 27, R565–R572 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Nat. Ecol. Evol. 1, 1–6 (2017).Article 

    Google Scholar 
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis. Sci. Rep. 7, 1–12 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, 6560 (2021).Article 
    CAS 

    Google Scholar 
    Di Franco, A. et al. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Sci. Rep. 6, 38135 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ban, N. C., Kushneryk, K., Falk, J., Vachon, A. & Sleigh, L. Improving compliance of recreational fishers with Rockfish Conservation Areas: community–academic partnership to achieve and evaluate conservation. ICES J. Mar. Sci. 77, 2308–2318 (2019).Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. Fish Fish. 15, 1–10 (2020).Belharet, M. et al. Extending full protection inside existing marine protected areas, or reducing fishing effort outside, can reconcile conservation and fisheries goals. J. Appl. Ecol. 57, 1948–1957 (2020).Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 247–254 (2015).CAS 
    Article 

    Google Scholar 
    Di Franco, A. et al. Linking home ranges to protected area size: The case study of the Mediterranean Sea. Biol. Conserv. 221, 175–181 (2018).MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish 20, 255–267 (2019).Article 

    Google Scholar 
    Ward-Paige, C. A., Keith, D. M., Worm, B. & Lotze, H. K. Recovery potential and conservation options for elasmobranchs. J. Fish. Biol. 80, 1844–1869 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. MEPS 384, 33–46 (2009).ADS 
    Article 

    Google Scholar 
    O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Collins, C. et al. Understanding persistent non-compliance in a remote, large-scale marine protected area. Front. Mar. Sci. 8, 1–13 (2021).ADS 
    Article 

    Google Scholar 
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).Article 

    Google Scholar 
    Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).Article 

    Google Scholar 
    Escalle, L. et al. Restricted movements and mangrove dependency of the nervous shark Carcharhinus cautus in nearshore coastal waters. J. Fish. Biol. 87, 323–341 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).Article 

    Google Scholar 
    Guidetti, P., Danovaro, R., Bottaro, M. & Ciccolella, A. Marine protected areas and endangered shark conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 2671–2672 (2021).Article 

    Google Scholar 
    Lubchenco, J. & Grorud-Colvert, K. Making waves: The science and politics of ocean protection. Science 350, 382–383 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zupan, M. et al. Marine partially protected areas: drivers of ecological effectiveness. Front. Ecol. Environ. 16, 381–387 (2018).Article 

    Google Scholar 
    Dulvy, N. K., Allen, D. J., Ralph, G. M. & Walls, R. H. L. The Conservation Status of Sharks, Rays, and Chimaeras in the Mediterranean Sea. IUCN, Malaga, Spain. pp. 236 (2016).Morales-Muñiz, A. & Roselló, E. 20,000 years of fishing in the Strait: archaeological fish and shellfish assemblages from southern Iberia. In Human Impacts on Ancient Marine Ecysosytems: a Global Perspective (eds Torben, R. C. & Erlandson, J. M.), pp. 243–278 (University of California Press, Berkeley, 2008).Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cashion, M. S., Bailly, N. & Pauly, D. Official catch data underrepresent shark and ray taxa caught in Mediterranean and Black Sea fisheries. Mar. Pol. 105, 1–9 (2019).Article 

    Google Scholar 
    Ferretti, F., Myers, R. A., Serena, F. & Lotze, H. K. Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol. 22, 952–964 (2008).PubMed 
    Article 

    Google Scholar 
    Colloca, F., Enea, M., Ragonese, S. & Di Lorenzo, M. A century of fishery data documenting the collapse of smooth-hounds (Mustelus spp.) in the Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1145–1155 (2017).Article 

    Google Scholar 
    Colloca, F., Carrozzi, V., Simonetti, A. & Lorenzo, M. D. Using local ecological knowledge of fishers to reconstruct abundance trends of Elasmobranch populations in the Strait of Sicily. Front. Mar. Sci. 7, 1–8 (2020).Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture.Contributing to food security and nutrition for all. Rome. pp 200 (2016).Milazzo, M., Cattano, C., Al Mabruk, S. A. A. & Giovos, I. Mediterranean sharks and rays need action. Science 371, 355–356 (2021).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).ADS 
    Article 

    Google Scholar 
    Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean Sea based on fishers’ perceptions. PLoS One 6, e21818 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Serena, F. et al. Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. Eur. Zool. J. 87, 497–536 (2020).Article 

    Google Scholar 
    Morey, G., Moranta, J., Riera, F., Grau, A. M. & Morales-NIN, B. Elasmobranchs in trammel net fishery associated to marine reserves in the Balearic Islands (NW Mediterranean). Cybium 30, 125–132 (2006).
    Google Scholar 
    Temple, A. J. et al. Marine megafauna interactions with small-scale fisheries in the southwestern Indian Ocean: a review of status and challenges for research and management. Rev. Fish. Biol. Fish. 28, 89–115 (2018).Article 

    Google Scholar 
    Siskey, M. R., Shipley, O. N. & Frisk, M. G. Skating on thin ice: Identifying the need for species- ­ specific data and defined migration ecology of Rajidae spp. Fish Fish 20, 286–302 (2019).Article 

    Google Scholar 
    Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P. & Hueter, R. E. There and back again: a review of residency and return migrations in Sharks, with implications for population structure and management. Ann. Rev. Mar. Sci. 7, 547–570 (2015).PubMed 
    Article 

    Google Scholar 
    Heupel, M. R., Carlson, J. K. & Simpfendorfer, C. A. Shark nursery areas: Concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser. 337, 287–297 (2007).ADS 
    Article 

    Google Scholar 
    Speed, C., Field, I., Meekan, M. & Bradshaw, C. Complexities of coastal shark movements and their implications for management. Mar. Ecol. Prog. Ser. 408, 275–293 (2010).ADS 
    Article 

    Google Scholar 
    Knip, D. M., Heupel, M. R. & Simpfendorfer, C. A. Mortality rates for two shark species occupying a shared coastal environment. Fish. Res. 125–126, 184–189 (2012).Article 

    Google Scholar 
    Espinoza, M., Farrugia, T. J. & Lowe, C. G. Habitat use, movements and site fidelity of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored southern California estuary. J. Exp. Mar. Bio. Ecol. 401, 63–74 (2011).Article 

    Google Scholar 
    Myers, R. A. & Mertz, G. The limits of exploitation: A precautionary approach. Ecol. Appl. 8, 165–169 (1998).Article 

    Google Scholar 
    Ferretti, F., Osio, G., Jenkins, C., Rosenberg, A. A. & Lotze, H. K. Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. Sci. Rep. 3, 1057 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Lorenzo, M. et al. Ontogenetic trophic segregation between two threatened smooth ‑ hound sharks in the Central Mediterranean Sea. Sci. Rep. 10, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Mulas, A. et al. Resource partitioning among sympatric elasmobranchs in the central-western Mediterranean continental shelf. Mar. Biol. 166, 1–16 (2019).Article 

    Google Scholar 
    Silva, P. M., Teixeira, C. M., Pita, C., Cabral, H. N. & França, S. Portuguese artisanal fishers’ knowledge about Elasmobranchs—A case study. Front. Mar. Sci. 8, 1–9 (2021).
    Google Scholar 
    Cortés, E. & Brooks, E. N. Stock status and reference points for sharks using data-limited methods and life history. Fish Fish 19, 1110–1129 (2018).Article 

    Google Scholar 
    Prince, J. D. Gauntlet fisheries for elasmobranchs – The secret of sustainable shark fisheries. J. Northwest Atl. Fish. 37, 407–416 (2005).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The neglected complexities of shark fisheries, and priorities for holistic risk-based management. Ocean Coast. Manag. 182, 104994 (2019).Article 

    Google Scholar 
    Juhel, J. B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. 55, 673–683 (2018).Article 

    Google Scholar 
    Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: Implications of Marine Park zoning. PLoS One 9, e106885 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cattano, C., Turco, G., Di Lorenzo, M., Visconti, G. & Milazzo, M. Sandbar shark aggregation in the central Mediterranean Sea and potential effects of tourism. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1420–1428 (2021).Article 

    Google Scholar 
    O’Connell, C. P., Stroud, E. M. & He, P. The emerging field of electrosensory and semiochemical shark repellents: Mechanisms of detection, overview of past studies, and future directions. Ocean Coast. Manag. 97, 2–11 (2014).Article 

    Google Scholar 
    Barbato, M. et al. The use of fishers’ Local Ecological Knowledge to reconstruct fish behavioural traits and fishers’ perception of conservation relevance of elasmobranchs in the Mediterranean Sea. Mediterr. Mar. Sci. 22, 603–622 (2021).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: A risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish 21, 269–289 (2020).Article 

    Google Scholar 
    Sala, E. et al. Author correction: protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Franco, A. et al. Improving marine protected area governance through collaboration and co-production. J. Environ. Manag. 269, 110757 (2020).Article 

    Google Scholar 
    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with imageJ. Biophotonics Int 11, 36–41 (2004).
    Google Scholar 
    Froese, R., & Pauly, D. FishBase. https://www.fishbase.org (2021).Micheli, F. et al. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munstermann, M. J. et al. A global ecological signal of extinction risk in terrestrial vertebrates. Cons. Biol. 36, 1–13 (2021).
    Google Scholar 
    Martin, T. G., Wintle, A., Rhodes, J. R., Field, A. & Low-choy, S. J. REVIEWS AND Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–1246 (2005).PubMed 
    Article 

    Google Scholar 
    Rigby, R. A., Stasinopoulos, D. M. & Lane, P. W. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C. Appl. Stat. 54, 507–554 (2005).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org (2016).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Akaike, H. A new look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Kariya, T. Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to The Annals of Statistics. Ann. Stat. 19, 1403–1433, www.jstor.org (1991). ®.
    Google Scholar 
    Stasinopoulos, D. M. & Rigby, R. A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23, 1–46 (2007).Article 

    Google Scholar 
    Van Buuren, S. & Fredriks, M. Worm plot: A simple diagnostic device for modelling growth reference curves. Stat. Med. 20, 1259–1277 (2001).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Legendre, P. & Legendre, L. Numerical ecology, 2nd English edn. Elsevier, Amsterdam (1998).Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 
    Article 

    Google Scholar 
    Oksanen, A. J. et al. Vegan: Community Ecology Package. R package Version 2.0-2 (2011). Available at: http://cran.r-project.org/. (2012).Di Lorenzo et al. Dataset1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318878.v1 (2022).Di Lorenzo et al. Dataset2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318881.v3 (2022).Di Lorenzo et al. Dataset3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318884.v1 (2022).Di Lorenzo et al. Dataset4: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318887.v1 (2022).Di Lorenzo et al. Code1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318875.v2 (2022).Di Lorenzo et al. Code2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318890.v1 (2022).Di Lorenzo et al. Code3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318893.v1 (2022). More

  • in

    Stronger responses of soil protistan communities to legacy mercury pollution than bacterial and fungal communities in agricultural systems

    van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    George PB, Lallias D, Creer S, Seaton FM, Kenny JG, Eccles RM, et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat Commun. 2019;10:1–11.Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed 
    Article 

    Google Scholar 
    Xiao E, Ning Z, Xiao T, Sun W, Jiang S. Soil bacterial community functions and distribution after mining disturbance. Soil Biol Biochem. 2021;157:108232.CAS 
    Article 

    Google Scholar 
    Jiao S, Zhang Z, Yang F, Lin Y, Chen W, Wei G. Temporal dynamics of microbial communities in microcosms in response to pollutants. Mol Ecol. 2017;26:923–36.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fajardo C, Costa G, Nande M, Botías P, García-Cantalejo J, Martín M. Pb, Cd, and Zn soil contamination: monitoring functional and structural impacts on the microbiome. Appl Soil Ecol. 2019;135:56–64.Article 

    Google Scholar 
    Krabbenhoft DP, Sunderland EM. Global change and mercury. Science. 2013;341:1457–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio. 2018;47:116–40.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amos HM, Jacob DJ, Streets DG, Sunderland EM. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochem Cycles. 2013;27:410–21.CAS 
    Article 

    Google Scholar 
    Zhang L, Wong MH. Environmental mercury contamination in China: sources and impacts. Environ Int. 2007;33:108–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller AK, Westergaard K, Christensen S, Sørensen SJ. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol. 2001;36:11–9.PubMed 
    Article 

    Google Scholar 
    Liu YR, Wang JJ, Zheng YM, Zhang LM, He JZ. Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol. 2014;68:575–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu YR, Delgado-Baquerizo M, Bi L, Zhu J, He JZ. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome. 2018;6:183.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li D, Li X, Tao Y, Yan Z, Ao Y. Deciphering the bacterial microbiome in response to long-term mercury contaminated soil. Ecotoxicol Environ Saf. 2022;229:113062.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zappelini C, Karimi B, Foulon J, Lacercat-Didier L, Maillard F, Valot B, et al. Diversity and complexity of microbial communities from a chlor-alkali tailings dump. Soil Biol Biochem. 2015;90:101–10.CAS 
    Article 

    Google Scholar 
    Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadražil F. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol. 2000;66:2471–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crane S, Dighton J, Barkay T. Growth responses to and accumulation of mercury by ectomycorrhizal fungi. Fungal Biol. 2010;114:873–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Johansen JL, Rønn R, Ekelund F. Toxicity of cadmium and zinc to small soil protists. Environ Pollut. 2018;242:1510–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wanner M, Birkhofer K, Fischer T, Shimizu M, Shimano S, Puppe D. Soil testate amoebae and diatoms as bioindicators of an old heavy metal contaminated floodplain in Japan. Microb Ecol. 2020;79:123–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou Y, Sun B, Xie B, Feng K, Zhang Z, Zhang Z, et al. Warming reshaped the microbial hierarchical interactions. Glob Chang Biol. 2021;27:6331–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome. 2019;7:33.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang Y, Luan L, Hu K, Liu M, Chen Z, Geisen S, et al. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome. 2020;8:1–14.CAS 
    Article 

    Google Scholar 
    Huang X, Wang J, Dumack K, Liu W, Zhang Q, He Y, et al. Protists modulate fungal community assembly in paddy soils across climatic zones at the continental scale. Soil Biol Biochem. 2021;160:108358.CAS 
    Article 

    Google Scholar 
    Grossmann L, Jensen M, Heider D, Jost S, Glücksman E, Hartikainen H, et al. Protistan community analysis: key findings of a large-scale molecular sampling. ISME J. 2016;10:2269–79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jassey VE, Signarbieux C, Hättenschwiler S, Bragazza L, Buttler A, Delarue F, et al. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Sci Rep. 2015;5:1–10.Article 
    CAS 

    Google Scholar 
    Thakur MP, Geisen S. Trophic regulations of the soil microbiome. Trends Microbiol. 2019;27:771–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Geisen S, Hu S, Dela Cruz TEE, Veen GFC. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME J. 2021;15:618–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feng X, Li P, Qiu G, Wang S, Li G, Shang L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China. Environ Sci Technol. 2008;42:326–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meng M, Li B, Shao JJ, Wang T, He B, Shi JB, et al. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. Environ Pollut. 2014;184:179–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu YR, Dong JX, Zhang QG, Wang JT, Han LL, Zeng J, et al. Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau. Environ Pollut. 2016;218:1342–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38.CAS 
    Article 

    Google Scholar 
    Jones D, Willett V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem. 2006;38:991–9.CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:1–8.Article 
    CAS 

    Google Scholar 
    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finland MotE: Government decree on the assessment of soil contamination and remediation needs (214/2007). In.: Ministry of the Environment Helsinki (FI); 2007.Carlon C. Derivation methods of soil screening values in europe: A review of national procedures towards harmonisation: A report of the ENSURE action. EUR-OP. 2007.Toth G, Hermann T, Da Silva MR, Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int. 2016;88:299–309.CAS 
    PubMed 
    Article 

    Google Scholar 
    De Caceres M, Jansen F. Relationship between species and groups of sites. Package ‘indicspecies’, version 1.7.6. 2016.Frossard A, Donhauser J, Mestrot A, Gygax S, Bååth E, Frey B. Long-and short-term effects of mercury pollution on the soil microbiome. Soil Biol Biochem. 2018;120:191–9.CAS 
    Article 

    Google Scholar 
    Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:1–17.Article 

    Google Scholar 
    Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of random matrix theory to biological networks. Phys Lett A. 2006;357:420–3.CAS 
    Article 

    Google Scholar 
    Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses. BMC Bioinform. 2012;13:1–20.Article 

    Google Scholar 
    Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.Article 

    Google Scholar 
    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media. 2009;3:361–2.Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1–9.
    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, et al. Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R Package Ver. 2015;2:3–1.
    Google Scholar 
    Chen B, Xiong W, Qi J, Pan H, Chen S, Peng Z, et al. Trophic interrelationships drive the biogeography of protistan community in agricultural ecosystems. Soil Biol Biochem. 2021;163:108445.CAS 
    Article 

    Google Scholar 
    Jiao S, Lu Y, Wei G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Chang Biol. 2022;28:140–53.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 

    Google Scholar 
    Revelle WR. psych: Procedures for personality and psychological research. 2017.Archer E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version. 2016;1(2).Wang JT, Zheng YM, Hu HW, Li J, Zhang LM, Chen BD, et al. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems. Sci Rep. 2016;6:1–7.Article 
    CAS 

    Google Scholar 
    Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online. 2003;8:23–74.
    Google Scholar 
    Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, et al. Body size determines soil community assembly in a tropical forest. Mol Ecol. 2019;28:528–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stefan G, Cornelia B, Jörg R, Michael B. Soil water availability strongly alters the community composition of soil protists. Pedobiologia. 2014;57:205–13.Article 

    Google Scholar 
    Luan L, Jiang Y, Cheng M, Dini-Andreote F, Sui Y, Xu Q, et al. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun. 2020;11:6406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qi Q, Hu C, Lin J, Wang X, Tang C, Dai Z, et al. Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks. Environ Pollut. 2022;306:119406.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu W, Lu HP, Sastri A, Yeh YC, Gong GC, Chou WC, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018;12:485–94.PubMed 
    Article 

    Google Scholar 
    Villarino E, Watson JR, Jönsson B, Gasol JM, Salazar G, Acinas SG, et al. Large-scale ocean connectivity and planktonic body size. Nat Commun. 2018;9:1–13.CAS 
    Article 

    Google Scholar 
    Mitsch WJ, Gosselink JG Wetlands. John Wiley & Sons; 2015.Margesin R, Feller G, Gerday C, Russell N. The Encyclopedia of Environmental Microbiology. 2002;2.Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall B, St Louis V, Rolfhus K, Bodaly R, Beaty K, Paterson M, et al. Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in boreal upland forests. Ecosystems. 2005;8:248–66.CAS 
    Article 

    Google Scholar 
    Clarholm M. Protozoan grazing of bacteria in soil-impact and importance. Microb Ecol. 1981;7:343–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Asiloglu R, Shiroishi K, Suzuki K, Turgay OC, Harada N. Soil properties have more significant effects on the community composition of protists than the rhizosphere effect of rice plants in alkaline paddy field soils. Soil Biol Biochem. 2021;161:108397.CAS 
    Article 

    Google Scholar 
    Asiloglu R, Kenya K, Samuel SO, Sevilir B, Murase J, Suzuki K, et al. Top-down effects of protists are greater than bottom-up effects of fertilisers on the formation of bacterial communities in a paddy field soil. Soil Biol Biochem. 2021;156:108186.CAS 
    Article 

    Google Scholar 
    Nguyen BAT, Chen QL, He JZ, Hu HW. Livestock manure spiked with the antibiotic tylosin significantly altered soil protist functional groups. J Hazard Mater. 2021;427:127867.Nguyen BAT, Chen QL, He JZ, Hu HW. Oxytetracycline and ciprofloxacin exposure altered the composition of protistan consumers in an agricultural soil. Environ Sci Technol. 2020;54:9556–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen BAT, Chen QL, Yan ZZ, Li CY, He JZ, Hu HW. Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems. Soil Biol Biochem. 2021;160:108317.CAS 
    Article 

    Google Scholar 
    Wu S, Dong Y, Deng Y, Cui L, Zhuang X. Protistan consumers and phototrophs are more sensitive than bacteria and fungi to pyrene exposure in soil. Sci Total Environ. 2022;822:153539.CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts LD, Douglas A, Perez Calderon LJ, Anderson JA, Witte U, Prosser JI, et al. Chronic environmental perturbation influences microbial community assembly patterns. Environ Sci Technol. 2022;56:2300–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge AH, Liang ZH, Xiao JL, Zhang Y, Zeng Q, Xiong C, et al. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agric Ecosyst Environ. 2021;312:107336.CAS 
    Article 

    Google Scholar 
    Pernthaler J, Sattler B, Simek K, Schwarzenbacher A, Psenner R. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat Microb Ecol. 1996;10:255–63.Article 

    Google Scholar 
    Holtze MS, Ekelund F, Rasmussen LD, Jacobsen CS, Johnsen K. Prey-predator dynamics in communities of culturable soil bacteria and protozoa: differential effects of mercury. Soil Biol Biochem. 2003;35:1175–81.CAS 
    Article 

    Google Scholar 
    Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meisner A, Wepner B, Kostic T, van Overbeek LS, Bunthof CJ, de Souza RSC, et al. Calling for a systems approach in microbiome research and innovation. Curr Opin Biotechnol. 2022;73:171–8.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    IPBES responds to critics of its assessment of wild-species use

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Unexpected high carbon losses in a continental glacier foreland on the Tibetan Plateau

    Arias PA, Bellouin N, Coppola E, Jones RG, Krinner G, Marotzke J, et al. Technical Summary. In Climate Change 2021: The Physical Science Basis, the Working Group I contribution to the Sixth Assessment Report. Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. 42–4.Donhauser J, Frey B. Alpine soil microbial ecology in a changing world. FEMS Microbiol Ecol. 2018;94:1–31.Article 
    CAS 

    Google Scholar 
    Bradley JA, Singarayer JS, Anesio AM. Microbial community dynamics in the forefield of glaciers. Proc R Soc B. 2014; 281.Hood E, Battin TJ, Fellman J, O’neel S, Spencer RGM. Storage and release of organic carbon from glaciers and ice sheets. Nat Geosci. 2015;8:91–96.CAS 
    Article 

    Google Scholar 
    Harden JW, Mark RK, Sundquist ET, Stallard RF. Dynamics of Soil Carbon During Deglaciation of the Laurentide Ice Sheet. Science. 1992;258:1921–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Egli M, Favilli F, Krebs R, Pichler B, Dahms D. Soil organic carbon and nitrogen accumulation rates in cold and alpine environments over 1 Ma. Geoderma. 2012;183-4:109–23.Article 
    CAS 

    Google Scholar 
    Khedim N, Cécillon L, Poulenard J, Barré P, Baudin F, Marta S, et al. Topsoil organic matter build-up in glacier forelands around the world. Glob Chang. Biol. 2021;27:1662–77.
    Google Scholar 
    Amico MED, Freppaz M, Filippa G, Zanini E. Vegetation in fluence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena. 2014;113:122–37.Article 
    CAS 

    Google Scholar 
    Mateos-Rivera A, Yde JC, Wilson B, Finster KW, Reigstad LJ, Øvreås L The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway). FEMS Microbiol Ecol. 2016; 92. https://doi.org/10.1093/femsec/fiw038.Vilmundardóttir OK, Gísladóttir G, Lal R. Soil carbon accretion along an age chronosequence formed by the retreat of the Skaftafellsjökull glacier. SE-Iceland. Geomorphology. 2015;228:124–33.Article 

    Google Scholar 
    Strauss SL, Ruhland CT, Day TA. Trends in soil characteristics along a recently deglaciated foreland on Anvers Island, Antarctic Peninsula. Polar Biol. 2009;32:1779–88.Article 

    Google Scholar 
    Kabala C, Zapart J. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma. 2012;175-6:9–20.Article 
    CAS 

    Google Scholar 
    Fernández-martínez MA, Pointing SB, Pérez-ortega S, Arróniz-crespo M, Green TGA, Rozzi R, et al. Functional ecology of soil microbial communities along a glacier forefield in Tierra del Fuego (Chile). Int Microbiol. 2016;19:161–73.PubMed 

    Google Scholar 
    Kazemi S, Hatam I, Lanoil B. Bacterial community succession in a high-altitude subarctic glacier foreland is a three-stage process. Mol Ecol. 2016;25:5557–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    He L, Tang Y. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena. 2008;72:259–69.Article 

    Google Scholar 
    Zhou J, Bing HJ, Wu YH, Yang ZJ, Wang JP, Sun HY, et al. Rapid weathering processes of a 120-year-old chronosequence in the Hailuogou Glacier foreland, Mt. Gongga, SW China Jun. Geoderma. 2016;267:78–91.CAS 
    Article 

    Google Scholar 
    Zeng J, Lou K, Zhang CJ, Wang JT, Hu HW, Shen JP, et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China. Front Microbiol. 2016; 7. https://doi.org/10.3389/fmicb.2016.01353.Wei TF, Shangguan DH, Yi SH, Ding YJ. Characteristics and controls of vegetation and diversity changes monitored with an unmanned aerial vehicle (UAV) in the foreland of the Urumqi Glacier No. 1, Tianshan, China. Sci Total Environ. 2021;771:145433.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang MH, Shi YF. Progress in the study on basic features of glaciers in China in the last thirty years. J Glaciol Geocryol. 1988;10:228–37.
    Google Scholar 
    Xu XK, Pan BL, Hu E, Li YJ, Liang YH. Responses of two branches of Glacier No. 1 to climate change from 1993 to 2005, Tianshan, China. Quat Int. 2011;236:143–50.Article 

    Google Scholar 
    Liu YS, Qin X, Chen JZ, Li ZL, Wang J, Du WT, et al. Variations of Laohugou Glacier No. 12 in the western Qilian Mountains, China, from 1957 to 2015. J Mt Sci. 2018;15:25–32.Article 

    Google Scholar 
    Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences. 2013;10:3983–96.Article 

    Google Scholar 
    Odum EP. The strategy of ecosystem development. Science. 1969;164:262–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, et al. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B. 2008;275:2793–802.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, et al. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem. 2012;46:172–80.CAS 
    Article 

    Google Scholar 
    Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J. 2016;10:1625–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen H, Wang F, Kong WD, Jia HZ, Zhou TQ, Xu R, et al. Soil microbial CO2 fixation plays a significant role in terrestrial carbon sink in a dryland ecosystem: A four-year small-scale field-plot observation on the Tibetan Plateau. Sci Total Environ. 2021; 761. https://doi.org/10.1016/j.scitotenv.2020.143282.Bond-lamberty B, Wang CK, Gower ST. A global relationship between the heterotrophic and autotrophic components of soil respiration? Gloal Chang. Biol. 2004;10:1756–66.
    Google Scholar 
    Barnett SE, Youngblut ND, Koechli CN, Buckley DH. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. Proc Natl Acad Sci USA. 2021; 118. https://doi.org/10.1073/pnas.2115292118/-/DCSupplemental.Published.Margesin R, Jud M, Tscherko D, Schinner F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol. 2009;67:208–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou ZH, Wang CK, Luo YQ. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun. 2020;11:3072.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guelland K, Hagedorn F, Smittenberg RH, Göransson H, Bernasconi SM, Hajdas I, et al. Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland. Biogeochemistry. 2013;113:545–61.CAS 
    Article 

    Google Scholar 
    Chen QL, Ding J, Li CY, Yan ZZ, He JZ, Hu HW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ. 2020;734:139479.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng BX, Zhu YG, Sardans J, Peñuelas J, Su JQ. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China (Life Sciences). 2018;61:1451–62.CAS 
    Article 

    Google Scholar 
    Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Zhu YG, Chu HY. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 2021;15:550–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XH, et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Chang. 2012;2:106–10.CAS 
    Article 

    Google Scholar 
    Chen JZ, Qin X, Kang SC, Du WT, Sun WJ, Liu YS. Potential effect of black carbon on glacier mass balance during the past 55 years of Laohugou Glacier No. 12, western Qilian Mountains. J Earth Sci. 2020;31:410–8.CAS 
    Article 

    Google Scholar 
    Zhang LN, Jiang Y, Zhao SD, Jiao L, Wen Y. Relationships between tree age and climate sensitivity of radial growth in different drought conditions of Qilian Mountains, northwestern China. Forests. 2018; 9. https://doi.org/10.3390/f9030135.Sun WJ, Qin X, Ren JW, Yang XG, Zhang T, Liu YS, et al. The surface energy budget in the accumulation zone of the laohugou glacier No. 12 in the western Qilian mountains, China, in summer 2009. Arctic, Antarct Alp Res. 2012;44:296–305.Article 

    Google Scholar 
    Wang YW, Ma AZ, Liu GH, Ma JP, Wei J, Zhou HC, et al. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. Glob Chang Biol. 2020;26:697–708.PubMed 
    Article 

    Google Scholar 
    Harris D, Horwa WR, Van Kessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J.2001;65:1853–6.CAS 
    Article 

    Google Scholar 
    Zhou HC, Ma AZ, Liu GH, Zhou XR, Yin J, Liang Y, et al. Reduced interactivity during microbial community degradation leads to the extinction of Tricholomas matsutake. L Degrad Dev. 2021;32:5118–28.Article 

    Google Scholar 
    Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol. 2016;92:fiw018.PubMed 
    Article 
    CAS 

    Google Scholar 
    Feng K, Zhang ZJ, Cai WW, Liu WZ, Xu MY, Yin HQ, et al. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol Ecol. 2017;26:6170–82.PubMed 
    Article 

    Google Scholar 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway CH, Douglas TA, et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 2017;11:2305–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang YW, Ma AZ, Zhong GS, Xie F, Zhou HC, Liu GH, et al. Effect of Simulated Warming on Microbial Community in Glacier Forefield. Environ Sci. 2020;41:2918–23.
    Google Scholar 
    Lei YB, Zhou J, Xiao HF, Duan BL, Wu YH, Korpelainen H, et al. Soil nematode assemblages as bioindicators of primary succession along a 120-year-old chronosequence on the Hailuogou Glacier forefield, SW China. Soil Biol Biochem. 2015;88:362–71.CAS 
    Article 

    Google Scholar 
    Sigler WV, Crivii S, Zeyer J. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol. 2002;44:306–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu WM, Schmidt SK, Sommers P, Darcy JL, Porazinska DL. Multiple-trophic patterns of primary succession following retreat of a high-elevation glacier. Ecosphere. 2021; 12. https://doi.org/10.1002/ecs2.3400.Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, et al. Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol. 2007;53:110–22.PubMed 
    Article 

    Google Scholar 
    Whelan P, Bach AJ. Retreating glaciers, incipient soils, emerging forests: 100 years of landscape change on Mount Baker, Washington, USA. Ann Am Assoc Geogr. 2017;107:336–49.
    Google Scholar 
    Cleveland CC, Liptzin ÆD. C:N:P stoichiometry in soil: is there a ‘Redfield ratio’ for the microbial biomass? Biogeochemistry. 2007;85:235–52.Article 

    Google Scholar 
    Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 2012;196:79–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian J, Zong N, Hartley IP, He NP, Zhang JJ, Powlson D, et al. Microbial metabolic response to winter warming stabilizes soil carbon. Gloal Chang Biol. 2021;27:2011–28.CAS 
    Article 

    Google Scholar 
    Zhu XF, Liang C, Masters MD, Kantola IB, DeLucia EH. The impacts of four potential bioenergy crops on soil carbon dynamics as shown by biomarker analyses and DRIFT spectroscopy. Glob Chang Biol Bioenergy. 2018;10:489–500.CAS 
    Article 

    Google Scholar 
    Evans MCW, Buchanan BB, Arnon DI. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Biochemistry. 1966;55:928–34.CAS 

    Google Scholar 
    Menendez C, Bauer Z, Huber H, Gad’on N, Stetter K, Fuchs G. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol. 1999;181:1088–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li Y, Cha QQ, Dang YR, Chen XL, Wang M, Mcminn A, et al. Reconstruction of the functional ecosystem in the high light, low temperature union glacier region, Antarctica. Front Microbiol. 2019;10:1–14.Article 

    Google Scholar 
    Lazzaro A, Hilfiker D, Zeyer J. Structures of microbial communities in alpine soils: Seasonal and elevational effects. Front Microbiol. 2015; 6. https://doi.org/10.3389/fmicb.2015.01330.Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, et al. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol. 2013;79:3724–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bardgett RD, Freeman C, Ostle NJ. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2008;2:805–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H. Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol. 1996;80:471–8.PubMed 
    Article 

    Google Scholar 
    Lange M, Roth V-N, Nico E, Roscher C, Thorsten D, Fischer-bedtke C, et al. Plant diversity enhances production and downward transport of biodegradable dissolved organic matter. J Ecol. 2021;109:1284–97.CAS 
    Article 

    Google Scholar 
    Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:1–14.CAS 

    Google Scholar 
    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed 
    Article 

    Google Scholar 
    Jansson JK, Hofmockel KS. Soil microbiomes and climate change. Nat Rev Microbiol. 2020;18:35–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yan BS, Sun LP, Li JJ, Liang CQ, Wei FR, Xue S, et al. Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotungensis forests of the Loess Plateau, western China. Geoderma. 2020;364:114199.CAS 
    Article 

    Google Scholar 
    Wu MH, Chen SY, Chen JW, Xue K, Chen SL, Wang XM, et al. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc Natl Acad Sci USA. 2021;118:1–9.
    Google Scholar  More

  • in

    Phylogeographic and phenotypic divergence between two subspecies of Testudo graeca (T. g. buxtoni and T. g. zarudnyi) across their contact zone in Iran

    Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 

    Google Scholar 
    Vamberger, M. et al. Differences in gene flow in a twofold secondary contact zone of pond turtles in southern Italy (Testudines: Emydidae: Emys orbicularis galloitalica, E. o. hellenica, E. trinacris). Zool. Scr. 44, 233–249 (2015).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: Old complex divergence in North Africa and recent arrival in Europe. Amphib. Reptil. 30, 63–80 (2009).Article 

    Google Scholar 
    Fritz, U. et al. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex;Testudines, Testudinidae). Amphib. Reptil. 28, 97–121 (2007).Article 

    Google Scholar 
    Mikulíček, P., Jandzik, D., Fritz, U., Schneider, C. & Široký, P. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108, 151–160 (2013).Article 

    Google Scholar 
    Parham, J. F. et al. Genetic evidence for premature taxonomic inflation in Middle Eastern tortoises. Proc. Calif. Acad. Sci. 57, 955–964 (2006).
    Google Scholar 
    Javanbakht, H. et al. Genetic diversity and Quaternary range dynamics in Iranian and Transcaucasian tortoises. Biol. J. Linn. Soc. 121, 627–640 (2017).Article 

    Google Scholar 
    Mashkaryan, V. et al. Gene flow among deeply divergent mtDNA lineages of Testudo graeca (Linnaeus, 1758) in Transcaucasia. Amphib. Reptilia. 34, 337–351 (2013).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Lavin, B. R., Bardakcı, F. & Parham, J. F. Morphological and mitochondrial variation of spur-thighed tortoises, Testudo graeca, Turkey. Herpetol. J. 28, 1–9 (2017).
    Google Scholar 
    Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines:Testudinidae). Biol. J. Linn. Soc. 121(3), 641–654 (2017).Article 

    Google Scholar 
    Harris, D. J., Znari, M., Macé, J. C. & Carretero, M. A. Genetic variation in Testudo graeca from Morocco estimated using 12S rRNA sequencing. Rev. Esp. Herpetol. 17, 5–9 (2003).
    Google Scholar 
    Van Der Kuyl, A. C., Ballasina, D. L. P. & Zorgdrager, F. Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East. BMC Evol. Biol. 5, 29 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Highfield, A. C. Tortoises of north Africa; taxonomy, nomenclature, phylogeny and evolution with notes on field studies in Tunisia. J. Chelonian. Herpetol. 1, 1–56 (1990).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität der Maurischen Landschildkröten (Testudo graeca Linnaeus, 1758–Komplex) im zentralen und nordwestlichen Marokko mit Beschreibung zweier neuer Taxa. Herpetozoa 17, 19–47 (2004).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität von Testudo graeca Linnaeus, 1758 im östlichen Nordafrika mit Beschreibung eines neuen Taxons von der Cyrenaika (Nordostlibyen). Herpetozoa 15, 3–28 (2002).
    Google Scholar 
    Pieh, A. Testudo graeca soussensis, eine neue Unterart der Maurischen Landschildkröte aus dem Sousstal (Nordwest Marokko). Salamandra 36, 209–222 (2000).
    Google Scholar 
    Arakelyan, M., Türkozan, O., Hezaveh, N. & Parham, J. F. Ecomorphology of tortoises (Testudo graeca complex) from the Araks river valley. Russ. J. Herpetol. 25, 245–252 (2018).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Parham, J. F., Olgun, K. & Taskavak, E. A quantitative reassessment of morphology based taxonomic schemes for Turkish tortoises. Amphib. Reptil. 31, 69–83 (2010).Article 

    Google Scholar 
    Van Dijk, P. P., Corti, C., Mellado, V. P. & Cheylan, M. Testudo graeca. The IUCN Red List of Threatened Species. Retrieved from https://www.iucnredlist.org/species. Version 12/2004 (2004).Bohm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Pringle, R. M., Webb, J. K. & Shine, R. Canopy structure, microclimate, and habitat selection by a nocturnal snake (Hoplocephalus bungaroides). Ecology 84, 2668–2679 (2003).Article 

    Google Scholar 
    Rastegar-Pouyani, N. et al. Sustainable management of the Herpetofauna of the Iranian Plateau and coastal Iran. Amphib. Reptil. Conserv. 9, 1–15 (2015).
    Google Scholar 
    Rouag, R., Ziane, N. & Benyacoub, S. Home range of the spur-thighed tortoise, Testudo graeca (Testudines, Testudinidae), in the national park of El-Kala, Algeria. Vestn. Zool. 51, 45–52 (2017).Article 

    Google Scholar 
    Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, 721–735 (2020).Article 
    CAS 

    Google Scholar 
    Frankham, R., Ballou, J., Briscoe, D., & McInnes, K. Frontmatter. In A Primer of Conservation Genetics I–Iv (Cambridge University Press, 2004).Rhodin, A. G. J., Iverson, J. B., Bour, R., Fritz, U., Georges, A., Shaffer, H. B. & van Dijk, P.P. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (9th Ed.) (2021).Heshmati, G. A. Vegetation characteristics of four ecological zones of Iran. Int. J. Plant Prod. 2, 215–224 (2007).
    Google Scholar 
    Graciá, E. et al. Human-mediated secondary contact of two tortoise lineages results in sex-biased introgression. Sci. Rep. 7, 4019 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vamberger, M., Corti, C., Stuckas, H. & Fritz, U. Is the imperilled Spur-thighed tortoise (Testudo graeca) native in Sardinia? Implications from population genetics and for conservation. Amphib. Reptil. 32, 9–25 (2011).Article 

    Google Scholar 
    Allen, M., Jackson, J. & Walker, R. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and longterm deformation rates. Tectonics 23, TC2008. https://doi.org/10.1029/2003TC001530 (2004).ADS 
    Article 

    Google Scholar 
    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: Ten years of progress following the revolution. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    Golubovi, A., Tomovi, L. & Ivanovi, A. Geometry of self righting: the case of Hermann’s tortoises. Zool. Anz. 254, 99–105 (2015).Article 

    Google Scholar 
    Arakelyan, M., Parham J. F., Türkozan, O., & Danielyan, F. Sympatrisches Vorkommen Zweier For men von Testudo graeca. In Armenien und der Republik Nagorno-Karabakh Marginata 26–30 (2008).Guyot, G. & Devaux, B. Variation in shell morphology and color of Hermann’s tortoise, Testudo hermanni, in southern Europe. Chelonian Res. Found. 2, 390–395 (1997).
    Google Scholar 
    Macale, D., Venchi, A. & Scalici, M. Shell shape and size variation in the Egyptian tortoise Testudo kleinmanni (Testudinidae, Testudines). Folia Zool. 60, 167–175 (2011).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography and subspecies of the wide-ranging sub-Saharan leopard tortoise Stigmochelys pardalis (Testudines: Testudinidae)—A case study for the pitfalls of pseudogenes and GenBank sequences. J. Zool. Syst. Evol. 48, 348–359 (2010).Article 

    Google Scholar 
    Fritz, U. et al. Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. Zool. Scr. 41, 220–232 (2012).Article 

    Google Scholar 
    Fritz, U., Široký, P., Kami, H. & Wink, M. Environmentally caused dwarfism or a valid species—Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Mol. Phylogenet. Evol. 37, 389–401 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carretero, M. A., Znari, M., Harris, D. J. & Macé, J. C. Morphological divergence among populations of Testudo graeca from west-central Morocco. Anim. Biol. 55, 259–279 (2005).Article 

    Google Scholar 
    Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372 (2001).Article 

    Google Scholar 
    Ljubisavljević, K., Džukić, G., Vukov, T. D. & Kalezić, M. L. Morphological variability of the Hermann’s tortoise (Testudo hermanni) in the Central Balkans. Acta Herpetol. 7, 253–262 (2012).
    Google Scholar 
    Casacci, L. P., Barbero, F. & Balletto, E. The evolutionarily significant unit concept and its applicability in biological conservation. Ital. J. Zool. 81, 182–193 (2014).Article 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Bio. 18, e3000411 (2020).CAS 
    Article 

    Google Scholar 
    Dutton, P. & Balazs, G. H. Simple biopsy technique for sampling skin for DNA analysis of sea turtles. M.T.N. 69, 9–10 (1995).
    Google Scholar 
    Filippi, E., Rugiero, L., Capula, M., Burke, R. L. & Luiselli, L. Population and thermal ecology of Testudo hermanni hermanni in the Tolfa Mountains of Central Italy. Chelonian Conserv. Biol. 9, 54–60 (2010).Article 

    Google Scholar 
    Fritz, U. et al. A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zool. Scr. 35, 531–543 (2006).Article 

    Google Scholar 
    Spinks, P. Q., Shaffer, H. B., Iverson, J. B. & McCord, W. P. Phylogenetic hypotheses for the turtle family Geoemydidae. Mol. Phylogenet. Evol. 32, 164–182 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia, X. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 108, 431–437 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partition Finder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elliott, N. G., Haskard, K. & Koslow, J. A. Morphometric analysis of orange roughy (Huplustetlius atlanticus) off the continental slope of southern Australia. J. Fish Biol. 46, 202–220 (1995).Article 

    Google Scholar 
    Anadón, J. D. et al. Individualistic response to past climate changes: Niche differentiation promotes diverging Quaternary range dynamics in the subspecies of Testudo graeca. Ecography 38, 956–966 (2015).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    McKenzie, J. D. Minitab Student Release 14: Statistical Software for Education (Pearson Addison-Wesley, 2004).
    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix 26, 9–12 (2015).
    Google Scholar 
    Rohlf, F. J. & Slice, D. E. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).Article 

    Google Scholar 
    Zelditch, M., Swiderski, D., Sheets, D. H. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2004).MATH 

    Google Scholar 
    Klingeberg, C. P. Morpho J: An integrated software package for geometric morphometric. Mol. Ecol. Resour. 11, 353–357 (2011).Article 

    Google Scholar  More

  • in

    Effects of oceanographic environment on the distribution and migration of Pacific saury (Cololabis saira) during main fishing season

    NPFC. 8th Meeting of the Small Scientific Committee on Pacific Saury Report. NPFC-2021-SSC PS08-Final Report. Preprint at https://www.npfc.int/meetings/8th-ssc-ps-meeting (2021).Hubbs, C. L. & Wisner, R. L. Revision of the sauries (Pisces, Scomberesocidae) with descriptions of two new genera and one new species. Fish. Bull. 77, 521–566 (1980).
    Google Scholar 
    Tian, Y., Akamine, T. & Suda, M. Variations in the abundance of Pacific saury (Cololabis saira) from the northwestern Pacific in relation to oceanic-climate changes. Fish. Res. 60, 439–454 (2003).Article 

    Google Scholar 
    Huang, W. B. Comparisons of monthly and geographical variations in abundance and size composition of Pacific saury between the high-seas and coastal fishing grounds in the northwestern Pacific. Fish. Sci. 76, 21–31 (2010).CAS 
    Article 

    Google Scholar 
    Watanabe, Y., Builer, J. L. & Mori, T. Growth of Pacific saury, Cololabis saira, in the northeastern and northwestern Pacific Ocean. Fish. Bull. 86, 489–498 (1988).
    Google Scholar 
    Nakaya, M. et al. Growth and maturation of Pacific saury Cololabis saira under laboratory conditions. Fish. Sci. 76, 45–53 (2010).CAS 
    Article 

    Google Scholar 
    Kosaka, S. Life history of Pacific saury Cololabis saira in the Northwest Pacific and consideration of resource fluctuation based on it. Bull. Tohoku Natl. Fish. Res. Inst. 63, 1–96 (2000).
    Google Scholar 
    Suyama, S. Study on the age, growth, and maturation process of Pacific saury Cololabis saira (Brevoort) in the north Pacific. Bull. Fish. Res. Agen. 5, 68–113 (2002).
    Google Scholar 
    Huang, W. B., Lo, N. C. H., Chiu, T. S. & Chen, C. S. Geographical distribution and abundance of Pacific saury fishing stock in the Northwestern Pacific in relation to sea temperature. Zool. Stud. 46, 705–716 (2007).
    Google Scholar 
    Liu, S. et al. Using novel spawning ground indices to analyze the effects of climate change on Pacifc saury abundance. J. Mar. Syst. 191, 13–23 (2019).Article 

    Google Scholar 
    Tian, Y., Akamine, T. & Suda, M. Long-term variability in the abundance of Pacific Saury in the Northwestern Pacific Ocean and climate changes during the last century. Bull. Jpn. Soc. Fish. Oceanogr. 66, 16–25 (2002).
    Google Scholar 
    Tian, Y., Ueno, Y., Suda, M. & Akamine, T. Decadal variability in the abundance of Pacific saury and its response to climatic/oceanic regime shifts in the northwestern subtropical Pacific during the last half century. J. Mar. Syst. 52, 235–257 (2004).Article 

    Google Scholar 
    Yasuda, I. & Watanabe, T. Chlorophyll a variation in the Kuroshio Extension revealed with a mixed-layer tracking float: Implication on the long-term change of Pacific saury (Cololabis saira). Fish. Oceanogr. 16, 482–488 (2007).Article 

    Google Scholar 
    Fuji, T., Kurita, Y., Suyama, S. & Ambe, D. Estimating the spawning ground of Pacific saury Cololabis saira by using the distribution and geographical variation in maturation status of adult fish during the main spawning season. Fish. Oceanogr. 30, 382–396 (2020).Article 

    Google Scholar 
    Yasuda, I. & Watanabe, Y. On the relationship between the Oyashio front and saury fishing grounds in the northewestern Pacific: A forecasting method for fishing ground locations. Fish. Oceanogr. 3, 172–181 (1994).Article 

    Google Scholar 
    Kuroda, H. & Yokouchi, K. Interdecadal decrease in potential fishing areas for Pacific saury off the southeastern coast of Hokkaido, Japan. Fish. Oceanogr. 26, 439–454 (2017).Article 

    Google Scholar 
    Fukushima, S. Synoptic analysis of migration and fishing conditions of saury in the northwestern Pacific Ocean. Bull. Tohoku. Reg. Fish. Res. Lab 41, 1–70 (1979).
    Google Scholar 
    Sugisaki, H. & Kurita, Y. Daily rhythm and seasonal variation of feeding habit of Pacific saury (Cololabis saira) in relation to their migration and oceanographic conditions off Japan. Fish. Oceanogr. 13, 63–73 (2004).Article 

    Google Scholar 
    Huang, W. B. & Huang, Y. C. Maturity characteristics of Pacific saury during fishing season in the Northwest pacific. J. Mar. Sci. Tech. 23, 819–826 (2015).
    Google Scholar 
    Tseng, C. T. et al. Influence of climate-driven sea surface temperature increase on potential habitats of the Pacific saury (Cololabis saira). ICES J. Mar. Sci. 68, 1105–1113 (2011).Article 

    Google Scholar 
    Tseng, C. T. et al. Sea surface temperature fronts affect distribution of Pacific saury (Cololabis saira) in the Northwestern Pacific Ocean. Deep Sea Res II Top. Stud. Oceanogr. 107, 15–21 (2014).ADS 
    Article 

    Google Scholar 
    Hua, C., Li, F., Zhu, Q., Zhu, G. & Meng, L. Habitat suitability of Pacific saury (Cololabis saira) based on a yield-density model and weighted analysis. Fish. Res. 221, 105408. https://doi.org/10.1016/j.fishres.2019.105408 (2020).Article 

    Google Scholar 
    Mugo, R., Saitoh, S. I., Nihira, A. & Kuroyama, T. Habitat characteristics of skipjack tuna (Katsuwonus pelamis) in the western North Pacific: A remote sensing perspective. Fish. Oceanogr. 19, 382–396 (2010).Article 

    Google Scholar 
    Yu, W., Chen, X., Chen, Y., Yi, Q. & Zhang, Y. Effects of environmental variations on the abundance of western winter-spring cohort of neon flying squid (Ommastrephes bartramii) in the Northwest Pacific Ocean. Acta Oceanol. Sin. 34, 43–51 (2015).CAS 
    Article 

    Google Scholar 
    Kakehi, S. et al. Forecasting Pacific saury (Cololabis saira) fishing grounds off Japan using a migration model driven by an ocean circulation model. Ecol. Model. 431, 109150. https://doi.org/10.1016/j.ecolmodel.2020.109150 (2020).Article 

    Google Scholar 
    Swain, D. P. & Wade, E. J. Spatial distribution of catch and effort in a fishery for snow crab (Chionoecetes opilio): Tests of predictions of the ideal free distribution. Can. J. Fish. Aquat. Sci. 60, 897–909 (2003).Article 

    Google Scholar 
    Chang, Y. J. et al. Modelling the impacts of environmental variation on habitat suitability for Pacific saury in the Northwestern Pacific Ocean. Fish. Oceanogr. 28, 291–304 (2018).Article 

    Google Scholar 
    Bakun, A. Fronts and eddies as key structures in the habitat of marine fish larvae: Opportunity, adaptive response and competitive advantage. Sci. Mar. 70, 105–122 (2006).Article 

    Google Scholar 
    Oozeki, Y., Watanabe, Y. & Kitagawa, D. Environmental factors affecting larval growth of Pacific saury, Cololabis saira, in the northwestern Pacific Ocean. Fish. Oceanogr. 13, 44–53 (2004).Article 

    Google Scholar 
    Ito, S. I. et al. Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fish. Oceanogr. 13, 111–124 (2004).Article 

    Google Scholar 
    Miyamoto, H. et al. Geographic variation in feeding of Pacific saury Cololabis saira in June and July in the North Pacific Ocean. Fish. Oceanogr. 29, 558–571 (2020).CAS 
    Article 

    Google Scholar 
    Tseng, C. T. et al. Spatial and temporal variability of the Pacific saury (Cololabis saira) distribution in the northwestern Pacific Ocean. ICES J. Mar. Sci. 70, 991–999 (2013).Article 

    Google Scholar 
    Ichii, T. et al. Oceanographic factors affecting interannual recruitment variability of Pacific saury (Cololabis saira) in the central and western North Pacific. Fish. Oceanogr. 27, 445–457 (2018).Article 

    Google Scholar 
    Coletto, J. L., Pinho, M. P. & Madureira, L. S. P. Operational oceanography applied to skipjack tuna (Katsuwonus pelamis) habitat monitoring and fishing in south-western Atlantic. Fish. Oceanogr. 28, 82–93 (2018).Article 

    Google Scholar 
    Shi, Y., Zhu, Q., Hua, C. & Zhang, Y. Evaluation of saury stick-held net performance between model test and on-sea measurements. Haiyang Xuebao 41, 123–133 (2019).CAS 

    Google Scholar 
    Semedi, B., Saitoh, S., Saitoh, K. & Yoneta, K. Application of multi-sensor satellite remote sensing for determining distribution and movement of Pacific saury, Cololabis saira. Fish. Sci. 68, 1781–1784 (2002).Article 

    Google Scholar 
    Syah, A. F., Saitoh, S. I., Alabia, I. D. & Hirawake, T. Detection of potential fishing zone for Pacific saury (Cololabis saira) using generalized additive model and remotely sensed data. IOP Conf. Ser. Earth Env. Sci. 54, 012074. https://doi.org/10.1088/1755-1315/54/1/012074 (2017).Article 

    Google Scholar 
    Xing, Q. et al. Application of a fish habitat model considering mesoscale oceanographic features in evaluating climatic impact on distribution and abundance of Pacific saury (Cololabis saira). Prog. Oceanogr. 201, 102743. https://doi.org/10.1016/j.pocean.2022.102743 (2022).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Prants, S. V., Budyansky, M. V. & Uleysky, M. Y. Identifying Lagrangian fronts with favourable fishery conditions. Deep Sea Res. Part I Oceanogr. Res. Pap. 90, 27–35 (2014).ADS 
    Article 

    Google Scholar 
    Saito, H., Tsuda, A. & Kasai, H. Nutrient and plankton dynamics in the Oyashio region of the western subarctic Pacific Ocean. Deep Sea Res. II Top. Stud. Oceanogr. 49, 5463–5486 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Watanabe, Y., Kurita, Y., Noto, M., Oozeki, Y. & Kitagawa, D. Growth and survival of Pacific Saury Cololabis saira in the Kuroshio-Oyashio transitional waters. J. Oceanogr. 59, 403–414 (2003).Article 

    Google Scholar 
    Bakun, A. Ocean eddies, predator pits and bluefin tuna: Implications of an inferred ‘low risk-limited payoff’ reproductive scheme of a (former) archetypical top predator. Fish Fish. 14, 424–438 (2013).Article 

    Google Scholar 
    Iwahashi, M., Isoda, Y., Ito, S. I., Oozeki, Y. & Suyama, S. Estimation of seasonal spawning ground locations and ambient sea surface temperatures for eggs and larvae of Pacific saury (Cololabis saira) in the western North Pacific. Fish. Oceanogr. 15, 128–138 (2006).Article 

    Google Scholar 
    Oozeki, Y., Okunishi, T., Takasuka, A. & Ambe, D. Variability in transport processes of Pacific saury Cololabis saira larvae leading to their broad dispersal: Implications for their ecological role in the western North Pacific. Prog. Oceanogr. 138, 448–458 (2015).ADS 
    Article 

    Google Scholar 
    Polovina, J. J., Kleiber, P. & Kobayashi, D. R. Application of TOPEX-Poseidon satellite altimetry to simulate transport dynamics of larvae of spiny lobster, Panulirus marginatus, in the Northwestern Hawaiian Islands, 1993–1996. Fish. Bull. 97, 132–143 (1999).
    Google Scholar 
    Kawai, H. Hydrography of the Kuroshio extension. In Kuroshio—Its Physical Aspects (eds Stommel, H. & Yoshida, K.) 235–352 (University of Tokyo, 1972).
    Google Scholar 
    Yamada, F. & Sekine, Y. Variations in sea surface temperature and 500 hPa height over the north Pacific with reference to the occurrence of anomalous southward Oyashio intrusion east of Japan. J. Meteorol. Soc Jpn. Ser. II 75, 995–1000 (1997).Article 

    Google Scholar 
    Ellis, N., Smith, S. J. & Pitcher, C. R. Gradient forests: Calculating importance gradients on physical predictors. Ecology 93, 156–168 (2012).PubMed 
    Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized additive models. Stat. Sci. 1, 297–310 (1986).MathSciNet 
    MATH 

    Google Scholar 
    Litzow, M. A., Hobday, A. J., Frusher, S. D., Dann, P. & Tuck, G. N. Detecting regime shifts in marine systems with limited biological data: An example from southeast Australia. Prog. Oceanogr. 141, 96–108 (2016).ADS 
    Article 

    Google Scholar 
    Pang, Y. et al. Variability of coastal cephalopods in overexploited China Seas under climate change with implications on fisheries management. Fish. Res. 208, 22–33 (2018).Article 

    Google Scholar  More

  • in

    Cascading effects of habitat loss on ectoparasite-associated bacterial microbiomes

    Alroy J. Effects of habitat disturbance on tropical forest biodiversity. Proc Natl Acad Sci USA. 2017;114:6056–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gatti LV, Basso LS, Miller JB, Gloor M, Gatti Domingues L, Cassol HLG, et al. Amazonia as a carbon source linked to deforestation and climate change. Nature. 2021;595:388–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JM, Veiga ABGDA, Spilki FR, et al. Beyond diversity loss and climate change: impacts of Amazon deforestation on infectious diseases and public health. An Acad Bras Cienc. 2020;92:e20191375.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morand S, Lajaunie C. Outbreaks of vector-borne and zoonotic diseases are associated with changes in forest cover and oil palm expansion at global scale. Front Vet Sci. 2021;8:661063.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keenan RJ, Reams GA, Achard F, de Freitas JV, Grainger A, Lindquist E. Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manage. 2015;352:9–20.Article 

    Google Scholar 
    Rezende CL, Scarano FR, Assad ED, Joly CA, Metzger JP, Strassburg BBN, et al. From hotspot to hopespot: an opportunity for the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation. 2018;16:208–14.Article 

    Google Scholar 
    Yarwood SA. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol Ecol. 2018;94: https://doi.org/10.1093/femsec/fiy175.Kock RA, Orynbayev M, Robinson S, Zuther S, Singh NJ, Beauvais W, et al. Saigas on the brink: multidisciplinary analysis of the factors influencing mass mortality events. Sci Adv. 2018;4:eaao2314.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB. Temperature alters Plasmodium blocking by Wolbachia. Sci Rep. 2014;4:3932.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacArthur RH, Wilson EO. An equilibrium theory of insular zoogeography. Evolution. 1963;17:373–87.Article 

    Google Scholar 
    Krasnov BR, Shenbrot GI, Medvedev SG. Host–habitat relations as an important determinant of spatial distribution of flea assemblages (Siphonaptera) on rodents in the Negev Desert. Parasitology. 1997;114:159–73.Poulin R. Are there general laws in parasite ecology? Parasitology 2007;134:63–776Speer KA, Dheilly NM, Perkins SL. Microbiomes are integral to conservation of parasitic arthropods. Biol Conserv. 2020;250:108695.Bell T, Ager D, Song J-I, Newman JA, Thompson IP, Lilley AK, et al. Larger islands house more bacterial taxa. Science. 2005;308:1884.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zinger L, Boetius A, Ramette A. Bacterial taxa-area and distance-decay relationships in marine environments. Mol Ecol. 2014;23:954–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carbonero F, Oakley BB, Purdy KJ. Metabolic flexibility as a major predictor of spatial distribution in microbial communities. PLoS One. 2014;9:e85105.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.PubMed 
    Article 

    Google Scholar 
    Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol. 2011;27:514–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gupta A, Nair S. Dynamics of insect-microbiome interaction influence host and microbial symbiont. Front Microbiol. 2020;11:1357.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dick CW, Dittmar K. Parasitic bat Flies (Diptera: Streblidae and Nycteribiidae): Host specificity and potential as vectors. In: Klimpel S, Mehlhorn H (eds). Bats (Chiroptera) as Vectors of Diseases and Parasites. 2014. Springer, Berlin, Heidelberg, pp 131–55.Speer KA, Luetke E, Bush E, Sheth B, Gerace A, Quicksall Z, et al. A fly on the cave wall: Parasite genetics reveal fine-scale dispersal patterns of bats. 2019;105:555-66.Patterson BD, Dick CW, Dittmar K. Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). J Trop Ecol. 2008;24:387–96.Article 

    Google Scholar 
    Hiller T, Brändel SD, Honner B, Page RA, Tschapka M. Parasitization of bats by bat flies (Streblidae) in fragmented habitats. Biotropica. 2020;72:617.
    Google Scholar 
    Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, et al. Collapse of insect gut symbiosis under simulated climate change. MBio. 2016;7:e01578-16.Thapa S, Zhang Y, Allen MS. Effects of temperature on bacterial microbiome composition in Ixodes scapularis ticks. Microbiologyopen. 2019;8:e00719.PubMed 
    Article 
    CAS 

    Google Scholar 
    Teixeira TSM. Bats in a fragmented world. 2019. Queen Mary University of London.Emmons L, Feer F. Neotropical rainforest mammals: a field guide. 1997. sidalc.net.Reis NR, Fregonezi MN, Peracchi AL, Shibatta OA. Morcegos do Brasil: guia de campo. 2013. Technical Books Editora.Sikes RS, Care A, of Mammalogists UC of TAS. 2016 Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. J Mammal. 2016;97:663–88.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wenzel RL. The streblid batflies of Venezuela (Diptera: Streblidae). Brigham Young University Science Bulletin. Biological Series. 1976;20:1.
    Google Scholar 
    Graciolli G, de Carvalho CJB. Moscas ectoparasitas (Diptera, Hippoboscoidea) de morcegos (Mammalia, Chiroptera) do Estado do Paraná. 11. Streblidae. Chave pictórica para gêneros e espécies 1. RevIa bras Zool. 2001;18:907–60.Article 

    Google Scholar 
    Graciolli G, de Carvalho CJB. Moscas ectoparasitas (Diptera, Hippoboscoidea, Nycteribiidae) de morcegos (Mammalia, Chiroptera) do Estado do Paraná, Brasil. I. Basilia, taxonomia e chave pictórica para as espécies 1. RevIa bras Zool. 2001;18:33–49.Article 

    Google Scholar 
    Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3:294–9.CAS 
    PubMed 

    Google Scholar 
    Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London Series B: Biological Sciences. 2003;270:313–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gustafson EJ, Parker GR. Relationships between landcover proportion and indices of landscape spatial pattern. Landsc Ecol. 1992;7:101–10.Article 

    Google Scholar 
    McGarigal K, Cushman SA, Neel MC, Ene E. FRAGSTATS: spatial pattern analysis program for categorical maps. 2002. University of Massachusetts.Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, et al. Meeting report: the terabase metagenomics workshop and the vision of an Earth microbiome project. Stand Genomic Sci. 2010;3:243–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert JA, Jansson JK, Knight R. The Earth Microbiome project: successes and aspirations. BMC Biol. 2014;12:69.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12.Article 

    Google Scholar 
    Katoh K, Misawa K, Kuma K-I, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh K, Kuma K-I, Toh H, Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh K, Toh H. PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics. 2007;23:372–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hosokawa T, Nikoh N, Koga R, Satô M, Tanahashi M, Meng X-Y, et al. Reductive genome evolution, host–symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies. ISME J. 2012;6:577–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duron O, Schneppat UE, Berthomieu A, Goodman SM, Droz B, Paupy C, et al. Origin, acquisition and diversification of heritable bacterial endosymbionts in louse flies and bat flies. Mol Ecol. 2014;23:2105–17.PubMed 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J Biotechnol. 2017;261:169–76.PubMed 
    Article 
    CAS 

    Google Scholar 
    Nováková E, Hypsa V, Moran NA. Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol. 2009;9:143.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bressan A, Terlizzi F, Credi R. Independent origins of vectored plant pathogenic bacteria from arthropod-associated Arsenophonus endosymbionts. Microb Ecol. 2012;63:628–38.PubMed 
    Article 

    Google Scholar 
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Weiss S, Amir A, Hyde ER, Metcalf JL, Song SJ, Knight R. Tracking down the sources of experimental contamination in microbiome studies. Genome Biol. 2014;15:564.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: Issues and recommendations. Trends Microbiol. 2019;27:105–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alberdi A, Aizpurua O, Gilbert MTP, Bohmann K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol Evol. 2018;9:134–47.Article 

    Google Scholar 
    McMurdie PJ, Holmes S. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac Symp Biocomput 2012; 235–46.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version 2.4–4. 2017. 2018.Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016. Springer.Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:15.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016;62:692–703.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsilimigras MCB, Fodor AA. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann Epidemiol. 2016;26:330–5.PubMed 
    Article 

    Google Scholar 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: And this is not optional. Front Microbiol. 2017;8:2224.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silverman JD, Washburne AD, Mukherjee S, David LA. A phylogenetic transform enhances analysis of compositional microbiota data. Elife 2017;6.Xia Y, Sun J. Hypothesis testing and statistical analysis of microbiome. Genes Dis. 2017;4:138–48.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson MJ, Walsh DCI. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol Monogr. 2013;83:557–74.Article 

    Google Scholar 
    Anderson MJ. Permutational Multivariate Analysis of Variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F, Teugels JL (eds). Wiley StatsRef: Statistics Reference Online. 2014. John Wiley & Sons, Ltd, Chichester, UK, pp 1–15.Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu H, Roeder K, Wasserman L. Stability Approach to Regularization Selection (StARS) for High Dimensional Graphical Models. Adv Neural Inf Process Syst. 2010;24:1432–40.PubMed 
    PubMed Central 

    Google Scholar 
    Röttjers L, Faust K. From hairballs to hypotheses-biological insights from microbial networks. FEMS Microbiol Rev. 2018;42:761–80.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Freeman LC. Centrality in social networks conceptual clarification. Soc Networks. 1978;1:215–39.Article 

    Google Scholar 
    Brandes U. A faster algorithm for betweenness centrality. J Math Sociol. 2001;25:163–77.Article 

    Google Scholar 
    Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal. Complex Systems. 2006;1695:1–9.
    Google Scholar 
    Newman MEJ. Finding community structure in networks using the eigenvectors of matrices. Phys Rev E Stat Nonlin Soft Matter Phys. 2006;74:036104.CAS 
    PubMed 
    Article 

    Google Scholar 
    Delmas E, Besson M, Brice M-H, Burkle LA, Dalla Riva GV, Fortin M-J, et al. Analysing ecological networks of species interactions: Analyzing ecological networks. Biol Rev. 2019;94:16–36.Article 

    Google Scholar 
    Fortunato S, Hric D. Community detection in networks: A user guide. arXiv [physics.soc-ph]. 2016.Singh A, Humphries MD. Finding communities in sparse networks. Sci Rep. 2015;5:8828.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yaveroğlu ÖN, Malod-Dognin N, Davis D, Levnajic Z, Janjic V, Karapandza R, et al. Revealing the hidden language of complex networks. Sci Rep. 2014;4:4547.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Przulj N. Biological network comparison using graphlet degree distribution. Bioinformatics. 2007;23:e177–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hočevar T, Demšar J. Computation of graphlet orbits for nodes and edges in sparse graphs. J Stat Softw 2016;71.Müller CL, Bonneau R, Kurtz Z. Generalized stability approach for regularized graphical models. arXiv [statME]. 2016.Mahana D, Trent CM, Kurtz ZD, Bokulich NA, Battaglia T, Chung J, et al. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med. 2016;8:48.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruiz VE, Battaglia T, Kurtz ZD, Bijnens L, Ou A, Engstrand I, et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat Commun. 2017;8:518.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013;7:1344–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Avena CV, Parfrey LW, Leff JW, Archer HM, Frick WF, Langwig KE, et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front Microbiol. 2016;7:1753.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker CG, Longo AV, Haddad CFB, Zamudio KR. Land cover and forest connectivity alter the interactions among host, pathogen and skin microbiome. Proc Biol Sci 2017;284.Ingala MR, Becker DJ, Bak Holm J, Kristiansen K, Simmons NB. Habitat fragmentation is associated with dietary shifts and microbiota variability in common vampire bats. Ecol Evol. 2019;9:6508–23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aksoy E, Telleria EL, Echodu R, Wu Y, Okedi LM, Weiss BL, et al. Analysis of multiple tsetse fly populations in Uganda reveals limited diversity and species-specific gut microbiota. Appl Environ Microbiol. 2014;80:4301–12.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mello RM, Laurindo RS, Silva LC, Pyles MV, Mancini MCS, Dáttilo W, et al. Landscape configuration and composition shape mutualistic and antagonistic interactions among plants, bats, and ectoparasites in human-dominated tropical rainforests. Acta Oecol. 2021;112:103769.Article 

    Google Scholar 
    Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe. 2011;10:307–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sassera D, Epis S, Pajoro M, Bandi C. Microbial symbiosis and the control of vector-borne pathogens in tsetse flies, human lice, and triatomine bugs. Pathog Glob Health. 2013;107:285–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weiss BL, Wang J, Maltz MA, Wu Y, Aksoy S. Trypanosome infection establishment in the tsetse fly gut is influenced by microbiome-regulated host immune barriers. PLoS Pathog. 2013;9:e1003318.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Obame-Nkoghe J, Rahola N, Bourgarel M, Yangari P, Prugnolle F, Maganga GD, et al. Bat flies (Diptera: Nycteribiidae and Streblidae) infesting cave-dwelling bats in Gabon: diversity, dynamics and potential role in Polychromophilus melanipherus transmission. Parasit Vectors. 2016;9:333.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krause AE, Frank KA, Mason DM, Ulanowicz RE, Taylor WW. Compartments revealed in food-web structure. Nature. 2003;426:282–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stouffer DB, Bascompte J. Understanding food-web persistence from local to global scales. Ecol Lett. 2010;13:154–61.PubMed 
    Article 

    Google Scholar 
    Trowbridge RE, Dittmar K, Whiting MF. Identification and phylogenetic analysis of Arsenophonus- and Photorhabdus-type bacteria from adult Hippoboscidae and Streblidae (Hippoboscoidea). J Invertebr Pathol. 2006;91:64–68.PubMed 
    Article 

    Google Scholar 
    Morse SF, Bush SE, Patterson BD, Dick CW, Gruwell ME, Dittmar K. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae). Appl Environ Microbiol. 2013;79:2952–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkinson DA, Duron O, Cordonin C, Gomard Y, Ramasindrazana B, Mavingui P, et al. The bacteriome of bat flies (Nycteribiidae) from the Malagasy Region: a community shaped by host ecology, bacterial transmission mode, and host-vector specificity. Appl Environ Microbiol. 2016;82:1778–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graciolli G, Dick CW. Checklist of World Nycteribiidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322579074_CHECKLIST_OF_WORLD_NYCTERIBIIDAE_DIPTERA_HIPPOBOSCOIDEA.Graciolli G, Dick CW. Checklist of World Streblidae (Diptera: Hippoboscoidea). https://www.researchgate.net/publication/322578987_CHECKLIST_OF_WORLD_STREBLIDAE_DIPTERA_HIPPOBOSCOIDEA.Breitschwerdt EB, Kordick DL. Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev. 2000;13:428–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiggins FM. Male-killing Wolbachia and mitochondrial DNA: selective sweeps, hybrid introgression and parasite population dynamics. Genetics. 2003;164:5–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA. 2010;107:769–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lack JB, Nichols RD, Wilson GM, Van Den Bussche RA. Genetic signature of reproductive manipulation in the phylogeography of the bat fly, Trichobius major. J Hered. 2011;102:705–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Morse SF, Olival KJ, Kosoy M, Billeter S, Patterson BD, Dick CW, et al. Global distribution and genetic diversity of Bartonella in bat flies (Hippoboscoidea, Streblidae, Nycteribiidae). Infect Genet Evol. 2012;12:1717–23.PubMed 
    Article 

    Google Scholar 
    Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA. 2014;111:10257–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stuckey MJ, Chomel BB, de Fleurieu EC, Aguilar-Setién A, Boulouis H-J, Chang C-C. Bartonella, bats and bugs: A review. Comp Immunol Microbiol Infect Dis. 2017;55:20–29.PubMed 
    Article 

    Google Scholar 
    Gibson CM, Hunter MS. Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett. 2010;13:223–34.PubMed 
    Article 

    Google Scholar  More

  • in

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Forest Advanced Computing and Artificial Intelligence Laboratory (FACAI), Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USAJingjing Liang, Mo Zhou & Akane O. AbbasiForestry Division, Food and Agriculture Organization of the United Nations, Rome, ItalyJavier G. P. Gamarra & Antonello SalisGIP ECOFOR, Paris, FranceNicolas PicardDepartment of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USABryan Pijanowski, Douglass F. Jacobs & Minjee ParkInstitute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USAPeter B. ReichDepartment of Forest Resources, University of Minnesota, St. Paul, MN, USAPeter B. ReichHawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, AustraliaPeter B. ReichCrowther Lab, Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, SwitzerlandThomas W. CrowtherWageningen Environmental Research, Wageningen University and Research, Wageningen, NetherlandsGert-Jan NabuursForest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, NetherlandsGert-Jan Nabuurs, Frans Bongers, Mathieu Decuyper, Marc Parren, Lourens Poorter & Douglas SheilDepartment of Crop and Forest Sciences, University of Lleida, Lleida, SpainSergio de-MiguelJoint Research Unit CTFC—Agrotecnio—CERCA, Solsona, SpainSergio de-Miguel & Albert MoreraInstitute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Evironmental Sciences, Peking University, Beijing, ChinaJingyun FangNorthern Research Station, USDA Forest Service, Durham, NH, USAChristopher W. WoodallCenter for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, DenmarkJens-Christian SvenningSection for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, DenmarkJens-Christian SvenningSchool of Biological Sciences, University of Bristol, Bristol, UKTommaso JuckerTERRA Teaching and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Gembloux, BelgiumJean-Francois BastinManaaki Whenua Landcare Research, Lincoln, New ZealandSusan K. WiserEnvironmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei DarussalamFerry SlikCentre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, FranceBruno HéraultINP-HB (Institut National Polytechnique Félix Houphouet-Boigny), University of Montpellier, Yamoussoukro, Ivory CoastBruno HéraultDepartment of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, ItalyGiorgio AlbertiFaculty of Science and Technology, Free University of Bolzano, Bolzano, ItalyGiorgio AlbertiInstitute of Bioeconomy, CNR, Sesto, ItalyGiorgio AlbertiNatural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, Adelaide, South Australia, AustraliaGunnar KeppelBiometris, Wageningen University and Research, Wageningen, NetherlandsGeerten M. HengeveldWageningen University & Research, Forest and Nature Conservation Policy Group, Wageningen, NetherlandsGeerten M. HengeveldCentre for Econics and Ecosystem Management, Eberswalde University for Sustainable Development, Eberswalde, GermanyPierre L. IbischSchool of Forest, Fisheries, and Geomatics Sciences, Institute of Food & Agricultural Sciences, University of Florida, Gainesville, FL, USACarlos A. Silva, Eben N. Broadbent & Carine KlaubergNaturalis Biodiversity Center, Leiden, NetherlandsHans ter SteegeInstituto Nacional de Tecnología Agropecuaria (INTA), Santa Cruz, ArgentinaPablo L. PeriDepartment of Plant Sciences, University of Cambridge, Cambridge, UKDavid A. CoomesFaculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, CanadaEric B. Searle & Han Y. H. ChenUniversity of Göttingen, Göttingen, GermanyKlaus von GadowBeijing Forestry University, Beijing, ChinaKlaus von GadowUniversity of Stellenbosch, Stellenbosch, South AfricaKlaus von GadowBiałowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, PolandBogdan JaroszewiczSwiss National Forest Inventory/Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, SwitzerlandMeinrad AbeggUFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Ivory CoastYves C. Adou Yao & Anny E. N’GuessanEnvironmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UKJesús Aguirre-GutiérrezBiodiversity Dynamics, Naturalis Biodiversity Center, Leiden, NetherlandsJesús Aguirre-GutiérrezCenter for Latin American Studies, University of Florida, Gainesville, FL, USAAngelica M. Almeyda ZambranoInstitute of Botany, Academy of Sciences of the Czech Republic, Trebon, Czech RepublicJan Altman & Jiri DolezalFaculty of Forestry and Wood Sciences, Czech University of Life Sciences in Prague, Praha-Suchdol, Czech RepublicJan Altman & Miroslav SvobodaEscuela ECAPMA, National Open University and Distance (Colombia) | UNAD, Bogotá, ColombiaEsteban Alvarez-DávilaDepartamento de Ingeniería Agroforestal, Universidad de Santiago de Compostela, Lugo, SpainJuan Gabriel Álvarez-GonzálezCenter for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USALuciana F. AlvesUniversité Jean Lorougnon Guédé, Daloa, Ivory CoastBienvenu H. K. AmaniUniversité Officielle de Bukavu, Bukavu, Democratic Republic of CongoChristian A. AmaniSilviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Goettingen, GermanyChristian Ammer & Peter SchallInstitut National pour l’Etude et la Recherche Agronomiques, Kinshasa, Democratic Republic of CongoBhely Angoboy IlondeaNorwegian Institute of Bioeconomy Research (NIBIO), Division of Forestry and Forest Resources, Ås, NorwayClara Antón-FernándezEuropean Commission, Joint Research Centre, Ispra, ItalyValerio AvitabileCompensation International Progress S.A., Bogotá, ColombiaGerardo A. AymardLaboratory of Applied Ecology, University of Abomey-Calavi, Cotonou, BeninAkomian F. AzihouScientific Services, South African National Parks, Knysna, South AfricaJohan A. Baard & Graham P. DurrheimSchool of Geography, University of Leeds, Leeds, UKTimothy R. Baker, Simon L. Lewis & Oliver L. PhillipsDepartment of Geomatics, Forest Research Institute, Sekocin Stary, Raszyn, PolandRadomir Balazy & Krzysztof J. StereńczakProceedings of the National Academy of Sciences, Washington, DC, USAMeredith L. BastianDepartment of Evolutionary Anthropology, Duke University, Durham, NC, USAMeredith L. BastianDepartment of Environment, Universtité du Cinquantenaire de Lwiro, Bukavu, Democratic Republic of CongoRodrigue BatumikeDepartment of Environment, Ghent University, Ghent, BelgiumMarijn BautersDepartment of Green Chemistry and Technology, Ghent University, Ghent, BelgiumMarijn Bauters & Pascal BoeckxService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumHans Beeckman, Thales de Haulleville & Wannes HubauBalai Penelitian dan Pengembangan Lingkungan Hidup dan Kehutanan, Manokwari, IndonesiaNithanel Mikael Hendrik Benu & Relawan KuswandiInstitute of Tropical Forest Conservation, Mbarara University of Science and Technology, Mbarara, UgandaRobert BitarihoUniversité de Liège, Gembloux Agro-Bio Tech, Gembloux, BelgiumJan Bogaert & Thales de HaullevilleIntegrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), University Stefan cel Mare of Suceava, Suceava, RomaniaOlivier BouriaudDepartment of Forestry Sciences, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, BrazilPedro H. S. Brancalion, Ricardo G. César & Vanessa S. MorenoBavarian State Institute of Forestry, Freising, GermanySusanne BrandlDepartment of Natural Sciences, Manchester Metropolitan University, Manchester, UKFrancis Q. Brearley, Giacomo Sellan & Martin J. P. SullivanFacultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, MexicoJaime Briseno-Reyes, José Javier Corral-Rivas & Daniel José Vega-NievaInstitute of Biology and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), GermanyHelge BruelheideGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, GermanyHelge BruelheideDevelopment Economics Group, Wageningen University, Wageningen, NetherlandsErwin BulteRosen Center for Advanced Computing (RCAC), Purdue University, West Lafayette, IN, USAAnn Christine Catlin, Lev Gorenstein, Geoffrey Lentner & Xiao ZhuDepartment of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, ItalyRoberto Cazzolla GattiInstitute of Integrative Biology, ETH Zürich, Zürich, SwitzerlandChelsea ChisholmIFER – Institute of Forest Ecosystem Research, Jilove u Prahy, Czech RepublicEmil CiencialaGlobal Change Research Institute of the CAS, Brno, Czech RepublicEmil CiencialaPrograma de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas CEP, Biologia, BrazilGabriel D. CollettaDirección Nacional de Bosques (DNB), Ministerio de Ambiente y Desarrollo Sostenible (MAyDS), Ciudad Autónoma de Buenos Aires, Buenos Aires, ArgentinaAnibal CuchiettiDepartment of International Environment and Development Studies (Noragric), Faculty of Landscape and Society, Norwegian University of Life Sciences (NMBU), Ås, NorwayAida Cuni-SanchezDepartment of Environment and Geography, University of York, York, UKAida Cuni-SanchezDepartment of Environmental Science, School of Engineering and Sciences, SRM University-AP, Guntur, IndiaJavid A. DarDepartment of Botany, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Madhya Pradesh, IndiaJavid A. Dar & Subashree KothandaramanDepartment of Ecology and Environmental Sciences, Pondicherry University, Puducherry, IndiaJavid A. Dar, Subashree Kothandaraman, Narayanaswamy Parthasarathy & Somaiah SundarapandianCentre for Structural and Functional Genomics & Quebec Centre for Biodiversity Science, Biology Department, Concordia University, Montreal, Quebec, CanadaSelvadurai DayanandanDepartment of Ecology, Faculty of Science, Charles University, Prague, Czech RepublicSylvain Delabye, Stepan Janecek, Yannick Klomberg, Vincent Maicher & Robert TropekBiology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech RepublicSylvain Delabye, Tom M. Fayle, Vincent Maicher & Robert TropekCirad, UMR EcoFoG (AgroParistech, CNRS, Inrae, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French GuianaGéraldine Derroire, Aurélie Dourdain & Eric MarconDepartment of Geography, Environment and Geomatics, University of Guelph, Guelph, Ontario, CanadaBen DeVriesNational Forest Authority, Kampala, UgandaJohn DiisiDepartment of Silviculture Foundation, Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, VietnamTran Van DoDepartment of Botany, Faculty of Science, University of South Bohemia, Bohemia, Czech RepublicJiri DolezalIPHAMETRA, IRET, CENAREST, Libreville, GabonNestor Laurier Engone ObiangFaculté de Gestion de Ressources Naturelles Renouvelables, Université de Kisangani, Kisangani, Democratic Republic of CongoCorneille E. N. Ewango, Faustin M. Mbayu & Eric Katembo WasingyaQueensland Herbarium, Department of Environment and Science, Toowong, Queensland, AustraliaTeresa J. Eyre, Victor J. Neldner & Michael R. NgugiSchool of Biological and Behavioural Sciences, Queen Mary University of London, London, UKTom M. FayleDepartment of Plant Biology, Faculty of Science, University of Yaoundé I, Yaoundé, CameroonLethicia Flavine N. Feunang, Banoho L. P. R. Kabelong, Moses B. Libalah, Louis N. Nforbelie, Emile Narcisse N. Njila & Melanie C. NyakoNatural Resources Institute Finland, Joensuu, FinlandLeena FinérInstitute of Plant Sciences, University of Bern, Bern, SwitzerlandMarkus FischerDepartment of Forest Resource Management, Swedish University of Agricultural Sciences, Umea, SwedenJonas Fridman & Bertil WesterlundResearch and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, ItalyLorenzo Frizzera, Damiano Gianelle & Mirco RodeghieroHerbário Dr. Roberto Miguel Klein, Universidade Regional de Blumenau, Blumenau, BrazilAndré L. de GasperGlick Designs, LLC, Hadley, MA, USAHenry B. GlickCIIDIR Durango, Instituto Politécnico Nacional, Durango, MexicoMaria Socorro Gonzalez-ElizondoDépartement des Sciences et Technologies de l’Environnement, Université du Burundi, Bujumbura, BurundiRichard HabonayoFaculté des Sciences, Evolutionary Biology and Ecology Unit, Université Libre de Bruxelles, Brussels, BelgiumOlivier J. HardyRoyal Botanic Garden Edinburgh, Edinburgh, UKDavid J. Harris & Axel Dalberg PoulsenDepartment of Plant Sciences, University of Oxford, Oxford, UKAndrew HectorDepartment of Plant Systematics, Bayreuth University, Bayreuth, GermanyAndreas HempHelmholtz GFZ German Research Centre for Geosciences, Section 1.4 Remote Sensing and Geoinformatics, Potsdam, GermanyMartin HeroldWild Chimpanzee Foundation, Liberia Representation, Monrovia, LiberiaAnnika HillersCentre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UKAnnika HillersDepartment of Environment, Laboratory for Wood Technology (UGent-Woodlab), Ghent University, Ghent, BelgiumWannes HubauAMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceThomas IbanezDepartment of Forest Science, Tokyo University of Agriculture, Tokyo, JapanNobuo ImaiBiology Department, Université Officielle de Bukavu, Bukavu, Democratic Republic of CongoGerard ImaniInstitute of Dendrology, Polish Academy of Sciences, Kórnik, PolandAndrzej M. Jagodzinski & Jacek OleksynPoznan University of Life Sciences, Faculty of Forestry and Wood Technology, Department of Game Management and Forest Protection, Poznan, PolandAndrzej M. JagodzinskiDepartment of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, DenmarkVivian Kvist Johannsen & Sebastian Kepfer-RojasPlant Biology Department, Biology Institute, University of Campinas (UNICAMP), Campinas, BrazilCarlos A. JolyDepartment of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USABlaise JumbamInstitute of Agricultural Research for Development (IRAD), Nkolbisson, Ministry of Scientific Research and Innovation, Yaounde, CameroonBlaise JumbamDepartment of Food and Resource Economics, University of Copenhagen, Copenhagen, DenmarkGoytom Abraha KahsayForestry Faculty, Bauman Moscow State Technical University, Mytischi, RussiaViktor Karminov & Olga MartynenkoIntegrative Research Center, The Field Museum, Chicago, IL, USAKuswata KartawinataLabo Botanique, Université Félix Houphouët-Boigny, Abidjan, Ivory CoastJustin N. KassiComputational and Applied Vegetation Ecology Lab, Ghent University, Ghent, BelgiumElizabeth Kearsley & Hans VerbeeckDepartment of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USADeborah K. KennardDepartment of Botany, Dr. Harisingh Gour Vishwavidalaya (A Central University), Sagar, IndiaMohammed Latif KhanKenya Forestry Research Institute, Department of Forest Resource Assessment, Nairobi, KenyaJohn N. KigomoDepartment of Forest Sciences, Seoul National University, Seoul, Republic of KoreaHyun Seok KimInterdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, Republic of KoreaHyun Seok KimNational Center for Agro Meteorology, Seoul, Republic of KoreaHyun Seok KimResearch Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of KoreaHyun Seok KimInstitute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, EstoniaHenn Korjus & Mait LangInternational Institute for Applied Systems Analysis, Laxenburg, AustriaFlorian Kraxner, Dmitry Schepaschenko & Anatoly Z. ShvidenkoDepartment of Geoinformatics, Central University of Jharkhand, Ranchi, IndiaAmit KumarTartu Observatory, University of Tartu, Tõravere, EstoniaMait LangSchool of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South AfricaMichael J. LawesDepartment of Forest Engineering, Federal University of Viçosa (UFV), Viçosa, BrazilRodrigo V. LeiteDepartment of Geography, University College London, London, UKSimon L. LewisPlant Systematics and Ecology Laboratory (LaBosystE), Higher Teacher’s Training College, University of Yaoundé I, Yaoundé, CameroonMoses B. LibalahLaboratoire d’Écologie et Aménagement Forestier, Département d’Ecologie et de Gestion des Ressources Végétales, Université de Kisangani, Kisangani, Democratic Republic of CongoJanvier LisingoInstituto de Silvicultura e Industria de la Madera, Universidad Juarez del Estado de Durango, Durango, MexicoPablito Marcelo López-Serrano & Maria Guadalupe Nava-MirandaFaculty of Forestry, Qingdao Agricultural University, Qingdao, ChinaHuicui LuCenter for Forest Ecology and Productivity RAS (CEPF RAS), Moscow, RussiaNatalia V. LukinaDepartment of Ecoscience, Aarhus University, Silkeborg, DenmarkAnne Mette LykkeNicholas School of the Environment, Duke University, Durham, NC, USAVincent Maicher & John R. PoulsenDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrian S. MaitnerAgroParisTech, UMR AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, FranceEric MarconUniversity of the Sunshine Coast, Sippy Downs, Queensland, AustraliaAndrew R. MarshallUniversity of York, York, UKAndrew R. MarshallFlamingo Land Ltd., North Yorkshire, UKAndrew R. MarshallDepartment of Wildlife Management, College of African Wildlife Management, Mweka, TanzaniaEmanuel H. MartinKenya Forestry Research Institute, Headquarters, Nairobi, KenyaMusingo T. E. MbuviDepartamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, MexicoJorge A. MeaveEcology and Evolutionary Biology, University of Connecticut, Storrs, CT, USACory MerowDepartment of Forest Management and Forest Economics, Warsaw University of Life Sciences, Warsaw, PolandStanislaw MiscickiTropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, AustraliaSharif A. Mukul & Alain S. K. NguteFieldstation Fabrikschleichach, Julius-Maximilians University Würzburg, Würzburg, GermanyJörg C. MüllerBavarian Forest Nationalpark, Grafenau, GermanyJörg C. MüllerFakultas Kehutanan, Universitas Papua, Jalan Gunung Salju Amban, Manokwari Papua Barat, IndonesiaAgustinus MurdjokoLimbe Botanic Garden, Limbe, CameroonLitonga Elias NdiveInstitute of Forestry, Belgrade, SerbiaRadovan V. NevenicTropical Plant Exploration Group (TroPEG), Buea, CameroonMichael L. Ngoh & Moses Nsanyi SaingeDepartment of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USAMichael L. NgohApplied Biology and Ecology Research Unit, University of Dschang, Dschang, CameroonAlain S. K. NguteDepartment of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USAThomas O. OchuodhoUQAM, Centre for Forest Research, Montreal, Quebec, CanadaAlain PaquetteV.N. Sukachev Forest Institute of FRC KSC SB RAS, Krasnoyarsk, RussiaElena I. Parfenova, Dmitry Schepaschenko & Nadja TchebakovaUrban Management and Planning, School of Social Sciences, Western Sydney University, Penrith, New South Wales, AustraliaSebastian PfautschInstituto Nacional de Pesquisas da Amazônia—INPA, Grupo Ecologia. Monitoramento e Uso Sustentável de Áreas Úmidas MAUA, Manaus, BrazilMaria T. F. Piedade, Jochen Schöngart & Natalia TarghettaCentro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Ilhéus, BrazilDaniel Piotto & Samir G. RolimDepartment of Agriculture, Food, Environment and Forestry, University of Firenze, Firenze, ItalyMartina Pollastrini & Federico SelviTechnical University of Munich, School of Life Sciences Weihenstephan, Chair of Forest Growth and Yield Science, Munich, GermanyHans PretzschCentro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele all’Adige, ItalyMirco RodeghieroDepartment of Biology, University of Florence, Sesto Fiorentino, ItalyFrancesco RoveroMUSE—Museo delle Scienze, Trento, ItalyFrancesco RoveroInfoflora c/o Botanical Garden of Geneva, Geneva, SwitzerlandErvan RutishauserAgricultural Research, Education and Extension Organization (AREEO), Research Institute of Forests and Rangelands (RIFR), Tehran, IranKhosro Sagheb-TalebiDepartment of Environmental Sciences, Central University of Jharkhand, Ranchi, IndiaPurabi SaikiaInstitute of International Education Scholar Rescue Fund (IIE-SRF), One World Trade Center, New York, NY, USAMoses Nsanyi SaingeCentro de Modelación y Monitoreo de Ecosistemas, Facultad de Ciencias, Universidad Mayor, Santiago, ChileChristian Salas-EljatibVicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, ChileChristian Salas-EljatibDepartamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, ChileChristian Salas-EljatibРeoples Friendship University of Russia (RUDN University), Moscow, RussiaDmitry SchepaschenkoUniversity of Freiburg, Faculty of Biology, Freiburg, GermanyMichael Scherer-LorenzenInstitution with City, Department of Geography, University of Zurich, Zurich, SwitzerlandBernhard SchmidNational Forest Centre, Zvolen, Slovak RepublicVladimír ŠebeňCNRS-UMR LEEISA, Campus Agronomique, Kourou, French GuianaGiacomo SellanUniversite de Lorraine, AgroParisTech, INRA, Nancy, FranceJosep M. Serra-DiazCenter for International Forestry Research (CIFOR), Situ Gede, Bogor Barat, IndonesiaDouglas SheilCirad, University of Montpellier, Montpellier, FrancePlinio SistUniversidade Federal do Rio Grande do Norte, Departamento de Ecologia, Natal, BrazilAlexandre F. SouzaSchool of Biological Sciences, University of Aberdeen, Aberdeen, UKMike D. SwaineHerbarium Kew, Royal Botanic Gardens Kew, London, UKLiam A. TrethowanFaculté des Sciences Appliquées, Université de Mbujimayi, Mbujimayi, Democratic Republic of CongoJohn Tshibamba MukendiYale School of Forestry and Environmental Studies, New Haven, CT, USAPeter Mbanda UmunayUral State Forest Engineering University, Botanical Garden, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, RussiaVladimir A. UsoltsevDIBAF Department, Tuscia University, Viterbo, ItalyGaia Vaglio Laurin & Riccardo ValentiniLINCGlobal, MNCN, CSIC, Madrid, SpainFernando ValladaresPlant Ecology and Nature Conservation Group, Wageningen University, AA Wageningen, NetherlandsFons van der PlasAgricultural High School, ESAV, Polytechnic Institute of Viseu, IPV, Viseu, PortugalHelder VianaCentre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, UTAD, Quinta de Prados, Vila Real, PortugalHelder VianaDepartment of Forest Engineering, Universidade Regional de Blumenau, Blumenau, BrazilAlexander C. VibransNucleo de Estudos e Pesquisas Ambientais, Universidade Estadual de Campinas, Campinas (UNICAMP), SP, Campinas, BrazilSimone A. VieiraInternational Center for Tropical Botany, Department of Biological Sciences, Florida International University, Miami, FL, USAJason VleminckxForest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, AustraliaCatherine E. WaiteSanya Nanfan Research Institute, Hainan Yazhou Bay Seed Laboratory, Hainan University, Sanya, ChinaHua-Feng Wang & Zhi-Xin ZhuKenya Forestry Research Institute, Taita Taveta Research Centre, Wundanyi, KenyaChemuku WekesaDepartment of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Rastatt, GermanyFlorian WittmannDepartment of Forest Management, Centre for Agricultural Research in Suriname, Paramaribo, SurinameVerginia WortelPolish State Forests-Coordination Centre for Environmental Projects, Warsaw, PolandTomasz Zawiła-NiedźwieckiResearch Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, ChinaChunyu Zhang & Xiuhai ZhaoDepartment of Statistics, University of Wisconsin–Madison, Madison, WI, USAJun ZhuInstitut National Polytechnique Félix Houphouët-Boigny, DFR Eaux, Forêts et Environnement, BP, Yamoussoukro, Ivory CoastIrie C. Zo-BiCentre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, South AfricaCang HuiAfrican Institute for Mathematical Sciences, Muizenberg, South AfricaCang HuiConceptualization: J. Liang and C.H. Methodology: J. Liang, C.H., J.G.P.G. and N. Picard. Data coordination: J. Liang, M.Z., S.d.-M., T.W.C., G.-J.N., P.B.R., F. Slik, K.v.G., J.G.P.G. and N. Picard. Writing, revision and editing: all. More