More stories

  • in

    Transcriptomes reveal the involved genes in the sea urchin Mesocentrotus nudus exposed to high flow velocities

    Wei, Z. L., Liu, X., Feng, T. & Chang, Y. Q. Novel and conserved micrornas in Dalian purple urchin (Strongylocentrotus nudus) identified by next generation sequencing. Int. J. Biol. Sci. 7, 180 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sun, Z. H., Zhang, J., Zhang, W. J. & Chang, Y. Q. Gonadal transcriptomic analysis and identification of candidate sex-related genes in Mesocentrotus nudus. Gene 698, 72–81 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willoughby, L. News feature: Can predators have a big impact on carbon emissions calculations?. PNAS 115(10), 2260–2263 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ling, S. D., Kriegisch, N., Woolley, B. & Reeves, S. E. Density dependent feedbacks, hysteresis, and demography of overgrazing sea urchins. Ecology 100(2), e02577 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cirino, P., Ciaravolo, M., Paglialonga, A. & Toscano, A. Long term maintenance of the sea urchin Paracentrotus lividus in culture. Aquac. Rep. 7, 27–33 (2017).Article 

    Google Scholar 
    Brundu, G., Farina, S. & Domenici, P. Going back into the wild: The behavioural effects of raising sea urchins in captivity. Conserv. Physiol. 8(1), 015 (2020).Article 

    Google Scholar 
    Chang, Y., Ding, J., Song, J. & Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins (Ocean Press, 2004).
    Google Scholar 
    Abelson, A. & Denny, M. Settlement of marine organisms in flow. Annu. Rev. Ecol. Syst. 28(1), 317–339 (1997).Article 

    Google Scholar 
    Boxshall, A. J. The importance of flow and settlement cues to larvae of the abalone, Haliotis rufescens Swainson. J. Exp. Mar. Biol. Ecol. 254(2), 143–167 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palardy, J. E. & Witman, J. D. Water flow drives biodiversity by mediating rarity in marine benthic communities: Water flow mediates rarity and diversity. Ecol. Lett. 14(1), 63–68 (2011).PubMed 
    Article 

    Google Scholar 
    Fischer-Rousseau, L., Chu, K. P. & Cloutier, R. Developmental plasticity in fish exposed to a water velocity gradient: A complex response. J. Exp. Zool. 314(1), 67–85 (2010).Article 

    Google Scholar 
    Moëzzi, F., Poorbagher, H., Ghadermazi, A., Parvizi, F. & Benam, S. Variation in the shell form of the swanmussel, Anodonta cygnea (Linea, 1876) in response to water current. Int. J. Aquat. Biol. 5(4), 275–281 (2017).
    Google Scholar 
    Pan, Y. et al. Influence of flow velocity on motor behavior of sea cucumber Apostichopus japonicus. Physiol. Behav. 144, 52–59 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dumont, C. P., Drolet, D., Deschenes, I. & Himmelman, J. H. Multiple factors explain the covering behaviour in the green sea urchin, Strongylocentrotus droebachiensis. Anim. Behav. 73(6), 979–986 (2007).Article 

    Google Scholar 
    Li, X. J. et al. Effect of flow velocity on the growth, stress and immune responses of turbot (Scophthalmus maximus) in recirculating aquaculture systems. Fish Shellfish Immunol. 86, 1169–1176 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kirby-Smith, W. W. Growth of the bay scallop: The influence of experimental water currents. J. Exp. Mar. Biol. Ecol. 8(1), 7–18 (1972).Article 

    Google Scholar 
    Morse, B. L. & Hunt, H. L. Effect of unidirectional water currents on displacement behaviour of the green sea urchin Strongylocentrous droebachiensis. J. Mar. Biol. Assoc. U. K. 93(7), 1923–1928 (2013).Article 

    Google Scholar 
    Shi, D. T. et al. Effects of flow velocity on fitness related behaviours of the sea urchin Mesocentrotus nudus: New information on stock enhancement. J. Mar. Biol. Assoc. U. K. 100(6), 963–967 (2020).CAS 
    Article 

    Google Scholar 
    Agca, C., Elhajj, M. C., Klein, W. H. & Venuti, J. M. Neurosensory and neuromuscular organization in tube feet of the sea urchin Strongylocentrotus purpuratus. J. Comp. Neurol. 519(17), 3566–3579 (2011).PubMed 
    Article 

    Google Scholar 
    Cohen-Rengifo, M., Moureaux, C., Dubois, P. & Flammang, P. Attachment capacity of the sea urchin Paracentrotus lividus in a range of seawater velocities in relation to test morphology and tube foot mechanical properties. Mar. Biol. 164(4), 79 (2017).Article 

    Google Scholar 
    Tuya, F., Cisneros-Aguirre, J., Ortega-Borges, L. & Haroun, R. J. Bathymetric segregation of sea urchins on reefs of the Canarian Archipelago: Role of flow induced forces. Estuar. Coast. Shelf Sci. 73, 481–488 (2007).ADS 
    Article 

    Google Scholar 
    Stewart, H. L. & Britton-Simmons, K. H. Streamlining behaviour of the red urchin Strongylocentrotus franciscanus in response to flow. J. Exp. Biol. 214(16), 2655–2659 (2011).PubMed 
    Article 

    Google Scholar 
    Toubarro, D. et al. Cloning, characterization, and expression levels of the nectin gene from the tube feet of the sea urchin Paracentrotus Lividus. Mar. Biotechnol. 18(3), 372–383 (2016).CAS 
    Article 

    Google Scholar 
    Milan, M. et al. Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: Genomic tools for environmental monitoring. BMC Genom. 12, 234 (2011).CAS 
    Article 

    Google Scholar 
    Evans, T. G. et al. Ocean acidification research in the ‘post-genomic’ era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comp. Biochem. Phys. A. 185, 33–42 (2015).CAS 
    Article 

    Google Scholar 
    Wang, L. K., Feng, Z. X., Wang, X. & Zhang, X. G. DEGseq: An R package for identifying differentially expressed genes from RNA-Seq Data. Bioinformatics 26(1), 136–138 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ding, J. Y. et al. Effects of water temperature on survival, behaviors and growth of the sea urchin Mesocentrotus nudus: New insights into the stock enhancement. Aquaculture 519, 734873 (2019).Article 

    Google Scholar 
    Shi, D. T., Zhao, C., Yin, D. H., Chen, Y. & Chang, Y. Q. Effects of velocity on behaviors and growth of the sea urchin Mesocentrotus nudus. Acta Ecol. Sin. 42(10) (2022) (in Chinese with an English abstract).Zhao, C. et al. Transcriptomes reveal genes involved in covering and sheltering behaviors of the sea urchin Strongylocentrotus intermedius exposed to UV-B radiation. Ecotoxicol. Environ. Saf. 167, 236–241 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhan, Y. Y. et al. The impact of chronic heat stress on the growth, survival, feeding, and differential gene expression in the sea urchin Strongylocentrotus intermedius. Front. Genet. 10, 301 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, P. F. et al. Gene expression patterns of sea urchins (Strongylocentrotus intermedius) exposed to different combinations of temperature and hypoxia. Comp. Biochem. Physiol. Part D. Cenom. Proteom. 41, 100953 (2022).CAS 

    Google Scholar 
    Albarano, L. et al. PAHs and PCBs affect functionally intercorrelated genes in the sea urchin Paracentrotus lividus embryos. Int. J. Mol. Sci. 22, 12498 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Láruson, A. J., Coppard, S. E., Pespeni, M. H. & Reed, F. A. Gene expression across tissues, sex, and life stages in the sea urchin Tripneustes gratilla [Toxopneustidae, Odontophora, Camarodonta]. Mar. Genom. 41, 12–18 (2018).Article 

    Google Scholar 
    Xu, Y. Q. Effects of flow velocity on growth, nonspecific immunity and fatty acid composition of juvenile Rhynchocypris lagowskii. Dalian Ocean University, Master Thesis (2020).Ogata, H. Y. & Oku, H. Effects of water velocity on growth performance of juvenile Japanese flounder Paralichthys olivaceus. J. World Aquac. Soc. 31(2), 225–231 (2000).Article 

    Google Scholar 
    Gao, J., Wang, Y. B., Liu, J. Y., Guo, Y. L. & Fu, S. Y. Transcriptome analysis of Plectropomus leopardus liver under different flow velocity. South China Fish. Sci. 18(1), 107–117 (2022).
    Google Scholar 
    Arai, M., Otsu, K., Maclennan, D. H. & Periasamy, M. Regulation of sarcoplasmic reticulum gene expression during cardiac and skeletal muscle development. Am. J. Physiol. 262, C614–C620 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gallagher, P. G., Romana, M., Tse, W. T., Lux, S. E. & Forge, B. G. The human ankyrin-1 gene is selectively transcribed in erythroid cell lines despite the presence of a housekeeping-like promoter. Blood 96(3), 1136–1143 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gallagher, P. G. & Forget, B. G. An alternate promoter directs expression of a truncated, muscle specific isoform of the human Ankyrin-1 gene. J. Biol. Chem. 273(3), 1339–1348 (1997).Article 

    Google Scholar 
    Yi, Y., Li, Z. & Kuipers, O. P. Plant–microbe interaction: transcriptional response of bacillus mycoides to potato root exudates. J. Vis. Exp. 137, e57606 (2018).
    Google Scholar 
    Sun, X. et al. Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics. BMC Genom. 19, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29(7), 644–652 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory efficient alignment of short DNA sequences to the human genome. Genome Biol. 10(3), 25–34 (2009).Article 
    CAS 

    Google Scholar 
    Tatusov, R. T., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Nucleic Acids Res. 28, 33–36 (1997).Article 

    Google Scholar 
    Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28(5), 511–515 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turbeville, J., Schulz, J. R. & Raff, R. A. Deuterostome phylogeny and the sister group of the chordates: Evidence from molecules and morphology. Mol. Biol. Evol. 11, 648–655 (1994).CAS 
    PubMed 

    Google Scholar 
    Vergara-Amado, J., Silva, A. X., Manzi, C., Nespolo, R. F. & Cárdenas, L. Differential expression of stress candidate genes for thermal tolerance in the sea urchin Loxechinus albus. J. Therm. Biol. 68, 104–109 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2–ΔΔCT method. Methods 25(4), 402–408 (2001).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Global patterns and rates of habitat transitions across the eukaryotic tree of life

    Simpson, G. G. The Major Features of Evolution (Columbia Univ. Press, 1953).Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism: American Society of Naturalists E. O. Wilson award address. Am. Nat. 175, 623–639 (2010).PubMed 
    Article 

    Google Scholar 
    Osborn, H. F. The law of adaptive radiation. Am. Nat. 36, 353–363 (1902).Article 

    Google Scholar 
    Yoder, J. B. et al. Ecological opportunity and the origin of adaptive radiations. J. Evol. Biol. 23, 1581–1596 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robertson, G. P. et al. Soil resources, microbial activity, and primary production across an agricultural ecosystem. Ecol. Appl. 7, 158–170 (1997).Article 

    Google Scholar 
    Singer, D. et al. Protist taxonomic and functional diversity in soil, freshwater and marine ecosystems. Environ. Int. 146, 106262 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miller, M. F. & Labandeira, C. C. Slow crawl across the salinity divide: delayed colonization of freshwater ecosystems by invertebrates. GSA Today 12, 4–10 (2002).Article 

    Google Scholar 
    Cnaani, A. & Hulata, G. Improving salinity tolerance in tilapias: past experience and future prospects. Isr. J. Aquac. 63, 20590 (2011).
    Google Scholar 
    Eiler, A. et al. Productivity and salinity structuring of the microplankton revealed by comparative freshwater metagenomics. Environ. Microbiol. 16, 2682–2698 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabello-Yeves, P. J. & Rodriguez-Valera, F. Marine-freshwater prokaryotic transitions require extensive changes in the predicted proteome. Microbiome 7, 117 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hutchinson, G. E. A Treatise on Limnology (John Wiley & Sons, 1957).Vermeij, G. J. & Dudley, R. Why are there so few evolutionary transitions between aquatic and terrestrial ecosystems? Biol. J. Linn. Soc. 70, 541–554 (2000).Article 

    Google Scholar 
    Lee, C. E. & Bell, M. A. Causes and consequences of recent freshwater invasions by saltwater animals. Trends Ecol. Evol. 14, 284–288 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Logares, R. et al. Infrequent marine–freshwater transitions in the microbial world. Trends Microbiol. 17, 414–422 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paver, S. F., Muratore, D., Newton, R. J. & Coleman, M. L. Reevaluating the salty divide: phylogenetic specificity of transitions between marine and freshwater systems. mSystems 3, e00232-18 (2018).Filker, S. et al. Transition boundaries for protistan species turnover in hypersaline waters of different biogeographic regions. Environ. Microbiol. 19, 3186–3200 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavalier-Smith, T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations. J. Eukaryot. Microbiol. 56, 26–33 (2009).PubMed 
    Article 

    Google Scholar 
    Carr, M. et al. A six-gene phylogeny provides new insights into choanoflagellate evolution. Mol. Phylogenet. Evol. 107, 166–178 (2017).PubMed 
    Article 

    Google Scholar 
    Simon, M., López-García, P., Moreira, D. & Jardillier, L. New haptophyte lineages and multiple independent colonizations of freshwater ecosystems. Environ. Microbiol. Rep. 5, 322–332 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bråte, J., Klaveness, D., Rygh, T., Jakobsen, K. S. & Shalchian-Tabrizi, K. Telonemia-specific environmental 18S rDNA PCR reveals unknown diversity and multiple marine–freshwater colonizations. BMC Microbiol. 10, 168 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shalchian-Tabrizi, K. et al. Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environ. Microbiol. 10, 2635–2644 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Von Der Heyden, S., Chao, E. E. & Cavalier-Smith, T. Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur. J. Phycol. 39, 343–350 (2004).Article 
    CAS 

    Google Scholar 
    Žerdoner Čalasan, A., Kretschmann, J. & Gottschling, M. They are young, and they are many: dating freshwater lineages in unicellular dinophytes. Environ. Microbiol. 21, 4125–4135 (2019).PubMed 
    Article 

    Google Scholar 
    Annenkova, N. V., Giner, C. R. & Logares, R. Tracing the origin of planktonic protists in an ancient lake. Microorganisms 8, 543 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Annenkova, N. V., Hansen, G., Moestrup, Ø. & Rengefors, K. Recent radiation in a marine and freshwater dinoflagellate species flock. ISME J. 9, 1821–1834 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Annenkova, N. V., Hansen, G. & Rengefors, K. Closely related dinoflagellate species in vastly different habitats—an example of a marine–freshwater transition. Eur. J. Phycol. 55, 478–489 (2020).CAS 
    Article 

    Google Scholar 
    Obiol, A. et al. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol. Ecol. Resour. 20, 718–731 (2020).CAS 
    Article 

    Google Scholar 
    Jamy, M. et al. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol. Ecol. Resour. 20, 429–443 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 (2020).PubMed 
    Article 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jamy, M. et al. Data for ‘Global patterns and rates of habitat transitions across the eukaryotic tree of life’. figshare https://doi.org/10.6084/m9.figshare.15164772.v3 (2022).Dunthorn, M. et al. Placing environmental next-generation sequencing amplicons from microbial eukaryotes into a phylogenetic context. Mol. Biol. Evol. 31, 993–1009 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).PubMed 
    Article 

    Google Scholar 
    Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc. R. Soc. B 255, 37–45 (1994).Article 

    Google Scholar 
    Ishikawa, S. A., Zhukova, A., Iwasaki, W., Gascuel, O. & Pupko, T. A fast likelihood method to reconstruct and visualize ancestral scenarios. Mol. Biol. Evol. 36, 2069–2085 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gottschling, M., Czech, L., Mahé, F., Adl, S. & Dunthorn, M. The windblown: possible explanations for dinophyte DNA in forest soils. J. Eukaryot. Microbiol. 68, e12833 (2021).Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741–752 (2007).PubMed 
    Article 

    Google Scholar 
    Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al Jewari, C. & Baldauf, S. L. Conflict over the eukaryote root resides in strong outliers, mosaics and missing data sensitivity of site-specific (CAT) mixture models. Syst. Biol. syac029 (2022).He, D. et al. An alternative root for the eukaryote tree of life. Curr. Biol. 24, 465–470 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Derelle, R. & Lang, B. F. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol. Biol. Evol. 29, 1277–1289 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boaden, P. J. S. Meiofauna and the origins of the Metazoa. Zool. J. Linn. Soc. 96, 217–227 (1989).Article 

    Google Scholar 
    Wiens, J. J. Faster diversification on land than sea helps explain global biodiversity patterns among habitats and animal phyla. Ecol. Lett. 18, 1234–1241 (2015).PubMed 
    Article 

    Google Scholar 
    Oliverio, A. M. et al. The global-scale distributions of soil protists and their contributions to belowground systems. Sci. Adv. 6, eaax8787 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martijn, J. et al. Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S‐ITS‐23S rRNA operon. Environ. Microbiol. 21, 2485–2498 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. Gigascience 8, giz006 (2019).Furneaux, B., Bahram, M., Rosling, A., Yorou, N. S. & Ryberg, M. Long‐ and short‐read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities. Mol. Ecol. Resour. 21, 1833–1849 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Logares, R. et al. Phenotypically different microalgal morphospecies with identical ribosomal DNA: a case of rapid adaptive evolution? Microb. Ecol. 53, 549–561 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Logares, R. et al. Recent evolutionary diversification of a protist lineage. Environ. Microbiol. 10, 1231–1243 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nee, S., Holmes, E. C., May, R. M. & Harvey, P. H. Extinction rates can be estimated from molecular phylogenies. Philos. Trans. R. Soc. Lond. B 344, 77–82 (1994).CAS 
    Article 

    Google Scholar 
    Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Strother, P. K., Battison, L., Brasier, M. D. & Wellman, C. H. Earth’s earliest non-marine eukaryotes. Nature 473, 505–509 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Knoll, A. H., Javaux, E. J., Hewitt, D. & Cohen, P. Eukaryotic organisms in Proterozoic oceans. Philos. Trans. R. Soc. B 361, 1023–1038 (2006).CAS 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P., Raven, J. A., Pisani, D. & Knoll, A. H. Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl Acad. Sci. USA 114, E7737–E7745 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Blank, C. E. & SÁnchez-Baracaldo, P. Timing of morphological and ecological innovations in the cyanobacteria—a key to understanding the rise in atmospheric oxygen. Geobiology 8, 1–23 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).Article 

    Google Scholar 
    Richards, T. A., Jones, M. D. M., Leonard, G. & Bass, D. Marine fungi: their ecology and molecular diversity. Ann. Rev. Mar. Sci. 4, 495–522 (2012).PubMed 
    Article 

    Google Scholar 
    Amend, A. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog. 10, e1004277 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Orsi, W., Biddle, J. F. & Edgcomb, V. Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS ONE 8, e56335 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Klein, M., Swinnen, S., Thevelein, J. M. & Nevoigt, E. Glycerol metabolism and transport in yeast and fungi: established knowledge and ambiguities. Environ. Microbiol. 19, 878–893 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaserer, A. O., Andi, B., Cook, P. F. & West, A. H. in Methods in Enzymology Vol. 471 (eds Simon M. I. et al.) 59–75 (Academic Press, 2010).Nakov, T., Beaulieu, J. M. & Alverson, A. J. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution 73, 2497–2511 (2019).PubMed 
    Article 

    Google Scholar 
    Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).PubMed 
    Article 

    Google Scholar 
    Nelson, D. R. et al. Large-scale genome sequencing reveals the driving forces of viruses in microalgal evolution. Cell Host Microbe 29, 250–266.e8 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Czech, L. & Bremer, E. With a pinch of extra salt—did predatory protists steal genes from their food? PLoS Biol. 16, e2005163 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sibbald, S. J., Eme, L., Archibald, J. M. & Roger, A. J. Lateral gene transfer mechanisms and pan-genomes in eukaryotes. Trends Parasitol. 36, 927–941 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stairs, C. W. et al. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 7, e34292 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savory, F. R., Milner, D. S., Miles, D. C. & Richards, T. A. Ancestral function and diversification of a horizontally acquired oomycete carboxylic acid transporter. Mol. Biol. Evol. 35, 1887–1900 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDonald, S. M., Plant, J. N. & Worden, A. Z. The mixed lineage nature of nitrogen transport and assimilation in marine eukaryotic phytoplankton: a case study of Micromonas. Mol. Biol. Evol. 27, 2268–2283 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh, D. A., Lafontaine, J. & Grossart, H. P. in Lateral Gene Transfer in Evolution (ed. Gophna, U.) 55–77 (Springer, 2013).Dorrell, R. G. et al. Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc. Natl Acad. Sci. USA 118, e2009974118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gluck-Thaler, E. et al. Giant Starship elements mobilize accessory genes in fungal genomes. Mol. Biol. Evol. 39, msac109 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eiler, A. et al. Tuning fresh: radiation through rewiring of central metabolism in streamlined bacteria. ISME J. 10, 1902–1914 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Urbina, H., Scofield, D. G., Cafaro, M. & Rosling, A. DNA-metabarcoding uncovers the diversity of soil-inhabiting fungi in the tropical island of Puerto Rico. Mycoscience 57, 217–227 (2016).CAS 
    Article 

    Google Scholar 
    Kalsoom Khan, F. et al. Naming the untouchable—environmental sequences and niche partitioning as taxonomical evidence in fungi. IMA Fungus 11, 23 (2020).Peura, S. et al. Ontogenic succession of thermokarst thaw ponds is linked to dissolved organic matter quality and microbial degradation potential. Limnol. Oceanogr. 65, S248–S263 (2020).CAS 
    Article 

    Google Scholar 
    Giner, C. R. et al. Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J. 14, 437–449 (2020).PubMed 
    Article 

    Google Scholar 
    Jing, H., Zhang, Y., Li, Y., Zhu, W. & Liu, H. Spatial variability of picoeukaryotic communities in the Mariana Trench. Sci Rep. 8, 15357 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Santos, S. S. et al. Soil DNA extraction procedure influences protist 18S rRNA gene community profiling outcome. Protist 168, 283–293 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Derelle, E. et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl Acad. Sci. USA 103, 11647–11652 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cavalier-Smith, T., Lewis, R., Chao, E. E., Oates, B. & Bass, D. Helkesimastix marina n. sp. (Cercozoa: Sainouroidea superfam. n.) a gliding zooflagellate of novel ultrastructure and unusual ciliary behaviour. Protist 160, 452–479 (2009).PubMed 
    Article 

    Google Scholar 
    Schwelm, A., Berney, C., Dixelius, C., Bass, D. & Neuhauser, S. The large subunit rDNA sequence of Plasmodiophora brassicae does not contain intra-species polymorphism. Protist 167, 544–554 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heeger, F. et al. Long-read DNA metabarcoding of ribosomal RNA in the analysis of fungi from aquatic environments. Mol. Ecol. Resour. 18, 1500–1514 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jamy, M. Code for ‘Global patterns and rates of habitat transitions across the eukaryotic tree of life’ v1.0.0. Zenodo https://doi.org/10.5281/zenodo.6656264 (2022).Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes. PLoS ONE 4, e6372 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).Article 

    Google Scholar 
    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis, A. Phylogenetic models of rate heterogeneity: a high performance computing perspective. In Proc. 20th IEEE International Parallel & Distributed Processing Symposium (IEEE Computer Society, 2006); https://ieeexplore.ieee.org/document/1639535Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Czech, L., Barbera, P. & Stamatakis, A. Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data. Bioinformatics 36, 3263–3265 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mai, U. & Mirarab, S. TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19, 23–40 (2018).Article 

    Google Scholar 
    Lemoine, F. et al. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 556, 452–456 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R. P., Moret, B. M. E. & Stamatakis, A. How many bootstrap replicates are necessary? J. Comput. Biol. 17, 337–354 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 0091 (2017).Article 

    Google Scholar 
    Eren, A. M. et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 6, 3–6 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Vaulot, D. et al. metaPR2: a database of eukaryotic 18S rRNA metabarcodes with an emphasis on protists. Preprint at bioRxiv https://doi.org/10.1101/2022.02.04.479133 (2022).Sieber, G., Beisser, D., Bock, C. & Boenigk, J. Protistan and fungal diversity in soils and freshwater lakes are substantially different. Sci Rep. 10, 20025 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot, D., Geisen, S., Mahé, F. & Bass, D. pr2-primers: an 18S rRNA primer database for protists. Mol. Ecol. Resour. 22, 168–179 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60, 291–302 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meade, A. & Pagel, M. BayesTraits v.3.0.2. Reading Evolutionary Biology Group (2019); http://www.evolution.reading.ac.uk/BayesTraitsV3.0.2/Files/BayesTraitsV3.0.2Manual.pdfPagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).PubMed 
    Article 

    Google Scholar 
    Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).PubMed 
    Article 

    Google Scholar 
    Varga, T. et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3, 668–678 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xie, W., Lewis, P. O., Fan, Y., Kuo, L. & Chen, M. H. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst. Biol. 60, 150–160 (2011).PubMed 
    Article 

    Google Scholar 
    Pagel, M. & Meade, A. The deep history of the number words. Philos. Trans. R. Soc. B 373, 20160517 (2018).Article 

    Google Scholar 
    Baker, J. & Venditti, C. Rapid change in mammalian eye shape is explained by activity pattern. Curr. Biol. 29, 1082–1088 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, S. A. & O’Meara, B. C. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More

  • in

    Effects of organic fertilizers on growth characteristics and fruit quality in Pear-jujube in the Loess Plateau

    Effect of different organic fertilizers on the growth of Pear-jujubeEffect of different organic fertilizers on the bearing branch length of Pear-jujubeJujube-bearing branch has the dual role of fruiting and photosynthesis32,33. It can be seen from Fig. 1 that different organic fertilizer treatments have a significant impact on the growth of jujube-bearing branches. Among them, the longest jujube-bearing branch in the SC treatment is 20.17 cm, which is significantly higher than that in CK and CF; the jujube-bearing branch length in the SC, SM and BM treatment are increased by 34%, 23% and 25% compared with that in CK, and the difference is significant (P  SM  > SC  > CK. Among them, the density of light of BM is the largest. It reaches 38.06 mol/(m2 d). CF, SC, SM and BM respectively increase by 11.54%, 8.09%, 7.96% and 15.13% compared with CK, and the difference is significant. The canopy transmittance of jujube is BM  CF  > SM  > SC. The highest Tr of BM reaches 8.66 µmol/moL. It may be related to higher LAI, and the instantaneous water use efficiency of SC is highest, which reaches 3.30%. The WUEp of CF, SC, SM and BM treatments increase by 22.4%, 64.2%, 44.3% and 30.8%, respectively, compared with that of CK. It reaches a significant difference level (P  SM  > BM  > CF  > CK. Compared with CK (9.37%), the SC, SM, BM, and CF increased by 3.69, 3.18, 1.11 and 0.40% points, respectively. Organic fertilizer is beneficial to increase the water content of the soil. Among them, soybean cake fertilizer (SC) has the largest increase, which is significantly different from CK (P  SM  > SC  > CF  > CK. The RWC of BM reaches 94.20%, which is significantly different from CK (P  SM  > BM  > CK. The total flavonoid content of SC reaches 14.35 mg/kg, which is 24.57% higher than that of CK. The total flavonoid content of SM and BM increase by 17.01% and 9.2%, respectively, compared with that of CK. Moreover, each treatment is significantly different from CK (P  More

  • in

    Humans pressure wetland multifunctionality

    Daskalova, G. N. et al. Science 368, 1341–1347 (2020).CAS 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    Hector, A. & Bagchi, R. Nature 448, 188–190 (2007).CAS 
    Article 

    Google Scholar 
    Fanin, N. et al. Nat. Ecol. Evol. 2, 269–278 (2018).Article 

    Google Scholar 
    Duffy, J. E. Front. Ecol. Environ. 7, 437–444 (2009).Article 

    Google Scholar 
    Manning, P. et al. Adv. Ecol. Res. 61, 323–356 (2019).Article 

    Google Scholar 
    Lefcheck, J. S. et al. Nat. Commun. 6, 6936 (2015).CAS 
    Article 

    Google Scholar 
    Soliveres, S. et al. Nature 536, 456–459 (2016).CAS 
    Article 

    Google Scholar 
    Moi, D. A. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01827-7 (2022).Article 

    Google Scholar 
    Venter, O. et al. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Allan, E. et al. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    Article 

    Google Scholar 
    Manning, P. et al. Nat. Ecol. Evol. 2, 427–436 (2018).Article 

    Google Scholar 
    Gamfeldt, L. et al. Nat. Commun. 4, 1340 (2013).Article 

    Google Scholar 
    Schuldt, A. et al. Nat. Commun. 9, 2989 (2018).Article 

    Google Scholar 
    Jochum, M. et al. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 

    Google Scholar 
    Dudgeon, D. et al. Biol. Rev. 81, 163–182 (2005).Article 

    Google Scholar 
    Blois, J. L. et al. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).CAS 
    Article 

    Google Scholar 
    França, F. et al. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Ewers, R. M. et al. Nat. Commun. 6, 6836 (2015).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Science 336, 589–592 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Human pressure drives biodiversity–multifunctionality relationships in large Neotropical wetlands

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 

    Google Scholar 
    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinctions risk. Nat. Commun. 9, 4621 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).CAS 
    PubMed 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).CAS 
    PubMed 

    Google Scholar 
    Schuldt, A. et al. Biodiversity across trophic levels drive multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 211–220 (2020).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 

    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).PubMed 

    Google Scholar 
    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 

    Google Scholar 
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).PubMed 

    Google Scholar 
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    PubMed 

    Google Scholar 
    Moi, D. A. et al. Regime shifts in a shallow lake over 12 years: consequences for taxonomic and functional diversities, and ecosystem multifunctionality. J. Anim. Ecol. 91, 551–565 (2022).PubMed 

    Google Scholar 
    Moi, D. A. et al. Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct. Ecol. 35, 942–954 (2021).CAS 

    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
    Google Scholar 
    Li, F. et al. Human activitiesʼ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Change Biol. 26, 6867–6879 (2020).
    Google Scholar 
    Enquist, B. J. et al. The megabiota are disproportionately importante for biosphere functioning. Nat. Commun. 11, 699 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Agostinho, A. A., Thomaz, S. M. & Gomes, L. C. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol. Hydrobiol. 4, 255–268 (2004).
    Google Scholar 
    Chiaravalloti, R. M., Homewood, K. & Erikson, K. Sustainability and land tenure: who owns the floodplain in the Pantanal, Brazil? Land Use Policy 64, 511–524 (2017).
    Google Scholar 
    Pelicice, F. M. et al. Large-scale degradation of the Tocantins–Araguaia River Basin. Environ. Manag. 68, 445–452 (2021).
    Google Scholar 
    Malekmohammadi, B. & Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 82, 293–303 (2017).
    Google Scholar 
    McIntyre, P. B. et al. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Natl Acad. Sci. USA 104, 4461–4466 (2006).
    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Google Scholar 
    Heino, J. et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 96, 89–106 (2020).PubMed 

    Google Scholar 
    Bridgewater, P. & Kim, R. E. The Ramsar conservation on wetlands at 50. Nat. Ecol. Evol. 5, 268–270 (2020).
    Google Scholar 
    Romero, G. Q. et al. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol. Lett. 17, 20210137 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lansac-Tôha, F. M. et al. Scale-depedent patterns of metacommunity structuring in aquatic organisms across floodplain systems. J. Biogeogr. 48, 872–885 (2021).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Weiss, K. C. B. & Ray, C. A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42, 2012–2020 (2019).
    Google Scholar 
    Laliberté, E. & Legendre, R. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 

    Google Scholar 
    Mackereth, F. J. H, Heron, J & Talling, J. F. Water Analysis: Some Revised Methods for Limnologists. Publication No. 36 (Freshwater Biological Association, 1978).Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwaters (Blackwell Scientific Publications, 1978).Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).
    Google Scholar 
    Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankt. Res. 25, 1331–1346 (2003).
    Google Scholar 
    Froese, R. & Pauly, D. FishBase (2018); www.fishbase.orgPorter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora1. Limnol. Oceanogr. 25, 943–948 (1980).
    Google Scholar 
    Manning, P. et al. Redifining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).PubMed 

    Google Scholar 
    Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. R version 2.0–12 https://rspatial.org/raster (2012).World Urbanization Prospects: The 2020 Revision: Highlights (United Nations, 2020).Junk, W. J. et al. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshwater Ecosyst. 24, 5–22 (2013).
    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R version 3.1.137 https://CRAN.Rproject.org/package=nlme (2018).K. Barton, MuMIn: Model selection and model averaging based on information criteria (AICc and alike). R version 1–1 https://CRAN.R-project.org/package=MuMIn (2014).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Schielzeth, H. Simple means to improve the interpretability ofregression coefficients. Meth. Ecol. Evol. 1, 103–113 (2010).
    Google Scholar 
    Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions (Sage Publications, 1991).Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2015).
    Google Scholar 
    Grace, J. B. & Bollen, K. A. Representing general theoretical concepts in structural equation models: the role of composite variables. Environ. Ecol. Stat. 15, 191–213 (2008).
    Google Scholar 
    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    More than half of data deficient species predicted to be threatened by extinction

    Cardillo, M. & Meijaard, E. Are comparative studies of extinction risk useful for conservation? Trends Ecol. Evol. 27, 167–171 (2012).PubMed 
    Article 

    Google Scholar 
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Sci. (80-.). 366, eaax3100 (2019).Article 
    CAS 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Sci. (80-.) 353, 288–291 (2016).CAS 
    Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Sci. (80-.). 344, 1246752–1246752 (2014).CAS 
    Article 

    Google Scholar 
    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo (2019) https://doi.org/10.5281/zenodo.3831674.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, A., Pilgrim, J., Lamoreux, J., Hoffmann, M. & Brooks, T. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 
    Article 

    Google Scholar 
    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bachman, S. P. et al. Progress, challenges and opportunities for Red Listing. Biol. Conserv. 234, 45–55 (2019).Article 

    Google Scholar 
    Rondinini, C., Di Marco, M., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN red list. Conserv. Lett. 7, 126–130 (2014).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-2. https://www.iucnredlist.org (2021).Cazalis, V. et al. Bridging the research-implementation gap in IUCN Red List assessments. Trends Ecol. Evol. 37, 359–370 (2022).PubMed 
    Article 

    Google Scholar 
    IUCN Standards and Petitions Committee. Guidelines for using the IUCN Red List Categories and Criteria. Prepared by the Standards and Petitions Committee. Downloadable from https://www.iucnredlist.org/documents/RedListGuidelines.pdf vol. 15 (2022).Bland, L. M. et al. Toward reassessing data‐deficient species. Conserv. Biol. 31, 531–539 (2017).PubMed 
    Article 

    Google Scholar 
    Butchart, S. H. M. & Bird, J. P. Data Deficient birds on the IUCN Red List: What don’t we know and why does it matter? Biol. Conserv. 143, 239–247 (2010).Article 

    Google Scholar 
    Zhao, L. et al. Spatial knowledge deficiencies drive taxonomic and geographic selectivity in data deficiency. Biol. Conserv. 231, 174–180 (2019).Article 

    Google Scholar 
    Parsons, E. C. M. Why IUCN should replace “Data Deficient” conservation status with a precautionary “Assume Threatened” Status—A Cetacean Case Study. Front. Mar. Sci. 3, 2015–2017 (2016).
    Google Scholar 
    Roberts, D. L., Taylor, L. & Joppa, L. N. Threatened or Data Deficient: assessing the conservation status of poorly known species. Divers. Distrib. 22, 558–565 (2016).Article 

    Google Scholar 
    Jetz, W. & Freckleton, R. P. Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140016 (2015).Article 

    Google Scholar 
    Howard, S. D. & Bickford, D. P. Amphibians over the edge: silent extinction risk of Data Deficient species. Divers. Distrib. 20, 837–846 (2014).Article 

    Google Scholar 
    Jarić, I., Courchamp, F., Gessner, J. & Roberts, D. L. Potentially threatened: a Data Deficient flag for conservation management. Biodivers. Conserv. 25, 1995–2000 (2016).Article 

    Google Scholar 
    Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).PubMed 
    Article 

    Google Scholar 
    Butchart, S. H. M. et al. Measuring Global Trends in the status of biodiversity: red list indices for birds. PLoS Biol. 2, e383 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (2015).Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B Biol. Sci. 360, 255–268 (2005).CAS 
    Article 

    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).Article 

    Google Scholar 
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for Phylogenetic Conservation Prioritization. PLoS One 3, e3700 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Runting, R. K., Phinn, S., Xie, Z., Venter, O. & Watson, J. E. M. Opportunities for big data in conservation and sustainability. Nat. Commun. 11, 2003 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. 35, 502–509 (2021).PubMed 
    Article 

    Google Scholar 
    Hino, M., Benami, E. & Brooks, N. Machine learning for environmental monitoring. Nat. Sustain 1, 583–588 (2018).Article 

    Google Scholar 
    Wearn, O. R., Freeman, R. & Jacoby, D. M. P. Responsible AI for conservation. Nat. Mach. Intell. 1, 72–73 (2019).Article 

    Google Scholar 
    Bland, L. M. et al. Cost-effective assessment of extinction risk with limited information. J. Appl. Ecol. 52, 861–870 (2015).Article 

    Google Scholar 
    Bland, L. M. & Böhm, M. Overcoming data deficiency in reptiles. Biol. Conserv. 204, 16–22 (2016).Article 

    Google Scholar 
    Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed 
    Article 

    Google Scholar 
    Luiz, O. J., Woods, R. M., Madin, E. M. P. & Madin, J. S. Predicting IUCN extinction risk categories for the World’s Data Deficient Groupers (Teleostei: Epinephelidae). Conserv. Lett. 9, 342–350 (2016).Article 

    Google Scholar 
    Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. Using coarse-scale species distribution data to predict extinction risk in plants. Divers. Distrib. 23, 435–447 (2017).Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Tracking the rising extinction risk of sharks and rays in the Northeast Atlantic Ocean and Mediterranean Sea. Sci. Rep. 11, 15397 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 108459 (2020).Article 

    Google Scholar 
    IUCN. Species Information Service. Version 2020-3. https://www.iucnredlist.org/resources/spatial-data-download (2021).IUCN. The IUCN Red List of Threatened Species. Version 2020-3. https://www.iucnredlist.org (2020).Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, 1–34 (2014).Article 

    Google Scholar 
    Selig, E. R. et al. Global priorities for Marine biodiversity conservation. PLoS One 9, e82898 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    O’Hara, C. C., Afflerbach, J. C., Scarborough, C., Kaschner, K. & Halpern, B. S. Aligning marine species range data to better serve science and conservation. PLoS One 12, e0175739 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mittermeier, R. A., Goetsch Mittermeier, C., Gil, P. R. & Wilson, E. O. Megadiversity: Earth’s Biologically Wealthiest Nations. CEMEX (2005).Chamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0. (2020).GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).OBIS. Ocean Biodiversity Information System. Intergovernmental Oceanographic Commission of UNESCO. www.obis.org. (2021).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).Provoost, P. & Bosch, S. robis: Ocean Biodiversity Information System (OBIS) Client. R package version 2.3.9. https://CRAN.R-project.org/package=robis. (2020).Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 25, 811–826 (2019).PubMed 
    Article 

    Google Scholar 
    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Sci. (80-.) 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Tuanmu, M. N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).Article 

    Google Scholar 
    Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Byers, L. et al. A Global Database of Power Plants. World Resour. Inst. 1–18 (2019).Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).Article 

    Google Scholar 
    Barbarossa, V. et al. Erratum: FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Sci. Data 5, 180078 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. 117, 3648–3655 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).PubMed 
    Article 

    Google Scholar 
    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163 (2006).PubMed 
    Article 

    Google Scholar 
    Schlossberg, S., Chase, M. J., Gobush, K. S., Wasser, S. K. & Lindsay, K. State-space models reveal a continuing elephant poaching problem in most of Africa. Sci. Rep. 10, 10166 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burn, R. W., Underwood, F. M. & Blanc, J. Global trends and factors associated with the illegal killing of Elephants: a hierarchical Bayesian Analysis of Carcass Encounter Data. PLoS One 6, e24165 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hauenstein, S., Kshatriya, M., Blanc, J., Dormann, C. F. & Beale, C. M. African elephant poaching rates correlate with local poverty, national corruption and global ivory price. Nat. Commun. 10, 2242 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    UNDP. Human Development Report 2020. The Next Frontier: Human Development and the Anthropocene. New York. http://hdr.undp.org/en/content/human-development-report-2020. (2020).Transparency International. Corruption Perceptions Index 2020. (2020).Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Sci. (80-.) 319, 948–952 (2008).CAS 
    Article 

    Google Scholar 
    Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).Article 

    Google Scholar 
    Zizka, A., Silvestro, D., Vitt, P. & Knight, T. M. Automated conservation assessment of the orchid family with deep learning. Conserv. Biol. 35, 897–908 (2021).PubMed 
    Article 

    Google Scholar 
    Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning. The Elements of Statistical Learning vol. 27 (Springer New York, 2001).Kampichler, C., Wieland, R., Calmé, S., Weissenberger, H. & Arriaga-Weiss, S. Classification in conservation biology: a comparison of five machine-learning methods. Ecol. Inform. 5, 441–450 (2010).Article 

    Google Scholar 
    LeDell, E. et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package version 3.36.0.4. https://github.com/h2oai/h2o-3 (2022).H2O.ai. H2O AutoML. https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html (2022).Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 
    Article 

    Google Scholar 
    Kuhn, M. Building Predictive Models in R using the caret Package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    Harrell Jr, F. E. Hmisc: Harrell miscellaneous. R package version 4.5-0. (2021).van der Laan, M. J., Polley, E. C. & Hubbard, A. E. Super Learner. Stat. Appl. Genet. Mol. Biol. 6 (2007).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).RStudio Team. RStudio: integrated development environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).Pebesma, E. Simple features for R: standardized support for Spatial Vector Data. R. J. 10, 439 (2018).Article 

    Google Scholar 
    Ross, N. Fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3. https://CRAN.R-project.org/package=fasterize (2020).Microsoft Corporation & Weston, S. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R package version 1.0.16. https://CRAN.R-project.org/package=doParallel (2020).Wickham, H. stringr: simple, consistent wrappers for common string operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr (2019).Tuszynski, J. caTools: tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc. R package version 1.18.1. https://CRAN.R-project.org/package=caTools (2021).Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686 (2019).Dragulescu, A. & Arendt, C. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.5. (2020).Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl (2019).ESRI. ArcGIS Pro version 2.9.0. https://www.esri.com/en-us/home (2022).Kuhn, M. caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer, NY (2016).Wilke, C. O. ggridges: Ridgeline Plots in ‘ggplot2’. R package version 0.5.3. https://CRAN.R-project.org/package=ggridges (2021).South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. https://CRAN.R-project.org/package=rnaturalearth (2017).Garnier, S. viridis: Default Color Maps from ‘matplotlib’. R package version 0.5.1. https://CRAN.R-project.org/package=viridis (2018).Borgelt, J. jannebor/dd_forecast: Code for study ‘More than half of Data Deficient species predicted to be threatened by extinction’ (v1.0.1). https://doi.org/10.5281/zenodo.6627688.Zenodo (2022). More

  • in

    Phenotypic plasticity promotes species coexistence

    Pigliucci, M. Phenotypic plasticity: Beyond Nature and Nurture (Johns Hopkins Univ. Press, 2001).Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Aerts, R., Boot, R. G. A. & Van Der Aart, P. J. M. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87, 551–559 (1991).CAS 
    Article 

    Google Scholar 
    Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).Article 

    Google Scholar 
    Pfennig, D. W., Rice, A. M. & Martin, R. A. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87, 769–779 (2006).Article 

    Google Scholar 
    van Kleunen, M. & Fischer, M. Adaptive evolution of plastic foraging responses in a clonal plant. Ecology 82, 3309–3319 (2001).Article 

    Google Scholar 
    Relyea, R. A. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecol. Monogr. 72, 523–540 (2002).Article 

    Google Scholar 
    Broekman, M. J. E. et al. Signs of stabilisation and stable coexistence. Ecol. Lett. 22, 1957–1975 (2019).Article 

    Google Scholar 
    Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).Article 

    Google Scholar 
    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).Article 

    Google Scholar 
    Chesson, P. in Unity in Diversity: Reflections on Ecology after the Legacy of Ramon Margalef (eds F. Valladares et al.) 119–164 (Fundación Banco Bilbao Vizcaya Argentaria, 2008).Ellner, S. P., Snyder, R. E. & Adler, P. B. How to quantify the temporal storage effect using simulations instead of math. Ecol. Lett. 19, 1333–1342 (2016).Article 

    Google Scholar 
    Vasseur, D. A., Amarasekare, P., Rudolf, V. H. W. & Levine, J. M. Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. Am. Nat. 178, E96–E109 (2011).Article 

    Google Scholar 
    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).Article 

    Google Scholar 
    Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).CAS 
    Article 

    Google Scholar 
    Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).Article 

    Google Scholar 
    Grainger, T. N., Levine, J. M. & Gilbert, B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 34, 925–935 (2019).Article 

    Google Scholar 
    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).Article 

    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).CAS 
    Article 

    Google Scholar 
    Pfennig, D. W. & Murphy, P. J. How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 56, 1217–1228 (2002).Article 

    Google Scholar 
    Adler, P., HilleRisLambers, J. & Levine, J. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump Simon, M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Evolution’s Wedge: Competition and the Origins of Diversity (Univ. California Press, 2012).Ayala, F. J. Reversal of dominance in competing species of Drosophila. Am. Nat. 100, 81–83 (1966).Article 

    Google Scholar 
    Pease, C. M. On the evolutionary reversal of competitive dominance. Evolution 38, 1099–1115 (1984).Article 

    Google Scholar 
    Pimentel, D., Feinberg, E. H., Wood, P. W. & Hayes, J. T. Selection, spatial distribution, and the coexistence of competing fly species. Am. Nat. 99, 97–109 (1965).Article 

    Google Scholar 
    Lankau, R. A. & Strauss, S. Y. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317, 1561–1563 (2007).CAS 
    Article 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).CAS 
    Article 

    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).Article 

    Google Scholar 
    Abrams, P. A. Alternative models of character displacement and niche shift. 2. Displacement when there is competition for a single resource. Am. Nat. 130, 271–282 (1987).Article 

    Google Scholar 
    Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 

    Google Scholar 
    Harmon, E. A. & Pfennig, D. W. Evolutionary rescue via transgenerational plasticity: evidence and implications for conservation. Evol. Dev. 23, 292–307 (2021).Article 

    Google Scholar 
    Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115, 276–284 (2015).CAS 
    Article 

    Google Scholar 
    Brass, D. P. et al. Phenotypic plasticity as a cause and consequence of population dynamics. Ecol. Lett. 24, 2406–2417 (2021).Article 

    Google Scholar 
    Macarthur, R. H. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).Article 

    Google Scholar 
    Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (UK Ministry of Agriculture, Fisheries and Food, 1957).Landolt, E. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Vol. 2: The Family of Lemnaceae—A Monographic Study, Vol.1 (Geobotanischen Institute, ETH Zürich, 1986).Wang, W. et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5, 3311 (2014).CAS 
    Article 

    Google Scholar 
    Hoagland, D. R. & Arnon, D. I. The Water-Culture Method for Growing Plants without Soil (College of Agriculture, Agricultural Experiment Station, Univ. California, 1950).Inouye, B. D. Response surface experimental designs for investigating interspecific competition. Ecology 82, 2696–2706 (2001).Article 

    Google Scholar 
    Law, R. & Watkinson, A. R. Response-surface analysis of two-species competition: an experiment on Phleum arenarium and Vulpia fasciculata. J. Ecol. 75, 871–886 (1987).Article 

    Google Scholar 
    MATLAB v.9.0 (MathWorks, 2016).Stan Modeling Language Users Guide and Reference Manual, v.2.27 (Stan Development Team, 2021); https://mc-stan.orgVehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Bürkner, P.C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017).Vehtari, A. et al. loo: efficient leave-one-out cross-validation and WAIC for Bayesian models, v.2.4.1 (2020).ImageJ (US NIH, 1997–2016). More

  • in

    Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 37, 637–669 (2006).
    Google Scholar 
    Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 365, 3101–3112 (2010).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change/631/158/2165/2457/631/158/2039/129/141/139 letter. Nat. Clim. Chang. 8 (2018).Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mushegian, A. A. et al. Ecological mechanism of climate-mediated selection in a rapidly evolving invasive species. Ecol. Lett. 24, 698–707 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).
    Google Scholar 
    Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1–10 (2017).ADS 

    Google Scholar 
    Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: Ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34 (2019).Youngflesh, C. et al. Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01442-y (2021).PubMed 

    Google Scholar 
    Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17 (2016).Crimmins, T. M. et al. Short-term forecasts of insect phenology inform pest management. Ann. Entomol. Soc. Am. 113 (2020).Brakefield, P. M. Geographical variability in, and temperature effects on, the phenology of Maniola jurtina and Pyronia tithonus (Lepidoptera, Satyrinae) in England and Wales. Ecol. Entomol. 12 (1987).Dell, D., Sparks, T. H. & Dennis, R. L. H. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol. 102, 161–167 (2005).
    Google Scholar 
    Van Der Kolk, H. J., Wallisdevries, M. F. & Van Vliet, A. J. H. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands. Ecol. Indic. 69 (2016).Abarca, M. et al. Inclusion of host quality data improves predictions of herbivore phenology. Entomol. Exp. Appl. 166 (2018).Abarca, M. & Lill, J. T. Latitudinal variation in the phenological responses of eastern tent caterpillars and their egg parasitoids. Ecol. Entomol. 44 (2019).Karlsson, B. Extended season for northern butterflies. Int. J. Biometeorol. 58, 691–701 (2014).ADS 
    PubMed 

    Google Scholar 
    Kharouba, H. M., Paquette, S. R., Kerr, J. T. & Vellend, M. Predicting the sensitivity of butterfly phenology to temperature over the past century. Glob. Chang. Biol. 20 (2014).Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92 (2011).Diamond, S. E. et al. Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology 95 (2014).Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96, 1473–1479 (2015).
    Google Scholar 
    Stewart, J. E., Illán, J. G., Richards, S. A., Gutiérrez, D. & Wilson, R. J. Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community. Ecology 101 (2020).Roy, D. B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Glob. Chang. Biol. 21 (2015).Dennis, R. L. H. et al. Turnover and trends in butterfly communities on two British tidal islands: Stochastic influences and deterministic factors. J. Biogeogr. 37, 2291–2304 (2010).
    Google Scholar 
    Sparks, T. H. & Yates, T. J. The effect of spring temperature on the appearance dates of British butterflies 1883–1993. Ecography (Cop.). 20 (1997).Michielini, J. P., Dopman, E. B. & Crone, E. E. Changes in flight period predict trends in abundance of Massachusetts butterflies. Ecol. Lett. 24, 249–257 (2021).PubMed 

    Google Scholar 
    Zografou, K. et al. Species traits affect phenological responses to climate change in a butterfly community. Sci. Rep. 11 (2021).Belitz, M. W., Larsen, E. A., Ries, L. & Guralnick, R. P. The accuracy of phenology estimators for use with sparsely sampled presence-only observations. Methods Ecol. Evol. 11, 1273–1285 (2020).
    Google Scholar 
    Van Strien, A. J., Plantenga, W. F., Soldaat, L. L., Van Swaay, C. A. M. & WallisDeVries, M. F. Bias in phenology assessments based on first appearance data of butterflies. Oecologia 156, 227–235 (2008).ADS 
    PubMed 

    Google Scholar 
    Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12 (1977).Taron, D. & Ries, L. Butterfly Monitoring for Conservation. in Butterfly Conservation in North America 35–57 (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9852-5_3.Schmucki, R. et al. A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. J. Appl. Ecol. 53, 501–510 (2016).
    Google Scholar 
    Prudic, K., Oliver, J., Brown, B. & Long, E. Comparisons of citizen science data-gathering approaches to evaluate urban butterfly diversity. Insects 9, 186 (2018).PubMed Central 

    Google Scholar 
    Prudic, K. L. et al. eButterfly: Leveraging massive online citizen science for butterfly conservation. Insects 8 (2017).Barve, V. V. et al. Methods for broad-scale plant phenology assessments using citizen scientists’ photographs. Appl. Plant Sci. 8 (2020).Seltzer, C. Making biodiversity data social, shareable, and scalable: Reflections on iNaturalist & citizen science. Biodivers. Inf. Sci. Stand. 3 (2019).Wittmann, J., Girman, D. & Crocker, D. Using inaturalist in a coverboard protocol to measure data quality: Suggestions for project design. Citiz. Sci. Theory Pract. 4 (2019).Dorazio, R. M. Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Glob. Ecol. Biogeogr. 23 (2014).Ries, L., Zipkin, E. F. & Guralnick, R. P. Tracking trends in monarch abundance over the 20th century is currently impossible using museum records. In Proceedings of the National Academy of Sciences of the United States of America vol. 116 (2019).Larsen, E. A. & Shirey, V. Method matters: Pitfalls in analysing phenology from occurrence records. Ecol. Lett. https://doi.org/10.1111/ele.13602 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    de Keyzer, C. W., Rafferty, N. E., Inouye, D. W. & Thomson, J. D. Confounding effects of spatial variation on shifts in phenology. Glob. Chang. Biol. 23 (2017).Cima, V. et al. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 110, 105885 (2020).
    Google Scholar 
    Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19 (2021).Polgar, C. A., Primack, R. B., Williams, E. H., Stichter, S. & Hitchcock, C. Climate effects on the flight period of Lycaenid butterflies in Massachusetts. Biol. Conserv. 160 (2013).Brooks, S. J. et al. The influence of life history traits on the phenological response of British butterflies to climate variability since the late-19th century. Ecography (Cop.) 40, 1152–1165 (2017).
    Google Scholar 
    van Strien, A. J., van Swaay, C. A. M., van Strien-van Liempt, W. T. F. H., Poot, M. J. M. & WallisDeVries, M. F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 234 (2019).Boggs, C. L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17 (2016).Belitz, M. et al. Climate drivers of adult insect activity are conditioned by life history traits. Authorea Prepr. (2021).Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9 (2014).Park, D. S., Newman, E. A. & Breckheimer, I. K. Scale gaps in landscape phenology: challenges and opportunities. Trends Ecol. Evol. 36 (2021).Kerr, J. T., Vincent, R. & Currie, D. J. Lepidopteran richness patterns in North America. Écoscience 5, 448–453 (1998).
    Google Scholar 
    Taylor, S. D., Meiners, J. M., Riemer, K., Orr, M. C. & White, E. P. Comparison of large-scale citizen science data and long-term study data for phenology modeling. Ecology 100 (2019).Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35 (2020).Miller, D. A. W., Pacifici, K., Sanderlin, J. S. & Reich, B. J. The recent past and promising future for data integration methods to estimate species’ distributions. Methods Ecol. Evol. 10 (2019).Fletcher, R. J. et al. A practical guide for combining data to model species distributions. Ecology https://doi.org/10.1002/ecy.2710 (2019).PubMed 

    Google Scholar 
    Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. bioRxiv https://doi.org/10.1101/613786 (2019).
    Google Scholar 
    Crossley, M. S. et al. Recent climate change is creating hotspots of butterfly increase and decline across North America. Glob. Chang. Biol. 27, 2702–2714 (2021).CAS 
    PubMed 

    Google Scholar 
    Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science (80-) 371, 1042–1045 (2021).ADS 
    CAS 

    Google Scholar 
    Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, (2019).Kerr, N. Z. et al. Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Glob. Chang. Biol. 26, (2020).Belth, J. E. Butterflies of Indiana: A field guide. Butterflies of Indiana: A Field Guide (2012).Betros, B. A Photographic Field Guide to the Butterflies in the Kansas City Region (Kansas City Star Books, 2008).
    Google Scholar 
    Bouseman, J. K., Sternburg, J. G. & Wiker, J. R. Field guide to the skipper butterflies of Illinois. (Illinois Natural History Survey Manual 11, 2006).Clark, A. H. The butterflies of the District of Columbia and vicinity. Bull. United States Natl. Museum (1932).Glassberg, J. Butterflies through Binoculars: Boston—New York—Washington Region (Oxford University Press, 1993).
    Google Scholar 
    Glassberg, J. Butterflies through Binoculars: The East—A Field Guide to the Butterflies of Eastern North America (Oxford University Press, 1999).
    Google Scholar 
    Iftner, D. C., Shuey, J. A. & Calhoun, J. V. Butterflies and skippers of Ohio (Ohio State University, 1992).
    Google Scholar 
    Jeffords, M. R., Post, S. L. & Wiker, J. Butterflies of Illinois: a field guide (Illinois Natural History Survey, 2019).
    Google Scholar 
    Schlicht, D. W., Downey, J. C. & Nekola, J. C. The butterflies of Iowa (University of Iowa Press, 2007).
    Google Scholar 
    Schmucki, R., Harrower, C. A. & Dennis, E. B. rbms: Computing generalised abundance indices for butterfly monitoring count data. R package version 1.1.0. https://github.com/RetoSchmucki/rbms (2021).GBIF. GBIF Occurrence download. https://doi.org/10.15468/dl.1erh15 (2019).Thornton, P. E. et al. Daymet: Daily surface weather data on a 1-km grid for North America, version 3. ORNL DAAC. (Oak Ridge, TN, 2017).Baskerville, G. L. & Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50, (1969).R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing vol. 1 409 (2011).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version (2014).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4 (2013).Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J 5 (2013). More