More stories

  • in

    Impacts on tourism demand

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Selection on offspring size and contemporary evolution under ocean acidification

    Sunday, J. M., Crim, R. N., Harley, C. D. G. & Hart, M. W. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6, e22881 (2011).CAS 
    Article 

    Google Scholar 
    Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).Article 

    Google Scholar 
    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).Article 

    Google Scholar 
    Reusch, T. B. H. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).Article 

    Google Scholar 
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).Article 

    Google Scholar 
    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).Article 

    Google Scholar 
    Cattano, C., Claudet, J., Domenici, P. & Milazzo, M. Living in a high CO2 world: a global meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol. Monogr. 88, 320–335 (2018).Article 

    Google Scholar 
    Lohbeck, K., Riebesell, U. & Reusch, T. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).CAS 
    Article 

    Google Scholar 
    Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).Article 

    Google Scholar 
    Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).Article 

    Google Scholar 
    Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).CAS 
    Article 

    Google Scholar 
    Foo, S. A., Dworjanyn, S. A., Poore, A. G. B., Harianto, J. & Byrne, M. Adaptive capacity of the sea urchin Heliocidaris erythrogramma to ocean change stressors: responses from gamete performance to the juvenile. Mar. Ecol. Prog. Ser. 556, 161–172 (2016).CAS 
    Article 

    Google Scholar 
    Malvezzi, A. J. et al. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evol. Appl. 8, 352–362 (2015).CAS 
    Article 

    Google Scholar 
    Bitter, M. C., Kapsenberg, L., Gattuso, J.-P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).CAS 
    Article 

    Google Scholar 
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Pearson Prentice Hall, 1996).Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).CAS 
    Article 

    Google Scholar 
    Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).CAS 
    Article 

    Google Scholar 
    Timothy A. Mousseau and Charles W. Fox. Maternal Effects as Adaptations 178–201 (Oxford Univ. Press, 1998).Marshall, D., Allen, R. & Crean, A. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).
    Google Scholar 
    Tasoff, A. J. & Johnson, D. W. Can larvae of a marine fish adapt to ocean acidification? Evaluating the evolutionary potential of California grunion (Leuresthes tenuis). Evol. Appl. 12, 560–571 (2019).CAS 
    Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).Article 

    Google Scholar 
    Shimada, Y., Shikano, T., Murakami, N., Tsuzaki, T. & Seikai, T. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus. Fish. Sci. 73, 244–249 (2007).CAS 
    Article 

    Google Scholar 
    Johnson, D. W., Christie, M. R. & Moye, J. Quantifying evolutionary potential of marine fish larvae: heritability, selection, and evolutionary constraints. Evolution 64, 2614–2628 (2010).Article 

    Google Scholar 
    Miles, C. M., Hadfield, M. G. & Wayne, M. L. Heritability for egg size in the serpulid polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 340, 155–162 (2007).Article 

    Google Scholar 
    Iguchi, K. & Yamaguchi, M. Adaptive significance of inter- and intrapopulational egg size variation in ayu Plecoglossus altivelis (osmeridae). Copeia 1994, 184–190 (1994).Article 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. Effects of settler size and density on early post-settlement survival of Ciona intestinalis in the field. Mar. Ecol. Prog. Ser. 259, 139–144 (2003).Article 

    Google Scholar 
    González-Ortegón, E. & Giménez, L. Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. Mar. Ecol. Prog. Ser. 502, 185–195 (2014).Article 

    Google Scholar 
    Pan, T.-C. F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl Acad. Sci. USA 112, 4696–4701 (2015).CAS 
    Article 

    Google Scholar 
    Rollinson, N. & Hutchings, J. A. Environmental quality predicts optimal egg size in the wild. Am. Nat. 181, 76–90 (2013).Article 

    Google Scholar 
    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6, 99 (2014).Article 

    Google Scholar 
    Murray, C. S., Malvezzi, A., Gobler, C. J. & Baumann, H. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar. Ecol. Prog. Ser. 504, 1–11 (2014).Article 

    Google Scholar 
    Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).Article 

    Google Scholar 
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 
    CAS 

    Google Scholar 
    Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. B 368, p20120080 (2013).Article 

    Google Scholar 
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 

    Google Scholar 
    Smyder, E. A., Martin, K. L. M. & Gatten, R. E. Jr Temperature effects on egg survival and hatching during the extended incubation period of California grunion, Leuresthes tenuis. Copeia 2002, 313–320 (2002).Article 

    Google Scholar 
    Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).CAS 
    Article 

    Google Scholar 
    Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).Article 

    Google Scholar 
    Davidson, C. Spatial and Temporal Variability of Coastal Carbonate Chemistry in the Southern California Region. MSc thesis, Univ. California, San Diego (2015).Jones, J. M., Sweet, J., Brzezinski, M. A., McNair, H. M. & Passow, U. Evaluating carbonate system algorithms in a nearshore system: does total alkalinity matter? PLoS ONE 11, e0165191 (2016).Article 
    CAS 

    Google Scholar 
    Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).CAS 
    Article 

    Google Scholar 
    Turi, G., Lachkar, Z., Gruber, N. & Münnich, M. Climatic modulation of recent trends in ocean acidification in the California current system. Environ. Res. Lett. 11, 014007 (2016).Article 

    Google Scholar 
    Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).CAS 
    Article 

    Google Scholar 
    Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kruuk, L. E. B. Estimating genetic parameters in natural populations using the animal model. Phil. Trans. R. Soc. B 359, 873–890 (2004).Article 

    Google Scholar 
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, (2010).Heidelberger, P. & Welch, P. D. Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109–1144 (1983).Article 

    Google Scholar 
    Clark, F. N. The Life History of Leuresthes Tenuis, an Atherine Fish with Tide Controlled Spawning Habits Fish Bulletin No. 10 (California Department of Fish and Game, 1925).Johnson, D.W. Data from: Selection on offspring size and contemporary evolution under ocean acidification. Dryad https://doi.org/10.5061/dryad.0gb5mkm3w (2022) More

  • in

    Last glacial loess dynamics in the Southern Caucasus (NE-Armenia) and the phenomenon of missing loess deposition during MIS-2

    Lehmkuhl, F. et al. Loess landscapes of Europe-mapping, geomorphology, and zonal differentiation. Earth-Sci. Rev. 215, 103496 (2021).Article 

    Google Scholar 
    Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M. A. & Gao, G. Loess genesis and worldwide distribution. Earth Sci. Rev. 201, 102947 (2020).Article 

    Google Scholar 
    Moine, O. et al. The impact of last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. PNAS 114, 6209–6214 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. PNAS 114, E10632–E10638 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rousseau, D.-D. et al. Link between European and North Atlantic abrupt climate changes over the last glaciation. Geophys. Res. Lett. 34, L22713 (2007).ADS 
    Article 

    Google Scholar 
    Rousseau, D.-D. et al. Eurasian contribution to the last glacial dust cycle: how are loess sequences built?. Clim. Past. 13, 1181–1197 (2017).Article 

    Google Scholar 
    Fischer, P. et al. Millennial-scale terrestrial ecosystem responses to Upper Pleistocene climatic changes: 4D-reconstruction of the Schwalbenberg Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany). CATENA 196, 104913 (2021).Article 

    Google Scholar 
    Wolf, D. et al. Evidence for strong relations between the Upper Tagus Loess Formation (Central Iberia) and the marine atmosphere off the Iberian Margin during the Last Glacial Period. Quat. Res. 101, 84–113 (2021).Article 

    Google Scholar 
    Porter, S. & An, Z. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305–308 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Sun, Y. et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat. Geosci. 5, 46–49 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Zeeden, C. et al. Patterns and timing of loess-palaeosol transitions in Eurasia: Constraints for palaeoclimate studies. Glob. Planet. Change 162, 1–7 (2018).ADS 
    Article 

    Google Scholar 
    Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys. Res. Lett. 39, L01705 (2012).ADS 
    Article 

    Google Scholar 
    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).ADS 
    Article 

    Google Scholar 
    Youn, J. H., Seong, Y. B., Choi, J. H., Abdrakhmatov, K. & Ormukov, C. Loess deposits in the northern Kyrgyz Tien Shan: Implications for the paleoclimate reconstruction during the Late Quaternary. CATENA 117, 81–93 (2014).Article 

    Google Scholar 
    Li, Y. et al. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin. Clim. Past 14, 271–286 (2018).Article 

    Google Scholar 
    Frechen, M., Oches, E. A. & Kohfeld, K. E. Loess in Europe—Mass accumulation rates during the Last Glacial Period. Quat. Sci. Rev. 22, 1835–1857 (2003).ADS 
    Article 

    Google Scholar 
    Antoine, P. et al. High resolution record of the last climatic cycle in the southern carpathian basin at Surduk (vojvodina, Serbia). Quat. Int. 198, 19–36 (2009).MathSciNet 
    Article 

    Google Scholar 
    Antoine, P. et al. Upper Pleistocene loess-palaeosols records from Northern France in the European context: Environmental background and dating of the Middle Palaeolithic. Quat. Int. 411, 4–24 (2016).Article 

    Google Scholar 
    Kang, S., Roberts, H. M., Wang, X., An, Z. S. & Wang, M. Mass accumulation rate changes in Chinese loess during MIS 2, and asynchrony with records from Greenland ice cores and North Pacific Ocean sediments during the last glacial maximum. Aeol. Res. 19, 251–258 (2015).Article 

    Google Scholar 
    Fitzsimmons, K. E. et al. Loess accumulation in the Tian Shan piedmont: Implications for palaeoenvironmental change in arid Central Asia. Quat. Int. 469, 30–43 (2018).Article 

    Google Scholar 
    Li, Y., Song, Y., Qiang, M., Miao, Y. & Zeng, M. Atmospheric dust variations in the Ili Basin, northwest China, during the last glacial period as revealed by a high mountain loess-paleosol sequence. J. Geophys. Res. Atmos. 124, 8449–8466 (2019).ADS 
    Article 

    Google Scholar 
    Pinto, J. G. & Ludwig, P. Extratropical cyclones over the North Atlantic and western Europe during the last glacial maximum and implications for proxy interpretation. Clim. Past 16, 611–626 (2020).Article 

    Google Scholar 
    Cheng, L. et al. Drivers for asynchronous patterns of dust accumulation in central and eastern Asia and in Greenland during the Last Glacial Maximum. Geophys. Res. Lett. 48, e2020GL01194 (2021).
    Google Scholar 
    Fenn, K. et al. A tale of two signals: Global and local influences on the Late Pleistocene loess sequences in Bulgarian Lower Danube. Quat. Sci. Rev. 274, 107264 (2021).Article 

    Google Scholar 
    Song, Y. et al. Spatio-temporal distribution of Quaternary loess across Central Asia. Palaeogeogr. Palaeoclim. Palaeoecol. 567, 110279 (2021).ADS 
    Article 

    Google Scholar 
    Hughes, P. D. & Gibbard, P. L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quat. Int. 383, 174–185 (2015).Article 

    Google Scholar 
    Baykal, Y. et al. Detrital zircon U-Pb age analysis of last glacial loess sources and proglacial sediment dynamics in the Northern European Plain. Quat. Sci. Rev. 274, 107265 (2021).Article 

    Google Scholar 
    Pötter, S. et al. Disentangling sedimentary pathways for the Pleniglacial Lower Danube loess based on geochemical signatures. Front. Earth Sci. 9, 150 (2021).ADS 
    Article 

    Google Scholar 
    Prud’homme, C. et al. δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the Last Glacial in western Europe. Quat. Sci. Rev. 179, 158–166 (2018).ADS 
    Article 

    Google Scholar 
    Obreht, I. et al. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Sci. Rev. 190, 498–520 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Joannin, S. et al. Vegetation, fire and climate history of the Lesser Caucasus: A new Holocene record from Zarishat fen (Armenia). J. Quat. Sci. 29, 70–82 (2014).Article 

    Google Scholar 
    Brittingham, A. et al. Influence of the north atlantic oscillation on δD and δ18O in meteoric water in the Armenian highland. J. Hydrol. 575, 513–522 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Bohn, U., Zazanashvili, N. & Nakhutsrishvili, G. The map of the natural vegetation of Europe and its application in the caucasus ecoregion. Bull. Georgian Natl. Acad. Sci. 175, 112–121 (2007).
    Google Scholar 
    Trigui, Y. et al. First calibration and application of leaf wax n-alkane biomarkers in Loess-Paleosol sequences and modern plants and soils in Armenia. Geosciences 9, 263 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Richter, C. et al. New insights into southern Caucasian glacial-interglacial climate conditions inferred from Quaternary Gastropod Fauna. J. Quat. Sci. 35, 634–649 (2020).Article 

    Google Scholar 
    Kharzyan, E. Geological Map of Republic of Armenia (Ministry of Nature Protection of Republic of Armenia, 2005).
    Google Scholar 
    Sosson, M. et al. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geol. Soc. Spec. Publ. 340, 329–352 (2010).ADS 
    Article 

    Google Scholar 
    Lomax, J. et al. Testing post-IR-IRSL dating on Armenian loess palaeosol sections against independent age control. Quat. Geochron. 69, 101265 (2021).Article 

    Google Scholar 
    Újvári, G., Kovács, J., Varga, G., Raucsik, B. & Markovic, S. B. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: A review. Quat. Sci. Rev. 29, 3157–3166 (2010).ADS 
    Article 

    Google Scholar 
    Rudnick, R. L. & Gao, S. Composition of the continental crust. In The Crust (ed. Rudnick, R. L.) 1–64 (Elsevier-Pergamon, 2003).
    Google Scholar 
    Újvári, G., Varga, A. & Balogh-Brunstad, Z. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quat. Res. 69, 421–437 (2008).Article 
    CAS 

    Google Scholar 
    Galoyan, G. et al. Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): Evidence for Jurassic Back-arc opening and hot spot event between the South Armenian Block and Eurasia. J. Asian Earth Sci. 34, 135–153 (2009).ADS 
    Article 

    Google Scholar 
    Hässig, M. et al. New structural and petrological data on the Amasia ophiolites (NW Sevan-Akera suture zone, Lesser Caucasus): Insights for a large-scale obduction in Armenia and NE Turkey. Tectonophysics 588, 135–153 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Sahakyan, L. et al. Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): Evidence of a subduction geodynamic environment. in Tectonic Evolution of the Eastern Black Sea and Caucasus (eds. Sosson, M., Stephenson, R. A., Adamia, S. A.). Geological Society Special Publication. Vol. 428. (2016).Obreht, I. et al. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Sci. Rep. 6, 36334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Profe, J., Wacha, L., Frechen, M., Ohlendorf, C. & Zolitschka, B. XRF scanning of discrete samples—A chemostratigraphic approach exemplified for loess-paleosol sequences from the Island of Susak, Croatia. Quat. Int. 494, 34–51 (2018).Article 

    Google Scholar 
    Profe, J., Zolitschka, B., Schirmer, W., Frechen, M. & Ohlendorf, C. Geochemistry unravels MIS3/2 paleoenvironmental dynamics at the loess-paleosol sequence Schwalbenberg II, Germany. Palaeogeogr. Palaeoclim. Palaeoecol. 459, 537–551 (2016).ADS 
    Article 

    Google Scholar 
    Zeeden, C. et al. Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania)—Implications for dust accumulation in south-eastern Europe. Quat. Sci. Rev. 154, 130–142 (2016).ADS 
    Article 

    Google Scholar 
    Song, Y. et al. Magnetic stratigraphy of the Danube loess: A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia. J. Asian Earth Sci. 155, 68–80 (2018).ADS 
    Article 

    Google Scholar 
    Rouzaut, S. & Orgeira, M. J. Influence of volcanic glass on the magnetic signal of different paleosols in Córdoba, Argentina. Stud. Geophys. Geod. 61, 361–384 (2017).ADS 
    Article 

    Google Scholar 
    Campodonico, V. A., Rouzaut, S. & Pasquini, A. I. Geochemistry of a Late Quaternary loess-paleosol sequence in central Argentina: Implications for weathering, sedimentary recycling and provenance. Geoderma 351, 235–249 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Wolf, D. et al. Loess in Armenia—Stratigraphic findings and palaeoenvironmental indications. Proc. Geol. Assoc. 127, 29–39 (2016).Article 

    Google Scholar 
    Buggle, B. et al. Iron mineralogical proxies and Quaternary climate change in SE-European Loess–Paleosol sequences. CATENA 117, 4–22 (2014).CAS 
    Article 

    Google Scholar 
    Bradák, B. et al. Magnetic susceptibility in the European Loess Belt: New and existing models of magnetic enhancement in Loess. Palaeogeogr. Palaeoclim. Palaeoecol. 569, 110329 (2021).ADS 
    Article 

    Google Scholar 
    Laag, C. et al. A detailed paleoclimate proxy record for the Middle Danube Basin over the Last 430 kyr: A rock magnetic and colorimetric study of the Zemun loess-paleosol sequence. Front. Earth Sci. 9, 600086 (2021).ADS 
    Article 

    Google Scholar 
    Baumgart, P., Hambach, U., Meszner, S. & Faust, D. An environmental magnetic fingerprint of periglacial loess: Records of Late Pleistocene loess–palaeosol sequences from eastern Germany. Quat. Int. 296, 82–93 (2013).Article 

    Google Scholar 
    Boers, N., Ghil, M. & Rousseau, D.-D. Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard-Oeschger cycles. PNAS 115, E11005–E11014 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for Dansgaard-Oeschger cycles. Nat. Rev. Earth Environ. 1, 677–693 (2020).ADS 
    Article 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).ADS 
    Article 

    Google Scholar 
    Martrat, B. et al. Four climate cycles ofrecurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    Jin, L., Chen, F., Ganopolski, A. & Claussen, M. Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity. J. Geophys. Res. 112, D06117 (2007).ADS 

    Google Scholar 
    Sun, Y., Wang, X., Liu, Q. & Clemens, S. C. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth Planet. Sci. Lett. 289, 171–179 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, S. & Ding, Z. A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochem. Geophys. Geosyst. 15, 798–814 (2014).ADS 
    Article 

    Google Scholar 
    Obreht, I. et al. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal. Sci. Rep. 7, 5848 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Antoine, P. et al. Evidence of rapid and cyclic eolian deposition during the Last Glacial in European loess series (Loess events): The high-resolution records from Nussloch (Germany). Quat. Sci. Rev. 28, 2955–2973 (2009).ADS 
    Article 

    Google Scholar 
    Rousseau, D. D. et al. North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits. Clim. Past 7, 221–234 (2011).Article 

    Google Scholar 
    Machalett, B. et al. Aeolian dust dynamics in Central Asia during the Pleistocene: driven by the long-term migration, seasonality and permanency of the Asiatic polar front. Geophys. Geochem. Geosyst. 9, Q08Q09 (2008).Article 
    CAS 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Kutzbach, J., Chen, G., Cheng, H., Edwards, R. & Liu, Z. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Clim. Dynam. 42, 1079–1095 (2014).ADS 
    Article 

    Google Scholar 
    Marković, S. B. et al. Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Earth Sci. Rev. 148, 228–258 (2015).ADS 
    Article 

    Google Scholar 
    Li, G. et al. Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid central Asia, since the penultimate glaciation. Earth Planet. Sci. Lett. 448, 1–12 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lomax, J. et al. A luminescence-based chronology for the Harletz Loess sequence, Bulgaria. Boreas 48, 179–194 (2019).Article 

    Google Scholar 
    Kehl, M. et al. Pleistocene dynamics of dust accumulation and soil formation in the southern Caspian Lowlands—New insights from the loess-paleosol sequence at Neka-Abelou, northern Iran. Quat. Sci. Rev. 253, 106774 (2021).Article 

    Google Scholar 
    Ganopolski, A., Calov, R. & Claussen, M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim. Past 6, 229–244 (2010).Article 

    Google Scholar 
    Malinsky-Buller, A. et al. Evidence for Middle Palaeolithic occupation and landscape change in central Armenia at the open-air site of Alapars-1. Quat. Res. 99, 223–247 (2021).Article 

    Google Scholar 
    Rao, Z. et al. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Sci. Rep. 3, 2785 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, T., Marković, S. B., Zech, M., Hambach, U. & Sümegi, P. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quat. Sci. Rev. 30, 662–681 (2011).ADS 
    Article 

    Google Scholar 
    Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).ADS 
    Article 

    Google Scholar 
    Pickarski, N., Kwiecien, O., Langgut, D. & Litt, T. Abrupt climate and vegetation variability of eastern Anatolia during the last glacial. Clim. Past 11, 1491–1505 (2015).Article 

    Google Scholar 
    Wegwerth, A. et al. Northern hemisphere climate control on the environmental dynamics in the glacial Black Sea “Lake”. Quat. Sci. Rev. 135, 41–53 (2016).ADS 
    Article 

    Google Scholar 
    Ollivier, V., Fontugne, M. & Lyonnet, B. Geomorphic response and 14C chronology of base-level changes induced by Late Quaternary Caspian Sea mobility (middle Kura Valley, Azerbaijan). Geomorphology 230, 109–124 (2015).ADS 
    Article 

    Google Scholar 
    Egeland, C. P. et al. Bagratashen 1, a stratified open-air Middle Paleolithic site in the Debed river valley of northeastern Armenia: A preliminary report. Archaeol. Res. Asia 8, 1–20 (2016).Article 

    Google Scholar 
    von Suchodoletz, H., Gärtner, A., Zielhofer, C. & Faust, D. Eemian and post-Eemian fluvial dynamics in the Lesser Caucasus. Quat. Sci. Rev. 191, 189–203 (2018).ADS 
    Article 

    Google Scholar 
    Langbein, W. B. & Schumm, S. A. Yield of sediment in relation to mean annual precipitation. Trans. Am. Geophys. Union 39, 1076–1084 (1958).ADS 
    Article 

    Google Scholar 
    Wolman, M. G. & Miller, J. P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68, 54–74 (1960).ADS 
    Article 

    Google Scholar 
    Svirčev, Z. et al. Importance of biological loess crusts for loess formation in semi-arid environments. Quat. Int. 296, 206–215 (2013).Article 

    Google Scholar 
    Reber, R. et al. Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quat. Sci. Rev. 101, 177–192 (2014).ADS 
    Article 

    Google Scholar 
    Ammann, C., Jenny, B., Kammer, K. & Messerli, B. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18–29 °S). Palaeogeogr. Palaeoclim. Palaeoecol. 172, 313–326 (2001).ADS 
    Article 

    Google Scholar 
    Domínguez-Villar, D. et al. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci. Rep. 3, 2034 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spötl, C. et al. Increased autumn and winter precipitation during the Last Glacial Maximum in the European Alps. Nat. Commun. 12, 1839 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shumilovskikh, L. S. et al. Orbital and millennial-scale environmental changes between 64 and 20 ka BP recorded in Black Sea sediments. Clim. Past 10, 939–954 (2014).Article 

    Google Scholar 
    Wegwerth, A. et al. Black Sea temperature response to glacial millennial-scale climate variability. Geophys. Res. Lett. 42, 8147–8154 (2015).ADS 
    Article 

    Google Scholar 
    Sarıkaya, M. A., Zreda, M., Çiner, A. & Zweck, C. Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quat. Sci. Rev. 27, 769–780 (2008).ADS 
    Article 

    Google Scholar 
    Lézine, A.-M. et al. Lake Ohrid, Albania, provides an exceptional multi-proxy record of environmental changes during the last glacial–interglacial cycle. Palaeogeogr. Palaeoclim. Palaeoecol. 287, 116–127 (2010).ADS 
    Article 

    Google Scholar 
    Tecsa, V. et al. Revisiting the chronostratigraphy of late Pleistocene loess-paleosol sequences in southwestern Ukraine: OSL dating of Kurortne section. Quat. Int. 542, 65–79 (2020).Article 

    Google Scholar 
    Luetscher, M. et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 6344 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ludwig, P., Schaffernicht, E. J., Shao, Y. & Pinto, J. G. Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. J. Geophys. Res.-Atmos. 121, 2130–2145 (2016).ADS 
    Article 

    Google Scholar 
    Schaffernicht, E. J., Ludwig, P. & Shao, Y. Linkage between dust cycle and loess of the last glacial maximum in Europe. Atmos. Chem. Phys. 20, 4969–4986 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Beghin, P. et al. What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco. Clim. Dyn. 46, 2611–2631 (2016).Article 

    Google Scholar 
    Sümegi, P. et al. Vegetation and land snail-based reconstruction of the palaeocological changes in the forest steppe eco-region of the Carpathian Basin during last glacial warming. Glob. Ecol. Conserv. 33, e01976 (2022).Article 

    Google Scholar 
    Chen, J. et al. Revisiting Late Pleistocene Loess-Paleosol sequences in the Azov Sea Region of Russia: Chronostratigraphy and paleoenvironmental record. Front. Earth Sci. 9, 808157 (2022).Article 

    Google Scholar 
    Xepos, S. Analysis of trace elements in geological materials, soils and sludges. Spectro XRF Rep. 193, 1–5 (2007).
    Google Scholar 
    Buggle, B. et al. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quat. Sci. Rev. 27, 1058–1075 (2008).ADS 
    Article 

    Google Scholar 
    Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Dearing, J. Environmental Magnetic Susceptibility: Using the Bartington MS2 System (Chi Publishing, 1999).
    Google Scholar 
    Buylaert, J., Murray, A. S., Thomsen, K. J. & Jain, M. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat. Meas. 44, 560–565 (2009).CAS 
    Article 

    Google Scholar 
    Lomax, J. et al. Establishing a luminescence-based chronostratigraphy for the Last Glacial-interglacial cycle of the Loess-Palaeosol sequence Achajur (Armenia). Front. Earth Sci. 9, 755084 (2021).Article 

    Google Scholar 
    Lamothe, M., Auclair, M., Hamzaoui, C. & Huot, S. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiat. Meas. 37, 493–498 (2003).CAS 
    Article 

    Google Scholar 
    Tudyka, K. et al. Increased dose rate precision in combined α and β counting in the μDose system—A probabilistic approach to data analysis. Radiat. Meas. 134, 106310 (2020).CAS 
    Article 

    Google Scholar 
    Kolb, T. et al. The µDose-system: Determination of environmental dose rates by combined alpha and beta counting—Performance tests and practical experiences. GChron 4, 1–31 (2021).ADS 

    Google Scholar 
    Durcan, J. A., King, G. & Duller, G. DRAC: Dose rate and age calculator for trapped charge dating. Quat. Geochron. 28, 54–61 (2015).Article 

    Google Scholar 
    von Suchodoletz, H. & Faust, D. Late Quaternary fluvial dynamics and landscape evolution at the lower Shulaveris Ghele River (southern Caucasus). Quat. Res. 89, 254–269 (2018).Article 

    Google Scholar 
    von Suchodoletz, H. et al. Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering e the Kura River (southern Caucasus). Geomorphology 266, 53–65 (2016).ADS 
    Article 

    Google Scholar 
    Ryan, W. B. F. et al. Global multi-resolution topography (GMRT) synthesis data set. Geochem. Geophys. Geosyst. 10, Q03014 (2009).ADS 
    Article 

    Google Scholar 
    Nalivkin, D. V. et al. Geologicheskaya Karta Kavkaza, Mashtav 1:500.000 (Geological Map of the Caucasus, Scale 1:500,000). (Ministry of Geology of the USSR, 1976). More

  • in

    Modeling geographical invasions of Solenopsis invicta influenced by land-use patterns

    This study used comprehensive surveillance data to profile RIFA invasions in time and space on an isolated island. By using this surveillance data, which were collected regularly together with information on land-use in different years, distinctions of RIFA severity can be compared, and RIFA SIRH were therefore identified. Our statistical model decomposed the spatial invasion risk into four geographic and anthropogenic factors: land-use characteristics, distances from RIFA sampling location to the nearest road, and spatial factors. For land use from 2014 to 2017, agricultural land, transportation usage, and land-use change had significantly higher odds of RIFA SIRH than natural land cover. Regarding the distance from the nearest road, RIFA invasions were most likely ( > 60%) to occur within 350 m from the nearest road on the transportation usage land. Meanwhile, it was likely ( > 60%) to have RIFA invasions within 150 m from the nearest road in areas where land-use change had occurred between 2014 and 2016. Finally, the highest risks of RIFA SIRH were identified around the pier area and the area of the earliest RIFA invasions on Kinmen. Our study provided an example showing how RIFA gradually expanded to the entire isolated island.Highest risks for agricultural land, transportation usage, and land-use changeAgricultural landThe vulnerability of agricultural lands to RIFA invasions has been reported in many studies. For example, a review by Apperson and Adams showed that RIFA often infested soybean fields in the United States28. Way and Khoo reviewed the RIFA infestation of crop plants, including sugar cane and cotton29, and indicated that crop invasion by RIFAs was a common occurrence. The study conducted by Stuhler et al. demonstrated that in unthinned patches, RIFA mounds were likely to occur in agricultural lands compared to woodlands in South Carolina30. Thus, the results of our study align with the literature in finding that agricultural land tends to be highly assailable by RIFAs.The large majority of agricultural lands on Kinmen Island include sorghum farms, peanut farms, and other food crop farms31. These farms need to be plowed or cultivated at least twice per year. Therefore, soil disturbances by humans could be the reason for the defenselessness against RIFA invasions. The potential mechanism is that soil disturbances destroy habitats for all living organisms, including RIFA. However, RIFAs reestablished their colonies faster than others30,32. Thus, RIFAs became one of the dominant species in highly disturbed areas. Higher soil disturbances associated with higher RIFA abundances were evidenced by the study by Stuhler et al.30 in which the authors compared the thinned areas to unthinned areas, identifying more RIFA mounds in thinned plots. King and Tschinkel also conducted a field experiment on different levels of soil disturbances. They demonstrated that higher numbers of RIFAs persisted at higher levels of disturbance (i.e., plowing) than at lower levels (i.e., mowing)32.Land for transportation usageThe land-use type for transportation purposes, including roads and ports (i.e., seaports and airports), was also identified as a risk factor for RIFA SIRH in this study (Table 2). Among the 1814 sampling tubes in the transportation area, there were 1768 sampling tubes for roads and 46 for ports. As most of the sampling tubes were set along roads in the present study, it could be deduced that roadsides or road cuts were at risk of being infested by RIFA. This result was in compliance with previous studies in the U.S., showing that areas beside roads such as roadsides and road margins provided suitable habitats for RIFA development11,33,34,35,36,37.Roadsides or road cuts had significant risks of RIFA SIRH in Kinmen, which could be due to frequent disturbances from vehicles. In Kinmen, most roads have only one lane or two narrow lanes. When two vehicles traveling in opposite directions pass each other, they will sometimes take turns or pull over onto the side, resulting in frequent soil disturbance. Roadsides or areas near roads are generally considered highly disturbed10,11,34,38, and narrow and disturbed areas suitable for RIFA establishment were demonstrated by Stiles and Jones12.In addition to disturbances along roads, some vehicles may also transport RIFAs in potted plants and soil. Newly-mated queens may potentially attach to the surface of vehicles and fall during transportation, further facilitating invasions near roadsides. This traffic-related dispersal process has been documented in many plant species39,40,41.Road maintenance could also be a reason for the high risks near roadsides. Road maintenance involves moving soil from one place and adding soil to construction sites. If the transported soil is contaminated by RIFAs, the maintenance areas will likely be occupied by RIFA. A case report by King et al. revealed how RIFA spread to roadsides by road maintenance32.Ports, in addition to roads, are another land type for transportation usages. Our finding was in line with previous studies showing that airports or seaports were common areas of RIFA invasion in Taiwan and neighboring countries. For example, Taoyuan International Airport was considered one of the earliest RIFA infestation locations in Taiwan42,43. RIFAs were also detected in container yards in Taiwan’s Kaohsiung commercial port in 201844. In other Asia–Pacific countries, such as China, South Korea, Japan, and Australia, RIFAs have also been reported at ports in the last decade44,45.Ports in this study consist of one seaport and one airport (Fig. 1). Based on the predicted risk of RIFA SIRH (Fig. 8a), one of the highest risk areas was around Shuitou Pier in Jincheng township (Fig. 1). The Pier area had high risks could be because it is one of the cargo container entrances on Kinmen Island. Shipping cargo containers have been suggested to facilitate the movement of RIFAs from abroad or between domestic ports42,43,44. Container yards can become infested when RIFA-contaminated cargo containers are unloaded44,46. In addition to possible contributions from cargos, the pier area had high risks of invasions, which could be due to environmental conditions. This can be supported by the risk of spatial factors, showing that the Pier area had high risks (Fig. 8c). One of the possible environmental factors could be that floating rubbish tends to accumulate in the Pier area47. Studies have shown that nonnative species, including ants, can travel with marine litter to new locations32,48,49,50,51.The Kinmen Shangyi Airport is the other cargo entrance in Kinmen (Fig. 1). Intuitionally, because of cargo containers, the airport area was expected to have risks similar to those in the pier area; however, the risks of RIFA invasions in the airport area were considerably lower (Fig. 8a). The differences in risks could be due to their cargo carrying capacities. In 2018, the airport had 6778 tons of cargo, but the pier had one million tons of cargo52,53. Differences in the types of cargo between the two locations may also play a role in invasion risks. From 2001 to 2018, the majority of goods arriving at the Pier included building stones and block stones from China53. These products have higher risks of being contaminated by RIFAs than goods such as ferrous articles and eggs arriving from the airport of Taiwan53,54.Land-use changeThe land-use change category was identified as a risk factor for RIFA SIRH in the current study. Among land-use change areas, 61.6% were natural land cover in 2014 but were converted to agricultural land, transportation areas, and artificial structures in 2017, which we designated development-related areas (Fig. 6).As previously mentioned, the reasons why the land-use change category had a high risk of RIFA invasion could be due to anthropogenic disturbances. Taking development-related areas as an example, when natural land cover such as forests are changed to other land usages, the first step may be to remove vegetation by clearcutting or plowing. These activities involve soil or habitat disturbances and could aid in the establishment of RIFA populations55. Then, if lands are changed to build houses or schools (i.e., artificial structures), soil disturbances could also occur during construction activities56. For lands that are changed to transportation usages, moving and adding RIFA-contaminated soil could occur during road construction.Effects of roads on RIFA SIRHDistances to the nearest roads were important for understanding invasion where undergoing land-use change, as well in places used as transportation lands (Fig. 7). These land-use categories share a common feature: roads. Meanwhile, agriculture lands had the greatest level of RIFA SIRH, but did not show interaction with distance to roads (Table 2). This could be because agriculture lands were far from roads as compared to land-use change and transportation lands. The median distances to roads from these three land-use categories supported this speculation. Therefore, from this study, it can be deduced that the roads could play a role to transport RIFAs to areas closer to road (i.e., land-use change and transportation). However, the effects of roads on RIFA SIRH did not appear when the areas away from roads (i.e., agricultural lands).Lowest risk in natural land coverIn the present study, natural land cover were identified as the lowest risk category of RIFA SIRH among the five land-use categories (Fig. 8d). This finding was in line with the study conducted by Brown et al., showing that a high percentage of canopy cover was associated with a low mean number of RIFAs in Texas between 2008 and 201057. In addition, Tschinkel and King investigated longleaf pine forests in Florida in 2012 and found that RIFA had difficulty establishing long-term colonies in the forest35. However, in another longleaf pine forest in Georgia, the ant survey conducted by Stuble et al. revealed that RIFAs were the predominant species in the ant community from 2006 to 200758. Wetlands also had high numbers of RIFAs. In northern Florida, Tschinkel observed that RIFA mounds clustered near pond margins11.Natural land cover in Kinmen had the lowest risk of RIFA invasions, which could be because most areas ( > 75%, data not shown) are forests. The forests are preserved and protected by the Forestry Bureau of Taiwan. Because of protection, forests can avoid most anthropogenic disturbances, such as soil excavation, which are known as one of the factors facilitating RIFA relocation32,59,60. Additionally, the forest environment is cool, humid, and shaded, which are unfavorable environmental conditions for RIFAs1,12,30,34,61,62.Implications of study findings for RIFA management in KinmenPublic communicationsTo date, the Kinmen County Animal and Plant Disease Control Center (KAPCDC) has launched a program aimed at raising public awareness of RIFAs on the island through newspapers, social media, and posters. In addition, for RIFA control, the KAPCDC has listed certified pesticides such as pyriproxyfen and lambda-cyhalothrin for the use of controlling RIFAs on agricultural lands. Nevertheless, our study documented that a greater risk of RIFA invasions still occurred on agricultural lands and lands used for transportation, suggesting communications should target owners of agricultural lands as well as the general public in future campaigns. Many individuals of the general public may not be able to identify ant species, so communications should therefore emphasize the importance of reporting any ant mounds, especially along roads. As different sociodemographic groups react to source information differently, communications have to be tailored to ages and educational levels7. For example, for students in primary school, the study by Madeira et al. showed that by teaching activities including insect specimens and short-film presentations, students increased their awareness of the importance of pest control63. For owners of agricultural lands and workers at ports, educational activities on basic RIFA knowledge and pesticide treatments with suitable communication methods may be needed. Those methods included regular face-to-face discussions on RIFA elimination strategies in the meetings of farmers’ associations or a system sharing updated materials likely to be contaminated with RIFAs64,65.RIFA control personnelTo prioritize resources, according to the findings from this study, we suggest that government staff focus on the controls within 350 m from the nearest road on transportation usage land and within 150 m from the nearest road on the areas where land-use change occurred between 2014 and 2016. The authorities could consider integrated pest management approaches, which include chemical and biological controls, to preserve the local ecosystem66.For agricultural lands, RIFA management mainly relies on awareness and reports from owners, as control personnel cannot perform inspections and intervention on private agricultural lands without the owners’ permissions, Although control personnel cannot directly perform interventions on private land, plant quarantine officers in seaports, which were a high-risk area in this study, can prevent RIFA importation by checking cargos to ensure that RIFAs are not stowaways on materials such as plants, rocks, and soil. More

  • in

    Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior

    Diverse oviposition rates of Drosophila females after long exposure to waspsTo investigate whether D. melanogaster change oviposition behavior when they cohabit with Lb female wasps, we designed an experimental procedure and monitored egg laying for a much longer time than in previous experiments – approximately 20 days. Specifically, twenty 3-day-old female and five 3-day-old male D. melanogaster adults were placed in standard fly bottles containing fly food dishes. Flies were housed with twenty 2-day-old Lb female wasps (exposed) or without any female wasps (unexposed). The fly food dishes were replaced daily, and fly eggs were counted daily (Fig. 1a). Consistent with previous observations24, the exposed Drosophila females had significantly reduced oviposition numbers compared to the unexposed flies (Fig. 1b). This response lasted approximately 6 days in the presence of Lb females. After that, we surprisingly found that the number of eggs laid by the exposed flies did not differ from the numbers laid by the unexposed controls (Fig. 1b). This variation led us to speculate that this decreased oviposition may have been induced by the diverse life-threatening pressure when D. melanogaster females encounter different aged wasps, as old ones present less danger to their offspring28,29, or simply indicate that the flies become habituated to the constant presence of wasps.Fig. 1: D. melanogaster oviposition rates are altered in the presence of young Lb females.a Standard oviposition assay design. Each bottle contained twenty Canton-S (CS) female flies and five CS male flies, either with twenty female Lb wasps (exposed) or with no wasps (unexposed). Flies aged 3 days post-eclosion and wasps aged 2 days post-emergence were used. The food dishes were replaced daily, and the eggs laid each day were counted. b The daily number of eggs laid by the unexposed and exposed CS flies. Flies were exposed to wasps for 20 days. The experiment was performed eighteen times. Data represent the mean ± SEM. Significance was determined by two-way ANOVA with Sidak’s multiple comparisons test, p values are indicated in Source Data file (***p  More

  • in

    Fossoriality in desert-adapted tenebrionid (Coleoptera) larvae

    Matthews, E. G., Lawrence, J. F., Bouchard, P., Steiner, W. E. Jr. & Ślipiński, S. A. Tenebrionidae Latreille, 1802. In Handbook of Zoology. A Natural History of the Phyla of the Animal Kingdom. Vol. IV—Arthropoda: Insecta. Part 38 Coleoptera, Beetles. Vol. 2: Systematics (Part 2) (eds Leschen, R. A. B. et al.) 574–659 (Walter de Gruyter GmbH & Co, 2010).
    Google Scholar 
    Kergoat, G. J. et al. Higher-level molecular phylogeny of darkling beetles (Coleoptera: Tenebrionidae). Syst. Entomol. 39, 486–499. https://doi.org/10.1111/syen.12065 (2014).Article 

    Google Scholar 
    Bouchard, P. et al. Review of genus-group names in the family Tenebrionidae (Insecta, Coleoptera). Zookeys 26, 1–633. https://doi.org/10.3897/zookeys.1050.64217 (2021).Article 

    Google Scholar 
    Matthews, E. G. & Bouchard, P. Tenebrionid Beetles of Australia 398 (Australian Biological Resources Study, 2008).
    Google Scholar 
    Thomas, D. B. J. R. Patterns in the abundance of some tenebrionid beetles in the Mojave Desert. Environ. Entomol. 8, 568–657 (1979).Article 

    Google Scholar 
    Seely, M. K. & Louw, G. N. First approximation of the effects of rainfall on the ecology and energetics of a Namib Desert dune ecosystem. J. Arid Environ. 3, 25–54 (1980).ADS 
    Article 

    Google Scholar 
    Crawford, C. S. The community ecology of macroarthropod detritivores. In The Ecology of Desert Communities (ed. Polis, G. A.) 89–112 (The University of Arizona Press, 1991).
    Google Scholar 
    Mordkovich, V. G. Species richness, population structure and functional significance of black-beetles (Coleoptera: Tenebrionidae) in steppes of Northern Asia. Russ. Entomol. J. 11, 57–68 (2002).
    Google Scholar 
    Bartholomew, A. & El Moghrabi, J. Seasonal preference of darkling beetles (Tenebrionidae) for shrub vegetation due to high temperatures, not predation or food availability. J. Arid Environ. 156, 34–40 (2018).ADS 
    Article 

    Google Scholar 
    Cheli, G. H., Bosco, T. & Flores, G. The role of Nyctelia dorsata Fairmaire, 1905 (Coleoptera: Tenebrionidae) on litter fragmentation processes and soil biogeochemical cycles in arid Patagonia. Ann. Zool. 72, 129–134. https://doi.org/10.3161/00034541ANZ2022.72.1.011 (2022).Article 

    Google Scholar 
    Nørgaard, T. & Dacke, M. Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Front. Zool. 7, 23. https://doi.org/10.1186/1742-9994-7-23 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comanns, P. Passive water collection with the integument: Mechanisms and their biomimetic potential. J. Exp. Biol. 221, jeb153130. https://doi.org/10.1242/jeb.153130 (2018).Article 
    PubMed 

    Google Scholar 
    Doyen, J. T. Familial and subfamilial classification of the Tenebrionoidea (Coleoptera) and a revised generic classification of the Coniontini (Tentyriidae). Quest. Entomol. 8, 357–376 (1972).
    Google Scholar 
    Schulze, L. The Tenebrionidae of Southern Africa. XLII. Description of the early stages of Carchares macer Pascoe and Herpiscus sommeri Solier with a discussion of some phylogenetic aspects arising from the incongruities of adult and larval systematics. Sci. Pap. Namib Desert Res. Stn. 53, 139–149 (1969).
    Google Scholar 
    Kamiński, M. J. et al. Reevaluation of Blapimorpha and Opatrinae: Addressing a major phylogeny-classification gap in darkling beetles (Coleoptera: Tenebrionidae: Blaptinae). Syst. Entomol. 46, 140–156. https://doi.org/10.1111/syen.12453 (2021).Article 

    Google Scholar 
    Skopin, N. G. [Larvae of the subfamily Pimeliinae (Coleoptera, Tenebrionidae)]. Lichinki podsemeystva Pimeliinae (Coleoptera, Tenebrionidae). Trudy Nauchno-Issledovatelskogo Instituta Zashchity Rastenii Kazakhstanskoy Akademii Selskokhozyastvennykh Nauk 7, 191–298 (1962).
    Google Scholar 
    Skopin, N. G. Die Larven der Tenebrioniden des Tribus Pycnocerini (Coleoptera, Heteromera). Ann. Museé R. l’Afrique Centrale 127, 1–35 (1964).
    Google Scholar 
    Iwan, D. & Bečvář, S. Description of the early stages of Anomalipus plebejus plebejulus (Coleoptera: Tenebrionidae) from Zimbabwe with notes on the classifcation of the Opatrinae. Eur. J. Entomol. 97, 403–412 (2000).Article 

    Google Scholar 
    Koch, C. Monograph of the Tenebrionidae of southern Africa Vol I (Tentyriinae, Molurini Trachynotina: Somaticus Hope). Transvaal Mus. Mem. 7, 242 (1955).
    Google Scholar 
    Kergoat, G. J. Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evol. Biol. 14, 220. https://doi.org/10.1186/s12862-014-0220-1 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, A. D., Dornburg, R. & Wheeler, Q. D. Larvae of the genus Eleodes (Coleoptera, Tenebrionidae): Matrix-based descriptions, cladistic analysis, and key to late instars. Zookeys 415, 217–268 (2014).Article 

    Google Scholar 
    Kamiński, M. J. et al. Immature stages of beetles representing the ‘Opatrinoid’ clade (Coleoptera: Tenebrionidae): An overview of current knowledge of the larval morphology and some resulting taxonomic notes on Blapstinina. Zoomorphology 138, 349–370. https://doi.org/10.1007/s00435-019-00443-7 (2019).Article 

    Google Scholar 
    Rasa, O. A. E. Bechavioural adaptations to moisture as an environmental constraint in a nocturnal burrow-linhabiting Kalahari detritivore Parastizopus amraticpes Peringuey (Coleoptera: Tenebrionidae). Koedoe 37(1), 57–66 (1994).Article 

    Google Scholar 
    Rasa, O. A. E. Ecological factors influencing burrow location, group size and mortality in a nocturnal fossorial Kalahari detritivore, Parastizopus armaticeps Peringuey (Coleoptera: Tenebrionidae). J. Arid Environ. 29, 353–365 (1995).ADS 
    Article 

    Google Scholar 
    Fabricius, J. C. Supplementum Entomologia Systematica. (Impensis CG Proft, 1978).Péringuey, L. Fourth contribution to the South African coleopterous fauna. Description of new Coleoptera in the South African Museum. Trans. S. Afr. Philos. Soc. 6, 95–136 (1892).Article 

    Google Scholar 
    Endrody-Younga, S. A revision of the subtribe Gonopina (Coleoptera: Tenebrionidae: Opatrinae: Platynotini). Ann. Transvaal Mus. 37, 1–54 (2000).
    Google Scholar 
    Kamiński, M. J. Notes on species diversity patterns in Stizopina (Coleoptera: Tenebrionidae), with description of a new genus from Nama Karoo. Ann. Zool. 65, 131–148. https://doi.org/10.3161/00034541ANZ2015.65.2.002 (2015).Article 

    Google Scholar 
    Schulze, L. The Tenebrionidae of Southern Africa. XXXVIII. On the morphology of the larvae of some Stizopina (Coleoptera: Opatrini). Sci. Pap. Namib Desert Res. Stn. 19, 1–23 (1963).
    Google Scholar 
    Schulze, L. A review of silk production and spinning activities in Arthropoda with special reference to spinning in Tenebrionid larvae (Coleoptera) and Brown, J. M. M.: A chromatographic analysis of Tenebrionid silk. Mem. Transvaal Mus. 51, 409–410 (1975).
    Google Scholar 
    Rasa, O. A. E. & Endrödy-Younga, S. Intergeneric associations of stizopinid tenebrionids relative to their geographical distribution (Coleoptera: Tenebrionidae: Opatrini: Stitzopina). Afr. Entomol. 5, 231–239 (1997).
    Google Scholar 
    Kamiński, M. J., Raś, M., Steiner, W. E. & Iwan, D. Immature stages of beetles representing the ‘Opatrinoid’ clade (Coleoptera: Tenebrionidae): An overview of current knowledge of the pupal morphology. Ann. Zool. 68, 825–836. https://doi.org/10.3161/00034541ANZ2018.68.4.006 (2018).Article 

    Google Scholar 
    Doyen, J. T. The skeletal anatomy of Tenebrio molitor (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 5, 103–150 (1966).
    Google Scholar 
    Ohde, T., Yaginuma, T. & Niimi, T. Insect morphological diversification through the modification of wing serial homologs. Science 340, 495 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhu, J. Y., Yang, P., Zhang, Z., Wu, G. X. & Yang, B. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS ONE 8, e54411 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raś, M., Iwan, D. & Kamiński, M. J. Tracheal system in post-embryonic development of holometabolous insects: A case study using mealworm beetle. J. Anat. 232, 997–1015. https://doi.org/10.1111/joa.12808 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwon, G. T. et al. Mealworm larvae (Tenebrio molitor L.) exuviae as a novel prebiotic material for BALB/c mouse gut microbiota. Food Sci. Biotechnol. 29(4), 531–537. https://doi.org/10.1007/s10068-019-00699-1 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machona, O., Chidzwondo, F. & Mangoyi, R. Tenebrio molitor: Possible source of polystyrene-degrading bacteria. BMC Biotechnol. 22, 2. https://doi.org/10.1186/s12896-021-00733-3 (2022).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jösting, E. A. Die Innervierung des Skelettmuskelsystems des Mehlwurms (Tenebrio molitor L., Larve). Zool. Jb. Anat. 67, 381–460 (1942).
    Google Scholar 
    Burakowski, B., Mroczkowski, M. & Stefańska, J. Chrząszcze: Coleoptera. Cucujoidea, Część 3. Katalog Fauny Polski, XXIII, 14 (1987).Schulze, L. The Tenebrionidae of southern Africa. XXXIII. Description of the larvae of Gonopus tibialis Fabricius and Gonopus agrestis Fahraeus (Gonopina, sensu Koch 1956). Cimbebasia 5, 1–12 (1962).
    Google Scholar 
    Lawrence, J. F., Pollock, D. A. & Ślipiński, A. Tenebrionoidea. In Handbook of Zoology. A Natural History of the Phyla of the Animal kingdom, Vol. IV. Arthropoda: Insecta (eds Leschen, R. A. B. et al.) 487–659 (Walter de Gruyter, 2010).
    Google Scholar 
    Lawrence, J. F. et al. Phylogeny of the Coleoptera based on morphological characters of adults and larvae. Ann. Zool. 61(1), 1–217 (2011).Article 

    Google Scholar 
    Beutel, R. G. & Friedrich, F. Comparative study of larvae of Tenebrionoidea (Coleoptera: Cucujiformia). Eur. J. Entomol. 102, 241–264 (2005).Article 

    Google Scholar 
    Fredrich, F. & Beutel, R. G. The thorax of Zorotypus (Hexapoda, Zoraptera) and a new nomenclature for the musculature of Neoptera. Arthropod Struct. Dev. 37, 29–54 (2008).Article 

    Google Scholar 
    Beutel, R. G., Friedrich, F., Yang, X.-K. & Ge, S.-Q. Insect Morphology and Phylogeny: A Textbook for Students of Entomology 515 (Walter de Gruyter, 2014).
    Google Scholar 
    Aibekova, L. et al. The skeletomuscular system of the mesosoma of Formica rufa workers (Hymenoptera: Formicidae). Insect Syst. Divers. 6(2), 1–26. https://doi.org/10.1093/isd/ixac002 (2022).Article 

    Google Scholar 
    Raś, M. Digging adaptations in psammophilous beetle larvae. Harvard Dataverse https://doi.org/10.7910/DVN/NNAETE (2022).SkyScan. Method Notes, Skyscan 1172 Desktop Micro-CT (Skyscan, 2008).
    Google Scholar 
    R Core Team. 2020. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020) https://www.R-project.org/.Sokal, R. R. & Rohlf, F. J. Biometry 937 (W.H. Freeman, 2011).
    Google Scholar 
    Cloudsley-Thompson, J. L. Terrestrial animals in dry heat: Arthropods. In Handbook of Physiology. Section 4: Adaptation to the Environment 414–436 (American Physiological Society, 1964).
    Google Scholar 
    Cloudsley-Thompson, J. L. Adaptations of Arthropoda to arid environments. Annu. Rev. Entomol. 20, 261–283. https://doi.org/10.1146/annurev.en.20.010175.001401 (1975).CAS 
    Article 
    PubMed 

    Google Scholar 
    Draney, M. L. The subelytral cavity of desert tenebrionids. Fla. Entomol. 76, 539–549 (1993).Article 

    Google Scholar 
    Duncan, F. D. The role of the subelytral cavity in water loss in the flightless dung beetle, Circellium bacchus (Coleoptera: Scarabaeinae). Eur. J. Entomol. 99(2), 253–258. https://doi.org/10.14411/eje.2002.034 (2002).Article 

    Google Scholar 
    Endrödy-Younga, S. & Tschinkel, W. Estimation of population size and dispersal in Anomalipus mastodon Fåhraeus, 1870 (Coleoptera: Tenebrionidae: Platynotini). Ann. Transvaal Mus. 36(4), 21–30 (1993).
    Google Scholar 
    Iwan, D. Insecta Coleoptera Tenebrionidae Pedinini Platynotina. Vol. 93 of Faune de Madagascar 178 (Editions Quae, 2010).
    Google Scholar 
    Wallwork, J. A. Desert Soil Fauna 296 (Praeger Publication, 1982).
    Google Scholar 
    Iwan, D. Oviviparity in tenebrionid beetles of the melanocratoid Platynotina (Coleoptera: Tenebrionidae: Platynotini) from Madagascar with notes on the viviparous beetles. Ann. Zool. 50, 15–25 (2000).
    Google Scholar 
    Kaufmann, T. Observations on some factors which influence aggregated by Blaps sulcata in Israel. Ann. Entomol. Soc. Am. 59, 660–664 (1966).Article 

    Google Scholar 
    Kiihnelt, G. On the biology and temperature accommodation of Lepidochora argentogrisea Koch. Sci. Pap. Namib Desert Res. Stn. 51, 121–122 (1969).
    Google Scholar 
    Hamilton, W. J. Competition and thermoregulatory behaviour of the Namib desert tenebrionid beetle genus Cardiosis. Ecology 52, 810–822 (1971).Article 

    Google Scholar 
    Watt, J. A revised subfamily classifcation of Tenebrionidae (Coleoptera). N. Z. J. Zool. 11, 381–452 (1974).Article 

    Google Scholar 
    Burakowski, B. Laboratory methods for rearing soil beetles (Coleoptera). Memorab. Zool. 46, 1–66 (1993).
    Google Scholar 
    De Block, M. & Stoks, R. Fitness effects from egg to reproduction: Bridging the life history transition. Ecology 86, 185–197 (2005).Article 

    Google Scholar 
    Pechenik, J. A. Larval experience and latent effects: Metamorphosis is not a new beginning. Integr. Comp. Biol. 46, 323–333 (2006).PubMed 
    Article 

    Google Scholar 
    Doyen, J. T. Reconstitution of Coelometopini, Tenebrionini and related tribes of America north of Colombia (Coleoptera: Tenebrionidae). J. N. Y. Entomol. Soc. 97, 277–304 (1989).
    Google Scholar 
    St. George, R. A. Studies on the larvae on North American beetles of the subfamily Tenebrioninae with a description of the larva and pupa of Merinus laevis (Olivier). Proc. U.S. Natl. Mus. 65, 1–22. https://doi.org/10.5479/si.00963801.65-2514.1 (1924).Article 

    Google Scholar 
    Purchart, L. & Nabozhenko, M. V. First description of larva and pupa of the genus Deretus (Coleoptera: Tenebrionidae) with key to the larvae of the tribe Helopini. Acta Entomol. Musei Natl. Pragae 52, 295–302 (2012).
    Google Scholar 
    Steiner, W. Larvae and pupae of two North American darkling beetles (Coleoptera, Tenebrionidae, Stenochiinae), Glyptotus cribratus LeConte and Cibdelis blaschkei Mannerheim, with notes on ecological and behavioural similarities. ZooKeys 415, 311–327. https://doi.org/10.3897/zookeys.415.6891 (2014).Article 

    Google Scholar 
    Wagner, G. & Gosik, R. Comparative morphology of immature stages of two sympatric Tenebrionidae species, with comments on their biology. Zootaxa 4111, 201–222 (2017).Article 

    Google Scholar  More

  • in

    Comparison of multi-class and fusion of multiple single-class SegNet model for mapping karst wetland vegetation using UAV images

    Hu, S., Niu, Z., Chen, Y., Li, L. & Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 586, 319–327 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, M., Li, J., Sheng, C., Xu, J. & Wu, L. A review of wetland remote sensing. Sensors 17, 777 (2017).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    Mingwu, Z., Haijiang, J., Desuo, C. & Chunbo, J. The comparative study on the ecological sensitivity analysis in Huixian karst wetland, China. Procedia Environ. Sci. 2, 386–398 (2010).Article 

    Google Scholar 
    Li, Z., Jin, Z. & Li, Q. Changes in Land Use and their Effectson Soil Properties in Huixian KarstWetland System. Pol. J. Environ. Stud. 26, 699–707 (2017).Article 

    Google Scholar 
    Jiang, X., Xiong, Z., Liu, H., Liu, G. & Liu, W. Distribution, source identification, and ecological risk assessment of heavy metals in wetland soils of a river–reservoir system. Environ. Sci. Pollut. Res. 24, 436–444 (2016).Article 
    CAS 

    Google Scholar 
    Fu, B. et al. Comparison of optimized object-based RF-DT algorithm and SegNet algorithm for classifying Karst wetland vegetation communities using ultra-high spatial resolution UAV data. Int. J. Appl. Earth Obs. Geoinf. 104, 102553 (2021).
    Google Scholar 
    Xu, D. et al. Distribution, speciation, environmental risk, and source identification of heavy metals in surface sediments from the karst aquatic environment of the Lijiang River, Southwest China. Environ. Sci. Pollut. Res. 23, 9122–9133 (2016).CAS 
    Article 

    Google Scholar 
    Gao, P. et al. Spatial and temporal changes of P and Ca distribution and fractionation in soil and sediment in a karst farmland-wetland system. Chemosphere 220, 644–650 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gil-Márquez, J. M., Barberá, J. A., Andreo, B. & Mudarra, M. Hydrological and geochemical processes constraining groundwater salinity in wetland areas related to evaporitic (karst) systems. A case study from Southern Spain. J. Hydrol. 544, 538–554 (2017).Chamberlin, C. A. et al. Mass balance implies Holocene development of a low-relief karst patterned landscape. Chem. Geol. 527, 118782 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Watts, A. C. et al. Evidence of biogeomorphic patterning in a low-relief karst landscape. Earth Surf. Proc. Land. 39, 2027–2037 (2014).ADS 
    Article 

    Google Scholar 
    Fan, Z., Li, J., Yue, T., Zhou, X. & Lan, A. Scenarios of land cover in Karst area of Southwestern China. Environ. Earth Sci. 74, 6407–6420 (2015).Article 

    Google Scholar 
    Wang, S., Zhang, L., Zhang, H., Han, X. & Zhang, L. Spatial-temporal wetland landcover changes of poyang lake derived from landsat and HJ-1A/B data in the dry season from 1973–2019. Remote Sens. 12, 1595 (2020).ADS 
    Article 

    Google Scholar 
    Szabó, L., Deák, B., Bíró, T., Dyke, G. J. & Szabó, S. NDVI as a proxy for estimating sedimentation and vegetation spread in artificial lakes—monitoring of spatial and temporal changes by using satellite images overarching three decades. Remote Sens. 12, 1468 (2020).ADS 
    Article 

    Google Scholar 
    Malekmohammadi, B. & Rahimi Blouchi, L. Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. Ecol. Indic. 41, 133–144 (2014).Article 

    Google Scholar 
    Tian, Y. et al. Monitoring invasion process of spartina alterniflora by seasonal sentinel-2 imagery and an object-based random forest classification. Remote Sens. 12, 1383 (2020).ADS 
    Article 

    Google Scholar 
    Lane, C. et al. Improved wetland classification using eight-band high resolution satellite imagery and a hybrid approach. Remote Sens. 6, 12187–12216 (2014).ADS 
    Article 

    Google Scholar 
    Betbeder, J., Rapinel, S., Corgne, S., Pottier, E. & Hubert-Moy, L. TerraSAR-X dual-pol time-series for mapping of wetland vegetation. ISPRS J. Photogramm. Remote. Sens. 107, 90–98 (2015).ADS 
    Article 

    Google Scholar 
    Franklin, S. E., Skeries, E. M., Stefanuk, M. A. & Ahmed, O. S. Wetland classification using Radarsat-2 SAR quad-polarization and Landsat-8 OLI spectral response data: A case study in the Hudson Bay Lowlands Ecoregion. Int. J. Remote Sens. 39, 1615–1627 (2017).Article 

    Google Scholar 
    Cao, J. et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 10, 89 (2018).ADS 
    Article 

    Google Scholar 
    Liu, T. & Abd-Elrahman, A. Multi-view object-based classification of wetland land covers using unmanned aircraft system images. Remote Sens. Environ. 216, 122–138 (2018).ADS 
    Article 

    Google Scholar 
    Churches, C. E., Wampler, P. J., Sun, W. & Smith, A. J. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data. Int. J. Appl. Earth Obs. Geoinf. 30, 203–216 (2014).ADS 

    Google Scholar 
    Gerke, M. & Xiao, J. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification. ISPRS J. Photogramm. Remote. Sens. 87, 78–92 (2014).ADS 
    Article 

    Google Scholar 
    Maulik, U. & Chakraborty, D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery. ISPRS J. Photogramm. Remote. Sens. 77, 66–78 (2013).ADS 
    Article 

    Google Scholar 
    Crasto, N. et al. A LiDAR-based decision-tree classification of open water surfaces in an Arctic delta. Remote Sens. Environ. 164, 90–102 (2015).ADS 
    Article 

    Google Scholar 
    O’Neil, G. L., Goodall, J. L. & Watson, L. T. Evaluating the potential for site-specific modification of LiDAR DEM derivatives to improve environmental planning-scale wetland identification using Random Forest classification. J. Hydrol. 559, 192–208 (2018).ADS 
    Article 

    Google Scholar 
    Howard, A. G. Some improvements on deep convolutional neural network based image classification. arXiv.org https://doi.org/10.48550/arXiv.1805.07836 (2013).Yao, X. et al. Land use classification of the deep convolutional neural network method reducing the loss of spatial features. Sensors 19, 2792 (2019).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Y., Fan, R., Yang, X., Wang, J. & Latif, A. Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning. Water 10, 585 (2018).Article 

    Google Scholar 
    Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018).ADS 
    Article 

    Google Scholar 
    Srinivas, S., Subramanya, A. & Babu, R. V. Training Sparse Neural Networks. in 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (IEEE, 2017).Liang, S., Lan, Y., Jiang, S., Li, Y. & Lu, Z. The activities of microbial communities in Huixian Wetland sediments under the interactive toxicity of Cu(II) and pentachloronitrobenzene. Acta Ecol. Sin. 37, 379–391 (2017).Article 

    Google Scholar 
    Feng, W. Fish diversity in huixian wetland in guangxi. Wetland Science 44, (2017).Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    Mutanga, O., Adam, E. & Cho, M. A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth Obs. Geoinf. 18, 399–406 (2012).ADS 

    Google Scholar 
    van Beijma, S., Comber, A. & Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 149, 118–129 (2014).ADS 
    Article 

    Google Scholar 
    Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).PubMed 
    Article 

    Google Scholar 
    Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int. Conf. Mach. Learn. 37, 448–456 (2015).
    Google Scholar 
    Long, J., Shelhamer, E. & Darrell, T. Fully convolutional networks for semantic segmentation. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 3431–3440 (IEEE, 2015).Chen, L.-C., Barron, J. T., Papandreou, G., Murphy, K. & Yuille, A. L. semantic image segmentation with task-specific edge detection using CNNs and a discriminatively trained domain transform. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 4545–4546 (IEEE, 2016).Eigen, D. & Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. in 2015 IEEE International Conference on Computer Vision (ICCV) (IEEE, 2015).Hu, Y. et al. Deep learning classification of coastal wetland hyperspectral image combined spectra and texture features: A case study of Huanghe (Yellow) River Estuary wetland. Acta Oceanol. Sin. 38, 142–150 (2019).Article 

    Google Scholar 
    Liu, F. & Fang, M. Semantic segmentation of underwater images based on improved Deeplab. J. Marine Sci. Eng. 8, 188 (2020).Article 

    Google Scholar 
    Dronova, I. Object-based image analysis in wetland research: A review. Remote Sens. 7, 6380–6413 (2015).ADS 
    Article 

    Google Scholar 
    Zhang, Z. & Sabuncu, M. R. Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv.org https://arxiv.org/abs/1805.07836 (2018).Ruder, S. An overview of gradient descent optimization algorithms. arXiv.org https://arxiv.org/abs/1609.04747 (2016).Song, S. et al. Intelligent object recognition of urban water bodies based on deep learning for multi-source and multi-temporal high spatial resolution remote sensing imagery. Sensors 20, 397 (2020).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Sun, G. et al. Fusion of multiscale convolutional neural networks for building extraction in very high-resolution images. Remote Sens. 11, 227 (2019).ADS 
    Article 

    Google Scholar 
    Al-Najjar, H. A. H. et al. Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sens. 11, 1461 (2019).ADS 
    Article 

    Google Scholar 
    Villoslada, M. et al. Fine scale plant community assessment in coastal meadows using UAV based multispectral data. Ecol. Ind. 111, 105979 (2020).Article 

    Google Scholar 
    Zhao, H. & Liu, H. Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition. Granul. Comput. 5, 411–418 (2019).Article 

    Google Scholar 
    Hu, K., Zhang, S. & Zhao, X. Context-based conditional random fields as recurrent neural networks for image labeling. Multimedia Tools Appl. 79, 17135–17145 (2019).Article 

    Google Scholar 
    Wang, M. et al. Assessing texture features to classify coastal wetland vegetation from high spatial resolution imagery using completed local binary patterns (CLBP). Remote Sens. 10, 778 (2018).ADS 
    Article 

    Google Scholar 
    Szantoi, Z., Escobedo, F., Abd-Elrahman, A., Smith, S. & Pearlstine, L. Analyzing fine-scale wetland composition using high resolution imagery and texture features. Int. J. Appl. Earth Obs. Geoinf. 23, 204–212 (2013).ADS 

    Google Scholar 
    Bhatnagar, S., Gill, L., Regan, S., Waldren, S. & Ghosh, B. A nested drone-satellite approach to monitoring the ecological conditions of wetlands. ISPRS J. Photogramm. Remote. Sens. 174, 151–165 (2021).ADS 
    Article 

    Google Scholar  More

  • in

    Iron mobilization during lactation reduces oxygen stores in a diving mammal

    Trivers, R. L. Parent-offspring conflict. Am. Zool. 14, 249–264 (1974).Article 

    Google Scholar 
    Gittleman, J. L. & Thompson, S. D. Energy allocation in mammalian reproduction. Am. Zool. 28, 863–875 (1988).Article 

    Google Scholar 
    Kerby, J. & Post, E. Capital and income breeding traits differentiate trophic match-mismatch dynamics in large herbivores. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120484 (2013).Article 

    Google Scholar 
    Costa, D. P. Reproductive and foraging energetics of pinnipeds: Implications for life history patterns. In The Behaviour of Pinnipeds (ed. D. Renouf) 300–344 (Springer, Netherlands, 1991).Costa, D. P., Boeuf, B. J. L., Huntley, A. C. & Ortiz, C. L. The energetics of lactation in the Northern elephant seal, Mirounga angustirostris. J. Zool. 209, 21–33 (1986).Article 

    Google Scholar 
    Crocker, D. E., Williams, J. D., Costa, D. P. & Le Boeuf, B. J. Maternal traits and reproductive effort in northern elephant seals. Ecology 82, 3541–3555 (2001).Article 

    Google Scholar 
    Shero, M. R., Krotz, R. T., Costa, D. P., Avery, J. P. & Burns, J. M. How do overwinter changes in body condition and hormone profiles influence Weddell seal reproductive success? Funct. Ecol. 29, 1278–1291 (2015).Article 

    Google Scholar 
    Lönnerdal, B. Bioactive proteins in human milk—potential benefits for preterm infants. Clin. Perinatol. 44, 179–191 (2017).PubMed 
    Article 

    Google Scholar 
    Fields, D. A. et al. Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr. Obes. 12, 78–85 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Klein, L. D. et al. Concentrations of trace elements in human milk: comparisons among women in Argentina, Namibia, Poland, and the United States. PLoS ONE 12, e0183367 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burns, J. M. & Hammill, M. O. Does iron availability limit oxygen store development in seal pups? In 4th CPB Meeting in Africa: Mara 2008. “Molecules to migration: The pressures of life” International Proceedings 417–428 (Medimond Publishing Co., 2008).Burns, J. M., Lestyk, K., Folkow, L. P., Hammill, M. O. & Blix, A. S. Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. J. Comp. Physiol. B 177, 687–700 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kooyman, G. L. Diverse divers: Physiology and behavior. (Springer-Verlag, 1989).Butler, P. J. & Jones, D. R. Physiology of diving of birds and mammals. Physiol. Rev. 77, 837–899 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanatous, S. B., DiMichele, L. V., Cowan, D. F. & Davis, R. W. High aerobic capacities in skeletal muscles of pinnipeds: adaptations to diving hypoxia. J. Appl. Physiol. 86, 1247–1256 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shero, M. R., Andrews, R. D., Lestyk, K. C. & Burns, J. M. Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J. Comp. Physiol. B 182, 425–436 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shero, M. R., Costa, D. P. & Burns, J. M. Scaling matters: Incorporating body composition into Weddell seal seasonal oxygen store comparisons reveals maintenance of aerobic capacities. J. Comp. Physiol. B 185, 811–824 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shero, M. R., Reiser, P. J., Simonitis, L. & Burns, J. M. Links between muscle phenotype and life history: differentiation of myosin heavy chain composition and muscle biochemistry in precocial and altricial pinniped pups. J. Compar. Physiol. B, https://doi.org/10.1007/s00360-019-01240-w (2019).Burns, J. M., Lestyk, K., Freistroffer, D. & Hammill, M. O. Preparing muscles for diving: age-related changes in muscle metabolic profiles in Harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals. Physiol. Biochem. Zool. 88, 167–182 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kooyman, G. L., Wahrenbrock, E. A., Castellini, M. A., Davis, R. W. & Sinnett, E. E. Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J. Comp. Physiol. 138, 335–346 (1980).CAS 
    Article 

    Google Scholar 
    Wallace, D. F. The regulation of iron absorption and homeostasis. Clin. biochemist. Rev. 37, 51–62 (2016).
    Google Scholar 
    Juan, S.-H. & Aust, S. D. Studies on the interaction between ferritin and ceruloplasmin. Arch. Biochem. Biophys. 355, 56–62 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hagler, L. et al. Influence of dietary iron deficiency on hemoglobin, myoglobin, their respective reductases, and skeletal muscle mitochondrial respiration. Am. J. Clin. Nutr. 34, 2169–2177 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kooyman, G. L. Weddell seal: Consummate Diver. (Cambridge University Press, 1981).Heerah, K. et al. Ecology of Weddell seals during winter: Influence of environmental parameters on their foraging behaviour. Deep Sea Res. Part II: Topical Stud. Oceanogr. 88–89, 23–33 (2013).ADS 
    Article 

    Google Scholar 
    Hindell, M. A., Harcourt, R., Waas, J. R. & Thompson, D. Fine-scale three-dimensional spatial use by diving, lactating female Weddell seals Leptonychotes weddellii. Mar. Ecol. Prog. Ser. 242, 275–284 (2002).ADS 
    Article 

    Google Scholar 
    Sato, K. et al. Deep foraging dives in relation to the energy depletion of Weddell seal (Leptonychotes weddellii) mothers during lactation. Polar Biol. 25, 696–702 (2002).Article 

    Google Scholar 
    Wheatley, K. E., Bradshaw, C. J., Davis, L. S., Harcourt, R. G. & Hindell, M. A. Influence of maternal mass and condition on energy transfer in Weddell seals. J. Anim. Ecol. 75, 724–733 (2006).PubMed 
    Article 

    Google Scholar 
    Walcott, S. M. Evaluating the dynamics of physiological, environmental and behavioral parameters to the cost of the annual pelage molt in a polar pinniped: the Weddell seal (Leptonychotes weddellii) MSc thesis, University of Alaska Anchorage, (2019).Beltran, R. S. et al. Seasonal resource pulses and the foraging depth of a Southern Ocean top predator. Proc. R. Soc. B: Biol. Sci. 288, 20202817 (2021).CAS 
    Article 

    Google Scholar 
    Shero, M. R., Goetz, K. T., Costa, D. P. & Burns, J. M. Temporal changes in Weddell seal dive behavior over winter: Are females increasing foraging effort to support gestation? Ecol. Evol. 8, 11857–11874 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Looker, A. C. & Johnson, C. L. Prevalence of elevated serum transferrin saturation in adults in the United States. Ann. Intern. Med. 129, 940–945 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eleftheriadis, T., Liakopoulos, V., Antoniadi, G. & Stefanidis, I. Which is the best way for estimating transferrin saturation. Ren. Fail. 32, 1022–1023 (2010).PubMed 
    Article 

    Google Scholar 
    McLaren, C. E. et al. Distribution of transferrin saturation in an Australian population: relevance to the early diagnosis of hemochromatosis. Gastroenterology 114, 543–549 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Emmett, B. & Hochachka, P. W. Scaling of oxidative and glycolytic enzymes in mammals. Respir. Physiol. 45, 261–272 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, C. A., Burns, J. M., Schreer, J. F. & Hammill, M. O. Erythropoietin concentration in developing harbor seals (Phoca vitulina). Gen. Comp. Endocrinol. 147, 262–267 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richmond, J. P., Burns, J. M., Rea, L. D. & Mashburn, K. L. Postnatal ontogeny of erythropoietin and hematology in free-ranging Steller sea lions (Eumetopias jubatus). Gen. Comp. Endocrinol. 141, 240–247 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hadley, G. L., Rotella, J. J. & Garrott, R. A. Influence of maternal characteristics and oceanographic conditions on survival and recruitment probabilities of Weddell seals. Oikos 116, 601–613 (2006).Article 

    Google Scholar 
    Hall, A. C., McConnell, B. J. & Barker, R. J. Factors affecting first-year survival in grey seals and their implications for life history strategies. J. Anim. Ecol. 70, 138–149 (2001).
    Google Scholar 
    Proffitt, K. M., Garrott, R. A. & Rotella, J. J. Long-term evaluation of body mass at weaning and postweaning survival rates of Weddell seals in Erebus Bay, Antarctica. Mar. Mamm. Sci. 24, 677–689 (2008).Article 

    Google Scholar 
    Burns, J. M. & Castellini, M. A. Physiological and behavioral determinants of the aerobic dive limit in Weddell seal (Leptonychotes weddellii) pups. J. Comp. Physiol. B 166, 473–483 (1996).Article 

    Google Scholar 
    Costa, D. P., Kuhn, C. E., Weise, M. J., Shaffer, S. A. & Arnould, J. P. Y. When does physiology limit the foraging behaviour of freely diving mammals? Int. Congr. Ser. 1275, 359–366 (2004).Article 

    Google Scholar 
    Hadley, G. L., Rotella, J. J. & Garrott, R. A. Evaluation of reproductive costs for Weddell seals in Erebus Bay, Antarctica. J. Anim. Ecol. 76, 448–458 (2007).PubMed 
    Article 

    Google Scholar 
    Young, S. P., Fahmy, M. & Golding, S. Ceruloplasmin, transferrin and apotransferrin facilitate iron release from human liver cells. FEBS Lett. 411, 93–96 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mazzaro, L. M., Dunn, J. L., St. Aubin, D. J., Andrews, G. A. & Chavey, P. S. Serum indices of body stores of iron in northern fur seals (Callorhinus ursinus) and their relationship to hemochromatosis. Zoo. Biol. 23, 205–218 (2004).Article 

    Google Scholar 
    Yalçn, S. S., Baykan, A., Yurdakök, K., Yalçn, S. & Gücüs, A. I. The factors that affect milk-to-serum ratio for iron during early lactation. J. Pediatr. Hematol. Oncol. 31, 85–90 (2009).Article 

    Google Scholar 
    Geiseler, S. J., Blix, A. S., Burns, J. M. & Folkow, L. P. Rapid postnatal development of myoglobin from large liver iron stores in hooded seals. J. Exp. Biol. 216, 1793–1798 (2013).CAS 
    PubMed 

    Google Scholar 
    Samokyszyn, V. M., Miller, D. M., Reif, D. W. & Aust, S. D. Inhibition of superoxide and ferritin-dependent lipid peroxidation by ceruloplasmin. J. Biol. Chem. 264, 21–26 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kohgo, Y., Ikuta, K., Ohtake, T., Torimoto, Y. & Kato, J. Body iron metabolism and pathophysiology of iron overload. Int. J. Hematol. 88, 7–15 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, P. et al. The effect of serum iron concentration on iron secretion into mouse milk. J. Physiol. 522(Pt 3), 479–491 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erdogan, S., Celik, S. & Erdogan, Z. Seasonal and locational effects on serum, milk, liver and kidney chromium, manganese, copper, zinc, and iron concentrations of dairy cows. Biol. Trace Elem. Res. 98, 51–61 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaldor, I. & Morgan, E. H. Iron metabolism during lactation and suckling in a marsupial, the quokka (Setonix brachyurus). Comp. Biochem. Physiol. Part A: Physiol. 84, 691–694 (1986).CAS 
    Article 

    Google Scholar 
    Tedman, R. A. & Green, B. Water and sodium fluxes in suckling pups of Weddell seals (Leptonychotes weddelli). J. Zool. 212, 29–42 (1987).Article 

    Google Scholar 
    National Institutes of Health, Supplements, O. o. D. Iron Fact Sheet for Consumers, https://ods.od.nih.gov/factsheets/Iron-Consumer/ (2021).Saarinen, U. M., Siimes, M. A. & Dallman, P. R. Iron absorption in infants: high bioavailability ofbreast milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin. J. Pediatrics 91, 36–39 (1977).CAS 
    Article 

    Google Scholar 
    Loh, T.-T. Iron metabolism of the lactating mouse. Proc. Soc. Exp. Biol. Med. 137, 962–965 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Folkow, L. P., Nordoy, E. S. & Blix, A. S. Distribution and diving behavior of harp seals (Pagophilus groenlandica) from the Greenland Sea stock. Polar Biol. 27, 281–298 (2004).Article 

    Google Scholar 
    Beck, C. A., Bowen, W. D. & Iverson, S. J. Seasonal changes in buoyancy and diving behaviour of adult grey seals. J. Exp. Biol. 203, 2323–2330 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gentry, R. L. & Kooyman, G. L. Fur seals: maternal strategies on land and at sea. (Princeton University Press, 1986).McDonald, B. I. & Ponganis, P. J. Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. J. Exp. Biol. 216, 3332–3341 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Noren, S. R., Iverson, S. J. & Boness, D. J. Development of the blood and muscle oxygen stores in gray seals (Halichoerus grypus): Implications for juvenile diving capacity and the necessity of a terrestrial postweaning fast. Physiol. Biochem. Zool. 78, 482–490 (2005).PubMed 
    Article 

    Google Scholar 
    Weise, M. J. & Costa, D. P. Total body oxygen stores and physiological diving capacity of California sea lions as a function of sex and age. J. Exp. Biol. 210, 278–289 (2007).PubMed 
    Article 

    Google Scholar 
    Burns, J. M., Hindell, M. A., Bradshaw, C. J. A. & Costa, D. P. Fine-scale habitat selection by crabeater seals as determined by diving behavior. Deep Sea Res. II 55, 500–514 (2008).ADS 
    Article 

    Google Scholar 
    Burns, J. Crabeater seal oxygen stores. U.S. Antarctic Program (USAP) Data Center. https://doi.org/10.15784/601583 (2022).Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish. Fish. 11, 203–209 (2010).Article 

    Google Scholar 
    Williams, T. M. The cost of foraging by a marine predator, the Weddell seal Leptonychotes weddellii: pricing by the stroke. J. Exp. Biol. 207, 973–982 (2004).PubMed 
    Article 

    Google Scholar 
    Wheatley, K. E., Bradshaw, C. J. A., Harcourt, R. G. & Hindell, M. A. Feast or famine: evidence for mixed capital–income breeding strategies in Weddell seals. Oecologia 155, 11–20 (2008).ADS 
    PubMed 
    Article 

    Google Scholar 
    Honda, K., Sahrul, M., Hidaka, H. & Tatsukawa, R. Organ and tissue distribution of heavy metals, and their growth-related changes in Antarctic Fish, Pagothenia borchgrevinki. Agric. Biol. Chem. 47, 2521–2532 (1983).CAS 

    Google Scholar 
    Galbraith, E. D., Le Mézo, P., Solanes Hernandez, G., Bianchi, D. & Kroodsma, D. Growth limitation of marine fish by low iron availability in the open ocean. Front. Marine Sci. 6, https://doi.org/10.3389/fmars.2019.00509 (2019).Pollycove, M. & Mortimer, R. The quantitative determination of iron kinetics and hemoglobin synthesis in human subjects. J. Clin. Invest. 40, 753–782 (1961).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Åkeson, Å., Ehrenstein, G. V., Hevesy, G. & Theorell, H. Life span of myoglobin. Arch. Biochem. Biophys. 91, 310–318 (1960).PubMed 
    Article 

    Google Scholar 
    Tift, M. S. et al. Adaptive potential of the heme oxygenase/carbon monoxide pathway during hypoxia. Front. Physiol. 11, https://doi.org/10.3389/fphys.2020.00886 (2020).Tift, M. S., Ponganis, P. J. & Crocker, D. E. Elevated carboxyhemoglobin in a marine mammal, the northern elephant seal. J. Exp. Biol. 217, 1752–1757 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ma, Y.-J. et al. A modified carbon monoxide breath test for measuring erythrocyte lifespan in small animals. BioMed. Res. Int. 2016, 7173156 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, H.-D. et al. Human erythrocyte lifespan measured by Levitt’s CO breath test with newly developed automatic instrument. J. Breath. Res. 12, 036003 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hochachka, P. W. & Somero, G. N. Biochemical adaptation. (Oxford University Press, 2002).De Miranda, M. A., Schlater, A. E., Green, T. L. & Kanatous, S. B. In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. J. Exp. Biol. 215, 806–813 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kanatous, S. B. & Mammen, P. P. Regulation of myoglobin expression. J. Exp. Biol. 213, 2741–2747 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halvorsen, S. & Bechensteen, A. G. Physiology of erythropoietin during mammalian development. Acta Paediatr. Suppl. 438, 17–26 (2002).Article 

    Google Scholar 
    Hochachka, P. W. Mechanism and evolution of hypoxia-tolerance in humans. J. Exp. Biol. 201, 1243–1254 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klopfleisch, R. & Olias, P. The pathology of comparative animal models of human haemochromatosis. J. Comp. Pathol. 147, 460–478 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henriksson, J. & Reitman, J. S. Time course of changes in human skeletal muscle succinate dehydrogenase and cytochrome oxidase activities and maximal oxygen uptake with physical activity and inactivity. Acta Physiol. Scand. 99, 91–97 (1977).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goetz, K. T. Movement, habitat, and foraging behavior of Weddell seals (Leptonychotes weddellii) in the western Ross Sea, Antarctica, University of California Santa Cruz, (2015).Cisewski, B., Strass, V. H., Rhein, M. & Krägefsky, S. Seasonal variation of diel vertical migration of zooplankton from ADCP backscatter time series data in the Lazarev Sea, Antarctica. Deep Sea Res. Part I: Oceanographic Res. Pap. 57, 78–94 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, R. M. & Smith, W. O. The influence of short-term events on the hydrographic and biological structure of the southwestern Ross Sea. J. Mar. Syst. 166, 184–195 (2017).Article 

    Google Scholar 
    Smith, W. O. & Nelson, D. M. Importance of ice edge phytoplankton production in the Southern Ocean. Bioscience 36, 251–257 (1986).CAS 
    Article 

    Google Scholar 
    Rivkin, R. B. Seasonal patterns of planktonic production in McMurdo Sound, Antarctica. Am. Zool. 31, 5–16 (2015).Article 

    Google Scholar 
    Proffitt, K. M., Rotella, J. J. & Garrott, R. A. Effects of pup age, maternal age, and birth date on pre-weaning survival rates of Weddell seals in Erebus Bay, Antarctica. Oikos 119, 1255–1264 (2010).Article 

    Google Scholar 
    Beltran, R. S., Kirkham, A. L., Breed, G. A., Testa, J. W. & Burns, J. M. Reproductive success delays moult phenology in a polar mammal. Sci. Rep. 9, 5221 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mellish, J.-A. E., Tuomi, P. A., Hindle, A. G. & Horning, M. Chemical immobilization of Weddell seals (Leptonychotes weddellii) by ketamine/midazolam combination. Vet. Anaesth. Analg. 37, 123–131 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shero, M. R., Pearson, L. E., Costa, D. P. & Burns, J. M. Improving the precision of our ecosystem calipers: a modified morphometric technique for estimating marine mammal mass and body composition. PLoS ONE 9, e91233 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foldager, N. & Blomqvist, C. G. Repeated plasma volume determination with the Evans blue dye dilution technique: the method and the computer program. Comput. Biol. Med. 21, 35–41 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    El-Sayed, H., Goodall, S. R. & Hainsworth, F. R. Re-evaluation of Evans blue dye dilution method of plasma volume measurement. Clin. Lab. Haem. 17, 189–194 (1995).CAS 

    Google Scholar 
    Reynafarje, B. Simplified method for the determination of myoglobin. J. Lab. Clin. Med. 61, 138–145 (1963).CAS 
    PubMed 

    Google Scholar 
    Prewitt, J. S., Freistroffer, D. V., Schreer, J. F., Hammill, M. O. & Burns, J. M. Postnatal development of muscle biochemistry in nursing harbor seal (Phoca vitulina) pups: Limitations to diving behavior? J. Comp. Physiol. B 180, 757–766 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polasek, L., Dickson, K. A. & Davis, R. W. Metabolic indicators in the skeletal muscles of harbor seals (Phoca vitulina). Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1720–R1727 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kooyman, G. L., Castellini, M. A., Davis, R. W. & Maue, R. A. Aerobic diving limits of immature Weddell seals. J. Comp. Physiol. 151, 171–174 (1983).Article 

    Google Scholar 
    Davis, R. W. & Kanatous, S. B. Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J. Exp. Biol. 202, 1091–1113 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenfant, C., Johansen, K. & Torrance, J. D. Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir. Physiol. 9, 277–286 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kleiber, M. The fire of life: an introduction to animal energetics. (R.E. Krieger Pub. Co., 1975).Sato, K., Mitani, Y., Cameron, M. F., Siniff, D. B. & Naito, Y. Factors affecting stroking patterns and body angle in diving Weddell seals under natural conditions. J. Exp. Biol. 206, 1461–1470 (2003).PubMed 
    Article 

    Google Scholar 
    Zuur, A. F., Hilbe, J. M. & Ieno, E. N. A Beginner’s Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists. (Highland Statistics Newburgh, 2013).Shero, M. Weddell seal iron dynamics and oxygen stores across lactation. U.S. Antarctic Program (USAP) Data Center. https://doi.org/10.15784/601575. (2022).Anderson, R. S. et al. Zinc, copper, iron and calcium concentrations in bitch milk. J. Nutr. 121, S81–S82 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griffiths, M., Green, B., MC Leckie, R., Messer, M. & Newgrain, K. Constituents of platypus and echidna milk, with particular reference to the fatty acid complement of the triglycerides. Aust. J. Biol. Sci. 37, 323–330 (1984).CAS 
    Article 

    Google Scholar 
    Peddemors, V. M., de Muelenaere, H. J. H. & Devchand, K. Comparative milk composition of the bottlenosed dolphin (Tursiops truncatus), humpback dolphin (Sousa plumbea) and common dolphin (Delphinus delphis) from southern African waters. Comp. Biochem. Physiol. Part A Physiol. 94, 639–641 (1989).CAS 
    Article 

    Google Scholar 
    Ullrey, D. E. et al. Blue-green color and composition of Stejneger’s beaked whale (Mesoplodon stejnegeri) milk. Comp. Biochem. Physiol. B Comp. Biochem. 79, 349–352 (1984).CAS 
    Article 

    Google Scholar 
    Dosako, S. I. et al. Milk of Northern fur seal: composition, especially carbohydrate and protein. J. Dairy Sci. 66, 2076–2083 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oftedal, O. T., Boness, D. J. & Tedman, R. The Behavior, Physiology, and Anatomy of Lactation in the Pinnipedia. (Genoyways, H. H. eds) (Current Mammalogy. Springer, Boston, MA, 1987).Habran, S., Pomeroy, P. P., Debier, C. & Das, K. Changes in trace elements during lactation in a marine top predator, the grey seal. Aquat. Toxicol. 126, 455–466 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seal, U. S., Erickson, A. W., Siniff, D. B. & Cline, D. R. Blood chemistry and protein polymorphisms in three species of Antarctic seals (Lobodon carcinophagus, Leptonychootes weddellii, and Mirounga leonina) In Antarctic Pinnipedia 181–192 (1971).Green, B., Fogerty, A., Libke, J., Newgrain, K. & Shaughnessy, P. Aspects of lactation in the crab-eater seal (Lobodon-Carcinophagus). Aust. J. Zool. 41, 203–213 (1993).Article 

    Google Scholar 
    Casey, C. E., Smith, A. & Zhang, P. Microminerals in human and animal milks, In Handbook of milk composition 622–674 (ed. R. G. Jensen) (Academic Press, 1995). More