More stories

  • in

    Multi-queen breeding is associated with the origin of inquiline social parasitism in ants

    Hölldobler, B. & Wilson, E. O. The number of queens: An important trait in ant evolution. Naturwissenschaften 64, 8–15 (1977).Article 
    ADS 

    Google Scholar 
    Maynard Smith, J. & Szathmáry, E. Major Transitions in Evolution (Oxford University Press, 1995).
    Google Scholar 
    Keller, L. Queen Number and Sociality in Insects (Oxford Science Publications, 1994).
    Google Scholar 
    Keller, L. Levels of Selection in Evolution (Princeton University Press, 1999).
    Google Scholar 
    Hughes, W. O. H., Oldroyd, B. P., Beekman, M. & Ratnieks, F. L. W. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320, 1213–1216 (2008).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Boomsma, J. J. Lifetime monogamy and the evolution of eusociality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3191–3207 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3, 193–232 (1972).Article 

    Google Scholar 
    Borowiec, M. L. et al. Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants. Mol. Phylogenet. Evol. 134, 111–121 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, W. O. H., Ratnieks, F. L. W. & Oldroyd, B. P. Multiple paternity or multiple queens: Two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J. Evol. Biol. 21, 1090–1095 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. The Insect Societies (Belknap Press of Harvard University Press, 1971).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, 1995).
    Google Scholar 
    Giraud, T., Blatrix, R., Poteaux, C., Solignac, M. & Jaisson, P. High genetic relatedness among nestmate queens in the polygynous ponerine ant Gnamptogenys striatula in Brazil. Behav. Ecol. Sociobiol. 49, 128–134 (2001).Article 

    Google Scholar 
    Schmid-Hempel, P. & Crozier, R. H. Ployandry versus polygyny versus parasites. Philos. Trans. R. Soc. B Biol. Sci. 354, 507–515 (1999).Article 

    Google Scholar 
    Oldroyd, B. P. & Fewell, J. H. Genetic diversity promotes homeostasis in insect colonies. Trends Ecol. Evol. 22, 408–413 (2007).PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (W. W. Norton & Company, 2009).
    Google Scholar 
    Trunzer, B., Heinze, J. & Hölldobler, B. Cooperative colony founding and experimental primary polygyny in the ponerine ant Pachycondyla villosa. Insectes Soc. 45, 267–276 (1998).Article 

    Google Scholar 
    Rüppell, O. & Heinze, J. Alternative reproductive tactics in females: The case of size polymorphism in winged ant queens. Insectes Soc. 46, 6–17 (1999).Article 

    Google Scholar 
    Hughes, W. O. H. & Boomsma, J. J. Genetic royal cheats in leaf-cutting ant societies. Proc. Natl. Acad. Sci. U.S.A. 105, 5150–5153 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hannonen, M. & Sundström, L. Worker nepotism among polygynous ants. Nature 421, 910 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Pedersen, J. S. & Boomsma, J. J. Effect of habitat saturation on the number and turnover of queens in the polygynous ant, Myrmica sulcinodis. J. Evol. Biol. 12, 903–917 (1999).Article 

    Google Scholar 
    Rüppell, O., Strätz, M., Baier, B. & Heinze, J. Mitochondrial markers in the ant Leptothorax rugutulus reveal the population genetic consequences of philopatry at different hierarchial levels. Mol. Ecol. 12, 795–801 (2003).PubMed 
    Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Alternative reproductive tactics in the queen-size-dimorphic ant Leptothorax rugatulus (Emery) and their consequences for genetic population structure. Behav. Ecol. Sociobiol. 50, 189–197 (2001).Article 

    Google Scholar 
    Pamilo, P. Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia. Heredity 70, 472–480 (1993).Article 

    Google Scholar 
    Qian, Z. Q. et al. Intraspecific support for the polygyny-vs.-polyandry hypothesis in the bulldog ant Myrmecia brevinoda. Mol. Ecol. 20, 3681–3691 (2011).CAS 
    PubMed 

    Google Scholar 
    Keller, L. & Reeve, H. K. Partitioning of reproduction in animal societies. Trends Ecol. Evol. 9, 98–102 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Ants (The Belknap Press of Harvard University Press, 1990).Book 

    Google Scholar 
    Bartz, S. H. & Hölldobler, B. Colony founding in Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae) and the evolution of foundress associations. Behav. Ecol. Sociobiol. 10, 137–147 (1982).Article 

    Google Scholar 
    Rissing, S. W., Pollock, G. B., Higgins, M. R., Hagen, R. H. & Smith, D. R. Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338, 420–422 (1989).Article 
    ADS 

    Google Scholar 
    Boomsma, J. J., Huszár, D. B. & Pedersen, J. S. The evolution of multiqueen breeding in eusocial lineages with permanent physically differentiated castes. Anim. Behav. 92, 241–252 (2014).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Intracolonial patterns of reproduction in the queen-size dimorphic ant Leptothorax rugatulus. Behav. Ecol. 13, 239–247 (2002).Article 

    Google Scholar 
    Buschinger, A. Sympatric speciation and radiative evolution of socially parasitic ants—Heretic hypotheses and their factual background. Z. für Zool. Syst. und Evol. 28, 241–260 (1990).Article 

    Google Scholar 
    Buschinger, A. Social parasitism among ants: A review (Hymenoptera: Formicidae). Myrmecol. News 12, 219–235 (2009).
    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants. Biol. J. Linn. Soc. 43, 157–178 (1991).Article 

    Google Scholar 
    Rabeling, C. Social parasitism. In Encyclopedia of Social Insects (ed. Starr, C.) 838–858. https://doi.org/10.1007/978-3-319-90306-4_175-1 (Springer, 2020).Chapter 

    Google Scholar 
    Huang, M. H. & Dornhaus, A. A meta-analysis of ant social parasitism: Host characteristics of different parasitism types and a test of Emery’s rule. Ecol. Entomol. 33, 589–596 (2008).Article 

    Google Scholar 
    Ward, P. S. A new workerless social parasite in the ant genus Pseudomyrmex (Hymenoptera: Formicidae), with a discussion of the origin of social parasitism in ants. Syst. Entomol. 21, 253–263 (1996).Article 

    Google Scholar 
    Jansen, G., Savolainen, R. & Vepsäläinen, K. Phylogeny, divergence-time estimation, biogeography and social parasite-host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Mol. Phylogenet. Evol. 56, 294–304 (2010).PubMed 
    Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Genetic divergence between the sympatric queen morphs of the ant Myrmica rubra. Mol. Ecol. 24, 2463–2476 (2015).PubMed 
    Article 

    Google Scholar 
    Nettel-Hernanz, A., Lachaud, J. P., Fresneau, D., López-Muñoz, R. A. & Poteaux, C. Biogeography, cryptic diversity, and queen dimorphism evolution of the Neotropical ant genus Ectatomma Smith, 1958 (Formicidae, Ectatomminae). Org. Divers. Evol. 15, 543–553 (2015).Article 

    Google Scholar 
    Rabeling, C., Schultz, T. R., Pierce, N. E. & Bacci, M. A social parasite evolved reproductive isolation from its fungus-growing ant host in sympatry. Curr. Biol. 24, 2047–2052 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savolainen, R. & Vepsäläinen, K. Sympatric speciation through intraspecific social parasitism. Proc. Natl. Acad. Sci. U.S.A. 100, 7169–7174 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Sumner, S., Hughes, W. O. H. & Boomsma, J. J. Evidence for differential selection and potential adaptive evolution in the worker caste of an inquiline social parasite. Behav. Ecol. Sociobiol. 54, 256–263 (2003).Article 

    Google Scholar 
    Prebus, M. Insights into the evolution, biogeography and natural history of the acorn ants, genus Temnothorax Mayr (hymenoptera: Formicidae). BMC Evol. Biol. 17, 1–22 (2017).Article 

    Google Scholar 
    Fischer, G. et al. Socially parasitic ants evolve a mosaic of host-matching and parasitic morphological traits. Curr. Biol. 30, 3639-3646.e4 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, J. D. & Rissing, S. W. Molecular evidence for the origin of workerless social parasites in the ant genus Pogonomyrmex. Evolution 56, 2017–2028 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shoemaker, D. D. W., Ahrens, M. E. & Ross, K. G. Molecular phylogeny of fire ants of the Solenopsis saevissima species-group based on mtDNA sequences. Mol. Phylogenet. Evol. 38, 200–215 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fournier, D. et al. Social structure and genetic distance mediate nestmate recognition and aggressiveness in the facultative polygynous ant Pheidole pallidula. PLoS ONE 11, e0156440 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Beye, M., Neumann, P., Chapuisat, M., Pamilo, P. & Moritz, R. F. A. Nestmate recognition and the genetic relatedness of nests in the ant Formica pratensis. Behav. Ecol. Sociobiol. 43, 67–72 (1998).Article 

    Google Scholar 
    Starks, P. T., Watson, R. E., Dipaola, M. J. & Dipaola, C. P. The effect of queen number on nestmate discrimination in the facultatively polygynous ant Pseudomyrmex pallidus (Hymenoptera: Formicidae). Ethology 104, 573–584 (1998).Article 

    Google Scholar 
    Hora, R. R. et al. Facultative polygyny in Ectatomma tuberculatum (Formicidae, Ectatomminae). Insectes Soc. 52, 194–200 (2005).Article 

    Google Scholar 
    Dahan, R. A., Grove, N. K., Bollazzi, M., Gerstner, B. P. & Rabeling, C. Decoupled evolution of mating biology and social structure in Acromyrmex leaf-cutting ants. Behav. Ecol. Sociobiol. 76, 7 (2022).Article 

    Google Scholar 
    Buschinger, A. Evolution of social parasitism in ants. Trends Ecol. Evol. 1, 155–160 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keller, L. & Reeve, H. K. Genetic variability, queen number, and polyandry in social Hymenoptera. Evolution 48, 694–704 (1994).PubMed 
    Article 

    Google Scholar 
    Frumhoff, P. C. & Ward, P. S. Individual-level selection, colony-level selection, and the association between polygyny and worker monomorphism in ants. Am. Nat. 139, 559–590 (1992).Article 

    Google Scholar 
    Rissing, S. W. & Pollock, G. B. Pleometrosis and polygyny in ants. In Interindividual Behavioral Variability in Social Insects (ed. Jeanne, R. L.) 179–222 (Westview Press, 1988).
    Google Scholar 
    Keller, L. & Passera, L. Physiologie des sexués femelles de fourmis (Hymenoptera: Formicidae) en relation avec le mode the fondation. Actes des Colloq. Insectes Sociaux 5, 63–68 (1989).
    Google Scholar 
    Foitzik, S. & Heinze, J. Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav. Ecol. 9, 367–375 (1998).Article 

    Google Scholar 
    Schär, S. & Nash, D. R. Evidence that microgynes of Myrmica rubra ants are social parasites that attack old host colonies. J. Evol. Biol. 27, 2396–2407 (2014).PubMed 
    Article 

    Google Scholar 
    Gallardo, A. Notes systématique et éthologiques sur les fourmis attines de la République Argentine. An. del Mus Nac. Hist. Nat. Buenos Aires 28, 317–344 (1916).
    Google Scholar 
    Harvey, P. H. & Pagel, M. D. The Comparative Method in Evolutionary Biology (Oxford University Press, 1991).
    Google Scholar 
    Ridley, M. The Explanation of Organic Diversity: The Comparative Methods and Adaptations for Mating (Oxford Science Publications, 1983).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (R Foundation for Statistical Computing, 2021).Wolf, J. I. & Seppä, P. Queen size dimorphism in social insects. Insectes Soc. 63, 25–38 (2015).Article 

    Google Scholar 
    Leppänen, J., Seppä, P., Vepsäläinen, K. & Savolainen, R. Mating isolation between the ant Myrmica rubra and its microgynous social parasite. Insectes Soc. 63, 79–86 (2016).Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & Rabeling, C. Two new species of socially parasitic Nylanderia ants from the southeastern United States. Zookeys 921, 23–48 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabeling, C. et al. Acromyrmex fowleri: A new inquiline social parasite species of leaf-cutting ants from South America, with a discussion of social parasite biogeography in the Neotropical region. Insectes Soc. 66, 435–451 (2019).Article 

    Google Scholar 
    Grüter, C., Jongepier, E. & Foitzik, S. Insect societies fight back: The evolution of defensive traits against social parasites. Philos. Trans. R. Soc. B Biol. Sci. 373, 1. https://doi.org/10.1098/rstb.2017.0200 (2018).Article 

    Google Scholar 
    Davies, N. B., Bourke, A. F. G., De, L. & Brooke, M. Cuckoos and parasitic ants: Interspecific brood parasitism as an evolutionary arms race. Trends Ecol. Evol. 4, 274–278 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herbers, J. M. & Foitzik, S. The ecology of slavemaking ants and their hosts in north temperate forests. Ecology 83, 148–163 (2002).Article 

    Google Scholar 
    Foitzik, S. & Herbers, J. M. Colony structure of a slavemaking ant. II. Frequency of slave raids and impact on the host population. Evolution 55, 316–323 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, E. O. Tropical social parasites in the ant genus Pheidole, with an analysis of the anatomical parasitic syndrome (Hymenoptera: Formicidae). Insectes Soc. 31, 316–334 (1984).Article 

    Google Scholar 
    Rüppell, O., Heinze, J. & Hölldobler, B. Complex determination of queen body size in the queen size dimorphic ant Leptothorax rugatulus (Formicidae: Hymenoptera). Heredity 87, 33–40 (2001).PubMed 
    Article 

    Google Scholar 
    Nonacs, P. & Tobin, J. E. Selfish larvae: Development and the evolution of parasitic behavior in the Hymenoptera. Evolution 46, 1605–1620 (1992).PubMed 
    Article 

    Google Scholar 
    Wolf, J. I. & Seppä, P. Dispersal and mating in a size-dimorphic ant. Behav. Ecol. Sociobiol. 70, 1267–1276 (2016).Article 

    Google Scholar 
    Elmes, G. W. Miniature queens of the ant Myrmica rubra L. (Hymenoptera, Formicidae). Entomologist 106, 133–136 (1973).
    Google Scholar 
    Feitosa, R. M., Hora, R. R., Delabie, J. H. C., Valenzuela, J. & Fresneau, D. A new social parasite in the ant genus Ectatomma F. Smith (Hymenoptera, Formicidae, Ectatomminae). Zootaxa 52, 47–52 (2008).
    Google Scholar 
    Seifert, B. Taxonomic description of Myrmica microrubra n. sp.—A social parasitic ant so far known as the microgyne of Myrmica rubra (L.). Abhandlungen Berichte des Nat. Görlitz 67, 9–12 (1993).
    Google Scholar 
    Rabeling, C. & Bacci, M. A new workerless inquiline in the Lower Attini (Hymenoptera: Formicidae), with a discussion of social parasitism in fungus-growing ants. Syst. Entomol. 35, 379–392 (2010).Article 

    Google Scholar 
    Trible, W. & Kronauer, D. J. C. Caste development and evolution in ants: It’s all about size. J. Exp. Biol. 220, 53–62 (2017).PubMed 
    Article 

    Google Scholar 
    Aron, S., Passera, L. & Keller, L. Evolution of miniaturisation in inquiline parasitic ants: Timing of male elimination in Plagiolepis pygmaea, the host of Plagiolepis xene. Insectes Soc. 51, 395–399 (2004).Article 

    Google Scholar 
    West-Eberhard, M. J. Alternative adaptations, speciation, and phylogeny (a review). Proc. Natl. Acad. Sci. 83, 1388–1392 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Schultz, T. R., Bekkevold, D. & Boomsma, J. J. Acromyrmex insinuator new species: An incipient social parasite of fungus-growing ants. Insectes Soc. 45, 457–471 (1998).Article 

    Google Scholar 
    Hakala, S. M., Seppä, P. & Helanterä, H. Evolution of dispersal in ants (Hymenoptera: Formicidae): A review on the dispersal strategies of sessile superorganisms. Myrmecol. News 29, 35–55 (2019).
    Google Scholar 
    Leppänen, J., Vepsäläinen, K. & Savolainen, R. Phylogeography of the ant Myrmica rubra and its inquiline social parasite. Ecol. Evol. 1, 46–62 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Messer, S. J., Cover, S. P. & LaPolla, J. S. Nylanderia deceptrix sp. n., a new species of obligately socially parasitic formicine ant (Hymenoptera, Formicidae). Zookeys 552, 49–65 (2016).Article 

    Google Scholar 
    Lopez-Osorio, F., Perrard, A., Pickett, K. M., Carpenter, J. M. & Agnarsson, I. Phylogenetic tests reject Emery’s rule in the evolution of social parasitism in yellowjackets and hornets (Hymenoptera: Vespidae, Vespinae). R. Soc. Open Sci. https://doi.org/10.1098/rsos.150159 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. The evolution of myrmicine ants: Phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Syst. Entomol. 40, 61–81 (2015).Article 

    Google Scholar 
    Heinze, J., Buschinger, A., Poettinger, T. & Suefuji, M. Multiple convergent origins of workerlessness and inbreeding in the socially parasitic ant genus Myrmoxenus. PLoS ONE 10, 1–10 (2015).Article 
    CAS 

    Google Scholar 
    Suefuji, M. & Heinze, J. Degenerate slave-makers, but nevertheless slave-makers? Host worker relatedness in the ant Myrmoxenus kraussei. Integr. Zool. 10, 182–185 (2015).PubMed 
    Article 

    Google Scholar 
    Talbot, M. The natural history of the workerless ant parasite, Formica talbotae. Psyche 83, 282–288 (1976).Article 

    Google Scholar 
    Wilson, E. O. The first workerless parasite in the ant genus Formica (Hymenoptera: Formicidae). Psyche 83, 277–281 (1976).Article 

    Google Scholar 
    Borowiec, M. L., Cover, S. P. & Rabeling, C. The evolution of social parasitism in Formica ants revealed by a global phylogeny. Proc. Natl. Acad. Sci. 118, e2026029118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Estimating comparable distances to tipping points across mutualistic systems by scaled recovery rates

    Aizen, M. A., Sabatino, M. & Tylianakis, J. M. Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335, 1486–1489 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aanen, D. K. et al. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl Acad. Sci. USA 99, 14887–14892 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lello, J., Boag, B., Fenton, A., Stevenson, I. R. & Hudson, P. J. Competition and mutualism among the gut helminths of a mammalian host. Nature 428, 840–844 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jaeggi, A. V. & Gurven, M. Natural cooperators: food sharing in humans and other primates. Evol. Anthropol. 22, 186–195 (2013).PubMed 
    Article 

    Google Scholar 
    Van Der Maas, H. L., Kan, K.-J., Marsman, M. & Stevenson, C. E. Network models for cognitive development and intelligence. J. Intell. 5, 16 (2017).PubMed Central 
    Article 

    Google Scholar 
    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).Article 

    Google Scholar 
    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, S. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat. Ecol. Evol. 2, 94–99 (2018).PubMed 
    Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. Network resilience. Phys. Rep. 971, 1–108 (2022).Article 

    Google Scholar 
    Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pocock, M. J., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fowler, J. H. & Christakis, N. A. Cooperative behavior cascades in human social networks. Proc. Natl Acad. Sci. USA 107, 5334–5338 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    May, R. M., Levin, S. A. & Sugihara, G. Complex systems: ecology for bankers. Nature 451, 893–894 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Biggs, R. O., Peterson, G. & Rocha, J. C. The regime shifts database: a framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. 23, 3 (2018).Article 

    Google Scholar 
    Walker, B. & Meyers, J. A. Thresholds in ecological and social-ecological systems: a developing database. Ecol. Soc. 9, 2 (2004).
    Google Scholar 
    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in earth’s biosphere. Nature 486, 52–58 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V. & Bascompte, J. Critical slowing down as early warning for the onset of collapse in mutualistic communities. Proc. Natl Acad. Sci. USA 111, 17546–17551 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014).PubMed 
    Article 

    Google Scholar 
    Lever, J. J. et al. Foreseeing the future of mutualistic communities beyond collapse. Ecol. Lett. 23, 2–15 (2020).PubMed 
    Article 

    Google Scholar 
    Hillebrand, H. et al. Thresholds for ecological responses to global change do not emerge from empirical data. Nat. Ecol. Evol. 4, 1502–1509 (2020).PubMed 
    Article 

    Google Scholar 
    Dudney, J. & Suding, K. N. The elusive search for tipping points. Nat. Ecol. Evol. 4, 1449–1450 (2020).PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, S., Deffuant, G. & Calabrese, J. M. in Viability and Resilience of Complex Systems (eds. Deffuant, G., & Gilbert, N.) 15–36 (Springer, 2011).Cohen, R., Erez, K., Ben-Avraham, D. & Havlin, S. Resilience of the internet to random breakdowns. Phys. Rev. Lett. 85, 4626–4628 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, J., Barzel, B. & Barabási, A.-L. Universal resilience patterns in complex networks. Nature 530, 307–312 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanchard, J. L. A rewired food web. Nature 527, 173–174 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell, C., Yang, S., Shea, K. & Albert, R. Topology of plant-pollinator networks that are vulnerable to collapse from species extinction. Phys. Rev. E 86, 021924 (2012).Article 
    CAS 

    Google Scholar 
    Revilla, T. A., Encinas-Viso, F. & Loreau, M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos 124, 22–32 (2015).Article 

    Google Scholar 
    Vizentin-Bugoni, J. et al. Ecological correlates of species’ roles in highly invaded seed dispersal networks. Proc. Natl Acad. Sci. USA 118, (2021).Whanpetch, N. et al. Temporal changes in benthic communities of seagrass beds impacted by a tsunami in the Andaman Sea, Thailand. Estuar. Coast. Shelf Sci. 87, 246–252 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. Restoration of seagrass habitat leads to rapid recovery of coastal ecosystem services. Sci. Adv. 6, eabc6434 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Dai, L., Vorselen, D., Korolev, K. S. & Gore, J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dakos, V., van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).PubMed 
    Article 

    Google Scholar 
    van Belzen, J. et al. Vegetation recovery in tidal marshes reveals critical slowing down under increased inundation. Nat. Commun. 8, 15811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wright, D. H. A simple, stable model of mutualism incorporating handling time. Am. Nat.134, 664–667 (1989).Article 

    Google Scholar 
    Newman, M. E. J. Networks: An Introduction (Oxford Univ. Press, 2010).Jiang, J. et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc. Natl Acad. Sci. USA 115, E639–E647 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J., Buldyrev, S. V., Stanley, H. E. & Havlin, S. Networks formed from interdependent networks. Nat. Phys. 8, 40–48 (2012).CAS 
    Article 

    Google Scholar 
    May, R. M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269, 471–477 (1977).Article 

    Google Scholar 
    Moreno, Y., Pastor-Satorras, R., Vázquez, A. & Vespignani, A. Critical load and congestion instabilities in scale-free networks. Europhys. Lett. 62, 292–298 (2003).CAS 
    Article 

    Google Scholar 
    Martinez, N. D., Williams, R. J., Dunne, J. A. & Pascual, M. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds. Pascual, M., Dunne, J. A., & Dunne, J. A.) 163–185 (Oxford University Press, 2006).Chen, S., O’Dea, E. B., Drake, J. M. & Epureanu, B. I. Eigenvalues of the covariance matrix as early warning signals for critical transitions in ecological systems. Sci. Rep. 9, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariani, M. S., Ren, Z.-M., Bascompte, J. & Tessone, C. J. Nestedness in complex networks: observation, emergence, and implications. Phys. Rep. 813, 1–90 (2019).Article 

    Google Scholar 
    Staniczenko, P. P., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    Marsh, H. et al. Optimizing allocation of management resources for wildlife. Conserv. Biol. 21, 387–399 (2007).PubMed 
    Article 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reyer, C. P. et al. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. J. Ecol. 103, 5–15 (2015).Article 

    Google Scholar 
    Dakos, V. et al. Ecosystem tipping points in an evolving world. Nat. Ecol. Evol. 3, 355–362 (2019).PubMed 
    Article 

    Google Scholar 
    Hurwicz, L. The design of mechanisms for resource allocation. Am. Econ. Rev. 63, 1–30 (1973).
    Google Scholar 
    Almeida-Neto, M. & Ulrich, W. A straightforward computational approach for measuring nestedness using quantitative matrices. Environ. Model. Softw. 26, 173–178 (2011).Article 

    Google Scholar 
    Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).PubMed 
    Article 

    Google Scholar 
    Kéfi, S. et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dakos, V., van Nes, E. H., Donangelo, R., Fort, H. & Scheffer, M. Spatial correlation as leading indicator of catastrophic shifts. Theor. Ecol. 3, 163–174 (2010).Article 

    Google Scholar 
    Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. & Havlin, S. Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Web of Life, Ecological Networks Database (Bascompte Lab, accessed 12 June 2017); http://www.web-of-life.es/map.php?type=5/Gleeson, J. P., Melnik, S., Ward, J. A., Porter, M. A. & Mucha, P. J. Accuracy of mean-field theory for dynamics on real-world networks. Phys. Rev. E 85, 026106 (2012).Article 
    CAS 

    Google Scholar 
    Strogatz, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering (CRC Press, 2018).Vázquez, D. P. Interactions Among Introduced Ungulates, Plants, and Pollinators: a Field Study in the Temperate Forest of the Southern Andes PhD thesis, University of Tennessee (2002).Kaiser-Bunbury, C. N., Vázquez, D. P., Stang, M. & Ghazoul, J. Determinants of the microstructure of plant-pollinator networks. Ecology 95, 3314–3324 (2014).Article 

    Google Scholar 
    Memmott, J. The structure of a plant-pollinator food web. Ecol. Lett. 2, 276–280 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dicks, L., Corbet, S. & Pywell, R. Compartmentalization in plant-insect flower visitor webs. J. Anim. Ecol. 71, 32–43 (2002).Article 

    Google Scholar 
    SMITH-RAMÍREZ, C., Martinez, P., Nunez, M., González, C. & Armesto, J. J. Diversity, flower visitation frequency and generalism of pollinators in temperate rain forests of Chiloé Island, Chile. Bot. J. Linn. Soc. 147, 399–416 (2005).Article 

    Google Scholar 
    Dupont, Y. L., Hansen, D. M. & Olesen, J. M. Structure of a plant-flower-visitor network in the high-altitude sub-alpine desert of Tenerife, Canary Islands. Ecography 26, 301–310 (2003).Article 

    Google Scholar 
    Dupont, Y. L. & Olesen, J. M. Ecological modules and roles of species in heathland plant-insect flower visitor networks. J. Anim. Ecol. 78, 346–353 (2009).PubMed 
    Article 

    Google Scholar  More

  • in

    Swallows shrink as climate warms

    Gardner, J. L., Heinsohn, R. & Joseph, L. Proc. R. Soc. B 276, 3845–3852 (2009).Article 

    Google Scholar 
    Shipley, J. R., Twining, C. W., Taff, C. C., Vitousek, M. N. & Winkler, D. W. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01457-8 (2022).Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. Nature 421, 37–42 (2003).CAS 
    Article 

    Google Scholar 
    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Trends Ecol. Evol. 26, 285–291 (2011).Article 

    Google Scholar 
    Gardner, J. L. et al. Proc. R. Soc. B 286, 20192258 (2019).Article 

    Google Scholar 
    Weeks, B. C. et al. Ecol. Lett. 23, 316–325 (2020).Article 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Trends Ecol. Evol. 36, 1036–1048 (2021).Article 

    Google Scholar 
    Millien, V. et al. Ecol. Lett. 9, 853–869 (2006).Article 

    Google Scholar  More

  • in

    Distribution of SOCD along different offshore distances in China's fresh-water lake-Chaohu under different habitats

    Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597. https://doi.org/10.1007/s10980-012-9758-8 (2013).Article 

    Google Scholar 
    Koehler, A. K., Sottocornola, M. & Kiely, G. How strong is the current carbon sequestration of an Atlantic blanket bog?. Glob. Change Biol. 17, 309–319. https://doi.org/10.1111/j.1365-2486.2010.02180.x (2015).ADS 
    Article 

    Google Scholar 
    Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17, 1–12. https://doi.org/10.1029/2002GB001917 (2003).CAS 
    Article 

    Google Scholar 
    Dong, H. Y., Qian, L. W., Yan, J. F. & Wang, L. Evaluation of the carbon accumulation capability and carbon storage of different types of wetlands in the Nanhui tidal flat of the Yangtze River estuary. Environ. Monit. Assess. 192, 585. https://doi.org/10.1007/s10661-020-08547-0 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zaher, H., Sabir, M., Benjelloun, H. & Paul-Igor, H. Effect of forest land use change on carbohydrates, physical soil quality and carbon stocks in Moroccan cedar area. J. Environ. Manage. 254, 109544. https://doi.org/10.1016/j.jenvman.2019.109544 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Friborg, T. Siberian wetlands: Where a sink is a source. Geophys. Res. Lett. 30, 2129. https://doi.org/10.1029/2003GL017797 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Dayathilake, D., Lokupitiya, E. & Wijeratne, V. Estimation of soil carbon stocks of urban freshwater wetlands in the Colombo Ramsar Wetland City and their potential role in climate change mitigation. Wetlands. https://doi.org/10.1007/s13157-021-01424-7 (2021).Article 

    Google Scholar 
    Li, X. W. et al. How important are the wetlands in the middle-lower Yangtze River region: An ecosystem service valuation approach. Ecosyst. Serv. 10, 54–60. https://doi.org/10.1016/j.ecoser.2014.09.004 (2014).Article 

    Google Scholar 
    Liu, K. et al. Diversity of vascular plant and classification system of vegetation in wetlands of Anhui Province. Acta Ecol. Sin. 34, 5434–5444. https://doi.org/10.5846/stxb201301160109 (2014).Article 

    Google Scholar 
    Liu, H., Zheng, L., Wu, J. & Liao, Y. H. Past and future ecosystem service trade-offs in Poyang Lake Basin under different land use policy scenarios. Arab. J. Geosci. 13, 46. https://doi.org/10.1007/s12517-019-5004-x (2020).Article 

    Google Scholar 
    Dixon, M. J. R. et al. Tracking global change in ecosystem area: the Wetland Extent Trends index. Biol. Conserv. 193, 27–35. https://doi.org/10.1016/j.biocon.2015.10.023 (2016).Article 

    Google Scholar 
    Yang, X., Liu, S., Jia, C., Liu, Y. & Yu, C. C. Vulnerability assessment and management planning for the ecological environment in urban wetlands. J. Environ. Manag. 298, 113540. https://doi.org/10.1016/j.jenvman.2021.113540 (2021).Article 

    Google Scholar 
    Ghosh, S. & Das, A. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sens. Appl. Soc. Environ. 13, 191–203. https://doi.org/10.1016/j.rsase.2018.10.014 (2019).Article 

    Google Scholar 
    Means, M. M., Ahn, C., Korol, A. R. & Williams, L. D. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland. J. Environ. Manag. 165, 133–139. https://doi.org/10.1016/j.jenvman.2015.09.016 (2016).Article 

    Google Scholar 
    Fenstermacher, D. E., Rabenhorst, M. C., Lang, M. W., McCarty, G. W. & Needelman, B. A. Carbon in natural, cultivated, and restored depressional wetlands in the Mid-Atlantic Coastal Plain. J. Environ. Qual. 45, 743–750. https://doi.org/10.2134/jeq2015.04.0186 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abegaz, A., Winowiecki, L. A., Vågen, T., Langan, S. & Smith, J. U. Spatial and temporal dynamics of soil organic carbon in landscapes of the upper Blue Nile Basin of the Ethiopian Highlands. Agric. Ecosyst. Environ. 34, 190–208. https://doi.org/10.1016/j.agee.2015.11.019 (2016).CAS 
    Article 

    Google Scholar 
    Xie, E., Zhang, Y., Huang, B., Zhao, Y. & Qu, M. Spatiotemporal variations in soil organic carbon and their drivers in southeastern China during 1981–2011. Soil Tillage Res. 205, 104763. https://doi.org/10.1016/j.still.2020.104763 (2021).Article 

    Google Scholar 
    Jackson, R. B. et al. The ecology of soil carbon: Pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445. https://doi.org/10.1146/annurev-ecolsys-112414-054234 (2017).Article 

    Google Scholar 
    Sun, K. K., Chen, X., Dong, X. H. & Yang, X. D. Spatiotemporal patterns of carbon sequestration in a large shallow lake, Lake Chaohu: Evidence from multiple-core records. Limnologica 81, 125748. https://doi.org/10.1016/j.limno.2020.125748 (2020).CAS 
    Article 

    Google Scholar 
    Chen, X., Yang, X. D., Dong, X. H. & Liu, E. F. Environmental changes in Lake Chaohu (southeast, China) since the mid 20th century: The interactive impacts of nutrients, hydrology and climate. Limnologica. 43, 10–17. https://doi.org/10.1016/j.limno.2012.03.002 (2013).CAS 
    Article 

    Google Scholar 
    Yu, J. H. et al. Temporal changes in fractions and loading of sediment nitrogen during the holistic growth period of Phragmites australis in littoral Lake Chaohu, China. J. Lake Sci. 33, 1467–1477. https://doi.org/10.18307/2021.0514 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, M. & Kong, F. X. The process, spatial and temporal distrbition and mitigation strategies of the eutrophication of Lake Chaohu (1984–2013). J. Lake Sci. 27, 791–798. https://doi.org/10.18307/2015.0505 (2015).Article 

    Google Scholar 
    Teng, Z., Cao, X. Q., Sun, M. Y., Li, P. X. & Xu, X. N. Effect of different ecological restoration patterns on soil labile organic carbon and carbon pool management index of lakeside wetland of Lake Chaohu. Ecol. Environ. Sci. 28, 752–760. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2019).Article 

    Google Scholar 
    Wang, J. J. et al. Effects of simulated nitrogen deposition on soil microbial biomass and community function in subtropical evergreen broad-leaved forest. For. Syst. 28, e018. https://doi.org/10.5424/fs/2019283-15404 (2019).Article 

    Google Scholar 
    Yang, Y. et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob. Change Biol. 14, 1592–1599. https://doi.org/10.1111/J.1365-2486.2008.01591.X (2008).ADS 
    Article 

    Google Scholar 
    Li, J. et al. The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland. Acta Ecologica Sinica 40, 8928–8935. https://doi.org/10.16258/j.cnki.1674-5906.2019.04.014 (2020).Article 

    Google Scholar 
    Ma, W. W. et al. Variations of organic carbon storage in vegetation-soil systems during vegetation degradation in the Gahai wetland, China. Chin. J. Appl. Ecol. 29, 3900–3906. https://doi.org/10.13287/j.1001-9332.201812.003 (2018).Article 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Cao, L. et al. Deposition and burial of organic carbon in coastal salt marsh: Research progress. Chin. J. Appl. Ecol. 24, 2040–2048. https://doi.org/10.1038/ngeo1123 (2013).CAS 
    Article 

    Google Scholar 
    Liao, X. J. et al. Distribution pattern of soil organic carbon contents in the coastal wetlands in Eastern Fujian. Wetl. Sci. 11, 192–197. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    Kong, F. L., Min, X. I., Yue, L. I., Li-Hua, X. U. & Feng, X. M. Distribution and storage of DOC in a typical annular wetland of Sanjiang Plain. Bull. Soil Water Conserv. 33, 176–179. https://doi.org/10.3969/j.issn.1672-5948.2013.02.007 (2013).Article 

    Google Scholar 
    He, L. P., Meng, G. T., Li, G. X., Li, P. R. & Chai, Y. Soil organic carbon and its distribution characteristics in the soil profile under different vegetation recovery modes in toutang small watershed of Jinsha river. Resour. Environ. Yangtze Basin 25, 476–485. https://doi.org/10.13248/j.cnki.wetlandsci.2013.02.003 (2016).Article 

    Google Scholar 
    Bernal, B. & Mitsch, W. J. A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol. Eng. 34, 311–323. https://doi.org/10.1016/j.ecoleng.2008.09.005 (2008).Article 

    Google Scholar 
    Dong, J. et al. A novel organic carbon accumulation mechanism in croplands in the Yellow River Delta, China. Sci. Total Environ. 806, 150629. https://doi.org/10.1016/j.scitotenv.2021.150629 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, S., Adhikari, K., Wang, Q., Jin, X. & Li, H. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecol. Indic. 84, 263–272. https://doi.org/10.1016/j.ecolind.2017.08.046 (2018).CAS 
    Article 

    Google Scholar 
    Zhao, Q. et al. Soil organic carbon content and stock in wetlands with different hydrologic conditions in the Yellow River Delta, China. Ecohydrol. Hydrobiol. 20, 537–547. https://doi.org/10.1016/j.ecohyd.2019.10.008 (2020).Article 

    Google Scholar 
    Weishampel, P., Kolka, R. & King, J. Y. Carbon pools and productivity in a 1-km2 heterogeneous forest and peatland mosaic in Minnesota, USA. For. Ecol. Manag. 257, 747–754. https://doi.org/10.1016/j.foreco.2008.10.008 (2009).Article 

    Google Scholar 
    Yu, D. S., Shi, X. Z., Wang, H. J., Sun, W. X. & Zhao, Y. C. Regional patterns of soil organic carbon stocks in China. J. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).CAS 
    Article 

    Google Scholar 
    Wu, Y. et al. Elevation gradient characteristics and impact factors of soil carbon fractions in the Pinus taiwanensis Hayata forests of Daiyun Mountain. Acta Ecol. Sinica. 40, 5761–5770. https://doi.org/10.5846/stxb201908161713 (2020).Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627. https://doi.org/10.1126/science.1097396 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Selection counteracts developmental plasticity in body-size responses to climate change

    Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).
    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 

    Google Scholar 
    Durant, J. M., Hjermann, D. Ø., Ottersen, G. & Stenseth, N. C. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).
    Google Scholar 
    Jirinec, V. et al. Morphological consequences of climate change for resident birds in intact Amazonian rainforest. Sci. Adv. 7, eabk1743 (2021).
    Google Scholar 
    Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2019).
    Google Scholar 
    Gardner, J. L. et al. Australian songbird body size tracks climate variation: 82 species over 50 years. Proc. R. Soc. B 286, 20192258 (2019).
    Google Scholar 
    McNab, B. K. Extreme Measures: The Ecological Energetics of Birds and Mammals (Univ. of Chicago Press, 2012).West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, 2003).Winkler, D. W., Luo, M. K. & Rakhimberdiev, E. Temperature effects on food supply and chick mortality in tree swallows (Tachycineta bicolor). Oecologia 173, 129–138 (2013).
    Google Scholar 
    Shipley, J. R. et al. Climate change shifts the timing of nutritional flux from aquatic insects. Curr. Biol. (2022).Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. London B 363, 1635–1645 (2008).
    Google Scholar 
    Conway, C. J. & Martin, T. E. Evolution of passerine incubation behavior: influence of food, temperature, and nest predation. Evolution 54, 670–685 (2000).CAS 

    Google Scholar 
    Martin, T. E., Tobalske, B., Riordan, M. M., Case, S. B. & Dial, K. P. Age and performance at fledging are a cause and consequence of juvenile mortality between life stages. Sci. Adv. 4, eaar1988 (2018).
    Google Scholar 
    Naef‐Daenzer, B. & Grüebler, M. U. Post‐fledging survival of altricial birds: ecological determinants and adaptation. J. Field Ornithol. 87, 227–250 (2016).
    Google Scholar 
    Cox, A. R., Robertson, R. J., Fedy, B. C., Rendell, W. B., & Bonier, F. Demographic drivers of local population decline in tree swallows (Tachycineta bicolor) in Ontario, Canada. Condor Ornithol. Appl. 120, 842–851 (2018).
    Google Scholar 
    Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).
    Google Scholar 
    Karasov, W. H. & del Rio, C. M. Physiological Ecology (Princeton Univ. Press, 2007).Ricklefs, R. The energetics of reproduction in birds. Avian Energetics 15, 152–297 (1974).
    Google Scholar 
    Mainwaring, M. C. & Hartley, I. R. The energetic costs of nest building in birds. Avian Biol. Res. 6, 12–17 (2013).
    Google Scholar 
    Williams, J. B. Energetics of Avian Incuation. in Avian Energetics and Nutritional Ecology (ed Carey, C.) 375–415 (Springer, Boston, 1996).Williams, T. D. Mechanisms underlying the costs of egg production. Bioscience 55, 39–48 (2005).
    Google Scholar 
    Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl Acad. Sci. USA 116, 21609–21615 (2019).CAS 

    Google Scholar 
    Dawson, R. D., Lawrie, C. C. & O’Brien, E. L. The importance of microclimate variation in determining size, growth and survival of avian offspring: experimental evidence from a cavity nesting passerine. Oecologia 144, 499–507 (2005).
    Google Scholar 
    Andrew, S., Hurley, L., Mariette, M. & Griffith, S. Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild. J. Evol. Biol. 30, 2156–2164 (2017).CAS 

    Google Scholar 
    Andreasson, F., Nord, A. & Nilsson, J.-Å. Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings. J. Avian Biol. 49 https://doi.org/10.1111/jav.01620 (2018).Nilsson, J. F., Stjernman, M. & Nilsson, J. Å. Experimental reduction of incubation temperature affects both nestling and adult blue tits Cyanistes caeruleus. J. Avian Biol. 39, 553–559 (2008).
    Google Scholar 
    Ardia, D. R., Pérez, J. H. & Clotfelter, E. D. Experimental cooling during incubation leads to reduced innate immunity and body condition in nestling tree swallows. Proc. R. Soc. B https://doi.org/10.1098/rspb.2009.2138 (2010).Marra, P. P. et al. Non-breeding season habitat quality mediates the strength of density-dependence for a migratory bird. Proc. R. Soc. B 282, 20150624 (2015).
    Google Scholar 
    Shipley, J. R. et al. Birds advancing lay dates with warming springs face greater risk of chick mortality. Proc. Natl Acad. Sci. USA (2020).Robinson, R. A., Baillie, S. R. & Crick, H. Q. Weather‐dependent survival: implications of climate change for passerine population processes. Ibis 149, 357–364 (2007).
    Google Scholar 
    Winkler, D. W. et al. Full lifetime perspectives on the costs and benefits of lay date variation in tree swallows. Ecology (2020).Twining, C. W., Shipley, J. R. & Winkler, D. W. Aquatic insects rich in omega‐3 fatty acids drive breeding success in a widespread bird. Ecol. Lett. 21, 1812–1820 (2018).
    Google Scholar 
    Millet, A., Pelletier, F., Bélisle, M. & Garant, D. Patterns of fluctuating selection on morphological and reproductive traits in female tree swallow (Tachycineta bicolor). Evolut. Biol. 42, 349–358 (2015).
    Google Scholar 
    Bitton, P.-P., O’Brien, E. L. & Dawson, R. D. Plumage brightness and age predict extrapair fertilization success of male tree swallows, Tachycineta bicolor. Anim. Behav. 74, 1777–1784 (2007).
    Google Scholar 
    Whittingham, L. A. & Dunn, P. O. Experimental evidence that brighter males sire more extra‐pair young in tree swallows. Mol. Ecol. 25, 3706–3715 (2016).
    Google Scholar 
    Kempenaers, B., Everding, S., Bishop, C., Boag, P. & Robertson, R. J. Extra-pair paternity and the reproductive role of male floaters in the tree swallow (Tachycineta bicolor). Behav. Ecol. Sociobiol. 49, 251–259 (2001).
    Google Scholar 
    Lessard, A., Bourret, A., Bélisle, M., Pelletier, F. & Garant, D. Individual and environmental determinants of reproductive success in male tree swallow (Tachycineta bicolor). Behav. Ecol. Sociobiol. 68, 733–742 (2014).
    Google Scholar 
    Jetz, W. et al. Biological Earth observation with animal sensors. Trends Ecol. Evol. 37, 293–298 (2022).
    Google Scholar 
    Williams, H. J. et al. Future trends in measuring physiology in free-living animals. Philos. Trans. R. Soc. B 376, 20200230 (2021).CAS 

    Google Scholar 
    Twining, C. W. et al. Omega-3 long-chain polyunsaturated fatty acids support aerial insectivore performance more than food quantity. Proc. Natl Acad. Sci. (2016).Naef‐Daenzer, B. & Grüebler, M. U. Post‐fledging survival of altricial birds: ecological determinants and adaptation. J. Field Ornithol. 87, 227–250 (2016).
    Google Scholar 
    Chamberlain, S., Hocking, D. & Anderson, B. rnoaa: NOAA Weather Data from R. R version 1.3.8 http://cran.auckland.ac.nz/web/packages/rnoaa/rnoaa.pdf (2021).Cumbie-Ward, R. V. & Boyles, R. P. Evaluation of a high-resolution SPI for monitoring local drought severity. J. Appl. Meteorol. Climatol. 55, 2247–2262 (2016).
    Google Scholar 
    Guttman, N. B. Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA J. Am. Water Resour. Assoc. 35, 311–322 (1999).
    Google Scholar 
    Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R version 3 (2017).Canty, A. & Ripley, B. Package ‘boot’. Bootstrap Funct. Ver. 1, 3–20 (2017).
    Google Scholar 
    Bates, D. et al. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Software 67, 1–48 (2015).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: tests in linear mixed effects models. J. Stat. Software 82, 1–26 (2017).
    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed‐effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).
    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).Allaire, J. et al. rmarkdown: Dynamic Documents for R. R version 1 (2018).Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: repeatability estimation and variance decomposition by generalized linear mixed‐effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    Boyle, W. A., Winkler, D. W. & Guglielmo, C. G. Rapid loss of fat but not lean mass prior to chick provisioning supports the flight efficiency hypothesis in tree swallows. Funct. Ecol. 26, 895–903 (2012).
    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R version 0.2 4 (2019).Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).
    Google Scholar 
    Arnqvist, G. Mixed models offer no freedom from degrees of freedom. Trends Ecol. Evol. (2020). More

  • in

    How to help a prairie: bring on the hungry bison

    RESEARCH HIGHLIGHT
    29 August 2022

    North America’s largest land mammal can double the diversity of native grasses through its grazing.

    Home on the range: the American bison’s taste for prairie grasses helps to boost diversity of native flora (pictured, stiff goldenrod, Solidago rigida). Credit: Jill Haukos/Kansas State University

    .readcube-buybox { display: none !important;}
    Grazing animals can shape the grasslands they dine on by preferentially eating certain species, allowing other species to find a foothold. To quantify this effect, Zak Ratajczak at Kansas State University in Manhattan and his colleagues analysed 29 years’ worth of data from plots in an unploughed native tallgrass prairie in eastern Kansas1. Since 1992, the plots have been managed in one of three ways: year-round grazing by bison (Bison bison); seasonal grazing by cattle; or no grazing at all.

    Access options

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0 0;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50%0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:””;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueAll prices are NET prices.VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00All prices are NET prices.

    Additional access options:

    doi: https://doi.org/10.1038/d41586-022-02332-4

    References

    Subjects

    Latest on:

    Subjects More

  • in

    Age as a primary driver of the gut microbial composition and function in wild harbor seals

    Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tanaka, M. & Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int. 66, 515–522 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Xu, C., Zhu, H. & Qiu, P. Aging progression of human gut microbiota. BMC Microbiol. 19, 1–10 (2019).Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagpal, R. et al. Ontogenesis of the gut microbiota composition in healthy, full-term, vaginally born and breast-fed infants over the first 3 years of life: A quantitative bird’s-eye view. Front. Microbiol. 8, 1–9 (2017).Article 

    Google Scholar 
    Smith, S. C., Chalker, A., Dewar, M. L. & Arnould, J. P. Y. Age-related differences revealed in Australian fur seal Arctocephalus pusillus doriferus gut microbiota. FEMS Microbiol. Ecol. 86, 246–255 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Janiak, M. C. et al. Age and sex-associated variation in the multi-site microbiome of an entire social group of free-ranging rhesus macaques. Microbiome 9, (2021).Toro-Valdivieso, C., Toro, F., Stubbs, S., Castro-Nallar, E. & Blacklaws, B. Patterns of the fecal microbiota in the Juan Fernández fur seal (Arctocephalus philippii). MicrobiologyOpen 10, 1–19 (2021).Article 
    CAS 

    Google Scholar 
    Medeiros, A. W. et al. Characterization of the faecal bacterial community of wild young South American (Arctocephalus australis) and Subantarctic fur seals (Arctocephalus tropicalis). FEMS Microbiol. Ecol. 92, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Bik, E. M. et al. Marine mammals harbor unique microbiotas shaped by and yet distinct from the sea. Nat. Commun. 7, 10516 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Numberger, D., Herlemann, D. P. R., Jürgens, K., Dehnhardt, G. & Schulz-Vogt, H. Comparative analysis of the fecal bacterial community of five harbor seals (Phoca vitulina). MicrobiologyOpen 5, 782–792 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pacheco-Sandoval, A. et al. The Pacific harbor seal gut microbiota in Mexico: Its relationship with diet and functional inferences. PlosOne 14, (2019).Nelson, T. M., Rogers, T. L., Carlini, A. R. & Brown, M. V. Diet and phylogeny shape the gut microbiota of Antarctic seals: A comparison of wild and captive animals. Environ. Microbiol. 15, 1132–1145 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Glad, T. et al. Ecological characterisation of the colonic microbiota in Arctic and sub-Arctic seals. Microbiol. Ecol. 60, 320–330 (2010).Article 
    CAS 

    Google Scholar 
    Delport, T. C., Power, M. L., Harcourt, R. G., Webster, K. N. & Tetu, S. G. Colony location and captivity influence the gut microbial community composition of the Australian sea lion (Neophoca cinerea). Appl. Environ. Microbiol. 82, 3440–3349 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stoffel, M. A. et al. Early sexual dimorphism in the developing gut microbiome of northern elephant seals. Mol. Ecol. 29, 2109–2122 (2020).PubMed 
    Article 

    Google Scholar 
    Tian, J., Du, J., Han, J., Song, X. & Lu, Z. Age-related differences in gut microbial community composition of captive spotted seals (Phoca largha). Mar. Mamm. Sci. 36, 1231–1240 (2020).Article 

    Google Scholar 
    Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bigg, M. A. Harbour seal: Phoca vitulina and P. largha. In Handbook of Marine Mammals Vol. 2 (eds Ridgeway, S. H. & Harrison, R. J.) 1–27 (Academic Press, 1981).
    Google Scholar 
    Parracho, H., McCartney, A. L. & Gibson, G. R. Probiotics and prebiotics in infant nutrition. Proc. Nutr. Society 66, 405–411 (2007).Article 

    Google Scholar 
    Marques, T. M. et al. Programming infant gut microbiota: Influence of dietary and environmental factors. Curr. Opin. Biotechnol. 21, 149–156 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, 1556–1573 (2007).Article 
    CAS 

    Google Scholar 
    Mitsuoka, T. Intestinal flora and aging. Nutr. Rev. 50, 438–446 (1992).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bowen, W., Oftedal, O. & Boness, D. Mass and energy transfer during lactation in a small phocid, the harbor seal (Phoca vitulina). Physiol. Zool. 65, 844–866 (1992).Article 

    Google Scholar 
    Bowen, W. D., Boness, D. J. & Iverson, S. J. Diving behaviour of lactating harbour seals and their pups during maternal foraging trips. Can. J. Zool. 77, 978–988 (1999).Article 

    Google Scholar 
    Jørgensen, C., Lydersen, C., Brix, O. & Kovacs, K. M. Diving development in nursing harbour seal pups. J. Exp. Biol. 204, 3993–4004 (2001).PubMed 
    Article 

    Google Scholar 
    Muelbert, M. M. C. & Bowen, W. D. Duration of lactation and postweaning changes in mass and body composition of harbour seal, Phoca vitulina, pups. Can. J. Zool. 71, 1405–1414 (1993).Article 

    Google Scholar 
    Kim, M., Cho, H. & Lee, W. Y. Distinct gut microbiotas between southern elephant seals and Weddell seals of Antarctica. J. Microbiol. 58, 1018–1026 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kershaw, J. L. & Hall, A. J. Seasonal variation in harbour seal (Phoca vitulina) blubber cortisol—A novel indicator of physiological state?. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Madison, A. & Kiecolt-Glaser, J. K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci. 28, 105–110 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, P. M., Miller, D., Cooper, R. & Hammond, P. S. Changes in the distribution and activity of female harbour seals during the breeding season: implications for their lactation strategy and mating patterns. J. Anim. Ecol. 63, 24 (1994).Article 

    Google Scholar 
    Raulo, A. et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2018).PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2013, 1–22 (2013).
    Google Scholar 
    Fernández-Martin, E. M., Heckel, G., Schramm, Y. & García-Aguilar, M. C. The timing of pupping and molting of the Pacific harbor seal, Phoca vitulina richardii, at Punta Banda Estuary, Baja California, Mexico. Cienc. Mar. 42, 195–208 (2016).Article 

    Google Scholar 
    Oates, S. C. Survival, movements, and diet of juvenile harbor seals along central California. [Master’s thesis, San Jose State University]. (2005). https://doi.org/10.31979/etd.ra96-xhge.Germain, L. R., Mccarthy, M. D., Koch, P. L. & Harvey, J. T. Stable carbon and nitrogen isotopes in multiple tissues of wild and captive harbor seals (Phoca vitulina) off the California coast. Mar. Mamm. Sci. 28, 542–560 (2012).Article 
    CAS 

    Google Scholar 
    Brassea-Pérez, E., Schramm, Y., Heckel, G., Chong-Robles, J. & Lago-Lestón, A. Metabarcoding analysis of the Pacific harbor seal diet in Mexico. Mar. Biol. 166, (2019).Davis, T. A., Nguyen, H. V., Costa, D. P. & Reeds, P. J. Amino acid composition of pinniped milk. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 110, 633–639 (1995).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sauvé, C. C., van de Walle, J., Hammill, M. O., Arnould, J. P. Y. & Beauplet, G. Stomach temperature records reveal nursing behaviour and transition to solid food consumption in an unweaned mammal, the harbour seal pup (Phoca vitulina). PLoS ONE 9, (2014).Fernández Martín, E. M. Fenología de los nacimientos, estado de salud de las crías, y estructura genética poblacional de Phoca vitulina richardii en México [Doctoral thesis, Universidad Autónoma de Baja California, Mexico]. (2018).Gresse, R. et al. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 25, 851–873 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ni, Y. et al. Distinct composition and metabolic functions of human gut microbiota are associated with cachexia in lung cancer patients. ISME J. 15, 3207–3220 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pacífico, C. et al. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms 9, 1–23 (2021).Article 
    CAS 

    Google Scholar 
    Fenn, K. et al. Quinones are growth factors for the human gut microbiota. Microbiome 5, 161 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodríguez, J. M. et al. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Disease 26, (2015).Thompson, P. M., Mackay, A., Tollit, D. J., Enderby, S. & Hammond, P. S. The influence of body size and sex on the characteristics of harbour seal foraging trips. Can. J. Zool. 76, 1044–1053 (1998).Article 

    Google Scholar 
    van Parijs, S. M., Thompson, P. M., Tollit, D. J. & Mackay, A. Distribution and activity of male harbour seals during the mating season. Anim. Behav. 54, 35–43 (1997).Article 

    Google Scholar 
    Bjorkland, R. H. et al. Stable isotope mixing models elucidate sex and size effects on the diet of a generalist marine predator. Mar. Ecol. Prog. Ser. 526, 213–225 (2015).ADS 
    Article 

    Google Scholar 
    Schwarz, D. et al. Large-scale molecular diet analysis in a generalist marine mammal reveals male preference for prey of conservation concern. Ecol. Evol. 8, 9889–9905 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulva, J. Temporal variations in birth period and characteristics of newborn harbour seals. Rapports et procPs-verbaux, Reunions du Conseil International pour I’Exploration de la Mer 169, 405–408 (1975).
    Google Scholar 
    Bhute, S. S., Ghaskadbi, S. S. & Shouche, Y. S. Rare biosphere in human gut: A less explored component of human gut microbiota and its association with human health. In Mining of Microbial Wealth and MetaGenomics (eds Kalia, V. C. et al.) 133–142 (Springer Nature Singapore Ptd Ltd, 2017). https://doi.org/10.1007/978-981-10-5708-3.Chapter 

    Google Scholar 
    Brown, R. F. & Mate, B. R. Abundance, movements, and feeding habits of harbor seals, Phoca vitulina, at Netarts and Tillamook Bays, Oregon. Fishery Bull. 81, 291–301 (1983).
    Google Scholar 
    Higgins, R. Bacteria and fungi of marine mammals: A review. Can. Veterinary J. 41, 105–116 (2000).CAS 

    Google Scholar 
    Gilbert, M. J. et al. Campylobacter blaseri sp. nov., isolated from common seals (Phoca vitulina). Int. J. Syst. Evolut. Microbiol. 68, 1787–1794 (2018).Article 
    CAS 

    Google Scholar 
    Agnese, E. D. et al. Comparative microbial community analysis of fur seals and salmon aquaculture in Tasmania. Authorea. https://doi.org/10.22541/au.160253843.32636436/v1 (2020).Article 

    Google Scholar 
    Rivas, A. J., Lemos, M. L. & Osorio, C. R. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans. Front. Microbiol. 4, 1–6 (2013).Article 

    Google Scholar 
    Fouz, B., Toranzo, A. E., Milan, M. & Amaro, C. Evidence that water transmits the disease caused by the fish pathogen Photobacterium damselae subsp. damselae. J. Appl. Microbiol. 88, 531–535 (2000).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hundenborn, J., Thurig, S., Kommerell, M., Haag, H. & Nolte, O. Severe Wound Infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Rep. Med. 2013, (2013).Lubinsky-Jinich, D., Schramm, Y. & Heckel, G. The Pacific Harbor Seal’s (Phoca vitulina richardii) breeding colonies in Mexico: Abundance and distribution. Aquat. Mamm. 43, 73–81 (2017).Article 

    Google Scholar 
    Arias-Del Razo, A. et al. Distribution of four pinnipeds (Zalophus californianus, Arctocephalus philippii townsendi, Phoca vitulina richardii, and Mirounga angustirostris) on Islands off the west coast of the Baja California Peninsula, Mexico. Aquat. Mamm. 43, 40–51 (2017).Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA. 108, 4516–4522 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Robertson, K. M., Lauf, M. L. & Morin, P. A. Genetic sexing of pinnipeds: A real-time, single step qPCR technique. Conserv. Genet. Resour. 10, 213–218 (2018).Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2019). Accessed 3 June 2021.McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, (2013).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-4. https://cran.r-project.org/package=vegan (2019). Accessed 3 June 2021.Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: An R package to analyse and visualise 16S rRNA amplicon data. bioRxiv. https://doi.org/10.1101/299537 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Salinas, H. & Ramirez-Delgado, D. ecolTest: Community Ecology Tests. (2021).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 5, 169–172 (2011).PubMed 
    Article 

    Google Scholar 
    Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using adonis. R package version 0.4. (2020).Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes-A 2019 update. Nucleic Acids Res. 48, D455–D463 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    Decomposing virulence to understand bacterial clearance in persistent infections

    Fly population and maintenanceWe used an outbred population of Drosophila melanogaster established from 160 Wolbachia-infected fertilised females collected in Azeitão, Portugal54, and given to us by Élio Sucena. For at least 13 generations prior to the start of the experiments the flies were maintained on standard sugar yeast agar medium (SYA medium: 970 ml water, 100 g brewer’s yeast, 50 g sugar, 15 g agar, 30 ml 10% Nipagin solution and 3 ml propionic acid; ref. 61), in a population cage containing at least 5000 flies, with non-overlapping generations of 15 days. They were maintained at 24.3 ± 0.2 °C, on a 12:12 h light-dark cycle, at 60–80 % relative humidity. The experimental flies were kept under the same conditions. No ethical approval or guidance is required for experiments with D. melanogaster.Bacterial speciesWe used the Gram positive Lactococcus lactis (gift from Brian Lazzaro), Gram negative Enterobacter cloacae subsp. dissolvens (hereafter called E. cloacae; German collection of microorganisms and cell cultures, DSMZ; type strain: DSM-16657), Providencia burhodogranariea strain B (gift from Brian Lazzaro, DSMZ; type strain: DSM-19968) and Pseudomonas entomophila (gift from Bruno Lemaitre). L. lactis43, Pr. burhodogranariea44 and Ps. entomophila45 were isolated from wild-collected D. melanogaster and can be considered as opportunistic pathogens. E. cloacae was isolated from a maize plant, but has been detected in the microbiota of D. melanogaster46. All bacterial species were stored in 34.4% glycerol at −80 °C and new cultures were grown freshly for each experimental replicate.Experimental designFor each bacterial species, flies were exposed to one of seven treatments: no injection (naïve), injection with Drosophila Ringer’s (injection control) or injection with one of five concentrations of bacteria ranging from 5 × 106 to 5 × 109 colony forming units (CFUs)/mL, corresponding to doses of approximately 92, 920, 1,840, 9200 and 92,000 CFUs per fly. The injections were done in a randomised block design by two people. Each bacterial species was tested in three independent experimental replicates. Per experimental replicate we treated 252 flies, giving a total of 756 flies per bacterium (including naïve and Ringer’s injection control flies). Per experimental replicate and treatment, 36 flies were checked daily for survival until all flies were dead. A sub-set of the dead flies were homogenised upon death to test whether the infection had been cleared before death or not. To evaluate bacterial load in living flies, per experimental replicate, four of the flies were homogenised per treatment, for each of nine time points: one, two, three, four, seven, 14, 21, 28- and 35-days post-injection.Infection assayBacterial preparation was performed as in Kutzer et al.24, except that we grew two overnight liquid cultures of bacteria per species, which were incubated overnight for approximately 15 h at 30 °C and 200 rpm. The overnight cultures were centrifuged at 2880 × g at 4 °C for 10 min and the supernatant removed. The bacteria were washed twice in 45 mL sterile Drosophila Ringer’s solution (182 mmol·L-1 KCl; 46 mol·L-1 NaCl; 3 mmol·L-1 CaCl2; 10 mmol·L-1 Tris·HCl; ref. 62) by centrifugation at 2880 × g at 4 °C for 10 min. The cultures from the two flasks were combined into a single bacterial solution and the optical density (OD) of 500 µL of the solution was measured in a Ultrospec 10 classic (Amersham) at 600 nm. The concentration of the solution was adjusted to that required for each injection dose, based on preliminary experiments where a range of ODs between 0.1 and 0.7 were serially diluted and plated to estimate the number of CFUs. Additionally, to confirm post hoc the concentration estimated by the OD, we serially diluted to 1:107 and plated the bacterial solution three times and counted the number of CFUs.The experimental flies were reared at constant larval density for one generation prior to the start of the experiments. Grape juice agar plates (50 g agar, 600 mL red grape juice, 42 mL Nipagin [10% w/v solution] and 1.1 L water) were smeared with a thin layer of active yeast paste and placed inside the population cage for egg laying and removed 24 h later. The plates were incubated overnight then first instar larvae were collected and placed into plastic vials (95 × 25 mm) containing 7 ml of SYA medium. Each vial contained 100 larvae to maintain a constant density during development. One day after the start of adult eclosion, the flies were placed in fresh food vials in groups of five males and five females, after four days the females were randomly allocated to treatment groups and processed as described below.Before injection, females were anesthetised with CO2 for a maximum of five minutes and injected in the lateral side of the thorax using a fine glass capillary (Ø 0.5 mm, Drummond), pulled to a fine tip with a Narishige PC-10, and then connected to a Nanoject II™ injector (Drummond). A volume of 18.4 nL of bacterial solution, or Drosophila Ringer’s solution as a control, was injected into each fly. Full controls, i.e., naïve flies, underwent the same procedure but without any injection. After being treated, flies were placed in groups of six into new vials containing SYA medium, and then transferred into new vials every 2–5 days. Maintaining flies in groups after infection is a standard method in experiments with D. melanogaster that examine survival and bacterial load (e.g. refs. 22, 63, 64). At the end of each experimental replicate, 50 µL of the aliquots of bacteria that had been used for injections were plated on LB agar to check for potential contamination. No bacteria grew from the Ringer’s solution and there was no evidence of contamination in any of the bacterial replicates. To confirm the concentration of the injected bacteria, serial dilutions were prepared and plated before and after the injections for each experimental replicate, and CFUs counted the following day.Bacterial load of living fliesFlies were randomly allocated to the day at which they would be homogenised. Prior to homogenisation, the flies were briefly anesthetised with CO2 and removed from their vial. Each individual was placed in a 1.5 mL microcentrifuge tube containing 100 µL of pre-chilled LB media and one stainless steel bead (Ø 3 mm, Retsch) on ice. The microcentrifuge tubes were placed in a holder that had previously been chilled in the fridge at 4 °C for at least 30 min to reduce further growth of the bacteria. The holders were placed in a Retsch Mill (MM300) and the flies homogenised at a frequency of 20 Hz for 45 s. Then, the tubes were centrifuged at 420 × g for one minute at 4 °C. After resuspending the solution, 80 µL of the homogenate from each fly was pipetted into a 96-well plate and then serially diluted 1:10 until 1:105. Per fly, three droplets of 5 μL of every dilution were plated onto LB agar. Our lower detection limit with this method was around seven colony-forming units per fly. We consider bacterial clearance by the host to be when no CFUs were visible in any of the droplets, although we note that clearance is indistinguishable from an infection that is below the detection limit. The plates were incubated at 28 °C and the numbers of CFUs were counted after ~20 h. Individual bacterial loads per fly were back calculated using the average of the three droplets from the lowest countable dilution in the plate, which was usually between 10 and 60 CFUs per droplet.D. melanogaster microbiota does not easily grow under the above culturing conditions (e.g. ref. 42) Nonetheless we homogenised control flies (Ringer’s injected and naïve) as a control. We rarely retrieved foreign CFUs after homogenising Ringer’s injected or naïve flies (23 out of 642 cases, i.e., 3.6 %). We also rarely observed contamination in the bacteria-injected flies: except for homogenates from 27 out of 1223 flies (2.2 %), colony morphology and colour were always consistent with the injected bacteria (see methods of ref. 65). Twenty one of these 27 flies were excluded from further analyses given that the contamination made counts of the injected bacteria unreliable; the remaining six flies had only one or two foreign CFUs in the most concentrated homogenate dilution, therefore these flies were included in further analyses. For L. lactis (70 out of 321 flies), P. burhodogranaeria (7 out of 381 flies) and Ps. entomophila (1 out of 71 flies) there were too many CFUs to count at the highest dilution. For these cases, we denoted the flies as having the highest countable number of CFUs found in any fly for that bacterium and at the highest dilution23. This will lead to an underestimate of the bacterial load in these flies. Note that because the assay is destructive, bacterial loads were measured once per fly.Bacterial load of dead fliesFor two periods of time in the chronic infection phase, i.e., between 14 and 35 days and 56 to 78 days post injection, dead flies were retrieved from their vial at the daily survival checks and homogenised in order to test whether they died whilst being infected, or whether they had cleared the infection before death. The fly homogenate was produced in the same way as for live flies, but we increased the dilution of the homogenate (1:1 to 1:1012) because we anticipated higher bacterial loads in the dead compared to the live flies. The higher dilution allowed us more easily to determine whether there was any obvious contamination from foreign CFUs or not. Because the flies may have died at any point in the 24 h preceding the survival check, and the bacteria can potentially continue replicating after host death, we evaluated the infection status (yes/no) of dead flies instead of the number of CFUs. Dead flies were evaluated for two experimental replicates per bacteria, and 160 flies across the whole experiment. Similar to homogenisation of live flies, we rarely observed contamination from foreign CFUs in the homogenate of dead bacteria-injected flies (3 out of 160; 1.9 %); of these three flies, one fly had only one foreign CFU, so it was included in the analyses. Dead Ringer’s injected and naïve flies were also homogenised and plated as controls, with 6 out of 68 flies (8.8%) resulting in the growth of unidentified CFUs.Statistical analysesStatistical analyses were performed with R version 4.2.166 in RStudio version 2022.2.3.49267. The following packages were used for visualising the data: “dplyr”68, “ggpubr”69, “gridExtra”70, “ggplot2”71, “plyr”72, “purr”73, “scales”74, “survival”75,76, “survminer”77, “tidyr”78 and “viridis”79, as well as Microsoft PowerPoint for Mac v16.60 and Inkscape for Mac v 1.0.2. Residuals diagnostics of the statistical models were carried out using “DHARMa”80, analysis of variance tables were produced using “car”81, and post-hoc tests were carried out with “emmeans”82. To include a factor as a random factor in a model it has been suggested that there should be more than five to six random-effect levels per random effect83, so that there are sufficient levels to base an estimate of the variance of the population of effects84. In our experimental designs, the low numbers of levels within the factors ‘experimental replicate’ (two to three levels) and ‘person’ (two levels), meant that we therefore fitted them as fixed, rather than random factors84. However, for the analysis of clearance (see below) we included species as a random effect because it was not possible to include it as a fixed effect because PPP is already a species-level predictor. Below we detail the statistical models that were run according to the questions posed. All statistical tests were two-sided.Do the bacterial species differ in virulence?To test whether the bacterial species differed in virulence, we performed a linear model with the natural log of the maximum hazard as the dependent variable and bacterial species as a factor. Post-hoc multiple comparisons were performed using “emmeans”82 and “magrittr”85, using the default Tukey adjustment for multiple comparisons. Effect sizes given as Cohen’s d, were also calculated using “emmeans”, using the sigma value of 0.4342, as estimated by the package. The hazard function in survival analyses gives the instantaneous failure rate, and the maximum hazard gives the hazard at the point at which this rate is highest. We extracted maximum hazard values from time of death data for each bacterial species/dose/experimental replicate. Each maximum hazard per species/dose/experimental replicate was estimated from an average of 33 flies (a few flies were lost whilst being moved between vials etc.). To extract maximum hazard values we defined a function that used the “muhaz” package86 to generate a smooth hazard function and then output the maximum hazard in a defined time window, as well as the time at which this maximum is reached. To assess the appropriate amount of smoothing, we tested and visualised results for four values (1, 2, 3 and 5) of the smoothing parameter, b, which was specified using bw.grid87. We present the results from b = 2, but all of the other values gave qualitatively similar results (see Supplementary Table 2). We used bw.method = “global” to allow a constant smoothing parameter across all times. The defined time window was zero to 20 days post injection. We removed one replicate (92 CFU for E. cloacae infection) because there was no mortality in the first 20 days and therefore the maximum hazard could not be estimated. This gave final sizes of n = 14 for E. cloacae and n = 15 for each of the other three species.$${{{{{rm{Model}}}}}},1:,{{log }}left({{{{{rm{maximum}}}}}},{{{{{rm{hazard}}}}}}right), sim ,{{{{{rm{bacterial}}}}}},{{{{{rm{species}}}}}}$$Are virulence differences due to variation in pathogen exploitation or PPP?To test whether the bacterial species vary in PPP, we performed a linear model with the natural log of the maximum hazard as the dependent variable, bacterial species as a factor, and the natural log of infection intensity as a covariate. We also included the interaction between bacterial species and infection intensity: a significant interaction would indicate variation in the reaction norms, i.e., variation in PPP. The package “emmeans”82 was used to test which of the reaction norms differed significantly from each other. We extracted maximum hazard values from time of death data for each bacterial species/dose/experimental replicate as described in section “Do the bacterial species differ in virulence?”. We also calculated the maximum hazard for the Ringer’s control groups, which gives the maximum hazard in the absence of infection (the y-intercept). We present the results from b = 2, but all of the other values gave qualitatively similar results (see results). We wanted to infer the causal effect of bacterial load upon host survival (and not the reverse), therefore we reasoned that the bacterial load measures should derive from flies homogenised before the maximum hazard had been reached. For E. cloacae, L. lactis, and Pr. burhodogranariea, for all smoothing parameter values, the maximum hazard was reached after two days post injection, although for smoothing parameter value 1, there were four incidences where it was reached between 1.8- and 2-days post injection. Per species/dose/experimental replicate we therefore calculated the geometric mean of infection intensity combined for days 1 and 2 post injection. In order to include flies with zero load, we added one to all load values before calculating the geometric mean. Geometric mean calculation was done using the R packages “dplyr”68, “EnvStats”88, “plyr”72 and “psych”89. Each mean was calculated from the bacterial load of eight flies, except for four mean values for E. cloacae, which derived from four flies each.For Ps. entomophila the maximum hazard was consistently reached at around day one post injection, meaning that bacterial sampling happened at around the time of the maximum hazard, and we therefore excluded this bacterial species from the analysis. We removed two replicates (Ringer’s and 92 CFU for E. cloacae infection) because there was no mortality in the first 20 days and therefore the maximum hazard could not be estimated. One replicate was removed because the maximum hazard occurred before day 1 for all b values (92,000 CFU for E. cloacae) and six replicates were removed because there were no bacterial load data available for day one (experimental replicate three of L. lactis). This gave final sample sizes of n = 15 for E. cloacae and n = 12 for L. lactis, and n = 18 for Pr. burhodogranariea.$${{{{{rm{Model}}}}}},2 :,{{log }}({{{{{rm{maximum}}}}}},{{{{{rm{hazard}}}}}}), sim ,{{log }}({{{{{rm{geometric}}}}}},{{{{{rm{mean}}}}}},{{{{{rm{bacterial}}}}}},{{{{{rm{load}}}}}}),\ times ,{{{{{rm{bacterial}}}}}},{{{{{rm{species}}}}}}$$To test whether there is variation in pathogen exploitation (infection intensity measured as bacterial load), we performed a linear model with the natural log of infection intensity as the dependent variable and bacterial species as a factor. Similar to the previous model, we used the geometric mean of infection intensity combined for days 1 and 2 post injection, for each bacterial species/dose/experimental replicate. The uninfected Ringer’s replicates were not included in this model. Post-hoc multiple comparisons were performed using “emmeans”, using the default Tukey adjustment for multiple comparisons. Effect sizes given as Cohen’s d, were also calculated using “emmeans”, using the sigma value of 2.327, as estimated by the package. Ps. entomophila was excluded for the reason given above. The sample sizes per bacterial species were: n = 13 for E. cloacae, n = 10 for L. lactis and n = 15 for Pr. burhodogranariea.$${{{{{rm{Model}}}}}},3:,{{log }}({{{{{rm{geometric}}}}}},{{{{{rm{mean}}}}}},{{{{{rm{bacterial}}}}}},{{{{{rm{load}}}}}}), sim ,{{{{{rm{bacterial}}}}}},{{{{{rm{species}}}}}}$$Are persistent infection loads dose-dependent?We tested whether initial injection dose is a predictor of bacterial load at seven days post injection22,25. We removed all flies that had a bacterial load that was below the detection limit as they are not informative for this analysis. The response variable was natural log transformed bacterial load at seven days post-injection and the covariate was natural log transformed injection dose, except for P. burhodogranariea, where the response variable and the covariate were log-log transformed. Separate models were carried out for each bacterial species. Experimental replicate and person were fitted as fixed factors. By day seven none of the flies injected with 92,000 CFU of L. lactis were alive. The analysis was not possible for Ps. entomophila infected flies because all flies were dead by seven days post injection.$${{{{{rm{Model}}}}}},4:,{{log }}({{{{{rm{day}}}}}},7,{{{{{rm{bacterial}}}}}},{{{{{rm{load}}}}}}), sim ,{{log }}({{{{{rm{injection}}}}}},{{{{{rm{dose}}}}}}),+,{{{{{rm{replicate}}}}}},+,{{{{{rm{person}}}}}}$$Calculation of clearance indicesTo facilitate the analyses of clearance we calculated clearance indices, which aggregate information about clearance into a single value for each bacterial species/dose/experimental replicate. All indices were based on the estimated proportion of cleared infections (defined as samples with a bacterial load that was below the detection limit) of the whole initial population. For this purpose, we first used data on bacterial load in living flies to calculate the daily proportion of cleared infections in live flies for the days that we sampled. Then we used the data on fly survival to calculate the daily proportion of flies that were still alive. By multiplying the daily proportion of cleared flies in living flies with the proportion of flies that were still alive, we obtained the proportion of cleared infections of the whole initial population – for each day on which bacterial load was measured. We then used these data to calculate two different clearance indices, which we used for different analyses. For each index we calculated the mean clearance across several days. Specifically, the first index was calculated across days three and four post injection (clearance index3,4), and the second index was calculated from days seven, 14 and 21 (clearance index7,14,21).Do the bacterial species differ in clearance?To test whether the bacterial species differed in clearance, we used clearance index3,4, which is the latest timeframe for which we could calculate this index for all four species: due to the high virulence of Ps. entomophila we were not able to assess bacterial load and thus clearance for later days. The distribution of clearance values did not conform to the assumptions of a linear model. We therefore used a Kruskal-Wallis test with pairwise Mann-Whitney-U post hoc tests. Note that the Kruskal-Wallis test uses a Chi-square distribution for approximating the H test statistic. To control for multiple testing we corrected the p-values of the post hoc tests using the method proposed by Benjamini and Hochberg90 that is implemented in the R function pairwise.wilcox.test.$${{{{{rm{Model}}}}}},5:,{{{{{{rm{clearance}}}}}},{{{{{rm{index}}}}}}}_{3,4}, sim ,{{{{{rm{bacterial}}}}}},{{{{{rm{species}}}}}}$$Do exploitation or PPP predict variation in clearance?To assess whether exploitation or PPP predict variation in clearance we performed separate analyses for clearance index3,4 and clearance index7,14,21. As discussed above, this precluded analysing Ps. entomophila. For each of the two indices we fitted a linear mixed effects model with the clearance index as the response variable. As fixed effects predictors we used the replicate-specific geometric mean log bacterial load and the species-specific PPP. In addition, we included species as a random effect.In our analysis we faced the challenge that many measured clearance values were at, or very close to zero. In addition, clearance values below zero do not make conceptual sense. To appropriately account for this issue, we used a logit link function (with Gaussian errors) in our model, which restricts the predicted clearance values to an interval between zero and one. Initial inspections of residuals indicated violations of the model assumption of homogenously distributed errors. To account for this problem, we included the log bacterial load and PPP as predictors of the error variance, which means that we used a model in which we relaxed the standard assumption of homogenous errors and account for heterogenous errors by fitting a function of how errors vary. For this purpose, we used the option dispformula when fitting the models with the function glmmTMB91.$${{{{{rm{Model}}}}}},6 :,{{{{{{rm{clearance}}}}}},{{{{{rm{index}}}}}}}_{3,4},{{{{{rm{or}}}}}},{{{{{{rm{clearance}}}}}},{{{{{rm{index}}}}}}}_{7,14,21}, \ sim ,{{log }}({{{{{rm{geometric}}}}}},{{{{{rm{mean}}}}}},{{{{{rm{bacterial}}}}}},{{{{{rm{load}}}}}}),+,{{{{{rm{PPP}}}}}}+{{{{{{rm{bacterial}}}}}},{{{{{rm{species}}}}}}}_{{{{{{rm{random}}}}}}}$$Does longer-term clearance depend upon the injection dose?In contrast to the analyses described above, we additionally aimed to assess the long-term dynamics of clearance based on the infection status of dead flies collected between 14 and 35 days and 56 to 78 days after injection. Using binomial logistic regressions, we tested whether initial injection dose affected the propensity for flies to clear an infection with E. cloacae or Pr. burhodogranariea before they died. The response variable was binary whereby 0 denoted that no CFUs grew from the homogenate and 1 denoted that CFUs did grow from the homogenate. Log-log transformed injection dose was included as a covariate as well as its interaction with the natural log of day post injection, and person was fitted as a fixed factor. Replicate was included in the Pr. burhodogranariea analysis only, because of unequal sampling across replicates for E. cloacae. L. lactis injected flies were not analysed because only 4 out of 39 (10.3%) cleared the infection. Ps. entomophila infected flies were not statistically analysed because of a low sample size (n = 12). The two bacterial species were analysed separately.$${{{{{rm{Model}}}}}},7 :,{{{{{rm{CFU}}}}}},{{{{{{rm{presence}}}}}}/{{{{{rm{absence}}}}}}}_{{{{{{rm{dead}}}}}}}, sim ,{{log }}({{log }}({{{{{rm{injection}}}}}},{{{{{rm{dose}}}}}})),\ times ,{{log }}({{{{{rm{day}}}}}},{{{{{rm{post}}}}}},{{{{{rm{injection}}}}}}),+,{{{{{rm{replicate}}}}}},+,{{{{{rm{person}}}}}}$$To test whether the patterns of clearance were similar for live and dead flies we tested whether the proportion of live uninfected flies was a predictor of the proportion of dead uninfected flies. We separately summed up the numbers of uninfected and infected flies for each bacterial species and dose, giving us a total sample size of n = 20 (four species × five doses). For live and for dead homogenised flies we had a two-vector (proportion infected and proportion uninfected) response variable, which was bound into a single object using cbind. The predictor was live flies, and the response variable was dead flies, and it was analysed using a generalized linear model with family = quasibinomial.$${{{{{rm{Model}}}}}},8:,{{{{{rm{cbind}}}}}}({{{{{rm{dead}}}}}},{{{{{rm{uninfected}}}}}},,{{{{{rm{dead}}}}}},{{{{{rm{infected}}}}}}), sim ,{{{{{rm{cbind}}}}}}({{{{{rm{live}}}}}},{{{{{rm{uninfected}}}}}},,{{{{{rm{live}}}}}},{{{{{rm{infected}}}}}})$$Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More