More stories

  • in

    Effects of organic fertilizers on growth characteristics and fruit quality in Pear-jujube in the Loess Plateau

    Effect of different organic fertilizers on the growth of Pear-jujubeEffect of different organic fertilizers on the bearing branch length of Pear-jujubeJujube-bearing branch has the dual role of fruiting and photosynthesis32,33. It can be seen from Fig. 1 that different organic fertilizer treatments have a significant impact on the growth of jujube-bearing branches. Among them, the longest jujube-bearing branch in the SC treatment is 20.17 cm, which is significantly higher than that in CK and CF; the jujube-bearing branch length in the SC, SM and BM treatment are increased by 34%, 23% and 25% compared with that in CK, and the difference is significant (P  SM  > SC  > CK. Among them, the density of light of BM is the largest. It reaches 38.06 mol/(m2 d). CF, SC, SM and BM respectively increase by 11.54%, 8.09%, 7.96% and 15.13% compared with CK, and the difference is significant. The canopy transmittance of jujube is BM  CF  > SM  > SC. The highest Tr of BM reaches 8.66 µmol/moL. It may be related to higher LAI, and the instantaneous water use efficiency of SC is highest, which reaches 3.30%. The WUEp of CF, SC, SM and BM treatments increase by 22.4%, 64.2%, 44.3% and 30.8%, respectively, compared with that of CK. It reaches a significant difference level (P  SM  > BM  > CF  > CK. Compared with CK (9.37%), the SC, SM, BM, and CF increased by 3.69, 3.18, 1.11 and 0.40% points, respectively. Organic fertilizer is beneficial to increase the water content of the soil. Among them, soybean cake fertilizer (SC) has the largest increase, which is significantly different from CK (P  SM  > SC  > CF  > CK. The RWC of BM reaches 94.20%, which is significantly different from CK (P  SM  > BM  > CK. The total flavonoid content of SC reaches 14.35 mg/kg, which is 24.57% higher than that of CK. The total flavonoid content of SM and BM increase by 17.01% and 9.2%, respectively, compared with that of CK. Moreover, each treatment is significantly different from CK (P  More

  • in

    Humans pressure wetland multifunctionality

    Daskalova, G. N. et al. Science 368, 1341–1347 (2020).CAS 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Nature 486, 59–67 (2012).CAS 
    Article 

    Google Scholar 
    Hector, A. & Bagchi, R. Nature 448, 188–190 (2007).CAS 
    Article 

    Google Scholar 
    Fanin, N. et al. Nat. Ecol. Evol. 2, 269–278 (2018).Article 

    Google Scholar 
    Duffy, J. E. Front. Ecol. Environ. 7, 437–444 (2009).Article 

    Google Scholar 
    Manning, P. et al. Adv. Ecol. Res. 61, 323–356 (2019).Article 

    Google Scholar 
    Lefcheck, J. S. et al. Nat. Commun. 6, 6936 (2015).CAS 
    Article 

    Google Scholar 
    Soliveres, S. et al. Nature 536, 456–459 (2016).CAS 
    Article 

    Google Scholar 
    Moi, D. A. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01827-7 (2022).Article 

    Google Scholar 
    Venter, O. et al. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Allan, E. et al. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    Article 

    Google Scholar 
    Manning, P. et al. Nat. Ecol. Evol. 2, 427–436 (2018).Article 

    Google Scholar 
    Gamfeldt, L. et al. Nat. Commun. 4, 1340 (2013).Article 

    Google Scholar 
    Schuldt, A. et al. Nat. Commun. 9, 2989 (2018).Article 

    Google Scholar 
    Jochum, M. et al. Nat. Ecol. Evol. 4, 1485–1494 (2020).Article 

    Google Scholar 
    Dudgeon, D. et al. Biol. Rev. 81, 163–182 (2005).Article 

    Google Scholar 
    Blois, J. L. et al. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).CAS 
    Article 

    Google Scholar 
    França, F. et al. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Ewers, R. M. et al. Nat. Commun. 6, 6836 (2015).CAS 
    Article 

    Google Scholar 
    Reich, P. B. et al. Science 336, 589–592 (2012).CAS 
    Article 

    Google Scholar  More

  • in

    Human pressure drives biodiversity–multifunctionality relationships in large Neotropical wetlands

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 

    Google Scholar 
    Di Marco, M., Venter, O., Possingham, H. P. & Watson, J. E. M. Changes in human footprint drive changes in species extinctions risk. Nat. Commun. 9, 4621 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 

    Google Scholar 
    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
    Google Scholar 
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).CAS 
    PubMed 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).CAS 
    PubMed 

    Google Scholar 
    Schuldt, A. et al. Biodiversity across trophic levels drive multifunctionality in highly diverse forests. Nat. Commun. 9, 2989 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 211–220 (2020).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 

    Google Scholar 
    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 8159 (2015).PubMed 

    Google Scholar 
    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 

    Google Scholar 
    Hautier, Y. et al. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nat. Ecol. Evol. 2, 50–56 (2018).PubMed 

    Google Scholar 
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    PubMed 

    Google Scholar 
    Moi, D. A. et al. Regime shifts in a shallow lake over 12 years: consequences for taxonomic and functional diversities, and ecosystem multifunctionality. J. Anim. Ecol. 91, 551–565 (2022).PubMed 

    Google Scholar 
    Moi, D. A. et al. Multitrophic richness enhances ecosystem multifunctionality of tropical shallow lakes. Funct. Ecol. 35, 942–954 (2021).CAS 

    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).
    Google Scholar 
    Li, F. et al. Human activitiesʼ fingerprint on multitrophic biodiversity and ecosystem functions across a major river catchment in China. Glob. Change Biol. 26, 6867–6879 (2020).
    Google Scholar 
    Enquist, B. J. et al. The megabiota are disproportionately importante for biosphere functioning. Nat. Commun. 11, 699 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eisenhauer, N. et al. A multitrophic perspective on biodiversity–ecosystem functioning research. Adv. Ecol. Res. 61, 1–54 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Agostinho, A. A., Thomaz, S. M. & Gomes, L. C. Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrol. Hydrobiol. 4, 255–268 (2004).
    Google Scholar 
    Chiaravalloti, R. M., Homewood, K. & Erikson, K. Sustainability and land tenure: who owns the floodplain in the Pantanal, Brazil? Land Use Policy 64, 511–524 (2017).
    Google Scholar 
    Pelicice, F. M. et al. Large-scale degradation of the Tocantins–Araguaia River Basin. Environ. Manag. 68, 445–452 (2021).
    Google Scholar 
    Malekmohammadi, B. & Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 82, 293–303 (2017).
    Google Scholar 
    McIntyre, P. B. et al. Fish extinctions alter nutrient recycling in tropical freshwaters. Proc. Natl Acad. Sci. USA 104, 4461–4466 (2006).
    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).
    Google Scholar 
    Heino, J. et al. Lakes in the era of global change: moving beyond single-lake thinking in maintaining biodiversity and ecosystem services. Biol. Rev. 96, 89–106 (2020).PubMed 

    Google Scholar 
    Bridgewater, P. & Kim, R. E. The Ramsar conservation on wetlands at 50. Nat. Ecol. Evol. 5, 268–270 (2020).
    Google Scholar 
    Romero, G. Q. et al. Pervasive decline of subtropical aquatic insects over 20 years driven by water transparency, non-native fish and stoichiometric imbalance. Biol. Lett. 17, 20210137 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lansac-Tôha, F. M. et al. Scale-depedent patterns of metacommunity structuring in aquatic organisms across floodplain systems. J. Biogeogr. 48, 872–885 (2021).
    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Weiss, K. C. B. & Ray, C. A. Unifying functional trait approaches to understand the assemblage of ecological communities: synthesizing taxonomic divides. Ecography 42, 2012–2020 (2019).
    Google Scholar 
    Laliberté, E. & Legendre, R. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 

    Google Scholar 
    Mackereth, F. J. H, Heron, J & Talling, J. F. Water Analysis: Some Revised Methods for Limnologists. Publication No. 36 (Freshwater Biological Association, 1978).Golterman, H. L., Clymo, R. S. & Ohnstad, M. A. M. Methods for Physical and Chemical Analysis of Freshwaters (Blackwell Scientific Publications, 1978).Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).
    Google Scholar 
    Sun, J. & Liu, D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J. Plankt. Res. 25, 1331–1346 (2003).
    Google Scholar 
    Froese, R. & Pauly, D. FishBase (2018); www.fishbase.orgPorter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora1. Limnol. Oceanogr. 25, 943–948 (1980).
    Google Scholar 
    Manning, P. et al. Redifining ecosystem multifunctionality. Nat. Ecol. Evol. 2, 427–436 (2018).PubMed 

    Google Scholar 
    Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. R version 2.0–12 https://rspatial.org/raster (2012).World Urbanization Prospects: The 2020 Revision: Highlights (United Nations, 2020).Junk, W. J. et al. Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection. Aquat. Conserv. Mar. Freshwater Ecosyst. 24, 5–22 (2013).
    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and nonlinear mixed effects models. R version 3.1.137 https://CRAN.Rproject.org/package=nlme (2018).K. Barton, MuMIn: Model selection and model averaging based on information criteria (AICc and alike). R version 1–1 https://CRAN.R-project.org/package=MuMIn (2014).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).Schielzeth, H. Simple means to improve the interpretability ofregression coefficients. Meth. Ecol. Evol. 1, 103–113 (2010).
    Google Scholar 
    Aiken, L. S. & West, S. G. Multiple Regression: Testing and Interpreting Interactions (Sage Publications, 1991).Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2015).
    Google Scholar 
    Grace, J. B. & Bollen, K. A. Representing general theoretical concepts in structural equation models: the role of composite variables. Environ. Ecol. Stat. 15, 191–213 (2008).
    Google Scholar 
    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    More than half of data deficient species predicted to be threatened by extinction

    Cardillo, M. & Meijaard, E. Are comparative studies of extinction risk useful for conservation? Trends Ecol. Evol. 27, 167–171 (2012).PubMed 
    Article 

    Google Scholar 
    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).PubMed 
    Article 

    Google Scholar 
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Sci. (80-.). 366, eaax3100 (2019).Article 
    CAS 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Sci. (80-.) 353, 288–291 (2016).CAS 
    Article 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Sci. (80-.). 344, 1246752–1246752 (2014).CAS 
    Article 

    Google Scholar 
    IPBES. Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Zenodo (2019) https://doi.org/10.5281/zenodo.3831674.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, A., Pilgrim, J., Lamoreux, J., Hoffmann, M. & Brooks, T. The value of the IUCN Red List for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 
    Article 

    Google Scholar 
    Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 
    Article 

    Google Scholar 
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the Ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Purvis, A. & Hector, A. Getting the measure of biodiversity. Nature 405, 212–219 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bachman, S. P. et al. Progress, challenges and opportunities for Red Listing. Biol. Conserv. 234, 45–55 (2019).Article 

    Google Scholar 
    Rondinini, C., Di Marco, M., Visconti, P., Butchart, S. H. M. & Boitani, L. Update or outdate: long-term viability of the IUCN red list. Conserv. Lett. 7, 126–130 (2014).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-2. https://www.iucnredlist.org (2021).Cazalis, V. et al. Bridging the research-implementation gap in IUCN Red List assessments. Trends Ecol. Evol. 37, 359–370 (2022).PubMed 
    Article 

    Google Scholar 
    IUCN Standards and Petitions Committee. Guidelines for using the IUCN Red List Categories and Criteria. Prepared by the Standards and Petitions Committee. Downloadable from https://www.iucnredlist.org/documents/RedListGuidelines.pdf vol. 15 (2022).Bland, L. M. et al. Toward reassessing data‐deficient species. Conserv. Biol. 31, 531–539 (2017).PubMed 
    Article 

    Google Scholar 
    Butchart, S. H. M. & Bird, J. P. Data Deficient birds on the IUCN Red List: What don’t we know and why does it matter? Biol. Conserv. 143, 239–247 (2010).Article 

    Google Scholar 
    Zhao, L. et al. Spatial knowledge deficiencies drive taxonomic and geographic selectivity in data deficiency. Biol. Conserv. 231, 174–180 (2019).Article 

    Google Scholar 
    Parsons, E. C. M. Why IUCN should replace “Data Deficient” conservation status with a precautionary “Assume Threatened” Status—A Cetacean Case Study. Front. Mar. Sci. 3, 2015–2017 (2016).
    Google Scholar 
    Roberts, D. L., Taylor, L. & Joppa, L. N. Threatened or Data Deficient: assessing the conservation status of poorly known species. Divers. Distrib. 22, 558–565 (2016).Article 

    Google Scholar 
    Jetz, W. & Freckleton, R. P. Towards a general framework for predicting threat status of data-deficient species from phylogenetic, spatial and environmental information. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140016 (2015).Article 

    Google Scholar 
    Howard, S. D. & Bickford, D. P. Amphibians over the edge: silent extinction risk of Data Deficient species. Divers. Distrib. 20, 837–846 (2014).Article 

    Google Scholar 
    Jarić, I., Courchamp, F., Gessner, J. & Roberts, D. L. Potentially threatened: a Data Deficient flag for conservation management. Biodivers. Conserv. 25, 1995–2000 (2016).Article 

    Google Scholar 
    Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).PubMed 
    Article 

    Google Scholar 
    Butchart, S. H. M. et al. Measuring Global Trends in the status of biodiversity: red list indices for birds. PLoS Biol. 2, e383 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (2015).Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B Biol. Sci. 360, 255–268 (2005).CAS 
    Article 

    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).Article 

    Google Scholar 
    Mooers, A. Ø., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for Phylogenetic Conservation Prioritization. PLoS One 3, e3700 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Runting, R. K., Phinn, S., Xie, Z., Venter, O. & Watson, J. E. M. Opportunities for big data in conservation and sustainability. Nat. Commun. 11, 2003 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hochkirch, A. et al. A strategy for the next decade to address data deficiency in neglected biodiversity. Conserv. Biol. 35, 502–509 (2021).PubMed 
    Article 

    Google Scholar 
    Hino, M., Benami, E. & Brooks, N. Machine learning for environmental monitoring. Nat. Sustain 1, 583–588 (2018).Article 

    Google Scholar 
    Wearn, O. R., Freeman, R. & Jacoby, D. M. P. Responsible AI for conservation. Nat. Mach. Intell. 1, 72–73 (2019).Article 

    Google Scholar 
    Bland, L. M. et al. Cost-effective assessment of extinction risk with limited information. J. Appl. Ecol. 52, 861–870 (2015).Article 

    Google Scholar 
    Bland, L. M. & Böhm, M. Overcoming data deficiency in reptiles. Biol. Conserv. 204, 16–22 (2016).Article 

    Google Scholar 
    Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed 
    Article 

    Google Scholar 
    Luiz, O. J., Woods, R. M., Madin, E. M. P. & Madin, J. S. Predicting IUCN extinction risk categories for the World’s Data Deficient Groupers (Teleostei: Epinephelidae). Conserv. Lett. 9, 342–350 (2016).Article 

    Google Scholar 
    Stévart, T. et al. A third of the tropical African flora is potentially threatened with extinction. Sci. Adv. 5, eaax9444 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darrah, S. E., Bland, L. M., Bachman, S. P., Clubbe, C. P. & Trias-Blasi, A. Using coarse-scale species distribution data to predict extinction risk in plants. Divers. Distrib. 23, 435–447 (2017).Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Tracking the rising extinction risk of sharks and rays in the Northeast Atlantic Ocean and Mediterranean Sea. Sci. Rep. 11, 15397 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 108459 (2020).Article 

    Google Scholar 
    IUCN. Species Information Service. Version 2020-3. https://www.iucnredlist.org/resources/spatial-data-download (2021).IUCN. The IUCN Red List of Threatened Species. Version 2020-3. https://www.iucnredlist.org (2020).Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, 1–34 (2014).Article 

    Google Scholar 
    Selig, E. R. et al. Global priorities for Marine biodiversity conservation. PLoS One 9, e82898 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    O’Hara, C. C., Afflerbach, J. C., Scarborough, C., Kaschner, K. & Halpern, B. S. Aligning marine species range data to better serve science and conservation. PLoS One 12, e0175739 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mittermeier, R. A., Goetsch Mittermeier, C., Gil, P. R. & Wilson, E. O. Megadiversity: Earth’s Biologically Wealthiest Nations. CEMEX (2005).Chamberlain, S. rredlist: ‘IUCN’ Red List Client. R package version 0.7.0. (2020).GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).OBIS. Ocean Biodiversity Information System. Intergovernmental Oceanographic Commission of UNESCO. www.obis.org. (2021).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).Provoost, P. & Bosch, S. robis: Ocean Biodiversity Information System (OBIS) Client. R package version 2.3.9. https://CRAN.R-project.org/package=robis. (2020).Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: the bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch‐Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 25, 811–826 (2019).PubMed 
    Article 

    Google Scholar 
    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (WDPA). Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Sci. (80-.) 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Tuanmu, M. N. & Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 24, 1329–1339 (2015).Article 

    Google Scholar 
    Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Byers, L. et al. A Global Database of Power Plants. World Resour. Inst. 1–18 (2019).Mulligan, M., van Soesbergen, A. & Sáenz, L. GOODD, a global dataset of more than 38,000 georeferenced dams. Sci. Data 7, 31 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).Article 

    Google Scholar 
    Barbarossa, V. et al. Erratum: FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Sci. Data 5, 180078 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barbarossa, V. et al. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl Acad. Sci. 117, 3648–3655 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Domisch, S., Amatulli, G. & Jetz, W. Near-global freshwater-specific environmental variables for biodiversity analyses in 1 km resolution. Sci. Data 2, 150073 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).PubMed 
    Article 

    Google Scholar 
    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163 (2006).PubMed 
    Article 

    Google Scholar 
    Schlossberg, S., Chase, M. J., Gobush, K. S., Wasser, S. K. & Lindsay, K. State-space models reveal a continuing elephant poaching problem in most of Africa. Sci. Rep. 10, 10166 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burn, R. W., Underwood, F. M. & Blanc, J. Global trends and factors associated with the illegal killing of Elephants: a hierarchical Bayesian Analysis of Carcass Encounter Data. PLoS One 6, e24165 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hauenstein, S., Kshatriya, M., Blanc, J., Dormann, C. F. & Beale, C. M. African elephant poaching rates correlate with local poverty, national corruption and global ivory price. Nat. Commun. 10, 2242 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    UNDP. Human Development Report 2020. The Next Frontier: Human Development and the Anthropocene. New York. http://hdr.undp.org/en/content/human-development-report-2020. (2020).Transparency International. Corruption Perceptions Index 2020. (2020).Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Sci. (80-.) 319, 948–952 (2008).CAS 
    Article 

    Google Scholar 
    Assis, J. et al. Bio‐ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Tyberghein, L. et al. Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob. Ecol. Biogeogr. 21, 272–281 (2012).Article 

    Google Scholar 
    Zizka, A., Silvestro, D., Vitt, P. & Knight, T. M. Automated conservation assessment of the orchid family with deep learning. Conserv. Biol. 35, 897–908 (2021).PubMed 
    Article 

    Google Scholar 
    Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning. The Elements of Statistical Learning vol. 27 (Springer New York, 2001).Kampichler, C., Wieland, R., Calmé, S., Weissenberger, H. & Arriaga-Weiss, S. Classification in conservation biology: a comparison of five machine-learning methods. Ecol. Inform. 5, 441–450 (2010).Article 

    Google Scholar 
    LeDell, E. et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package version 3.36.0.4. https://github.com/h2oai/h2o-3 (2022).H2O.ai. H2O AutoML. https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html (2022).Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).PubMed 
    Article 

    Google Scholar 
    Kuhn, M. Building Predictive Models in R using the caret Package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Kursa, M. B. & Rudnicki, W. R. Feature selection with the Boruta package. J. Stat. Softw. 36, 1–13 (2010).Article 

    Google Scholar 
    Harrell Jr, F. E. Hmisc: Harrell miscellaneous. R package version 4.5-0. (2021).van der Laan, M. J., Polley, E. C. & Hubbard, A. E. Super Learner. Stat. Appl. Genet. Mol. Biol. 6 (2007).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).RStudio Team. RStudio: integrated development environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).Pebesma, E. Simple features for R: standardized support for Spatial Vector Data. R. J. 10, 439 (2018).Article 

    Google Scholar 
    Ross, N. Fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3. https://CRAN.R-project.org/package=fasterize (2020).Microsoft Corporation & Weston, S. doParallel: Foreach Parallel Adaptor for the ‘parallel’ Package. R package version 1.0.16. https://CRAN.R-project.org/package=doParallel (2020).Wickham, H. stringr: simple, consistent wrappers for common string operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr (2019).Tuszynski, J. caTools: tools: Moving Window Statistics, GIF, Base64, ROC AUC, etc. R package version 1.18.1. https://CRAN.R-project.org/package=caTools (2021).Wickham, H. et al. Welcome to the tidyverse. Journal of Open Source Software, 4, 1686. https://doi.org/10.21105/joss.01686 (2019).Dragulescu, A. & Arendt, C. xlsx: Read, Write, Format Excel 2007 and Excel 97/2000/XP/2003 Files. R package version 0.6.5. (2020).Wickham, H. & Bryan, J. readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl (2019).ESRI. ArcGIS Pro version 2.9.0. https://www.esri.com/en-us/home (2022).Kuhn, M. caret: Classification and Regression Training. R package version 6.0-86. https://CRAN.R-project.org/package=caret (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer, NY (2016).Wilke, C. O. ggridges: Ridgeline Plots in ‘ggplot2’. R package version 0.5.3. https://CRAN.R-project.org/package=ggridges (2021).South, A. rnaturalearth: World Map Data from Natural Earth. R package version 0.1.0. https://CRAN.R-project.org/package=rnaturalearth (2017).Garnier, S. viridis: Default Color Maps from ‘matplotlib’. R package version 0.5.1. https://CRAN.R-project.org/package=viridis (2018).Borgelt, J. jannebor/dd_forecast: Code for study ‘More than half of Data Deficient species predicted to be threatened by extinction’ (v1.0.1). https://doi.org/10.5281/zenodo.6627688.Zenodo (2022). More

  • in

    Phenotypic plasticity promotes species coexistence

    Pigliucci, M. Phenotypic plasticity: Beyond Nature and Nurture (Johns Hopkins Univ. Press, 2001).Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Aerts, R., Boot, R. G. A. & Van Der Aart, P. J. M. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87, 551–559 (1991).CAS 
    Article 

    Google Scholar 
    Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).Article 

    Google Scholar 
    Pfennig, D. W., Rice, A. M. & Martin, R. A. Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87, 769–779 (2006).Article 

    Google Scholar 
    van Kleunen, M. & Fischer, M. Adaptive evolution of plastic foraging responses in a clonal plant. Ecology 82, 3309–3319 (2001).Article 

    Google Scholar 
    Relyea, R. A. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecol. Monogr. 72, 523–540 (2002).Article 

    Google Scholar 
    Broekman, M. J. E. et al. Signs of stabilisation and stable coexistence. Ecol. Lett. 22, 1957–1975 (2019).Article 

    Google Scholar 
    Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).Article 

    Google Scholar 
    Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).Article 

    Google Scholar 
    Chesson, P. in Unity in Diversity: Reflections on Ecology after the Legacy of Ramon Margalef (eds F. Valladares et al.) 119–164 (Fundación Banco Bilbao Vizcaya Argentaria, 2008).Ellner, S. P., Snyder, R. E. & Adler, P. B. How to quantify the temporal storage effect using simulations instead of math. Ecol. Lett. 19, 1333–1342 (2016).Article 

    Google Scholar 
    Vasseur, D. A., Amarasekare, P., Rudolf, V. H. W. & Levine, J. M. Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. Am. Nat. 178, E96–E109 (2011).Article 

    Google Scholar 
    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).Article 

    Google Scholar 
    Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl Acad. Sci. USA 116, 2112–2117 (2019).CAS 
    Article 

    Google Scholar 
    Hart, S. P., Freckleton, R. P. & Levine, J. M. How to quantify competitive ability. J. Ecol. 106, 1902–1909 (2018).Article 

    Google Scholar 
    Grainger, T. N., Levine, J. M. & Gilbert, B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 34, 925–935 (2019).Article 

    Google Scholar 
    Letten, A. D., Ke, P.-J. & Fukami, T. Linking modern coexistence theory and contemporary niche theory. Ecol. Monogr. 87, 161–177 (2017).Article 

    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).CAS 
    Article 

    Google Scholar 
    Pfennig, D. W. & Murphy, P. J. How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 56, 1217–1228 (2002).Article 

    Google Scholar 
    Adler, P., HilleRisLambers, J. & Levine, J. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump Simon, M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Evolution’s Wedge: Competition and the Origins of Diversity (Univ. California Press, 2012).Ayala, F. J. Reversal of dominance in competing species of Drosophila. Am. Nat. 100, 81–83 (1966).Article 

    Google Scholar 
    Pease, C. M. On the evolutionary reversal of competitive dominance. Evolution 38, 1099–1115 (1984).Article 

    Google Scholar 
    Pimentel, D., Feinberg, E. H., Wood, P. W. & Hayes, J. T. Selection, spatial distribution, and the coexistence of competing fly species. Am. Nat. 99, 97–109 (1965).Article 

    Google Scholar 
    Lankau, R. A. & Strauss, S. Y. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science 317, 1561–1563 (2007).CAS 
    Article 

    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).CAS 
    Article 

    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).Article 

    Google Scholar 
    Abrams, P. A. Alternative models of character displacement and niche shift. 2. Displacement when there is competition for a single resource. Am. Nat. 130, 271–282 (1987).Article 

    Google Scholar 
    Chevin, L. M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 

    Google Scholar 
    Harmon, E. A. & Pfennig, D. W. Evolutionary rescue via transgenerational plasticity: evidence and implications for conservation. Evol. Dev. 23, 292–307 (2021).Article 

    Google Scholar 
    Forsman, A. Rethinking phenotypic plasticity and its consequences for individuals, populations and species. Heredity 115, 276–284 (2015).CAS 
    Article 

    Google Scholar 
    Brass, D. P. et al. Phenotypic plasticity as a cause and consequence of population dynamics. Ecol. Lett. 24, 2406–2417 (2021).Article 

    Google Scholar 
    Macarthur, R. H. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).Article 

    Google Scholar 
    Beverton, R. J. H. & Holt, S. J. On the Dynamics of Exploited Fish Populations (UK Ministry of Agriculture, Fisheries and Food, 1957).Landolt, E. Biosystematic Investigations in the Family of Duckweeds (Lemnaceae), Vol. 2: The Family of Lemnaceae—A Monographic Study, Vol.1 (Geobotanischen Institute, ETH Zürich, 1986).Wang, W. et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5, 3311 (2014).CAS 
    Article 

    Google Scholar 
    Hoagland, D. R. & Arnon, D. I. The Water-Culture Method for Growing Plants without Soil (College of Agriculture, Agricultural Experiment Station, Univ. California, 1950).Inouye, B. D. Response surface experimental designs for investigating interspecific competition. Ecology 82, 2696–2706 (2001).Article 

    Google Scholar 
    Law, R. & Watkinson, A. R. Response-surface analysis of two-species competition: an experiment on Phleum arenarium and Vulpia fasciculata. J. Ecol. 75, 871–886 (1987).Article 

    Google Scholar 
    MATLAB v.9.0 (MathWorks, 2016).Stan Modeling Language Users Guide and Reference Manual, v.2.27 (Stan Development Team, 2021); https://mc-stan.orgVehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Bürkner, P.C. brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. https://doi.org/10.18637/jss.v080.i01 (2017).Vehtari, A. et al. loo: efficient leave-one-out cross-validation and WAIC for Bayesian models, v.2.4.1 (2020).ImageJ (US NIH, 1997–2016). More

  • in

    Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 37, 637–669 (2006).
    Google Scholar 
    Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B Biol. Sci. 365, 3101–3112 (2010).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change/631/158/2165/2457/631/158/2039/129/141/139 letter. Nat. Clim. Chang. 8 (2018).Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mushegian, A. A. et al. Ecological mechanism of climate-mediated selection in a rapidly evolving invasive species. Ecol. Lett. 24, 698–707 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).
    Google Scholar 
    Mayor, S. J. et al. Increasing phenological asynchrony between spring green-up and arrival of migratory birds. Sci. Rep. 7, 1–10 (2017).ADS 

    Google Scholar 
    Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: Ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34 (2019).Youngflesh, C. et al. Migratory strategy drives species-level variation in bird sensitivity to vegetation green-up. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01442-y (2021).PubMed 

    Google Scholar 
    Forrest, J. R. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 17 (2016).Crimmins, T. M. et al. Short-term forecasts of insect phenology inform pest management. Ann. Entomol. Soc. Am. 113 (2020).Brakefield, P. M. Geographical variability in, and temperature effects on, the phenology of Maniola jurtina and Pyronia tithonus (Lepidoptera, Satyrinae) in England and Wales. Ecol. Entomol. 12 (1987).Dell, D., Sparks, T. H. & Dennis, R. L. H. Climate change and the effect of increasing spring temperatures on emergence dates of the butterfly Apatura iris (Lepidoptera: Nymphalidae). Eur. J. Entomol. 102, 161–167 (2005).
    Google Scholar 
    Van Der Kolk, H. J., Wallisdevries, M. F. & Van Vliet, A. J. H. Using a phenological network to assess weather influences on first appearance of butterflies in the Netherlands. Ecol. Indic. 69 (2016).Abarca, M. et al. Inclusion of host quality data improves predictions of herbivore phenology. Entomol. Exp. Appl. 166 (2018).Abarca, M. & Lill, J. T. Latitudinal variation in the phenological responses of eastern tent caterpillars and their egg parasitoids. Ecol. Entomol. 44 (2019).Karlsson, B. Extended season for northern butterflies. Int. J. Biometeorol. 58, 691–701 (2014).ADS 
    PubMed 

    Google Scholar 
    Kharouba, H. M., Paquette, S. R., Kerr, J. T. & Vellend, M. Predicting the sensitivity of butterfly phenology to temperature over the past century. Glob. Chang. Biol. 20 (2014).Diamond, S. E., Frame, A. M., Martin, R. A. & Buckley, L. B. Species’ traits predict phenological responses to climate change in butterflies. Ecology 92 (2011).Diamond, S. E. et al. Unexpected phenological responses of butterflies to the interaction of urbanization and geographic temperature. Ecology 95 (2014).Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96, 1473–1479 (2015).
    Google Scholar 
    Stewart, J. E., Illán, J. G., Richards, S. A., Gutiérrez, D. & Wilson, R. J. Linking inter-annual variation in environment, phenology, and abundance for a montane butterfly community. Ecology 101 (2020).Roy, D. B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Glob. Chang. Biol. 21 (2015).Dennis, R. L. H. et al. Turnover and trends in butterfly communities on two British tidal islands: Stochastic influences and deterministic factors. J. Biogeogr. 37, 2291–2304 (2010).
    Google Scholar 
    Sparks, T. H. & Yates, T. J. The effect of spring temperature on the appearance dates of British butterflies 1883–1993. Ecography (Cop.). 20 (1997).Michielini, J. P., Dopman, E. B. & Crone, E. E. Changes in flight period predict trends in abundance of Massachusetts butterflies. Ecol. Lett. 24, 249–257 (2021).PubMed 

    Google Scholar 
    Zografou, K. et al. Species traits affect phenological responses to climate change in a butterfly community. Sci. Rep. 11 (2021).Belitz, M. W., Larsen, E. A., Ries, L. & Guralnick, R. P. The accuracy of phenology estimators for use with sparsely sampled presence-only observations. Methods Ecol. Evol. 11, 1273–1285 (2020).
    Google Scholar 
    Van Strien, A. J., Plantenga, W. F., Soldaat, L. L., Van Swaay, C. A. M. & WallisDeVries, M. F. Bias in phenology assessments based on first appearance data of butterflies. Oecologia 156, 227–235 (2008).ADS 
    PubMed 

    Google Scholar 
    Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12 (1977).Taron, D. & Ries, L. Butterfly Monitoring for Conservation. in Butterfly Conservation in North America 35–57 (Springer Netherlands, 2015). https://doi.org/10.1007/978-94-017-9852-5_3.Schmucki, R. et al. A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. J. Appl. Ecol. 53, 501–510 (2016).
    Google Scholar 
    Prudic, K., Oliver, J., Brown, B. & Long, E. Comparisons of citizen science data-gathering approaches to evaluate urban butterfly diversity. Insects 9, 186 (2018).PubMed Central 

    Google Scholar 
    Prudic, K. L. et al. eButterfly: Leveraging massive online citizen science for butterfly conservation. Insects 8 (2017).Barve, V. V. et al. Methods for broad-scale plant phenology assessments using citizen scientists’ photographs. Appl. Plant Sci. 8 (2020).Seltzer, C. Making biodiversity data social, shareable, and scalable: Reflections on iNaturalist & citizen science. Biodivers. Inf. Sci. Stand. 3 (2019).Wittmann, J., Girman, D. & Crocker, D. Using inaturalist in a coverboard protocol to measure data quality: Suggestions for project design. Citiz. Sci. Theory Pract. 4 (2019).Dorazio, R. M. Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Glob. Ecol. Biogeogr. 23 (2014).Ries, L., Zipkin, E. F. & Guralnick, R. P. Tracking trends in monarch abundance over the 20th century is currently impossible using museum records. In Proceedings of the National Academy of Sciences of the United States of America vol. 116 (2019).Larsen, E. A. & Shirey, V. Method matters: Pitfalls in analysing phenology from occurrence records. Ecol. Lett. https://doi.org/10.1111/ele.13602 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    de Keyzer, C. W., Rafferty, N. E., Inouye, D. W. & Thomson, J. D. Confounding effects of spatial variation on shifts in phenology. Glob. Chang. Biol. 23 (2017).Cima, V. et al. A test of six simple indices to display the phenology of butterflies using a large multi-source database. Ecol. Indic. 110, 105885 (2020).
    Google Scholar 
    Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19 (2021).Polgar, C. A., Primack, R. B., Williams, E. H., Stichter, S. & Hitchcock, C. Climate effects on the flight period of Lycaenid butterflies in Massachusetts. Biol. Conserv. 160 (2013).Brooks, S. J. et al. The influence of life history traits on the phenological response of British butterflies to climate variability since the late-19th century. Ecography (Cop.) 40, 1152–1165 (2017).
    Google Scholar 
    van Strien, A. J., van Swaay, C. A. M., van Strien-van Liempt, W. T. F. H., Poot, M. J. M. & WallisDeVries, M. F. Over a century of data reveal more than 80% decline in butterflies in the Netherlands. Biol. Conserv. 234 (2019).Boggs, C. L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17 (2016).Belitz, M. et al. Climate drivers of adult insect activity are conditioned by life history traits. Authorea Prepr. (2021).Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: A quantitative review. PLoS ONE 9 (2014).Park, D. S., Newman, E. A. & Breckheimer, I. K. Scale gaps in landscape phenology: challenges and opportunities. Trends Ecol. Evol. 36 (2021).Kerr, J. T., Vincent, R. & Currie, D. J. Lepidopteran richness patterns in North America. Écoscience 5, 448–453 (1998).
    Google Scholar 
    Taylor, S. D., Meiners, J. M., Riemer, K., Orr, M. C. & White, E. P. Comparison of large-scale citizen science data and long-term study data for phenology modeling. Ecology 100 (2019).Isaac, N. J. B. et al. Data integration for large-scale models of species distributions. Trends Ecol. Evol. 35 (2020).Miller, D. A. W., Pacifici, K., Sanderlin, J. S. & Reich, B. J. The recent past and promising future for data integration methods to estimate species’ distributions. Methods Ecol. Evol. 10 (2019).Fletcher, R. J. et al. A practical guide for combining data to model species distributions. Ecology https://doi.org/10.1002/ecy.2710 (2019).PubMed 

    Google Scholar 
    Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. bioRxiv https://doi.org/10.1101/613786 (2019).
    Google Scholar 
    Crossley, M. S. et al. Recent climate change is creating hotspots of butterfly increase and decline across North America. Glob. Chang. Biol. 27, 2702–2714 (2021).CAS 
    PubMed 

    Google Scholar 
    Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science (80-) 371, 1042–1045 (2021).ADS 
    CAS 

    Google Scholar 
    Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, (2019).Kerr, N. Z. et al. Developmental trap or demographic bonanza? Opposing consequences of earlier phenology in a changing climate for a multivoltine butterfly. Glob. Chang. Biol. 26, (2020).Belth, J. E. Butterflies of Indiana: A field guide. Butterflies of Indiana: A Field Guide (2012).Betros, B. A Photographic Field Guide to the Butterflies in the Kansas City Region (Kansas City Star Books, 2008).
    Google Scholar 
    Bouseman, J. K., Sternburg, J. G. & Wiker, J. R. Field guide to the skipper butterflies of Illinois. (Illinois Natural History Survey Manual 11, 2006).Clark, A. H. The butterflies of the District of Columbia and vicinity. Bull. United States Natl. Museum (1932).Glassberg, J. Butterflies through Binoculars: Boston—New York—Washington Region (Oxford University Press, 1993).
    Google Scholar 
    Glassberg, J. Butterflies through Binoculars: The East—A Field Guide to the Butterflies of Eastern North America (Oxford University Press, 1999).
    Google Scholar 
    Iftner, D. C., Shuey, J. A. & Calhoun, J. V. Butterflies and skippers of Ohio (Ohio State University, 1992).
    Google Scholar 
    Jeffords, M. R., Post, S. L. & Wiker, J. Butterflies of Illinois: a field guide (Illinois Natural History Survey, 2019).
    Google Scholar 
    Schlicht, D. W., Downey, J. C. & Nekola, J. C. The butterflies of Iowa (University of Iowa Press, 2007).
    Google Scholar 
    Schmucki, R., Harrower, C. A. & Dennis, E. B. rbms: Computing generalised abundance indices for butterfly monitoring count data. R package version 1.1.0. https://github.com/RetoSchmucki/rbms (2021).GBIF. GBIF Occurrence download. https://doi.org/10.15468/dl.1erh15 (2019).Thornton, P. E. et al. Daymet: Daily surface weather data on a 1-km grid for North America, version 3. ORNL DAAC. (Oak Ridge, TN, 2017).Baskerville, G. L. & Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50, (1969).R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing vol. 1 409 (2011).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version (2014).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4 (2013).Kahle, D. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J 5 (2013). More

  • in

    COVID-19’s impact on visitation behavior to US national parks from communities of color: evidence from mobile phone data

    MaterialsData sourcesSupplementary Table S1 summarizes the definitions of all the variables and Supplementary Table S2 displays the descriptive statistics of the variables. A detailed description of our data sources is summarized in Supplementary Table S3.In summary, our mobile phone data, containing Jan 2018 to Apr 2021 visitation records to each national park and the visitors’ respective census block groups, are courtesy of SafeGraph Inc47. The geographical boundaries of national parks that are used to extract records only relevant to national parks are provided by the NPS Land Resources Division48. Finally, the racial and population demographics of each census block group are provided by the 2015-2019 American Community Survey (ACS)16.The utilization of each distinct dataset towards the extraction of our materials of interest are elaborated in the subsequent sections.Validation of SafeGraph’s mobile-phone datasetThe validation of SafeGraph’s mobile-phone dataset in its application to national parks has been previously validated by Yun et al17. Specifically, Yun et al’s17 work showed a close resemblance between the NPS visitor use survey and SafeGraph’s mobile-phone dataset in terms of visitation counts, temporal visitation patterns, racial demographics, and state-level residential origins of the visitors to Yellowstone National Park. However, SafeGraph’s POI classification of “National Parks” remains inconsistent with the NPS’s official definition of National Park. To circumvent this problem, we have utilized shapefiles courtesy of the NPS OpenData48 to extract the most visited POIs that fall within the shapefiles of each respective “National Park”. This process would be detailed in the subsequent sub-sections below.Selection of mainland US national parksWe adopted the official and formal definition of national parks as defined and listed by the NPS System49.We selected national parks within the 48 states encompassing the contiguous U.S. We chose to omit the parks that fall within the states of Alaska, Hawaii, Puerto Rico and other US minor Islands considering the fact that air travel is a necessity for out-of-state visitors to visit these select parks. These separate travel behavioral patterns could result in confounding variables towards our analysis, particularly since air travel faced major disruptions amidst the COVID-19 pandemic50.It is worth noting that New River George National Park was declared as a national park only following the COVID-19 pandemic51. Hence, it is excluded from our study.Finally, we lack the data availability for White Sands National Park and Dry Tortugas National Park. The former is due to its proximity to White Sands Missile Range and security concerns on mobile device data52. The latter’s lack of data availability could be attributed to the fact that the park is an island off the coast of Key West, FL53.Henceforth, we included a grand total of 48 national parks in our study.Extraction of POIsWe selected our points-of-interests (POIs) based on the dataset made available by SafeGraph47. While SafeGraph does provide its own classification of “national parks”, its classification methodology remains inconsistent with the NPS’s official definition and formal list of “national parks”17,49.Hence, we extracted POIs that fall within the encompassed polygon shapefiles of each respective national park. The polygon shapefiles are courtesy of the NPS OpenData48.We then selected the POI with the highest average monthly visitation records for each distinct national park.The choice to select the POI with the highest visitation record could be attributed to the fact that a brief analysis reveals that in many parks, the top 5 most populated POIs tends to fall within the same vicinity17. Specifically, the top 5 most populated POIs for many large national parks, like Cuyahoga National Park, Indiana Dunes National park, and Yellowstone National Park, typically encompass the areas surrounding the park entrances17. This remains rational since visitors would have to pass through park entrances to enter the parks and gain access other areas of the park. Hence, selecting only the POI with the highest visitation record for each park prevents us from making duplicate counts from separate POIs.Computing census block group-based racial demographicsThe aforementioned Safegraph47 data provides us with the census block group origins of the visitors to each distinct POI. The census block group origins are identified by its 12-digit Federal Information Processing Standard (FIPS) code. We are thus able to retrieve our racial demographics of interests (% of non-whites, % of African-, % Hispanics-, % of Asian-, and % Native Americans) pertaining to each visitors census block origins.Our study only considered all visitations across mainland U.S. As such, we have excluded visitors from Hawaii, Alaska, Puerto Rico and other minor US islands for their visitation patterns are expected to be abruptly disrupted following the pandemic due to restrictions put in place from air travel50. This decision would prevent the effects of confounding variables and avoid drastically skewing our data.Computing distance travelled by visitor to each national parkLikewise, we obtain the variables of distance through the utilization of the Haversine formula54 between the POIs coordinates and the centroids of the visitors census block group. We standardize the units of distance to kilometers in our analysis.Categorization of visitation records falling before and after COVID-19We categorize pre-COVID era as any time-period that occurs prior to the month of March 2020. Hence, we classify the COVID era as any time period from the month of March 2020 onward. We selected March 2020 for it was the month in which the UN declared COVID-19 a global pandemic55. This declaration was proceeded by numerous state and local lockdown measures which drastically impacted American commerce56 and the lifestyles of many Americans57.Methods and ModelOffsetting visitation counts with the census block group populationWe offset our dependent variable of visitation counts per census block population because racial demographics of the visitors’ census origins are measured at a census block level. This allows us to account for the fact that one would naturally expect higher visitation counts from more populated census block groups. Hence, the visitation counts per thousand population of the census block group would serve as a function of our independent variables (COVID-19 era, distance and racial demographics). This could be illustrated in Eq. (1) in the introduction section.Gravity ModelWe incorporated gravity models into our methodology. In the context of tourism, the gravity model explores the behavior and travel patterns over distances between two unique POIs.The gravity model was adopted from Newton’s law of universal gravitation in physics58. Newton’s law of universal gravitation states that distance and mass determine the gravitational forces between two objects. The gravity model has since been adapted by numerous disciplines in the social sciences. These topics include trade21, tourism19,20, and migration22. For instance, the gravity model is popular in studies involving bilateral trade21. This is because the gravity model allows economists to measure how specific economic indicators (such as GDP) could attract trade between two countries, given the distances between them21.We thus elected to use the gravity model because it best represents our research theme of seeking to analyze the changes in visitations to national parks amongst individual racial communities across the U.S. Henceforth, the gravity model allows us to best analyze the change in visitations from different racial communities to each specified national park given the required distance of travel. The selection of our variables, in seeking to optimally represent the gravity model, while preserving its assumptions, would be elaborated in the subsequent subsections below.Our application of the gravity model works as such: given (i{mathrm{th}}) census block group and (j{mathrm{th}}) national park where (alpha _k) symbolizes each respective coefficient towards the determined independent variable, the gravity model could be demonstrated as such:$$begin{aligned} frac{visitation_{ijt}}{left( frac{population_i}{1000}right) }propto frac{race_i^{alpha _1}*interaction_terms^{alpha _2}}{distance_{ij}^{alpha _3}} end{aligned}$$
    (2)
    which can be remodelled as:$$begin{aligned} visitation_{ijt}propto frac{race_i^{alpha _1}*(interaction~terms)^{alpha _2}*left( frac{population_i}{1000}right) ^{alpha _4}}{distance_{ij}^{alpha _3}} end{aligned}$$
    (3)
    using natural logarithms could be transformed to:$$begin{aligned} ln (visitation_{ijt})propto {alpha _1}ln (race_i)+{alpha _2}ln (interaction~terms)+alpha _3ln (distance_{ij})+ {alpha _4}ln left( frac{population_i}{1000}right) end{aligned}$$
    (4)
    Model SpecificationThe gravity model is incorporated using panel data with interaction terms19,21. Incorporating panel data allows us to control for unobservable individual effects19,21, such as time invariant monthly and seasonal fluctuations in park visitations, as best illustrated in the peaks and troughs witnessed in Fig. 1. The interaction terms allows us to measure the impact of COVID-19 towards our selected predictors. Specifically, the random-effects panel approach was selected in favor of the fixed-effects panel model and the pooled ordinary least squares (OLS) model as evident by the results of the F-tests, Hausman’s Chi-Squared, and the Breusch-Pagan (BP) Lagrange Multiplier59 tests displayed in Supplementary Table S4.This results in Eq. (5), given each (i{mathrm{th}}) census block group’s visitation to (j{mathrm{th}}) national parks during (t{mathrm{th}}) month over specified race (race_i).$$begin{aligned} begin{aligned} ln left( visitation_{ijt}right)&= beta _0+beta _1(COVID~era)+beta _2[ln (race_{i})] +beta _3[ln (distance_{ij})] +beta _4left[ ln left( frac{population_{i}}{1000}right) right] \ {}&quad +,beta _5[COVID~eratimes ln (race_{i})] +beta _6[(COVID~eratimes ln (distance_{ij})] +beta _7[ln (distance_{ij})times ln (race_i)] \ {}&quad +,beta _8[(COVID~eratimes ln (distance_{ij})times ln (race_i)]+V_{ijt} \ end{aligned} end{aligned}$$
    (5)
    The assumptions of log-linearity and multi-collinearity19,20,21 in our specified model, per Eq. (5), have been tested and could be referenced in Supplementary Table S5.Consideration of variables in our modelWe explored using the size area (in km(^2)) of each respective park, instead of distance travelled, as the denominator of our gravity model per Eq. (2). However, the substantially lower (R^2) values obtained when using a park’s size suggests that a park’s area is a poor factor in explaining visitation trends across socio-economic variables. These are detailed in Supplemental Table S6.We also initially considered fitting other socio-economic independent variables into the same analysis. We did so in the hopes of gaining further insights on COVID-19’s impact towards park visitation. Some other independent variables that were considered included median income and median age. However, fitting them into same analysis resulted in high multi-collinearity. These are detailed in Supplemental Table S6. Multi-collinearity occurs when an independent variable is highly correlated with another independent variable in an analysis involving multiple independent variables60. This could consequently “undermine the statistical significance of an independent variable”60.To mitigate concerns of multi-collinearity in our analysis involving different racial groups, we adopt the procedures outlined by Lewis-Beck and Lewis-Beck60. Lewis-Beck and Lewis-Beck recommends separating our analysis of each racial composition. This means that we would analyze the composition of non-whites, African-, Asian-, Hispanic-, and Native American with our other variables separately.Finally, we considered analyzing the variables of income and age separately. However, the variables of income and age still resulted in high multi-collinearity amongst the existing independent variables. Furthermore, the different characteristics displayed amongst our analysis involving variables like income and age (compared to race) meant that our suggested random-effects gravity model is not a one-size-fits-all model for other analysis involving separate variables. These are detailed in Supplemental Table S6. For this reason, we hope to study variables like age and income in some of our future studies, using a different model. More

  • in

    Proximity to small-scale inland and coastal fisheries is associated with improved income and food security

    Study designWe used a food systems framing to conceptually position our research to investigate how small-scale fisheries shape two key aspects of food environments – physical access to food via living in proximity to small-scale fisheries (fish as food pathway), and economic access to food via small-scale fisheries livelihoods (fish as income pathway).We examined food system components of supply chains (small-scale fisheries livelihoods related to harvesting, processing and trade), food environments (proximity to small-scale fisheries and livelihoods), income poverty status, and household diets (fish consumption and annual food security) (Supplementary Fig 7)40,41. Small-scale fisheries are notably recognised for their safety net function during times of shocks and extreme events, increasing the ability of households to recover, exit poverty and afford food over the longer-term42.Country selection and household survey dataWe selected Malawi, Tanzania and Uganda, given these countries represent a region where small-scale fisheries provides the main supply of fish and are important for rural inland and coastal livelihoods24,43, and yet substantial data gaps remain in valuing small-scale fisheries in the regional food system. Small-scale fisheries, particularly inland fisheries, in this region are known to be highly productive with a linear increasing trend in catches over the last three decades25,35. On average 70% of the total catches consist of small pelagic species, which are largely driven by climate, and are highly productive, resilient, and under-exploited34. However, challenges do exist in fisheries governance and signs of over-exploitation of some few fish stocks44, as well as high post-harvest fish waste and loss across value-chains undermine the potential benefits from the sector23. We analysed the World Bank’s Living Standards Measurement Surveys and its Integrated Surveys on Agriculture (LSMS-ISA) from Malawi, Tanzania and Uganda. The LSMS-ISA surveys conducted in these countries collected georeferenced household-level data and had been designed and implemented with a dedicated fishery module39 which contained questions on household fish consumption (frequency, quantity, and form of fresh or dried fish) and small-scale fisheries livelihoods across value chains (harvesting, processing and trading). The fishery module was collected across different years in Malawi (2016–17), Tanzania (2014–15) and Uganda (2010–11), and accordingly these are the years analysed in this study. The LSMS-ISA surveys collects consumption data over a period of 12 months so that the indicator captures the intrinsic variability due to seasonality, such as low and high periods of food consumption.Geospatial data and distance to fishing groundsGeoreferenced household data from LSMS-ISA surveys were matched with geospatial data on the location of inland water bodies and coastlines (Supplementary Table 11) to investigate geographic correlates (e.g., distance to fishing grounds – water bodies where fisheries occur) of poverty and food security. Data on inland water bodies were from the Global Lakes and Wetlands Database (GLWD)45, and the European Space Agency GlobCover databases for coastlines46. Inland water bodies from the GLWD database include permanent, open water bodies (e.g., lakes, reservoirs, rivers) with a surface area ≥0.1 km2 for each country, including cross-border water bodies. We selected water bodies to represent types of water bodies known to support fisheries, based on catch data24,43. We assume the entire coastline of Tanzania was accessible and used for marine small-scale fisheries. We use the term ‘water body’ to mean either freshwater or marine waters.Distance between water bodies and households was calculated as the shortest, straight line, distance from the household location (identified through the GPS coordinates of the households) to any point of the nearest water body. The distance was expressed in km.In our descriptive statistics, a cut-off threshold of 5 km from fishing grounds was used to compare the key indicators presented in this study (e.g., percent of poor and food insecure households, frequency and quantity of fish consumption, etc), for households proximate and distant (≤5 km was considered close and >5 km was considered far) from fished water bodies, as well as between fishing and non-fishing households. The choice of the cut-off threshold used for our descriptive statistics was guided by other studies16,17, in addition to reflecting the distribution of households by quintile of distance to water bodies. Concerning the latter, we found that the average distance from fishing ground of the first quintile was always lower than 5 km in all countries.In the regression analyses, the distance to water bodies was included as a continuous variable (in km). This choice reflects the need to better understand dynamics for households that tend to live more distant from fishing grounds. These dynamics were captured by measuring the marginal increase in the probability of being poor or food insecure for a one-unit increase (1 km) from the mean distance to fishing grounds.We acknowledge two limitations behind the calculation of the straight-line distance to water bodies. First, using the straight-line distance to water bodies may introduce biases in the statistical analyses presented, especially for households located in any particular landscapes within the country. The walking or travel time distance over a road network would provide a better alternative, however there is lack of data on road networks. Despite the straight-line distance to water bodies encompasses some limitations, we still believe that this method of calculation provides a good proxy to categorize household in relation to their distance to water bodies, and the results from the analyses should not deviate substantially from other method of calculation. For example, a study51 found that the straight-line distance tends to be highly correlated (R  > 0.91) with both walking and travel time distance.Second, an additional bias in the presented analyses may be introduced due to the modification strategy of the households GPS coordinates. This strategy was implemented before dissemination of household level data to avoid the risk of disclosure of sampled households. In its essence, the modification strategy relies on random offset of cluster center-point within a specified range. For urban areas a range of 0–2 km is used. In rural areas, where risk of disclosure may be higher due to more dispersed communities, a range of 0–5 km offset was used. While we had no control over this modification strategy, we believe that the modification of the GPS coordinates does not affect the way households are classified in relation to their distance to fishing grounds: considering that the modification strategy was applied to both distant and proximate households, we expect that the distribution between households close and distant to water bodies has remained unchanged and, hence, the presented statistics are still valid for the analysis.Variable constructionWe used a range of socio-economic indicators across food system components (Supplementary Table 11). As a measure of physical and economic access to food we used two indicators of small-scale fisheries: proximity to fishing grounds and fishing households. Household livelihoods were assigned according to whether households primarily, but not exclusively, engaged in small-scale fisheries (fishing, harvesting, processing and/or trading which varied by survey), agriculture (e.g., crop or livestock), or neither fisheries or agriculture. For each country survey, households were categorised according to their engagement in fishing and/or agriculture activities in the prior 12 months. Households in which one or more member engaged in fish-related activities were defined as ‘fishing households’. Fish-related livelihood activities were defined as fish harvesting, processing, and trading in Malawi and Tanzania, whilst in Uganda they were defined only as fishing. Households with one or more member engaged in agriculture, but not in fish-related activities, were defined as ‘agriculture households’. Through data exploration of livelihood categories, we found that 96% of all fishing households in our study combine fish-related and agricultural activities, with only 4% engaging exclusively in small-scale fisheries. Examination of diverse livelihood typologies within fishing household category (e.g., fisher-farmer, which is common in the region or exclusive fisher) was deemed out of the scope of this study and not feasible due to the small number of observations of exclusive fishers.Household poverty was measured using the per-capita monthly expenditure (equivalized using the adult equivalent scale). Poor households were defined as those households with a per-capita monthly expenditure below the national poverty line. The national poverty line –which was defined by national authorities in the three countries analysed–is a country-specific monetary threshold below which a household (and its members) cannot meet their basic needs. The poverty metric, as defined above, was used across physical, natural and human capital: asset wealth, distance to markets, access to land and education level of head of household. Since the asset wealth captures the typologies and number of assets owned by the household (durable goods – radio, bicycle, TV; utilities and infrastructure – access to protected water source and electricity), we developed an index for assets using the principal component analysis. This technique reduced the multi-dimensionality of the asset’s variables, and it allowed the data to identify the linear combinations of the assets components that explain the greatest share of the variation in wealth. As the final wealth index was standardised across households, this index allowed providing a ranking of households which reflected their ownership of assets.Food security was measured using two indicators; household-level food consumption profile – using the Food Consumption Score (FCS) index20, and subjective food insecurity defined as the number of months during a year that a household reported not having enough food to feed the household. Together, these indicators provide a more comprehensive understanding of household food security over a longer period than other surveys (e.g. Demographic and Health)47,48,49. The LSMS-ISA surveys collects food consumption data over a 7-day recall period. To capture seasonal variation in the food consumption indicators, sampled households were interviewed over a 12-month period: for each month of the year, a different portion of sampled households was interviewed so that the derived indicators reflect the intrinsic variability in food consumption, which may be due to seasonality. We used the FCS index as a food security indicator as it is akin to the data collected via the LSMS-ISA surveys, and that there was a need for comparison across select countries. The FCS index measures the frequency (number of days) and diversity of food groups consumed over a 7-day recall period, with weights given to groups based on nutritional value. The FCS index is validated as a proxy for energy sufficiency (quantity of food) and food access, and is associated with other household-level diet diversity measures (e.g. household dietary diversity score (HDDS))20,48. The difference between FCS and other indicators such as HDDS is the recall period (7-days versus 24 h), diversity of groups, weights assigned based on nutrition, and use of frequency together with diversity of groups consumed. The FCS with a longer recall period can show more habitual consumption but can also have limitations with people’s recall reliability. Although it has not been validated yet as an indicator for micronutrient intake, it does provide weights to nutrient-rich food groups and accounts for frequency of consumption, which other indicators do not. Fish consumption was described in terms of the (i) quantity (kg of wet weight equivalent per household per week), (ii) form (fresh, dried, smoked, other) and (iii) source (purchased, own consumption, gift) of fish consumed. The share of households reporting consumption of other animal source foods was also calculated to examine the relative role of fish in overall diets.We also examined the prices of foods consumed to investigate the accessibility of fish as food in terms of affordability compared to animal source foods. The LSMS-ISA survey collects data on the value and volume of food that were purchased and consumed. Those two variables were further used to construct the average price for each food item. To control for price level differences between countries, food prices data calculated from the survey were converted from local currency unit to international USD, using the Purchase power parity conversion factor corresponding to the year of the survey (Source: World Development Indicators database, World Bank). Moreover, since the surveys were conducted in different years, nominal prices corresponding to the years of the surveys were converted into real, inflation-adjusted prices using the Consumer Price Index (CPI, base year: 2010). This allowed to control for potential inflation patterns within countries and provide a better comparison of food prices per Kg. across the three countries analyzed (Source: World Development Indicators database, World Bank).Finally, we drew upon nutritional databases (food composition tables, FishBase and Illuminating Hidden Harvest Initiative) to understand the relative nutritional value of fish; by species, size (small or large) and form (e.g., fresh or dried), compared to other animal source foods (Supplementary Table 12). This enables us to contextualise the nutritional importance of consumption patterns.Descriptive statisticsWe created a harmonized multi-country dataset for Malawi, Tanzania and Uganda with 18,715 nationally representative household-level observations. The sample included in this study represents more than 19 million households corresponding to a population of 93.8 million people across the three countries (Supplementary Information).Descriptive statistics were calculated to compare poverty and food security indicators among households proximate and distant from fished water bodies, and between fishing and non-fishing households (see full details in Supplementary Information). For this analysis, households distant and proximate from fished water bodies were clustered into two groups based on a cut-off threshold of 5 km (distant  > 5 km; proximate ≤5 km). The Welch’s t-test was then used throughout to assess the statistical significance of mean statistics between these two groups.Econometric modelThe estimated probabilities of being poor (household living below the national poverty line) and food insecure (household with a poor food consumption profile) were modelled through two separate probit regression models, where the outcome variable was equal to 1 for poor and food insecure households and 0 otherwise. The independent variables in both models included the household’s distance to water bodies and the distance to food market. Both variables are expressed as continuous variables (in km), reflecting the need to measure the marginal increase in the probability of being poor or food insecure (i.e., the estimated β coefficients) given a one-unit change (1 km) in the distance to fishing ground (or food markets) from its mean. Both models also included an interaction variable which measured the household’s distance to water bodies but restricted to only those households who were unable to reach the food market. We tested this interaction as we expected that living in proximity to water bodies could mitigate the negative effects on poverty and food insecurity when households are unable to access food markets. In order to measure the conditional difference in the average probability to be poor and food insecure between households who engaged in fisheries and households who engaged in other non-fishing activities, we constructed a categorical variable that classified households according to their main livelihood activity, namely (1) neither fishing, nor agriculture households (i.e., the reference baseline household category), (2) fishing households and (3) agriculture households. This categorical variable was further restricted to only households living in proximity to water bodies to better measure for which typology of household the proximity to fishing grounds is most beneficial. Both models were controlled for the age, sex and the highest level of education attained by the head of the household, as well as the total number of household members employed (over total household members) and the wealth index of the household.For each model (poverty and food insecurity), we examined associations at the cross-country, national and rural levels (Tables 1 and 2, also available as Supplementary Data 1 and 2). Stata 15 was used for all statistical analyses. Both descriptive statistics and the regression coefficients were estimated using the household probability weight, the latter instrumental to make the derived indicators from the surveys representative of the population of interest thus allowing general inference for the three countries.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More