More stories

  • in

    Schistosomes in the Persian Gulf: novel molecular data, host associations, and life-cycle elucidations

    Brant, S. V. & Loker, E. S. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J. Parasitol. 95, 941–963 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horák, P. et al. Avian schistosomes and outbreaks of cercarial dermatitis. Clin. Microbiol. Rev. 28, 165–190 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brant, S. V. et al. An approach to revealing blood fluke life cycles, taxonomy, and diversity: Provision of key reference data including DNA sequence from single life cycle stages. J. Parasitol. 92, 77–88 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. & Loker, E. S. Discovery-based studies of schistosome diversity stimulate new hypotheses about parasite biology. Trends Parasitol. 29, 449–459 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lorenti, E., Brant, S. V, Gilardoni, C., Diaz, J. I. & Cremonte, F. Two new genera and species of avian schistosomes from Argentina with proposed recommendations and discussion of the polyphyletic genus Gigantobilharzia (Trematoda, Schistosomatidae). Parasitology. 149, 1–59 (2022).Article 

    Google Scholar 
    Khalil, L. F. Family Schistosomatidae Stiles & Hassall, 1898. Keys Trematoda 1, 419–432 (2002).Article 

    Google Scholar 
    Snyder, S. D. & Loker, E. S. Evolutionary relationships among the Schistosomatidae (Platyhelminthes: Digenea) and an Asian origin for Schistosoma. J. Parasitol. 86, 283–288 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. et al. Cercarial dermatitis transmitted by exotic marine snail. Emerg. Infect. Dis. 16, 1357 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, W. H. The morphology of Gigantobilharzia huttoni (Leigh, 1953) an avian schistosome with marine dermatitis-producing larvae. J. Parasitol. 41, 262–269 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ewers, W. H. A new intermediate host of schistosome trematodes from New South Wales. Nature 190, 283–284 (1961).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rudolphi, K. A. Entozoorum synopsis cui accedunt mantissa duplex et indices locupletissimi. (Sumtibus A. Rücker, 1819).Odhner, T. Zum natürlichen System der digenen Trematoden. V. Zool. Anz. 41, 54–71 (1912).
    Google Scholar 
    Farley, J. A review of the family Schistosomatidae: Excluding the genus Schistosoma from mammals. J. Helminthol. 45, 289–320 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. The biology of a marine dermatitis-producing schistosome cercaria from Batillaria minima (Gmelin). J. Parasitol. 39, 19–20 (1953).
    Google Scholar 
    Al-Kandari, W. Y., Al-Bustan, S. A., Isaac, A. M., George, B. A. & Chandy, B. S. Molecular identification of Austrobilharzia species parasitizing Cerithidea cingulata (Gastropoda: Potamididae) from Kuwait Bay. J. Helminthol. 86, 470 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. E. An annotated key to the cercariae that develop in the snail Cerithidea californica. Bull South Calif. Acad. Sci. 71, 39–43 (1972).
    Google Scholar 
    Holliman, R. B. Larval trematodes from the Apalachee Bay area, Florida, with a checklist of known marine cercariae arranged in a key to their superfamilies. Tulane Stud. Zool. 9, 1–74 (1961).
    Google Scholar 
    Short, R. B. & Holliman, R. B. Austrobilharzia penneri, a new schistosome from marine snails. J. Parasitol. 47, 447–450 (1961).Article 

    Google Scholar 
    Lindberg, W. F. P. D. R. Phylogeny and Evolution of the Mollusca (Univ of California Press, 2008).
    Google Scholar 
    Chong-ti, T. Philophthalmid larval trematodes from Hong Kong and the coast of south China. In The Marine Flora and Fauna of Hong Kong and Southern China II: Proceedings of the Second International Marine Biological Workshop Hong Kong, 2–24 April 1986 Vol. 1, 213 (Hong Kong University Press, 1990).Taraschewski, H. Investigations on the prevalence of Heterophyes species in twelve populations of the first intermediate host in Egypt and Sudan. J. Trop. Med. Hyg. 88, 265–271 (1985).CAS 
    PubMed 

    Google Scholar 
    Reid, D. G. & Ozawa, T. The genus Pirenella Gray, 1847 (= Cerithideopsilla Thiele, 1929) (Gastropoda: Potamididae) in the Indo-West Pacific region and Mediterranean Sea. Zootaxa 4076, 1–91 (2016).PubMed 
    Article 

    Google Scholar 
    Vahidi, F., Fatemi, S. M. R., Danehkar, A., Mashinchian, A. & Nadushan, R. M. Benthic macrofaunal dispersion within different mangrove habitats in Hara Biosphere Reserve, Persian Gulf. Int. J. Environ. Sci. Technol. 17, 1295–1306 (2020).CAS 
    Article 

    Google Scholar 
    Nazeer, Z. et al. Macrofaunal assemblage in the intertidal area of Saudi Arabian Gulf Coast. Reg. Stud. Mar. Sci. 47, 101954 (2021).
    Google Scholar 
    Snyder, S. D. Phylogeny and paraphyly among tetrapod blood flukes (Digenea: Schistosomatidae and Spirorchiidae). Int. J. Parasitol. 34, 1385–1392 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al-Zaidan, A. S. Y., Kennedy, H., Jones, D. A. & Al-Mohanna, S. Y. Role of microbial mats in Sulaibikhat Bay (Kuwait) mudflat food webs: Evidence from δ13C analysis. Mar. Ecol. Prog. Ser. 308, 27–36 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Bearup, A. J. A schistosomc larva from the marine snail Pyrazus australisas a cause of cercarial dermatitis in man. Med. J. Aust. 1, 955–960 (1955).Article 

    Google Scholar 
    Grodhaus, G. & Keh, B. The marine, dermatitis-producing cercaria of Austrobilharzia variglandis in California (Trematoda: Schistosomatidae). J. Parasitol. 44, 633–638 (1958).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sindermann, C. J. Ecological studies of marine dermatitis-producing schistosome larvae in northern New England. Ecology 41, 678–684 (1960).Article 

    Google Scholar 
    Pinto, H. A., Pulido-Murillo, E. A., de Melo, A. L. & Brant, S. V. Putative new genera and species of avian schistosomes potentially involved in human cercarial dermatitis in the Americas, Europe and Africa. Acta Trop. 176, 415–420 (2017).PubMed 
    Article 

    Google Scholar 
    Hechinger, R. F. & Lafferty, K. D. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts. Proc. R. Soc. B Biol. Sci. 272, 1059–1066 (2005).Article 

    Google Scholar 
    Aldhoun, J. A. & Horne, E. C. Schistosomes in South African penguins. Parasitol. Res. 114, 237–246 (2015).PubMed 
    Article 

    Google Scholar 
    Vanstreels, R. E. T. et al. Schistosomes and microfilarial parasites in Magellanic penguins. J. Parasitol. 104, 322–328 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. & Loker, E. S. Can specialized pathogens colonize distantly related hosts? Schistosome evolution as a case study. PLoS Pathog. 1, e38 (2005).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Blair, D., Davis, G. M. & Wu, B. Evolutionary relationships between trematodes and snails emphasizing schistosomes and paragonimids. Parasitology 123, 229–243 (2001).Article 

    Google Scholar 
    Miller, H. M. Jr. & Northup, F. E. The seasonal infestation of Nassa obsoleta (Say) with larval trematodes. Biol. Bull. 50, 490–508 (1926).Article 

    Google Scholar 
    Chu, G. & Cutress, C. E. Human dermatitis caused by marine organisms in Hawaii. In Proceedings of the Hawaiian Academy of Science. 29th Annual Meeting (1953–54) (1954).Szidat, L. Investigaciones sobre Cercaria chascomusi n. sp. Agente causal de una nueva enfermedad humana en la Argentina: La dermatitis de los bañistas de la laguna Chascomús. Bol Mus Argent Cienc Nat Bernardino Rivadavia 18, 1–16 (1958).
    Google Scholar 
    ITO, J. Studies on the morphology and life cycle of Pseudobilharziella corvi Yamaguti, 1941 (Trematoda: Schistosomatidae). Jpn. J. Med. Sci. Biol. 13, 53–58 (1960).Article 

    Google Scholar 
    Karamian, M. et al. Parasitological and molecular study of the furcocercariae from Melanoides tuberculata as a probable agent of cercarial dermatitis. Parasitol. Res. 108, 955–962 (2011).PubMed 
    Article 

    Google Scholar 
    Leedom, W. S. & Short, R. B. Cercaria pomaceae sp. n., a dermatitis-producing schistosome cercaria from Pomacea paludosa, the Florida apple snail. J. Parasitol. 67, 257–261 (1981).Article 

    Google Scholar 
    Aldhoun, J. A., Faltýnková, A., Karvonen, A. & Horák, P. Schistosomes in the North: A unique finding from a prosobranch snail using molecular tools. Parasitol. Int. 58, 314–317 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horák, P., Kolářová, L. & Adema, C. M. Biology of the schistosome genus Trichobilharzia. (2002).Martorelli, S. R. Sobre una cercaria de la familia Schistosomatidae (Digenea) parásita de Chilina gibbosa Sowerby, 1841 en el lago Pellegrini, Provincia de Río Negro, República Argentina. Neotrópica 30, 97–106 (1984).
    Google Scholar 
    Braun, M. Zur Revision der Trematoden der Vögel II. Zentralblatt fur Bakteriol. Abth I(29), 895–897 (1901).
    Google Scholar 
    Cheatum, E. L. Dendritobilharzia anatinarum n. sp., a blood fluke from the mallard. J. Parasitol. 27, 165–170 (1941).Article 

    Google Scholar 
    Leite, A. C. R., Costa, H. M. D. A. & Costa, J. O. Trichobilharzia jequitibaensis sp. n (Trematoda, Schistosomatidae) in Cairina moschata domestica (Anatidae). Rev. Bras. Biol. 38, 843–846 (1978).
    Google Scholar 
    McLeod, J. A. Two new schistosomid trematodes from water-birds. J. Parasitol. 23, 456–466 (1937).Article 

    Google Scholar 
    Ebbs, E. T. et al. Schistosomes with wings: How host phylogeny and ecology shape the global distribution of Trichobilharzia querquedulae (Schistosomatidae). Int. J. Parasitol. 46, 669–677 (2016).PubMed 
    Article 

    Google Scholar 
    Flores, V., Viozzi, G., Casalins, L., Loker, E. S. & Brant, S. V. A new schistosome (Digenea: Schistosomatidae) from the nasal tissue of South America black-necked swans, Cygnus melancoryphus (Anatidae) and the endemic pulmonate snail Chilina gibbosa. Zootaxa 4948, zootaxa-4948 (2021).Article 

    Google Scholar 
    Kolářová, L., Horák, P., Skírnisson, K., Marečková, H. & Doenhoff, M. Cercarial dermatitis, a neglected allergic disease. Clin. Rev. Allergy Immunol. 45, 63–74 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    QGIS.org, QGIS 3.4. QGIS Geographic Information System. QGIS Association. http://www.qgis.org (2019).Tkach, V., Grabda-Kazubska, B., Pawlowski, J. & Swiderski, Z. Molecular and morphological evidence for close phylogenetic affinities of the genera Macrodera, Leptophallus, Metaleptophallus and Paralepoderma [Digenea, Plagiorchiata]. Acta Parasitol. 44, 3 (1999).
    Google Scholar 
    Tkach, V. V., Littlewood, D. T. J., Olson, P. D., Kinsella, J. M. & Swiderski, Z. Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst. Parasitol. 56, 1–15 (2003).PubMed 
    Article 

    Google Scholar 
    Littlewood, D. T. J., Curini-Galletti, M. & Herniou, E. A. The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol. Phylogenet. Evol. 16, 449–466 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A. & Littlewood, D. T. J. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 33, 733–755 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowles, J. & McManus, D. P. Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Mol. Biochem. Parasitol. 57, 231–239 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miura, O. et al. Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). Int. J. Parasitol. 35, 793–801 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Telford, M. J., Herniou, E. A., Russell, R. B. & Littlewood, D. T. J. Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms. Proc. Natl. Acad. Sci. 97, 11359–11364 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller, M. A., Pfeiffer, W. & Schwartz, T. The CIPRES science gateway: a community resource for phylogenetic analyses. In Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery 1–8 (2011).Rambaut, A. & Drummond, A. J. Tracer v1. 5 http://beast.bio.ed.ac.uk/Tracer (2009).Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rambaut, A. & Drummond, A. J. FigTree v1. 4. 2012. (2012).Lockyer, A. E. et al. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126, 203 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, J. C. Austrobilharzia terrigalensis: A schistosome dominant in interspecific interactions in the molluscan host. Int. J. Parasitol. 9, 137–140 (1979).Article 

    Google Scholar 
    Appleton, C. C. Studies on austrobilharzia terrigalensis (trematoda: schistosomatidae) in the swan estuary, Western Australia: Observations on the biology of the cercaria. Int. J. Parasitol. 13, 239–247 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Appleton, C. C. Studies on Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) in the Swan Estuary, Western Australia: Frequency of infection in the intermediate host population. Int. J. Parasitol. 13, 51–60 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, S. H. On the Trematodes of Australian Birds. (1916).Appleton, C. C. Observations on the histology of Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) infection in the silver gull, Larus novaehollandiae. Int. J. Parasitol. 14, 23–28 (1984).Article 

    Google Scholar 
    Bearup, A. J. Life cycle of Austrobilharzia terrigalensis Johnston, 1917. Parasitology 46, 470–479 (1956).CAS 
    PubMed 
    Article 

    Google Scholar 
    CAMismoN, G. M., Bacha Jr, W. J. & Stempen, H. The circumoval precipitate and cercarienhiillen reaktion of Austrobilharzia variglandis. In Proc. Helminthol. Soc. Wash Vol. 48, 202–208 (1981).Zibulewsky, J., Fried, B. & Bacha Jr, W. J. Skin surface lipids of the domestic chicken, and neutral lipid standards as stimuli for the penetration response of Austrobilharzia variglandis cercariae. J. Parasitol. 68, 905–908 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bacha, W. J., Roush, R. & Icardi, S. Infection of the gerbil by the avian schistosome Austrobilharzia variglandis (Miller and Northup 1926; Penner 1953). J. Parasitol. 68, 505–507 (1982).CAS 
    Article 

    Google Scholar 
    Wood, L. M. & Bacha Jr, W. J. Distribution of eggs and the host response in chickens infected with Austrobilharzia variglandis (Trematoda). J. Parasitol. 69, 682–688 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sindermann, C. J. The ecology of marine dermatitis-producing schistosomes. I. Seasonal variation in infection of mud snails (Nassa obsoleta) with larvae of Austrobilharzia variglandis. J. Parasitol. 42, 27 (1956).
    Google Scholar 
    Cutress, C. E. Austrobilharzia variglandis (Miller and Northup, 1926) Penner, 1953,(Trematoda: Schistosomatidae) in Hawaii with notes on its biology. J. Parasitol. 40, 515–524 (1954).PubMed 
    Article 

    Google Scholar 
    Rohde, K. The bird schistosome Austrobilharzia terrigalensis from the Great Barrier Reef, Australia. Zeitschrift für Parasitenkd. 52, 39–51 (1977).CAS 
    Article 

    Google Scholar 
    Price, E. W. A synopsis of the trematode family Schistosomidae, with descriptions of new genera and species. Proc. United States Natl. Museum (1929).McLeod, J. A. Studies on cercarial dermatitis and the trematode family Schistosomatidae in Manitoba. Can. J. Res. 18, 1–28 (1940).Article 

    Google Scholar 
    Keppner, E. J. Some internal parasites of the California gull Larus californicus Lawrence, in Wyoming. Trans. Am. Microsc. Soc. 92, 288–291 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, S. J. On the trematodes of Australian birds. J. R. Soc. New South Wales 50, 187–261 (1917).
    Google Scholar 
    Appleton, C. C. Studies on Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) in the Swan Estuary, Western Australia: Infection in the definitive host, Larus novaehollandiae. Int. J. Parasitol. 13, 249–259 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. The red-breasted merganser as a natural avian host of the causative agent of clam diggers’ itch. J. Parasitol. 39, 20 (1953).
    Google Scholar 
    Johnston, T. H. Bather’s itch (schistosome dermatitis) in the Murray Swamps, South Australia. Trans. R. Soc. South Aust. 65, 276–284 (1941).
    Google Scholar 
    Witenberg, G. & Lengy, J. Redescription of Ornithobilharzia canaliculata (Rud.) Odhner, with notes on classification of the genus Ornithobilharzia and the subfamily Schistosomatinae (Trematoda). Isr. J. Zool. 16, 193–204 (1967).CAS 
    PubMed 

    Google Scholar 
    Curtis, L. A. Ilyanassa obsoleta (Gastropoda) as a host for trematodes in Delaware estuaries. J. Parasitol. 83, 793–803 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Curtis, L. A. & Tanner, N. L. Trematode accumulation by the estuarine gastropod Ilyanassa obsoleta. J. Parasitol. 85, 419–425 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barber, K. E. & Caira, J. N. Investigation of the life cycle and adult morphology of the avian blood fluke Austrobilharzia variglandis (Trematoda: Schistosomatidae) from Connecticut. J. Parasitol. 81, 584–592 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leighton, B. J. et al. Schistosome dermatitis at Crescent Beach, preliminary report. Environ. Heal. Rev. 48, 5–13 (2004).
    Google Scholar 
    Ferris, M. & Bacha Jr, W. J. Response of leukocytes in chickens infected with the avian schistosome Austrobilharzia variglandis (Trematoda). Avian Dis. 30, 683–686 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stunkard, H. W. & Hinchliffe, M. C. The life-cycle of Microbilharzia variglandis (== Cercaría varíglandis Miller and Northup, 1926), an avian schistosome whose larvae produce’swimmer’s itch’of ocean beaches. Anat. Rec. 3, 529–530 (1951).
    Google Scholar 
    Stunkard, H. W. & Hinchliffe, M. C. The morphology and life-history of Microbilharzia variglandis (Miller and Northup, 1926) Stunkard and Hinchliffe, 1951, avian blood-flukes whose larvae cause” swimmer’s itch” of ocean beaches. J. Parasitol. 38, 248–265 (1952).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. Experimental infections of avian hosts with Cercaria littorinalinae Penner, 1950. J. Parasitol. 39, 20 (1953).

    Google Scholar 
    Faust, E. C. Notes on Ornithobilharzia odhneri n. sp. from the Asiatic Curlew. J. Parasitol. 11, 50–54 (1924).Article 

    Google Scholar 
    Sousa, W. P. Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasites. Ecol. Monogr. 63, 103–128 (1993).Article 

    Google Scholar 
    Chu, G. W. T. C. First report of the presence of a dermatitis-producing marine larval schistosome in Hawaii. Science 115, 151–153 (1952).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Canestri-Trotti, G., Fioravanti, M. L. & Pampiglione, S. Cercarial dermatitis in Italy. Helminthologia 38, 245 (2001).
    Google Scholar 
    Penner, L. R. Cercaria littorinalinae sp. nov., a dermatitis-producing schistosome larva from the marine snail, Littorina planaxis Philippi. J. Parasitol. 36, 466–472 (1950).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abdul-Salam, J. & Sreelatha, B. S. Description and surface topography of the cercaria of Austrobilharzia sp. (Digenea: Schistosomatidae). Parasitol. Int. 53, 11–21 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kinsella, J. M. & Forrester, D. J. Parasitic helminths of the common loon, Gavia immer, on its wintering grounds in Florida. Helminthol. Soc. Washingt. 66, 1–6 (1999).
    Google Scholar 
    Appleton, C. C. The eggs of some blood-flukes (Trematoda: Schistosomatidae) from South African birds. Afr. Zool. 17, 147–150 (1982).
    Google Scholar 
    Appleton, C. C. Occurrence of avian Schistosomatidae (Trematoda) in South African birds as determined by a faecal survey. Afr. Zool. 21, 60–67 (1986).
    Google Scholar 
    Courtney, C. H. & Forrester, D. J. Helminth parasites of the brown pelican in Florida and Louisiana. (1973).Morales, G. A., Helmboldt, C. F. & Penner, L. R. Pathology of experimentally induced schistosome dermatitis in chickens: the role of Ornithobilharzia canaliculata (Rudolphi, 1819) Odhner 1912 (Trematoda: Schistosomatidae). Avian Dis. 262–276 (1971).
    Travassos, L., Freitas, J. F. & Kohn, A. Trematódeos do Brazil. Mem. Inst. Oswaldo Cruz 67, 1–886 (1969).CAS 
    PubMed 

    Google Scholar 
    Saidov, Y. S. Gel’mintofauna ryb i ryboyadnykh ptits Dagestana (Helminthofauna of Fish and Ichthyophagous Birds of Dagestan). Candidate Thesis, VIGIS (1953).Bykhovskaya-Pavlovskaya, I. E. et al. Key to parasites of freshwater fishes of the USSR, Academy of Science of the USSR. Zool. Inc (1962).Leonov, V. A. New trematodes of ichthyophagus birds. Uchenye Zapiski Gorkovskogo Gosudarstvennogo Peda-gogicheskogo Instituta 19, 43–52 (1957).
    Google Scholar 
    Macro, J. K. Revision of Ornithobilharzia canaliculata (Rudolphi, 1819) (Trematoda: Schistosomatidae). Helminthologia 4, 303–311 (1963).
    Google Scholar 
    Bykhovskaya-Pavlovskaya, I. E. Trematode fauna of birds of Leningrad region. In Contrib. to Helminthol. Publ. to Commem. 75th Birthd. KI Skryabin.] Izd. Akad. Nauk SSSR, Moscov 85–92 (1953).Santoro, M. et al. Helminth community structure of the Mediterranean gull (Ichthyaetus melanocephalus) in Southern Italy. J. Parasitol. 97, 364–366 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanmartín, M. L., Cordeiro, J. A., Alvarez, M. F. & Leiro, J. Helminth fauna of the yellow-legged gull Larus cachinnans in Galicia, north-west Spain. J. Helminthol. 79, 361–371 (2005).PubMed 
    Article 

    Google Scholar 
    Panova, L. G. On the trematode fauna of sea-gulls of the Don district. Trudy Leningrad. Gosudarstv. Vet. Inst. 1(1), 52–62 (1927) (in Russian).
    Google Scholar 
    Travassos, L. Contribucoes ao conhecimento dos Schistosomatidae. Sobre (Rudolphi, 1819). Rev. Bras. Biol. 2, 473–476 (1942).
    Google Scholar 
    Rind, S. The blood fluke Ornithobilharzia canaliculata (Rudolphi, 1819) (Trematoda: Schistosomatidae) from the gull Larus dominicanus at Lyttelton, New Zealand. (1984).Szidat, L. Vergleichende helminthologische Untersuchungen an den argentinischen Grossmowen Larus marinus dominicanus Lichtenstein und Larus ridibundus maculipennis Lichtenstein neuen Beobachtungen uber die Artbildung bei Parasiten. Zeitschrift für Parasitenkd. 24, 351–414 (1964).CAS 

    Google Scholar 
    Parona, C. & Ariola, V. Bilharzìa kowalewskii n. sp. nel Larus melanocephalus [Nota preventiva]. Atti. Soc. Ligust. Sc. Nat. e Georg 7, 114–116 (1896).
    Google Scholar 
    Jothikumar, N. et al. Real-time PCR and sequencing assays for rapid detection and identification of avian schistosomes in environmental samples. Appl. Environ. Microbiol. 81, 4207–4215 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shigin A.A. The helminth fauna of the Rybinsk Reservoir. Author’s abstract of dissertation, (1954).Witenberg, G. Studies on the trematode—family Heterophyidae. Ann. Trop. Med. Parasitol. 23, 131–239 (1929).Article 

    Google Scholar 
    Bush, A. O. & Forrester, D. J. Helminths of the white ibis in Florida. Proc. Helminthol. Soc. Wash. 43, 17–23 (1976).
    Google Scholar 
    Mamaev, Y. L. Helminth fauna of Galliformes and Charadriiformes in Eastern Siberia. Tr. Gelmintol. Lab. Akad. Nauk SSSR (1959). More

  • in

    Fungal findings excite truffle researchers and gastronomes

    A white truffle (Tuber magnatum Pico) in the laboratory of Robin Pépinières, a nursery in Saint Laurent-du-Cros, France.Philippe Desmazes/AFP via Getty Images

    On 10 October 2019, a dog began pawing excitedly at the ground beneath a young oak tree in western France. Its owner eased it out of the way and pulled an Italian white truffle (Tuber magnatum Pico) from the earth. Knobbly, covered in soil and about the size of a hen’s egg, it was not much to look at, but the fungal discovery nonetheless generated ripples of excitement among researchers, chefs and truffle growers worldwide.That’s not just because T. magnatum is the most expensive truffle species, for which wealthy gastronomes are willing to pay up to US$11,000 per kilogram. Although more than 90% of the also highly sought-after black Périgord truffles (Tuber melanosporum) served in restaurants today are farmed, previous attempts to cultivate their more elusive white counterparts had failed.That changed three years ago, when the Lagotto Romagnolo, the Italian dog breed commonly used as a truffle hunter, unearthed the first Italian white truffle confirmed to have been cultivated outside its natural range. The dog made the find at its owner’s plantation in the Nouvelle Aquitaine region of France, but the precise location is being kept secret to deter thieves.Scientists at a laboratory run jointly by France’s National Research Institute for Agriculture, Food and the Environment (INRAE) and the University of Lorraine in Nancy reported1 that since that first T. magnatum truffle was unearthed, two more were found at the site in 2019 and four in 2020. In an article published last month in Le Trufficulteur, the magazine of the French Federation of Truffle Growers, the researchers report the cultivation of 26 truffles last year2.“I was very happy to hear these results,” says Alessandra Zambonelli, a mycologist at the University of Bologna, Italy, who has studied Italian white truffles for more than 40 years, and whose own attempts to cultivate them in the 1980s failed. “I was sure it was possible to cultivate T. magnatum, but only now do we have the scientific proof.”The INRAE project is helping growers to better understand the optimal conditions for cultivating Italian white truffles. Some scientists think the breakthrough could help to reverse falls in harvests of wild truffles that have been linked to climate change. Researchers also hope the work will help them to answer outstanding questions about the life cycle of the species and understand why it is so much harder to farm than are other truffles.Farming failureTuber magnatum’s natural range is more limited than those of other sought-after truffles, growing as it does in parts of Italy, southeastern France, the Balkans and Switzerland. It is highly prized for its intense, some say intoxicating, aroma and flavour, variously described as reminiscent of garlic, fermented cheese and methanethiol — the additive that gives domestic gas its smell. Prices fluctuate in line with supply, which varies according to climatic conditions. These hit an all-time high in 2021, when US prices were more than triple what they were in 2019.Most land plants form symbiotic relationships with fungi to access extra water and mineral nutrients. In return, the plants provide their fungal partners, which grow around and into their root tips, with carbon-rich nutrients. These associations are known as mycorrhizae. What most people call truffles are, in fact, just the spore-containing fruiting bodies of the fungus.In the 1970s, French scientists successfully induced Périgord truffles to form mycorrhizal associations with tree seedlings by inoculating the seedlings with their spores. The same technique was used at the time to produce trees with T. magnatum mycorrhizae. More than 500,000 of these were planted in Italy. But when researchers later began using the polymerase chain reaction (PCR) technique to accurately identify truffle mycorrhizae, fruiting bodies and the root-like mycelia, it became clear that this species’ physical characteristics had been poorly described, and that, as a result, many of the trees had in fact partnered with less sought-after truffle species.Some sites in Italy did produce T. magnatum truffles 15–20 years after planting, but only in areas where the species occurs naturally. “It is likely that those found so long after being planted came from chance colonization of host plants by native T. magnatum strains in the environment,” says Claudia Riccioni, a plant and fungal biologist at Italy’s Institute of Biosciences and BioResources in Perugia.After the Italian white and Périgord truffles, the next most sought-after species is the summer truffle (Tuber aestivum), which grows in many European countries and sells for much less than its more highly regarded cousins. Plantations of T. aestivum have been established in France, Italy, Scandinavia, Germany and elsewhere.Buried treasuresIn 1999, INRAE researchers joined forces with Robin Pépinières, a nursery based in Saint-Laurent-du-Cros, southern France. Genetic analysis confirmed that the nursery had produced trees that partnered with T. magnatum, leading, from 2008, to the establishment of plantations in France1. In 2018, the INRAE group selected five of these, all outside the part of southeastern France where T. magnatum grows naturally, to see whether it had become established and to record the conditions under which any truffle fruiting bodies were produced.PCR tests confirmed the fungus’s mycelia were present in soil samples taken from near the trees at four of the locations. The first three truffles, found in Nouvelle Aquitaine, were discovered four-and-a-half years after the inoculated trees had been planted. Further PCR tests confirmed they were T. magnatum. The 26 truffles found in 2021 were unearthed beneath 11 different trees, with 5 under one of them. The largest weighed 150g.Mycologists Claude Murat and Cyrille Bach, both members of the INRAE–University of Lorraine lab, were present when one of the four fruiting bodies produced in 2020 was discovered. Asked how sure he was that the truffle grew in the plantation and hadn’t originated elsewhere, Murat said: “I’m 100% sure. We could see the soil had not been disturbed and that grasses were growing there.”Mycorrhizal mysteryPrevious attempts to cultivate Italian white truffles failed in part because their life cycle remains poorly understood. Twenty years ago, it was widely assumed that truffles, including T. magnatum, were self-fertile. However, research then showed they have one of two ‘mating type’ genes, and that the mycelia of individuals of different mating types must meet for reproduction to occur3.A remaining unresolved puzzle is why researchers have found T. magnatum mycorrhizae much harder to locate than those of other truffles. Mycologist Paul Thomas works to establish joint ventures with truffle growers through Mycorrhizal Systems, his UK-based company. He inoculated host trees with T. magnatum, and generated mycorrhizae at the company’s greenhouses in Preston, but these did not last long, so the trials were abandoned.“When you find fruiting bodies, you quite often can’t find mycorrhizae,” says Thomas, “and sometimes you get mycorrhizae but no fruiting bodies. Perhaps, in the case of T. magnatum we’ve become too focused on linking truffle production to mycorrhizae.”When Zambonelli’s group analysed soil from four Italian white-truffle sites over three years, they found a correlation between production of fruiting bodies and a location’s concentration of DNA from T. magnatum mycelia4. Some researchers began to suspect that the host–fungus relationship might not be as important as previously thought, and that T. magnatum might be saprotrophic, meaning that it digests dead or decaying organic matter.However, a 2018 comparison5 of the genomes of truffle species with those of several saprotrophic fungi showed this to be unlikely. “T. magnatum has very few plant-wall-degrading enzymes, which does not support the saprotrophic hypothesis,” says Riccioni, one of the study’s authors. Other researchers have tried to explain the elusiveness of T. magnatum mycorrhizae by pointing out that other truffles can form endophytic relationships with plants in which they which live throughout them, not just at their roots.Murat wonders whether he and others have just been looking in the wrong place. “We look on the roots down to 20 centimetres, never looked at 50 centimetres, even though we know other mycorrhizae can be found at those depths,” he says. “Or perhaps they produce mycorrhizae just for a very short time; we just don’t know.”A growing body of research shows that microorganisms have important roles in truffle life cycles. A 2015 review found that bacteria in T. magnatum fruiting bodies help to create the truffles’ odours6. Zambonelli and her colleagues found that bacteria in T. magnatum fruiting bodies can fix nitrogen for nutritional purposes7. Another Italian team found that microbes commonly associated with white truffles are involved in fruiting-body maturation8. “Some bacteria could also help T. magnatum become established at tree roots and fruiting-body formation,” says Zambonelli.A changing climateGathering accurate statistics on truffle yields before cultivation is difficult, although it is widely accepted that these fell significantly during the twentieth century. One study reports that Périgord truffle harvests in France collapsed from 500–1,000 tonnes annually in the 1900s to 10–50 tonnes by the 2000s. Yields in Italy declined, too, but not by as much, and mostly in the first half of the twentieth century9.The reasons for falls in truffle harvests are complex and vary by location, but researchers have blamed depopulation, loss of knowledge about truffle hunting and deforestation. Some of the older men who featured in the highly rated 2020 documentary The Truffle Hunters, set in Piedmont, northern Italy, say they will take what they know about truffles to the grave rather than pass it on to younger generations because of the greed they see in the industry.

    A canine forager and his owner who feature in the 2020 documentary The Truffle Hunters, set in northern Italy.BFA/Alamy

    More recently, some researchers have highlighted climate change as another cause of declining yields. Truffle gastronomy and tourism are economically and culturally important in places where truffles occur naturally. That’s certainly true in parts of Croatia, where, from 2003 to 2013, reported annual harvests were 1–3 tonnes for Italian white truffles and 1–6 tonnes for Périgords, except for the years 2009, 2010 and 2013, when they fell to 0.1–0.5 tonnes.Field mycologist Željko Žgrablić at the Ruđer Bošković Institute in Zagreb says truffles have become harder to find on the Istria peninsula, where he grew up, in part because of increasingly frequent and severe droughts. Yields have also been affected by big increases in wild-boar populations as a result of warmer winters. The animals forage for the truffles and reduce human harvests, and, according to Žgrablić, also damage the fungus’s mycelia. “The climate has become unpredictable, with more extremes,” says Žgrablić. “It’s hard to prove it, but I think we have fewer white truffles as a result.”In a 2019 study, Thomas analysed annual Périgord truffle yields in the Mediterranean region over a 36-year period10. He concluded that decreased summer rain and increased summer temperatures significantly reduced subsequent winter harvests. He forecast declines of 78–100% in harvests between 2071 and 2100 as a result of further predicted warming. “White truffles need relatively moist soil, so in its natural range it might be okay in mountainous areas but particularly vulnerable in areas where falls in rainfall are predicted,” says Thomas.Future farmingBeyond producing the first confirmed cultivated white truffles, the INRAE project is also generating data on the optimal conditions for production. The soil temperature at the site that yielded the truffles was around 20 °C in the summer, and Murat says that the team’s tests suggest white truffles need more water than do Périgords.So could the increasing knowledge of how best to get Italian white truffles to grow be adopted more widely to help reverse declining yields? Fruiting bodies have been confirmed at only one site, so other growers are waiting to see whether this success will be repeated elsewhere. Murat is in the process of trying to confirm recent claims from two other owners that they, too, have cultivated T. magnatum truffles.Thomas is downbeat about the future of Italian white-truffle cultivation. “In parts of Spain, more and more orchards can no longer irrigate because of water shortages. Already, in France, it is hard to get permission to extract water from rivers for irrigation, and that’s only going to get worse.”Oak trees inoculated with Périgord- and summer-truffle spores are due to be planted later this year in Croatia as part of a collaboration run by the state-owned Croatian Forests. If successful, the group could try white truffles. Žgrablić, who is part of the project, is also advising an enthusiast who planted 650 seedlings inoculated with T. magnatum, also in Croatia, earlier this year. “We’re seeing increasing interest from private investors in cultivating Italian white truffles,” he says. “There is certainly a lot of potential, but what the results will be, I can’t tell.”Alongside his research work, Murat acts as a scientific consultant for WeTruf, a company he co-founded in Nancy that provides advice and monitoring services for truffle farmers. He is cautious about the potential for white-truffle cultivation, if optimistically so. “We are careful when people tell us they want to start big white-truffle plantations,” says Murat. “I tell them ‘we are only at the beginning, we don’t know if it will succeed or not’. But I think there will be more and more plantations, and, if they apply good management practices, I hope, more and more truffles.” More

  • in

    Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO2 gradient

    Vanwonterghem I, Webster NS. Coral reef microorganisms in a changing climate. iScience. 2020;23:100972.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voolstra CR, Ziegler M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. BioEssays. 2020;42:e2000004.PubMed 
    Article 

    Google Scholar 
    Goulet TL, Erill I, Ascunce MS, Finley SJ, Javan GT. Conceptualization of the holobiont paradigm as it pertains to corals. Front Physiol. 2020;11:566968.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Response of coral-associated bacterial communities to local and global stressor. Front Marine Sci. 2017;4:262.Article 

    Google Scholar 
    Morrow KM, Moss AG, Chadwick NE, Liles MR. Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol. 2012;78:6438–49.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Brien PA, Smith HA, Fallon S, Fabricius K, Willis BL, Morrow KM, et al. Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp. Front Microbiol. 2018;9:2621.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs. 2001;20:85–91.Article 

    Google Scholar 
    Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series. 2002;243:1–10.Article 

    Google Scholar 
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Oppen MJ, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol. 2019;17:557–67.PubMed 
    Article 
    CAS 

    Google Scholar 
    Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Reports. 2019;9:1–13.
    Google Scholar 
    Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627–36.Article 

    Google Scholar 
    Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Ann Rev Microbiol. 2016;70:317–40.CAS 
    Article 

    Google Scholar 
    Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol. 2021;224:jeb239319.PubMed 
    Article 

    Google Scholar 
    Stocker, TF, Qin, D, Plattner, GK, Alexander, LV, Allen, SK, Bindoff, NL, et al. (2013). Technical summary. In: Climate change 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker, TF, Qin, D, Plattner, G-K, Tignor,M, Allen, SK, Doschung, J, Nauels, A, Xia, Y, Bex, V,Midgley, PM (Eds.)]. Cambridge University Press, pp. 33–115.Bindoff, NL, Cheung, WW, Kairo, JG, Arístegui, J, Guinder, VA, Hallberg, R, et al. (2019). Changing ocean, marine ecosystems, and dependent communities. In: IPCC special report on the ocean and cryosphere in a changing climate [Pörtner, H-O, Roberts, DC, Masson-Delmotte, V, Zhai, P, Tignor, M, Poloczanska, E, Mintenbeck, K, Alegría, A, Nicolai, M, Okem, A, Petzold, J, Rama, B, Weyer NM (eds.)]. In press. p. 477–587.Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral reef ecosystems under climate change and ocean acidification. Front Marine Sci. 2017;4:158.Article 

    Google Scholar 
    Yu T, Chen Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Sci Total Environ. 2019;655:865–79.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gattuso JP, Magnan A, Billé R, Cheung WW, Howes EL, Joos F, et al. OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 2015;349:aac4722.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kroeker KJ, Kordas RL, Crim RN, Singh GG. Response to technical comment on ‘meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms’. Ecology Lett. 2011;14:E1–E2.Article 

    Google Scholar 
    Ingrosso G, Abbiati M, Badalamenti F, Bavestrello G, Belmonte G, Cannas R, et al. Mediterranean Bioconstructions Along the Italian Coast. Adv Marine Biology. 2018;79:61–136.Article 

    Google Scholar 
    Hassenrück C, Fink A, Lichtschlag A, Tegetmeyer HE, de Beer D, Ramette A. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. FEMS Microbiology Ecology. 2016;92:fiw027.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tangherlini M, Corinaldesi C, Ape F, Greco S, Romeo T, Andaloro F, et al. Ocean acidification induces changes in virus-host relationships in Mediterranean benthic ecosystems. Microorganisms. 2021;9:769.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecology Evolut. 2010;25:250–60.Article 

    Google Scholar 
    Fantazzini P, Mengoli S, Pasquini L, Bortolotti V, Brizi L, Mariani M, et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat Commun. 2015;6:1–7.Article 
    CAS 

    Google Scholar 
    Goffredo S, Prada F, Caroselli E, Capaccioni B, Zaccanti F, Pasquini L, et al. Biomineralization control related to population density under ocean acidification. Nat Clim Change. 2014;4:593–7.CAS 
    Article 

    Google Scholar 
    Teixidó N, Caroselli E, Alliouane S, Ceccarelli C, Comeau S, Gattuso JP, et al. Ocean acidification causes variable trait-shifts in a coral species. Global Change Biology. 2020;26:6813–30.PubMed 
    Article 

    Google Scholar 
    Kenkel CD, Moya A, Strahl J, Humphrey C, Bay LK. Functional genomic analysis of corals from natural CO2‐seeps reveals core molecular responses involved in acclimatization to ocean acidification. Global Change Biology. 2018;24:158–71.PubMed 
    Article 

    Google Scholar 
    Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. The ISME J. 2015;9:894–908.CAS 
    PubMed 
    Article 

    Google Scholar 
    Biagi E, Caroselli E, Barone M, Pezzimenti M, Teixido N, Soverini M, et al. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents. Sci Total Environ. 2020;724:138048.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shore A, Day RD, Stewart JA, Burge CA. Dichotomy between regulation of coral bacterial communities and calcification physiology under ocean acidification conditions. Appl Environ Microbiol. 2021;87:e02189–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marcelino VR, Morrow KM, van Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Mol Ecology. 2017;26:5344–57.CAS 
    Article 

    Google Scholar 
    Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F. Variation in biometry and population density of solitary corals with environmental factors in the Mediterranean Sea. Marine Biology. 2007;152:351–61.Article 

    Google Scholar 
    Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci Reports. 2016;6:1–9.
    Google Scholar 
    Klein, SG, Geraldi, NR, Anton, A, Schmidt‐Roach, S, Ziegler, M, Cziesielski, MJ, et al. (2021). Projecting coral responses to intensifying marine heatwaves under ocean acidification. Global change biology, https://doi.org/10.1111/gcb.15818. Advance online publication.Okazaki RR, Towle EK, van Hooidonk R, Mor C, Winter RN, Piggot AM, et al. Species‐specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Global Change Biology. 2017;23:1023–35.PubMed 
    Article 

    Google Scholar 
    Maor-Landaw K, Ben-Asher HW, Karako-Lampert S, Salmon-Divon M, Prada F, Caroselli E, et al. Mediterranean versus Red sea corals facing climate change, a transcriptome analysis. Sci Reports. 2017;7:1–8.
    Google Scholar 
    Prada F, Caroselli E, Mengoli S, Brizi L, Fantazzini P, Capaccioni B, et al. Ocean warming and acidification synergistically increase coral mortality. Sci Reports. 2017;7:40842.CAS 

    Google Scholar 
    Chen, D, Rojas, M, Samset, BH, Cobb, K, Diongue Niang, A, Edwards, P, et al. (2021). Framing, Context, and Methods. In: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, V, Zhai, P, Pirani, A, Connors, AL, Péan, C, Berger, S, Caud, N, Chen, Y, Goldfarb, L, Gomis, MI, Huang, M, Leitzell, K, Lonnoy, E, Matthews, JBR, Maycock, TK, Waterfield, T, Yelekçi, O, Yu, R, & Zhou B (eds.)]. In Press.Wall, M, Prada, F, Fietzke, J, Caroselli, E, Dubinsky, Z, Brizi, L, et al. (2019). Linking internal carbonate chemistry regulation and calcification in corals growing at a Mediterranean CO2 vent. Frontiers in marine science, 699.Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;10:2280–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sweet MJ, Croquer A, Bythell JC. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals. PLoS One. 2011;6:e21195.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Apprill A, Weber LG, Santoro AE. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems. 2016;1:e00143–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubio-Portillo E, Santos F, Martínez-García M, de Los Ríos A, Ascaso C, Souza-Egipsy V, et al. Structure and temporal dynamics of the bacterial communities associated to microhabitats of the coral Oculina patagonica. Environ Microbiol. 2016;18:4564–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Palladino G, Biagi E, Rampelli S, Musella M, D’Amico F, Turroni S, et al. Seasonal changes in microbial communities associated with the jewel anemone Corynactis viridis. Front Marine Sci. 2021a;8:57.Article 

    Google Scholar 
    Palladino G, Rampelli S, Scicchitano D, Musella M, Quero GM, Prada F, et al. Impact of marine aquaculture on the microbiome associated with nearby holobionts: the case of Patella caerulea living in proximity of sea bream aquaculture cages. Microorganisms. 2021b;9:455.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell AM, Fleisher J, Sinigalliano C, White JR, Lopez JV. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast F lorida. MicrobiologyOpen. 2015;4:390–408.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sadik NJ, Uprety S, Nalweyiso A, Kiggundu N, Banadda NE, Shisler JL, et al. Quantification of multiple waterborne pathogens in drinking water, drainage channels, and surface water in Kampala, Uganda, during seasonal variation. GeoHealth. 2017;1:258–69.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Su HC, Liu YS, Pan CG, Chen J, He LY, Ying GG. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018;616:453–61.PubMed 
    Article 
    CAS 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CAS 
    PubMed 
    Article 

    Google Scholar 
    Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT, Stewart FJ, et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PloS One. 2013;8:e76096.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics. 2012;13:1–7.Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:1091.CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Toolkit, P (2019). Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad Institute.Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews, S (2010). Fastqc: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.Liu CM, Li D, Sadakane K, Luo R, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.PubMed 
    Article 
    CAS 

    Google Scholar 
    West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 2018;28:569–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.Article 
    CAS 

    Google Scholar 
    Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res. 2013;41:e3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Culhane AC, Thioulouse J, Perrière G, Higgins DG. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics. 2005;21:2789–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meron D, Rodolfo-Metalpa R, Cunning R, Baker AC, Fine M, Banin E. Changes in coral microbial communities in response to a natural pH gradient. ISME J. 2012;6:1775–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biology Rev. 2000;64:515–47.CAS 
    Article 

    Google Scholar 
    Kabbara S, Hérivaux A, Dugé de Bernonville T, Courdavault V, Clastre M, Gastebois A, et al. Diversity and evolution of sensor histidine kinases in eukaryotes. Genome Biology Evolut. 2019;11:86–108.CAS 
    Article 

    Google Scholar 
    Campanacci V, Nurizzo D, Spinelli S, Valencia C, Tegoni M, Cambillau C. The crystal structure of the Escherichia coli lipocalin Blc suggests a possible role in phospholipid binding. FEBS Lett. 2004;562:183–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol. 2020;104:1357–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pérez E, Rubio MB, Cardoza RE, Gutiérrez S, Bettiol W, Monte E, et al. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei. Front Microbiol. 2015;6:1181.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohki T, Wakitani Y, Takeo M, Yasuhira K, Shibata N, Higuchi Y, et al. Mutational analysis of 6-aminohexanoate-dimer hydrolase: relationship between nylon oligomer hydrolytic and esterolytic activities. FEBS Lett. 2006;580:5054–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Velupillaimani D, Muthaiyan A. Potential of Bacillus subtilis from marine environment to degrade aromatic hydrocarbons. Environ Sustainability. 2019;2:381–9.CAS 
    Article 

    Google Scholar 
    Byrne M, Fitzer S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conservation Physiol. 2019;7:coz062.CAS 
    Article 

    Google Scholar 
    Godefroid M, Dupont S, Metian M, Hédouin L. Two decades of seawater acidification experiments on tropical scleractinian corals: Overview, meta-analysis and perspectives. Marine Pollut Bull. 2022;178:113552.CAS 
    Article 

    Google Scholar 
    Goffredo S, Arnone S, Zaccanti F. Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Marine Ecology Progress Series. 2002;229:83–94.Article 

    Google Scholar 
    Luo, D, Wang, X, Feng, X, Tian, M, Wang, S, Tang, SL, et al. (2021). Population differentiation of Rhodobacteraceae along with coral compartments. ISME J. https://doi.org/10.1038/s41396-021-01009-6. Advance online publication.Shnit-Orland M, Kushmaro A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecology. 2009;67:371–80.CAS 
    Article 

    Google Scholar 
    Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:4921.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Glazier A, Herrera S, Weinnig A, Kurman M, Gómez CE, Cordes E. Regulation of ion transport and energy metabolism enables certain coral genotypes to maintain calcification under experimental ocean acidification. Mol Ecology. 2020;29:1657–73.CAS 
    Article 

    Google Scholar 
    Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zoology. 2020;17:1–23.Article 

    Google Scholar 
    Nikolic N. Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system. Curr Genet. 2019;65:133–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Contreras-Llano LE, Guerrero-Rubio MA, Lozada-Ramírez JD, García-Carmona F, Gandía-Herrero F. First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. MBio. 2019;10:e00345–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naveed M, Tariq K, Sadia H, Ahmad H, Mumtaz AS. The life history of pyrroloquinoline quinone (PQQ): a versatile molecule with novel impacts on living systems. Int J Mol Biology Open Access. 2016;1:29–46.Article 

    Google Scholar 
    Aguilar C, Raina JB, Fôret S, Hayward DC, Lapeyre B, Bourne DG, et al. Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics. 2019;20:1–13.Article 

    Google Scholar 
    Bury-Moné S, Nomane Y, Reymond N, Barbet R, Jacquet E, Imbeaud S, et al. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genetics. 2009;5:e1000651.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chilton SS, Falbel TG, Hromada S, Burton BM. A conserved metal binding motif in the Bacillus subtilis competence protein ComFA enhances transformation. J Bacteriol. 2017;199:e00272–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnsen AR, Kroer N. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiology Ecology. 2007;59:718–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol. 2005;187:304–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ma C, Sim S, Shi W, Du L, Xing D, Zhang Y. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol Lett. 2010;303:33–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Toesca I, Perard C, Bouvier J, Gutierrez C, Conter A. The transcriptional activator NhaR is responsible for the osmotic induction of osmCp1, a promoter of the stress-inducible gene osmC in Escherichia coli. Microbiology. 2001;147:2795–803.CAS 
    PubMed 
    Article 

    Google Scholar 
    Benner R, Kaiser K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnology Oceanogr. 2003;48:118–28.CAS 
    Article 

    Google Scholar 
    Mills LA, McCormick AJ, Lea-Smith DJ. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Reports. 2020;40:BSR20193325.CAS 
    Article 

    Google Scholar 
    Labare MP, Bays JT, Butkus MA, Snyder-Leiby T, Smith A, Goldstein A, et al. The effects of elevated carbon dioxide levels on a Vibrio sp. isolated from the deep-sea. Environ Sci Pollut Res Int. 2010;17:1009–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sogin EM, Putnam HM, Anderson PE, Gates RD. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics. 2016;12:71.Article 
    CAS 

    Google Scholar 
    Yang Y, Kadim MI, Khoo WJ, Zheng Q, Setyawati MI, Shin YJ, et al. Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int J Food Microbiol. 2014;191:24–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Diricks M, Gutmann A, Debacker S, Dewitte G, Nidetzky B, Desmet T. Sequence determinants of nucleotide binding in Sucrose Synthase: improving the affinity of a bacterial Sucrose Synthase for UDP by introducing plant residues. Protein Eng Design Select. 2017;30:143–50.CAS 

    Google Scholar 
    De Carvalho CC, Caramujo MJ. The various roles of fatty acids. Molecules. 2018;23:2583.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Campanacci V, Bishop RE, Blangy S, Tegoni M, Cambillau C. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett. 2006;580:4877–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zawadzka-Skomiał J, Markiewicz Z, Nguyen-Disteche M, Devreese B, Frere JM, Terrak M. Characterization of the bifunctional glycosyltransferase/acyltransferase penicillin-binding protein 4 of Listeria monocytogenes. J Bacteriol. 2006;188:1875–81.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wannicke N, Frey C, Law CS, Voss M. The response of the marine nitrogen cycle to ocean acidification. Global Change Biology. 2018;24:5031–43.PubMed 
    Article 

    Google Scholar 
    Burnat M, Herrero A, Flores E. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA. 2014;111:3823–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang H, Yang C. Arginine and nitrogen mobilization in cyanobacteria. Mol Microbiol. 2019;111:863–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Law AM, Lai SW, Tavares J, Kimber MS. The structural basis of beta-peptide-specific cleavage by the serine protease cyanophycinase. J Mol Biol. 2009;392:393–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    Flores E, Arévalo S, Burnat M. Cyanophycin and arginine metabolism in cyanobacteria. Algal Res. 2019;42:101577.Article 

    Google Scholar 
    Bednarz VN, Van De Water JA, Grover R, Maguer JF, Fine M, Ferrier-Pagès C. Unravelling the importance of diazotrophy in corals–combined assessment of nitrogen assimilation, diazotrophic community and natural stable isotope signatures. Front Microbiol. 2021;12:1638.
    Google Scholar 
    Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.PubMed 
    Article 
    CAS 

    Google Scholar 
    Béraud E, Gevaert F, Rottier C, Ferrier-Pagès C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J Exp Biol. 2013;216:2665–74.PubMed 

    Google Scholar 
    Tong H, Cai L, Zhou G, Zhang W, Huang H, Qian PY. Correlations between prokaryotic microbes and stress-resistant algae in different corals subjected to environmental stress in Hong Kong. Front Microbiol. 2020;11:686.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cardenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Global Change Biol. 2017;23:3838–48.Article 

    Google Scholar 
    Zhou Y, Tang K, Wang P, Wang W, Wang Y, Wang X. Identification of bacteria-derived urease in the coral gastric cavity. Sci China Earth Sci. 2020;63:1553–63.CAS 
    Article 

    Google Scholar 
    Biscéré T, Ferrier-Pagès C, Grover R, Gilbert A, Rottier C, Wright A, et al. Enhancement of coral calcification via the interplay of nickel and urease. Aquatic Toxicol. 2018;200:247–56.Article 
    CAS 

    Google Scholar  More

  • in

    Staphylococcus aureus lineages associated with a free-ranging population of the fruit bat Pteropus livingstonii retained over 25 years in captivity

    Fischer, C. P. & Romero, L. M. Chronic captivity stress in wild animals is highly species-specific. Conserv. Physiol. 7, coz093 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGill, I. et al. Isosporoid coccidiosis in translocated cirl buntings (Emberiza cirlus). Vet. Rec. 167, 656–660 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mohajeri, M. H. et al. The role of the microbiome for human health: from basic science to clinical applications. Eur. J. Nutr. 57, 1–14 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Song, S. J. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).Article 
    CAS 

    Google Scholar 
    Peters, A., Meredith, A., Skerratt, L., Carver, S. & Raidal, S. Infectious disease and emergency conservation interventions. Conserv. Biol. 34, 784–785 (2020).PubMed 
    Article 

    Google Scholar 
    Northover, A. S. et al. Altered parasite community structure in an endangered marsupial following translocation. Int. J. Parasitol. Parasites Wildl. 10, 13–22 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daniel, B. M. et al. A bat on the brink? A range-wide survey of the Critically Endangered Livingstone’s fruit bat Pteropus livingstonii. Oryx 51, 742–751 (2017).Article 

    Google Scholar 
    IUCN. Pteropus livingstonii: Sewall, B.J., Young, R., Trewhella, W.J. & Rodríguez-Clark, K.M. and Granek, E.F. IUCN Red List of Threatened Species (2016) https://doi.org/10.2305/iucn.uk.2016-2.rlts.t18732a22081502.en.IUCN Species Survival Commission. Species action plan for Livingstone’s fruit bat ‘Pteropus livingstonii’. https://portals.iucn.org/library/node/7368 (1995).Haag, A. F., Ross Fitzgerald, J. & Penadés, J. R. Staphylococcus aureus in animals. Gram-Positive Pathog. https://doi.org/10.1128/9781683670131.ch46 (2019).Article 

    Google Scholar 
    Pirolo, M. et al. Unidirectional animal-to-human transmission of methicillin-resistant Staphylococcus aureus ST398 in pig farming; evidence from a surveillance study in southern Italy. Antimicrob. Resist. Infect. Control 8, 1–10 (2019).Article 

    Google Scholar 
    Young, B. C. et al. Severe infections emerge from commensal bacteria by adaptive evolution. Elife 6, e30637 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heaton, C. J., Gerbig, G. R., Sensius, L. D., Patel, V. & Smith, T. C. Staphylococcus aureus epidemiology in wildlife: A systematic review. Antibiotics 9, 89 (2020).PubMed Central 
    Article 

    Google Scholar 
    Sheppard, S. K., Guttman, D. S. & Fitzgerald, J. R. Population genomics of bacterial host adaptation. Nat. Rev. Genet. 19, 549–565 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richardson, E. J. et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2, 1468–1478 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bacigalupe, R., Tormo-Mas, M. Á., Penadés, J. R. & Ross Fitzgerald, J. A multihost bacterial pathogen overcomes continuous population bottlenecks to adapt to new host species. Sci. Adv. 5, eaax0063 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spoor, L. E. et al. Recombination-mediated remodelling of host–pathogen interactions during Staphylococcus aureus niche adaptation. Microb. Genomics 1(4), e000036. https://doi.org/10.1099/mgen.0.000036 (2015).Article 

    Google Scholar 
    Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L. & Fowler, V. G. Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28, 603–661 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fountain, K. et al. Diversity of staphylococcal species cultured from captive Livingstone’s fruit bats (Pteropus livingstonii) and their environment. J. Zoo Wildl. Med. 50, 266–269 (2019).PubMed 
    Article 

    Google Scholar 
    Fountain, K. et al. Fatal exudative dermatitis in island populations of red squirrels (Sciurus vulgaris): spillover of a virulent clone (ST49) from reservoir hosts. Microb. Genom. 7(5), 000565. https://doi.org/10.1099/mgen.0.000565 (2021).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Rohmer, C. & Wolz, C. The role of hlb-converting bacteriophages in Staphylococcus aureus host adaption. Microb. Physiol. 31 109–122. https://doi.org/10.1159/000516645 (2021).
    PubMed 
    Article 

    Google Scholar 
    Senghore, M. et al. Transmission of Staphylococcus aureus from humans to green monkeys in The Gambia as revealed by whole-genome sequencing. Appl. Environ. Microbiol. 82, 5910–5917 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xue, H., Lu, H. & Zhao, X. Sequence diversities of serine-aspartate repeat genes among Staphylococcus aureus isolates from different hosts presumably by horizontal gene transfer. PLoS ONE 6, e20332 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paharik, A. E. et al. The Spl serine proteases modulate protein production and virulence in a rabbit model of pneumonia. mSphere 1, e00208-16 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wein, T., Hülter, N. F., Mizrahi, I. & Dagan, T. Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat. Commun. 10, 2595 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cheng, A. G., Missiakas, D. & Schneewind, O. The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance. J. Bacteriol. 196, 971–981 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lin, Y.-C. et al. Staphylococcal phosphatidylinositol-specific phospholipase C potentiates lung injury via complement sensitisation. Cell. Microbiol. 21, e13085 (2019).PubMed 

    Google Scholar 
    Siboo, I. R., Chambers, H. F. & Sullam, P. M. Role of SraP, a serine-rich surface protein of Staphylococcus aureus, in binding to human platelets. Infect. Immun. 73, 2273–2280 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakamura, Y. et al. Phosphatidylinositol-specific phospholipase C enhances epidermal penetration by Staphylococcus aureus. Sci. Rep. 10, 17845 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng, X. et al. Flight is the key to postprandial blood glucose balance in the fruit bats Eonycteris spelaea and Cynopterus sphinx. Ecol. Evol. 7, 8804–8811 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pence, M. A. et al. Beta-lactamase repressor BlaI modulates Staphylococcus aureus cathelicidin antimicrobial peptide resistance and virulence. PLoS ONE 10, e0136605 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Raafat, D. et al. Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats: Effect of habitat on the nasal S. aureus population. Toxins 12, 80 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    National Library of Medicine (US), National Center for Biotechnology Information. Genbank. (1982).PubMLST—Public databases for molecular typing and microbial genome diversity. https://pubmlst.org/.Wick, R. R., Judd, L. M. & Holt, K. E. Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks. PLoS Comput. Biol. 14, e1006583 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13, e1005595 (2017).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data (2010).Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seeman, T. MLST. Github https://github.com/tseemann/mlst.Page, A. J. et al. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seeman, T. Snippy: Fast Bacterial Variant Calling from NGS Reads (2015).Carver, T., Harris, S. R., Berriman, M., Parkhill, J. & McQuillan, J. A. Artemis: An integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28, 464–469 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seeman, T. Abricate; Mass screening of contigs for antimicrobial resistance or virulence genes. Github https://github.com/tseemann/abricate.Feldgarden, M. et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 63, e00483-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zankari, E. et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, L., Zheng, D., Liu, B., Yang, J. & Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res. 44, D694–D697 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carattoli, A. et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gupta, S. K. et al. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58, 212–220 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Arndt, D., Marcu, A., Liang, Y. & Wishart, D. S. PHAST, PHASTER and PHASTEST: Tools for finding prophage in bacterial genomes. Brief. Bioinform. 20, 1560–1567 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Antipov, D. et al. plasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics https://doi.org/10.1093/bioinformatics/btw493 (2016).Article 
    PubMed 

    Google Scholar 
    Robertson, J. & Nash, J. H. E. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 4(8), e000206. https://doi.org/10.1099/mgen.0.000206 (2018).CAS 
    Article 

    Google Scholar 
    Jaillard, M. et al. A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events. PLoS Genet. 14, e1007758 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Bioherbicidal potential of plant species with allelopathic effects on the weed Bidens bipinnata L.

    Effects of aqueous plant extracts on germination and early growth of B. bipinnata by in vitro bioassaysSeed germination and seedling growth of B. bipinnata were investigated after treatment with DT, RC, PT, and JG aqueous extracts to explore the allelopathic effects of these plant species. The pH of the aqueous extracts corresponded to 6.62 for DL, 5.59 for RC, 7.20 for PT, and 7.42 for JG, with no significant difference in pH values between DL and RC extracts or between PT and JG extracts; however, the pH of DL and RC extracts differed significantly (p  1000 cm−1 were attributed to the C − H out-of-plane bending vibration of aliphatic alkenes and aromatic benzene rings49,50.The range between 1800 and 600 cm−1 of the infrared spectra was selected for the PCA, as it is the most representative region of the differences present in the spectra. In the PC1 versus PC2 score plot (Fig. 6), representing 85.78% of the total variance, it is possible to observe the separation of the samples into three distinct groups. The samples of DL and RC extracts formed two distinct groups, since they showed a significant separation in the PC1 axis, with positive and negative scores for PC1, respectively. The samples of JG and PT extracts formed a single group, remaining superimposed and located close to the zero value of PC1, indicating intermediate spectral characteristics in relation to the DL and RC extracts. These results may be correlated with the allelopathic activity of these extracts, since the RC extract showed better performance, followed by the JG and PT extracts, with intermediate performance, and the DL extract showed lower activity compared to the others.Figure 6PCA score plot (PC1 × PC2) of D. lacunifera (DL), R. communis (RC), P. tuberculatum (PT), and J. gossypiifolia (JG) extracts.Full size imageThe PC1 loading plot (Fig. S1) has as main contributors the negative bands associated with signals at approximately 1732, 1595, 1404, 1200–1025, 1049, and 780–600 cm−1, which significantly contributed to the separation of RC extract samples that presented greater intensity than in DL extract samples. On the other hand, the positive bands in PC1 in the region of 780–970 cm−1 were more intense in DL extracts. When evaluating the negative region of the PC1 loading plot, it is possible to observe that the functional groups responsible for the discrimination are probably those present in flavonoids and phenolic acids, corroborating the data in the literature that demonstrate the identification of these compound classes in RC leaves, such as gallic acid, quercetin, gentisic acid, rutin, epicatechin, ellagic acid, etc.51,52,53.The presence of flavonoids can be observed due to the stretching of C=O at approximately 1732 cm−1, C=C of aromatics at 1600 cm−1, C–O at 1200–1000 cm−1, and O–H at 3284–3174 cm−1. Phenolic acids can be verified due to stretching of the O–H of carboxylic acid, C=O and aromatic ring, as well as the C − H out-of-plane bending vibration of aromatic benzene ring at  More

  • in

    Influence of organic ammonium derivatives on the equilibria between NH4+, NO2− and NO3− ions in the Nistru River water

    Britto, D. T., Siddiqi, M. Y., Glass, A. D. M. & Kronzucker, H. J. Futile transmembrane NH4+ cycling: A cellular hypothesis to explain ammonium toxicity in plants. PNAS 98(7), 4255–4258 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Britto, D. T. & Konzucker, H. J. NH4 + toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567–584 (2002).CAS 
    Article 

    Google Scholar 
    Müller, T., Walter, B., Wirtz, A. & Burkovski, A. Ammonium toxicity in bacteria. Curr. Microbiol. 52, 400–406 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Mayes, M. A., Alexander, H. C., Hopkins, D. L. & Latvaitis, P. B. Acute and chronic toxicity of ammonia to freshwater fish: a site-specific study. Environ. Toxicol. Chem. 5, 437–442 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Archer, M. C. Hazards of nitrate, nitrite, and n-nitroso compounds in human nutrition. Nutr. Toxicol. 1, 329–381 (2012).
    Google Scholar 
    Brione, E., Martin, G. & Morvan, J. Non-destructive technique for elimination of nutrients from pig manure, 33–37. In Horan, N. J., Lowe, P. & Stentiford, E. I. (ed.), Nutrient removal from wastewaters. Techonomic Publishing Co. (Lancaster 1994).Butler, D., Friedler, E. & Gatt, K. Characterising the quantity and quality of domestic wastewater inflows. Wal. Sci. Tech. 31(7), 13–24 (1995).CAS 
    Article 

    Google Scholar 
    Mahne, I., Prinčič, A. & Megušar, F. Nitrification/denitrification in nitrogen high-strength liquid wastes. Water Res. 30, 2107–2111 (1996).CAS 
    Article 

    Google Scholar 
    Arp, D. J., Sayavedra-Soto, L. A. & Hommes, N. G. Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas Europaea. Arch. Microbiol. 178, 250–255. https://doi.org/10.1007/s00203-002-0452-0 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dalton, H. Ammonia oxidation by the methane oxidizing bacterium Methylococcuscapsulatus strain bath. Arch. Microbiol. 114(3), 273–279 (1977).CAS 
    Article 

    Google Scholar 
    Daum, M. et al. Physiological and molecular biological characterization of ammonia oxidation of the heterotrophic nitrifier pseudomonas putida. Curr Microbiol 37, 281–288 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Do, H. et al. Simultaneous effect of temperature, cyanide and ammonia-oxidizing bacteria concentrations on ammonia oxidation. J. Ind. Microbiol. Biotechnol. 35, 1331–1338. https://doi.org/10.1007/s10295-008-0415-9 (2008).MathSciNet 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lin, Y. et al. Physiological and molecular biological characteristics of heterotrophic ammonia oxidation by Bacillus sp. LY. World J. Microbiol. Biotechnol. 26, 1605–1612 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Snider, M. J. & Wolfenden, R. The rate of spontaneous decarboxylation of amino acids. J. Am. Chem. Soc. 122(46), 11507–11508 (2000).CAS 
    Article 

    Google Scholar 
    Zamora, R., León, M. M. & Hidalgo, F. J. Oxidative versus non-oxidative decarboxylation of amino acids: conditions for the preferential formation of either strecker aldehydes or amines in amino acid/lipid-derived reactive carbonyl model systems. J. Agric. Food Chem. 63(36), 8037–8043 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perez, M. et al. The relationship among tyrosine decarboxylase and agmatine deiminase pathways in enterococcus faecalis. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.02107/full (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, B. Y., Lin, K. W., Wang, Y. M. & Yen, C. Y. Revealing interactive toxicity of aromatic amines to azo dye decolorizer Aeromonas hydrophila. J. Hazard Mater. 166(1), 187–194 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Greim, H., Bury, D., Klimisch, H. J., Oeben-Negele, M. & Ziegler-Skylakakis, K. Toxicity of aliphatic amines: structure-activity relationship. Chemosphere 36(2), 271–295. https://doi.org/10.1016/s0045-6535(97)00365-2 (1998).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Newsome, L. D., Johnson, D. E., Lipnick, R. L., Broderius, S. J. & Russom, C. L. A QSAR study of the toxicity of amines to the fathead minnow. Sci. Total Environ. 109–110, 537–551 (1991).ADS 
    PubMed 
    Article 

    Google Scholar 
    Pinheiro, H. M., Touraud, E. & Thomas, O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dyes Pigm. 61, 121–139 (2004).CAS 
    Article 

    Google Scholar 
    Poste, A. E., Grung, M. & Wright, R. F. Wright Amines and amine-related compounds in surface waters: A review of sources, concentrations and aquatic toxicity. Sci. Total Environ. 481, 274–279 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ramos, E. U., Vaal, M. A. & Hermens, J. L. M. Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ. Toxicol. Pharmacol. 11(3–4), 149–158 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nicholas, G. A., Peter, J. B., Milton, W. G. & Stan, V. G. Microbial decomposition of wood in streams: distribution of microflora and factors affecting [14C] lignocellulose mineralization. Appl. Environ. Microbiol. 46(6), 1409–1416 (1983).Article 

    Google Scholar 
    Okabe, S., Kindaichi, T. & Ito, T. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl. Environ. Microbiol. 71(7), 3987–3994 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qiao, Z. et al. Microbial Heterotrophic Nitrification-Aerobic Denitrification Dominates Simultaneous Removal of Aniline and Ammonium in Aquatic Ecosystems. Water Air Soil Pollut. https://doi.org/10.1007/s11270-020-04476-3 (2020).Article 

    Google Scholar 
    Celik, A. Oxytetracycline and paracetamol biodegradation performance in the same enriched feed medium with aerobic nitrification/anaerobic denitrification SBR. Bioprocess Biosyst. Eng. 44, 1649–1658 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spataru, P., Povar, I., Mosanu, E. & Trancalan, A. Study of stable nitrogen forms in natural surface waters in the presence of mineral substrates. Chem. J. Moldova 10, 26–32 (2015).CAS 
    Article 

    Google Scholar 
    Spataru, P. et al. Influence of the interaction of calcium carbonate particles with surfactants on the degree of water pollution in small rivers. Ecol. Process. https://doi.org/10.1186/s13717-017-0086-4#article-dates-history (2017).Article 

    Google Scholar 
    Spataru, P., Povar, I., Lupascu, T., Alder, A. C. & Mosanu, E. Study of nitrogen forms in seasonal dynamics and kinetics of nitrification and denitrification in Prut and Nistru river waters. Environ. Eng. Manag. J. 17(7), 1711–1719 (2018).CAS 
    Article 

    Google Scholar 
    Cui, Z. G., Cui, Y. Z., Cui, C. F., Chen, Z. & Binks, B. P. Aqueous foams stabilized by in situ surface activation of CaCO3 Nanoparticles via Adsorption of Anionic Surfactant. Langmuir 26(15), 12567–12574 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cui, Z.-G., Cui, C.-F., Zhu, Y. & Binks, B. P. Multiple phase inversion of emulsions stabilized by in situ surface activation of CaCO3 nanoparticles via adsorption of Fatty acids. Langmuir 28(1), 314–320 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tanaka, T. et al. Biodegradation of endocrine-disrupting chemical aniline by microorganisms. J. Health Sci. 55(4), 625–630 (2009).CAS 
    Article 

    Google Scholar 
    Ahmed, S. et al. Isolation and characterization of a bacterial strain for aniline degradation. Afr. J. Biotechnol. 9(8), 1173–1179 (2010).CAS 
    Article 

    Google Scholar 
    Spataru, P. Transformations of organic substances in surface waters of Republic of Moldova. PhD Dissertation, State University of Moldova (2011).Sandu, M. et al. The dynamic of nitrification process in the presence of cationic surfactants. Proc. SIMI Bucharest 1, 277–281 (2007).
    Google Scholar 
    Spataru, P., Fernandez, F., Povar, I. & Spataru, T. Behavior of nitrogen soluble forms in natural water in the presence of anionic and cationic surfactants and mineral substrates. Adv. Sci. Eng. 11(2), 70–77. https://doi.org/10.32732/ase.2019.11.2.70 (2019).Article 

    Google Scholar 
    Reifferscheid, G., Buchinger, S., Cao, Z. & Claus, E. Identification of mutagens in freshwater sediments by the Ames-fluctuation assay using nitroreductase and acetyltransferase overproducing test strains. Environ. Mol. Mutagen. https://doi.org/10.1002/em.20638 (2011).Osadchyy, V., Nabyvanets, B., Linnik, P., Osadcha, N. & Nabyvanets, Y. Characteristics of Surface Water Quality in Processes Determining Surface Water Chemistry, Springer Link, 1–9. https://doi.org/10.1007/978-3-319-42159-9_1 (2016).Matveeva, N. P., Klimenko, O. A. & Trunov, N. M. Simulation of self-purification of natural treatment of organic pollutants in the laboratory, Gidrometeoizdat, Leningrad, 26–31 (in Russian) (1988).ISO 7150-1:2001.Water quality – Determination of ammonium – Spectrometric method.ISO 8466-1:1990. Water quality – Calibration and evaluation of analytical methods and estimation of performance characteristics, 1: Statistical evaluation of the linear calibration function.SR ISO 7890-3:2000 Water quality – The determination of the content of nitrates, 3: The spectrometric method with sulfosalicylic acid.SM SR EN 26777:2006 Water quality – determination of the content of nitrites. The method of the spectrometry of molecular absorption.Sandu, M. et al. Method for nitrate determination in water in the presence of nitrite. Chem. J. Moldova 9, 8–13 (2014).CAS 
    Article 

    Google Scholar 
    Bentzon-Tilia, M. et al. Significant N2 fixation by heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two temperate estuaries. ISME 9, 273–285 (2015).CAS 
    Article 

    Google Scholar 
    Farnelid, H. et al. Active nitrogen-fixing heterotrophic bacteria at and below the chemocline of the central Baltic Sea. ISME J. 7, 1413–1423. https://doi.org/10.1038/ismej.2013.26 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagatani, H., Shimizu, M. & Valentine, R. C. The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch. Mikrobiol. 79, 164–175 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, A. E., Booth, M. G., Verity, P. G. & Frischer, M. E. Influence of nitrate availability on the distribution and abundance of heterotrophic bacterial nitrate assimilation genes in the Barents Sea during summer. Aquat. Microb. Ecol. 39, 247–255 (2005).Article 

    Google Scholar 
    Davidson, K. et al. The influence of the balance of inorganic and organic nitrogen on the trophic dynamics of microbial food webs. Limnol. Oceanogr. 52(5), 2147–2163 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Domingues, R. B., Barbosa, A. B., Sommer, U. & Galvão, H. M. Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophication. Aquat. Sci. 73, 331–343. https://doi.org/10.1007/s00027-011-0180-0 (2011).CAS 
    Article 

    Google Scholar 
    Hollibaugh, J. T., Gifford, S., Sharma, S., Bano, N. & Moran, M. A. Metatranscriptomic analysis of ammonia-oxidizing organisms in an estuarine bacterioplankton assemblage. ISME J. 5, 866–878 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, J. et al. Ecogenomics of zooplankton community reveals ecological threshold of ammonia nitrogen. Environ. Sci. Technol. 51, 3057–3064 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, Z. L., Jasper, J. T., Sedlak, D. L. & Sharpa, J. O. Sulfide-Induced dissimilatory nitrate reduction to ammonium supports anaerobic Ammonium oxidation (anammox) in an open-water unit process wetland. Appl. Environ. Microbiol. 83(15), 1–14 (2017).Article 

    Google Scholar 
    Nizzoli, D., Carraro, E., Nigro, V. & Viaroli, P. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Res. 4, 2715–2724 (2010).Article 
    CAS 

    Google Scholar 
    Rutting, T., Boeckx, P., Muller, C. & Klemedtsson, L. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8, 1779–1791 (2011).ADS 
    Article 
    CAS 

    Google Scholar 
    Roberts, K. L., Kessler, A. J., Grace, M. R. & Cook, P. L. M. Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary. Cosmochim. Acta 133, 313–324 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Broman, E. et al. Active DNRA and denitrification in oxic hypereutrophic waters. Water Res. 194, 116954 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Han, X., Peng, S., Zhang, L., Lu, P. & Zhang, D. The Co-occurrence of DNRA and Anammox during the anaerobic degradation of benzene under denitrification. Chemosphere 247, 125968 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rantanen, P.-L. et al. Decreased natural organic matter in water distribution decreases nitrite formation in non-disinfected conditions, via enhanced nitrite oxidation. Water Res. X 9, 100069 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raimonet, M., Cazier, T., Rocher, V. & Laverman, A. M. Nitrifying kinetics and the persistence of nitrite in the Seine River, France. J. Environ. Qual. https://doi.org/10.2134/jeq2016.06.0242 (2017).Article 
    PubMed 

    Google Scholar 
    Philip, S., Laanbroek, H. J. & Verstraete, W. Origin, causes and effects of increased nitrite concentrations in aquatic environments. Rev. Environ. Sci. Biotechnol. 1, 115–141. https://doi.org/10.1023/A:1020892826575 (2002).Article 

    Google Scholar 
    Baneshi, M. M. et al. Aniline bio-adsorption from aqueous solutions using dried activated sludge: Aniline bio-adsorption from aqueous solutions using dried activated sludge. Poll. Res. 36(3), 403–409 (2017).CAS 

    Google Scholar 
    Börnick, H., Eppinger, P., Grischek, T. & Worch, E. Simulation of biological degradation of aromatic amines in river bed sediments. Water Res. 35(3), 619–624 (2001).PubMed 
    Article 

    Google Scholar 
    Norzaee, S., Djahed, B., Khaksefidi, R. & Mostafapour, F. K. Photocatalytic degradation of aniline in water using CuO nanoparticles. Water Supply 66(3), 178–185 (2017).Article 

    Google Scholar 
    Paździor, K. et al. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Chemosphere 75, 250–255 (2009).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Babcock, R. W., Chen, W., Ro, K. S., Mah, R. A. & Stenstrom, M. K. Enrichment and kinetics of biodegradation of 1-naphthylamine in activated sludge. Appl. Microbiol. Biotechnol. 39, 264–269 (1993).CAS 
    Article 

    Google Scholar 
    Shin, K. A. & Spain, J. C. Pathway and evolutionary implications of diphenylamine biodegradation by Burkholderia sp. Strain JS667. Appl. Microbiol. Biotechnol. 75(9), 2694–2704 (2009).ADS 
    CAS 

    Google Scholar  More

  • in

    Phenotypic plasticity promotes species coexistence

    Pigliucci, M. Phenotypic plasticity: Beyond Nature and Nurture (Johns Hopkins Univ. Press, 2001).Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Aerts, R., Boot, R. G. A. & Van Der Aart, P. J. M. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87, 551–559 (1991).CAS 
    Article 

    Google Scholar 
    Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).Article 

    Google Scholar 
    Pfennig, D. W., Rice, A. M. & Martin, R. A. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87, 769–779 (2006).Article 

    Google Scholar 
    van Kleunen, M. & Fischer, M. Adaptive evolution of plastic foraging responses in a clonal plant. Ecology 82, 3309–3319 (2001).Article 

    Google Scholar 
    Relyea, R. A. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecol. Monogr. 72, 523–540 (2002).Article 

    Google Scholar 
    Broekman, M. J. E. et al. Signs of stabilisation and stable coexistence. Ecol. Lett. 22, 1957–1975 (2019).Article 

    Google Scholar 
    Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).Article 

    Google Scholar 
    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).Article 

    Google Scholar 
    Chesson, P. in Unity in Diversity: Reflections on Ecology after the Legacy of Ramon Margalef (eds F. Valladares et al.) 119–164 (Fundación Banco Bilbao Vizcaya Argentaria, 2008).Ellner, S. P., Snyder, R. E. & Adler, P. B. How to quantify the temporal storage effect using simulations instead of math. Ecol. Lett. 19, 1333–1342 (2016).Article 

    Google Scholar 
    Vasseur, D. A., Amarasekare, P., Rudolf, V. H. W. & Levine, J. M. Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. Am. Nat. 178, E96–E109 (2011).Article 

    Google Scholar 
    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).Article 

    Google Scholar 
    Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).CAS 
    Article 

    Google Scholar 
    Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).Article 

    Google Scholar 
    Grainger, T. N., Levine, J. M. & Gilbert, B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 34, 925–935 (2019).Article 

    Google Scholar 
    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).Article 

    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).CAS 
    Article 

    Google Scholar 
    Pfennig, D. W. & Murphy, P. J. How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 56, 1217–1228 (2002).Article 

    Google Scholar 
    Adler, P., HilleRisLambers, J. & Levine, J. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump Simon, M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Evolution’s Wedge: Competition and the Origins of Diversity (Univ. California Press, 2012).Ayala, F. J. Reversal of dominance in competing species of Drosophila. Am. Nat. 100, 81–83 (1966).Article 

    Google Scholar 
    Pease, C. M. On the evolutionary reversal of competitive dominance. Evolution 38, 1099–1115 (1984).Article 

    Google Scholar 
    Pimentel, D., Feinberg, E. H., Wood, P. W. & Hayes, J. T. Selection, spatial distribution, and the coexistence of competing fly species. Am. Nat. 99, 97–109 (1965).Article 

    Google Scholar 
    Lankau, R. A. & Strauss, S. Y. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317, 1561–1563 (2007).CAS 
    Article 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).CAS 
    Article 

    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).Article 

    Google Scholar 
    Abrams, P. A. Alternative models of character displacement and niche shift. 2. Displacement when there is competition for a single resource. Am. Nat. 130, 271–282 (1987).Article 

    Google Scholar 
    Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 

    Google Scholar 
    Harmon, E. A. & Pfennig, D. W. Evolutionary rescue via transgenerational plasticity: evidence and implications for conservation. Evol. Dev. 23, 292–307 (2021).Article 

    Google Scholar 
    Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115, 276–284 (2015).CAS 
    Article 

    Google Scholar 
    Brass, D. P. et al. Phenotypic plasticity as a cause and consequence of population dynamics. Ecol. Lett. 24, 2406–2417 (2021).Article 

    Google Scholar 
    Macarthur, R. H. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).Article 

    Google Scholar 
    Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (UK Ministry of Agriculture, Fisheries and Food, 1957).Landolt, E. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Vol. 2: The Family of Lemnaceae—A Monographic Study, Vol.1 (Geobotanischen Institute, ETH Zürich, 1986).Wang, W. et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5, 3311 (2014).CAS 
    Article 

    Google Scholar 
    Hoagland, D. R. & Arnon, D. I. The Water-Culture Method for Growing Plants without Soil (College of Agriculture, Agricultural Experiment Station, Univ. California, 1950).Inouye, B. D. Response surface experimental designs for investigating interspecific competition. Ecology 82, 2696–2706 (2001).Article 

    Google Scholar 
    Law, R. & Watkinson, A. R. Response-surface analysis of two-species competition: an experiment on Phleum arenarium and Vulpia fasciculata. J. Ecol. 75, 871–886 (1987).Article 

    Google Scholar 
    MATLAB v.9.0 (MathWorks, 2016).Stan Modeling Language Users Guide and Reference Manual, v.2.27 (Stan Development Team, 2021); https://mc-stan.orgVehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Bürkner, P.C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017).Vehtari, A. et al. loo: efficient leave-one-out cross-validation and WAIC for Bayesian models, v.2.4.1 (2020).ImageJ (US NIH, 1997–2016). More

  • in

    Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 37, 637–669 (2006).
    Google Scholar 
    Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 365, 3101–3112 (2010).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change/631/158/2165/2457/631/158/2039/129/141/139 letter. Nat. Clim. Chang. 8 (2018).Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mushegian, A. A. et al. Ecological mechanism of climate-mediated selection in a rapidly evolving invasive species. Ecol. Lett. 24, 698–707 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).
    Google Scholar 
    Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1–10 (2017).ADS 

    Google Scholar 
    Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: Ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34 (2019).Youngflesh, C. et al. Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01442-y (2021).PubMed 

    Google Scholar 
    Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17 (2016).Crimmins, T. M. et al. Short-term forecasts of insect phenology inform pest management. Ann. Entomol. Soc. Am. 113 (2020).Brakefield, P. M. Geographical variability in, and temperature effects on, the phenology of Maniola jurtina and Pyronia tithonus (Lepidoptera, Satyrinae) in England and Wales. Ecol. Entomol. 12 (1987).Dell, D., Sparks, T. H. & Dennis, R. L. H. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol. 102, 161–167 (2005).
    Google Scholar 
    Van Der Kolk, H. J., Wallisdevries, M. F. & Van Vliet, A. J. H. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands. Ecol. Indic. 69 (2016).Abarca, M. et al. Inclusion of host quality data improves predictions of herbivore phenology. Entomol. Exp. Appl. 166 (2018).Abarca, M. & Lill, J. T. Latitudinal variation in the phenological responses of eastern tent caterpillars and their egg parasitoids. Ecol. Entomol. 44 (2019).Karlsson, B. Extended season for northern butterflies. Int. J. Biometeorol. 58, 691–701 (2014).ADS 
    PubMed 

    Google Scholar 
    Kharouba, H. M., Paquette, S. R., Kerr, J. T. & Vellend, M. Predicting the sensitivity of butterfly phenology to temperature over the past century. Glob. Chang. Biol. 20 (2014).Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92 (2011).Diamond, S. E. et al. Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology 95 (2014).Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96, 1473–1479 (2015).
    Google Scholar 
    Stewart, J. E., Illán, J. G., Richards, S. A., Gutiérrez, D. & Wilson, R. J. Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community. Ecology 101 (2020).Roy, D. B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Glob. Chang. Biol. 21 (2015).Dennis, R. L. H. et al. Turnover and trends in butterfly communities on two British tidal islands: Stochastic influences and deterministic factors. J. Biogeogr. 37, 2291–2304 (2010).
    Google Scholar 
    Sparks, T. H. & Yates, T. J. The effect of spring temperature on the appearance dates of British butterflies 1883–1993. Ecography (Cop.). 20 (1997).Michielini, J. P., Dopman, E. B. & Crone, E. E. Changes in flight period predict trends in abundance of Massachusetts butterflies. Ecol. Lett. 24, 249–257 (2021).PubMed 

    Google Scholar 
    Zografou, K. et al. Species traits affect phenological responses to climate change in a butterfly community. Sci. Rep. 11 (2021).Belitz, M. W., Larsen, E. A., Ries, L. & Guralnick, R. P. The accuracy of phenology estimators for use with sparsely sampled presence-only observations. Methods Ecol. Evol. 11, 1273–1285 (2020).
    Google Scholar 
    Van Strien, A. J., Plantenga, W. F., Soldaat, L. L., Van Swaay, C. A. M. & WallisDeVries, M. F. Bias in phenology assessments based on first appearance data of butterflies. Oecologia 156, 227–235 (2008).ADS 
    PubMed 

    Google Scholar 
    Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12 (1977).Taron, D. & Ries, L. Butterfly Monitoring for Conservation. in Butterfly Conservation in North America 35–57 (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9852-5_3.Schmucki, R. et al. A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. J. Appl. Ecol. 53, 501–510 (2016).
    Google Scholar 
    Prudic, K., Oliver, J., Brown, B. & Long, E. Comparisons of citizen science data-gathering approaches to evaluate urban butterfly diversity. Insects 9, 186 (2018).PubMed Central 

    Google Scholar 
    Prudic, K. L. et al. eButterfly: Leveraging massive online citizen science for butterfly conservation. Insects 8 (2017).Barve, V. V. et al. Methods for broad-scale plant phenology assessments using citizen scientists’ photographs. Appl. Plant Sci. 8 (2020).Seltzer, C. Making biodiversity data social, shareable, and scalable: Reflections on iNaturalist & citizen science. Biodivers. Inf. Sci. Stand. 3 (2019).Wittmann, J., Girman, D. & Crocker, D. Using inaturalist in a coverboard protocol to measure data quality: Suggestions for project design. Citiz. Sci. Theory Pract. 4 (2019).Dorazio, R. M. Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Glob. Ecol. Biogeogr. 23 (2014).Ries, L., Zipkin, E. F. & Guralnick, R. P. Tracking trends in monarch abundance over the 20th century is currently impossible using museum records. In Proceedings of the National Academy of Sciences of the United States of America vol. 116 (2019).Larsen, E. A. & Shirey, V. Method matters: Pitfalls in analysing phenology from occurrence records. Ecol. Lett. https://doi.org/10.1111/ele.13602 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    de Keyzer, C. W., Rafferty, N. E., Inouye, D. W. & Thomson, J. D. Confounding effects of spatial variation on shifts in phenology. Glob. Chang. Biol. 23 (2017).Cima, V. et al. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 110, 105885 (2020).
    Google Scholar 
    Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19 (2021).Polgar, C. A., Primack, R. B., Williams, E. H., Stichter, S. & Hitchcock, C. Climate effects on the flight period of Lycaenid butterflies in Massachusetts. Biol. Conserv. 160 (2013).Brooks, S. J. et al. The influence of life history traits on the phenological response of British butterflies to climate variability since the late-19th century. Ecography (Cop.) 40, 1152–1165 (2017).
    Google Scholar 
    van Strien, A. J., van Swaay, C. A. M., van Strien-van Liempt, W. T. F. H., Poot, M. J. M. & WallisDeVries, M. F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 234 (2019).Boggs, C. L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17 (2016).Belitz, M. et al. Climate drivers of adult insect activity are conditioned by life history traits. Authorea Prepr. (2021).Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9 (2014).Park, D. S., Newman, E. A. & Breckheimer, I. K. Scale gaps in landscape phenology: challenges and opportunities. Trends Ecol. Evol. 36 (2021).Kerr, J. T., Vincent, R. & Currie, D. J. Lepidopteran richness patterns in North America. Écoscience 5, 448–453 (1998).
    Google Scholar 
    Taylor, S. D., Meiners, J. M., Riemer, K., Orr, M. C. & White, E. P. Comparison of large-scale citizen science data and long-term study data for phenology modeling. Ecology 100 (2019).Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35 (2020).Miller, D. A. W., Pacifici, K., Sanderlin, J. S. & Reich, B. J. The recent past and promising future for data integration methods to estimate species’ distributions. Methods Ecol. Evol. 10 (2019).Fletcher, R. J. et al. A practical guide for combining data to model species distributions. Ecology https://doi.org/10.1002/ecy.2710 (2019).PubMed 

    Google Scholar 
    Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. bioRxiv https://doi.org/10.1101/613786 (2019).
    Google Scholar 
    Crossley, M. S. et al. Recent climate change is creating hotspots of butterfly increase and decline across North America. Glob. Chang. Biol. 27, 2702–2714 (2021).CAS 
    PubMed 

    Google Scholar 
    Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science (80-) 371, 1042–1045 (2021).ADS 
    CAS 

    Google Scholar 
    Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, (2019).Kerr, N. Z. et al. Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Glob. Chang. Biol. 26, (2020).Belth, J. E. Butterflies of Indiana: A field guide. Butterflies of Indiana: A Field Guide (2012).Betros, B. A Photographic Field Guide to the Butterflies in the Kansas City Region (Kansas City Star Books, 2008).
    Google Scholar 
    Bouseman, J. K., Sternburg, J. G. & Wiker, J. R. Field guide to the skipper butterflies of Illinois. (Illinois Natural History Survey Manual 11, 2006).Clark, A. H. The butterflies of the District of Columbia and vicinity. Bull. United States Natl. Museum (1932).Glassberg, J. Butterflies through Binoculars: Boston—New York—Washington Region (Oxford University Press, 1993).
    Google Scholar 
    Glassberg, J. Butterflies through Binoculars: The East—A Field Guide to the Butterflies of Eastern North America (Oxford University Press, 1999).
    Google Scholar 
    Iftner, D. C., Shuey, J. A. & Calhoun, J. V. Butterflies and skippers of Ohio (Ohio State University, 1992).
    Google Scholar 
    Jeffords, M. R., Post, S. L. & Wiker, J. Butterflies of Illinois: a field guide (Illinois Natural History Survey, 2019).
    Google Scholar 
    Schlicht, D. W., Downey, J. C. & Nekola, J. C. The butterflies of Iowa (University of Iowa Press, 2007).
    Google Scholar 
    Schmucki, R., Harrower, C. A. & Dennis, E. B. rbms: Computing generalised abundance indices for butterfly monitoring count data. R package version 1.1.0. https://github.com/RetoSchmucki/rbms (2021).GBIF. GBIF Occurrence download. https://doi.org/10.15468/dl.1erh15 (2019).Thornton, P. E. et al. Daymet: Daily surface weather data on a 1-km grid for North America, version 3. ORNL DAAC. (Oak Ridge, TN, 2017).Baskerville, G. L. & Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50, (1969).R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing vol. 1 409 (2011).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version (2014).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4 (2013).Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J 5 (2013). More