More stories

  • in

    Correction to: Patterns of genetic diversity and structure of a threatened palm species (Euterpe edulis Arecaceae) from the Brazilian Atlantic Forest

    Authors and AffiliationsDepartment of Agronomy, Universidade Federal do Espírito Santo, Alegre, BrazilAléxia Gonçalves Pereira, Marcia Flores da Silva Ferreira, Thamyres Cardoso da Silveira, José Henrique Soler-Guilhen, Guilherme Bravim Canal, Luziane Brandão Alves, Francine Alves Nogueira de Almeida & Adésio FerreiraDepartment of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, BrazilFernanda Amato GaiottoAuthorsAléxia Gonçalves PereiraMarcia Flores da Silva FerreiraThamyres Cardoso da SilveiraJosé Henrique Soler-GuilhenGuilherme Bravim CanalLuziane Brandão AlvesFrancine Alves Nogueira de AlmeidaFernanda Amato GaiottoAdésio FerreiraCorresponding authorCorrespondence to
    Marcia Flores da Silva Ferreira. More

  • in

    Sufficient conditions for rapid range expansion of a boreal conifer

    White and black spruce are the dominant conifers at Arctic treelines and the boreal forest–tundra ecotone more generally in North America, with white spruce dominating on better drained sites. White spruce reaches its northwestern-most limit in Alaska, USA, at 68.1º N, 163.2º W. For comparison, the northeastern range extent of the species26 is Labrador, Canada, at 57.9º N, 62.5º W (ref. 12), giving an east–west range of >100º in longitude. Of the approximately 6,500-km-long northern boundary of white spruce in North America, 10–15% is located in Alaska’s Brooks Range, where white spruce is the dominant treeline tree.Study areaThe 1,000-km Brooks Range is a high-latitude mountain range dividing Arctic tundra from boreal forest in Alaska. The mountains and nearby lowlands are notable for their wilderness character, protected as a near-contiguous conservation area of >150,000 km2. In the east between the Arctic Ocean’s Beaufort Sea and the uppermost Yukon River basin, the range is cold and dry, reaching 2,736 m above sea level. The south slope of the eastern Brooks Range is included in Alaska’s Northeast Interior climate division, where precipitation is among the lowest in the state51. Descending to the Chukchi Sea in the west, the range is included in Alaska’s West Coast climate division, where precipitation is the highest in northern Alaska51.The Noatak and Kobuk rivers flow in their entirety above the Arctic Circle, draining the western Brooks Range. Both rivers empty into the Chukchi Sea near Kotzebue, Alaska (Fig. 1a). The Baird Mountains of the southwestern Brooks Range separate the Kobuk from the Noatak basin, and the De Long Mountains of the northwestern Brooks Range separate the Noatak from the river basins of the North Slope and from the Wulik basin, located northwest of the Noatak basin. The lower basins of the Noatak and Kobuk rivers are included in the West Coast climate division, with greater precipitation, warmer winters and cooler summers than in the Central Interior climate division and greater precipitation and warmer temperatures than in the North Slope climate division51. The upper basin of the 700-km Noatak River lies at the intersection of all three climate divisions, which warmed from 1949 to 2012; December–January precipitation increased from 1949 to 2012 in the West Coast climate division, as did North Slope winter precipitation from 1980 to 2012 (ref. 52).The Noatak River basin is entirely protected within federal conservation units. Its vegetation includes dwarf, low and tall shrub tundra communities that cover about 60% of the 33,000 km2 basin53. Tussock sedge tundra covers another 30%, and wetlands and barrens cover most of the remainder. The main valley and tributaries along the lowest 200 km of the Noatak River support stands of white spruce, typically associated with a deeper active layer or an absence of permafrost. The treelines bounding these forests have long been identified as the northwest range extent of white spruce26.The upper Noatak basin, a 500-km reach, is underlain by extensive continuous permafrost54. It has been considered empty of spruce since US Geological Survey (USGS) geologist Philip Smith explored the Kobuk, Alatna and Noatak rivers by canoe in 1911 (ref. 55). The adjacent Kobuk and Alatna river basins support boreal forests of black and white spruce, paper birch and aspen along much of their lengths. By surveying transects at and beyond hydrological divides separating the Noatak, Wulik, Kobuk and Alatna river basins, as well as further east in the Brooks Range (Fig. 1a), and informed by very high-resolution satellite scenes (Fig. 1b and Supplementary Figs. 1–13), we documented the locations of over 7,000 individual spruce colonists (Extended Data Fig. 1b–d and Supplementary Figs. 1–3). Overall, we traversed 22° of longitude (141–163° W) in the field, mostly along the treeline from Canada to the Chukchi Sea, locating dozens of populations of colonizing spruce (Fig. 1a) above alpine and beyond Arctic treelines (see ‘Regional extent of colonization’).The primary AOI (Fig. 1a) included the USGS Hydrological Unit Code (HUC) 10 watersheds Kaluich, Cutler, Amakomanak and Imelyak located in the HUC 8 Upper Noatak Subbasin. However, we also documented (longitude, latitude, distance from established treeline) fast-growing, healthy spruce well beyond established treelines within six additional western Arctic watersheds, each separated by over 30 km in the western Brooks Range and 80–200 km distant from the AOI. These populations are within the far upper reaches of the Noatak basin (Lucky Six Creek, 67.594° N, 154.858° W; Kugrak River, 67.428° N, 155.723° W; Ipnelivuk River, 67.552° N, 156.293° W; upper Wrench Creek, 68.251° N, 162.617° W); 25 km northwest of the nearest established treeline and outside the Noatak basin in the Wulik River valley (68.120° N, 163.219° W); and along the Chukchi Sea coast (67.041° N, 163.114° W). We also note that, in the central Brooks Range, humans have actively or inadvertently disseminated spruce seeds and juveniles on the North Slope, with individual white spruce germinating and surviving there for at least 20 years37,56.Patterns of expansionDigitizing spruce shadowsWe used cloud-free Maxar Digital Globe WorldView-1 and WorldView-2 satellite scenes (WV; https://evwhs.digitalglobe.com/myDigitalGlobe/login) of snow-covered landscapes from three missions in early spring 2018, a near-record year for snow depth in northwest Alaska (Fig. 1b, Extended Data Table 1 and Supplementary Figs. 1–13). Ground sample distances of 0.47–0.5 m, a root-mean-squared error of 3.91–3.94 m and off-nadir angles of 5–25º with low sun-elevation angles of 18–27º provided clear images from which to digitize the lengths of individual spruce shadows and identify their locations (Supplementary Information sections 1.2 and 1.3). One technician (S. Taylor), supervised in quality assurance and quality control (QAQC) by R.J.D., digitized 5,986 shadows (densities in Extended Data Fig. 1b, locations in Supplementary Fig. 1) on GEP using WV images as super-overlays. The technician identified all spruce shadows across the imported image tiles and then digitized them as line segments from base to shadow tip.The super-overlays degraded the imagery somewhat, making small tree shadows more difficult to distinguish from snowdrift, rock or shrub shadows (Supplementary Figs. 5 and 6). We suspect that many trees in the height class of 2–3 m were missed. These line segments, saved as .kml files, were imported into R (v.4.1.1)57 using the sf package58, where the length of each line segment was calculated and the coordinates of the shadow’s base were identified. The line segment lengths were used to estimate tree heights, and the coordinates were used in nearest-neighbour calculations and extractions of gridded data values. We estimated snow depth at 2.5–3 m because geolocated trees measured as ≤2.5 m in the field (see below) did not appear on imagery. We observed some trees taller than 2.5 m with no visible shadows on imagery, possibly buried in deeper snow or growing in shadows cast by terrain at the time of image capture. Thus, our estimates of adult populations may be underestimates, although there were also errors of commission where shrub shadows were mistakenly classified as spruce (see following).Digitizing and field validationTo estimate identification accuracy (Supplementary Information sections 1.2 and 1.3) among the 1,971 digitized shadows used for population reconstruction (enclosed by red rectangles in Supplementary Figs. 1–4), we visited 157 shadow locations first identified on imagery (8% of the 1,971) and located in the field with the built-in GNSS of late-model Apple iPhones (models 12 Pro Max, 12 Pro and second-generation SE) with positional accuracy in the open landscapes estimated at 3 m. At these 157 locations, 11 shadows were cast by very tall willows (7%). Of the 146 shadows confirmed as trees, 2 were dead (1%) and 1 had a recently broken top with green foliage on the ground. We added the length of the broken top to the standing height measured with a laser range-finder. Trees that were collinear in the solar azimuth at image capture contributed to errors of omission. The tree standing to solar azimuth obscured others as overlapping shadows fell in line, generating both errors of omission and an overestimate of the height of the first tree in the series. Six trees shadowed in three instances by what we identified on imagery as single shadows fell in this category. An additional three trees were missed during digitizing, also going unnoticed during QAQC, and were discovered in the field when matching shadows with trees. Supplementary Information section 1.3 provides details and a confusion matrix.In summary, 157 trees were expected from digitized shadows and 155 were found in the field. Applying the accuracy of the count overall suggests that 1,945 trees would better estimate the reconstructed population. Across the AOI, the total adult count of 5,988 shadows may represent 5,910 trees. Moreover, in so far as our estimates of ages based on tree heights are predictive, perhaps 2% of the ‘trees’ in our reconstruction are not a single tree casting a long shadow, but 2–3 younger, collinear trees. Thus, our estimate of past populations may be slightly biased to older trees, implying that the population growth rate may be slightly higher than estimated. However, the slightly fewer trees than shadows would suggest that the growth rate is lower. The relative size of these errors appears minor, and we did not incorporate them into the analysis, which seems to us robust and perhaps conservative in adult abundance estimates owing to image degradation with GEP super-overlays and other errors of omission. This study would have benefited from less image degradation using dedicated geographic information system (GIS) or image software. However, the low cost, simplicity and convenience of GEP was appealing for the large-scale digitizing.Returning from the field with individual tree data, R.J.D. displayed digitized shadow points together with field points on GEP, visually matching each field point to the nearest shadow, conditional on relative congruence between shadow size and tree height. This required care in clumps of trees with varying heights (example in Supplementary Information sections 1.2–1.3). The relative patterning of field points compared with shadows and the lengths of shadows compared with tree heights in these cases provided some measure of confidence in attribution.We made field expeditions to six study areas within the extent of the WV imagery we used for digitizing, three within the ‘simulated population area’ rectangle in Extended Data Fig. 1a (red rectangle in Supplementary Figs. 1–4) and three study areas further east (Extended Data Fig. 1c and Supplementary Fig. 2). Among-area variability was apparent in snow depth, terrain slope relative to the solar azimuth at the time of image capture and the solar-elevation angle itself because of the timing of image capture. The variability was identified, calculated and applied on the basis of geographic variability in the heights of trees casting shadows and from the slope and intercept of a mixed-model linear regression of field-measured height on digitized shadow length (see below).Field surveysWe validated species and heights of spruce casting shadows within the AOI along 403 km of ground transects. Our sampling did not appear spatially biased when compared with imagery as measured by proximity to a remote fixed-wing-aircraft landing site. Four field campaigns focused on three objectives in watersheds that were within or adjacent to the Noatak basin but did not have established treelines visible on WV growing season scenes: (1) to locate and document colonists at the geographic range boundary of white spruce; (2) to verify the locations of a sample of trees suggested by imagery in the AOI; and (3) to collect ecological measurements germane to white spruce range expansion. For adults (trees ≥2.5 m), datasets included height above ground (n = 340), diameter at breast height (DBH (~1.4 m); n = 296), CAG (n = 17), foliar nutrient content (n = 17), basal increment cores taken ≤20 cm above the ground (n = 140), tall shrub abundance within 5 m of sampled adults (n = 246), counts of juveniles within 5 m of sampled adults (n = 250), abundance class of cones (n = 339) and status of adults (live, n = 340; dead, n = 8). Of the dead adults, seven of eight were standing and largely without bark, with a median height of 4.1 m. The fallen dead tree was 6.2 m long with a DBH of 13.4 cm; all bark and limbs to fine branches remained. Only one dead adult, 4.1 m tall with a DBH of 4 cm, showed signs of decomposition with shelf fungus on the stem and decomposed limbs on the ground. Five juveniles ≥1.5 m tall had been stripped of their bark and all but their uppermost branches by apparently either porcupine (Erethizon dorsatum) or snowshoe hare (Lepus americanus). Anecdotally, we recorded other signs and possible causes of damage such as wind, bear (Ursus arctos), caribou (Rangifer tarandus) or struggling growth such as layering, stunted krummholz or clonal reproduction, although these growth forms were nearly totally absent.Field measurements for n = 770 juveniles located in the AOI and presented here included overall height, height above ground of bud scars representing 2015–2020 height (n = 302), damage and status. We used these measures to estimate age to increment core of adults (Supplementary Information section 2) and the RGR of juveniles (Supplementary Information section 3).Range expansion analysesDigitized established treelines (DETs) used here were downloaded as CTM_Treeline.kml from https://arcticdata.io/catalog/view/doi:10.18739/A2280506H. Ref. 34 describes drawing DETs on very high-resolution satellite imagery such as WV and Quick Bird. We clipped DETs to the four USGS HUC 10 watersheds within the HUC 8 Middle Kobuk subbasin and adjacent to the AOI (see ‘Environmental conditions’ below). The coordinates of the vertices for the clipped DETs provided the 3,366 locations of established treelines.We used the rdist.earth() function in the R package fields59 to identify the nearest neighbouring mapped adult and juvenile colonists in the AOI and DET vertices in adjacent Kobuk watersheds (Supplementary Information sections 1.8 and 1.9). Using the coordinates of nearest neighbours, we calculated differences in latitude as latitudinal displacement. Displacement north equalled the product of latitudinal displacement and 111.32 km, the distance between 67º and 68º N along 157.6891º W, which splits the AOI. Displacement in elevation was found by extracting from Interferometric Synthetic Aperture Radar (IFSAR) Alaska 5-m digital elevation models (DEMs) the elevation of DET vertices, mapped adults and mapped juveniles using the extract() function in the raster R package60 and then subtracting the elevation of the nearest neighbours from focal adults and juveniles. When geolocated adults or juveniles had estimated establishment years (see ‘Individual growth’ below), we calculated movement rates as the difference between the establishment year of an aged tree and the establishment year of the oldest tree sampled (1901, year of founding) as the denominator and displacement (difference in metres above sea level, kilometres or degrees of latitude) as the numerator (Supplementary Information sections 1.19–1.21). To time the progression of spruce away from DETs, we also binned establishment year by decade as decadal class, identifying within each decadal class the maximum displacement in kilometres north of and elevation in metres above (or below) nearest neighbours.Population growthFrom the 5,986 spruce shadow lengths within the AOI (Extended Data Fig. 1b and Supplementary Fig. 1) that we digitized from snow-covered scenes of DigitalGlobe WV imagery (Extended Data Table 1), we identified a sample of shadows stratified by length and cast by spruce that we located with GNSS-equipped late-model iPhones. We measured the height of n = 260 trees using a laser range-finder (LTI TruPulse 200) and/or a smartphone app (Arboreal Tree on iPhone 12 Pro and Pro Max with laser scanners) and collected n = 122 basal cores from individuals ≥2.5 m in height, then matched to shadows on imagery as described above (see ‘Digitizing and field validation’). Using the relationship between height and shadow length and the probability distribution of establishment year for the 122 cored trees identified within five height classes (Extended Data Fig. 2b), we simulated population growth within two contiguous sub-watersheds (the 135 km2 ‘simulated population area’in Extended Data Fig. 1a; western portion in Extended Data Fig. 2a; red rectangles in Supplementary Figs. 1–4; details in Supplementary Information section 4). These sub-watersheds contained n = 1,971 shadows cast on 26 March 2018. We treated these shadows as single spruce but recognize that they include as many as 138 willows (7%) and calculate an additional 118 (6%) spruce missed either by digitizing omission or by collinearity (Supplementary Information sections 1.2 and 1.3). Incorporating these errors together would not change the outcome of the simulations enough to change the doubling time of the population by more than a few percent.Estimates of tree height from shadow lengthOn a flat landscape covered uniformly in snow, the total height H of a tree equals snow depth S added to the product of shadow length L on the snow surface and the tangent of solar-elevation angle 𝛼, as H = S + Ltan(𝛼). However, because both the relative solar elevation and snow depth vary with terrain, we used a linear mixed-effects model (lmer() in the lme4 R package61) of height on shadow length (random factor of sample area with six levels), interpreting the fixed-effects intercept as the average snow depth (mean ± s.e. = 2.84 ± 0.14 m, t = 20.29) and the regression coefficient as the average tangent of solar elevation relative to the terrain slope (0.27 ± 0.04 m m−1, t = 6.96; details in Supplementary Information sections 4.1 and 4.2).Using these fixed-effects estimates and the random-effects covariance matrix, we applied Monte Carlo sampling to estimate the 1,971 heights with each run of the simulation, thereby propagating the error in height estimates. These 1,971 heights were then binned into five height classes with 0.5-m intervals from 4–5.5 m and with ≥1-m intervals from 3–4 m and 5.5–7 m (details in Supplementary Information sections 4.3 and 4.4). Height classes deduced from the shadow measurements were in some cases only 0.5 m in width. Because the mean snow depth (the intercept in the mixed-effects model) differed by more than this from one part of the study area to another (BobWoods, GaiaHill and BuffaloDrifts in Supplementary Information sections 4.1 and 4.2), this approach may have introduced systematic misclassification between locations. While applying a Monte Carlo model with coefficients drawn randomly using the mvrnorm() function from the MASS package in R with the random-effects covariance matrix was meant to alleviate this, we also ran the simulation with three uniform height classes with a wider interval (1.3-m width, for classes of 3–4.3 m, 4.3–5.6 m and 5.6–7 m).Estimating population-scale establishment yearWe estimated establishment years for each of the 1,971 trees (Supplementary Information sections 4.3 and 4.4). We did so by using the establishment yeardistributions by height class as Gaussian kernel densities for the 122 aged adults binned into the five height classes defined above (Extended Data Fig. 2b). Kernel density estimates were constructed using the function density() in R with options bw = “SJ” as the smoothing bandwidth, n = 107 as the number of consecutive establishment years, from = 1897 as the earliest year and to = 2004 as the latest year. For each of the 1,971 estimated heights binned into height classes, an establishment year was drawn (with replacement) from the corresponding kernel density distribution. We interpreted the total number of individuals in each establishment year as ‘recruitment by year’ into the population of survivors that we had digitized on the 2018 imagery. Sorting and cumulatively summing recruitment by year gave what we interpreted as population size (N) for each year (t) for trees that survived to 2018. Resampling in this manner for 1,000 runs, each time fitting exponential growth equation N(t) = N0ek(t – 1900) using nls() in R and then averaging the population RGR, provided population doubling time as ln(2) divided by mean k. The simulation was run again using three height classes, each of 1.3 m in width. The resulting mean doubling time was unchanged, but variability increased (Supplementary Information section 4.6).Individual growthCurrent annual growth and foliar chemistryIn autumn 2019, we collected current-year lateral branch tips on the west and east sides of each sampled spruce (n1 = 17 adult colonists and n2 = 457 adults at established treelines) at 1.4 m above the ground. Current annual branch growth was measured on 2–6 branches per spruce from the previous year’s bud scar to the tip of the branch. The number of samples varied, ensuring sufficient mass for foliar chemical analysis. Established treelines were sampled for adult foliage in 12 watersheds of the Noatak, Kobuk and Koyukuk river basins where we have ongoing experiments. At these sites, we used a replicated nested plot-based design (Extended Data Table 3). Colonist foliage sample locations (n = 8) in the upper Noatak basin were widespread across three watersheds. At each location, except the upper Noatak where 1–3 spruce per location were sampled, we sampled n = 5 white spruce separated by ≥10  m at a DBH of 8–12 cm. Needles from each branch tip were pooled by individual, dried for 48 h at 60 °C and weighed. Needles of individuals were pooled by treeline location after grinding to powder using a steel ball mill grinder (Mini-Beadbeater, Biospec Products) and subsampled for chemical analysis. Foliar N and 15N isotope were analysed for one subsample run on an Elemental Combustion Analyzer (Costech, 4010) coupled to an isotope ratio mass spectrometer (Delta Plus XP, Thermo Fisher Scientific) at the University of Alaska Anchorage Environment and Natural Resources Institute Stable Isotope Laboratory. Foliar P was measured for another subsample by the Pennsylvania State College Analytical Services Lab using the acid digestion method and analysed by inductively coupled plasma emission spectroscopy62.Juvenile RGRSeveral results presented here depend on juvenile vertical height growth during 2015–2020, which we assumed followed h(t) = h2015e(RGR t), where h(t) is height above ground for year t after 2015, h2015 is the height above ground in 2015 and RGR is the relative growth rate (Supplementary Information section 3). We used juvenile RGR in three contexts: (1) as a means of estimating establishment year in juveniles (Supplementary Information section 3.3); (2) as a metric of growth for comparison between colonist and established treeline juveniles (Supplementary Information section 6); and (3) to estimate the establishment year of cored trees (see second paragraph in ‘Dendrochronology’ below and Supplementary Information section 2).To estimate the RGR for each of 505 juveniles (n1 = 300 juveniles from m1 = 4 colonist populations and n2 = 205 juveniles from m2 = 14 established treelines; Extended Data Table 2), we measured the heights above ground (h) of the six uppermost bud scars in 2020, representing height increments in 2016–2020, the five consecutive years with the warmest mean daily July air temperature on record for Kotzebue. RGR in each juvenile was calculated as the regression slope of ln(h(t)) against t (mean R2 = 0.99 for 300 colonist regressions and 0.98 for 271 established treeline regressions; Supplementary Information section 3.4).To estimate the establishment year of juveniles, we used RGR to back-calculate T, the years required for an individual colonist to grow from 2 cm to h2015, as T = ln(h2015/2)/RGR. By subtracting T from 2020, we estimated the establishment year of each juvenile (Supplementary Information section 3.3).RGR values for colonist and established treeline juveniles (Extended Data Table 2) were compared using a linear mixed-effects model with field site (m = 24) as a random intercept, ln(RGR) as the dependent variable, ln(h2015) as a covariate to capture allometric growth and population (colonist or established treeline) as the fixed factor of interest (Supplementary Information section 6). Using the lmer() function of the lme4 package61 in R with REML = F, we found that the Akaike information criterion (AIC) for the interaction model was lower than that for the corresponding additive one (∆AIC = 22, likelihood ratio test χ2 = 24, degrees of freedom = 1, P 1 km beyond the established treeline, we recorded the location, age classes and presence of cones when possible. In watersheds of the uppermost Noatak basin and the Wulik basin, we also recorded both the total height of juveniles and the height above ground of the sixth bud scar from the tip to estimate RGR and so estimate age. We encountered three watersheds with tree island krummholz >1 km beyond the treeline but do not include these as colonist populations because clonal growth can be very old9,10,11,12,13,14,15,16,17,18,19. Of the 34 watersheds in which we encountered colonist populations >1 km beyond established treelines, 4 watersheds were located between 141° and 149.7° W (eastern Brooks Range), 21 watersheds were located between 149.7° and 156.3° W (central Brooks Range) and 9 watersheds were located between 156.3° and 163.3° W (western Brooks Range). Watersheds west of 150.5° W with colonists are shown in Fig. 1a.In 2021, R.J.D. led a field expedition to a small watershed in the Koyukuk basin (Arrigetch Creek, 67.439° N, 154.090° W). The watershed had been purposefully surveyed for juvenile white spruce above and beyond the treeline during 1978–1980 when seven juveniles 11–112 cm tall (six seedlings More

  • in

    A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia

    Lee, J.-W. & McKibbin, W. J. Globalization and disease: the case of SARS. Asian Economic Pap. 3, 113–131 (2004).Article 

    Google Scholar 
    Cutler, D. M. & Summers, L. H. The COVID-19 pandemic and the $16 trillion virus. JAMA 324, 1495–1496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peiris, J. S. M., Guan, Y. & Yuen, K. Y. Severe acute respiratory syndrome. Nat. Med. 10, S88–S97 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raj, V. S., Osterhaus, A. D. M. E., Fouchier, R. A. M. & Haagmans, B. L. MERS: emergence of a novel human coronavirus. Curr. Opin. Virol. 5, 58–62 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556, 255–258 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhou, L. et al. The re-emerging of SADS-CoV infection in pig herds in Southern China. Transbound. Emerg. Dis. 66, 2180–2183 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20, 533–534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daszak, P., Keusch, G. T., Phelan, A. L., Johnson, C. K. & Osterholm, M. T. Infectious disease threats: a rebound to resilience. Health Aff. 40, 204–211 (2021).Article 

    Google Scholar 
    Anthony, S. J. et al. Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. mBio 8, e00373-17 (2017).Li, W. D. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676–679 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wang, L. F. & Eaton, B. T. In Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission (eds J. E. Childs, J. S. Mackenzie, & J. A. Richt) 325–344 (Springer Berlin Heidelberg, 2007).Dudas, G., Carvalho, L. M., Rambaut, A. & Bedford, T. MERS-CoV spillover at the camel-human interface. eLife 7, e31257 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge, X. Y. et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535–538 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menachery, V. D. et al. SARS-like WIV1-CoV poised for human emergence. Proc. Natl Acad. Sci. USA 113, 3048–3053 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Li, H. et al. Human-animal interactions and bat coronavirus spillover potential among rural residents in Southern China. Biosaf. Health 1, 84–90 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, N. et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virologica Sin. 33, 104–107 (2018).Article 

    Google Scholar 
    Wasik, B. R. et al. Onward transmission of viruses: how do viruses emerge to cause epidemics after spillover? Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 374, 20190017 (2019).CAS 
    Article 

    Google Scholar 
    Parrish, C. R. et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol. Mol. Biol. Rev. 72, 457–470 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Epidemic dynamics at the human-animal interface. Science 326, 1362–1367 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Gray, G. C., Robie, E. R., Studstill, C. J. & Nunn, C. L. Mitigating future respiratory virus pandemics: new threats and approaches to consider. Viruses 13, 637 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Latinne, A. et al. Origin and cross-species transmission of bat coronaviruses in China. Nat. Commun. 11, 4235 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    McFarlane, R., Sleigh, A. & McMichael, T. Synanthropy of wild mammals as a determinant of emerging infectious diseases in the Asian-Australasian region. EcoHealth 9, 24–35 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu, B. et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLOS Pathog. 13, e1006698 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-1, https://www.iucnredlist.org (2021).Ruiz-Aravena, M. et al. Ecology, evolution and spillover of coronaviruses from bats. Nat. Rev. Microbiol. 20, 299–314 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coker, R. J., Hunter, B. M., Rudge, J. W., Liverani, M. & Hanvoravongchai, P. Emerging infectious diseases in southeast Asia: regional challenges to control. Lancet 377, 599–609 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horby, P. W., Pfeiffer, D. & Oshitani, H. Prospects for emerging infections in East and Southeast Asia 10 years after severe acute respiratory syndrome. Emerg. Infect. Dis. 19, 853–860 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nat. Food 2, 409–416 (2021).CAS 
    Article 

    Google Scholar 
    Delaune, D. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Nat. Commun. 12, 6563 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Zhou, H. et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell 184, 4380–4391 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    World Health Organization. WHO-convened global study of origins of SARS-CoV-2: China Part. (2021).Holmes, E. C. et al. The origins of SARS-CoV-2: a critical review. Cell 184, 4848–4856 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN Red List. Trends Ecol. Evol. 34, 977–986 (2019).PubMed 
    Article 

    Google Scholar 
    Hosseini, P. R. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160129 (2017).Article 

    Google Scholar 
    Dobson, A. P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Petrovan, S. O. et al. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol. Rev. 96, 2694–2715 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roche, B. et al. Was the COVID-19 pandemic avoidable? A call for a “solution-oriented” approach in pathogen evolutionary ecology to prevent future outbreaks. Ecol. Lett. 23, 1557–1560 (2020).PubMed 
    Article 

    Google Scholar 
    Naguib, M. M., Ellström, P., Järhult, J. D., Lundkvist, Å. & Olsen, B. Towards pandemic preparedness beyond COVID-19. Lancet Microbe 1, e185–e186 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muylaert, R. L. et al. Present and future distribution of bat hosts of sarbecoviruses: implications for conservation and public health. Proc. Roy. Soc. B., 289, 20220397 (2022).Carroll, D. et al. The global virome project. Science 359, 872–874 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhou, H. et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr. Biol. 30, 2196–2203.e2193 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, L.-L. et al. A novel SARS-CoV-2 related coronavirus with complex recombination isolated from bats in Yunnan province, China. Emerg. Microbes Infect. 10, 1683–1690 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pormohammad, A. et al. Comparison of confirmed COVID-19 with SARS and MERS cases – Clinical characteristics, laboratory findings, radiographic signs and outcomes: A systematic review and meta-analysis. Rev. Med. Virol. 30, e2112 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brehm, T. T. et al. Comparison of clinical characteristics and disease outcome of COVID-19 and seasonal influenza. Sci. Rep. 11, 5803 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious diseases. Nature 447, 279–283 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wolfe, N. D. et al. Emergence of unique primate T-lymphotropic viruses among central African bushmeat hunters. Proc. Natl Acad. Sci. USA 102, 7994–7999 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Nikolay, B. et al. Transmission of Nipah virus—14 Years of investigations in Bangladesh. N. Engl. J. Med. 380, 1804–1814 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, A. W. et al. Inferred duration of infectious period of SARS-CoV-2: rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open 10, e039856 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wolfe, N. D. et al. Naturally acquired simian retrovirus infections in central African hunters. Lancet 363, 932–937 (2004).PubMed 
    Article 

    Google Scholar 
    Mildenstein, T., Tanshi, I. & Racey, P. A. Exploitation of bats for bushmeat and medicine. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 12, 325–375 (Springer International Publishing, 2016).Low, M.-R. et al. Bane or blessing? Reviewing cultural values of bats across the Asia-Pacific region. J. Ethnobiol. 41, 18–34 (2021).Article 

    Google Scholar 
    Kingston, T. Cute, creepy, or crispy—How values, attitudes, and norms shape human behavior toward bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) 571–595 (Springer International Publishing, 2016).Li, H. et al. Knowledge, attitude, and practice regarding zoonotic risk in wildlife trade, Southern China. EcoHealth 18, 95–106 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, K. & Threlfall, C. G. Urbanisation and its effects on bats—A global meta-analysis. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C. C. & Kingston, T.) Ch. 2, 13–33 (Springer International Publishing, 2016).Latinne, A. et al. Characterizing and quantifying the wildlife trade network in Sulawesi, Indonesia. Glob. Ecol. Conserv. 21, e00887 (2020).Article 

    Google Scholar 
    Huong, N. Q. et al. Coronavirus testing indicates transmission risk increases along wildlife supply chains for human consumption in Viet Nam, 2013–2014. PLOS ONE 15, e0237129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Virachith, S. et al. Low seroprevalence of COVID-19 in Lao PDR, late 2020. Lancet Regional Health – West. Pac. 13, 100197 (2021).Article 

    Google Scholar 
    Letko, M., Seifert, S. N., Olival, K. J., Plowright, R. K. & Munster, V. J. Bat-borne virus diversity, spillover and emergence. Nat. Rev. Microbiol. 18, 461–471 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swadling, L. et al. Pre-existing polymerase-specific T cells expand in abortive seronegative SARS-CoV-2. Nature 601, 110–117 (2022).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Liu, K. et al. Binding and molecular basis of the bat coronavirus RaTG13 virus to ACE2 in humans and other species. Cell 184, 3438–3451.e3410 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Philavong, C. et al. Perception of health risks in Lao market vendors. Zoonoses Public Health 67, 796–804 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, C. J. et al. The future of zoonotic risk prediction. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200358 (2021).CAS 
    Article 

    Google Scholar 
    Bell, D., Roberton, S. & Hunter, P. R. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 359, 1107–1114 (2004).Article 

    Google Scholar 
    He, J. F. et al. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004).CAS 
    Article 
    ADS 

    Google Scholar 
    Tu, C. et al. Antibodies to SARS-Coronavirus in Civets. Emerg. Infect. Dis. 10, 2244–2248 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science 302, 276–278 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Freuling, C. et al. Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg. Infect. Dis. 26, 2982–2985 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    OIE-World Organisation for Animal Health. Infection with SARS-CoV-2 in animals. https://www.oie.int/app/uploads/2021/11/en-factsheet-sars-cov-2-20211025.pdf (2021).Oreshkova, N. et al. SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Eurosurveillance 25, 2001005 (2020).PubMed Central 
    Article 

    Google Scholar 
    Oude Munnink, B. B. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Daszak, P. et al. Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services. (Bonn, Germany, 2020).Chinese Academy of Engineering. Report on sustainable development strategy of China’s wildlife farming industry. (2017).Becker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. The Lancet Microbe, https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).Wacharapluesadee, S. et al. Longitudinal study of age-specific pattern of coronavirus infection in Lyle’s flying fox (Pteropus lylei) in Thailand. Virol. J. 15, 38 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, Y. et al. Longitudinal surveillance of Betacoronaviruses in fruit bats in Yunnan Province, China during 2009–2016. Virologica Sin. 33, 87–95 (2018).CAS 
    Article 

    Google Scholar 
    Maganga, G. D. et al. Genetic diversity and ecology of coronaviruses hosted by cave-dwelling bats in Gabon. Sci. Rep. 10, 7314 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Epstein, J. H. et al. Nipah virus dynamics in bats and implications for spillover to humans. Proc. Natl Acad. Sci. USA 117, 29190 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, C. W. et al. Preserve a voucher specimen! The critical need for integrating natural history collections in infectious disease studies. mBio 12, e02698–02620 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phelps, K. L. et al. Bat research networks and viral surveillance: gaps and opportunities in Western Asia. Viruses 11, 240 (2019).PubMed Central 
    Article 

    Google Scholar 
    Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Robertson, K. et al. Rabies-related knowledge and practices among persons at risk of bat exposures in Thailand. Plos Negl. Trop. Dis. 5, e1054 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wacharapluesadee, S. et al. Group C Betacoronavirus in bat guano fertilizer, Thailand. Emerg. Infect. Dis. 19, 1349–1352 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suwannarong, K. et al. Risk factors for bat contact and consumption behaviors in Thailand; a quantitative study. BMC Public Health 20, 841 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valitutto, M. T. et al. Detection of novel coronaviruses in bats in Myanmar. PLoS ONE 15, e0230802 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phelps, K., Jose, R., Labonite, M. & Kingston, T. Assemblage and species threshold responses to environmental and disturbance gradients shape bat diversity in disturbed cave landscapes. Diversity 10, 55 (2018).Article 

    Google Scholar 
    Quibod, M. N. R. M. et al. Diversity and threats to cave-dwelling bats in a small island in the southern Philippines. J. Asia-Pac. Biodivers. 12, 481–487 (2019).Article 

    Google Scholar 
    Furey, N. M. & Racey, P. A. Conservation ecology of cave bats. In Bats in the Anthropocene: Conservation of Bats in a Changing World (eds C. C. Voigt & T. Kingston) 463–500 (Springer International Publishing, 2016).Herkt, K. M. B., Skidmore, A. K. & Fahr, J. Macroecological conclusions based on IUCN expert maps: a call for caution. Glob. Ecol. Biogeogr. 26, 930–941 (2017).Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, M. et al. A global map of terrestrial habitat types (Version 001), https://doi.org/10.5281/zenodo.3666246 (2020).Faust, C. L. et al. Null expectations for disease dynamics in shrinking habitat: dilution or amplification. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160173 (2017).Article 

    Google Scholar 
    Redding, D. W., Moses, L. M., Cunningham, A. A., Wood, J. & Jones, K. E. Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of Lassa fever. Methods Ecol. Evol. 7, 646–655 (2016).Article 

    Google Scholar 
    Hassell, J. M. et al. Towards an ecosystem model of infectious disease. Nat. Ecol. Evol. 5, 907–918 (2021).PubMed 
    Article 

    Google Scholar 
    Winter, D. J. rentrez: An R package for the NCBI eUtils API. R. J. 9, 520–526 (2017).Article 

    Google Scholar 
    South, A. rworldmap: A New R package for Mapping Global Data. R. J. 3, 35–43 (2011).Article 

    Google Scholar 
    Olival, K. J. et al. Possibility for reverse zoonotic transmission of SARS-CoV-2 to free-ranging wildlife: a case study of bats. PLOS Pathog. 16, e1008758 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anthony, S. J. et al. Global patterns in coronavirus diversity. Virus Evolution 3, vex012 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murakami, S. et al. Detection and characterization of Bat Sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg. Infect. Dis. 26, 3025–3029 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, L. et al. Multilocus phylogeny and species delimitation within the philippinensis group (Chiroptera: Rhinolophidae). Zoologica Scr. 47, 655–672 (2018).Article 

    Google Scholar 
    Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World. Vol. 9. Bats. (Lynx Edicions, 2019).Srinivasulu, B. & Srinivasulu, C. In plain sight: Bacular and noseleaf morphology supports distinct specific status of Roundleaf Bats Hipposideros pomona Andersen, 1918 and Hipposideros gentilis Andersen, 1918 (Chiroptera: Hipposideridae). J. Threatened Taxa 10, 12018–12026 (2018).Article 

    Google Scholar 
    Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B: Biol. Sci. 366, 2633–2641 (2011).Article 

    Google Scholar 
    IUCN. Habitats Classification Scheme (Version 3.1), https://www.iucnredlist.org/resources/habitat-classification-scheme (2021).Williams, P. & Fong, Y. T. World Map of Carbonate Rock Outcrops v3.0 (ed The University of Auckland) (2010).Ross, N. fasterize: Fast Polygon to Raster Conversion. R package version 1.0.3 (2020).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.4-5. (2020).Chamberlain, S. & Boettiger, C. R Python, and Ruby clients for GBIF species occurrence data. PeerJ Preprints 5, https://doi.org/10.7287/peerj.preprints.3304v1 (2017).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0 (2022).GBIF.org. GBIF Occurrence Download, https://doi.org/10.15468/dl.8w26d8 (2021).Feng, X. et al. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019).PubMed 
    Article 

    Google Scholar 
    Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).Article 

    Google Scholar 
    WorldPop. Unconstrained global mosaic 2020 (1km resolution), https://doi.org/10.5258/SOTON/WP00647 (2018).Greenberg, J. A. & Mattiuzzi, M. gdalUtils: Wrappers for the Geospatial Data Abstraction Library (GDAL) Utilities. R package version 2.0.3.2. (2020).Carnell, R. lhs: Latin Hypercube Samples. R package version 1.1.1. (2020).Signorell, A. et al. DescTools: Tools for Descriptive Statistics v. 0.99.41 (2021).Delignette-Muller, M. L. & Dutang, C. fitdistrplus: an R Package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).Article 

    Google Scholar 
    Tan, C. W. et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 38, 1073–1078 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tang, F. et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 186, 7264 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sobol, I. M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Computers Simul. 55, 271–280 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. sensitivity: Global Sensitivity Analysis of Model Outputs. R package version 1.25.0. (2021).Monod, H., Naud, C. & Makowski, D. Uncertainty and sensitivity analysis for crop models. In Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications (eds Wallach, D., Makowski, D. & Jones, J.) (Elsevier Science, 2006).Janon, A., Klein, T., Lagnoux, A., Nodet, M. & Prieur, C. Asymptotic normality and efficiency of two Sobol index estimators. ESAIM: Probab. Stat. 18, 342–364 (2014).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas

    Roberson, L. A., Watson, R. A. & Klein, C. J. Over 90 endangered fish and invertebrates are caught in industrial fisheries. Nat. Commun. 11, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dulvy, N. K. et al. Overfishing drives over one-third of all sharks and rays toward a global extinction crisis. Curr. Biol. 31, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    MacNeil, M. A. et al. Global status and conservation potential of reef sharks. Nature 583, 801–806 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dent, F. & Clarke, S. State of the global market for shark products. FAO Fish. Aquac. Tech. Pap. No. 590. 187 (2015).FAO. 2008. The State of World Fisheries and Aquaculture. Food and Agriculture Organization of the United Nations, Rome (2008).Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: improved management or over fishing? Fish Fish 17, 438–458 (2016).Article 

    Google Scholar 
    Clarke, S. C. et al. Global estimates of shark catches using trade records from commercial markets. Ecol. Lett. 9, 1115–1126 (2006).PubMed 
    Article 

    Google Scholar 
    Dulvy, N. K. et al. Extinction risk and conservation of the world’ s sharks and rays. Elife 3, 1–35 (2014).Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture. Sustainability in action. Rome https://doi.org/10.4060/ca9229en (2020).Smith, H. et al. Ecology and the science of small-scale fisheries: A synthetic review of research effort for the Anthropocene. Biol. Conserv. 254, 108895 (2021).Article 

    Google Scholar 
    Worm, B. et al. Global catches, exploitation rates, and rebuilding options for sharks. Mar. Policy 40, 194–204 (2013).Article 

    Google Scholar 
    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Leurs, G. et al. Industrial fishing near West African marine protected areas and its potential effects on mobile marine predators. Fron. Mar. Sci. 8, 1–13 (2021).ADS 

    Google Scholar 
    White, W. T. et al. Shark longline fishery of Papua New Guinea: Size and species composition and spatial variation of the catches. Mar. Freshw. Res. 71, 662–669 (2020).Article 

    Google Scholar 
    Jacquet, J. & Pauly, D. Funding priorities: Big barriers to small-scale fisheries. Conserv. Biol. 22, 832–835 (2008).PubMed 
    Article 

    Google Scholar 
    Moore, J. E. et al. An interview-based approach to assess marine mammal and sea turtle captures in artisanal fisheries. Biol. Conserv. 143, 795–805 (2010).Article 

    Google Scholar 
    Soykan, C. U. et al. Why study bycatch? An introduction to the Theme Section on fisheries bycatch. Endanger. Species Res. 5, 91–102 (2008).Article 

    Google Scholar 
    Haque, A. B. et al. Socio-ecological approach on the fishing and trade of rhino rays (Elasmobranchii: Rhinopristiformes) for their biological conservation in the Bay of Bengal, Bangladesh. Ocean Coast. Manag. 210, 105690 (2021).Article 

    Google Scholar 
    Barausse, A. et al. The role of fisheries and the environment in driving the decline of elasmobranchs in the nor-thern Adriatic Sea. ICES J. Mar. Sci. 71, 1593–1603 (2014).Article 

    Google Scholar 
    Pérez-Jiménez, J. C. & Mendez-Loeza, I. The small-scale shark fisheries in the southern Gulf of Mexico: Understanding their heterogeneity to improve their management. Fish. Res. 172, 96–104 (2015).Article 

    Google Scholar 
    Saidi, B., Enajjar, S. & Bradai, M. N. Elasmobranch captures in shrimps trammel net fishery off the Gulf of Gabès (Southern Tunisia, Mediterranean Sea). J. Appl. Ichthyol. 32, 421–426 (2016).Article 

    Google Scholar 
    Vögler, R., González, C. & Segura, A. M. Spatio-temporal dynamics of the fish community associated with artisanal fisheries activities within a key marine protected area of the Southwest Atlantic (Uruguay). Ocean Coast. Manag. 190, 105175 (2020).Dulvy, N. K. et al. Challenges and priorities in Shark and Ray conservation. Curr. Biol. 27, R565–R572 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davidson, L. N. K. & Dulvy, N. K. Global marine protected areas to prevent extinctions. Nat. Ecol. Evol. 1, 1–6 (2017).Article 

    Google Scholar 
    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: A regional meta-analysis. Sci. Rep. 7, 1–12 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: A framework to achieve global goals for the ocean. Science 373, 6560 (2021).Article 
    CAS 

    Google Scholar 
    Di Franco, A. et al. Five key attributes can increase marine protected areas performance for small-scale fisheries management. Sci. Rep. 6, 38135 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ban, N. C., Kushneryk, K., Falk, J., Vachon, A. & Sleigh, L. Improving compliance of recreational fishers with Rockfish Conservation Areas: community–academic partnership to achieve and evaluate conservation. ICES J. Mar. Sci. 77, 2308–2318 (2019).Di Lorenzo, M., Guidetti, P., Di Franco, A., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: A meta-analytical approach. Fish Fish. 15, 1–10 (2020).Belharet, M. et al. Extending full protection inside existing marine protected areas, or reducing fishing effort outside, can reconcile conservation and fisheries goals. J. Appl. Ecol. 57, 1948–1957 (2020).Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 247–254 (2015).CAS 
    Article 

    Google Scholar 
    Di Franco, A. et al. Linking home ranges to protected area size: The case study of the Mediterranean Sea. Biol. Conserv. 221, 175–181 (2018).MacKeracher, T., Diedrich, A. & Simpfendorfer, C. A. Sharks, rays and marine protected areas: A critical evaluation of current perspectives. Fish Fish 20, 255–267 (2019).Article 

    Google Scholar 
    Ward-Paige, C. A., Keith, D. M., Worm, B. & Lotze, H. K. Recovery potential and conservation options for elasmobranchs. J. Fish. Biol. 80, 1844–1869 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. MEPS 384, 33–46 (2009).ADS 
    Article 

    Google Scholar 
    O’Leary, B. C. et al. Addressing criticisms of large-scale marine protected areas. Bioscience 68, 359–370 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Collins, C. et al. Understanding persistent non-compliance in a remote, large-scale marine protected area. Front. Mar. Sci. 8, 1–13 (2021).ADS 
    Article 

    Google Scholar 
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).Article 

    Google Scholar 
    Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).Article 

    Google Scholar 
    Escalle, L. et al. Restricted movements and mangrove dependency of the nervous shark Carcharhinus cautus in nearshore coastal waters. J. Fish. Biol. 87, 323–341 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).Article 

    Google Scholar 
    Guidetti, P., Danovaro, R., Bottaro, M. & Ciccolella, A. Marine protected areas and endangered shark conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 2671–2672 (2021).Article 

    Google Scholar 
    Lubchenco, J. & Grorud-Colvert, K. Making waves: The science and politics of ocean protection. Science 350, 382–383 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zupan, M. et al. Marine partially protected areas: drivers of ecological effectiveness. Front. Ecol. Environ. 16, 381–387 (2018).Article 

    Google Scholar 
    Dulvy, N. K., Allen, D. J., Ralph, G. M. & Walls, R. H. L. The Conservation Status of Sharks, Rays, and Chimaeras in the Mediterranean Sea. IUCN, Malaga, Spain. pp. 236 (2016).Morales-Muñiz, A. & Roselló, E. 20,000 years of fishing in the Strait: archaeological fish and shellfish assemblages from southern Iberia. In Human Impacts on Ancient Marine Ecysosytems: a Global Perspective (eds Torben, R. C. & Erlandson, J. M.), pp. 243–278 (University of California Press, Berkeley, 2008).Coll, M. et al. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cashion, M. S., Bailly, N. & Pauly, D. Official catch data underrepresent shark and ray taxa caught in Mediterranean and Black Sea fisheries. Mar. Pol. 105, 1–9 (2019).Article 

    Google Scholar 
    Ferretti, F., Myers, R. A., Serena, F. & Lotze, H. K. Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol. 22, 952–964 (2008).PubMed 
    Article 

    Google Scholar 
    Colloca, F., Enea, M., Ragonese, S. & Di Lorenzo, M. A century of fishery data documenting the collapse of smooth-hounds (Mustelus spp.) in the Mediterranean Sea. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 1145–1155 (2017).Article 

    Google Scholar 
    Colloca, F., Carrozzi, V., Simonetti, A. & Lorenzo, M. D. Using local ecological knowledge of fishers to reconstruct abundance trends of Elasmobranch populations in the Strait of Sicily. Front. Mar. Sci. 7, 1–8 (2020).Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture.Contributing to food security and nutrition for all. Rome. pp 200 (2016).Milazzo, M., Cattano, C., Al Mabruk, S. A. A. & Giovos, I. Mediterranean sharks and rays need action. Science 371, 355–356 (2021).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Claudet, J., Loiseau, C., Sostres, M. & Zupan, M. Underprotected marine protected areas in a global biodiversity hotspot. One Earth 2, 380–384 (2020).ADS 
    Article 

    Google Scholar 
    Maynou, F. et al. Estimating trends of population decline in long-lived marine species in the Mediterranean Sea based on fishers’ perceptions. PLoS One 6, e21818 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Serena, F. et al. Species diversity, taxonomy and distribution of Chondrichthyes in the Mediterranean and Black Sea. Eur. Zool. J. 87, 497–536 (2020).Article 

    Google Scholar 
    Morey, G., Moranta, J., Riera, F., Grau, A. M. & Morales-NIN, B. Elasmobranchs in trammel net fishery associated to marine reserves in the Balearic Islands (NW Mediterranean). Cybium 30, 125–132 (2006).
    Google Scholar 
    Temple, A. J. et al. Marine megafauna interactions with small-scale fisheries in the southwestern Indian Ocean: a review of status and challenges for research and management. Rev. Fish. Biol. Fish. 28, 89–115 (2018).Article 

    Google Scholar 
    Siskey, M. R., Shipley, O. N. & Frisk, M. G. Skating on thin ice: Identifying the need for species- ­ specific data and defined migration ecology of Rajidae spp. Fish Fish 20, 286–302 (2019).Article 

    Google Scholar 
    Chapman, D. D., Feldheim, K. A., Papastamatiou, Y. P. & Hueter, R. E. There and back again: a review of residency and return migrations in Sharks, with implications for population structure and management. Ann. Rev. Mar. Sci. 7, 547–570 (2015).PubMed 
    Article 

    Google Scholar 
    Heupel, M. R., Carlson, J. K. & Simpfendorfer, C. A. Shark nursery areas: Concepts, definition, characterization and assumptions. Mar. Ecol. Prog. Ser. 337, 287–297 (2007).ADS 
    Article 

    Google Scholar 
    Speed, C., Field, I., Meekan, M. & Bradshaw, C. Complexities of coastal shark movements and their implications for management. Mar. Ecol. Prog. Ser. 408, 275–293 (2010).ADS 
    Article 

    Google Scholar 
    Knip, D. M., Heupel, M. R. & Simpfendorfer, C. A. Mortality rates for two shark species occupying a shared coastal environment. Fish. Res. 125–126, 184–189 (2012).Article 

    Google Scholar 
    Espinoza, M., Farrugia, T. J. & Lowe, C. G. Habitat use, movements and site fidelity of the gray smooth-hound shark (Mustelus californicus Gill 1863) in a newly restored southern California estuary. J. Exp. Mar. Bio. Ecol. 401, 63–74 (2011).Article 

    Google Scholar 
    Myers, R. A. & Mertz, G. The limits of exploitation: A precautionary approach. Ecol. Appl. 8, 165–169 (1998).Article 

    Google Scholar 
    Ferretti, F., Osio, G., Jenkins, C., Rosenberg, A. A. & Lotze, H. K. Long-term change in a meso-predator community in response to prolonged and heterogeneous human impact. Sci. Rep. 3, 1057 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Lorenzo, M. et al. Ontogenetic trophic segregation between two threatened smooth ‑ hound sharks in the Central Mediterranean Sea. Sci. Rep. 10, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Mulas, A. et al. Resource partitioning among sympatric elasmobranchs in the central-western Mediterranean continental shelf. Mar. Biol. 166, 1–16 (2019).Article 

    Google Scholar 
    Silva, P. M., Teixeira, C. M., Pita, C., Cabral, H. N. & França, S. Portuguese artisanal fishers’ knowledge about Elasmobranchs—A case study. Front. Mar. Sci. 8, 1–9 (2021).
    Google Scholar 
    Cortés, E. & Brooks, E. N. Stock status and reference points for sharks using data-limited methods and life history. Fish Fish 19, 1110–1129 (2018).Article 

    Google Scholar 
    Prince, J. D. Gauntlet fisheries for elasmobranchs – The secret of sustainable shark fisheries. J. Northwest Atl. Fish. 37, 407–416 (2005).Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The neglected complexities of shark fisheries, and priorities for holistic risk-based management. Ocean Coast. Manag. 182, 104994 (2019).Article 

    Google Scholar 
    Juhel, J. B. et al. Reef accessibility impairs the protection of sharks. J. Appl. Ecol. 55, 673–683 (2018).Article 

    Google Scholar 
    Espinoza, M., Cappo, M., Heupel, M. R., Tobin, A. J. & Simpfendorfer, C. A. Quantifying shark distribution patterns and species-habitat associations: Implications of Marine Park zoning. PLoS One 9, e106885 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cattano, C., Turco, G., Di Lorenzo, M., Visconti, G. & Milazzo, M. Sandbar shark aggregation in the central Mediterranean Sea and potential effects of tourism. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1420–1428 (2021).Article 

    Google Scholar 
    O’Connell, C. P., Stroud, E. M. & He, P. The emerging field of electrosensory and semiochemical shark repellents: Mechanisms of detection, overview of past studies, and future directions. Ocean Coast. Manag. 97, 2–11 (2014).Article 

    Google Scholar 
    Barbato, M. et al. The use of fishers’ Local Ecological Knowledge to reconstruct fish behavioural traits and fishers’ perception of conservation relevance of elasmobranchs in the Mediterranean Sea. Mediterr. Mar. Sci. 22, 603–622 (2021).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Booth, H., Squires, D. & Milner-Gulland, E. J. The mitigation hierarchy for sharks: A risk-based framework for reconciling trade-offs between shark conservation and fisheries objectives. Fish Fish 21, 269–289 (2020).Article 

    Google Scholar 
    Sala, E. et al. Author correction: protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Di Franco, A. et al. Improving marine protected area governance through collaboration and co-production. J. Environ. Manag. 269, 110757 (2020).Article 

    Google Scholar 
    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with imageJ. Biophotonics Int 11, 36–41 (2004).
    Google Scholar 
    Froese, R., & Pauly, D. FishBase. https://www.fishbase.org (2021).Micheli, F. et al. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munstermann, M. J. et al. A global ecological signal of extinction risk in terrestrial vertebrates. Cons. Biol. 36, 1–13 (2021).
    Google Scholar 
    Martin, T. G., Wintle, A., Rhodes, J. R., Field, A. & Low-choy, S. J. REVIEWS AND Zero tolerance ecology: improving ecological inference by modelling the source of zero observations. Ecol. Lett. 8, 1235–1246 (2005).PubMed 
    Article 

    Google Scholar 
    Rigby, R. A., Stasinopoulos, D. M. & Lane, P. W. Generalized additive models for location, scale and shape. J. R. Stat. Soc. Ser. C. Appl. Stat. 54, 507–554 (2005).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org (2016).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Akaike, H. A new look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Kariya, T. Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to The Annals of Statistics. Ann. Stat. 19, 1403–1433, www.jstor.org (1991). ®.
    Google Scholar 
    Stasinopoulos, D. M. & Rigby, R. A. Generalized additive models for location scale and shape (GAMLSS) in R. J. Stat. Softw. 23, 1–46 (2007).Article 

    Google Scholar 
    Van Buuren, S. & Fredriks, M. Worm plot: A simple diagnostic device for modelling growth reference curves. Stat. Med. 20, 1259–1277 (2001).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Legendre, P. & Legendre, L. Numerical ecology, 2nd English edn. Elsevier, Amsterdam (1998).Peres-Neto, P. R., Legendre, P., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 
    Article 

    Google Scholar 
    Oksanen, A. J. et al. Vegan: Community Ecology Package. R package Version 2.0-2 (2011). Available at: http://cran.r-project.org/. (2012).Di Lorenzo et al. Dataset1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318878.v1 (2022).Di Lorenzo et al. Dataset2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318881.v3 (2022).Di Lorenzo et al. Dataset3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318884.v1 (2022).Di Lorenzo et al. Dataset4: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare. https://doi.org/10.6084/m9.figshare.18318887.v1 (2022).Di Lorenzo et al. Code1: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318875.v2 (2022).Di Lorenzo et al. Code2: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318890.v1 (2022).Di Lorenzo et al. Code3: Small-scale fisheries catch more threatened elasmobranchs inside partially protected areas than in unprotected areas. Figshare https://doi.org/10.6084/m9.figshare.18318893.v1 (2022). More

  • in

    Stronger responses of soil protistan communities to legacy mercury pollution than bacterial and fungal communities in agricultural systems

    van Elsas JD, Chiurazzi M, Mallon CA, Elhottovā D, Krištůfek V, Salles JF. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bardgett RD, Van Der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    George PB, Lallias D, Creer S, Seaton FM, Kenny JG, Eccles RM, et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat Commun. 2019;10:1–11.Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed 
    Article 

    Google Scholar 
    Xiao E, Ning Z, Xiao T, Sun W, Jiang S. Soil bacterial community functions and distribution after mining disturbance. Soil Biol Biochem. 2021;157:108232.CAS 
    Article 

    Google Scholar 
    Jiao S, Zhang Z, Yang F, Lin Y, Chen W, Wei G. Temporal dynamics of microbial communities in microcosms in response to pollutants. Mol Ecol. 2017;26:923–36.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fajardo C, Costa G, Nande M, Botías P, García-Cantalejo J, Martín M. Pb, Cd, and Zn soil contamination: monitoring functional and structural impacts on the microbiome. Appl Soil Ecol. 2019;135:56–64.Article 

    Google Scholar 
    Krabbenhoft DP, Sunderland EM. Global change and mercury. Science. 2013;341:1457–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio. 2018;47:116–40.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Amos HM, Jacob DJ, Streets DG, Sunderland EM. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochem Cycles. 2013;27:410–21.CAS 
    Article 

    Google Scholar 
    Zhang L, Wong MH. Environmental mercury contamination in China: sources and impacts. Environ Int. 2007;33:108–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller AK, Westergaard K, Christensen S, Sørensen SJ. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiol Ecol. 2001;36:11–9.PubMed 
    Article 

    Google Scholar 
    Liu YR, Wang JJ, Zheng YM, Zhang LM, He JZ. Patterns of bacterial diversity along a long-term mercury-contaminated gradient in the paddy soils. Microb Ecol. 2014;68:575–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu YR, Delgado-Baquerizo M, Bi L, Zhu J, He JZ. Consistent responses of soil microbial taxonomic and functional attributes to mercury pollution across China. Microbiome. 2018;6:183.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li D, Li X, Tao Y, Yan Z, Ao Y. Deciphering the bacterial microbiome in response to long-term mercury contaminated soil. Ecotoxicol Environ Saf. 2022;229:113062.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zappelini C, Karimi B, Foulon J, Lacercat-Didier L, Maillard F, Valot B, et al. Diversity and complexity of microbial communities from a chlor-alkali tailings dump. Soil Biol Biochem. 2015;90:101–10.CAS 
    Article 

    Google Scholar 
    Baldrian P, in der Wiesche C, Gabriel J, Nerud F, Zadražil F. Influence of cadmium and mercury on activities of ligninolytic enzymes and degradation of polycyclic aromatic hydrocarbons by Pleurotus ostreatus in soil. Appl Environ Microbiol. 2000;66:2471–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crane S, Dighton J, Barkay T. Growth responses to and accumulation of mercury by ectomycorrhizal fungi. Fungal Biol. 2010;114:873–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Johansen JL, Rønn R, Ekelund F. Toxicity of cadmium and zinc to small soil protists. Environ Pollut. 2018;242:1510–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wanner M, Birkhofer K, Fischer T, Shimizu M, Shimano S, Puppe D. Soil testate amoebae and diatoms as bioindicators of an old heavy metal contaminated floodplain in Japan. Microb Ecol. 2020;79:123–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou Y, Sun B, Xie B, Feng K, Zhang Z, Zhang Z, et al. Warming reshaped the microbial hierarchical interactions. Glob Chang Biol. 2021;27:6331–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, et al. Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome. 2019;7:33.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;42:293–323.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang Y, Luan L, Hu K, Liu M, Chen Z, Geisen S, et al. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Microbiome. 2020;8:1–14.CAS 
    Article 

    Google Scholar 
    Huang X, Wang J, Dumack K, Liu W, Zhang Q, He Y, et al. Protists modulate fungal community assembly in paddy soils across climatic zones at the continental scale. Soil Biol Biochem. 2021;160:108358.CAS 
    Article 

    Google Scholar 
    Grossmann L, Jensen M, Heider D, Jost S, Glücksman E, Hartikainen H, et al. Protistan community analysis: key findings of a large-scale molecular sampling. ISME J. 2016;10:2269–79.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jassey VE, Signarbieux C, Hättenschwiler S, Bragazza L, Buttler A, Delarue F, et al. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Sci Rep. 2015;5:1–10.Article 
    CAS 

    Google Scholar 
    Thakur MP, Geisen S. Trophic regulations of the soil microbiome. Trends Microbiol. 2019;27:771–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Geisen S, Hu S, Dela Cruz TEE, Veen GFC. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME J. 2021;15:618–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feng X, Li P, Qiu G, Wang S, Li G, Shang L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China. Environ Sci Technol. 2008;42:326–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meng M, Li B, Shao JJ, Wang T, He B, Shi JB, et al. Accumulation of total mercury and methylmercury in rice plants collected from different mining areas in China. Environ Pollut. 2014;184:179–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu YR, Dong JX, Zhang QG, Wang JT, Han LL, Zeng J, et al. Longitudinal occurrence of methylmercury in terrestrial ecosystems of the Tibetan Plateau. Environ Pollut. 2016;218:1342–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934;37:29–38.CAS 
    Article 

    Google Scholar 
    Jones D, Willett V. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol Biochem. 2006;38:991–9.CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:1–8.Article 
    CAS 

    Google Scholar 
    Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2:113–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner H-W, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finland MotE: Government decree on the assessment of soil contamination and remediation needs (214/2007). In.: Ministry of the Environment Helsinki (FI); 2007.Carlon C. Derivation methods of soil screening values in europe: A review of national procedures towards harmonisation: A report of the ENSURE action. EUR-OP. 2007.Toth G, Hermann T, Da Silva MR, Montanarella L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int. 2016;88:299–309.CAS 
    PubMed 
    Article 

    Google Scholar 
    De Caceres M, Jansen F. Relationship between species and groups of sites. Package ‘indicspecies’, version 1.7.6. 2016.Frossard A, Donhauser J, Mestrot A, Gygax S, Bååth E, Frey B. Long-and short-term effects of mercury pollution on the soil microbiome. Soil Biol Biochem. 2018;120:191–9.CAS 
    Article 

    Google Scholar 
    Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, et al. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016;10:1891–901.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46:1–17.Article 

    Google Scholar 
    Luo F, Zhong J, Yang Y, Scheuermann RH, Zhou J. Application of random matrix theory to biological networks. Phys Lett A. 2006;357:420–3.CAS 
    Article 

    Google Scholar 
    Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses. BMC Bioinform. 2012;13:1–20.Article 

    Google Scholar 
    Benjamini Y, Krieger AM, Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.Article 

    Google Scholar 
    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Proceedings of the International AAAI Conference on Web and Social Media. 2009;3:361–2.Csardi G, Nepusz T. The igraph software package for complex network research. InterJ Complex Syst. 2006;1695:1–9.
    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara R, et al. Vegan: community ecology package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R Package Ver. 2015;2:3–1.
    Google Scholar 
    Chen B, Xiong W, Qi J, Pan H, Chen S, Peng Z, et al. Trophic interrelationships drive the biogeography of protistan community in agricultural ecosystems. Soil Biol Biochem. 2021;163:108445.CAS 
    Article 

    Google Scholar 
    Jiao S, Lu Y, Wei G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob Chang Biol. 2022;28:140–53.Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 
    Article 
    CAS 

    Google Scholar 
    Revelle WR. psych: Procedures for personality and psychological research. 2017.Archer E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version. 2016;1(2).Wang JT, Zheng YM, Hu HW, Li J, Zhang LM, Chen BD, et al. Coupling of soil prokaryotic diversity and plant diversity across latitudinal forest ecosystems. Sci Rep. 2016;6:1–7.Article 
    CAS 

    Google Scholar 
    Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online. 2003;8:23–74.
    Google Scholar 
    Zinger L, Taberlet P, Schimann H, Bonin A, Boyer F, De Barba M, et al. Body size determines soil community assembly in a tropical forest. Mol Ecol. 2019;28:528–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stefan G, Cornelia B, Jörg R, Michael B. Soil water availability strongly alters the community composition of soil protists. Pedobiologia. 2014;57:205–13.Article 

    Google Scholar 
    Luan L, Jiang Y, Cheng M, Dini-Andreote F, Sui Y, Xu Q, et al. Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nat Commun. 2020;11:6406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qi Q, Hu C, Lin J, Wang X, Tang C, Dai Z, et al. Contamination with multiple heavy metals decreases microbial diversity and favors generalists as the keystones in microbial occurrence networks. Environ Pollut. 2022;306:119406.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu W, Lu HP, Sastri A, Yeh YC, Gong GC, Chou WC, et al. Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J. 2018;12:485–94.PubMed 
    Article 

    Google Scholar 
    Villarino E, Watson JR, Jönsson B, Gasol JM, Salazar G, Acinas SG, et al. Large-scale ocean connectivity and planktonic body size. Nat Commun. 2018;9:1–13.CAS 
    Article 

    Google Scholar 
    Mitsch WJ, Gosselink JG Wetlands. John Wiley & Sons; 2015.Margesin R, Feller G, Gerday C, Russell N. The Encyclopedia of Environmental Microbiology. 2002;2.Liu YR, Johs A, Bi L, Lu X, Hu HW, Sun D, et al. Unraveling microbial communities associated with methylmercury production in paddy soils. Environ Sci Technol. 2018;52:13110–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hall B, St Louis V, Rolfhus K, Bodaly R, Beaty K, Paterson M, et al. Impacts of reservoir creation on the biogeochemical cycling of methyl mercury and total mercury in boreal upland forests. Ecosystems. 2005;8:248–66.CAS 
    Article 

    Google Scholar 
    Clarholm M. Protozoan grazing of bacteria in soil-impact and importance. Microb Ecol. 1981;7:343–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Asiloglu R, Shiroishi K, Suzuki K, Turgay OC, Harada N. Soil properties have more significant effects on the community composition of protists than the rhizosphere effect of rice plants in alkaline paddy field soils. Soil Biol Biochem. 2021;161:108397.CAS 
    Article 

    Google Scholar 
    Asiloglu R, Kenya K, Samuel SO, Sevilir B, Murase J, Suzuki K, et al. Top-down effects of protists are greater than bottom-up effects of fertilisers on the formation of bacterial communities in a paddy field soil. Soil Biol Biochem. 2021;156:108186.CAS 
    Article 

    Google Scholar 
    Nguyen BAT, Chen QL, He JZ, Hu HW. Livestock manure spiked with the antibiotic tylosin significantly altered soil protist functional groups. J Hazard Mater. 2021;427:127867.Nguyen BAT, Chen QL, He JZ, Hu HW. Oxytetracycline and ciprofloxacin exposure altered the composition of protistan consumers in an agricultural soil. Environ Sci Technol. 2020;54:9556–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen BAT, Chen QL, Yan ZZ, Li CY, He JZ, Hu HW. Distinct factors drive the diversity and composition of protistan consumers and phototrophs in natural soil ecosystems. Soil Biol Biochem. 2021;160:108317.CAS 
    Article 

    Google Scholar 
    Wu S, Dong Y, Deng Y, Cui L, Zhuang X. Protistan consumers and phototrophs are more sensitive than bacteria and fungi to pyrene exposure in soil. Sci Total Environ. 2022;822:153539.CAS 
    PubMed 
    Article 

    Google Scholar 
    Potts LD, Douglas A, Perez Calderon LJ, Anderson JA, Witte U, Prosser JI, et al. Chronic environmental perturbation influences microbial community assembly patterns. Environ Sci Technol. 2022;56:2300–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ge AH, Liang ZH, Xiao JL, Zhang Y, Zeng Q, Xiong C, et al. Microbial assembly and association network in watermelon rhizosphere after soil fumigation for Fusarium wilt control. Agric Ecosyst Environ. 2021;312:107336.CAS 
    Article 

    Google Scholar 
    Pernthaler J, Sattler B, Simek K, Schwarzenbacher A, Psenner R. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat Microb Ecol. 1996;10:255–63.Article 

    Google Scholar 
    Holtze MS, Ekelund F, Rasmussen LD, Jacobsen CS, Johnsen K. Prey-predator dynamics in communities of culturable soil bacteria and protozoa: differential effects of mercury. Soil Biol Biochem. 2003;35:1175–81.CAS 
    Article 

    Google Scholar 
    Fuhrman JA. Microbial community structure and its functional implications. Nature. 2009;459:193–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meisner A, Wepner B, Kostic T, van Overbeek LS, Bunthof CJ, de Souza RSC, et al. Calling for a systems approach in microbiome research and innovation. Curr Opin Biotechnol. 2022;73:171–8.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    IPBES responds to critics of its assessment of wild-species use

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Unexpected high carbon losses in a continental glacier foreland on the Tibetan Plateau

    Arias PA, Bellouin N, Coppola E, Jones RG, Krinner G, Marotzke J, et al. Technical Summary. In Climate Change 2021: The Physical Science Basis, the Working Group I contribution to the Sixth Assessment Report. Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. 42–4.Donhauser J, Frey B. Alpine soil microbial ecology in a changing world. FEMS Microbiol Ecol. 2018;94:1–31.Article 
    CAS 

    Google Scholar 
    Bradley JA, Singarayer JS, Anesio AM. Microbial community dynamics in the forefield of glaciers. Proc R Soc B. 2014; 281.Hood E, Battin TJ, Fellman J, O’neel S, Spencer RGM. Storage and release of organic carbon from glaciers and ice sheets. Nat Geosci. 2015;8:91–96.CAS 
    Article 

    Google Scholar 
    Harden JW, Mark RK, Sundquist ET, Stallard RF. Dynamics of Soil Carbon During Deglaciation of the Laurentide Ice Sheet. Science. 1992;258:1921–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Egli M, Favilli F, Krebs R, Pichler B, Dahms D. Soil organic carbon and nitrogen accumulation rates in cold and alpine environments over 1 Ma. Geoderma. 2012;183-4:109–23.Article 
    CAS 

    Google Scholar 
    Khedim N, Cécillon L, Poulenard J, Barré P, Baudin F, Marta S, et al. Topsoil organic matter build-up in glacier forelands around the world. Glob Chang. Biol. 2021;27:1662–77.
    Google Scholar 
    Amico MED, Freppaz M, Filippa G, Zanini E. Vegetation in fluence on soil formation rate in a proglacial chronosequence (Lys Glacier, NW Italian Alps). Catena. 2014;113:122–37.Article 
    CAS 

    Google Scholar 
    Mateos-Rivera A, Yde JC, Wilson B, Finster KW, Reigstad LJ, Øvreås L The effect of temperature change on the microbial diversity and community structure along the chronosequence of the sub-arctic glacier forefield of Styggedalsbreen (Norway). FEMS Microbiol Ecol. 2016; 92. https://doi.org/10.1093/femsec/fiw038.Vilmundardóttir OK, Gísladóttir G, Lal R. Soil carbon accretion along an age chronosequence formed by the retreat of the Skaftafellsjökull glacier. SE-Iceland. Geomorphology. 2015;228:124–33.Article 

    Google Scholar 
    Strauss SL, Ruhland CT, Day TA. Trends in soil characteristics along a recently deglaciated foreland on Anvers Island, Antarctic Peninsula. Polar Biol. 2009;32:1779–88.Article 

    Google Scholar 
    Kabala C, Zapart J. Initial soil development and carbon accumulation on moraines of the rapidly retreating Werenskiold Glacier, SW Spitsbergen, Svalbard archipelago. Geoderma. 2012;175-6:9–20.Article 
    CAS 

    Google Scholar 
    Fernández-martínez MA, Pointing SB, Pérez-ortega S, Arróniz-crespo M, Green TGA, Rozzi R, et al. Functional ecology of soil microbial communities along a glacier forefield in Tierra del Fuego (Chile). Int Microbiol. 2016;19:161–73.PubMed 

    Google Scholar 
    Kazemi S, Hatam I, Lanoil B. Bacterial community succession in a high-altitude subarctic glacier foreland is a three-stage process. Mol Ecol. 2016;25:5557–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    He L, Tang Y. Soil development along primary succession sequences on moraines of Hailuogou Glacier, Gongga Mountain, Sichuan, China. Catena. 2008;72:259–69.Article 

    Google Scholar 
    Zhou J, Bing HJ, Wu YH, Yang ZJ, Wang JP, Sun HY, et al. Rapid weathering processes of a 120-year-old chronosequence in the Hailuogou Glacier foreland, Mt. Gongga, SW China Jun. Geoderma. 2016;267:78–91.CAS 
    Article 

    Google Scholar 
    Zeng J, Lou K, Zhang CJ, Wang JT, Hu HW, Shen JP, et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of Tianshan Mountain, China. Front Microbiol. 2016; 7. https://doi.org/10.3389/fmicb.2016.01353.Wei TF, Shangguan DH, Yi SH, Ding YJ. Characteristics and controls of vegetation and diversity changes monitored with an unmanned aerial vehicle (UAV) in the foreland of the Urumqi Glacier No. 1, Tianshan, China. Sci Total Environ. 2021;771:145433.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang MH, Shi YF. Progress in the study on basic features of glaciers in China in the last thirty years. J Glaciol Geocryol. 1988;10:228–37.
    Google Scholar 
    Xu XK, Pan BL, Hu E, Li YJ, Liang YH. Responses of two branches of Glacier No. 1 to climate change from 1993 to 2005, Tianshan, China. Quat Int. 2011;236:143–50.Article 

    Google Scholar 
    Liu YS, Qin X, Chen JZ, Li ZL, Wang J, Du WT, et al. Variations of Laohugou Glacier No. 12 in the western Qilian Mountains, China, from 1957 to 2015. J Mt Sci. 2018;15:25–32.Article 

    Google Scholar 
    Schulz S, Brankatschk R, Dümig A, Kögel-Knabner I, Schloter M, Zeyer J. The role of microorganisms at different stages of ecosystem development for soil formation. Biogeosciences. 2013;10:3983–96.Article 

    Google Scholar 
    Odum EP. The strategy of ecosystem development. Science. 1969;164:262–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt SK, Reed SC, Nemergut DR, Grandy AS, Cleveland CC, Weintraub MN, et al. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B. 2008;275:2793–802.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, et al. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem. 2012;46:172–80.CAS 
    Article 

    Google Scholar 
    Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J. 2016;10:1625–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-centric view of carbon processing in thawing permafrost. Nature. 2018;560:49–54.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen H, Wang F, Kong WD, Jia HZ, Zhou TQ, Xu R, et al. Soil microbial CO2 fixation plays a significant role in terrestrial carbon sink in a dryland ecosystem: A four-year small-scale field-plot observation on the Tibetan Plateau. Sci Total Environ. 2021; 761. https://doi.org/10.1016/j.scitotenv.2020.143282.Bond-lamberty B, Wang CK, Gower ST. A global relationship between the heterotrophic and autotrophic components of soil respiration? Gloal Chang. Biol. 2004;10:1756–66.
    Google Scholar 
    Barnett SE, Youngblut ND, Koechli CN, Buckley DH. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. Proc Natl Acad Sci USA. 2021; 118. https://doi.org/10.1073/pnas.2115292118/-/DCSupplemental.Published.Margesin R, Jud M, Tscherko D, Schinner F. Microbial communities and activities in alpine and subalpine soils. FEMS Microbiol Ecol. 2009;67:208–18.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou ZH, Wang CK, Luo YQ. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat Commun. 2020;11:3072.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guelland K, Hagedorn F, Smittenberg RH, Göransson H, Bernasconi SM, Hajdas I, et al. Evolution of carbon fluxes during initial soil formation along the forefield of Damma glacier, Switzerland. Biogeochemistry. 2013;113:545–61.CAS 
    Article 

    Google Scholar 
    Chen QL, Ding J, Li CY, Yan ZZ, He JZ, Hu HW. Microbial functional attributes, rather than taxonomic attributes, drive top soil respiration, nitrification and denitrification processes. Sci Total Environ. 2020;734:139479.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng BX, Zhu YG, Sardans J, Peñuelas J, Su JQ. QMEC: a tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling. Sci China (Life Sciences). 2018;61:1451–62.CAS 
    Article 

    Google Scholar 
    Fan KK, Delgado-Baquerizo M, Guo XS, Wang DZ, Zhu YG, Chu HY. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. ISME J. 2021;15:550–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhou JZ, Xue K, Xie JP, Deng Y, Wu LY, Cheng XH, et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat Clim Chang. 2012;2:106–10.CAS 
    Article 

    Google Scholar 
    Chen JZ, Qin X, Kang SC, Du WT, Sun WJ, Liu YS. Potential effect of black carbon on glacier mass balance during the past 55 years of Laohugou Glacier No. 12, western Qilian Mountains. J Earth Sci. 2020;31:410–8.CAS 
    Article 

    Google Scholar 
    Zhang LN, Jiang Y, Zhao SD, Jiao L, Wen Y. Relationships between tree age and climate sensitivity of radial growth in different drought conditions of Qilian Mountains, northwestern China. Forests. 2018; 9. https://doi.org/10.3390/f9030135.Sun WJ, Qin X, Ren JW, Yang XG, Zhang T, Liu YS, et al. The surface energy budget in the accumulation zone of the laohugou glacier No. 12 in the western Qilian mountains, China, in summer 2009. Arctic, Antarct Alp Res. 2012;44:296–305.Article 

    Google Scholar 
    Wang YW, Ma AZ, Liu GH, Ma JP, Wei J, Zhou HC, et al. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. Glob Chang Biol. 2020;26:697–708.PubMed 
    Article 

    Google Scholar 
    Harris D, Horwa WR, Van Kessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis. Soil Sci Soc Am J.2001;65:1853–6.CAS 
    Article 

    Google Scholar 
    Zhou HC, Ma AZ, Liu GH, Zhou XR, Yin J, Liang Y, et al. Reduced interactivity during microbial community degradation leads to the extinction of Tricholomas matsutake. L Degrad Dev. 2021;32:5118–28.Article 

    Google Scholar 
    Frey B, Rime T, Phillips M, Stierli B, Hajdas I, Widmer F, et al. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol Ecol. 2016;92:fiw018.PubMed 
    Article 
    CAS 

    Google Scholar 
    Feng K, Zhang ZJ, Cai WW, Liu WZ, Xu MY, Yin HQ, et al. Biodiversity and species competition regulate the resilience of microbial biofilm community. Mol Ecol. 2017;26:6170–82.PubMed 
    Article 

    Google Scholar 
    McDonald D, Price MN, Goodrich J, Nawrocki EP, Desantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6:610–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway CH, Douglas TA, et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J. 2017;11:2305–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang YW, Ma AZ, Zhong GS, Xie F, Zhou HC, Liu GH, et al. Effect of Simulated Warming on Microbial Community in Glacier Forefield. Environ Sci. 2020;41:2918–23.
    Google Scholar 
    Lei YB, Zhou J, Xiao HF, Duan BL, Wu YH, Korpelainen H, et al. Soil nematode assemblages as bioindicators of primary succession along a 120-year-old chronosequence on the Hailuogou Glacier forefield, SW China. Soil Biol Biochem. 2015;88:362–71.CAS 
    Article 

    Google Scholar 
    Sigler WV, Crivii S, Zeyer J. Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol. 2002;44:306–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu WM, Schmidt SK, Sommers P, Darcy JL, Porazinska DL. Multiple-trophic patterns of primary succession following retreat of a high-elevation glacier. Ecosphere. 2021; 12. https://doi.org/10.1002/ecs2.3400.Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, et al. Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol. 2007;53:110–22.PubMed 
    Article 

    Google Scholar 
    Whelan P, Bach AJ. Retreating glaciers, incipient soils, emerging forests: 100 years of landscape change on Mount Baker, Washington, USA. Ann Am Assoc Geogr. 2017;107:336–49.
    Google Scholar 
    Cleveland CC, Liptzin ÆD. C:N:P stoichiometry in soil: is there a ‘Redfield ratio’ for the microbial biomass? Biogeochemistry. 2007;85:235–52.Article 

    Google Scholar 
    Manzoni S, Taylor P, Richter A, Porporato A, Ågren GI. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 2012;196:79–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian J, Zong N, Hartley IP, He NP, Zhang JJ, Powlson D, et al. Microbial metabolic response to winter warming stabilizes soil carbon. Gloal Chang Biol. 2021;27:2011–28.CAS 
    Article 

    Google Scholar 
    Zhu XF, Liang C, Masters MD, Kantola IB, DeLucia EH. The impacts of four potential bioenergy crops on soil carbon dynamics as shown by biomarker analyses and DRIFT spectroscopy. Glob Chang Biol Bioenergy. 2018;10:489–500.CAS 
    Article 

    Google Scholar 
    Evans MCW, Buchanan BB, Arnon DI. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Biochemistry. 1966;55:928–34.CAS 

    Google Scholar 
    Menendez C, Bauer Z, Huber H, Gad’on N, Stetter K, Fuchs G. Presence of acetyl coenzyme A (CoA) carboxylase and propionyl-CoA carboxylase in autotrophic crenarchaeota and indication for operation of a 3-hydroxypropionate cycle in autotrophic carbon fixation. J Bacteriol. 1999;181:1088–98.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li Y, Cha QQ, Dang YR, Chen XL, Wang M, Mcminn A, et al. Reconstruction of the functional ecosystem in the high light, low temperature union glacier region, Antarctica. Front Microbiol. 2019;10:1–14.Article 

    Google Scholar 
    Lazzaro A, Hilfiker D, Zeyer J. Structures of microbial communities in alpine soils: Seasonal and elevational effects. Front Microbiol. 2015; 6. https://doi.org/10.3389/fmicb.2015.01330.Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, Goodwin LA, et al. Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol. 2013;79:3724–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bardgett RD, Freeman C, Ostle NJ. Microbial contributions to climate change through carbon cycle feedbacks. ISME J. 2008;2:805–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Liang C, Schimel JP, Jastrow JD. The importance of anabolism in microbial control over soil carbon storage. Nat Microbiol. 2017;2:17105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H. Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol. 1996;80:471–8.PubMed 
    Article 

    Google Scholar 
    Lange M, Roth V-N, Nico E, Roscher C, Thorsten D, Fischer-bedtke C, et al. Plant diversity enhances production and downward transport of biodegradable dissolved organic matter. J Ecol. 2021;109:1284–97.CAS 
    Article 

    Google Scholar 
    Ho A, Di Lonardo DP, Bodelier PLE. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol Ecol. 2017;93:1–14.CAS 

    Google Scholar 
    Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88:1354–64.PubMed 
    Article 

    Google Scholar 
    Jansson JK, Hofmockel KS. Soil microbiomes and climate change. Nat Rev Microbiol. 2020;18:35–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yan BS, Sun LP, Li JJ, Liang CQ, Wei FR, Xue S, et al. Change in composition and potential functional genes of soil bacterial and fungal communities with secondary succession in Quercus liaotungensis forests of the Loess Plateau, western China. Geoderma. 2020;364:114199.CAS 
    Article 

    Google Scholar 
    Wu MH, Chen SY, Chen JW, Xue K, Chen SL, Wang XM, et al. Reduced microbial stability in the active layer is associated with carbon loss under alpine permafrost degradation. Proc Natl Acad Sci USA. 2021;118:1–9.
    Google Scholar  More

  • in

    Phylogeographic and phenotypic divergence between two subspecies of Testudo graeca (T. g. buxtoni and T. g. zarudnyi) across their contact zone in Iran

    Johannesson, K., Le Moan, A., Perini, S. & André, C. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021–1036 (2020).PubMed 
    Article 

    Google Scholar 
    Vamberger, M. et al. Differences in gene flow in a twofold secondary contact zone of pond turtles in southern Italy (Testudines: Emydidae: Emys orbicularis galloitalica, E. o. hellenica, E. trinacris). Zool. Scr. 44, 233–249 (2015).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: Old complex divergence in North Africa and recent arrival in Europe. Amphib. Reptil. 30, 63–80 (2009).Article 

    Google Scholar 
    Fritz, U. et al. Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex;Testudines, Testudinidae). Amphib. Reptil. 28, 97–121 (2007).Article 

    Google Scholar 
    Mikulíček, P., Jandzik, D., Fritz, U., Schneider, C. & Široký, P. AFLP analysis shows high incongruence between genetic differentiation and morphology-based taxonomy in a widely distributed tortoise. Biol. J. Linn. Soc. 108, 151–160 (2013).Article 

    Google Scholar 
    Parham, J. F. et al. Genetic evidence for premature taxonomic inflation in Middle Eastern tortoises. Proc. Calif. Acad. Sci. 57, 955–964 (2006).
    Google Scholar 
    Javanbakht, H. et al. Genetic diversity and Quaternary range dynamics in Iranian and Transcaucasian tortoises. Biol. J. Linn. Soc. 121, 627–640 (2017).Article 

    Google Scholar 
    Mashkaryan, V. et al. Gene flow among deeply divergent mtDNA lineages of Testudo graeca (Linnaeus, 1758) in Transcaucasia. Amphib. Reptilia. 34, 337–351 (2013).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Lavin, B. R., Bardakcı, F. & Parham, J. F. Morphological and mitochondrial variation of spur-thighed tortoises, Testudo graeca, Turkey. Herpetol. J. 28, 1–9 (2017).
    Google Scholar 
    Graciá, E. et al. Expansion after expansion: dissecting the phylogeography of the widely distributed spur-thighed tortoise, Testudo graeca (Testudines:Testudinidae). Biol. J. Linn. Soc. 121(3), 641–654 (2017).Article 

    Google Scholar 
    Harris, D. J., Znari, M., Macé, J. C. & Carretero, M. A. Genetic variation in Testudo graeca from Morocco estimated using 12S rRNA sequencing. Rev. Esp. Herpetol. 17, 5–9 (2003).
    Google Scholar 
    Van Der Kuyl, A. C., Ballasina, D. L. P. & Zorgdrager, F. Mitochondrial haplotype diversity in the tortoise species Testudo graeca from North Africa and the Middle East. BMC Evol. Biol. 5, 29 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Highfield, A. C. Tortoises of north Africa; taxonomy, nomenclature, phylogeny and evolution with notes on field studies in Tunisia. J. Chelonian. Herpetol. 1, 1–56 (1990).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität der Maurischen Landschildkröten (Testudo graeca Linnaeus, 1758–Komplex) im zentralen und nordwestlichen Marokko mit Beschreibung zweier neuer Taxa. Herpetozoa 17, 19–47 (2004).
    Google Scholar 
    Pieh, A. & Perälä, J. Variabilität von Testudo graeca Linnaeus, 1758 im östlichen Nordafrika mit Beschreibung eines neuen Taxons von der Cyrenaika (Nordostlibyen). Herpetozoa 15, 3–28 (2002).
    Google Scholar 
    Pieh, A. Testudo graeca soussensis, eine neue Unterart der Maurischen Landschildkröte aus dem Sousstal (Nordwest Marokko). Salamandra 36, 209–222 (2000).
    Google Scholar 
    Arakelyan, M., Türkozan, O., Hezaveh, N. & Parham, J. F. Ecomorphology of tortoises (Testudo graeca complex) from the Araks river valley. Russ. J. Herpetol. 25, 245–252 (2018).Article 

    Google Scholar 
    Türkozan, O., Kiremit, F., Parham, J. F., Olgun, K. & Taskavak, E. A quantitative reassessment of morphology based taxonomic schemes for Turkish tortoises. Amphib. Reptil. 31, 69–83 (2010).Article 

    Google Scholar 
    Van Dijk, P. P., Corti, C., Mellado, V. P. & Cheylan, M. Testudo graeca. The IUCN Red List of Threatened Species. Retrieved from https://www.iucnredlist.org/species. Version 12/2004 (2004).Bohm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    Pringle, R. M., Webb, J. K. & Shine, R. Canopy structure, microclimate, and habitat selection by a nocturnal snake (Hoplocephalus bungaroides). Ecology 84, 2668–2679 (2003).Article 

    Google Scholar 
    Rastegar-Pouyani, N. et al. Sustainable management of the Herpetofauna of the Iranian Plateau and coastal Iran. Amphib. Reptil. Conserv. 9, 1–15 (2015).
    Google Scholar 
    Rouag, R., Ziane, N. & Benyacoub, S. Home range of the spur-thighed tortoise, Testudo graeca (Testudines, Testudinidae), in the national park of El-Kala, Algeria. Vestn. Zool. 51, 45–52 (2017).Article 

    Google Scholar 
    Stanford, C. B. et al. Turtles and tortoises are in trouble. Curr. Biol. 30, 721–735 (2020).Article 
    CAS 

    Google Scholar 
    Frankham, R., Ballou, J., Briscoe, D., & McInnes, K. Frontmatter. In A Primer of Conservation Genetics I–Iv (Cambridge University Press, 2004).Rhodin, A. G. J., Iverson, J. B., Bour, R., Fritz, U., Georges, A., Shaffer, H. B. & van Dijk, P.P. Turtles of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conservation Status (9th Ed.) (2021).Heshmati, G. A. Vegetation characteristics of four ecological zones of Iran. Int. J. Plant Prod. 2, 215–224 (2007).
    Google Scholar 
    Graciá, E. et al. Human-mediated secondary contact of two tortoise lineages results in sex-biased introgression. Sci. Rep. 7, 4019 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vamberger, M., Corti, C., Stuckas, H. & Fritz, U. Is the imperilled Spur-thighed tortoise (Testudo graeca) native in Sardinia? Implications from population genetics and for conservation. Amphib. Reptil. 32, 9–25 (2011).Article 

    Google Scholar 
    Allen, M., Jackson, J. & Walker, R. Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and longterm deformation rates. Tectonics 23, TC2008. https://doi.org/10.1029/2003TC001530 (2004).ADS 
    Article 

    Google Scholar 
    Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: Ten years of progress following the revolution. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    Golubovi, A., Tomovi, L. & Ivanovi, A. Geometry of self righting: the case of Hermann’s tortoises. Zool. Anz. 254, 99–105 (2015).Article 

    Google Scholar 
    Arakelyan, M., Parham J. F., Türkozan, O., & Danielyan, F. Sympatrisches Vorkommen Zweier For men von Testudo graeca. In Armenien und der Republik Nagorno-Karabakh Marginata 26–30 (2008).Guyot, G. & Devaux, B. Variation in shell morphology and color of Hermann’s tortoise, Testudo hermanni, in southern Europe. Chelonian Res. Found. 2, 390–395 (1997).
    Google Scholar 
    Macale, D., Venchi, A. & Scalici, M. Shell shape and size variation in the Egyptian tortoise Testudo kleinmanni (Testudinidae, Testudines). Folia Zool. 60, 167–175 (2011).Article 

    Google Scholar 
    Fritz, U. et al. Mitochondrial phylogeography and subspecies of the wide-ranging sub-Saharan leopard tortoise Stigmochelys pardalis (Testudines: Testudinidae)—A case study for the pitfalls of pseudogenes and GenBank sequences. J. Zool. Syst. Evol. 48, 348–359 (2010).Article 

    Google Scholar 
    Fritz, U. et al. Northern genetic richness and southern purity, but just one species in the Chelonoidis chilensis complex. Zool. Scr. 41, 220–232 (2012).Article 

    Google Scholar 
    Fritz, U., Široký, P., Kami, H. & Wink, M. Environmentally caused dwarfism or a valid species—Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Mol. Phylogenet. Evol. 37, 389–401 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carretero, M. A., Znari, M., Harris, D. J. & Macé, J. C. Morphological divergence among populations of Testudo graeca from west-central Morocco. Anim. Biol. 55, 259–279 (2005).Article 

    Google Scholar 
    Bonnet, X. et al. Sexual dimorphism in steppe tortoises (Testudo horsfieldii): influence of the environment and sexual selection on body shape and mobility. Biol. J. Linn. Soc. 72, 357–372 (2001).Article 

    Google Scholar 
    Ljubisavljević, K., Džukić, G., Vukov, T. D. & Kalezić, M. L. Morphological variability of the Hermann’s tortoise (Testudo hermanni) in the Central Balkans. Acta Herpetol. 7, 253–262 (2012).
    Google Scholar 
    Casacci, L. P., Barbero, F. & Balletto, E. The evolutionarily significant unit concept and its applicability in biological conservation. Ital. J. Zool. 81, 182–193 (2014).Article 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLoS Bio. 18, e3000411 (2020).CAS 
    Article 

    Google Scholar 
    Dutton, P. & Balazs, G. H. Simple biopsy technique for sampling skin for DNA analysis of sea turtles. M.T.N. 69, 9–10 (1995).
    Google Scholar 
    Filippi, E., Rugiero, L., Capula, M., Burke, R. L. & Luiselli, L. Population and thermal ecology of Testudo hermanni hermanni in the Tolfa Mountains of Central Italy. Chelonian Conserv. Biol. 9, 54–60 (2010).Article 

    Google Scholar 
    Fritz, U. et al. A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zool. Scr. 35, 531–543 (2006).Article 

    Google Scholar 
    Spinks, P. Q., Shaffer, H. B., Iverson, J. B. & McCord, W. P. Phylogenetic hypotheses for the turtle family Geoemydidae. Mol. Phylogenet. Evol. 32, 164–182 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xia, X. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. J. Hered. 108, 431–437 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partition Finder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2016).
    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elliott, N. G., Haskard, K. & Koslow, J. A. Morphometric analysis of orange roughy (Huplustetlius atlanticus) off the continental slope of southern Australia. J. Fish Biol. 46, 202–220 (1995).Article 

    Google Scholar 
    Anadón, J. D. et al. Individualistic response to past climate changes: Niche differentiation promotes diverging Quaternary range dynamics in the subspecies of Testudo graeca. Ecography 38, 956–966 (2015).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    McKenzie, J. D. Minitab Student Release 14: Statistical Software for Education (Pearson Addison-Wesley, 2004).
    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix 26, 9–12 (2015).
    Google Scholar 
    Rohlf, F. J. & Slice, D. E. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Zool. 39, 40–59 (1990).Article 

    Google Scholar 
    Zelditch, M., Swiderski, D., Sheets, D. H. & Fink, W. L. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2004).MATH 

    Google Scholar 
    Klingeberg, C. P. Morpho J: An integrated software package for geometric morphometric. Mol. Ecol. Resour. 11, 353–357 (2011).Article 

    Google Scholar  More