More stories

  • in

    A new Cretaceous thyreophoran from Patagonia supports a South American lineage of armoured dinosaurs

    Dinosauria—Owen, 184225,Ornithischia—Seeley, 188726,Thyreophora—Nopcsa, 191527,Jakapil kaniukura gen. et sp. nov. (Figs. 1, 2, 3, 4, Suppl. Figs. 2, 3).Figure 1Holotype of Jakapil kaniukura (MPCA-PV-630), skull bones. (a) Skull bones in right lateral view (dashed contours based on Scelidosaurus10); (b) basisphenoid in left lateral view. af anterior foramen, btp basipterygoid process, bt basal tubera, cp cultriform process, df double foramen, ene external naris edge, jf jugal facet of the maxilla, Mx maxilla, mxe maxillary emargination, Pmx premaxilla, vc Vidian canal, vp ventral process.Full size imageFigure 2Holotype of Jakapil kaniukura (MPCA-PV-630), lower jaw bones. (a) left mandible in lateral view; (b) left mandible in lateral view, interpreted bone contours; (c) left mandible in medial view; (d) left mandible in medial view, interpreted bone contours; (e) right surangular in lateral view (mirrored); (f) transversal section of the posterior half of the left mandible, cranial view; (g) articular bone in occlusal view; (h) predentary bone in occlusal view. A angular, af adductor fossa, Ar articular, Ar (gl) glenoid fossa of the articular, ce coronoid eminence, D dentary, de dentary emargination, dfo dentary foramen, dmp dorsomedial process of the articular, dr dentary rugosities, hi subhorizontal inflection (dashed line), imf internal mandibular fenestra, lp lateral process of the predentary, mc Meckelian canal, Pa prearticular, Pd predentary, rp retroarticular process, S surangular, saf surangular facet for the glenoid articulation, safo surangular foramen (canal), Sp splenial, st surangular tubercle, sy mandibular symphysis, vmc ventral mandibular crest.Full size imageFigure 3Holotype of Jakapil kaniukura (MPCA-PV-630), teeth. Maxillary teeth in labial (a,b) and lingual (c,d); (d) highlight the wear facet) views; dentary teeth in lingual (e,g–j); (h,j) highlight the wear facets) and labial (f) views. dwf dentary tooth wear facet, me prominent mesial edge, mwf maxillary tooth wear facet.Full size imageFigure 4Holotype of Jakapil kaniukura (MPCA-PV-630), postcranial bones. Speculative silhouette showing preserved elements (a); osteoderm distribution is speculative and partial to show non-osteodermal elements); dorsal vertebra elements in dorsal (b), right lateral (c) and anterior (d,e) views; sacral vertebra in left lateral view (f); mid-caudal vertebra in left lateral view (g); fragment of the mid-shaft of a dorsal rib in posterior view (the enlarged, broken posterior edge is highlighted (h); expanded distal ends of two dorsal ribs (i); left scapula in lateral view (j); right scapula in lateral view (k); right coracoid in lateral view (l); left and right humeri in anterior view (m); probable right ulna in lateral view (n); metacarpals, non-ungual and ungual phalanx in dorsal views (o); left femur elements in anterior view (p); proximal end of the right fibula in lateral view (q); distal end of the left tibia in anterior view (r); ischial elements in side view (s); cervical osteoderms in dorsal view (t), flat scutes in dorsal view (u), spine-like osteoderm in side view (v) and ossicle in dorsal view (w). ac acromial crest, aco asymmetrical cervical osteoderm, alp anterolateral process, ap acromial process, at anterior trochanter, bb basal bone, ebr expanded broken rib edge, di diapophysis, dpc deltopectoral crest, ft fourth trochanter, gl glenoid, mc metacarpals, nc neural canal, ncs neurocentral suture, ph non-ungual phalanx, pp pubic peduncle, poz postzygapophyses, rug marginal rugosities, sb scapular blade, sc scute, tp transverse process, uph ungual phalanx.Full size imageEtymologyThe genus, Jakapil (Ja-Kapïl: shield bearer), comes from the ‘gananah iahish’, Puelchean or northern Tehuelchean language. The specific epithet, comprising kaniu (crest) and kura (stone), refers to the diagnostic ventral crest of the mandible, and comes from the Mapudungun language. These languages, currently spoken by more than 200,000 people, have been combined as a tribute to both of the coexisting native populations of North Patagonia, South America.HolotypeMPCA-PV-630 is a partial skeleton of a subadult individual (see Supplementary Information) that preserves fragments of some cranial bones (premaxilla, maxilla and basisphenoid), approximately 15 partial teeth and fragments, a nearly complete left lower jaw plus an isolated surangular, 12 partial vertebral elements, a complete dorsal rib and fifteen rib fragments, a partial coracoid, a nearly complete left scapula, a partial right scapula, two partial humeri, a possible partial right ulna, a complete and a partial metacarpal bone, three ischial and two femoral fragments, the distal end of a right tibia, the proximal end of a right fibula, three pedal phalanges, and more than forty osteoderms.Referred specimensMPCA-PV-371, two partial conical osteoderms.Locality and horizonUpper beds of the Candeleros Formation, early Late Cretaceous (Cenomanian, ~ 94–97 My, see16, and references therein), locality of Cerro Policía, Río Negro Province, North Patagonia, Argentina (Suppl. Fig. 1).DiagnosisJakapil differs from all other thyreophorans in having: a large, ventral crest on the posterior half of the lower jaw, which is composed of the dentary, the angular and the splenial (medially hidden by the crest); a dorsomedially directed process in the short retroarticular process; leaf-shaped tooth crowns with a prominent mesial edge on their labial surface; maxillary and dentary tooth crowns differ from each other in their apical contour, the former being pointed and strongly asymmetrical, and the latter slightly curved distally with a more rounded and less asymmetrical contour; elongated (articular surface almost or completely beyond the posterior centrum face) and slender (width of less than a half postzygapophyses length) postzygapophyses in dorsal vertebrae; a strongly reduced humerus relative to the femur (proximal humeral width smaller than distal femoral width, see Supplementary Information), with a deep proximal fossa distally delimited by a curved ridge; a very large fibula relative to the femur (anteroposterior length of the proximal end almost comparable to the distal width of the femur); flattened and thin disk-like postcranial osteoderms.Summarized descriptionA detailed description of the holotype is provided in the Supplementary Information. Jakapil is a small thyreophoran dinosaur (the subadult holotype is estimated to have been less than 1.5 m in body length and to have weighed 4.5–7 kg; see Supplementary Information, femoral description), with several novelties for a thyreophoran dinosaur.A short skull is suggested by the size of the skull and jaw bones, and the reduced number of dentary tooth positions (eleven), compared with most non-ankylosaurid thyreophorans28,29. The antorbital and mandibular fenestrae seem absent, as in ankylosaurs29 (Fig. 1a; the mandibular fenestra is also absent in Scelidosaurus10). Dentary and maxillary emarginations are present, as usual in ornithischians30 (Fig. 1a). The block-like basisphenoid is strongly similar to that of Scelidosaurus10, with Vidian canals opened posterodorsally to the basipterygoid processes, the basipterygoid processes lateroventrally projected (unlike the anteriorly directed processes of stegosaurs28 and ankylosaurs29), and a strong cultriform process (as in Lesothosaurus31, Thescelosaurus32 and probably Scelidosaurus10; Fig. 1b).Jakapil also bears the first predentary bone (Fig. 2a–d) with a plesiomorphic shape in a thyreophoran. It is subtriangular and quite similar to that of Lesothosaurus31, and externally it is ornamented by sulci and foramina, suggesting the presence of a keratinous beak. A beak is also supported in the edentulous and subtly ornamented preserved part of the premaxilla, as in derived thyreophorans28,29. The posterior half of the short lower jaw (Fig. 2a–f) is strongly dorsoventrally expanded, resembling the general shape of the heterodontosaurid33 and basal ceratopsian jaws34. This expansion is composed of a well-developed coronoid eminence (Fig. 2a–d, ce; similar to that in the stegosaur Huayangosaurus35 and most ankylosaurs36) and a large ventral crest at the dentary-angular contact that is unique among thyreophorans (Fig. 2a–d,f, vmc; resembling that of some ceratopsians, see SI). The dentary symphysis is slightly spout-shaped, as in most ornithischians37. Anteriorly, the dentary oral margin is subhorizontal in lateral view (Fig. 2a–d, D), unlike the strongly downturned line of most thyreophorans30,37. There is no evidence of a mandibular osteoderm as occurs in Scelidosaurus and ankylosaurs10. A surangular tubercle (Fig. 2a, st) adjacent to the glenoid fossa seems anteriorly continued by a subtly developed subhorizontal inflection of the anterior lamina (Fig. 2e, hi), in the position of the surangular ridge (synapomorphy of Thyreophora37), though the first is poorly developed. The glenoid fossa is roughly aligned with the tooth row in lateral view (Fig. 2a–d). The short retroarticular process bears a dorsomedially directed process resembling that of several theropods (Fig. 2g, dmp; see Discussion). This process is absent in all other thyreophorans 9,10,35,36.The tooth crowns are leaf-shaped as in basal ornithischian and thyreophorans10,28,29,38 (Fig. 3). The tooth crowns are swollen labially at their base and lack both cingulum and ornamentation, unlike those of derived eurypodans28,29, heterodontosaurids33 and most neornithischians30,32. The mesial edge of the labial surface in the maxillary and dentary tooth crowns is prominent as in Scelidosaurus10, and ends distally in a denticle-like structure in Jakapil (Fig. 3, me). This prominent edge delimits anteriorly the wear facets of the dentary teeth. A striking difference with respect to most thyreophorans is that the maxillary and dentary tooth crowns are quite different (see Supplementary Information). The maxillary teeth (Fig. 3a–d) show seven/eight mesial and four distal denticles, a vertical apical denticle, and a straighter mesial denticle row (resembling those of non-ankylosaurid and non-stegosaurid thyreophorans10,35,36). The dentary teeth (Fig. 3e–j) bear seven mesial and five/six distal denticles, and a distally curved apical-most denticle. Also, the mesial denticle row is lingually recurved, as in Huayangosaurus35. Large, high-angled wear facets are present (Fig. 3d,h,j; dwf and mwf).The axial elements are similar to those of Scelidosaurus39 (Fig. 4). The posterior articular surface of an isolated cervical centrum is flattened and seems almost as wide as high. A large foramen is placed just posteroventral to the parapophysis. The dorsal centra are cylindrical and elongated, with subcircular articular surfaces, and are biconcave (Fig. 4c,e). The neural arch is low but the neural canal is larger (Fig. 4d,e, nc). A dorsal neurocentral suture is visible (Fig. 4c, ncs). The diapophyses are laterodorsally directed almost 40° from the horizontal (Fig. 4d, di), at a lower angle than in stegosaurs28 and most ankylosaurs29, unlike the horizontal processes of basal ornithischians38. The postzygapophyses are medially fused in a slender (width of less than a half postzygapophyses length) and strongly elongated posteriorly structure (Fig. 4b, poz; more than in some ankylosaurs, such as Euoplocephalus and Polacanthus; see40,41). An isolated mid-caudal vertebra shows an equidimensional centrum in lateral view, with concave, oval articular surfaces (Fig. 4g). Transverse processes are very small and button-like (Fig. 4g, tp). Postzygapophyses are medially fused and do not extend beyond the centrum edge (Fig. 4g, poz). Proximally, the cross-section of the dorsal ribs is T-shaped. The low curvature of the shaft suggests a wide torso, as occurs in Emausaurus42, Scelidosaurus39, and ankylosaurs29. Some rib fragments with expanded (though broken) posterior edges suggest the presence of intercostal bones (Fig. 4h, ebr), as in Scelidosaurus39, Huayangosaurus43,44, some ankylosaurids45 (and references therein) and some basal ornithopods46. Some ribs are distally expanded (Fig. 4i) like the anterior dorsal ribs of Scelidosaurus39 and Huayangosaurus43.Girdle and limb bones (see also Suppl. Figs. 2, 3) are mostly broken and with boreholes (probably due to bioerosion) at their ends. The scapular blade (Fig. 4j, sb) is elongated and parallel-sided, without distal expansion, an overall shape that resembles that of several theropods47, contrasting the distally expanded condition in most ornithischians30. A straight and parallel sided scapular blade is common in ankylosaurids29,40. The proximal scapular plate with a high acromial process (Fig. 4j,k, ap) is stegosaurian-like, and the lateral acromial crest (Fig. 4j,k, ac) is developed as in Huayangosaurus43. A low distinct ridge rises posterior to the glenoid fossa and represents the insertion site for the muscle triceps longus caudalis, as occur in ankylosaurids 40. The incomplete coracoid (Fig. 4l) is much shorter than the scapula, unlike that of ankylosaurs29,40, which bear a large coracoid. The coracoid and the scapula are not fused. The partial humeri (Fig. 3m) are strongly reduced in size, with overall limb proportions resembling those of basal ornithischians3,38 and several theropods47. A possible proximal end of the ulna (Fig. 4n) resembles that of other basal ornithischians, though more strongly laterally compressed. The anterolateral process is present (Fig. 4n, alp), and the olecranon process seems absent or poorly developed, as in Scutellosaurus9 and Scelidosaurus39. The ischia are poorly preserved (Fig. 4s). The pubic peduncle is separated from the iliac articulation, unlike the continuous cup-shaped structure of most ankylosaurs29. The shaft of the ischium is straight and parallel-edged, as in Scutellosaurus9 and Scelidosaurus39, and distally tapers as in stegosaurs28. The preserved femoral pieces (Fig. 4p) resemble those of basal ornithischians38,39. The bases of both the broken anterior and fourth trochanters (Fig. 4p, at, ft) are large, suggesting large elements; the fourth trochanter is proximally placed on the femoral shaft (near the height of the base of the anterior trochanter); and the distal end of the femur is slightly curved posteriorly. The proximal end of the right fibula (Fig. 4q) is much larger than that of all other thyreophorans (compared with both the femoral and tibial distal ends) and bears a large anterior curved crest. The block-like non-ungual phalanges and a bluntly pointed hoof-like ungual (Fig. 4o, ph, uph) are similar to those of Scelidosaurus39.At least five osteoderm types are preserved in the holotype of Jakapil. The cervical elements are composed of an external, low-crested scute (Fig. 4t, sc) over a fused, smooth bone base (Fig. 4t, bb), as in Scelidosaurus48 and several ankylosaurs2,49. A probable cervical element is also composed of a concave base of smooth bone fused to a high, asymmetrical osteoderm (Fig. 4t, aco). The bases of these dermal elements present strong rugosities at one edge, suggesting a sutural contact between (Fig. 4t, rug), as in Scelidosaurus48 and some ankylosaurs (such as Pinacosaurus and Scolosaurus40,49,50). Scute-like post-cervical osteoderms (Fig. 4u) are strongly flattened, disk-shaped, and suboval with a very low crest, resembling those of few ankylosaurs such as Gastonia and Gargoyleosaurus51 (‘body osteoderms’ sensu Kinneer et al.52; see also49). Only one scute shows a high triangular cross-section like those of Scelidosaurus48. Also present are a few conical, spike-like osteoderms with deep concave bases (Fig. 4v), and many flat, disk-shaped, minute (7–10 mm) ossicles without crests (Fig. 4w).PhylogenyThe phylogenetic analysis using the matrix of Soto-Acuña et al.5 recovers Jakapil within Thyreophora, as the sister taxon of Ankylosauria (Fig. 5). The branch support for the basal thyreophorans is considerably lower than that obtained by Soto-Acuña et al.5, although the support of Stegosauria and some less inclusive eurypodan clades is slightly better (ceratopsians and pachycephalosaurs also show a lower support). The Jakapil autapomorphies in this analysis are: ventrally orientated basipterygoid processes (char. 134; shared with Agilisaurus, Hypsilophodon, Zalmoxes, Tenontosaurus, Dryosaurus, Liaoceratops, Yamaceratops, Leptoceratops, Bagaceratops and Protoceratops); lateral orientation of the basipterygoid process articular facet (char. 136; shared with Homalocephale, Prenocephale, Stegoceras and Yinlong); a straight dentary tooth row in lateral view (char. 166; shared with the ornithischians Lesothosaurus, Eocursor, Scutellosaurus, Pinacosaurus, Euoplocephalus, heterodontosaurids and neornithischians); the presence of a ventral flange on the dentary (char. 170; shared with Psittacosaurus, Yamaceratops and Protoceratops); a well-developed coronoid process (char. 174; shared with heterodontosaurids and neornithischians); a surangular length of more than 50% the mandibular length (char. 183; shared with Stegoceras, Psittacosaurus, Yinlong, Chaoyangsaurus and Hualianceratops); less than 15 dentary teeth (char. 204; shared with heterodontosaurids, Gasparinisaura, Hypsilophodon, Wannanosaurus, Tenontosaurus, Dryosaurus and ceratopsians); apicobasally tall and blade-like cheek teeth crowns (char. 205; shared with Laquintasaura, Psittacosaurus, Yinlong, Chaoyangsaurus and Hualianceratops). Alternative phylogenetic analyses using the data matrices of Maidment et al.4, Norman6 and Wiersma and Irmis8 recover Jakapil as the sister taxon of Eurypoda (Stegosauria + Ankylosauria) and as a basal ankylosaur, respectively (see Supplementary Information). Being recovered either as an ankylosauromorph or a stem-eurypodan, Jakapil is closely related to Scelidosaurus in all analyses. Detailed phylogenetic results and discussion are provided in the Supplementary Information.Figure 5Time-calibrated strict consensus of 26,784 most parsimonious trees (L = 1267) with the Soto-Acuña et al.5 matrix. CI 0.359, RI: 0.708. Branch supports are figured (Bremer/bootstrap). Record ages references are listed in the Supplementary Information (Suppl. Fig. 4).Full size image More

  • in

    Invasion stages help resolve Darwin’s naturalization conundrum

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Omer, A. et al. The role of phylogenetic relatedness on alien plant success depends on the stage of invasion. Nat. Plants https://doi.org/10.1038/s41477-022-01216-9 (2022). More

  • in

    Large carnivores and naturalness affect forest recreational value

    Nash, R. Wilderness and the American Mind (Yale University Press, 1982).
    Google Scholar 
    Kirchhoff, T. & Vicenzotti, V. A historical and systematic survey of European perceptions of wilderness. Environ. Values 23, 443–464 (2014).Article 

    Google Scholar 
    Aplet, G., Thomson, J. & Wilbert, M. Indicators of wildness: Using attributes of the land to assess the context of wilderness in Wilderness Science in a Time of Change (eds. McCool, S.F., Cole, D.N., Borrie, W.T., O’Loughlin, J.) 89–98 (USDA Forest Service, RMRS-P-15-Vol-2, 2000).Watson, J. E. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watson, J. E. et al. Protect the last of the wild. Nature 563, 27–30 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hayward, M. W. et al. Reintroducing rewilding to restoration: Rejecting the search for novelty. Biol. Conserv. 233, 255–259 (2019).Article 

    Google Scholar 
    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Soulé, M. & Noss, R. Rewilding and biodiversity: Complementary goals for continental conservation. Wild Earth 8, 18–28 (1998).
    Google Scholar 
    Torres, A. et al. Measuring rewilding progress. Philos. Trans. R. Soc. Lond. B 373, 20170433 (2018).Article 

    Google Scholar 
    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Fish, R., Church, A. & Winter, M. Conceptualising cultural ecosystem services: A novel framework for research and critical engagement. Ecosyst. Serv. 21B, 208–217 (2016).Article 

    Google Scholar 
    Nilsson, K. et al. Forests, Trees and Human Health (Springer, 2011).Book 

    Google Scholar 
    Cheesbrough, A. E., Garvin, T. & Nykiforuk, C. I. J. Everyday wild: Urban natural areas, health, and well-being. Health Place 56, 43–52 (2019).PubMed 
    Article 

    Google Scholar 
    Child, M. F. Wildness, infinity and freedom. Ecol. Econ. 186, 107055 (2021).Article 

    Google Scholar 
    Lev, E., Kahn, P. H. Jr., Chen, H. & Esperum, G. Relatively wild urban parks can promote human resilience and flourishing: A case study of Discovery Park, Seattle, Wasshington. Front. Sustain. Cities 2, 2 (2020).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watson, J. E. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).PubMed 
    Article 

    Google Scholar 
    Giergiczny, M., Czajkowski, M., Żylicz, T. & Angelstam, P. Choice experiment assessment of public preferences for forest structural attributes. Ecol. Econ. 119, 8–23 (2015).Article 

    Google Scholar 
    Sabatini, F. M. et al. Where are Europe’s last primary forests?. Divers. Distrib. 24, 1426–1439 (2018).Article 

    Google Scholar 
    Kirby, K. & Watkins, C. Europe’s changing woods and forests: from wildwood to managed landscapes. CABI (2015).Schirpke, U., Meisch, C. & Tappeiner, U. Symbolic species as a cultural ecosystem service in the European Alps: Insights and open issues. Landsc. Ecol. 33, 711–730 (2018).Article 

    Google Scholar 
    Bruskotter, J. T. & Wilson, R. S. Determining where the wild things will be: Using psychological theory to find tolerance for large carnivores. Conserv. Lett. 7, 158–165 (2014).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617 (2021).Article 

    Google Scholar 
    Røskaft, E., Händel, B., Bjerke, T. & Kaltenborn, B. P. Human attitudes towards large carnivores in Norway. Wildl. Biol. 13, 172–186 (2007).Article 

    Google Scholar 
    Arbieu, U. et al. Attitudes towards returning wolves (Canis lupus) in Germany: Exposure, information sources and trust matter. Biol. Conserv. 234, 202–210 (2019).Article 

    Google Scholar 
    Gundersen, V. S. & Frivold, L. H. Public preferences for forest structures: A review of quantitative surveys from Finland, Norway and Sweden. Urban For. Urban Green. 7, 241–258 (2008).Article 

    Google Scholar 
    Filyushkina, A., Agimass, F., Lundhede, T., Strange, N. & Jacobsen, J. B. Preferences for variation in forest characteristics: Does diversity between stands matter?. Ecol. Econ. 140, 22–29 (2017).Article 

    Google Scholar 
    Lozano, J. et al. Human-carnivore relations: A systematic review. Biol. Conserv. 237, 480–492 (2019).Article 

    Google Scholar 
    Rode, J., Flinzberger, L., Karutz, R., Berghöfer, A. & Schröter-Schlaack, C. Why so negative? Exploring the socio-economic impacts of large carnivores from a European perspective. Biol. Conserv. 255, 108918 (2021).Article 

    Google Scholar 
    Gren, M., Häggmark-Svensson, T., Elofsson, K. & Engelmann, M. Economics of wildlife management—An overview. Eur. J. Wildl. Res. 64, 1–6 (2018).Article 

    Google Scholar 
    Wilson, E. O. Biophilia and the conservation ethic in The Biophilia Hypothesis (eds. Kellert, S.R. & Wilson, E.O.) 31–41 (Island Press, 1993).Thompson, S. C. G. & Barton, M. A. Ecocentric and anthropocentric attitudes toward the environment. J. Environ. Psychol. 14, 149–157 (1994).Article 

    Google Scholar 
    Kaltenborn, B. P. & Bjerke, T. Associations between environmental value orientations and landscape preferences. Landsc. Urban Plan. 59, 1–11 (2002).Article 

    Google Scholar 
    Bjerke, T. & Kaltenborn, B. P. The relationship of ecocentric and anthropocentric motives to attitudes toward large carnivores. J. Environ. Psychol. 19, 415–421 (1999).Article 

    Google Scholar 
    Johansson, M., Ferreira, I. A., Støen, O. G., Frank, J. & Flykt, A. Targeting human fear of large carnivores—Many ideas but few known effects. Biol. Conserv. 201, 261–269 (2016).Article 

    Google Scholar 
    Bauer, N., Wallner, A. & Hunziker, M. The change of European landscapes: Human–nature relationships, public attitudes towards rewilding, and the implications for landscape management in Switzerland. J. Environ. Manag. 90, 2910–2920 (2009).Article 

    Google Scholar 
    Arts, K., Fischer, A. & Van der Wal, R. The promise of wilderness between paradise and hell: A cultural-historical exploration of a Dutch National Park. Landsc. Res. 37, 239–256 (2012).Article 

    Google Scholar 
    De Groot, W. T. & van den Born, R. J. G. Visions of nature and landscape preferences:an exploration in the Netherlands. Landsc. Urban Plan. 63, 127–138 (2003).Article 

    Google Scholar 
    Bombieri, G. et al. Brown bear attacks on humans: A worldwide perspective. Sci. Rep. 9, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Johansson, M., Sjöström, M., Karlsson, J. & Brännlund, R. Is human fear affecting public willingness to pay for the management and conservation of large carnivores?. Soc. Nat. Resour. 25, 610–620 (2012).Article 

    Google Scholar 
    Dressel, S., Sandström, C. & Ericsson, G. A meta-analysis of studies on attitudes toward bears and wolves across Europe 1976–2012. Conserv. Biol. 29, 565–574 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trajçe, A. et al. All carnivores are not equal in the rural people’s view. Should we develop conservation plans for functional guilds or individual species in the face of conflicts?. Glob. Ecol. Conserv. 19, e00677 (2019).Article 

    Google Scholar 
    Eriksson, M., Sandström, C. & Ericsson, G. Direct experience and attitude change towards bears and wolves. Wildl. Biol. 21, 131–137 (2015).Article 

    Google Scholar 
    Methorst, J., Arbieu, U., Bonn, A., Böhning-Gaese, K. & Müller, T. Non-material contributions of wildlife to human well-being: A systematic review. Environ. Res. Lett. 15, 093005 (2020).ADS 
    Article 

    Google Scholar 
    Russell, R. et al. Humans and nature: How knowing and experiencing nature affect well-being. Annu. Rev. Environ. Resour. 38, 473–502 (2013).Article 

    Google Scholar 
    Maller, C., Mumaw, L. & Cooke, B. Health and social benefits of living with ‘wild’ nature in Rewilding (eds. Pettorelli, N., Durant, S. M. & du Toit, J. T.) 165–181 (Cambridge University Press, 2019).Nevin, O. T., Swain, P. & Convery, I. Bears, place-making, and authenticity in British Columbia. Nat. Areas J. 34, 216–221 (2014).Article 

    Google Scholar 
    Schnitzler, A. Towards a new European wilderness: Embracing unmanaged forest growth and the decolonisation of nature. Landsc. Urban Plan. 126, 74–80 (2014).Article 

    Google Scholar 
    Hensher, D., Rose, J. & Greene, D. Applied Choice Analysis (Cambridge University Press, 2005).MATH 
    Book 

    Google Scholar 
    Johnston, R. J. et al. Contemporary guidance for stated preference studies. J. Assoc. Environ. Resour. Econ. 4, 319–405 (2017).
    Google Scholar 
    Riera, P. et al. Non-market valuation of forest goods and services: Good practice guidelines. J. For. Econ. 18, 259–270 (2012).
    Google Scholar 
    Larsen, J. B. & Nielsen, A. B. Nature-based forest management: Where are we going? Elaborating forest development types in and with practice. For. Ecol. Manag. 238, 107–117 (2007).Article 

    Google Scholar 
    Ferrini, S. & Scarpa, R. Designs with a priori information for nonmarket valuation with choice experiments: A Monte Carlo study. J. Environ. Econ. Manag. 53, 342–363 (2007).MATH 
    Article 

    Google Scholar 
    McFadden, D. The measurement of urban travel demand. J. Public Econ. 3, 303–328 (1974).Article 

    Google Scholar 
    Train, K. Discrete Choice Methods with Simulation (Cambridge University Press, 2009).MATH 

    Google Scholar  More

  • in

    The role of phylogenetic relatedness on alien plant success depends on the stage of invasion

    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).Article 

    Google Scholar 
    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vilà, M. & Hulme, P. E. in Impact of Biological Invasions on Ecosystem Services Vol. 12 Invading Nature – Springer Series in Invasion Ecology (eds Vilà, M. & Hulme, P. E.) 1–14 (Springer, 2017).Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 18, 1725–1737 (2012).PubMed Central 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Bacher, S. et al. Socio-economic impact classification of alien taxa (SEICAT). Methods Ecol. Evol. 9, 159–168 (2018).Article 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seebens, H. et al. Projecting the continental accumulation of alien species through to 2050. Glob. Chang. Biol. 27, 970–982 (2021).CAS 
    Article 

    Google Scholar 
    Kriticos, D. J., Sutherst, R. W., Brown, J. R., Adkins, S. W. & Maywald, G. F. Climate change and the potential distribution of an invasive alien plant: Acacia nilotica ssp. indica in Australia. J. Appl. Ecol. 40, 111–124 (2003).Article 

    Google Scholar 
    Thuiller, W., Richardson, D. M. & Midgley, G. F. in Biological Invasions (ed. Nentwig, W.) 197–211 (Springer, 2007).Hobbs, R. J. in Invasive Species in a Changing World (eds Mooney, H. A. & Hobbs, R. J.) 55–64 (Island Press, 2000).Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).PubMed 
    Article 

    Google Scholar 
    Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bucharova, A. & van Kleunen, M. Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J. Ecol. 97, 230–238 (2009).Article 

    Google Scholar 
    Ordonez, A., Wright, I. J. & Olff, H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 24, 1353–1361 (2010).Article 

    Google Scholar 
    van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).PubMed 
    Article 

    Google Scholar 
    van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015).PubMed 
    Article 

    Google Scholar 
    Essl, F. et al. Drivers of the relative richness of naturalized and invasive plant species on Earth. AoB Plants 11, plz051 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winkler, D. E., Gremer, J. R., Chapin, K. J., Kao, M. & Huxman, T. E. Rapid alignment of functional trait variation with locality across the invaded range of Sahara mustard (Brassica tournefortii). Am. J. Bot. 105, 1188–1197 (2018).PubMed 
    Article 

    Google Scholar 
    Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Banerjee, A. K., Prajapati, J., Bhowmick, A. R., Huang, Y. & Mukherjee, A. Different factors influence naturalization and invasion processes – a case study of Indian alien flora provides management insights. J. Environ. Manag. 294, 113054 (2021).Article 

    Google Scholar 
    Ni, M. et al. Invasion success and impacts depend on different characteristics in non-native plants. Divers. Distrib. 27, 1194–1207 (2021).Article 

    Google Scholar 
    Fristoe, T. S. et al. Dimensions of invasiveness: links between local abundance, geographic range size, and habitat breadth in Europe’s alien and native floras. Proc. Natl Acad. Sci. USA 118, e2021173118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Omer, A. et al. Characteristics of the naturalized flora of Southern Africa largely reflect the non-random introduction of alien species for cultivation. Ecography 44, 1812–1825 (2021).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015).PubMed 
    Article 

    Google Scholar 
    Omer, A., Kordofani, M., Gibreel, H. H., Pyšek, P. & van Kleunen, M. The alien flora of Sudan and South Sudan: taxonomic and biogeographical composition. Biol. Invasions 23, 2033–2045 (2021).Article 

    Google Scholar 
    Duncan, R. P. & Williams, P. A. Darwin’s naturalization hypothesis challenged. Nature 417, 608–609 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pyšek, P. Is there a taxonomic pattern to plant invasions? Oikos 82, 282–294 (1998).Article 

    Google Scholar 
    Tan, J., Pu, Z., Ryberg, W. A. & Jiang, L. Resident–invader phylogenetic relatedness, not resident phylogenetic diversity, controls community invasibility. Am. Nat. 186, 59–71 (2015).PubMed 
    Article 

    Google Scholar 
    Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article 

    Google Scholar 
    Loiola, P. P. et al. Invaders among locals: alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).Article 

    Google Scholar 
    Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015).Article 

    Google Scholar 
    Marx, H. E., Giblin, D. E., Dunwiddie, P. W. & Tank, D. C. Deconstructing Darwin’s naturalization conundrum in the San Juan Islands using community phylogenetics and functional traits. Divers. Distrib. 22, 318–331 (2016).Article 

    Google Scholar 
    Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (John Murray, 1859).Procheş, Ş., Wilson, J. R. U., Richardson, D. M. & Rejmánek, M. Searching for phylogenetic pattern in biological invasions. Glob. Ecol. Biogeogr. 17, 5–10 (2008).
    Google Scholar 
    Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G. & Duncan, R. P. Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674–681 (2008).PubMed 
    Article 

    Google Scholar 
    Cadotte, M. W., Campbell, S. E., Li, S. P., Sodhi, D. S. & Mandrak, N. E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu Rev. Plant Biol. 69, 661–684 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Kleunen, M., Bossdorf, O. & Dawson, W. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. 49, 25–47 (2018).Article 

    Google Scholar 
    Park, D. S., Feng, X., Maitner, B. S., Ernst, K. C. & Enquist, B. J. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl Acad. Sci. USA 117, 10904–10910 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diez, J. M. et al. Learning from failures: testing broad taxonomic hypotheses about plant naturalization. Ecol. Lett. 12, 1174–1183 (2009).PubMed 
    Article 

    Google Scholar 
    Malecore, E. M., Dawson, W., Kempel, A., Müller, G. & van Kleunen, M. Nonlinear effects of phylogenetic distance on early-stage establishment of experimentally introduced plants in grassland communities. J. Ecol. 107, 781–793 (2019).Article 

    Google Scholar 
    Schaefer, H., Hardy, O. J., Silva, L., Barraclough, T. G. & Savolainen, V. Testing Darwin’s naturalization hypothesis in the Azores. Ecol. Lett. 14, 389–396 (2011).PubMed 
    Article 

    Google Scholar 
    Strauss, S. Y., Webb, C. O. & Salamin, N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA 103, 5841–5845 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, S.-p. et al. The effects of phylogenetic relatedness on invasion success and impact: deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).PubMed 
    Article 

    Google Scholar 
    Pellock, S., Thompson, A., He, K., Mecklin, C. & Yang, J. Validity of Darwin’s naturalization hypothesis relates to the stages of invasion. Community Ecol. 14, 172–179 (2013).Article 

    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 
    Article 

    Google Scholar 
    van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Broennimann, O. et al. Distance to native climatic niche margins explains establishment success of alien mammals. Nat. Commun. 12, 2353 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carboni, M. et al. What it takes to invade grassland ecosystems: traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2016).PubMed 
    Article 

    Google Scholar 
    Milbau, A. & Stout, J. C. Factors associated with alien plants transitioning from casual, to naturalized, to invasive. Conserv. Biol. 22, 308–317 (2008).PubMed 
    Article 

    Google Scholar 
    Dawson, W., Burslem, D. F. R. P. & Hulme, P. E. Factors explaining alien plant invasion success in a tropical ecosystem differ at each stage of invasion. J. Ecol. 97, 657–665 (2009).Article 

    Google Scholar 
    Rejmánek, M. in Invasive Species and Biodiversity Management (eds Schei, P. J. & Vilken, A.) 79–102 (Kluwer Academic, 1998).Rejmánek, M. A theory of seed plant invasiveness: the first sketch. Biol. Conserv. 78, 171–181 (1996).Article 

    Google Scholar 
    Maurel, N., Hanspach, J., Kuhn, I., Pysek, P. & van Kleunen, M. Introduction bias affects relationships between the characteristics of ornamental alien plants and their naturalization success. Glob. Ecol. Biogeogr. 25, 1500–1509 (2016).Article 

    Google Scholar 
    Glen, H. F. Cultivated Plants of Southern Africa: Botanical Names, Common Names, Origins, Literature (National Botanical Institute, 2002).Reichard, S. H. & White, P. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51, 103–113 (2001).Article 

    Google Scholar 
    Faulkner, K. T., Robertson, M. P., Rouget, M. & Wilson, J. R. U. Understanding and managing the introduction pathways of alien taxa: South Africa as a case study. Biol. Invasions 18, 73–87 (2016).Article 

    Google Scholar 
    Dodd, A. J., Burgman, M. A., McCarthy, M. A. & Ainsworth, N. The changing patterns of plant naturalization in Australia. Divers. Distrib. 21, 1038–1050 (2015).Article 

    Google Scholar 
    Lambdon, P.-W. et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101–149 (2008).
    Google Scholar 
    Bennett, B. M. Naturalising Australian trees in South Africa: climate, exotics and experimentation. J. South. Afr. Stud. 37, 265–280 (2011).Article 

    Google Scholar 
    Richardson, D. M. et al. in Biological Invasions in South Africa (eds van Wilgen, B. W. et al.) 67–96 (Springer, 2020).Li, S.-p. et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52, 89–99 (2015).CAS 
    Article 

    Google Scholar 
    Duarte, M., Verdú, M., Cavieres, L. A. & Bustamante, R. O. Plant–plant facilitation increases with reduced phylogenetic relatedness along an elevation gradient. Oikos 130, 248–259 (2021).Article 

    Google Scholar 
    Verdú, M., Rey, P. J., Alcántara, J. M., Siles, G. & Valiente-Banuet, A. Phylogenetic signatures of facilitation and competition in successional communities. J. Ecol. 97, 1171–1180 (2009).Article 

    Google Scholar 
    Valiente-Banuet, A. & Verdu, M. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 347–366 (2013).Article 

    Google Scholar 
    Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016).PubMed 
    Article 

    Google Scholar 
    Dostál, P. Plant competitive interactions and invasiveness: searching for the effects of phylogenetic relatedness and origin on competition intensity. Am. Nat. 177, 655–667 (2011).PubMed 
    Article 

    Google Scholar 
    Levin, S. C., Crandall, R. M., Pokoski, T., Stein, C. & Knight, T. M. Phylogenetic and functional distinctiveness explain alien plant population responses to competition. Proc. R. Soc. B 287, 20201070 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, E. W., Zeldin, J., Semski, W. R., Hipp, A. L. & Larkin, D. J. Phylogenetic distance and resource availability mediate direction and strength of plant interactions in a competition experiment. Oecologia 197, 459–469 (2021).PubMed 
    Article 

    Google Scholar 
    Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O. & Van der Bank, M. Revisiting Darwin’s naturalization conundrum: explaining invasion success of non-native trees and shrubs in Southern Africa. J. Ecol. 103, 871–879 (2015).Article 

    Google Scholar 
    Trotta, L. B., Siders, Z. A., Sessa, E. B. & Baiser, B. The role of phylogenetic scale in Darwin’s naturalization conundrum in the critically imperilled pine rockland ecosystem. Divers. Distrib. 27, 618–631 (2021).Article 

    Google Scholar 
    Sol, D. et al. A test of Darwin’s naturalization conundrum in birds reveals enhanced invasion success in the presence of close relatives. Ecol. Lett. 25, 661–672 (2022).PubMed 
    Article 

    Google Scholar 
    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    Henderson, L. Comparisons of invasive plants in Southern Africa originating from southern temperate, northern temperate and tropical regions. Bothalia 36, 201–222 (2006).Article 

    Google Scholar 
    Cayuela, L., Stein, A. & Oksanen, J. Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. https://CRAN.R-project.org/package=Taxonstand (R Foundation for Statistical Computing, Vienna, 2019).Weigelt, P., König, C. & Kreft, H. GIFT – A Global Inventory of Floras and Traits for macroecology and biogeography. J. Biogeogr. 47, 16–43 (2020).Article 

    Google Scholar 
    van Kleunen, M. et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology 100, e02542 (2019).PubMed 
    Article 

    Google Scholar 
    Zengeya, T. A. & Wilson, J. R. (eds) The Status of Biological Invasions and Their Management in South Africa in 2019 (South African National Biodiversity Institute and DSI-NRF Centre of Excellence for Invasion Biology, 2021).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing v.3.6.1 (R Foundation for Statistical Computing, 2019).Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Vol. 574 (Springer, 2009).Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    Nagelkerke, N. J. D. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).Article 

    Google Scholar 
    rcompanion: Functions to support extension education program evaluation v. 2.4.1 (R Foundation for Statistical Computing, 2021).Tung Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 

    Google Scholar  More

  • in

    A sustainable ocean for all

    Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, Lisbon, PortugalCatarina Frazão SantosMARE–Marine and Environmental Sciences Center / ARNET–Aquatic Research Network, University of Lisbon, Lisbon, PortugalCatarina Frazão Santos & Carina Vieira da SilvaEnvironmental Economics Knowledge Center, NOVA-SBE, Carcavelos, PortugalCatarina Frazão Santos & Carina Vieira da SilvaSound Seas, Bethesda, MD, USATundi AgardyWorldFish, Batu Maung, Penang, MalaysiaEdward H. AllisonThe Peopled Seas Initiative, Vancouver, CanadaNathan J. BennettEqualSea Lab, University of Santiago de Compostela, A Coruña, SpainNathan J. Bennett & Sebastián VillasanteEnvironmental Sustainability Research Centre, Brock University, St. Catharines, ON, CanadaJessica L. BlytheMarine and Environmental Sciences Center, University of the Azores – FCT, Ponta Delgada, PortugalHelena CaladoHopkins Marine Station, Stanford University, Stanford, CA, USALarry B. Crowder & Elena GissiARC Centre of Excellence for Coral Reef Studies, Townsville, AustraliaJon C. DayQueen’s University Belfast, Belfast, Northern Ireland, UKWesley FlanneryNational Research Council, Institute of Marine Sciences, Venice, ItalyElena GissiInternational Union for Conservation of Nature and World Commission on Protected Areas, Cambridge, MA, USAKristina M. GjerdeMiddlebury Institute of International Studies at Monterey, Monterey, MA, USAKristina M. GjerdeThe University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and TobagoJudith F. GobinPermanent Mission of the Federated States of Micronesia to the United Nations, New York, USAClement Yow MulalapDuke University Marine Laboratory, Duke University, Durham, NC, USAMichael OrbachCentre for Marine Socioecology, University of Tasmania, Hobart, AustraliaGretta PeclInstitute for Marine and Antarctic Studies, University of Tasmania, Hobart, AustraliaGretta PeclFederal University of Santa Catarina, Florianópolis, SC, BrazilMarinez SchererCenter for Island Sustainability and Sea Grant, University of Guam, Mangilao, USAAustin J. SheltonSchool of Geography and the Environment, University of Oxford, Oxford, UKLisa Wedding More

  • in

    Global dataset of species-specific inland recreational fisheries harvest for consumption

    Arlinghaus, R., Tillner, R. & Bork, M. Explaining participation rates in recreational fishing across industrialised countries. Fisheries Management and Ecology 22, 45–55 (2015).Article 

    Google Scholar 
    Cooke, S. J. & Cowx, I. G. The Role of Recreational Fishing in Global Fish Crises. BioScience 54, 857 (2004).Article 

    Google Scholar 
    World Bank. Hidden harvest: The global contribution of capture fisheries (World Bank, Washington, DC), Report 66469-GLB (2012).Nyboer, E. A. et al. Overturning stereotypes: the fuzzy boundary between recreation and subsistence in inland fisheries. Fish and Fisheries https://doi.org/10.1111/faf.12688 (2022).Article 

    Google Scholar 
    Gupta, N. et al. Catch-and-release angling as a management tool for freshwater fish conservation in India. Oryx 50, 250–256 (2016).Article 

    Google Scholar 
    Bower, S. D. et al. Knowledge Gaps and Management Priorities for Recreational Fisheries in the Developing World. Reviews in Fisheries Science & Aquaculture 1–18, https://doi.org/10.1080/23308249.2020.1770689 (2020).FAO. The State of World Fisheries and Aquaculture – 2016 (SOFIA). Rome, Italy (2016).Golden, C. D. et al. Aquatic foods to nourish nations. Nature https://doi.org/10.1038/s41586-021-03917-1 (2021).Article 
    PubMed 

    Google Scholar 
    Cooke, S. J. et al. The nexus of fun and nutrition: Recreational fishing is also about food. Fish and Fisheries 19, 201–224 (2018).Article 

    Google Scholar 
    Joosse, S., Hensle, L., Boonstra, W. J., Ponzelar, C. & Olsson, J. Fishing in the city for food—a paradigmatic case of sustainability in urban blue space. npj Urban Sustain 1, 41, https://doi.org/10.1038/s42949-021-00043-9 (2021).Article 

    Google Scholar 
    Fluet-Chouinard, E., Funge-Smith, S. & McIntyre, P. B. Global hidden harvest of freshwater fish revealed by household surveys. Proceedings of the National Academy of Sciences 115, 7623–7628 (2018).CAS 
    Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture – 2020 (SOFIA). Rome, Italy. (2020).IPBES. Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (Version 1). Zenodo https://doi.org/10.5281/zenodo.3831674 (2019).Arlinghaus, R. et al. Global Participation in and Public Attitudes Toward Recreational Fishing: International Perspectives and Developments. Reviews in Fisheries Science & Aquaculture 29, 58–95 (2021).Article 

    Google Scholar 
    Chan, N. “Large Ocean States”: Sovereignty, Small Islands, and Marine Protected Areas in Global Oceans Governance. Global Governance: A Review of Multilateralism and International Organizations 24, 537–555 (2018).Article 

    Google Scholar 
    Arlinghaus, R. & Cooke, S. J. Recreational Fisheries: Socioeconomic Importance, Conservation Issues and Management Challenges. in Recreational Hunting, Conservation and Rural Livelihoods (eds. Dickson, B., Hutton, J. & Adams, W. M.) 39–58, https://doi.org/10.1002/9781444303179.ch3 (Wiley-Blackwell, 2009).Arlinghaus, R. et al. Opinion: Governing the recreational dimension of global fisheries. Proceedings of the National Academy of Sciences 116, 5209–5213 (2019).CAS 
    Article 

    Google Scholar 
    Cisneros-Montemayor, A. M. & Sumaila, U. R. A global estimate of benefits from ecosystem-based marine recreation: potential impacts and implications for management. Journal of Bioeconomics 12, 245–268 (2010).Article 

    Google Scholar 
    Czarkowski, T., Wołos, A. & Kapusta, A. Socio-economic portrait of Polish anglers and its implications for recreational fisheries management in freshwater bodies. Aquatic Living Resources 19, 14, https://doi.org/10.1051/alr/2021018 (2021).Article 

    Google Scholar 
    Dill, W. A. Inland Fisheries of Europe. Italy: Food and Agriculture Organization of the United Nations. (1993).Baigún, C., Oldani, N., Madirolas, A. & Colombo, G. A. Assessment of Fish Yield in Patagonian Lakes (Argentina): Development and Application of Empirical Models. Transactions of the American Fisheries Society 136, 846–857 (2007).Article 

    Google Scholar 
    Vigliano, P. H., Bechara, J., & Quiros, R. Allocation policies and its implications for recreational fisheries management in inland waters of Argentina. Sharing the Fish ‘06, 210 (2006).Henry, G. W., & Lyle, J. M. National recreational and indigenous fishing survey. (2003).Murphy J. J. et al. Survey of recreational fishing in NSW, 2019/20 – Key Results. Fisheries Final Report Series No. 161. Department of Primary Industries, New South Wales. 180 pp. (2022).Aas, Øystein, ed. Global challenges in recreational fisheries. (John Wiley & Sons, 2008).DoF. Yearbook of Fisheries Statistics of Bangladesh, 2017-18. Fisheries Resources Survey System (FRSS), Department of Fisheries. Bangladesh: Ministry of Fisheries. 35: p. 129 (2018).Mozumder, M., Uddin, M., Schneider, P., Islam, M. & Shamsuzzaman, M. Fisheries-Based Ecotourism in Bangladesh: Potentials and Challenges. Resources 7, 61 (2018).Article 

    Google Scholar 
    Craig, John F., ed. Freshwater fisheries ecology. (John Wiley & Sons, 2016).Barkhuizen, L. M., Weyl, O. L. F. & Van As, J. G. An assessment of recreational bank angling in the Free State Province, South Africa, using licence sale and tournament data. WSA 43, 442 (2017).Article 

    Google Scholar 
    Treer, T. & Kubatov, I. The co-existence of recreational and artisanal fisheries in the central parts of the Danube and Sava rivers. Croatian Journal of Fisheries 75(3), 116–127 (2017).
    Google Scholar 
    Freire, K. M. F., Machado, M. L. & Crepaldi, D. Overview of Inland Recreational Fisheries in Brazil. Fisheries 37, 484–494 (2012).Article 

    Google Scholar 
    Freire, K. M. F. et al. Brazilian recreational fisheries: current status, challenges and future direction. Fish Manag Ecol 23, 276–290, https://doi.org/10.1111/fme.12171 (2016).Article 

    Google Scholar 
    Fisheries and Oceans Canada. Survey of Recreational Fishing in Canada, 2015. 26 (2019).Arismendi, I. & Nahuelhual, L. Non-native Salmon and Trout Recreational Fishing in Lake Llanquihue, Southern Chile: Economic Benefits and Management Implications. Reviews in Fisheries Science 15, 311–325 (2007).Article 

    Google Scholar 
    Lyach, R., & Čech, M. Differences in fish harvest, fishing effort, and angling guard activities between urban and natural fishing grounds. Urban Ecosystems, 1–13 (2019).Lyach, R. The effect of fishing effort, fish stocking, and population density of overwintering cormorants on the harvest and recapture rates of three rheophilic fish species in central Europe. Fisheries Research 223, 105440 (2020).Article 

    Google Scholar 
    Lyach, R. The effect of a large-scale angling restriction in minimum angling size on harvest rates, recapture rates, and average body weight of harvested common carps Cyprinus carpio. Fisheries Research 223, 105438 (2020).Article 

    Google Scholar 
    Lyach, R. & Remr, J. Changes in recreational catfish Silurus glanis harvest rates between years 1986–2017 in Central Europe. Journal of Applied Ichthyology 35(5), 1094:1104 (2019).Article 

    Google Scholar 
    Lyach, R. & Remr, J. Does harvest of the European grayling, Thymallus thymallus (Actinopterygii: Salmoniformes: Salmonidae), change over time with different intensity of fish stocking and fishing effort? Acta Ichthyol. Piscat. 50(1), 53–62 (2019).Article 

    Google Scholar 
    Lyach, R. & Remr, J. The effects of environmental factors and fisheries management on recreational catches of perch Perca fluviatilis in the Czech Republic. Aquatic Living Resources 32, 15, https://doi.org/10.1051/alr/2019013 (2019).Article 

    Google Scholar 
    Rasmussen, G. & Geertz‐Hansen, P. Fisheries management in inland and coastal waters in Denmark from 1987 to 1999. Fisheries Management and Ecology 8(4‐5), 311–322 (2001).
    Google Scholar 
    Armulik, T. & Sirp, S. Estonian Fishery 2018. (2019).Welcomme, R. Review of the State of the World Fishery Resources: Inland Fisheries. FAO Fisheries and Aquaculture Circular No. 942, Rev. 2. Rome, FAO. 97 pp. (2011).West Greenland Commission, 2020 Report on the Salmon Fishery in Greenland. 8 (2020).Guðbergsson, G. Catch statistics for Atlantic salmon, Arctic char and brown trout in Icelandic rivers and lakes 2013. Institute of Freshwater Fisheries, Iceland Report VMST/14045 (2014).Inland Fisheries Ireland. Wild Salmon and Sea Trout Statistics Report. IFI/2020/1-4513 (2019).Vycius, J. & Radzevicius, A. Fishery and Fishculture Challenges in Lithuania. International Journal of Water Resources Development 25(1), 81–94, https://doi.org/10.1080/07900620802576240 (2009).Article 

    Google Scholar 
    Bacal, P., Jeleapov, A., Burduja, V. D., & Moroz, I. State and use of lakes from central region of the Republic of Moldova. Present Environment and Sustainable Development, (2), 141–156 (2019).Moroccan Ministry of Fisheries, Annual Report of Fisheries and Fish Farming in Inland Waters, Season 2020/2021 (2021).Centre for Fisheries Research. Recreational fisheries in the Netherlands: Analyses of the 2017 screening survey and the 2016–2017 logbook survey. CVO report: 18.025 (2019).Dedual, M. & Rohan, M. Long‐term trends in the catch characteristics of rainbow trout Oncorhynchus mykiss, in a self‐sustained recreational fishery, Tongariro River, New Zealand. Fisheries Management and Ecology 23(3-4), 234–242 (2016).Article 

    Google Scholar 
    Unwin, M.J. Angler usage of New Zealand lake and river fisheries. National Institute of Water and Atmospheric Research (2016).Ipinmoroti, M. O. & Ayanboye, O. Biological and socioeconomic viability of recreational fisheries of two Nigerian lakes. IIFET 2012 Tanzania Proceedings (2012).Amaral, S., Ferreira, M.T., Cravo, M.T. Resultado do ‘Inquérito aos Pescadores Desportivos de Áquas Intenores” realizado pela Direcção Geral das Florestas em 1998 a 1999. Pesca Desportivos em Albufeiras do Centro e Sul de Portugal: Contribuição para a reduçao da eutrofização. Instituto Superior de Agronomia. Autoridade Florestal Nacional. Lisboa: III.1-III.53. (2010).Povž, M., Šumer, S. & Leiner, S. Sport fishing catch as an indicator of population size of the Danube roach Rutilus pigus virgo in Slovenia (Cyprinidae). Italian Journal of Zoology 65(S1), 545–548 (1998).Article 

    Google Scholar 
    Embke, H. S., Beard, T. D., Lynch, A. J. & Vander Zanden, M. J. Fishing for Food: Quantifying Recreational Fisheries Harvest in Wisconsin Lakes. Fisheries fsh.10486, https://doi.org/10.1002/fsh.10486 (2020).Karimov, B. et al. Inland capture fisheries and aquaculture in the Republic of Uzbekistan: current status and planning. FAO Fisheries and Aquaculture Circular. No. 1030/1. Rome, FAO. 124 p. (2009).Magqina, T., Nhiwatiwa, T., Dalu, M. T., Mhlanga, L. & Dalu, T. Challenges and possible impacts of artisanal and recreational fisheries on tigerfish Hydrocynus vittatus Castelnau 1861 populations in Lake Kariba, Zimbabwe. Scientific African 10, e00613 (2020).Article 

    Google Scholar 
    Embke, H. S. Global dataset of species-specific inland recreational fisheries harvest for consumption. U.S. Geological Survey https://doi.org/10.5066/P9904C3R (2022).Amano, T., González-Varo, J. P. & Sutherland, W. J. Languages are still a major barrier to global science. PLoS biology 14(12), e2000933 (2016).Article 

    Google Scholar 
    Cooke, S. J. et al. Recreational fisheries in inland waters. In J. F. Craig (Ed.) Freshwater Fisheries Ecology. John Wiley and Sons Ltd. (2016). More

  • in

    Low phosphorus levels limit carbon capture by Amazonian forests

    Pan, Y. et al. Science 333, 988–993 (2011).PubMed 
    Article 

    Google Scholar 
    Bonan, G. B. Science 320, 1444–1449 (2008).PubMed 
    Article 

    Google Scholar 
    Craine, J. M. et al. Nature Ecol. Evol. 2, 1735–1744 (2018).PubMed 
    Article 

    Google Scholar 
    Cunha, H. F. V. et al. Nature 608, 558–562 (2022).Article 

    Google Scholar 
    Vitousek, P. M. & Sanford, R. L. Jr Annu. Rev. Ecol. Syst. 17, 137–167 (1986).Article 

    Google Scholar 
    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).Article 

    Google Scholar 
    Ostertag, R. & DiManno, N. M. Front. Earth Sci. 4, 23 (2016).Article 

    Google Scholar 
    Wright, S. J. Ecol. Monogr. 89, e01382 (2019).Article 

    Google Scholar 
    Lugli, L. F. et al. New Phytol. 230, 116–128 (2021).PubMed 
    Article 

    Google Scholar 
    Muller-Landau, H. C. et al. New Phytol. 229, 3065–3087 (2021).PubMed 
    Article 

    Google Scholar 
    He, X. et al. Earth Syst. Sci. Data 13, 5831–5846 (2021).Article 

    Google Scholar 
    Elser, J. J. et al. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Ecology 89, 371–379 (2008).PubMed 
    Article 

    Google Scholar 
    Arora, V. K. et al. Biogeosciences 17, 4173–4222 (2020).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
    Google Scholar  More

  • in

    Potential of microbiome-based solutions for agrifood systems

    German Centre for Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, François Buscot, Antonis Chatzinotas, Narendrakumar M. Chaudhari, Anna Heintz-Buschart, Kirsten Küsel & Rine C. ReubenInstitute of Biology, Leipzig University, Leipzig, GermanyStephanie D. Jurburg, Nico Eisenhauer, Antonis Chatzinotas & Rine C. ReubenDepartment of Environmental Microbiology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, GermanyStephanie D. Jurburg, Antonis Chatzinotas, Rene Kallies, Susann Müller & Ulisses Nunes da RochaDepartment of Soil Ecology, Helmholtz Centre for Environmental Research–UFZ, Halle, GermanyFrançois Buscot & Anna Heintz-BuschartAquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University, Jena, GermanyNarendrakumar M. Chaudhari & Kirsten KüselSwammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the NetherlandsAnna Heintz-BuschartKellogg Biological Station, Michigan State University, Hickory Corners, MI, USAElena LitchmanEcology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USAElena LitchmanDepartment of Global Ecology, Carnegie Institution for Science, Stanford, CA, USAElena LitchmanHawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, AustraliaCatriona A. Macdonald & Brajesh K. SinghLeibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, GermanyGianni PanagiotouThe State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouDepartment of Medicine, The University of Hong Kong, Kowloon, Hong Kong SAR, ChinaGianni PanagiotouInstitut für Biologie, Freie Universität Berlin, Berlin, GermanyMatthias C. RilligBerlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, GermanyMatthias C. RilligGlobal Centre for Land-Based Innovation, Western Sydney University, Penrith, New South Wales, AustraliaBrajesh K. SinghB.K.S. conceived the idea in consultation with N.E. and S.J., and led the discussion which was attended by all authors. S.J. and B.K.S. wrote the manuscript and all contributed to refine it. More