More stories

  • in

    Over half of known human pathogenic diseases can be aggravated by climate change

    Pörtner, H. O. et al. Climate Change 2022: Impacts, Adaptation and Vulnerability (IPCC, 2022).Patz, J. A., Campbell-Lendrum, D., Holloway, T. & Foley, J. A. Impact of regional climate change on human health. Nature 438, 310–317 (2005).CAS 
    Article 

    Google Scholar 
    Smith, K. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 709–754 (Cambridge Univ. Press, 2014).Mora, C. et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Change 8, 1062–1071 (2018).CAS 
    Article 

    Google Scholar 
    Altizer, S., Ostfeld, R. S., Johnson, P. T., Kutz, S. & Harvell, C. D. Climate change and infectious diseases: from evidence to a predictive framework. Science 341, 514–519 (2013).CAS 
    Article 

    Google Scholar 
    Epstein, P. The ecology of climate change and infectious diseases: comment. Ecology 91, 925–928 (2010).Article 

    Google Scholar 
    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).Jaenisch, T. & Patz, J. Assessment of associations between climate and infectious diseases: a comparison of the reports of the Intergovernmental Panel on Climate Change (IPCC), the National Research Council (NRC), and United States Global Change Research Program (USGCRP). Glob. Change Hum. Health 3, 67–72 (2002).Article 

    Google Scholar 
    Hellberg, R. S. & Chu, E. Effects of climate change on the persistence and dispersal of foodborne bacterial pathogens in the outdoor environment: a review. Crit. Rev. Microbiol. 42, 548–572 (2016).Article 

    Google Scholar 
    Tabachnick, W. J. Climate change and the arboviruses: lessons from the evolution of the dengue and yellow fever viruses. Ann. Rev. Virol 29, 125–145 (2016).Article 
    CAS 

    Google Scholar 
    Khasnis, A. A. & Nettleman, M. D. Global warming and infectious disease. Arch. Med. Res. 36, 689–696 (2005).Article 

    Google Scholar 
    McMichael, A. J. Extreme weather events and infectious disease outbreaks. Virulence 6, 543–547 (2015).Article 

    Google Scholar 
    Ahern, M., Kovats, R. S., Wilkinson, P., Few, R. & Matthies, F. Global health impacts of floods: epidemiologic evidence. Epidemiol. Rev. 27, 36–46 (2005).Article 

    Google Scholar 
    Hunter, P. R. Climate change and waterborne and vector‐borne disease. J. Appl. Microbiol. 94, 37–46 (2003).Article 

    Google Scholar 
    Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vector borne diseases. Am. J. Prev. Med. 35, 436–450 (2008).Article 

    Google Scholar 
    Semenza, J. C. et al. Climate change impact assessment of food- and waterborne diseases. Crit. Rev. Environ. Sci. Technol. 42, 857–890 (2012).Article 

    Google Scholar 
    Nichols, G., Lake, I. & Heaviside, C. Climate change and water-related infectious diseases. Atmosphere 9, 385 (2018).Article 

    Google Scholar 
    Cunliffe, J. A proliferation of pathogens through the 20th century. Scand. J. Immunol. 68, 120–128 (2008).CAS 
    Article 

    Google Scholar 
    Cecchi, L. et al. Projections of the effects of climate change on allergic asthma: the contribution of aerobiology. Allergy 65, 1073–1081 (2010).CAS 

    Google Scholar 
    Demain, J. G. Climate change and the impact on respiratory and allergic disease: 2018. Curr. Allergy Asthma Rep. 18, 22 (2018).Article 

    Google Scholar 
    Andersen, L. K. & Davis, M. D. The effects of the El Niño Southern Oscillation on skin and skin-related diseases: a message from the International Society of Dermatology Climate Change Task Force. Int. J. Dermatol. 54, 1343–1351 (2015).Article 

    Google Scholar 
    Guenther, A. B., Zimmerman, P. R., Harley, P. C., Monson, R. K. & Fall, R. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. J. Geophys. Res. Atmos 98, 12609–12617 (1993).Article 

    Google Scholar 
    Metcalf, C. J. E. & Lessler, J. Opportunities and challenges in modeling emerging infectious diseases. Science 357, 149–152 (2017).CAS 
    Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    Article 

    Google Scholar 
    Nava, A., Shimabukuro, J. S., Chmura, A. A. & Luz, S. L. B. The impact of global environmental changes on infectious disease emergence with a focus on risks for Brazil. ILAR J. 58, 393–400 (2017).CAS 
    Article 

    Google Scholar 
    Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O. & Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232 (2009).CAS 
    Article 

    Google Scholar 
    Ngongeh, L. A., Idika, I. K. & Ibrahim Shehu, A. R. warming and its impacts on parasitology/entomology. Open Parasitol. J 5, 1–11 (2014).Article 

    Google Scholar 
    LaDeau, S. L., Calder, C. A., Doran, P. J. & Marra, P. P. West Nile virus impacts in American crow populations are associated with human land use and climate. Ecol. Res. 26, 909–916 (2011).Article 

    Google Scholar 
    Gale, P., Drew, T., Phipps, L. P., David, G. & Wooldridge, M. The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: a review. J. Appl. Microbiol. 106, 1409–1423 (2009).CAS 
    Article 

    Google Scholar 
    Lancien, J., Muguwa, J., Lannes, C. & Bouvier, J. B. Tsetse and human trypanosomiasis challenge in south eastern Uganda. Int. J. Trop. Insect Sci. 11, 411–416 (1990).Article 

    Google Scholar 
    Karesh, W. B. et al. Ecology of zoonoses: natural and unnatural histories. Lancet 380, 1936–1945 (2012).Article 

    Google Scholar 
    Vezzulli, L., Colwell, R. R. & Pruzzo, C. Ocean warming and spread of pathogenic vibrios in the aquatic environment. Microb. Ecol. 65, 817–825 (2013).Article 

    Google Scholar 
    Arriaza, B. T., Reinhard, K. J., Araújo, A. G., Orellana, N. C. & Standen, V. G. Possible influence of the ENSO phenomenon on the pathoecology of diphyllobothriasis and anisakiasis in ancient Chinchorro populations. Mem. Inst. Oswaldo Cruz 105, 66–72 (2010).Article 

    Google Scholar 
    Kaffenberger, B. H., Shetlar, D., Norton, S. A. & Rosenbach, M. The effect of climate change on skin disease in North America. J. Am. Acad. Dermatol. 76, 140–147 (2017).Article 

    Google Scholar 
    Coates, S. J., Enbiale, W., Davis, M. D. & Andersen, L. K. The effects of climate change on human health in Africa, a dermatologic perspective: a report from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 59, 265–278 (2020).Article 

    Google Scholar 
    Patz, J. A. et al. Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ. Health Perspect. 112, 1092–1098 (2004).Article 

    Google Scholar 
    Nagy, G. J. et al. in Climate Change and Health (ed Leal, W) 475–514 (Springer, 2016).Kontra, J. M. Zombie infections and other infectious disease complications of global warming. J. Lancaster Gen. Hosp. 12, 12–16 (2017).
    Google Scholar 
    Charron, D., Fleury, M., Lindsay, L. R., Ogden, N. & Schuster, C. J. in Human Health in a Changing Climate (ed Séguin, J) 173–210 (Health Canada, 2008).Butler, C. D. & Harley, D. Primary, secondary and tertiary effects of eco-climatic change: the medical response. Postgrad. Med. J. 86, 230–234 (2010).Article 

    Google Scholar 
    Quarles, W. Global warming means more pathogens. IPM Pract. 35, 1–8 (2017).
    Google Scholar 
    Patz, J. A., Engelberg, D. & Last, J. The effects of changing weather on public health. Ann. Rev. Public Health 21, 271–307 (2000).CAS 
    Article 

    Google Scholar 
    Yavarian, J., Shafiei-Jandaghi, N. Z. & Mokhtari-Azad, T. Possible viral infections in flood disasters: a review considering 2019 spring floods in Iran. Iran. J. Microbiol. 11, 85–89 (2019).
    Google Scholar 
    Boxall, A. B. A. et al. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect. 117, 508–514 (2009).CAS 
    Article 

    Google Scholar 
    Wu, R., Trubl, G., Taş, N. & Jansson, J. K. Permafrost as a potential pathogen reservoir. One Earth 5, 351–360 (2022).Article 

    Google Scholar 
    Gross, M. Permafrost thaw releases problems. Curr. Biol. 29, R39–R41 (2019).CAS 
    Article 

    Google Scholar 
    Baker-Austin, C. et al. Heat wave-associated vibriosis, Sweden and Finland, 2014. Emerg. Infect. Dis. 22, 1216 (2016).CAS 
    Article 

    Google Scholar 
    Ghanchi, N. K. et al. Case series of Naegleria fowleri primary ameobic meningoencephalitis from Karachi, Pakistan. Am. J. Trop. Med. Hyg. 97, 1600–1602 (2017).Article 

    Google Scholar 
    Waits, A., Emelyanova, A., Oksanen, A., Abass, K. & Rautio, A. Human infectious diseases and the changing climate in the Arctic. Environ. Int. 121, 703–713 (2018).Article 

    Google Scholar 
    Oskorouchi, H. R., Nie, P. & Sousa-Poza, A. The effect of floods on anemia among reproductive age women in Afghanistan. PLoS ONE 13, e0191726 (2018).Article 
    CAS 

    Google Scholar 
    Caminade, C., McIntyre, K. M. & Jones, A. E. Impact of recent and future climate change on vector‐borne diseases. Ann. N. Y. Acad. Sci. 1436, 157 (2019).Article 

    Google Scholar 
    Clegg, J. Influence of climate change on the incidence and impact of arenavirus diseases: a speculative assessment. Clin. Microbiol. Infect. 15, 504–509 (2009).CAS 
    Article 

    Google Scholar 
    Nguyen, H. Q., Huynh, T. T. N., Pathirana, A. & Van der Steen, P. Microbial risk assessment of tidal-induced urban flooding in Can Tho City (Mekong Delta, Vietnam). Int. J. Environ. Res. Public. Health 14, 1485 (2017).Article 
    CAS 

    Google Scholar 
    Ivers, L. C. & Ryan, E. T. Infectious diseases of severe weather-related and flood-related natural disasters. Curr. Opin. Infect. Dis. 19, 408–414 (2006).Article 

    Google Scholar 
    Cornell, K. Climate change and infectious disease patterns in the United States: public health preparation and ecological restoration as a matter of justice. MSc thesis, Goucher College (2016).Mishra, V. et al. Climate change and its impacts on global health: a review. Pharma Innov. 8, 316–326 (2019).
    Google Scholar 
    Lemonick, D. M. Epidemics after natural disasters. Am. J. Clin. Med. 8, 144–152 (2011).
    Google Scholar 
    Khan, A. E., Xun, W. W., Ahsan, H. & Vineis, P. Climate change, sea-level rise, and health impacts in Bangladesh. Environ. Sci. Policy Sustain. Dev. 53, 18–33 (2011).Article 

    Google Scholar 
    Jones, B. A. et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).CAS 
    Article 

    Google Scholar 
    Zell, R., Krumbholz, A. & Wutzler, P. Impact of global warming on viral diseases: what is the evidence? Curr. Opin. Biotechnol. 19, 652–660 (2008).CAS 
    Article 

    Google Scholar 
    McFarlane, R. A., Sleigh, A. C. & McMichael, A. J. Land-use change and emerging infectious disease on an island continent. Int. J. Environ. Res. Public. Health 10, 2699–2719 (2013).Article 

    Google Scholar 
    White, R. J. & Razgour, O. Emerging zoonotic diseases originating in mammals: a systematic review of effects of anthropogenic land‐use change. Mammal. Rev. 50, 336–352 (2020).Article 

    Google Scholar 
    Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).CAS 
    Article 

    Google Scholar 
    Munang’andu, H. M. et al. The effect of seasonal variation on anthrax epidemiology in the upper Zambezi floodplain of western Zambia. J. Vet. Sci. 13, 293–298 (2012).Article 

    Google Scholar 
    Liu, Q. et al. Changing rapid weather variability increases influenza epidemic risk in a warming climate. Environ. Res. Lett. 15, 044004 (2020).Article 

    Google Scholar 
    Kapoor, R. et al. God is in the rain: the impact of rainfall-induced early social distancing on COVID-19 outbreaks. J. Health Econ. 81, 102575 (2020).
    Google Scholar 
    Raza, A., Khan, M. T. I., Ali, Q., Hussain, T. & Narjis, S. Association between meteorological indicators and COVID-19 pandemic in Pakistan. Environ. Sci. Pollut. Res. 28, 40378–40393 (2021).CAS 
    Article 

    Google Scholar 
    Nichols, G. L. et al. Coronavirus seasonality, respiratory infections and weather. BMC Infect. Dis. 21, 1101 (2021).El-Sayed, A. & Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environ. Sci. Pollut. Res. 27, 22336–22352 (2020).CAS 
    Article 

    Google Scholar 
    Ruszkiewicz, J. A. et al. Brain diseases in changing climate. Environ. Res. 177, 108637 (2019).CAS 
    Article 

    Google Scholar 
    Herrador, B. R. G. et al. Analytical studies assessing the association between extreme precipitation or temperature and drinking water-related waterborne infections: a review. Environ. Health 14, 29 (2015).Article 

    Google Scholar 
    Burge, C. A. et al. Climate Change influences on marine infectious diseases: implications for management and society. Ann. Rev. Mar. Sci. 6, 249–277 (2014).Article 

    Google Scholar 
    Mills, J. N., Gage, K. L. & Khan, A. S. Potential influence of climate change on vector-borne and zoonotic diseases: a review and proposed research plan. Environ. Health Perspect. 118, 1507–1514 (2010).Article 

    Google Scholar 
    Gubler, D. J. et al. Climate variability and change in the United States: potential impacts on vector-and rodent-borne diseases. Environ. Health Perspect. 109, 223–233 (2001).
    Google Scholar 
    Dayrit, J. F., Bintanjoyo, L., Andersen, L. K. & Davis, M. D. P. Impact of climate change on dermatological conditions related to flooding: update from the International Society of Dermatology Climate Change Committee. Int. J. Dermatol. 57, 901–910 (2018).Article 

    Google Scholar 
    Myaing, T. T. Climate change and emerging zoonotic diseases. KKU Vet. J. 21, 172–182 (2011).
    Google Scholar 
    Kimes, N. E. et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 6, 835–846 (2012).CAS 
    Article 

    Google Scholar 
    Oh, M. H., Lee, S. M., Lee, D. H. & Choi, S. H. Regulation of the Vibrio vulnificus hupA gene by temperature alteration and cyclic AMP receptor protein and evaluation of its role in virulence. Infect. Immun. 77, 1208–1215 (2009).CAS 
    Article 

    Google Scholar 
    Casadevall, A. Climate change brings the specter of new infectious diseases. J. Clin. Invest. 130, 553–555 (2020).CAS 
    Article 

    Google Scholar 
    Beyer, R. M., Manica, A. & Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 767, 145413 (2021).CAS 
    Article 

    Google Scholar 
    Warburton, E. M., Pearl, C. A. & Vonhof, M. J. Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat–helminth system. Parasitol. Res. 115, 2155–2164 (2016).Article 

    Google Scholar 
    Plowright, R. K. et al. Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc. R. Soc. B 275, 861–869 (2008).Article 

    Google Scholar 
    Beldomenico, P. M. & Begon, M. Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol. Evol. 25, 21–27 (2010).Article 

    Google Scholar 
    Mora, C. et al. Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PLoS Biol. 13, e1002167 (2015).Article 
    CAS 

    Google Scholar 
    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).CAS 
    Article 

    Google Scholar 
    Thiault, L. et al. Escaping the perfect storm of simultaneous climate change impacts on agriculture and marine fisheries. Sci. Adv. 5, eaaw9976 (2019).CAS 
    Article 

    Google Scholar 
    Myers, S. S. et al. Increasing CO2 threatens human nutrition. Nature 510, 139–142 (2014).CAS 
    Article 

    Google Scholar 
    Tirado, M. C., Clarke, R., Jaykus, L., McQuatters-Gollop, A. & Frank, J. Climate change and food safety: a review. Food Res. Int. 43, 1745–1765 (2010).Article 

    Google Scholar 
    Greene, M. Impact of the Sahelian drought in Mauritania, West Africa. Lancet 303, 1093–1097 (1974).Article 

    Google Scholar 
    Cabrol, J.-C. War, drought, malnutrition, measles—a report from Somalia. N. Engl. J. Med. 365, 1856–1858 (2011).CAS 
    Article 

    Google Scholar 
    Cohen, S. et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl Acad. Sci. USA 109, 5995–5999 (2012).CAS 
    Article 

    Google Scholar 
    Calow, R. C., MacDonald, A. M., Nicol, A. L. & Robins, N. S. Ground water security and drought in Africa: linking availability, access, and demand. Groundwater 48, 246–256 (2010).CAS 
    Article 

    Google Scholar 
    Salvador, C., Nieto, R., Linares, C., Díaz, J. & Gimeno, L. Effects of droughts on health: diagnosis, repercussion, and adaptation in vulnerable regions under climate change. Challenges for future research. Sci. Total Environ. 703, 134912 (2020).CAS 
    Article 

    Google Scholar 
    Alhoot, M. A., Tong, W. T., Low, W. Y. & Sekaran, S. D. in Climate Change and Human Health Scenario in South and Southeast Asia (ed Akhtar, R) 243–268 (Springer, 2016).Yusa, A. et al. Climate change, drought and human health in Canada. Int. J. Environ. Res. Public Health 12, 8359–8412 (2015).CAS 
    Article 

    Google Scholar 
    Ligon, B. L. Infectious Diseases that Pose Specific Challenges After Natural Disasters: A Review. Semin. Pediatr. Infect. Dis. 17, 36–45 (2006).Article 

    Google Scholar 
    Nsuami, M. J., Taylor, S. N., Smith, B. S. & Martin, D. H. Increases in gonorrhea among high school students following hurricane Katrina. Sex. Transm. Infect. 85, 194–198 (2009).CAS 
    Article 

    Google Scholar 
    Jochelson, K. HIV and syphilis in the Republic of South Africa: the creation of an epidemic. Afr. Urban Q. 6, 20–34 (1991).
    Google Scholar 
    Sobral, M. F. F., Duarte, G. B., da Penha Sobral, A. I. G., Marinho, M. L. M. & de Souza Melo, A. Association between climate variables and global transmission of SARS-CoV-2. Sci. Total Environ. 729, 138997 (2020).CAS 
    Article 

    Google Scholar 
    Liu, J. et al. Impact of meteorological factors on the COVID-19 transmission: a multi-city study in China. Sci. Total Environ. 726, 138513 (2020).CAS 
    Article 

    Google Scholar 
    Chua, P. L. et al. Global projections of temperature-attributable mortality due to enteric infections: a modelling study. Lancet Planet. Health 5, e436–e445 (2021).Article 

    Google Scholar 
    McCreesh, N. & Booth, M. Challenges in predicting the effects of climate change on Schistosoma mansoni and Schistosoma haematobium transmission potential. Trends Parasitol. 29, 548–555 (2013).Article 

    Google Scholar 
    Wu, X., Tian, H., Zhou, S., Chen, L. & Xu, B. Impact of global change on transmission of human infectious diseases. Sci. China Earth Sci. 57, 189–203 (2014).Article 

    Google Scholar 
    Moreno, A. R. Climate change and human health in Latin America: drivers, effects, and policies. Reg. Environ. Change 6, 157–164 (2006).Article 

    Google Scholar 
    McCann, D. G., Moore, A. & Walker, M.-E. The water/health nexus in disaster medicine: I. drought versus flood. Curr. Opin. Environ. Sustain. 3, 480–485 (2011).Article 

    Google Scholar 
    Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).CAS 
    Article 

    Google Scholar 
    Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).Article 

    Google Scholar 
    Hsiao, M.-H. et al. Environmental factors associated with the prevalence of animal bites or stings in patients admitted to an emergency department. J. Acute Med. 2, 95–102 (2012).Article 

    Google Scholar 
    Jones, N. E. & Baker, M. D. Toxicologic exposures associated with natural disasters: gases, kerosene, ash, and bites. Clin. Pediatr. Emerg. Med. 13, 317–323 (2012).Article 

    Google Scholar  More

  • in

    Grasses procure key soil nutrients for clovers

    Agricultural and Horticultural Land Use (StatsNZ, 2021); https://www.stats.govt.nz/indicators/agricultural-and-horticultural-land-useThom, E. R. Hill Country Symposium Grassland Research and Practice Series No. 16 (New Zealand Grassland Association, 2016).Wardle, P. Vegetation of New Zealand (Cambridge Univ. Press, 1991).Maxwell, T. M. R., Moir, J. L. & Edwards, G. R. Grazing and soil fertility effect on naturalized annual clover species in New Zealand high country. Rangel. Ecol. Manage. 69, 444–448 (2016).Article 

    Google Scholar 
    Maxwell, T., Moir, J. & Edwards, G. Influence of environmental factors on the abundance of naturalised annual clovers in the South Island hill and high country. J. N. Z. Grassl. 72, 165–170 (2010).
    Google Scholar 
    Nölke, I., Tonn, B., Komainda, M., Heshmati, S. & Isselstein, J. The choice of the white clover population alters overyielding of mixtures with perennial ryegrass and chicory and underlying processes. Sci. Rep. 12, 1155 (2022).Article 

    Google Scholar 
    Fay, P. A. et al. Grassland productivity limited by multiple nutrients. Nat. Plants 1, 15080 (2015).CAS 
    Article 

    Google Scholar 
    Zhang, W., Maxwell, T. M. R., Robinson, B. & Dickinson, N. Legume nutrition is improved by neighbouring grasses. Plant Soil (in the press).Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis (Academic Press, 2008)Phoenix, G. K., Johnson, D. A., Muddimer, S. P., Leake, J. R. & Cameron, D. D. Niche differentiation and plasticity in soil phosphorus acquisition among co-occurring plants. Nat. Plants 6, 349–354 (2020).CAS 
    Article 

    Google Scholar 
    Lambers, H., Clements, J. C. & Nelson, M. N. How a phosphorus-acquisition strategy based on carboxylate exudation powers the success and agronomic potential of lupines (Lupinus, Fabaceae). Am. J. Bot. 100, 263–288 (2013).CAS 
    Article 

    Google Scholar 
    Li, X. et al. Long-term increased grain yield and soil fertility from intercropping. Nat. Sustain. 4, 943–950 (2021).Article 

    Google Scholar 
    Homulle, Z., George, T. & Karley, A. Root traits with team benefits: understanding belowground interactions in intercropping systems. Plant Soil 471, 1–26 (2021).Article 

    Google Scholar 
    Burrows, C. J. Processes of Vegetation Change (Unwin Hyman, 1990).Fornara, D. & Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 96, 314–322 (2008).CAS 
    Article 

    Google Scholar 
    Lynch, J. P., Strock, C. F., Schneider, H. M., Sidhu, J. S. & Ajmera, I. Root anatomy and soil resource capture. Plant Soil 466, 21–63 (2021).CAS 
    Article 

    Google Scholar 
    Lambers, H., Wright, I. J., Caio, G. & Pereira, P. J. Leaf manganese concentrations as a tool to assess belowground plant functioning in phosphorus-impoverished environments. Plant Soil 461, 43–61 (2021).CAS 
    Article 

    Google Scholar 
    Liu, G. & Martinoia, E. How to survive on low potassium. Nat. Plants 6, 332–333 (2020).Article 

    Google Scholar 
    Anke, M. & Seifert, M. The biological and toxicological importance of molybdenum in the environment and in the nutrition of plants, animals and man. Part 1: molybdenum in plants. Acta Biol. Hung. 58, 311–324 (2007).CAS 
    Article 

    Google Scholar 
    Gylfadóttir, T., Helgadóttir, Á. & Høgh-Jensen, H. Consequences of including adapted white clover in northern European grassland: transfer and deposition of nitrogen. Plant Soil 297, 93–104 (2007).Article 

    Google Scholar 
    Maxwell, T. M. L. R. Ecology and Management of Adventive Annual Clover Species in the South Island Hill and High Country of New Zealand. PhD thesis, Lincoln Univ. (2013).Li, C. et al. Syndromes of production in intercropping impact yield gains. Nat. Plants 6, 653–660 (2020).Article 

    Google Scholar 
    McLaren, R. G. & Cameron, K. C. Soil Science: Sustainable Production and Environmental Science (Oxford Univ. Press, 1996).Chang, X., Duan, C. & Wang, H. Root excretion and plant resistance to metal toxicity. J. Appl. Ecol. 11, 315–320 (2000).CAS 
    Article 

    Google Scholar 
    Puschenreiter, M., Gruber, B. & Wenzel, W. W. Phytosiderophore-induced mobilization and uptake of Cd, Cu, Fe, Ni, Pb and Zn by wheat plants grown on metal-enriched soils. Environ. Exp. Bot. 138, 67–76 (2017).CAS 
    Article 

    Google Scholar 
    Lu, J. Y. et al. Rhizosphere priming effects of Lolium perenne and Trifolium repens depend on phosphorus fertilization and biological nitrogen fixation. Soil Biol. Biochem. 150, 108805 (2020).Article 

    Google Scholar 
    Wang, L., Chen, F. & Wan, K. Y. Research progress and prospects of plant growth efficiency and its evaluation. Soils 42, 164–170 (2010).CAS 

    Google Scholar 
    Tian, X. Y. et al. Physiological and molecular advances in magnesium nutrition of plants. Plant Soil 468, 1–17 (2021).CAS 
    Article 

    Google Scholar 
    Wainwright, M. Sulfur oxidation in soils. Adv. Agron. 37, 349–376 (1984).CAS 
    Article 

    Google Scholar 
    Kaiser, B. N., Gridley, K. L., Ngaire Brady, J., Phillips, T. & Tyerman, S. D. The role of molybdenum in agricultural plant production. Ann. Bot. 96, 745–754 (2005).CAS 
    Article 

    Google Scholar 
    Khobra, R. & Singh, B. Phytosiderophore release in relation to multiple micronutrient metal deficiency in wheat. J. Plant Nutr. 41, 679–688 (2018).CAS 
    Article 

    Google Scholar 
    Erenoglu, B., Eker, S., Cakmak, I., Derici, R. & Römheld, V. Effect of iron and zinc deficiency on release of phytosiderophores in barley cultivars differing in zinc efficiency. J. Plant Nutr. 23, 1645–1656 (2000).CAS 
    Article 

    Google Scholar 
    Chen, C., Chaudhary, A. & Mathys, A. Nutritional and environmental losses embedded in global food waste. Resour. Conserv. Recycl. 160, 104912 (2020).Article 

    Google Scholar 
    Nyfeler, D., Huguenin-Elie, O., Suter, M., Frossard, E. & Lüscher, A. Grass–legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources. Agric. Ecosyst. Environ. 140, 155–163 (2011).Article 

    Google Scholar 
    Zhang, C., Postma, J. A., York, L. M. & Lynch, J. P. Root foraging elicits niche complementarity-dependent yield advantage in the ancient ‘three sisters’ (maize/bean/squash) polyculture. Ann. Bot. 114, 1719–1733 (2014).CAS 
    Article 

    Google Scholar 
    Ghestem, M., Sidle, R. C. & Stokes, A. The influence of plant root systems on subsurface flow: implications for slope stability. BioScience 61, 869–879 (2011).Article 

    Google Scholar 
    Huo, C., Luo, Y. & Cheng, W. Rhizosphere priming effect: a meta-analysis. Soil Biol. Biochem. 111, 78–84 (2017).CAS 
    Article 

    Google Scholar 
    Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. How plant root exudates shape the nitrogen cycle. Trends Plant Sci. 22, 661–673 (2017).CAS 
    Article 

    Google Scholar 
    Grelet, G. et.al. Regenerative Agriculture in Aotearoa New Zealand: Research Pathways to Build Science-Based Evidence and National Narratives (Landcare Research New Zealand, 2021).Sergei Schaub, R. F. et al. Plant diversity effects on forage quality, yield and revenues of semi-natural grasslands. Nat. Commun. 11, 768 (2020).Article 

    Google Scholar 
    Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. N. Phytol. 206, 107–117 (2015).Article 

    Google Scholar 
    Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).Article 

    Google Scholar  More

  • in

    Alpine shrub growth follows bimodal seasonal patterns across biomes – unexpected environmental controls

    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).Giorgi, F. & Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Change 63, 90–104 (2008).Article 

    Google Scholar 
    Post, E. et al. The polar regions in a 2 °C warmer world. Sci. Adv. 5, eaaw9883 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Körner, C. Alpine Plant Life (Springer International Publishing, 2021).Graven, H. D. et al. Enhanced seasonal exchange of CO2 by northern ecosystems since 1960. Science 341, 1085–1089 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).Article 

    Google Scholar 
    Gamm, C. M. et al. Declining growth of deciduous shrubs in the warming climate of continental western Greenland. J. Ecol. 106, 640–654 (2018).CAS 
    Article 

    Google Scholar 
    AMAP. Arctic Climate Change Update 2021: Key Trends and Impacts. Arctic Monitoring and Assessment Programme (2021).Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).Article 

    Google Scholar 
    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W. et al. Self‐amplifying feedbacks accelerate greening and warming of the arctic. Geophys. Res. Lett. 45, 7102–7111 (2018).Article 

    Google Scholar 
    Körner, C. Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 41, 197–206 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pellizzari, E. et al. Diverging shrub and tree growth from the Polar to the Mediterranean biomes across the European continent. Glob. Change Biol. 23, 3169–3180 (2017).Article 

    Google Scholar 
    Dobbert, S., Pape, R. & Löffler, J. How does spatial heterogeneity affect inter‐ and intraspecific growth patterns in tundra shrubs. J. Ecol. 7, 1 (2021).
    Google Scholar 
    Ackerman, D., Griffin, D., Hobbie, S. E. & Finlay, J. C. Arctic shrub growth trajectories differ across soil moisture levels. Glob. Change Biol. 23, 4294–4302 (2017).Article 

    Google Scholar 
    Stendel, M., Christensen, J. H. & Petersen, D. in High-Arctic Ecosystem Dynamics in a Changing Climate (eds. Meltofte, H.) 13–43 (Elsevier, 2008).Prislan, P. et al. Annual cambial rhythm in Pinus halepensis and Pinus sylvestris as indicator for climate adaptation. Front. Plant Sci. 7, 1923 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gazol, A. & Camarero, J. J. Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecol. 213, 1687–1698 (2012).Article 

    Google Scholar 
    Olano, J. M., Almería, I., Eugenio, M. & Arx, G. V. Under pressure: how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Funct. Ecol. 27, 1295–1303 (2013).Article 

    Google Scholar 
    Voltas, J. et al. A retrospective, dual-isotope approach reveals individual predispositions to winter-drought induced tree dieback in the southernmost distribution limit of Scots pine. Plant, Cell Environ. 36, 1435–1448 (2013).CAS 
    Article 

    Google Scholar 
    Hanewinkel, M., Cullmann, D. A., Schelhaas, M.-J., Nabuurs, G.-J. & Zimmermann, N. E. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207 (2013).Article 

    Google Scholar 
    Castagneri, D., Battipaglia, G., Arx, G. V., Pacheco, A. & Carrer, M. Tree-ring anatomy and carbon isotope ratio show both direct and legacy effects of climate on bimodal xylem formation in Pinus pinea. Tree Physiol. 38, 1098–1109 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabon, A., Peters, R. L., Fonti, P., Martínez-Vilalta, J. & Cáceres, M. Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. N. Phytologist 226, 1325–1340 (2020).CAS 
    Article 

    Google Scholar 
    Camarero, J. J., Valeriano, C., Gazol, A., Colangelo, M. & Sánchez-Salguero, R. Climate differently impacts the growth of coexisting trees and shrubs under semi-arid mediterranean conditions. Forests 12, 381 (2021).Article 

    Google Scholar 
    García-Cervigón Morales, A. I., Olano Mendoza, J. M., Eugenio Gozalbo, M. & Camarero Martínez, J. J. Arboreal and prostrate conifers coexisting in Mediterranean high mountains differ in their climatic responses. Dendrochronologia 30, 279–286 (2012).Article 

    Google Scholar 
    Oladi, R., Emaminasab, M. & Eckstein, D. The dendroecological potential of shrubs in north Iranian semi-deserts. Dendrochronologia 44, 94–102 (2017).Article 

    Google Scholar 
    McMahon, S. M. & Parker, G. G. A general model of intra-annual tree growth using dendrometer bands. Ecol. Evolution 5, 243–254 (2015).Article 

    Google Scholar 
    Drew, D. M., Downes, G. M. & Battaglia, M. CAMBIUM, a process-based model of daily xylem development in Eucalyptus. J. Theor. Biol. 264, 395–406 (2010).PubMed 
    Article 

    Google Scholar 
    Delpierre, N., Berveiller, D., Granda, E. & Dufrêne, E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytologist 210, 459–470 (2016).CAS 
    Article 

    Google Scholar 
    Rathgeber, C. B. K., Cuny, H. E. & Fonti, P. Biological basis of tree-ring formation: a crash course. Front. Plant Sci. 7, 734 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Körner, C. Carbon limitation in trees. J. Ecol. 91, 4–17 (2003).Article 

    Google Scholar 
    Thompson, J. D. Plant Evolution in the Mediterranean (Oxford University Press, 2005).Rossi, S. et al. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Glob. Change Biol. 22, 3804–3813 (2016).Article 

    Google Scholar 
    Löffler, J. & Pape, R. Thermal niche predictors of alpine plant species. Ecology 101, e02891 (2020).PubMed 
    Article 

    Google Scholar 
    Zweifel, R. et al. Why trees grow at night. N. Phytologist 231, 2174–2185 (2021).Article 

    Google Scholar 
    González-Rodríguez, Á. M. et al. Seasonal cycles of sap flow and stem radius variation of Spartocytisus supranubius in the alpine zone of Tenerife, Canary Islands. Alp. Bot. 127, 97–108 (2017).Article 

    Google Scholar 
    Zweifel, R., Haeni, M., Buchmann, N. & Eugster, W. Are trees able to grow in periods of stem shrinkage. N. Phytologist 211, 839–849 (2016).Article 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Change 5, 887–891 (2015).Article 

    Google Scholar 
    Mitrakos, K. A Theory for Mediterranean Plant Life (Acta oecologica, 1980).Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. N. Phytologist 185, 471–480 (2010).Article 

    Google Scholar 
    Alday, J. G., Camarero, J. J., Revilla, J. & Resco de Dios, V. Similar diurnal, seasonal and annual rhythms in radial root expansion across two coexisting Mediterranean oak species. Tree Physiol. 40, 956–968 (2020).PubMed 
    Article 

    Google Scholar 
    Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).CAS 
    PubMed 
    Article 

    Google Scholar 
    Descals, A. et al. Soil thawing regulates the spring growth onset in tundra and alpine biomes. Sci. total Environ. 742, 140637 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgner, E., Elberling, B., Strebel, D. & Cooper, E. J. The importance of winter in annual ecosystem respiration in the High Arctic: effects of snow depth in two vegetation types. Polar Res. 29, 58–74 (2010).CAS 
    Article 

    Google Scholar 
    Weijers, S., Beckers, N. & Löffler, J. Recent spring warming limits near-treeline deciduous and evergreen alpine dwarf shrub growth. Ecosphere 9, e02328 (2018).Article 

    Google Scholar 
    Bret-Harte, M. S. et al. Developmental plasticity allows Betula nana to dominate tundra subjected to an altered environment. Ecology 82, 18–32 (2001).Article 

    Google Scholar 
    Wang, Y. et al. Warming‐induced shrubline advance stalled by moisture limitation on the Tibetan Plateau. Ecography 44, 1631–1641 (2021).Article 

    Google Scholar 
    Tape, K. D., Hallinger, M., Welker, J. M. & Ruess, R. W. Landscape heterogeneity of shrub expansion in Arctic Alaska. Ecosystems 15, 711–724 (2012).CAS 
    Article 

    Google Scholar 
    Francon, L., Corona, C., Till-Bottraud, I., Carlson, B. Z. & Stoffel, M. Some (do not) like it hot: shrub growth is hampered by heat and drought at the alpine treeline in recent decades. Am. J. Bot. 107, 607–617 (2020).PubMed 
    Article 

    Google Scholar 
    Lu, X., Liang, E., Babst, F., Camarero, J. J. & Büntgen, U. Warming-induced tipping points of Arctic and alpine shrub recruitment. Proc. Natl Acad. Sci. USA 119, e2118120119 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sabater, A. M. et al. Transpiration from subarctic deciduous woodlands: environmental controls and contribution to ecosystem evapotranspiration. Ecohydrology 13, e2190 (2019).
    Google Scholar 
    Larson, P. R. The indirect effect of photoperiod on tracheid diameter in Pinus resinosa. Am. J. Bot. 49, 132–137 (1962).Article 

    Google Scholar 
    Jackson, S. D. Plant responses to photoperiod. N. Phytologist 181, 517–531 (2009).CAS 
    Article 

    Google Scholar 
    Waisel, Y. & Fahn, A. The effects of environment on wood formation and cambial activity in Robina Pseudacacia L. N. Phytologist 64, 436 (1965).Article 

    Google Scholar 
    Pasho, E., Camarero, J. J. & Vicente-Serrano, S. M. Climatic impacts and drought control of radial growth and seasonal wood formation in Pinus halepensis. Trees 26, 1875–1886 (2012).Article 

    Google Scholar 
    Gričar, J. et al. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front. Plant Sci. 6, 730 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oberhuber, W., Sehrt, M. & Kitz, F. Hygroscopic properties of thin dead outer bark layers strongly influence stem diameter variations on short and long time scales in Scots pine (Pinus sylvestris L.). Agric. For. Meteorol. 290, 108026 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonntag, D. Important new values of the physical constants of 1986, vapour pressure formulations based on ITS-90, and psychrometer formulae. Z. f.ür. Meteorologie 70, 340–344 (1990).
    Google Scholar 
    Löffler, J., Dobbert, S., Pape, R. & Wundram, D. Dendrometer measurements of arctic-alpine dwarf shrubs and micro-environmental drivers of plant growth—Dataset from long-term alpine ecosystem research in central Norway. Erdkunde 75, DP311201 (2021).
    Google Scholar 
    Löffler, J., Albrecht, E. C., Dobbert, S., Pape, R. & Wundram, D. Dendrometer measurements of Mediterranean-alpine dwarf shrubs and micro-environmental drivers of plant growth—Dataset from long-term alpine ecosystem research in the Sierra Nevada, Spain (LTAER-ES). Erdkunde 76, DP311202 (2022).Article 

    Google Scholar 
    R Core Team. A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).Wood, S. N. Generalized Additive Models. An introduction with R (2nd edition) (Chapman & Hall/CRC, 2017).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc.: Ser. B 73, 3–36 (2011).Article 

    Google Scholar 
    Byun, J. G. et al. Radial growth response of Pinus densiflora and Quercus spp. to topographic and climatic factors in South Korea. J. Plant Ecol. 6, 380–392 (2013).Article 

    Google Scholar 
    Yee, T. W. & Mitchell, N. D. Generalized additive models in plant ecology. J. Vegetation Sci. 2, 587–602 (1991).Article 

    Google Scholar 
    Gasparrini, A., Scheipl, F., Armstrong, B. & Kenward, M. G. A penalized framework for distributed lag non-linear models. Biometrics 73, 938–948 (2017).PubMed 
    Article 

    Google Scholar 
    Scott, E. R., Uriarte, M. & Bruna, E. M. Delayed effects of climate on vital rates lead to demographic divergence in Amazonian forest fragments. https://doi.org/10.1101/2021.06.28.450186 (2021).Almon, S. The distributed lag between capital appropriations and expenditures. Econometrica 33, 178 (1965).Article 

    Google Scholar 
    Vanoni, M., Bugmann, H., Nötzli, M. & Bigler, C. Drought and frost contribute to abrupt growth decreases before tree mortality in nine temperate tree species. For. Ecol. Manag. 382, 51–63 (2016).Article 

    Google Scholar 
    Pukienė, R., Vitas, A., Kažys, J. & Rimkus, E. Four-decadal series of dendrometer measurements reveals trends in Pinus sylvestris L. inter- and intra-annual growth response to climatic conditions. Can. J. For. Res. 51, 445–454 (2020).Article 

    Google Scholar 
    Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med. 29, 2224–2234 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gasparrini, A. Distributed lag linear and non-linear models in R: the package dlnm. J. Stat. Softw. 43, https://doi.org/10.18637/jss.v043.i08 (2011).Kartverket. Terrain Map. https://www.norgeskart.no/ (Norwegian Mapping Authority, 2008).Autonomous body National Center for Geographic Information (CNIG). Digital Terrain Model – DTM25. http://centrodedescargas.cnig.es/ (2009). More

  • in

    Ancient DNA reveals phenological diversity of Coast Salish herring harvests over multiple centuries

    Luck, G. W., Daily, G. C. & Ehrlich, P. R. Population diversity and ecosystem services. Trends Ecol. Evol. 18, 331–336. https://doi.org/10.1016/S0169-5347(03)00100-9 (2003).Article 

    Google Scholar 
    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612. https://doi.org/10.1038/nature09060 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Moore, J. W., Yeakel, J. D., Peard, D., Lough, J. & Beere, M. Life-history diversity and its importance to population stability and persistence of a migratory fish: Steelhead in two large North American watersheds. J. Anim. Ecol. 83, 1035–1046. https://doi.org/10.1111/1365-2656.12212 (2014).Article 
    PubMed 

    Google Scholar 
    Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499. https://doi.org/10.1126/science.aav3824 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jones, F. C. et al. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484, 55. https://doi.org/10.1038/nature10944 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Savage, A. E. & Zamudio, K. R. MHC genotypes associate with resistance to a frog-killing fungus. Proc. Natl. Acad. Sci. 108, 16705. https://doi.org/10.1073/pnas.1106893108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hofinger, B. J. et al. An exceptionally high nucleotide and haplotype diversity and a signature of positive selection for the eIF4E resistance gene in barley are revealed by allele mining and phylogenetic analyses of natural populations. Mol. Ecol. 20, 3653–3668. https://doi.org/10.1111/j.1365-294X.2011.05201.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, E6089. https://doi.org/10.1073/pnas.1704949114 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689. https://doi.org/10.1126/science.278.5338.689 (1997).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fernández-Llamazares, Á. et al. Scientists’ warning to humanity on threats to indigenous and local knowledge systems. J. Ethnobiol. 41(144–169), 126 (2021).
    Google Scholar 
    Womble, J. N., Willson, M. F., Sigler, M. F., Kelly, B. P. & VanBlaricom, G. R. Distribution of Steller sea lions (Eumetopias jubatus) in relation to spring-spawning fish in SE Alaska. Mar. Ecol. Prog. Ser. 294, 271–282 (2005).ADS 
    Article 

    Google Scholar 
    Thomas, G. L. & Thorne, R. E. Night-time predation by Steller sea lions. Nature 411, 1013–1013. https://doi.org/10.1038/35082745 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Chamberlin, J. W., Beckman, B. R., Greene, C. M., Rice, C. A. & Hall, J. E. How relative size and abundance structures the relationship between size and individual growth in an ontogenetically piscivorous fish. Ecol. Evol. 7, 6981–6995. https://doi.org/10.1002/ece3.3218 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hatch, S. A. Kittiwake diets and chick production signal a 2008 regime shift in the Northeast Pacific. Mar. Ecol. Prog. Ser. 477, 271–284 (2013).ADS 
    Article 

    Google Scholar 
    Schrimpf, M. B., Parrish, J. K. & Pearson, S. F. Trade-offs in prey quality and quantity revealed through the behavioral compensation of breeding seabirds. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps09750 (2012).Article 

    Google Scholar 
    Willson, M. F. & Womble, J. N. Vertebrate exploitation of pulsed marine prey: A review and the example of spawning herring. Rev. Fish Biol. Fisheries 16, 183–200. https://doi.org/10.1007/s11160-006-9009-7 (2006).Article 

    Google Scholar 
    Sandell, T., Lindquist, A., Dionne, P. & Lowry, D. 2016 Washington State herring stock status report (Washington Department of Fish and Wildlife, 2019).Petrou, E. L. et al. Functional genetic diversity in an exploited marine species and its relevance to fisheries management. Proc. R. Soc. B Biol. Sci. 288, 20202398. https://doi.org/10.1098/rspb.2020.2398 (2021).CAS 
    Article 

    Google Scholar 
    Chamberlin, J. et al. Phenological diversity of a prey species supports life-stage specific foraging opportunity for a mobile consumer. ICES J. Mar. Sci. 78, 3089–3100. https://doi.org/10.1093/icesjms/fsab176 (2021).Article 

    Google Scholar 
    Lok, E. K. et al. Spatiotemporal associations between Pacific herring spawn and surf scoter spring migration: Evaluating a silver wave hypothesis. Mar. Ecol. Prog. Ser. 457, 139–150 (2012).ADS 
    Article 

    Google Scholar 
    Armstrong, J. B., Takimoto, G., Schindler, D. E., Hayes, M. M. & Kauffman, M. J. Resource waves: Phenological diversity enhances foraging opportunities for mobile consumers. Ecology 97, 1099–1112. https://doi.org/10.1890/15-0554.1 (2016).Article 
    PubMed 

    Google Scholar 
    McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1316072111 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moss, M. L., Rodrigues, A. T., Speller, C. F. & Yang, D. Y. The historical ecology of Pacific herring: Tracing Alaska Native use of a forage fish. J. Archaeol. Sci. Rep. https://doi.org/10.1016/j.jasrep.2015.10.005 (2016).Article 

    Google Scholar 
    Kopperl, R. E. Herring use in southern Puget Sound: Analysis of fish remains at 45-KI-437. Northwest Anthropol. Res. Notes 35, 1–20 (2001).
    Google Scholar 
    McKechnie, I. & Moss, M. L. Meta-analysis in zooarchaeology expands perspectives on Indigenous fisheries of the Northwest Coast of North America. J. Archaeol. Sci. Rep. 8, 470–485. https://doi.org/10.1016/j.jasrep.2016.04.006 (2016).Article 

    Google Scholar 
    Caldwell, M. E. et al. A bird’s eye view of northern Coast Salish intertidal resource management features, southern British Columbia, Canada. J. Isl. Coast. Archaeol. 7, 219–233. https://doi.org/10.1080/15564894.2011.586089 (2012).Article 

    Google Scholar 
    Eells, M. & Castile, G. P. The Indians of Puget Sound: The Notebooks of Myron Eells (University of Washington Press, 1985).
    Google Scholar 
    Smith, M. W. The Puyallup-Nisqually (Columbia University Press, 1940).Book 

    Google Scholar 
    Thornton, T. F. & Moss, M. L. Herring and People in the North Pacific: Sustaining a Keystone Species (University of Washington Press, 2021).
    Google Scholar 
    Powell, M. Divided waters: Heiltsuk spatial management of herring fisheries and the politics of native sovereignty. West. Hist. Q. 43, 463–484. https://doi.org/10.2307/westhistquar.43.4.0463 (2012).Article 

    Google Scholar 
    Gauvreau, A. M., Lepofsky, D., Rutherford, M. & Reid, M. “Everything revolves around the herring”: The Heiltsuk–herring relationship through time. Ecol. Soc. https://doi.org/10.5751/ES-09201-220210 (2017).Article 

    Google Scholar 
    von der Porten, S., Lepofsky, D., McGregor, D. & Silver, J. Recommendations for marine herring policy change in Canada: Aligning with Indigenous legal and inherent rights. Mar. Policy 74, 68–76. https://doi.org/10.1016/j.marpol.2016.09.007 (2016).Article 

    Google Scholar 
    Hammond, J. Fish in puget sound. Am. Angler 25, 392–393 (1886).
    Google Scholar 
    Bargmann, G. Forage fish management plan (Washington Department of Fish and Wildlife, 1998).Stick, K. C. & Lindquist, A. 2008 Washington State herring stock status report (Washington Department of Fish and Wildlife, 2009).Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251. https://doi.org/10.1146/annurev.marine.010908.163749 (2009).Article 

    Google Scholar 
    Hadly, E. A. & Barnosky, A. D. in Conservation Paleobiology: Using the Past to Manage for the Future Vol. 15 (eds Dietl, G. P. & Flessa, K. W.) 39–59 (Paleontological Society Papers, 2009).Wolverton, S. & Lyman, R. L. in Conservation Biology and Applied Zooarchaeology (eds Wolverton, S. & Lyman, R. L.) 1–22 (University of Arizona Press, 2012).Rogers, L. A. et al. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries. Proc. Natl. Acad. Sci. 110, 1750. https://doi.org/10.1073/pnas.1212858110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright, C. A., Dallimore, A., Thomson, R. E., Patterson, R. T. & Ware, D. M. Late Holocene paleofish populations in Effingham Inlet, British Columbia, Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 367–384. https://doi.org/10.1016/j.palaeo.2005.03.041 (2005).Article 

    Google Scholar 
    Thompson, T. Q. et al. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations. Proc. Natl. Acad. Sci. 116, 177. https://doi.org/10.1073/pnas.1811559115 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Halffman, C. M. et al. Early human use of anadromous salmon in North America at 11,500 y ago. Proc. Natl. Acad. Sci. 112, 12344–12348. https://doi.org/10.1073/pnas.1509747112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinn, T. An environmental and historical overview of the Puget Sound ecosystem (U.S. Geological Survey, 2010).Kopperl, R. E., Taylor, A. K., Miss, C. J., Ames, K. M. & Hodges, C. M. The Bear Creek Site (45KI839), a Late Pleistocene-Holocene transition occupation in the Puget Sound lowland, King County, Washington. PaleoAmerica 1, 116–120. https://doi.org/10.1179/2055556314Z.0000000004 (2015).Article 

    Google Scholar 
    Gunther, E. Klallam Ethnography (University of Washington Press, 1927).
    Google Scholar 
    Elmendorf, W. W. & Kroeber, A. L. The Structure of Twana Culture (Washington State University Press, 1992).
    Google Scholar 
    The Suquamish Tribe. Fish consumption survey of the Suquamish Indian tribe of the Port Madison Indian Reservation, Puget Sound Region (Suquamish, WA, 2000).Suttles, W. P. The Economic Life of the Coast Salish of Haro and Rosario Straits (Garland Publishing, 1974).
    Google Scholar 
    Lane, B. The Indian herring fishery from the earliest times to the mid-nineteenth century (United States Depatment of the Interior, 1974).Stein, J. K. in Vashon Island Archaeology: A View from Burton Acres Shell Midden (eds Stein, J. K. & Phillips, L. S.) 5–16 (Burke Musseum, 2002).Lewarch, D. E. et al. Data recovery excavations at the Bay Street Shell Midden (45KP115), Kitsap County, Washington (Larson Anthropological Archaeological Services Limited, 2002).De Danaan, L. in Vashon Island Archaeology: A View from Burton Acres Shell Midden (eds Stein, J. K. & Phillips, L. S.) 17–31 (Burke Museum, 2002).Stein, J. K. in Vashon Island Archaeology: A View from Burton Acres Shell Midden (eds Stein, J. K. & Phillips, L. S.) 47–64 (Burke Musseum, 2002).Yang, D. Y. & Watt, K. Contamination controls when preparing archaeological remains for ancient DNA analysis. J. Archaeol. Sci. 32, 331–336. https://doi.org/10.1016/j.jas.2004.09.008 (2005).Article 

    Google Scholar 
    Yang, D. Y., Liu, L., Chen, X. & Speller, C. F. Wild or domesticated: DNA analysis of ancient water buffalo remains from north China. J. Archaeol. Sci. 35, 2778–2785. https://doi.org/10.1016/j.jas.2008.05.010 (2008).Article 

    Google Scholar 
    Maddox, D. M. et al. A mutation in Syne2 causes early retinal defects in photoreceptors, secondary neurons, and Müller Glia. Invest. Ophthalmol. Vis. Sci. 56, 3776–3787. https://doi.org/10.1167/iovs.14-16047 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, F. et al. Ecological adaptation in Atlantic herring is associated with large shifts in allele frequencies at hundreds of loci. Elife 9, e61076. https://doi.org/10.7554/eLife.61076 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, M. J. et al. Multiplex preamplification PCR and microsatellite validation enables accurate single nucleotide polymorphism genotyping of historical fish scales. Mol. Ecol. Resour. 11, 268–277. https://doi.org/10.1111/j.1755-0998.2010.02965.x (2011).Article 
    PubMed 

    Google Scholar 
    Speller, C. F. et al. High potential for using DNA from ancient herring bones to inform modern fisheries management and conservation. PLoS ONE 7, e51122. https://doi.org/10.1371/journal.pone.0051122 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weir, B. & Cockerham, C. Estimating F-Statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Archer, F. I., Adams, P. E. & Schneiders, B. B. stratag: An r package for manipulating, summarizing and analysing population genetic data. Mol. Ecol. Resour. 17, 5–11. https://doi.org/10.1111/1755-0998.12559 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar 
    Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Moran, B. M. & Anderson, E. C. Bayesian inference from the conditional genetic stock identification model. Can. J. Fish. Aquat. Sci. 76, 551–560. https://doi.org/10.1139/cjfas-2018-0016 (2018).Article 

    Google Scholar 
    Moss, M. L. Understanding variability in Northwest Coast faunal assemblages: Beyond economic intensification and cultural complexity. J. Isl. Coast. Archaeol. 7, 1–22. https://doi.org/10.1080/15564894.2011.586090 (2012).Article 

    Google Scholar 
    Greene, C., Kuehne, L., Rice, C., Fresh, K. & Penttila, D. Forty years of change in forage fish and jellyfish abundance across greater Puget Sound, Washington (USA): Anthropogenic and climate associations. Mar. Ecol. Prog. Ser. 525, 153–170 (2015).ADS 
    Article 

    Google Scholar 
    Rice, C. A., Duda, J. J., Greene, C. M. & Karr, J. R. Geographic patterns of fishes and jellyfish in Puget Sound surface waters. Mar. Coast. Fish. 4, 117–128. https://doi.org/10.1080/19425120.2012.680403 (2012).Article 

    Google Scholar 
    Haegele, C. W. & Schweigert, J. F. Distribution and characteristics of herring spawning grounds and description of spawning behavior. Can. J. Fish. Aquat. Sci. 42, s39–s55. https://doi.org/10.1139/f85-261 (1985).Article 

    Google Scholar 
    Gao, Y. W., Joner, S. H. & Bargmann, G. G. Stable isotopic composition of otoliths in identification of spawning stocks of Pacific herring (Clupea pallasi) in Puget Sound. Can. J. Fish. Aquat. Sci. 58, 2113–2120. https://doi.org/10.1139/f01-146 (2001).Article 

    Google Scholar 
    West, J. E., O’Neill, S. M. & Ylitalo, G. M. Spatial extent, magnitude, and patterns of persistent organochlorine pollutants in Pacific herring (Clupea pallasi) populations in the Puget Sound (USA) and Strait of Georgia (Canada). Sci. Total Environ. 394, 369–378. https://doi.org/10.1016/j.scitotenv.2007.12.027 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Moss, M. L. The nutritional value of Pacific herring: An ancient cultural keystone species on the Northwest Coast of North America. J. Archaeol. Sci. Rep. 5, 649–655. https://doi.org/10.1016/j.jasrep.2015.08.041 (2016).Article 

    Google Scholar 
    Brown, F. & Brown, Y. K. Staying the course, staying alive- Coastal First Nations fundamental truths: Biodiversity, stewardship and sustainability 82 (2009).Dugmore, A. J. et al. Cultural adaptation, compounding vulnerabilities and conjunctures in Norse Greenland. Proc. Natl. Acad. Sci. 109, 3658. https://doi.org/10.1073/pnas.1115292109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nunn, P. D. et al. Times of plenty, times of less: Last-millennium societal disruption in the Pacific Basin. Hum. Ecol. 35, 385–401. https://doi.org/10.1007/s10745-006-9090-5 (2007).Article 

    Google Scholar 
    Rose, K. A., Megrey, B. A., Hay, D., Werner, F. & Schweigert, J. Climate regime effects on Pacific herring growth using coupled nutrient-phytoplankton-zooplankton and bioenergetics models. Trans. Am. Fish. Soc. 137, 278–297. https://doi.org/10.1577/T05-152.1 (2008).Article 

    Google Scholar 
    Rosenthal, Y., Linsley, B. K. & Oppo, D. W. Pacific ocean heat content during the past 10,000 years. Science 342, 617. https://doi.org/10.1126/science.1240837 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hopt, J. & Grier, C. Continuity amidst change: Village organization and fishing subsistence at the Dionisio Point locality in coastal southern British Columbia. J. Isl. Coast. Archaeol. 13, 21–42. https://doi.org/10.1080/15564894.2016.1257526 (2018).Article 

    Google Scholar 
    Butler, V. L., Campbell, S. K., Bovy, K. M. & Etnier, M. A. Exploring ecodynamics of coastal foragers using integrated faunal records from Čḯxwicən village (Strait of Juan de Fuca, Washington, U.S.A.). J. Archaeol. Sci. Rep. 23, 1143–1167. https://doi.org/10.1016/j.jasrep.2018.09.031 (2019).Article 

    Google Scholar 
    Lamichhaney, S. et al. Parallel adaptive evolution of geographically distant herring populations on both sides of the North Atlantic Ocean. Proc. Natl. Acad. Sci. 114, E3452–E3461 (2017).CAS 
    Article 

    Google Scholar 
    Carpenter, M. L. et al. Pulling out the 1%: Whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries. Am. J. Hum. Genet. 93, 852–864. https://doi.org/10.1016/j.ajhg.2013.10.002 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oosting, T. et al. Unlocking the potential of ancient fish DNA in the genomic era. Evol. Appl. 12, 1513–1522. https://doi.org/10.1111/eva.12811 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320. https://doi.org/10.1016/j.tree.2020.10.018 (2021).Article 
    PubMed 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360. https://doi.org/10.1017/S0033822200033865 (2009).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757. https://doi.org/10.1017/RDC.2020.41 (2020).CAS 
    Article 

    Google Scholar 
    Deo, J. N., Stone, J. O. & Stein, J. K. Building confidence in shell: Variations in the marine radiocarbon reservoir correction for the Northwest Coast over the past 3,000 years. Am. Antiq. 69, 771–786. https://doi.org/10.2307/4128449 (2004).Article 

    Google Scholar  More

  • in

    A global dataset of seaweed net primary productivity

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science. 281, 237–240 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science. 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gillman, L. N. et al. Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24, 107–117 (2015).Article 

    Google Scholar 
    Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: A review. Rev. Geophys. 53, 1–34 (2015).Article 

    Google Scholar 
    Goldman, C. R., Jassby, A. & Powell, T. Interannual fluctuations in primary production: Meteorological forcing at two subalpine lakes. Limnol. Oceanogr. 34, 310–323 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    Sayers, M. J., Fahnenstiel, G. L., Shuchman, R. A. & Bosse, K. R. A new method to estimate global freshwater phytoplankton carbon fixation using satellite remote sensing: initial results. Int. J. Remote Sens. 42, 3708–3730 (2021).Article 

    Google Scholar 
    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Global Biogeochem. Cycles 24, GB3016 (2010).ADS 
    Article 
    CAS 

    Google Scholar 
    Holt, J. et al. Modelling the global coastal ocean. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 939–951 (2009).ADS 
    MATH 
    Article 

    Google Scholar 
    Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Saba, V. S. et al. An evaluation of ocean color model estimates of marine primary productivity in coastal and pelagic regions across the globe. Biogeosciences 8, 489–503 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochem. Cycles 24, 1–8 (2010).Article 
    CAS 

    Google Scholar 
    Charpy-Roubaud, C. & Sournia, A. The comparative estimation of phytoplanktonic, microphytobenthic and macrophytobenthic primary production in the oceans. Mar. Microb. Food Webs 4, 31–57 (1990).
    Google Scholar 
    Duarte, C. M. et al. Global estimates of the extent and production of macroalgal forests. Global Ecology and Biogeography. 31(7), 1422–1439, https://doi.org/10.1111/geb.13515 (2022).Duggins, D. O. & Estes, J. A. Magnification of secondary production by kelp detritus in coastal marine ecosystems. Science. 245, 170–173 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunton, K. H. & Schell, D. M. Dependence of consumers on macroalgal (Laminaria solidungula) carbon in an arctic kelp community: 13C evidence. Mar. Biol. 625, 615–625 (1987).Article 

    Google Scholar 
    Krumhansl, K. A. & Scheibling, R. E. Production and fate of kelp detritus. Mar. Ecol. Prog. Ser. 467, 281–302 (2012).ADS 
    Article 

    Google Scholar 
    Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum belt. Nat. Commun. 12, 2556 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duarte, C. M., Wu, J., Xiao, X., Bruhn, A. & Krause-Jensen, D. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation? Front. Mar. Sci. 4 (2017).Kanwisher, J. W. Photosynthesis and respiration in some seaweeds. in Some contemporary studies in marine science:: a collection of original scientific papers presented to Dr. S.M. Marshall, O.B.E., F.R.S. in recognition of her contribution with the late Dr. A.P. Orr to marine biological progress (eds. Barnes, H. & Marshall, S. M.) 407 (Allen & Unwin, 1966).Blinks, L. R. Photosynthesis and productivity of littoral marine algae. J. Mar. Res. 14, 363–373 (1955).
    Google Scholar 
    Printz, H. Seasonal growth and production of dry matter in Ascophyllum nodosum. Avh. Utg. Av Det Nor. Videnskaps-akademi i Oslo. I. Mat. Klasse 4, 1–15 (1950).
    Google Scholar 
    Rassweiler, A., Reed, D. C., Harrer, S. L. & Nelson, J. C. Improved estimates of net primary production, growth and standing crop of Macrosystis pryifera in Southern California. Ecology 99, 2132 (2018).PubMed 
    Article 

    Google Scholar 
    Littler, M. M. & Arnold, K. E. Primary Productivity of Marine Macroalgal Functional-Form Groups From Southwestern North America. Journal of Phycology 18, 307–311 (1982).Article 

    Google Scholar 
    Krause-Jensen, D. et al. Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Glob. Chang. Biol. 18, 2981–2994 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smale, D. A. et al. Environmental factors influencing primary productivity of the forest – forming kelp Laminaria hyperborea in the northeast Atlantic. Sci. Rep. 10, 12161 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pessarrodona, A. et al. Global seaweed productivity. Science Advances https://doi.org/10.1126/sciadv.abn2465 (2022) (in press).Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Fulton, C. J. et al. Form and function of tropical macroalgal reefs in the Anthropocene. Funct. Ecol. 33, 989–999 (2019).Article 

    Google Scholar 
    Tebbett, S. B. & Bellwood, D. R. Algal turf productivity on coral reefs: A meta-analysis. Mar. Environ. Res. 168, 105311 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wernberg, T., Krumhansl, K., Filbee-Dexter, K. & Pedersen, M. F. Status and trends for the world’s kelp forests. in World Seas: An Environmental Evaluation: Ecological Issues and Environmental Impacts (ed. Sheppard, C.) 57–78, https://doi.org/10.1016/B978-0-12-805052-1.00003-6 (Academic Press, 2019).Gómez, I. et al. Light and temperature demands of marine benthic microalgae and seaweeds in polar regions. Bot. Mar. 52, 593–608 (2009).Article 

    Google Scholar 
    Kindig, A. C. & Littler, M. M. Growth and primary productivity of marine macrophytes exposed to domestic sewage effluents. Mar. Environ. Res. 3, 81–100 (1980).Article 

    Google Scholar 
    Wanders, J. B. W. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III: The significance of grazing. Aquat. Bot. 3, 357–390 (1977).Article 

    Google Scholar 
    Hatcher, B. G. Reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Odum, H. T. & Odum, E. P. Trophic Structure and Productivity of a Windward Coral Reef Community on Eniwetok Atoll. Ecol. Monogr. 25, 291–320 (1955).Article 

    Google Scholar 
    Owen, D. P., Long, M. H., Fitt, W. K. & Hopkinson, B. M. Taxon-specific primary production rates on coral reefs in the Florida Keys. Limnol. Oceanogr. 1–14, https://doi.org/10.1002/lno.11627 (2020).Attard, K. M. et al. Benthic oxygen exchange in a live coralline algal bed and an adjacent sandy habitat: An eddy covariance study. Mar. Ecol. Prog. Ser. 535, 99–115 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Attard, K. M. Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64, 149–164 (2019).ADS 
    Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer. (2019).Brey, T., Müller-Wiegmann, C., Zittier, Z. M. C. & Hagen, W. Body composition in aquatic organisms – A global data bank of relationships between mass, elemental composition and energy content. J. Sea Res. 64, 334–340 (2010).ADS 
    Article 

    Google Scholar 
    Thom, R. M. Spatial and Temporal Patterns of Fucus distichus ssp. edentatus (de la Pyl.) Pow. (Phaeophyceae: Fucales) in Central Puget Sound. Bot. Mar. 26, 471–486 (1983).Article 

    Google Scholar 
    Johnston, C. S., Jones, R. G. & Hunter, D. R. A seasonal carbon budget for a laminarian population in a Scottish sea-loch. Helgoländer wissenschaftliche Meeresuntersuchungen 30, 527–545 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Chang. Biol. 1–17, https://doi.org/10.1111/gcb.15837 (2021).Randall, J., Wotherspoon, S., Ross, J., Hermand, J. & Johnson, C. An in situ study of production from diel oxygen modelling, oxygen exchange, and electron transport rate in the kelp Ecklonia radiata. Mar. Ecol. Prog. Ser. 615, 51–65 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rodgers, K. L., Rees, T. A. V. & Shears, N. T. A novel system for measuring in situ rates of photosynthesis and respiration of kelp. Mar. Ecol. Prog. Ser. 528, 101–115 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Sanderson, J. C. Subtidal Macroalgal Studies in East and South Eastern Tasmanian Coastal Waters. (University of Tasmania, 1990).Miller, R. J., Reed, D. C. & Brzezinski, M. A. Community structure and productivity of subtidal turf and foliose algal assemblages. Mar. Ecol. Prog. Ser. 388, 1–11 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Pessarrodona, A. et al. A global dataset of seaweed net primary productivity, Figshare, https://doi.org/10.6084/m9.figshare.14882322 (2021).Berg, P., Huettel, M., Glud, R. N., Reimers, C. E. & Attard, K. M. Aquatic Eddy Covariance: The Method and Its Contributions to Defining Oxygen and Carbon Fluxes in Marine Environments. Ann. Rev. Mar. Sci. 14, 431–455 (2022).PubMed 
    Article 

    Google Scholar 
    Lees, D. C., Houghton, J. P., Erickson, D. E., Driskell, W. B. & Boettcher, D. E. Ecological studies of intertidal and shallow subtidal habitats in lower Cook Inlet, Alaska. (1980).Kelly, E. L. A. et al. A budget of algal production and consumption by herbivorous fish in an herbivore fisheries management area, Maui, Hawaii. Ecosphere 8, e01899 (2017).Article 

    Google Scholar 
    Pedersen, M. F., Nejrup, L. B., Fredriksen, S., Christie, H. C. & Norderhaug, K. M. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Mar. Ecol. Prog. Ser. 451, 45–60 (2012).ADS 
    Article 

    Google Scholar 
    Kain, J. M. The biology of Laminaria hyperborea X. The effect of depth on some populations. J. Mar. Biol. Assoc. United Kingdom 57, 587–607 (1977).Article 

    Google Scholar 
    Yatsuya, K., Nishigaki, T., Douke, A., Itani, M. & Wada, Y. Annual net productions of sargassacean species in coastal areas with different environmental characteristics in Kyoto Prefecture, the Sea of Japan. Nippon Suisan Gakkaishi 73, 880–890 (2007).Article 

    Google Scholar 
    Carter, A. R. & Simons, R. H. Regrowth and Production Capacity of Gelidium pristoides (Gelidiales, Rhodophyta) under Various Harvesting Regimes at Port Alfred, South Africa. Bot. Mar. 30, 227–232 (1987).Article 

    Google Scholar 
    Santelices, B., Vásquez, J., Ohme, U. & Fonck, E. Managing wild crops of Gracilaria in central Chile. in Eleventh International Seaweed Symposium (eds. Bird, C. J. & Ragan, M. A.) 77–89 (Springer Netherlands, 1984).Pessarrodona, A., Foggo, A. & Smale, D. A. Can ecosystem functioning be maintained despite climate-driven shifts in species composition? Insights from novel marine forests. J. Ecol. 10, 91–104 (2018).
    Google Scholar 
    Dunton, K. H. An annual carbon budget for an arctic kelp community. in The Alaskan Beaufort Sea: ecosystems and environments. (eds. Barnes, P. W., Schell, D. & Reimnitz, E.) 311–326 (Academic press, 1984).Klumpp, D. W. & McKinnon, A. D. Commmunity structure, biomass and productivity of epilithic algal communities on the Great Barrier Reef; dynamics at different spatial scales. Mar. Ecol. Prog. Ser. 86, 77–89 (1992).ADS 
    Article 

    Google Scholar 
    Westphalen, G. & Cheshire, A. C. Quantum efficiency and photosynthetic production of a temperate turf algal community. Aust. J. Bot. 45, 343–349 (1997).Article 

    Google Scholar 
    Morrissey, J. Primary productivity of coral reef benthic macroalgae. Proceedings of the 5th International Coral Reef Congress 77–82 (1985).Howard, K. L. & Menzies, R. J. Distribution and Production of Sargassum in the Waters off the Carolina Coast. Bot. Mar. 12, 244–254 (1969).Article 

    Google Scholar 
    Weigel, B. L. & Pfister, C. A. The dynamics and stoichiometry of dissolved organic carbon release by kelp. Ecology 102, 1–17 (2020).
    Google Scholar 
    Tait, L. W., South, P. M., Lilley, S. A., Thomsen, M. S. & Schiel, D. R. Assemblage and understory carbon production of native and invasive canopy-forming macroalgae. J. Exp. Mar. Bio. Ecol. 469, 10–17 (2015).CAS 
    Article 

    Google Scholar 
    Rodgers, K. & Shears, N. Modelling kelp forest primary production using in situ photosynthesis, biomass and light measurements. Mar. Ecol. Prog. Ser. 553, 67–79 (2016).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Schistosomes in the Persian Gulf: novel molecular data, host associations, and life-cycle elucidations

    Brant, S. V. & Loker, E. S. Molecular systematics of the avian schistosome genus Trichobilharzia (Trematoda: Schistosomatidae) in North America. J. Parasitol. 95, 941–963 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horák, P. et al. Avian schistosomes and outbreaks of cercarial dermatitis. Clin. Microbiol. Rev. 28, 165–190 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brant, S. V. et al. An approach to revealing blood fluke life cycles, taxonomy, and diversity: Provision of key reference data including DNA sequence from single life cycle stages. J. Parasitol. 92, 77–88 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. & Loker, E. S. Discovery-based studies of schistosome diversity stimulate new hypotheses about parasite biology. Trends Parasitol. 29, 449–459 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lorenti, E., Brant, S. V, Gilardoni, C., Diaz, J. I. & Cremonte, F. Two new genera and species of avian schistosomes from Argentina with proposed recommendations and discussion of the polyphyletic genus Gigantobilharzia (Trematoda, Schistosomatidae). Parasitology. 149, 1–59 (2022).Article 

    Google Scholar 
    Khalil, L. F. Family Schistosomatidae Stiles & Hassall, 1898. Keys Trematoda 1, 419–432 (2002).Article 

    Google Scholar 
    Snyder, S. D. & Loker, E. S. Evolutionary relationships among the Schistosomatidae (Platyhelminthes: Digenea) and an Asian origin for Schistosoma. J. Parasitol. 86, 283–288 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. et al. Cercarial dermatitis transmitted by exotic marine snail. Emerg. Infect. Dis. 16, 1357 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, W. H. The morphology of Gigantobilharzia huttoni (Leigh, 1953) an avian schistosome with marine dermatitis-producing larvae. J. Parasitol. 41, 262–269 (1955).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ewers, W. H. A new intermediate host of schistosome trematodes from New South Wales. Nature 190, 283–284 (1961).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rudolphi, K. A. Entozoorum synopsis cui accedunt mantissa duplex et indices locupletissimi. (Sumtibus A. Rücker, 1819).Odhner, T. Zum natürlichen System der digenen Trematoden. V. Zool. Anz. 41, 54–71 (1912).
    Google Scholar 
    Farley, J. A review of the family Schistosomatidae: Excluding the genus Schistosoma from mammals. J. Helminthol. 45, 289–320 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. The biology of a marine dermatitis-producing schistosome cercaria from Batillaria minima (Gmelin). J. Parasitol. 39, 19–20 (1953).
    Google Scholar 
    Al-Kandari, W. Y., Al-Bustan, S. A., Isaac, A. M., George, B. A. & Chandy, B. S. Molecular identification of Austrobilharzia species parasitizing Cerithidea cingulata (Gastropoda: Potamididae) from Kuwait Bay. J. Helminthol. 86, 470 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. E. An annotated key to the cercariae that develop in the snail Cerithidea californica. Bull South Calif. Acad. Sci. 71, 39–43 (1972).
    Google Scholar 
    Holliman, R. B. Larval trematodes from the Apalachee Bay area, Florida, with a checklist of known marine cercariae arranged in a key to their superfamilies. Tulane Stud. Zool. 9, 1–74 (1961).
    Google Scholar 
    Short, R. B. & Holliman, R. B. Austrobilharzia penneri, a new schistosome from marine snails. J. Parasitol. 47, 447–450 (1961).Article 

    Google Scholar 
    Lindberg, W. F. P. D. R. Phylogeny and Evolution of the Mollusca (Univ of California Press, 2008).
    Google Scholar 
    Chong-ti, T. Philophthalmid larval trematodes from Hong Kong and the coast of south China. In The Marine Flora and Fauna of Hong Kong and Southern China II: Proceedings of the Second International Marine Biological Workshop Hong Kong, 2–24 April 1986 Vol. 1, 213 (Hong Kong University Press, 1990).Taraschewski, H. Investigations on the prevalence of Heterophyes species in twelve populations of the first intermediate host in Egypt and Sudan. J. Trop. Med. Hyg. 88, 265–271 (1985).CAS 
    PubMed 

    Google Scholar 
    Reid, D. G. & Ozawa, T. The genus Pirenella Gray, 1847 (= Cerithideopsilla Thiele, 1929) (Gastropoda: Potamididae) in the Indo-West Pacific region and Mediterranean Sea. Zootaxa 4076, 1–91 (2016).PubMed 
    Article 

    Google Scholar 
    Vahidi, F., Fatemi, S. M. R., Danehkar, A., Mashinchian, A. & Nadushan, R. M. Benthic macrofaunal dispersion within different mangrove habitats in Hara Biosphere Reserve, Persian Gulf. Int. J. Environ. Sci. Technol. 17, 1295–1306 (2020).CAS 
    Article 

    Google Scholar 
    Nazeer, Z. et al. Macrofaunal assemblage in the intertidal area of Saudi Arabian Gulf Coast. Reg. Stud. Mar. Sci. 47, 101954 (2021).
    Google Scholar 
    Snyder, S. D. Phylogeny and paraphyly among tetrapod blood flukes (Digenea: Schistosomatidae and Spirorchiidae). Int. J. Parasitol. 34, 1385–1392 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al-Zaidan, A. S. Y., Kennedy, H., Jones, D. A. & Al-Mohanna, S. Y. Role of microbial mats in Sulaibikhat Bay (Kuwait) mudflat food webs: Evidence from δ13C analysis. Mar. Ecol. Prog. Ser. 308, 27–36 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Bearup, A. J. A schistosomc larva from the marine snail Pyrazus australisas a cause of cercarial dermatitis in man. Med. J. Aust. 1, 955–960 (1955).Article 

    Google Scholar 
    Grodhaus, G. & Keh, B. The marine, dermatitis-producing cercaria of Austrobilharzia variglandis in California (Trematoda: Schistosomatidae). J. Parasitol. 44, 633–638 (1958).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sindermann, C. J. Ecological studies of marine dermatitis-producing schistosome larvae in northern New England. Ecology 41, 678–684 (1960).Article 

    Google Scholar 
    Pinto, H. A., Pulido-Murillo, E. A., de Melo, A. L. & Brant, S. V. Putative new genera and species of avian schistosomes potentially involved in human cercarial dermatitis in the Americas, Europe and Africa. Acta Trop. 176, 415–420 (2017).PubMed 
    Article 

    Google Scholar 
    Hechinger, R. F. & Lafferty, K. D. Host diversity begets parasite diversity: Bird final hosts and trematodes in snail intermediate hosts. Proc. R. Soc. B Biol. Sci. 272, 1059–1066 (2005).Article 

    Google Scholar 
    Aldhoun, J. A. & Horne, E. C. Schistosomes in South African penguins. Parasitol. Res. 114, 237–246 (2015).PubMed 
    Article 

    Google Scholar 
    Vanstreels, R. E. T. et al. Schistosomes and microfilarial parasites in Magellanic penguins. J. Parasitol. 104, 322–328 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brant, S. V. & Loker, E. S. Can specialized pathogens colonize distantly related hosts? Schistosome evolution as a case study. PLoS Pathog. 1, e38 (2005).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Blair, D., Davis, G. M. & Wu, B. Evolutionary relationships between trematodes and snails emphasizing schistosomes and paragonimids. Parasitology 123, 229–243 (2001).Article 

    Google Scholar 
    Miller, H. M. Jr. & Northup, F. E. The seasonal infestation of Nassa obsoleta (Say) with larval trematodes. Biol. Bull. 50, 490–508 (1926).Article 

    Google Scholar 
    Chu, G. & Cutress, C. E. Human dermatitis caused by marine organisms in Hawaii. In Proceedings of the Hawaiian Academy of Science. 29th Annual Meeting (1953–54) (1954).Szidat, L. Investigaciones sobre Cercaria chascomusi n. sp. Agente causal de una nueva enfermedad humana en la Argentina: La dermatitis de los bañistas de la laguna Chascomús. Bol Mus Argent Cienc Nat Bernardino Rivadavia 18, 1–16 (1958).
    Google Scholar 
    ITO, J. Studies on the morphology and life cycle of Pseudobilharziella corvi Yamaguti, 1941 (Trematoda: Schistosomatidae). Jpn. J. Med. Sci. Biol. 13, 53–58 (1960).Article 

    Google Scholar 
    Karamian, M. et al. Parasitological and molecular study of the furcocercariae from Melanoides tuberculata as a probable agent of cercarial dermatitis. Parasitol. Res. 108, 955–962 (2011).PubMed 
    Article 

    Google Scholar 
    Leedom, W. S. & Short, R. B. Cercaria pomaceae sp. n., a dermatitis-producing schistosome cercaria from Pomacea paludosa, the Florida apple snail. J. Parasitol. 67, 257–261 (1981).Article 

    Google Scholar 
    Aldhoun, J. A., Faltýnková, A., Karvonen, A. & Horák, P. Schistosomes in the North: A unique finding from a prosobranch snail using molecular tools. Parasitol. Int. 58, 314–317 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Horák, P., Kolářová, L. & Adema, C. M. Biology of the schistosome genus Trichobilharzia. (2002).Martorelli, S. R. Sobre una cercaria de la familia Schistosomatidae (Digenea) parásita de Chilina gibbosa Sowerby, 1841 en el lago Pellegrini, Provincia de Río Negro, República Argentina. Neotrópica 30, 97–106 (1984).
    Google Scholar 
    Braun, M. Zur Revision der Trematoden der Vögel II. Zentralblatt fur Bakteriol. Abth I(29), 895–897 (1901).
    Google Scholar 
    Cheatum, E. L. Dendritobilharzia anatinarum n. sp., a blood fluke from the mallard. J. Parasitol. 27, 165–170 (1941).Article 

    Google Scholar 
    Leite, A. C. R., Costa, H. M. D. A. & Costa, J. O. Trichobilharzia jequitibaensis sp. n (Trematoda, Schistosomatidae) in Cairina moschata domestica (Anatidae). Rev. Bras. Biol. 38, 843–846 (1978).
    Google Scholar 
    McLeod, J. A. Two new schistosomid trematodes from water-birds. J. Parasitol. 23, 456–466 (1937).Article 

    Google Scholar 
    Ebbs, E. T. et al. Schistosomes with wings: How host phylogeny and ecology shape the global distribution of Trichobilharzia querquedulae (Schistosomatidae). Int. J. Parasitol. 46, 669–677 (2016).PubMed 
    Article 

    Google Scholar 
    Flores, V., Viozzi, G., Casalins, L., Loker, E. S. & Brant, S. V. A new schistosome (Digenea: Schistosomatidae) from the nasal tissue of South America black-necked swans, Cygnus melancoryphus (Anatidae) and the endemic pulmonate snail Chilina gibbosa. Zootaxa 4948, zootaxa-4948 (2021).Article 

    Google Scholar 
    Kolářová, L., Horák, P., Skírnisson, K., Marečková, H. & Doenhoff, M. Cercarial dermatitis, a neglected allergic disease. Clin. Rev. Allergy Immunol. 45, 63–74 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    QGIS.org, QGIS 3.4. QGIS Geographic Information System. QGIS Association. http://www.qgis.org (2019).Tkach, V., Grabda-Kazubska, B., Pawlowski, J. & Swiderski, Z. Molecular and morphological evidence for close phylogenetic affinities of the genera Macrodera, Leptophallus, Metaleptophallus and Paralepoderma [Digenea, Plagiorchiata]. Acta Parasitol. 44, 3 (1999).
    Google Scholar 
    Tkach, V. V., Littlewood, D. T. J., Olson, P. D., Kinsella, J. M. & Swiderski, Z. Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst. Parasitol. 56, 1–15 (2003).PubMed 
    Article 

    Google Scholar 
    Littlewood, D. T. J., Curini-Galletti, M. & Herniou, E. A. The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol. Phylogenet. Evol. 16, 449–466 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olson, P. D., Cribb, T. H., Tkach, V. V., Bray, R. A. & Littlewood, D. T. J. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int. J. Parasitol. 33, 733–755 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowles, J. & McManus, D. P. Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Mol. Biochem. Parasitol. 57, 231–239 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miura, O. et al. Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). Int. J. Parasitol. 35, 793–801 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Telford, M. J., Herniou, E. A., Russell, R. B. & Littlewood, D. T. J. Changes in mitochondrial genetic codes as phylogenetic characters: Two examples from the flatworms. Proc. Natl. Acad. Sci. 97, 11359–11364 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller, M. A., Pfeiffer, W. & Schwartz, T. The CIPRES science gateway: a community resource for phylogenetic analyses. In Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery 1–8 (2011).Rambaut, A. & Drummond, A. J. Tracer v1. 5 http://beast.bio.ed.ac.uk/Tracer (2009).Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rambaut, A. & Drummond, A. J. FigTree v1. 4. 2012. (2012).Lockyer, A. E. et al. The phylogeny of the Schistosomatidae based on three genes with emphasis on the interrelationships of Schistosoma Weinland, 1858. Parasitology 126, 203 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, J. C. Austrobilharzia terrigalensis: A schistosome dominant in interspecific interactions in the molluscan host. Int. J. Parasitol. 9, 137–140 (1979).Article 

    Google Scholar 
    Appleton, C. C. Studies on austrobilharzia terrigalensis (trematoda: schistosomatidae) in the swan estuary, Western Australia: Observations on the biology of the cercaria. Int. J. Parasitol. 13, 239–247 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Appleton, C. C. Studies on Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) in the Swan Estuary, Western Australia: Frequency of infection in the intermediate host population. Int. J. Parasitol. 13, 51–60 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, S. H. On the Trematodes of Australian Birds. (1916).Appleton, C. C. Observations on the histology of Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) infection in the silver gull, Larus novaehollandiae. Int. J. Parasitol. 14, 23–28 (1984).Article 

    Google Scholar 
    Bearup, A. J. Life cycle of Austrobilharzia terrigalensis Johnston, 1917. Parasitology 46, 470–479 (1956).CAS 
    PubMed 
    Article 

    Google Scholar 
    CAMismoN, G. M., Bacha Jr, W. J. & Stempen, H. The circumoval precipitate and cercarienhiillen reaktion of Austrobilharzia variglandis. In Proc. Helminthol. Soc. Wash Vol. 48, 202–208 (1981).Zibulewsky, J., Fried, B. & Bacha Jr, W. J. Skin surface lipids of the domestic chicken, and neutral lipid standards as stimuli for the penetration response of Austrobilharzia variglandis cercariae. J. Parasitol. 68, 905–908 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bacha, W. J., Roush, R. & Icardi, S. Infection of the gerbil by the avian schistosome Austrobilharzia variglandis (Miller and Northup 1926; Penner 1953). J. Parasitol. 68, 505–507 (1982).CAS 
    Article 

    Google Scholar 
    Wood, L. M. & Bacha Jr, W. J. Distribution of eggs and the host response in chickens infected with Austrobilharzia variglandis (Trematoda). J. Parasitol. 69, 682–688 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sindermann, C. J. The ecology of marine dermatitis-producing schistosomes. I. Seasonal variation in infection of mud snails (Nassa obsoleta) with larvae of Austrobilharzia variglandis. J. Parasitol. 42, 27 (1956).
    Google Scholar 
    Cutress, C. E. Austrobilharzia variglandis (Miller and Northup, 1926) Penner, 1953,(Trematoda: Schistosomatidae) in Hawaii with notes on its biology. J. Parasitol. 40, 515–524 (1954).PubMed 
    Article 

    Google Scholar 
    Rohde, K. The bird schistosome Austrobilharzia terrigalensis from the Great Barrier Reef, Australia. Zeitschrift für Parasitenkd. 52, 39–51 (1977).CAS 
    Article 

    Google Scholar 
    Price, E. W. A synopsis of the trematode family Schistosomidae, with descriptions of new genera and species. Proc. United States Natl. Museum (1929).McLeod, J. A. Studies on cercarial dermatitis and the trematode family Schistosomatidae in Manitoba. Can. J. Res. 18, 1–28 (1940).Article 

    Google Scholar 
    Keppner, E. J. Some internal parasites of the California gull Larus californicus Lawrence, in Wyoming. Trans. Am. Microsc. Soc. 92, 288–291 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnston, S. J. On the trematodes of Australian birds. J. R. Soc. New South Wales 50, 187–261 (1917).
    Google Scholar 
    Appleton, C. C. Studies on Austrobilharzia terrigalensis (Trematoda: Schistosomatidae) in the Swan Estuary, Western Australia: Infection in the definitive host, Larus novaehollandiae. Int. J. Parasitol. 13, 249–259 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. The red-breasted merganser as a natural avian host of the causative agent of clam diggers’ itch. J. Parasitol. 39, 20 (1953).
    Google Scholar 
    Johnston, T. H. Bather’s itch (schistosome dermatitis) in the Murray Swamps, South Australia. Trans. R. Soc. South Aust. 65, 276–284 (1941).
    Google Scholar 
    Witenberg, G. & Lengy, J. Redescription of Ornithobilharzia canaliculata (Rud.) Odhner, with notes on classification of the genus Ornithobilharzia and the subfamily Schistosomatinae (Trematoda). Isr. J. Zool. 16, 193–204 (1967).CAS 
    PubMed 

    Google Scholar 
    Curtis, L. A. Ilyanassa obsoleta (Gastropoda) as a host for trematodes in Delaware estuaries. J. Parasitol. 83, 793–803 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Curtis, L. A. & Tanner, N. L. Trematode accumulation by the estuarine gastropod Ilyanassa obsoleta. J. Parasitol. 85, 419–425 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barber, K. E. & Caira, J. N. Investigation of the life cycle and adult morphology of the avian blood fluke Austrobilharzia variglandis (Trematoda: Schistosomatidae) from Connecticut. J. Parasitol. 81, 584–592 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leighton, B. J. et al. Schistosome dermatitis at Crescent Beach, preliminary report. Environ. Heal. Rev. 48, 5–13 (2004).
    Google Scholar 
    Ferris, M. & Bacha Jr, W. J. Response of leukocytes in chickens infected with the avian schistosome Austrobilharzia variglandis (Trematoda). Avian Dis. 30, 683–686 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stunkard, H. W. & Hinchliffe, M. C. The life-cycle of Microbilharzia variglandis (== Cercaría varíglandis Miller and Northup, 1926), an avian schistosome whose larvae produce’swimmer’s itch’of ocean beaches. Anat. Rec. 3, 529–530 (1951).
    Google Scholar 
    Stunkard, H. W. & Hinchliffe, M. C. The morphology and life-history of Microbilharzia variglandis (Miller and Northup, 1926) Stunkard and Hinchliffe, 1951, avian blood-flukes whose larvae cause” swimmer’s itch” of ocean beaches. J. Parasitol. 38, 248–265 (1952).CAS 
    PubMed 
    Article 

    Google Scholar 
    Penner, L. R. Experimental infections of avian hosts with Cercaria littorinalinae Penner, 1950. J. Parasitol. 39, 20 (1953).

    Google Scholar 
    Faust, E. C. Notes on Ornithobilharzia odhneri n. sp. from the Asiatic Curlew. J. Parasitol. 11, 50–54 (1924).Article 

    Google Scholar 
    Sousa, W. P. Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasites. Ecol. Monogr. 63, 103–128 (1993).Article 

    Google Scholar 
    Chu, G. W. T. C. First report of the presence of a dermatitis-producing marine larval schistosome in Hawaii. Science 115, 151–153 (1952).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Canestri-Trotti, G., Fioravanti, M. L. & Pampiglione, S. Cercarial dermatitis in Italy. Helminthologia 38, 245 (2001).
    Google Scholar 
    Penner, L. R. Cercaria littorinalinae sp. nov., a dermatitis-producing schistosome larva from the marine snail, Littorina planaxis Philippi. J. Parasitol. 36, 466–472 (1950).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abdul-Salam, J. & Sreelatha, B. S. Description and surface topography of the cercaria of Austrobilharzia sp. (Digenea: Schistosomatidae). Parasitol. Int. 53, 11–21 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kinsella, J. M. & Forrester, D. J. Parasitic helminths of the common loon, Gavia immer, on its wintering grounds in Florida. Helminthol. Soc. Washingt. 66, 1–6 (1999).
    Google Scholar 
    Appleton, C. C. The eggs of some blood-flukes (Trematoda: Schistosomatidae) from South African birds. Afr. Zool. 17, 147–150 (1982).
    Google Scholar 
    Appleton, C. C. Occurrence of avian Schistosomatidae (Trematoda) in South African birds as determined by a faecal survey. Afr. Zool. 21, 60–67 (1986).
    Google Scholar 
    Courtney, C. H. & Forrester, D. J. Helminth parasites of the brown pelican in Florida and Louisiana. (1973).Morales, G. A., Helmboldt, C. F. & Penner, L. R. Pathology of experimentally induced schistosome dermatitis in chickens: the role of Ornithobilharzia canaliculata (Rudolphi, 1819) Odhner 1912 (Trematoda: Schistosomatidae). Avian Dis. 262–276 (1971).
    Travassos, L., Freitas, J. F. & Kohn, A. Trematódeos do Brazil. Mem. Inst. Oswaldo Cruz 67, 1–886 (1969).CAS 
    PubMed 

    Google Scholar 
    Saidov, Y. S. Gel’mintofauna ryb i ryboyadnykh ptits Dagestana (Helminthofauna of Fish and Ichthyophagous Birds of Dagestan). Candidate Thesis, VIGIS (1953).Bykhovskaya-Pavlovskaya, I. E. et al. Key to parasites of freshwater fishes of the USSR, Academy of Science of the USSR. Zool. Inc (1962).Leonov, V. A. New trematodes of ichthyophagus birds. Uchenye Zapiski Gorkovskogo Gosudarstvennogo Peda-gogicheskogo Instituta 19, 43–52 (1957).
    Google Scholar 
    Macro, J. K. Revision of Ornithobilharzia canaliculata (Rudolphi, 1819) (Trematoda: Schistosomatidae). Helminthologia 4, 303–311 (1963).
    Google Scholar 
    Bykhovskaya-Pavlovskaya, I. E. Trematode fauna of birds of Leningrad region. In Contrib. to Helminthol. Publ. to Commem. 75th Birthd. KI Skryabin.] Izd. Akad. Nauk SSSR, Moscov 85–92 (1953).Santoro, M. et al. Helminth community structure of the Mediterranean gull (Ichthyaetus melanocephalus) in Southern Italy. J. Parasitol. 97, 364–366 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanmartín, M. L., Cordeiro, J. A., Alvarez, M. F. & Leiro, J. Helminth fauna of the yellow-legged gull Larus cachinnans in Galicia, north-west Spain. J. Helminthol. 79, 361–371 (2005).PubMed 
    Article 

    Google Scholar 
    Panova, L. G. On the trematode fauna of sea-gulls of the Don district. Trudy Leningrad. Gosudarstv. Vet. Inst. 1(1), 52–62 (1927) (in Russian).
    Google Scholar 
    Travassos, L. Contribucoes ao conhecimento dos Schistosomatidae. Sobre (Rudolphi, 1819). Rev. Bras. Biol. 2, 473–476 (1942).
    Google Scholar 
    Rind, S. The blood fluke Ornithobilharzia canaliculata (Rudolphi, 1819) (Trematoda: Schistosomatidae) from the gull Larus dominicanus at Lyttelton, New Zealand. (1984).Szidat, L. Vergleichende helminthologische Untersuchungen an den argentinischen Grossmowen Larus marinus dominicanus Lichtenstein und Larus ridibundus maculipennis Lichtenstein neuen Beobachtungen uber die Artbildung bei Parasiten. Zeitschrift für Parasitenkd. 24, 351–414 (1964).CAS 

    Google Scholar 
    Parona, C. & Ariola, V. Bilharzìa kowalewskii n. sp. nel Larus melanocephalus [Nota preventiva]. Atti. Soc. Ligust. Sc. Nat. e Georg 7, 114–116 (1896).
    Google Scholar 
    Jothikumar, N. et al. Real-time PCR and sequencing assays for rapid detection and identification of avian schistosomes in environmental samples. Appl. Environ. Microbiol. 81, 4207–4215 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shigin A.A. The helminth fauna of the Rybinsk Reservoir. Author’s abstract of dissertation, (1954).Witenberg, G. Studies on the trematode—family Heterophyidae. Ann. Trop. Med. Parasitol. 23, 131–239 (1929).Article 

    Google Scholar 
    Bush, A. O. & Forrester, D. J. Helminths of the white ibis in Florida. Proc. Helminthol. Soc. Wash. 43, 17–23 (1976).
    Google Scholar 
    Mamaev, Y. L. Helminth fauna of Galliformes and Charadriiformes in Eastern Siberia. Tr. Gelmintol. Lab. Akad. Nauk SSSR (1959). More

  • in

    Fungal findings excite truffle researchers and gastronomes

    A white truffle (Tuber magnatum Pico) in the laboratory of Robin Pépinières, a nursery in Saint Laurent-du-Cros, France.Philippe Desmazes/AFP via Getty Images

    On 10 October 2019, a dog began pawing excitedly at the ground beneath a young oak tree in western France. Its owner eased it out of the way and pulled an Italian white truffle (Tuber magnatum Pico) from the earth. Knobbly, covered in soil and about the size of a hen’s egg, it was not much to look at, but the fungal discovery nonetheless generated ripples of excitement among researchers, chefs and truffle growers worldwide.That’s not just because T. magnatum is the most expensive truffle species, for which wealthy gastronomes are willing to pay up to US$11,000 per kilogram. Although more than 90% of the also highly sought-after black Périgord truffles (Tuber melanosporum) served in restaurants today are farmed, previous attempts to cultivate their more elusive white counterparts had failed.That changed three years ago, when the Lagotto Romagnolo, the Italian dog breed commonly used as a truffle hunter, unearthed the first Italian white truffle confirmed to have been cultivated outside its natural range. The dog made the find at its owner’s plantation in the Nouvelle Aquitaine region of France, but the precise location is being kept secret to deter thieves.Scientists at a laboratory run jointly by France’s National Research Institute for Agriculture, Food and the Environment (INRAE) and the University of Lorraine in Nancy reported1 that since that first T. magnatum truffle was unearthed, two more were found at the site in 2019 and four in 2020. In an article published last month in Le Trufficulteur, the magazine of the French Federation of Truffle Growers, the researchers report the cultivation of 26 truffles last year2.“I was very happy to hear these results,” says Alessandra Zambonelli, a mycologist at the University of Bologna, Italy, who has studied Italian white truffles for more than 40 years, and whose own attempts to cultivate them in the 1980s failed. “I was sure it was possible to cultivate T. magnatum, but only now do we have the scientific proof.”The INRAE project is helping growers to better understand the optimal conditions for cultivating Italian white truffles. Some scientists think the breakthrough could help to reverse falls in harvests of wild truffles that have been linked to climate change. Researchers also hope the work will help them to answer outstanding questions about the life cycle of the species and understand why it is so much harder to farm than are other truffles.Farming failureTuber magnatum’s natural range is more limited than those of other sought-after truffles, growing as it does in parts of Italy, southeastern France, the Balkans and Switzerland. It is highly prized for its intense, some say intoxicating, aroma and flavour, variously described as reminiscent of garlic, fermented cheese and methanethiol — the additive that gives domestic gas its smell. Prices fluctuate in line with supply, which varies according to climatic conditions. These hit an all-time high in 2021, when US prices were more than triple what they were in 2019.Most land plants form symbiotic relationships with fungi to access extra water and mineral nutrients. In return, the plants provide their fungal partners, which grow around and into their root tips, with carbon-rich nutrients. These associations are known as mycorrhizae. What most people call truffles are, in fact, just the spore-containing fruiting bodies of the fungus.In the 1970s, French scientists successfully induced Périgord truffles to form mycorrhizal associations with tree seedlings by inoculating the seedlings with their spores. The same technique was used at the time to produce trees with T. magnatum mycorrhizae. More than 500,000 of these were planted in Italy. But when researchers later began using the polymerase chain reaction (PCR) technique to accurately identify truffle mycorrhizae, fruiting bodies and the root-like mycelia, it became clear that this species’ physical characteristics had been poorly described, and that, as a result, many of the trees had in fact partnered with less sought-after truffle species.Some sites in Italy did produce T. magnatum truffles 15–20 years after planting, but only in areas where the species occurs naturally. “It is likely that those found so long after being planted came from chance colonization of host plants by native T. magnatum strains in the environment,” says Claudia Riccioni, a plant and fungal biologist at Italy’s Institute of Biosciences and BioResources in Perugia.After the Italian white and Périgord truffles, the next most sought-after species is the summer truffle (Tuber aestivum), which grows in many European countries and sells for much less than its more highly regarded cousins. Plantations of T. aestivum have been established in France, Italy, Scandinavia, Germany and elsewhere.Buried treasuresIn 1999, INRAE researchers joined forces with Robin Pépinières, a nursery based in Saint-Laurent-du-Cros, southern France. Genetic analysis confirmed that the nursery had produced trees that partnered with T. magnatum, leading, from 2008, to the establishment of plantations in France1. In 2018, the INRAE group selected five of these, all outside the part of southeastern France where T. magnatum grows naturally, to see whether it had become established and to record the conditions under which any truffle fruiting bodies were produced.PCR tests confirmed the fungus’s mycelia were present in soil samples taken from near the trees at four of the locations. The first three truffles, found in Nouvelle Aquitaine, were discovered four-and-a-half years after the inoculated trees had been planted. Further PCR tests confirmed they were T. magnatum. The 26 truffles found in 2021 were unearthed beneath 11 different trees, with 5 under one of them. The largest weighed 150g.Mycologists Claude Murat and Cyrille Bach, both members of the INRAE–University of Lorraine lab, were present when one of the four fruiting bodies produced in 2020 was discovered. Asked how sure he was that the truffle grew in the plantation and hadn’t originated elsewhere, Murat said: “I’m 100% sure. We could see the soil had not been disturbed and that grasses were growing there.”Mycorrhizal mysteryPrevious attempts to cultivate Italian white truffles failed in part because their life cycle remains poorly understood. Twenty years ago, it was widely assumed that truffles, including T. magnatum, were self-fertile. However, research then showed they have one of two ‘mating type’ genes, and that the mycelia of individuals of different mating types must meet for reproduction to occur3.A remaining unresolved puzzle is why researchers have found T. magnatum mycorrhizae much harder to locate than those of other truffles. Mycologist Paul Thomas works to establish joint ventures with truffle growers through Mycorrhizal Systems, his UK-based company. He inoculated host trees with T. magnatum, and generated mycorrhizae at the company’s greenhouses in Preston, but these did not last long, so the trials were abandoned.“When you find fruiting bodies, you quite often can’t find mycorrhizae,” says Thomas, “and sometimes you get mycorrhizae but no fruiting bodies. Perhaps, in the case of T. magnatum we’ve become too focused on linking truffle production to mycorrhizae.”When Zambonelli’s group analysed soil from four Italian white-truffle sites over three years, they found a correlation between production of fruiting bodies and a location’s concentration of DNA from T. magnatum mycelia4. Some researchers began to suspect that the host–fungus relationship might not be as important as previously thought, and that T. magnatum might be saprotrophic, meaning that it digests dead or decaying organic matter.However, a 2018 comparison5 of the genomes of truffle species with those of several saprotrophic fungi showed this to be unlikely. “T. magnatum has very few plant-wall-degrading enzymes, which does not support the saprotrophic hypothesis,” says Riccioni, one of the study’s authors. Other researchers have tried to explain the elusiveness of T. magnatum mycorrhizae by pointing out that other truffles can form endophytic relationships with plants in which they which live throughout them, not just at their roots.Murat wonders whether he and others have just been looking in the wrong place. “We look on the roots down to 20 centimetres, never looked at 50 centimetres, even though we know other mycorrhizae can be found at those depths,” he says. “Or perhaps they produce mycorrhizae just for a very short time; we just don’t know.”A growing body of research shows that microorganisms have important roles in truffle life cycles. A 2015 review found that bacteria in T. magnatum fruiting bodies help to create the truffles’ odours6. Zambonelli and her colleagues found that bacteria in T. magnatum fruiting bodies can fix nitrogen for nutritional purposes7. Another Italian team found that microbes commonly associated with white truffles are involved in fruiting-body maturation8. “Some bacteria could also help T. magnatum become established at tree roots and fruiting-body formation,” says Zambonelli.A changing climateGathering accurate statistics on truffle yields before cultivation is difficult, although it is widely accepted that these fell significantly during the twentieth century. One study reports that Périgord truffle harvests in France collapsed from 500–1,000 tonnes annually in the 1900s to 10–50 tonnes by the 2000s. Yields in Italy declined, too, but not by as much, and mostly in the first half of the twentieth century9.The reasons for falls in truffle harvests are complex and vary by location, but researchers have blamed depopulation, loss of knowledge about truffle hunting and deforestation. Some of the older men who featured in the highly rated 2020 documentary The Truffle Hunters, set in Piedmont, northern Italy, say they will take what they know about truffles to the grave rather than pass it on to younger generations because of the greed they see in the industry.

    A canine forager and his owner who feature in the 2020 documentary The Truffle Hunters, set in northern Italy.BFA/Alamy

    More recently, some researchers have highlighted climate change as another cause of declining yields. Truffle gastronomy and tourism are economically and culturally important in places where truffles occur naturally. That’s certainly true in parts of Croatia, where, from 2003 to 2013, reported annual harvests were 1–3 tonnes for Italian white truffles and 1–6 tonnes for Périgords, except for the years 2009, 2010 and 2013, when they fell to 0.1–0.5 tonnes.Field mycologist Željko Žgrablić at the Ruđer Bošković Institute in Zagreb says truffles have become harder to find on the Istria peninsula, where he grew up, in part because of increasingly frequent and severe droughts. Yields have also been affected by big increases in wild-boar populations as a result of warmer winters. The animals forage for the truffles and reduce human harvests, and, according to Žgrablić, also damage the fungus’s mycelia. “The climate has become unpredictable, with more extremes,” says Žgrablić. “It’s hard to prove it, but I think we have fewer white truffles as a result.”In a 2019 study, Thomas analysed annual Périgord truffle yields in the Mediterranean region over a 36-year period10. He concluded that decreased summer rain and increased summer temperatures significantly reduced subsequent winter harvests. He forecast declines of 78–100% in harvests between 2071 and 2100 as a result of further predicted warming. “White truffles need relatively moist soil, so in its natural range it might be okay in mountainous areas but particularly vulnerable in areas where falls in rainfall are predicted,” says Thomas.Future farmingBeyond producing the first confirmed cultivated white truffles, the INRAE project is also generating data on the optimal conditions for production. The soil temperature at the site that yielded the truffles was around 20 °C in the summer, and Murat says that the team’s tests suggest white truffles need more water than do Périgords.So could the increasing knowledge of how best to get Italian white truffles to grow be adopted more widely to help reverse declining yields? Fruiting bodies have been confirmed at only one site, so other growers are waiting to see whether this success will be repeated elsewhere. Murat is in the process of trying to confirm recent claims from two other owners that they, too, have cultivated T. magnatum truffles.Thomas is downbeat about the future of Italian white-truffle cultivation. “In parts of Spain, more and more orchards can no longer irrigate because of water shortages. Already, in France, it is hard to get permission to extract water from rivers for irrigation, and that’s only going to get worse.”Oak trees inoculated with Périgord- and summer-truffle spores are due to be planted later this year in Croatia as part of a collaboration run by the state-owned Croatian Forests. If successful, the group could try white truffles. Žgrablić, who is part of the project, is also advising an enthusiast who planted 650 seedlings inoculated with T. magnatum, also in Croatia, earlier this year. “We’re seeing increasing interest from private investors in cultivating Italian white truffles,” he says. “There is certainly a lot of potential, but what the results will be, I can’t tell.”Alongside his research work, Murat acts as a scientific consultant for WeTruf, a company he co-founded in Nancy that provides advice and monitoring services for truffle farmers. He is cautious about the potential for white-truffle cultivation, if optimistically so. “We are careful when people tell us they want to start big white-truffle plantations,” says Murat. “I tell them ‘we are only at the beginning, we don’t know if it will succeed or not’. But I think there will be more and more plantations, and, if they apply good management practices, I hope, more and more truffles.” More

  • in

    Metagenomic shifts in mucus, tissue and skeleton of the coral Balanophyllia europaea living along a natural CO2 gradient

    Vanwonterghem I, Webster NS. Coral reef microorganisms in a changing climate. iScience. 2020;23:100972.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voolstra CR, Ziegler M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. BioEssays. 2020;42:e2000004.PubMed 
    Article 

    Google Scholar 
    Goulet TL, Erill I, Ascunce MS, Finley SJ, Javan GT. Conceptualization of the holobiont paradigm as it pertains to corals. Front Physiol. 2020;11:566968.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Response of coral-associated bacterial communities to local and global stressor. Front Marine Sci. 2017;4:262.Article 

    Google Scholar 
    Morrow KM, Moss AG, Chadwick NE, Liles MR. Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol. 2012;78:6438–49.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Brien PA, Smith HA, Fallon S, Fabricius K, Willis BL, Morrow KM, et al. Elevated CO2 has little influence on the bacterial communities associated with the pH-tolerant coral, massive Porites spp. Front Microbiol. 2018;9:2621.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rohwer F, Breitbart M, Jara J, Azam F, Knowlton N. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs. 2001;20:85–91.Article 

    Google Scholar 
    Rohwer F, Seguritan V, Azam F, Knowlton N. Diversity and distribution of coral-associated bacteria. Marine Ecology Progress Series. 2002;243:1–10.Article 

    Google Scholar 
    Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Oppen MJ, Blackall LL. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol. 2019;17:557–67.PubMed 
    Article 
    CAS 

    Google Scholar 
    Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Reports. 2019;9:1–13.
    Google Scholar 
    Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627–36.Article 

    Google Scholar 
    Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Ann Rev Microbiol. 2016;70:317–40.CAS 
    Article 

    Google Scholar 
    Putnam HM. Avenues of reef-building coral acclimatization in response to rapid environmental change. J Exp Biol. 2021;224:jeb239319.PubMed 
    Article 

    Google Scholar 
    Stocker, TF, Qin, D, Plattner, GK, Alexander, LV, Allen, SK, Bindoff, NL, et al. (2013). Technical summary. In: Climate change 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker, TF, Qin, D, Plattner, G-K, Tignor,M, Allen, SK, Doschung, J, Nauels, A, Xia, Y, Bex, V,Midgley, PM (Eds.)]. Cambridge University Press, pp. 33–115.Bindoff, NL, Cheung, WW, Kairo, JG, Arístegui, J, Guinder, VA, Hallberg, R, et al. (2019). Changing ocean, marine ecosystems, and dependent communities. In: IPCC special report on the ocean and cryosphere in a changing climate [Pörtner, H-O, Roberts, DC, Masson-Delmotte, V, Zhai, P, Tignor, M, Poloczanska, E, Mintenbeck, K, Alegría, A, Nicolai, M, Okem, A, Petzold, J, Rama, B, Weyer NM (eds.)]. In press. p. 477–587.Hoegh-Guldberg O, Poloczanska ES, Skirving W, Dove S. Coral reef ecosystems under climate change and ocean acidification. Front Marine Sci. 2017;4:158.Article 

    Google Scholar 
    Yu T, Chen Y. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Sci Total Environ. 2019;655:865–79.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gattuso JP, Magnan A, Billé R, Cheung WW, Howes EL, Joos F, et al. OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science. 2015;349:aac4722.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kroeker KJ, Kordas RL, Crim RN, Singh GG. Response to technical comment on ‘meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms’. Ecology Lett. 2011;14:E1–E2.Article 

    Google Scholar 
    Ingrosso G, Abbiati M, Badalamenti F, Bavestrello G, Belmonte G, Cannas R, et al. Mediterranean Bioconstructions Along the Italian Coast. Adv Marine Biology. 2018;79:61–136.Article 

    Google Scholar 
    Hassenrück C, Fink A, Lichtschlag A, Tegetmeyer HE, de Beer D, Ramette A. Quantification of the effects of ocean acidification on sediment microbial communities in the environment: the importance of ecosystem approaches. FEMS Microbiology Ecology. 2016;92:fiw027.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tangherlini M, Corinaldesi C, Ape F, Greco S, Romeo T, Andaloro F, et al. Ocean acidification induces changes in virus-host relationships in Mediterranean benthic ecosystems. Microorganisms. 2021;9:769.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lejeusne C, Chevaldonné P, Pergent-Martini C, Boudouresque CF, Pérez T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecology Evolut. 2010;25:250–60.Article 

    Google Scholar 
    Fantazzini P, Mengoli S, Pasquini L, Bortolotti V, Brizi L, Mariani M, et al. Gains and losses of coral skeletal porosity changes with ocean acidification acclimation. Nat Commun. 2015;6:1–7.Article 
    CAS 

    Google Scholar 
    Goffredo S, Prada F, Caroselli E, Capaccioni B, Zaccanti F, Pasquini L, et al. Biomineralization control related to population density under ocean acidification. Nat Clim Change. 2014;4:593–7.CAS 
    Article 

    Google Scholar 
    Teixidó N, Caroselli E, Alliouane S, Ceccarelli C, Comeau S, Gattuso JP, et al. Ocean acidification causes variable trait-shifts in a coral species. Global Change Biology. 2020;26:6813–30.PubMed 
    Article 

    Google Scholar 
    Kenkel CD, Moya A, Strahl J, Humphrey C, Bay LK. Functional genomic analysis of corals from natural CO2‐seeps reveals core molecular responses involved in acclimatization to ocean acidification. Global Change Biology. 2018;24:158–71.PubMed 
    Article 

    Google Scholar 
    Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. The ISME J. 2015;9:894–908.CAS 
    PubMed 
    Article 

    Google Scholar 
    Biagi E, Caroselli E, Barone M, Pezzimenti M, Teixido N, Soverini M, et al. Patterns in microbiome composition differ with ocean acidification in anatomic compartments of the Mediterranean coral Astroides calycularis living at CO2 vents. Sci Total Environ. 2020;724:138048.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shore A, Day RD, Stewart JA, Burge CA. Dichotomy between regulation of coral bacterial communities and calcification physiology under ocean acidification conditions. Appl Environ Microbiol. 2021;87:e02189–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marcelino VR, Morrow KM, van Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Mol Ecology. 2017;26:5344–57.CAS 
    Article 

    Google Scholar 
    Goffredo S, Caroselli E, Pignotti E, Mattioli G, Zaccanti F. Variation in biometry and population density of solitary corals with environmental factors in the Mediterranean Sea. Marine Biology. 2007;152:351–61.Article 

    Google Scholar 
    Webster NS, Negri AP, Botté ES, Laffy PW, Flores F, Noonan S, et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci Reports. 2016;6:1–9.
    Google Scholar 
    Klein, SG, Geraldi, NR, Anton, A, Schmidt‐Roach, S, Ziegler, M, Cziesielski, MJ, et al. (2021). Projecting coral responses to intensifying marine heatwaves under ocean acidification. Global change biology, https://doi.org/10.1111/gcb.15818. Advance online publication.Okazaki RR, Towle EK, van Hooidonk R, Mor C, Winter RN, Piggot AM, et al. Species‐specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Global Change Biology. 2017;23:1023–35.PubMed 
    Article 

    Google Scholar 
    Maor-Landaw K, Ben-Asher HW, Karako-Lampert S, Salmon-Divon M, Prada F, Caroselli E, et al. Mediterranean versus Red sea corals facing climate change, a transcriptome analysis. Sci Reports. 2017;7:1–8.
    Google Scholar 
    Prada F, Caroselli E, Mengoli S, Brizi L, Fantazzini P, Capaccioni B, et al. Ocean warming and acidification synergistically increase coral mortality. Sci Reports. 2017;7:40842.CAS 

    Google Scholar 
    Chen, D, Rojas, M, Samset, BH, Cobb, K, Diongue Niang, A, Edwards, P, et al. (2021). Framing, Context, and Methods. In: Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [Masson-Delmotte, V, Zhai, P, Pirani, A, Connors, AL, Péan, C, Berger, S, Caud, N, Chen, Y, Goldfarb, L, Gomis, MI, Huang, M, Leitzell, K, Lonnoy, E, Matthews, JBR, Maycock, TK, Waterfield, T, Yelekçi, O, Yu, R, & Zhou B (eds.)]. In Press.Wall, M, Prada, F, Fietzke, J, Caroselli, E, Dubinsky, Z, Brizi, L, et al. (2019). Linking internal carbonate chemistry regulation and calcification in corals growing at a Mediterranean CO2 vent. Frontiers in marine science, 699.Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;10:2280–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sweet MJ, Croquer A, Bythell JC. Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals. PLoS One. 2011;6:e21195.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Apprill A, Weber LG, Santoro AE. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems. 2016;1:e00143–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubio-Portillo E, Santos F, Martínez-García M, de Los Ríos A, Ascaso C, Souza-Egipsy V, et al. Structure and temporal dynamics of the bacterial communities associated to microhabitats of the coral Oculina patagonica. Environ Microbiol. 2016;18:4564–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Palladino G, Biagi E, Rampelli S, Musella M, D’Amico F, Turroni S, et al. Seasonal changes in microbial communities associated with the jewel anemone Corynactis viridis. Front Marine Sci. 2021a;8:57.Article 

    Google Scholar 
    Palladino G, Rampelli S, Scicchitano D, Musella M, Quero GM, Prada F, et al. Impact of marine aquaculture on the microbiome associated with nearby holobionts: the case of Patella caerulea living in proximity of sea bream aquaculture cages. Microorganisms. 2021b;9:455.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell AM, Fleisher J, Sinigalliano C, White JR, Lopez JV. Dynamics of marine bacterial community diversity of the coastal waters of the reefs, inlets, and wastewater outfalls of southeast F lorida. MicrobiologyOpen. 2015;4:390–408.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sadik NJ, Uprety S, Nalweyiso A, Kiggundu N, Banadda NE, Shisler JL, et al. Quantification of multiple waterborne pathogens in drinking water, drainage channels, and surface water in Kampala, Uganda, during seasonal variation. GeoHealth. 2017;1:258–69.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Su HC, Liu YS, Pan CG, Chen J, He LY, Ying GG. Persistence of antibiotic resistance genes and bacterial community changes in drinking water treatment system: from drinking water source to tap water. Sci Total Environ. 2018;616:453–61.PubMed 
    Article 
    CAS 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CAS 
    PubMed 
    Article 

    Google Scholar 
    Feehery GR, Yigit E, Oyola SO, Langhorst BW, Schmidt VT, Stewart FJ, et al. A method for selectively enriching microbial DNA from contaminating vertebrate host DNA. PloS One. 2013;8:e76096.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. PANDAseq: paired-end assembler for Illumina sequences. BMC Bioinformatics. 2012;13:1–7.Article 
    CAS 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:1091.CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–D596.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Toolkit, P (2019). Broad Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad Institute.Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews, S (2010). Fastqc: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.Liu CM, Li D, Sadakane K, Luo R, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.PubMed 
    Article 
    CAS 

    Google Scholar 
    West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 2018;28:569–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:1–9.Article 
    CAS 

    Google Scholar 
    Liu J, Wang H, Yang H, Zhang Y, Wang J, Zhao F, et al. Composition-based classification of short metagenomic sequences elucidates the landscapes of taxonomic and functional enrichment of microorganisms. Nucleic Acids Res. 2013;41:e3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Culhane AC, Thioulouse J, Perrière G, Higgins DG. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics. 2005;21:2789–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meron D, Rodolfo-Metalpa R, Cunning R, Baker AC, Fine M, Banin E. Changes in coral microbial communities in response to a natural pH gradient. ISME J. 2012;6:1775–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biology Rev. 2000;64:515–47.CAS 
    Article 

    Google Scholar 
    Kabbara S, Hérivaux A, Dugé de Bernonville T, Courdavault V, Clastre M, Gastebois A, et al. Diversity and evolution of sensor histidine kinases in eukaryotes. Genome Biology Evolut. 2019;11:86–108.CAS 
    Article 

    Google Scholar 
    Campanacci V, Nurizzo D, Spinelli S, Valencia C, Tegoni M, Cambillau C. The crystal structure of the Escherichia coli lipocalin Blc suggests a possible role in phospholipid binding. FEBS Lett. 2004;562:183–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol. 2020;104:1357–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pérez E, Rubio MB, Cardoza RE, Gutiérrez S, Bettiol W, Monte E, et al. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei. Front Microbiol. 2015;6:1181.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohki T, Wakitani Y, Takeo M, Yasuhira K, Shibata N, Higuchi Y, et al. Mutational analysis of 6-aminohexanoate-dimer hydrolase: relationship between nylon oligomer hydrolytic and esterolytic activities. FEBS Lett. 2006;580:5054–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Velupillaimani D, Muthaiyan A. Potential of Bacillus subtilis from marine environment to degrade aromatic hydrocarbons. Environ Sustainability. 2019;2:381–9.CAS 
    Article 

    Google Scholar 
    Byrne M, Fitzer S. The impact of environmental acidification on the microstructure and mechanical integrity of marine invertebrate skeletons. Conservation Physiol. 2019;7:coz062.CAS 
    Article 

    Google Scholar 
    Godefroid M, Dupont S, Metian M, Hédouin L. Two decades of seawater acidification experiments on tropical scleractinian corals: Overview, meta-analysis and perspectives. Marine Pollut Bull. 2022;178:113552.CAS 
    Article 

    Google Scholar 
    Goffredo S, Arnone S, Zaccanti F. Sexual reproduction in the Mediterranean solitary coral Balanophyllia europaea (Scleractinia, Dendrophylliidae). Marine Ecology Progress Series. 2002;229:83–94.Article 

    Google Scholar 
    Luo, D, Wang, X, Feng, X, Tian, M, Wang, S, Tang, SL, et al. (2021). Population differentiation of Rhodobacteraceae along with coral compartments. ISME J. https://doi.org/10.1038/s41396-021-01009-6. Advance online publication.Shnit-Orland M, Kushmaro A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecology. 2009;67:371–80.CAS 
    Article 

    Google Scholar 
    Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:4921.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Glazier A, Herrera S, Weinnig A, Kurman M, Gómez CE, Cordes E. Regulation of ion transport and energy metabolism enables certain coral genotypes to maintain calcification under experimental ocean acidification. Mol Ecology. 2020;29:1657–73.CAS 
    Article 

    Google Scholar 
    Strader ME, Wong JM, Hofmann GE. Ocean acidification promotes broad transcriptomic responses in marine metazoans: a literature survey. Front Zoology. 2020;17:1–23.Article 

    Google Scholar 
    Nikolic N. Autoregulation of bacterial gene expression: lessons from the MazEF toxin–antitoxin system. Curr Genet. 2019;65:133–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Contreras-Llano LE, Guerrero-Rubio MA, Lozada-Ramírez JD, García-Carmona F, Gandía-Herrero F. First betalain-producing bacteria break the exclusive presence of the pigments in the plant kingdom. MBio. 2019;10:e00345–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naveed M, Tariq K, Sadia H, Ahmad H, Mumtaz AS. The life history of pyrroloquinoline quinone (PQQ): a versatile molecule with novel impacts on living systems. Int J Mol Biology Open Access. 2016;1:29–46.Article 

    Google Scholar 
    Aguilar C, Raina JB, Fôret S, Hayward DC, Lapeyre B, Bourne DG, et al. Transcriptomic analysis reveals protein homeostasis breakdown in the coral Acropora millepora during hypo-saline stress. BMC Genomics. 2019;20:1–13.Article 

    Google Scholar 
    Bury-Moné S, Nomane Y, Reymond N, Barbet R, Jacquet E, Imbeaud S, et al. Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genetics. 2009;5:e1000651.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chilton SS, Falbel TG, Hromada S, Burton BM. A conserved metal binding motif in the Bacillus subtilis competence protein ComFA enhances transformation. J Bacteriol. 2017;199:e00272–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnsen AR, Kroer N. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiology Ecology. 2007;59:718–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    Maurer LM, Yohannes E, Bondurant SS, Radmacher M, Slonczewski JL. pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol. 2005;187:304–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ma C, Sim S, Shi W, Du L, Xing D, Zhang Y. Energy production genes sucB and ubiF are involved in persister survival and tolerance to multiple antibiotics and stresses in Escherichia coli. FEMS Microbiol Lett. 2010;303:33–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Toesca I, Perard C, Bouvier J, Gutierrez C, Conter A. The transcriptional activator NhaR is responsible for the osmotic induction of osmCp1, a promoter of the stress-inducible gene osmC in Escherichia coli. Microbiology. 2001;147:2795–803.CAS 
    PubMed 
    Article 

    Google Scholar 
    Benner R, Kaiser K. Abundance of amino sugars and peptidoglycan in marine particulate and dissolved organic matter. Limnology Oceanogr. 2003;48:118–28.CAS 
    Article 

    Google Scholar 
    Mills LA, McCormick AJ, Lea-Smith DJ. Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Reports. 2020;40:BSR20193325.CAS 
    Article 

    Google Scholar 
    Labare MP, Bays JT, Butkus MA, Snyder-Leiby T, Smith A, Goldstein A, et al. The effects of elevated carbon dioxide levels on a Vibrio sp. isolated from the deep-sea. Environ Sci Pollut Res Int. 2010;17:1009–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sogin EM, Putnam HM, Anderson PE, Gates RD. Metabolomic signatures of increases in temperature and ocean acidification from the reef-building coral, Pocillopora damicornis. Metabolomics. 2016;12:71.Article 
    CAS 

    Google Scholar 
    Yang Y, Kadim MI, Khoo WJ, Zheng Q, Setyawati MI, Shin YJ, et al. Membrane lipid composition and stress/virulence related gene expression of Salmonella Enteritidis cells adapted to lactic acid and trisodium phosphate and their resistance to lethal heat and acid stress. Int J Food Microbiol. 2014;191:24–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Diricks M, Gutmann A, Debacker S, Dewitte G, Nidetzky B, Desmet T. Sequence determinants of nucleotide binding in Sucrose Synthase: improving the affinity of a bacterial Sucrose Synthase for UDP by introducing plant residues. Protein Eng Design Select. 2017;30:143–50.CAS 

    Google Scholar 
    De Carvalho CC, Caramujo MJ. The various roles of fatty acids. Molecules. 2018;23:2583.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Campanacci V, Bishop RE, Blangy S, Tegoni M, Cambillau C. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett. 2006;580:4877–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zawadzka-Skomiał J, Markiewicz Z, Nguyen-Disteche M, Devreese B, Frere JM, Terrak M. Characterization of the bifunctional glycosyltransferase/acyltransferase penicillin-binding protein 4 of Listeria monocytogenes. J Bacteriol. 2006;188:1875–81.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wannicke N, Frey C, Law CS, Voss M. The response of the marine nitrogen cycle to ocean acidification. Global Change Biology. 2018;24:5031–43.PubMed 
    Article 

    Google Scholar 
    Burnat M, Herrero A, Flores E. Compartmentalized cyanophycin metabolism in the diazotrophic filaments of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA. 2014;111:3823–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang H, Yang C. Arginine and nitrogen mobilization in cyanobacteria. Mol Microbiol. 2019;111:863–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Law AM, Lai SW, Tavares J, Kimber MS. The structural basis of beta-peptide-specific cleavage by the serine protease cyanophycinase. J Mol Biol. 2009;392:393–404.CAS 
    PubMed 
    Article 

    Google Scholar 
    Flores E, Arévalo S, Burnat M. Cyanophycin and arginine metabolism in cyanobacteria. Algal Res. 2019;42:101577.Article 

    Google Scholar 
    Bednarz VN, Van De Water JA, Grover R, Maguer JF, Fine M, Ferrier-Pagès C. Unravelling the importance of diazotrophy in corals–combined assessment of nitrogen assimilation, diazotrophic community and natural stable isotope signatures. Front Microbiol. 2021;12:1638.
    Google Scholar 
    Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:490–7.PubMed 
    Article 
    CAS 

    Google Scholar 
    Béraud E, Gevaert F, Rottier C, Ferrier-Pagès C. The response of the scleractinian coral Turbinaria reniformis to thermal stress depends on the nitrogen status of the coral holobiont. J Exp Biol. 2013;216:2665–74.PubMed 

    Google Scholar 
    Tong H, Cai L, Zhou G, Zhang W, Huang H, Qian PY. Correlations between prokaryotic microbes and stress-resistant algae in different corals subjected to environmental stress in Hong Kong. Front Microbiol. 2020;11:686.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pogoreutz C, Rädecker N, Cardenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Global Change Biol. 2017;23:3838–48.Article 

    Google Scholar 
    Zhou Y, Tang K, Wang P, Wang W, Wang Y, Wang X. Identification of bacteria-derived urease in the coral gastric cavity. Sci China Earth Sci. 2020;63:1553–63.CAS 
    Article 

    Google Scholar 
    Biscéré T, Ferrier-Pagès C, Grover R, Gilbert A, Rottier C, Wright A, et al. Enhancement of coral calcification via the interplay of nickel and urease. Aquatic Toxicol. 2018;200:247–56.Article 
    CAS 

    Google Scholar  More