More stories

  • in

    Estimation of nutrient loads with the use of mass-balance and modelling approaches on the Wełna River catchment example (central Poland)

    Case study areaThe studied catchment (2 621 km2) is located in the central-western part of Poland, and constitutes a part of the Oder River basin. The Wełna River (118 km) discharges to the Warta River near the town of Oborniki18, with an average flow rate of 8.1 m3s−1 (1980–2019) in this profile19. The natural conditions in this catchment favour the development of intensive agriculture, which covers almost 72% of this area (1888 km2) and contributes to the high consumption of mineral fertilizers20. Forest areas cover another 22% of this catchment (589 km2), while urbanised ones only 4% (93 km2) (Fig. 1). The Wełna River catchment is inhabited by approx. 230,000 people, of which only approx. 74% is served by wastewater treatment facilities21.Figure 1Localisation of the Wełna River catchment with its land use forms and nutrient sources. This figure was created using ArcGIS 10.2.1 for Desktop available at https://www.esri.com/en-us/home. Licence granted to Institute of Meteorology and Water Management.Full size imageInput dataBoth the mass-balance method and the modelling method require a similar amount and type of input data (Supplementary Table S1). Basic information on the Wełna River daily flow rates and nutrient concentrations in the closing profile of the catchment (Oborniki) has been obtained from the state monitoring services (Institute of Meteorology and Water Management—National Research Institute—IMGW-PIB13 and State Environmental Monitoring22—SEM) (Supplementary Table S1). They have formed the basis for the estimation of the share of individual sources in the mass-balance method, as well as for the calibration of the Macromodel DNS/SWAT in the modelling method. Other data, such as maps of elevation, river network and soil maps, as well as meteorological data, necessary for the development of an accurate representation of the studied catchment area on the Macromodel DNS/SWAT digital platform, were also obtained from state repositories. Data on the land use comes from the Corine Land Cover8, while detailed information on nutrient sources has been obtained mostly from the Local Data Bank of statistical information. The utilisation of the collected database has been presented in Fig. 2, and described in the following text. The comparison of the results for nutrient loads from both method was based on the year 2017, which was characterised by the maximum amount of monitoring data for both flows (365 measurements) (IMGW-PIB) and total nitrogen (TN) and total phosphorus (TP) (12 measurements–SEM). The average air temperature in 2017 in Poland was 1.5 °C higher than the long-term average (1971–2000) and was over 10 °C which resulted from the warm autumn and the end of the year. The time of the snow cover presence was shorter than the long-term data, and the rest of the year was classified as thermally normal.Figure 2Methodology diagram with relevant chapters marked in grey ovals (green—steps and data used for Mass Balance method, blue—steps data used for Modelling method, green/blue—steps and data used for both methods).Full size imageIn terms of precipitation, 2017 was assessed as wet, similarly due to rainy autumn and summer. In the Wełna River catchment area, the annual rainfall was about 770 mm, however high variability of precipitation conditions in particular months, from extremely wet to very dry, should be noted23. Therefore hydrologically, 2017 was considered normal with the flows only slightly lower than the long-term average.Mass-balance methodThe first method used for the quantification of sources and loads in the studied area was the static mass-balance method. It is widely used by the Polish administration authorities responsible for water management17. This method is based on the assumption that the sum of the nutrient loads in the river’s closing profile (selected based on access to the monitoring data) and its retention in the catchment equals the emission of nutrients in a given time. Such assumption allows the apportioning of the river loads among identified sources and the estimation of their contribution to the total loads, based on known or assumed values of their retention.River load calculationThe total load of nutrients discharged from the catchment was calculated using the daily flow rate and nutrient concentrations in the closing profile of the catchment area (Oborniki, Fig. 1) from the SEM (Supplementary Table S1). The daily river load was calculated using the following Eq. 5:$${L}_{river}=0.0864sum_{t=1}^{n=365}{({Q}_{t}cdot {C}_{t})}_{t}$$
    (1)
    where: Lriver is the annual load [kga-1], n is the number of days, t is the consecutive day, Ct is the concentration [mg L-1], Qt is the mean daily flow rate [Ls-1], and 0.0864 is the unit conversion.Due to the fact that the flow rate is measured daily and nutrient concentrations only 12 times a year, the linear interpolation method5 was used to obtain the daily concentration values:$${x}_{k}={x}_{a}+kcdot frac{{x}_{b}-{x}_{a}}{n+1}$$
    (2)
    where: xk is the interpolated concentration value, xa is the first of the two measured concentration values between which the concentrations are interpolated, xb is the second of the two measured concentration values between which the concentrations are interpolated, k is the consecutive number of missing value and n is number of missing values.Source apportionmentFor the mass-balance method, data on nutrient loads for source apportionment (emission inventory) was collected in order to proceed with further calculations. The calculations were performed for 2017, due to the availability of river monitoring data and the nutrient sources were divided into 7 categories, based on the HELCOM guidelines5: municipal (MWS) and industrial (INS) point sources, municipal diffuse sources (SCS), forestry (MFS), agriculture (AGS), natural background (NBS) and atmospheric deposition (ATS). The category of “unknown sources” (UKS) was taken into account, in order to include possible discrepancies in nutrients load apportionment, and to cover eventual differences between calculated river load and inventoried emission.The MWS loads were calculated on the basis of the number of inhabitants served by the wastewater treatment plants (WWTPs)21. In the Wełna River catchment, 151 771 inhabitants were served by the 12 WWTPs covered by the National Wastewater Treatment Program (NWTP)24, which provides information on the total discharge volume from each facility. For 5 of these plants, information on influent/effluent nutrient concentrations was also available, allowing the direct calculation of discharged loads. For the remaining seven facilities, the loads were calculated on the basis of the mean influent concentration information, available for the WWTPs covered by the NWTP (80 mgL−1 and 12 mgL−1 for TN and TP, respectively), and approximated nutrient reduction level in non-biological WWTPs. This reduction level, based on data from the NWTP, was set at 65% for TN and 35% for TP24. Another 19 350 inhabitants of this catchment were connected to the small WWTPs, not included in the NWTP. This part of the MWS load was calculated using the mean daily wastewater outflow (0.12 m3day−1 per person), the same mean nutrient concentrations and reduction levels as presented above. Additionally, the remaining 25% of the catchment’s population (58,000) is not connected to any WWTP and uses septic tanks and other types of individual wastewater treatment systems. The load from this source was expressed as SCS, and calculated using unit loads set on 11 gday−1 per person and 1.6 gday-1 per person for TN and TP, respectively17. The industrial nutrient input information (INS) was gathered directly from the Statistics Poland office database21.The AGS load was calculated using nitrate and phosphate concentrations in shallow groundwater (90 cm below the ground surface), from 22 sampling points located on agricultural areas in the Wełna River catchment17. Concentrations were recalculated to TN and TP respectively and averaged. Thus, the obtained mean concentrations were 8.25 mgL−1 of TN and 1.92 mgL−1 of TP. Subsequently, load values were calculated by multiplying these concentrations by the outflow from agricultural areas, calculated as a share of the total catchment outflow respective to the agricultural use of the area. The calculated loads were multiplied by coefficients reflecting the share of monitored outflow (groundwaters and tile drainage) from the agricultural runoff (1.11 for TN and 4.17 for TP)25. Subsequently, the natural background (NBS) was subtracted from the AGS load.The load corresponding to NBS was calculated using the total catchment outflow and nutrient concentration values reflecting conditions in undisturbed areas of pre-human activity, set as 0.15 mgL−1 and 0.02 mgL−1, for TN and TP respectively17. The MFS load was also calculated in a similar way, using nutrient concentrations set to represent forest catchment as 0.31 mgL−1 and 0.038 mgL−117 and the outflow calculated as the share of the total catchment area, respective for the catchment part covered by forest. Also in this case, the NBS load has been subtracted. As for the ATS load, data on pollutant deposition into the ground from precipitation was taken from the SEM network26. This data was based on precipitation and its chemistry measurements taken from 22 monitoring stations covering the entire territory of Poland. The total load from the point and diffuse sources was calculated by adding the loads mentioned above. The eventual difference between the river load (“River load calculation” Section) and inventoried emission (“Mass-balance method” Section) accounted for the other sources (UKS).Load apportionmentThe contribution of each source to the calculated river load was calculated based on a simplified equation modified from HELCOM5:$${L}_{river}=DP+LOD-RP-RD$$
    (3)
    where: Lriver is the river load [kga−1], DP is the load from point sources (MWS and INS) [kga−1], LOD is the load from diffuse sources (SCS, ATS, MFS, AGS and, NBS) [kga−1], RP is the point source retention [kga−1] and RD is the diffuse source retention [kga−1].In the adopted mass-balance method, it is assumed that nutrient load from the point sources (DP) is introduced directly into the river bed phase, while load from the diffuse sources (LOD) is discharged into both phases of the catchment, land and river bed ones. In both phases, self-purification processes are taking place, resulting in the reduction of nutrient loads on the way from the source to the catchment closing profile. However, due to the limited amount of data, the self-purification processes in the river have been omitted, therefore the point source retention (RP) equalled 0 kga−1. Subsequently, the diffuse source retention (RD) has been estimated on the basis of the difference between each nutrient load of the river (Lriver) and the point sources (LOD). The remaining river load has been then attributed proportionally to the contribution of the particular diffuse sources to the total source apportionment (emission inventory).Modelling methodThe digital platform, the Macromodel DNS with the SWAT module27,28,29,30,31,32, was used for comparison for the nutrient balancing method described in “Mass-balance method” Section. This advanced dynamic tool tracks nitrogen and phosphorus migration paths in the river basin taking into account their spatial and temporal variability. For this purpose, it takes into account a very extensive input database, similar to that used in the mass balance method (Supplementary Table S1). Natural and anthropogenic processes that affect the transport and transformation of nutrients, are also part of this platform. The SWAT module (version 2012) is a tool which operates in the spatial information system (GIS) and is fully integrated with it. Using the digital elevation model (DEM), the SWAT module divided the entire analysed Wełna River catchment into a total of 225 sub-catchments of an average area of 11.5 km2. The subsequent use of data on land use (forests, agriculture and urbanised areas) and the types of soils (31 classes) allowed the authors to identify a total of 2824 hydrological response units (HRUs), homogeneous in terms of vegetation, soil and topography33. Afterwards, a simulation of soil water content, evapotranspiration, surface runoff, primary and underground flows was carried out in accordance with the water balance Eq. (4), which represents the basis for the quantitative component and the HRU.$${SW}_{t}={SW}_{0}+sum_{i=1}^{t}({R}_{day}-{Q}_{surf}-{E}_{a}-{W}_{seep}-{Q}_{gw})$$
    (4)
    where: SWt is the final soil water content (mm H2O), SW0 is the initial soil water content (mm H2O), Rday is the amount of precipitation (mm H2O), Qsurf is amount of surface runoff (mm H2O), Ea is the amount of evapotranspiration (mm H2O), Wseep is the amount of water entering the vadose zone from the soil profile (mm H2O), Qgw is the amount of return flow (mm H2O).The model directs all runoff flows generated by each HRU through the channel network, thus simulating a catchment. The water balance equation also represents a basis for the simulation, transport and transformation of nutrients required for the quantitative component of the model. This tool models forms of nitrogen, organic and inorganic , different forms of phosphorus in soil34, as well as organic nitrogen and phosphorus forms associated with plant residues, microbial biomass and soil humus35,36,37,38. Final results of simulations are produced by the SWAT model as all the forms of nitrogen and phosphorus (in kilograms of N and P per a time unit, respectively) are then summed up to give TN and TP values. To verify that the model properly predicts TN and TP values its results are calibrated with the TN and TP values resulting from SEM, as described in Sect. 2.4.1. Moreover, the particular forms of nitrogen and phosphorus have also been compared with the modelling results (Supplementary Table S4). A detailed overview of the migration and transformation pathways of nitrogen and phosphorus forms in the catchment has been presented in the Supplementary Information (Sect. S1), while mathematical description of these processes is included in the theoretical documentation of the SWAT model39.Similarly, as in the case of the mass-balance method, diffuse sources of nutrients from agriculture (AGS), forestry (MFS) or urban areas (URB) in SWAT were simulated in the land phase of the catchment. In the land phase, the model simulates both the infiltration of nutrients into the soil (fertilization, plant biomass, precipitation) and their removal from it (volatilization, denitrification, erosion, surface runoff). Additionally, changes in the distribution of nutrients in the soil (uptake by plants) and the low mobility of phosphorus itself are also taken into account39,40,41.Pollutants from municipal and industrial point sources (MWS, INS) are introduced directly into the river bed phase. The exception here is the nutrient load from municipal diffuse sources (SCS) which, reduced as a result of the self-purification processes taking place in the land phase, is also treated in the model as point sources. The SCS nutrient load mainly derives from leaking or illegally emptied septic tanks. For this purpose, septic tanks have been divided into three types: leaky, partially illegally emptied, and sealed septic tanks, legally emptied. The loads from the legally emptied tanks are included in the effluents from WWTPs reported in the catchment. While for the remaining types, their loads are calculated using factors depending on their effectiveness in nutrient removal (15 – 50%). The final nutrient load derived from these types of facilities is then calculated, taking into consideration the number of inhabitants using the different types of septic tanks and the average chemical composition of wastewater21.The load of nutrients from the atmospheric deposition (ATS) affects both land and river phases due to the presence of two deposition mechanisms in the SWAT module, i.e., wet and dry deposition. The model also allows for the determination of nutrient loads generated as a result of natural processes of nitrogen and phosphorus transformation and transport in the soil, with the omission of all anthropogenic pressure—natural background (NBS).Calibration, verification and validationThe SWAT module for the Wełna River has been calibrated, verified and validated using the SWAT-CUP software42. For the quantitative component (water circulation in the catchment), the implemented daily flow data (source: IMGW-PIB) for the period of 18 years (2001–2018) came from the water gauge stations on the Wełna River (Pruśce and Kowanówko) and its tributary (the Flinta River-Ryczywół) (Fig. 1). The qualitative component (nitrogen and phosphorus concentration in the catchment) was gathered from the SEM stations localised at the Wełna River (Oborniki and Rogoźno) (Fig. 1) and covered a period of 13 years (2005–2018). Three statistical measures, coefficient of determination (R2)43, percent bias (PBIAS)44, and Kling-Gupta efficiency (KGE)45, have been used to indicate the Wełna River model performance (Supplementary Tables S2 and S3). In terms of the quantitative component, the calibration and verification coefficients R2, KGE and PBIAS classified the model performance generally as good and very good for the main river (Wełna), and satisfactory and good for its tributary (Flinta). During the validation procedure, all coefficient values rated the model performance for daily flow simulations as very good. In terms of qualitative components, the model performance for TN simulations can be considered as very good or good, according to the all-applied coefficients. Lower model performance, mostly satisfactory, was observed for TP mainly due to the variability of phosphorus temporal distribution patterns (Supplementary Table S2). The entire process was described in detail in Orlińska-Woźniak et al46.Variant scenariosIn order to determine the contribution of individual sources to the total load of nutrients in the profile closing the analysed catchment, a final simulation of the model was used and subjected to calibration, verification and validation procedures, and called the baseline scenario (A0). Subsequent so-called variant scenarios (A1–A5), i.e. model simulations, were developed. In variant scenarios the values of selected parameters were changed in relation to the A0 scenario. This was used both in the river bed phase for point sources (A1) and for individual diffuse sources (A2–5), thus imitating surface changes for particular types of land use in the land phase of the catchment (Fig. 3).Figure 3Variant analysis diagram for assessment of nutrient loads (L) for particular modelling scenarios and sources described in the text: MWS, INS, SCS—point sources, URB—urban, AGS—agricultural, MFS—forest.Full size imageIn the A1 scenario, all parameterized and aggregated point sources (MWS, INS, SCS) for each relevant sub-basin (LMWS,INS,SCS), were removed from the model to calculate their contribution to the total nutrient loads in the closing profile of the studied catchment (LA1).In the next two scenarios (A2 and A3), concerning urban and agricultural land use, their surface areas (5 663 ha and 192 917 ha, respectively) were successively replaced by the forest land use. This procedure was based on the assumption that the forest is the primary type of land use for this catchment area47. In order to completely eliminate the influence of these areas, the nutrient loads from the relevant surface area occupied by forest land use were subtracted, in order to estimate the contribution of urban and agricultural land (LURB and LAGS, respectively).The change in land use from urbanised and agricultural areas to forest areas increased their percentage of the catchment area to almost 100%, thus the original image of the catchment area and the nutrient load at its mouth. On this basis, in scenario A4, the nutrient load from forests LMFS, which currently occupy only 20% of the catchment area (A0), flowing to the closing profile, was calculated from the proportion.The A5 scenario is the difference between the nutrient load from the A0 scenario and the sum of the remaining loads from the subsequent variant scenarios (A1–A4). In this way, both the natural background (NBS) and atmospheric deposition (ATS) were taken into account. More

  • in

    Balsam fir (Abies balsamea) needles and their essential oil kill overwintering ticks (Ixodes scapularis) at cold temperatures

    Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B-Biol. Sci. 372, 15. https://doi.org/10.1098/rstb.2016.0117 (2017).Article 

    Google Scholar 
    Adenubi, O. T. et al. Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis. Ind. Crop. Prod. 123, 779–806. https://doi.org/10.1016/j.indcrop.2018.06.075 (2018).CAS 
    Article 

    Google Scholar 
    Jordan, R. A. & Schulze, T. L. Availability and nature of commercial tick control services in three Lyme disease endemic states. J. Med. Entomol. 57, 807–814. https://doi.org/10.1093/jme/tjz215 (2019).CAS 
    Article 

    Google Scholar 
    Isman, M. B. Botanical insecticides in the twenty-first century – Fulfilling their promise?. Ann. Rev. Entomol. 65, 233–249 (2020).CAS 
    Article 

    Google Scholar 
    Eisen, L. Control of ixodid ticks and prevention of tick-borne diseases in the United States: The prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on residential properties. Ticks Tick-Borne Dis. https://doi.org/10.1016/j.ttbdis.2021.101649 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos, A. C. C. et al. Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. Ecotoxicol. Environ. Safe. 163, 28–36. https://doi.org/10.1016/j.ecoenv.2018.07.048 (2018).CAS 
    Article 

    Google Scholar 
    Matos, W. B. et al. Potential source of ecofriendly insecticides: Essential oil induces avoidance and cause lower impairment on the activity of a stingless bee than organosynthetic insecticides, in laboratory. Ecotoxicol. Environ. Safe. 209, 111764. https://doi.org/10.1016/j.ecoenv.2020.111764 (2021).CAS 
    Article 

    Google Scholar 
    Gashout, H. A., Guzman-Novoa, E., Goodwin, P. H. & Correa-Benítez, A. Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. J. Insect Physiol. 121, 104014. https://doi.org/10.1016/j.jinsphys.2020.104014 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Eisen, L. & Dolan, M. C. Evidence for personal protective measures to reduce human contact with Blacklegged ticks and for environmentally based control methods to suppress host-seeking Blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J. Med. Entomol. 53, 1063–1092. https://doi.org/10.1093/jme/tjw103 (2016).Article 
    PubMed 

    Google Scholar 
    Dyer, M. C., Requintina, M. D., Berger, K. A., Puggioni, G. & Mather, T. N. Evaluating the effects of minimal risk natural products for control of the tick, Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 58, 390–397. https://doi.org/10.1093/jme/tjaa188 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schulze, T. L. & Jordan, R. A. Synthetic pyrethroid, natural product, and entomopathogenic fungal acaricide product formulations for sustained early season suppression of host-seeking Ixodes scapularis (Acari: Ixodidae) and Amblyomma americanum nymphs. J. Med. Entomol. 58, 814–820. https://doi.org/10.1093/jme/tjaa248 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bharadwaj, A., Stafford, K. C. & Behle, R. W. Efficacy and environmental persistence of nootkatone for the control of the Blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol. 49, 1035–1044. https://doi.org/10.1603/me11251 (2012).Article 
    PubMed 

    Google Scholar 
    Pavela, R. & Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of the essential oil from Thymus vulgaris. Ind. Crop. Prod. 113, 46–49 (2018).CAS 
    Article 

    Google Scholar 
    Brunner, J. L., Killilea, M. & Ostfeld, R. S. Overwintering survival of nymphal Ixodes scapularis (Acari: Ixodidae) under natural conditions. J. Med. Entomol. 49, 981–987. https://doi.org/10.1603/me12060 (2012).Article 
    PubMed 

    Google Scholar 
    Chown, S. L. & Nicolson, S. W. Insect Physiol. Ecol. (Oxford University Press, 2004).Ogden, N. H., Beard, C. B., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Entomol. 58, 1536–1545 (2021).Article 

    Google Scholar 
    Ballard, K. & Bone, C. Exploring spatially varying relationships between Lyme disease and land cover with geographically weighted regression. Appl. Geo. 127, 102383 (2021).Article 

    Google Scholar 
    Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. https://doi.org/10.1172/jci42868 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adamo, S. A. Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 190, 381–390. https://doi.org/10.1007/s00360-020-01282-5 (2020).Article 

    Google Scholar 
    Adamo, S. A. How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp. Biochem. Physiol. B-Biochem. Molec. Biol. https://doi.org/10.1016/j.cbpb.2021.110564 (2021).Article 

    Google Scholar 
    Linske, M. A. et al. Impacts of deciduous leaf litter and snow presence on nymphal Ixodes scapularis (Acari: Ixodidae) overwintering survival in coastal New England, USA. Insects https://doi.org/10.3390/insects10080227 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burtis, J. C., Fahey, T. J. & Yavitt, J. B. Survival and energy use of Ixodes scapularis nymphs throughout their overwintering period. Parasitol. 146, 781–790. https://doi.org/10.1017/s0031182018002147 (2019).Article 

    Google Scholar 
    Boehnke, D., Gebhardt, R., Petney, T. & Norra, S. On the complexity of measuring forests microclimate and interpreting its relevance in habitat ecology: the example of Ixodes ricinus ticks. Parasit. Vectors 10, 549. https://doi.org/10.1186/s13071-017-2498-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindsay, L. R. et al. Survival and development of Ixodes scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J. Med. Entomol. 32, 143–152. https://doi.org/10.1093/jmedent/32.2.143 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindsay, L. R. et al. Survival and development of the different life stages of Ixodes scapularis (Acari: Ixodidae) held within four habitats on Long Point, Ontario, Canada. J. Med. Entomol. 35, 189–199. https://doi.org/10.1093/jmedent/35.3.189 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ginsberg, H. S. et al. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae). Environ. Entomol. 33, 1266–1273. https://doi.org/10.1603/0046-225x-33.5.1266 (2004).Article 

    Google Scholar 
    Clow, K. M. et al. The influence of abiotic and biotic factors on the invasion of Ixodes scapularis in Ontario, Canada. Ticks Tick-Borne Dis. 8, 554–563. https://doi.org/10.1016/j.ttbdis.2017.03.003 (2017).Article 
    PubMed 

    Google Scholar 
    Natural Resources Canada. Balsam fir, (2015).Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis North America. Evolution 69, 1678–1689. https://doi.org/10.1111/evo.12690 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichette, A., Larouche, P. L., Lebrun, M. & Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytotherapy Res. 20, 371–373 (2006).CAS 
    Article 

    Google Scholar 
    Poaty, B., Lahlah, J., Porqueres, F. & Bouafif, H. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J. Microbiol. Biotechnol. 31, 907–919. https://doi.org/10.1007/s11274-015-1845-y (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Ed. 64, 79–93. https://doi.org/10.1080/00220973.1995.9943797 (1995).Article 

    Google Scholar 
    Canon, L., Deslauriers, A., Mshvildadze, V. & Pichette, A. Volatile compounds in the foliage of balsam fir analyzed by static headspace gas chromotography (HS-GS): An example of the spruce budworm defoliation effect in the boreal forest of Quebec, Canada. Microchem. J. 110, 587–590 (2013).Article 

    Google Scholar 
    Faraone, N., MacPherson, S. & Hillier, N. K. Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents. Exp. Appl. Acarol. 79, 195–207. https://doi.org/10.1007/s10493-019-00421-0 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    McMillan, L. E., Miller, D. W. & Adamo, S. A. Eating when ill is risky: immune defense impairs food detoxification in the caterpillar Manduca sexta. J. Exp. Biol. 221, 173336 (2018).
    Google Scholar 
    Gazave, E., Chevillon, C., Lenormand, T., Marquine, M. & Raymond, M. Dissecting the cost of insecticide resistance genes during the overwintering period of the mosquito Culex pipiens. Heredity 87, 441–448 (2001).CAS 
    Article 

    Google Scholar 
    Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J. & Renault, D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A 158, 229–234 (2011).CAS 
    Article 

    Google Scholar 
    Clark, D. D. Lower temperature limits for activity of several Ixodid ticks: Effects of body size and rate of temperature change. J. Med. Entomol. 32, 449–452 (1995).CAS 
    Article 

    Google Scholar 
    Carroll, J. F. & Kramer, M. Winter activity of Ixodes scapularis (Acari : Ixodidae) and the operation of deer-targeted tick control devices in Maryland. J. Med. Entomol. 40, 238–244. https://doi.org/10.1603/0022-2585-40.2.238 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ginsberg, H. S. et al. Environmental factors affecting survival of immature Ixodes scapularis and implications for geographical distribution of Lyme disease: the climate/behavior hypothesis. PLoS ONE 12, e0168723. https://doi.org/10.1371/journal.pone.0168723 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quadros, D. G., Johnson, T. L., Whitney, T. R., Oliver, J. D. & Chavez, A. S. O. Plant-derived natural compounds for tick pest control in livestock and wildlife: Pragmatism or utopia?. Insects https://doi.org/10.3390/insects11080490 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ogendo, J. et al. Biocontrol potential of selected plant essential oil constituents as fumigants of insect pests attacking stored food commodities. Health 10, 287–318 (2011).
    Google Scholar 
    Panella, N. A., Karchesy, J., Maupin, G. O., Malan, J. C. & Piesman, J. Susceptibility of immature Ixodes scapularis (Acari: Ixodidae) to plant-derived acaricides. J. Med. Entomol. 34, 340–345 (1997).CAS 
    Article 

    Google Scholar 
    Rosado-Aguilar, J. A. et al. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 238, 66–76. https://doi.org/10.1016/j.vetpar.2017.03.023 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jaenson, T. G. T., Carboui, S. & Palsson, K. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari : Ixodidae) in the laboratory and field. J. Med. Entomol. 43, 731–736. https://doi.org/10.1603/0022-2585(2006)43[731:Rooole]2.0.Co;2 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Eigbrett, C. Natural Sourcing Organic Essential Oils Oxford, Connecticut, USA, .praannaturals.com/downloads/msds/SDS_Organic_Essential_Oil_Fir_Balsam_Canada.pdf (2016).Schulze, T. L. et al. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J. Med. Entomol. 38, 344–346. https://doi.org/10.1603/0022-2585-38.2.344 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, S. P. et al. Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods. J. Med. Entomol. 50, 126–136. https://doi.org/10.1603/me12124 (2013).Article 
    PubMed 

    Google Scholar 
    Burtis, J. C., Yavitt, J. B., Fahey, T. J. & Ostfeld, R. S. Ticks as soil-dwelling arthropods: an intersection between disease and soil ecology. J. Med. Entomol. 56, 1555–1564. https://doi.org/10.1093/jme/tjz116 (2019).Article 
    PubMed 

    Google Scholar 
    Burtis, J. C., Ostfeld, R. S., Yavitt, J. B. & Fahey, T. J. The relationship between soil arthropods and the overwinter survival of Ixodes scapularis (Acari: Ixodidae) under manipulated snow cover. J. Med. Entomol. 53, 225–229. https://doi.org/10.1093/jme/tjv151 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guerra, M. et al. Predicting the risk of Lyme disease: Habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis. 8, 289–297. https://doi.org/10.3201/eid0803.010166 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bunnell, J. E., Price, S. D., Das, A., Shields, T. M. & Glass, G. E. Geographic information systems and spatial analysis of adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic region of the USA. J. Med. Entomol. 40, 570–576. https://doi.org/10.1603/0022-2585-40.4.570 (2003).Article 
    PubMed 

    Google Scholar 
    Lubelczyk, C. B. et al. Habitat associations of Ixodes scapularis (Acari: Ixodidae) in Maine. Environ. Entomol. 33, 900–906. https://doi.org/10.1603/0046-225x-33.4.900 (2004).Article 

    Google Scholar 
    Killilea, M. E., Swei, A., Lane, R. S., Briggs, C. J. & Ostfeld, R. S. Spatial dynamics of Lyme disease: A review. EcoHealth 5, 167–195. https://doi.org/10.1007/s10393-008-0171-3 (2008).Article 
    PubMed 

    Google Scholar 
    Stafford, K. C. Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. J. Med. Entomol. 31, 310–314 (1994).Article 

    Google Scholar 
    Bertrand, M. R. & Wilson, M. L. Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari: Ixodidae) in Nature: Life cycle and study design implications. J. Med. Entomol. 33, 619–627 (1996).CAS 
    Article 

    Google Scholar 
    Lindsay, L. R. et al. Microclimate and habitat in relation to Ixodes scapularis (Acari: Ixodidae) populations on Long Point, Ontario, Canada. J. Med. Entomol. 36, 255–262. https://doi.org/10.1093/jmedent/36.3.255 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, C., Spielman, A. & Krause, P. J. Coinfecting deer-associated zoonoses: Lyme disease, babesiosis, and ehrlichiosis. Clin. Infect. Dis. 33, 676–685 (2001).CAS 
    Article 

    Google Scholar 
    Hinckley, A. F. et al. effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. J. Infect. Dis. 214, 182–188. https://doi.org/10.1093/infdis/jiv775 (2016).Article 
    PubMed 

    Google Scholar 
    Keesing, F. et al. Effects of Ttck-control interventions on tick abundance, human encounters with Ttcks, and incidence of tickborne diseases in residential neighborhoods, New York, USA. Emerg. Infect. Dis. 28, 957–966. https://doi.org/10.3201/eid2805.211146 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, L. E., Scott, J. A. & Stafford, K. C. Influences of weather on Ixodes scapularis nymphal densities at long-term study sites in Connecticut. Ticks Tick-Borne Dis. 6, 258–266. https://doi.org/10.1016/j.ttbdiS.2015.01.006 (2015).Article 
    PubMed 

    Google Scholar 
    Rand, P. W. et al. Trial of a minimal-risk botanical compound to control the vector tick of Lyme disease. J. Med. Entomol. 47, 695–698 (2010).CAS 
    Article 

    Google Scholar 
    United Nations. Convention on Biological Diversity. (1992).Convention on International Trade in Endangered Species of Wild Fauna and Flora. (1973).Burtis, J. C. Method for the efficient deployment and recovery of Ixodes scapularis (Acari: Ixodidae) nymphs and engorged larvae from field microcosms. J. Med. Entomol. 54, 1778–1782. https://doi.org/10.1093/jme/tjx157 (2017).Article 
    PubMed 

    Google Scholar 
    Nova Scotia Department of Natural Resources and Renewables Trees of the Acadian Forest (2021). More

  • in

    Why the ocean virome matters

    Kyoto University microbiome researcher Hiroyuki Ogata says that the recent work2,3 further connects RNA viruses and the carbon pump, which affects the Earth’s biogeochemical cycles and thus its climate. And it sheds light on the diversity, evolution and ecology of RNA viruses, which has not previously been possible through applying the techniques of traditional DNA-based metagenomics. The team found many new lineages at the phylum-level by using “highly sensitive” computational approaches.It’s possible to assess the ecosystem impact of viruses by inferring auxiliary metabolic genes (AMGs). AMGs hint at the ways RNA viruses manipulate the physiology of their hosts as they seek to maximize production of more virus through the host. As Jian explains, labs have identified a variety of AMGs that are encoded by DNA viruses and, he says, it’s “well-recognized” that AMGs probably play a role in marine ecosystems. It was unknown if AMGs could be found in RNA viruses, which the recent Science paper2 has now established, he says. Jian sees this work as providing “a very important foundational dataset” for exploring questions connected to AMGs. “In my opinion, if more long-sequence or complete marine RNA virus genomes can be obtained in the future, and they can be further connected with specific hosts, it will greatly promote the understanding of the ecological impact of RNA viruses in the oceans.”To tease out AMGs, the scientists used a variety of tools, such as viral identification software for both DNA and RNA viruses, says Wainaina. The ones for DNA viruses are available on Cyverse, and the protocols for the tools from the Sullivan lab are on protocols.io. One method for RNA viruses is in progress and will be soon available on Cyverse, he says. DNA viral identification tools include VirSorter2, a pipeline for identifying viral sequence from metagenomics data, and the protocol for using this and other tools are also on protocols.io. To identify AMGs from viral sequence that had been identified through VirSorter, the team used use DRAM-v, a software tool from the lab of microbiome researcher Kelly Wrighton at Colorado State University. Her group had created Distilled and Refined Annotation of Metabolism (DRAM), a framework to resolve metabolic information from microbial data. The companion tool DRAM-v is for viruses and can be applied to metagenomic data sets for annotating metagenomics-based assembled genomes, for example through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, and to contiguous viral sequences identified by VirSorter.The hunt for AMGs is one instance in which the team needed to determine in each case whether a sequence was likely ‘stolen’ from host cells, says Dominguez-Huerta. RNA viral genomes are less than 40 kilobases long and usually have complicated genomic organization, both in a structural genomics sense related to the physical arrangement of genes along the viral genome and in a functional sense in terms of transcription and translation: there are overlapping genes, frameshifts and more, all of which makes this kind of annotation difficult. And sometimes information in the annotation databases is wrong and indicates that a match is cellular when it is in fact viral. Thus, to find AMGs, “we don’t have a defined clean methodology automated in a pipeline yet,” he says. It remains a time-consuming task. Assigning putative function to the protein sequences encoded by AMGs also involves checking the literature and comparing different annotation sources.Dominguez-Huerta says he and the team were glad they could assemble AMG functionalities to suggest the range of ways in which RNA viruses manipulate the metabolisms of their hosts—from photosynthesis to central carbon metabolism to vacuolar digestion and RNA repair. This overview let them see how some AMGs are repeated across different viruses across the oceans. Finding AMGs in long-read sequence is what he calls a “fire test” for the lab. To avoid ‘false AMGs’ from unreliable matches, they use BLASTP, the Basic Alignment Search Tool that compares a protein query sequence to a protein database.“I am fascinated by the ability of viruses to metabolic reprogram not only their hosts but more importantly at the ecosystem level,” says Wainaina. It is probable that the AMGs the team identified “are a central cog in microbial metabolism networks.” Current and future modeling efforts will hopefully provide insights into the ecosystem roles of viruses—both DNA viruses and RNA viruses—and on a global scale both within the ocean ecosystem and beyond.Host inference is challenging, says Dominguez-Huerta, because, for example, viruses with RNA genomes do not share genetic information with their host genomic DNA the way dsDNA viruses do when they infect bacteria. That means there is no clear signal to be derived from the host genome to help one guess the possible host. But sometimes RNA viruses do integrate into host genomes, and those, likely more accidental, events were sufficient for the scientists to capture some signal to infer hosts. “We also performed statistical co-occurrence analytics using abundances to infer the hosts with certain success,” he says.Unlike dsDNA viruses, RNA viruses infect mostly eukaryotes, from protists and fungi to invertebrates and fish larvae; only a minority infect bacteria. Overall, the team has been able to capture “a picture of dsDNA viruses infecting prokaryotes and RNA viruses infecting eukaryotes in the oceans, complementing each other in their marine hosts,” says Dominguez-Huerta. The fact that the scientists can infer “that RNA viruses can steal genes from the host,” in the form of AMGs, to then reprogram host metabolism matters not only as scientists complete the picture of how viruses directly tune the activity of hosts during infection, but also in regard to how this influences biogeochemical cycles, he says. “We think that these AMGs are incorporated into the RNA virus genomes from cellular mRNA transcripts by non-homologous recombination,” he says. This gives, in his view, a new picture of RNA viruses, which, despite their small genome sizes, can squeeze in protein-coding genes. Such proteins could be sufficient to boost the production of virus particles per infected cell, perhaps increasing viral fitness in the difficult conditions of the oligotrophic open ocean and letting the viruses better propagate in the environment.More generally, says Dominguez-Huerta, capturing RNA from ocean samples is difficult, because RNA is physically fragile and degrades rapidly. When digging into metatranscriptomic data, which include the RNA from plankton and RNA from other organisms, less than 1% of this RNA is likely to be viral RNA, he says. Previously, some labs have first purified RNA from samples, enriched it for replicating RNA viruses and then applied a method called dsRNA-seq to recover dsRNA virus sequence and replicate sequences from single-stranded RNA viruses. For future ocean RNA virus projects, he says that the lab is currently working on a wet-lab method to purify RNA virus particles from seawater to solve the challenges of obtaining viral RNA for analysis. More

  • in

    Fire activity as measured by burned area reveals weak effects of ENSO in China

    Mixing fire occurrence with wildfire activity is problematic also when trying to draw policy conclusions. Fang et al.1 examined the temporal pattern of fire numbers between 2005-18 and concluded that the application of a fire suppression policy after 1987 has contributed to decreases in fire occurrences after 2007. However, fire suppression is an effort to mitigate the results of a fire once it has started10. Consequently, fire suppression strictly affects the burned area, and not fire occurrence. Other aspects associated with fire planning, like awareness campaigns or fire bans, may act on fire occurrence. However, any relationship between fire occurrence and fire suppression will necessarily be artefactual because the latter does not affect the former.We acknowledge that part of the discrepancy with Fang et al.1 may lie in the different scales used in these analyses. However, fire activity is a term that currently lacks a rigorous definition and should be used with caution. Fire occurrence depends primarily on the number of ignitions (along with other factors affecting fire detection such as climate, topography or vegetation), which, in turn, results from human activity1 and, in some areas, lightning11. Using fire occurrence as an indicator for fire activity is particularly problematic when comparing multiple biomes that show marked differences in fire regime, as we demonstrate here. Additionally, ENSO and fire suppression may both affect burned area, but there is currently no mechanism that can explain a mechanistic link between either of these processes and the number of fire events. Consequently, fire occurrence should not be used as a sole metric of fire activity.We additionally note that burned area is not necessarily a reliable metric of fire impacts on ecosystems and society. Significant variation in severity and intensity may occur within a fire perimeter12. Additionally, damage to people and property are not captured by this metric13. While we caution against the use of a single metric to evaluate fire activity, we hope to have demonstrated that using fire occurrence alone is particularly problematic, and that the picture it paints is rather unrealistic. More

  • in

    Drone-based investigation of natural restoration of vegetation in the water level fluctuation zone of cascade reservoirs in Jinsha River

    Species composition of vegetation in the WLFZIn this survey, a total of 44 species in 43 genera of 21 families of vascular plants were found and confirmed in the reservoir WLFZ of the Jinsha River basin, among which, 13 genera and 13 species of Compositae, 4 genera and 4 species of Gramineae, 3 genera and 3 species of Amaranthaceae, 2 genera and 2 species of Verbenaceae, Labiatae, Umbelliferae, Cruciferae and Convolvulaceae, 1 genus and 2 species of Polygonaceae, and the remaining 12 families were all single genera. Compositae had the highest number of species, followed by Gramineae and Amaranthaceae, accounting for 29.55%, 9.09% and 6.82% of the total number of species in this survey, respectively, which are the main dominant families in the region.According to the life type classification system of the Flora of China, the plants in the WLFZ of this survey can be classified into five life types: annual herbs, perennial herbs, annual or biennial herbs, annual or perennial herbs, and biennial herbs. The community is overwhelmingly dominated by annuals with a high proportion of 54.55%, followed by perennials with 34.09% and the rest of all life types with a total of 11.36%.The higher number of annual plants indicates that the environmental conditions in the WLFZ are harsher after inundation by water storage, and plants that can complete their entire life cycle in a short period of time after receding water are more likely to survive compared to plants that take a long time to complete their entire life cycle.The vegetation types in each study area of the WLFZ are shown in Table 3, among which 17 species, including S. subulatum, E. humifusa, C. bonariensis, V. officinalis, O. biennis, S. plebeia, U. fissa, B. juncea, S. orientalis, D. repens, A. lividus, T. mongolicum, G. parviflora, P. praeruptorum, P. hys-terophorus, D. stramonium and Ph. Nil, are newly discovered species in the reservoir WLFZ, which are rarely reported in other reservoir WLFZ studies so far. Among the study areas, the Longkou study area was the richest in vegetation types, with the most families, species and life types among all study areas, and the number of perennial herb species was comparable to that of annual herb species, while all other study areas were mainly dominated by annual herbs. The vegetation composition of the remaining study areas averaged 6–8 families and 11–12 species, except for the Ludila study area with no plants growing and the Liyuan study area with only 5 families and 5 species. In general, each study area was dominated by Compositae and Gramineae.Table 3 Vegetation composition in each study area.Full size tableVegetation area, coverage, and percentage of the WLFZAccording to the vegetation classification in the WLFZ of each study area (Fig. 5 and Table 4), the vegetation coverage of the study areas of the Liyuan, Ahai, Ludila and Guanyinyan reservoir WLFZ were all less than 5%. The study area of Ludila was completey devoid of vegetation in the WLFZ. The coverage in Liyuan was only 0.02%, with mostly individual herbaceous plants sporadically distributed on the upper boundary of the WLFZ. In Ahai, C. dactylon grow concentratly in patches at the top of the WLFZ together with some other sparsely growing vegetation, with a coverage of 1.47%. The vegetation coverage of Guanyinyan was 3.21%, mainly distributed in the upper part of the WLFZ and expanding towards the middle. In this area, 30.39% of the vegetation was X. sibiricum, growing in large tracts as low seedlings; 21.03% was A. sessilis growing in patches, 10.87% was C. dactylon growing mainly on the upper boundary of the WLFZ, and 37.71% was a mixture of plants growing in clusters with only a few of each.Figure 5The results of vegetation classification in the WLFZ of each study area. (a) Liyuan, (b) Ahai (c) Longkaikou, (d) Ludila, (e) Guanyinyan, (f) Xiluodu. Note: Non-Veg (Non-vegetation), Other-Veg (Other vegetation), C. Dac (Cynodon dactylon), A. Ses (Alternanthera sessilis), C. Bon (Conyza bonariensis), Ch. Amb (Chenopodium ambrosioides), C. Can (Conyza canadensis), D. Rep (Dichondra repens), H. Sib (Hydrocotyle sibthorpioides), V. Off (Verbena officinalis), X. Sib (Xanthium sibiricum). (Generated with eCognition Developer, and the URL is https://www.ecognition.com).Full size imageTable 4 Vegetation area, vegetation coverage and vegetation classification accuracy of WLFZ in each study area.Full size tableThe vegetation coverage of Longkaikou and Xiluodu WLFZ was more abundant, 46.47% and 55.81% respectively. In Longkaikou, vegetation mainly covered the middle and upper parts of the WLFZ. Of the vegetation, 66.38% was C. dactylon, 26.50% was A. sessilis, 2.35% was H. sibthorpioides, 1.68% was Ch. ambrosioides, and 3.09% was a variety of vegetation species, only a few of each, divided into Other-Veg class.Due to weather and equipment constraints, we were unable to photograph the upper and lower boundaries of the WLFZ in Xiluodu study area, but we still obtained the images of the main part of the WLFZ, which consisted mainly of 58.4% X. sibiricum, 28.04% C. dactylon, 10.59% S. viridis, and 2.97% other vegetation.The vegetation coverage in the WLFZ of different reservoirs of the Jinsha River basin varied significantly, but in terms of quantity, most of them were absolutely dominated by 1–4 species, which were distributed in patches and strips, and covered an area and proportion far more than the rest of the vegetation, while the rest of the vegetation was sparse in quantity each and was sporadically distributed. C. dactylon, A. sessilis, X. sibiricum, S. viridis, H. sibthorpioides, Ch. Ambrosioides were the main dominant and pioneer species for vegetation restoration in the reservoir WLFZ of the Jinsha River basin.Spatial distribution pattern of vegetation in fluctuating zoneSince no vegetation survived in the Ludila study area, and the vegetation in the Liyuan, Ahai and Guanyinyan study areas was sparse, with less than 5% coverage, and all of them were concentrated in the upper part of the WLFZs (Fig. 5), this paper mainly analyzed the spatial distribution pattern of vegetation in the Longkou and Xiluodu study areas, which had better vegetation coverage.Landscape patternCA is a basic index for landscape pattern study, and LPI reflects the proportion of the largest patch in the landscape type to the total landscape area, which is an expression of patch dominance. The SHAPE and PAFRAC describe the complexity of patch shape, the larger the SHAPE value indicates the more complex patch shape; the closer the PAFRAC value to 1 indicates the more regular patch shape. PROX reflects the degree of proximity of each landscape type, the larger its value indicates the higher degree of patch aggregation and the lower degree of fragmentation; ENN describes the degree of physical connection of the landscape types, the larger its value indicates the greater distance between patches and the greater degree of fragmentation.From the overall landscape level (Fig. 6), in the Longkaikou study area, CA and LPI showed that the areas of vegetation patches were large, less spatially fluctuating and uniform distribution, with obvious patch dominance, reflecting characteristics of patchy distribution; PROX and ENN showed that the vegetation patches were clustered and the landscape was well connected; SHAPE and PAFRAC showed that there was little variation in the shape complexity of vegetation patches in most areas of the WLFZ.Figure 6Spatial characteristics of vegetation landscape pattern index in the Longkaikou study area (Generated with ArcGIS 10.5 software, and the URL is: https://www.esri.com/en-us/home).Full size imageAt the level of landscape types (Table 5), the vegetation landscape types in the Longkou study area included C. dactylon, A. sessilis, H. sibthorpioides and other vegetation, among which, C. dactylon showed significant advantages in patch area, patch dominance, patch aggregation and connectivity; followed by A. sessilis and H. sibthorpioides, A. sessilis was significantly better than H. sibthorpioides in patch area, but in patch shape, H. sibthorpioides was more aggregated than A. sessilis and had better patch connectivity; Other-Veg showed significant weaknesses in patch area and aggregation; there were no significant differences among the landscape types in patch shape.Table 5 Landscape index of patch types in the Longkaikou study area.Full size tableThe spatial characteristics of the vegetation landscape pattern index in the Xiluodu study area were shown in Fig. 7. From the overall level of the landscape, the area of vegetation patches and the dominance of patches were spatially variable, the vegetation was well connected, with obvious characteristics of patchy distribution, and the shape of vegetation patches did not show obvious spatial characteristics.Figure 7Spatial characteristics of vegetation landscape pattern index in the Xiluodu study area (Generated with ArcGIS 10.5 software, and the URL is:https://www.esri.com/en-us/home).Full size imageFrom the level of landscape types (Table 6), the vegetation landscape types in Xiluodu study area included four categories: X. sibiricum, C. dactylon, S. viridis and Other-Veg type. Among them, X. sibiricum showed obvious advantages in patch area, patch dominance, patch aggregation and connectivity, followed by C. dactylon, both of which were significantly better than S. viridis and Other-Veg, and the differences in patch shape complexity among landscape types were small.Table 6 Landscape index of patch types in the Xiluodu study area.Full size tableDistribution characteristics along terrainAccording to the statistics (Fig. 8), the vegetation area share of Longkaikou study area in the upper, middle and lower elevation gradients of the WLFZ was 54.61%, 26.62% and 18.77%, respectively, indicating that the vegetation was mostly in the upper part of the WLFZ, with a coverage of 83.80%, while the vegetation in the lower part was the least, with a coverage of less than 1%. From the viewpoint of each vegetation species, in the upper part of the WLFZ, C. dactylon had the largest area, accounting for 66.9% of the total vegetation area, followed by A. sessilis, accounting for 25.9%, while H. sibthorpioides and Other-Veg only survived in the upper part, accounting for 2.3% and 4.9% each. From the distribution of each slope class, the vegetation of the WLFZ gradually decreased with the increase of slope, and the vegetation was mainly concentrated in the range of slope 35°, and the coverage of each vegetation decreased significantly when the slope exceeded 35°. In the aspect, the distribution of vegetation in the WLFZ did not show any obvious preference. The surface relief in the study area of Longkou was generally low, and C. dactylon was mainly distributed in the range of surface relief less than 0.84 m. When the surface relief is greater than 2.52 m, the vegetation coverage tends to be close to 0. The vegetation showed no obvious distribution preference in terms of surface roughness and topographic wetness index.Figure 8Changes in vegetation coverage with topographic factors in the Longkaikou study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageThe spatial distribution of vegetation in the study area of Xiluodu was shown in Fig. 9. The maximum drop in water level at Xiluodu study area can reach 60 m, but only the half of the upper part of the subsidence zone with a drop of about 30 m was photographed. The coverage rate of C. dactylon was the largest in this elevation gradient, S. viridis was mainly distributed in the uppermost part of the zone, while X. strumarium was well covered in all elevation gradients. From the distribution of surface relief, the overall vegetation coverage decreases with the increase of surface relief, with X. strumarium and S. viridis mainly distributed in the area of 0–3.45 m, while both the coverage of C. dactylon and Other-Veg were not much different across the surface relief . The distribution of vegetation showed no obvious preference in terms of slope, aspect, surface roughness and topographic wetness index.Figure 9Changes in vegetation coverage with topographic factors in the Xiluodu study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageInfluence of topographic factors on the spatial distribution pattern of vegetation in the WLFZAccording to the results of species distribution modeling, the number of samples in the study area of Longkaikou was 39,321, and the overall accuracy of the model was 88.2%. The terrain factors, in descending order of importance, were elevation  > slope  > surface relief  > surface roughness  > aspect  > topographic wetness index, with values of 0.681, 0.146, 0.091, 0.042, 0.033 and 0.007, respectively (Fig. 10). It can be seen that the vegetation distribution in the WLFZ was mainly influenced by elevation, followed by slope and surface relief, and is less influenced by surface roughness, aspect and topographic wetness index. This was consistent with the results of typical correlation analysis.Figure 10Ranking of important values of topographic factors in the Longkaikou study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageA total of six pairs of typical variables were calculated in the Longkou study area, and standardized typical coefficients were used due to the inconsistency of each landscape pattern index as well as topographic factor units. According to the results of significance test (Table 7), the first four pairs of typical p-values were less than 0.05, indicating that the correlations reached a significant level, and their correlation coefficients were 0.565, 0.262, 0.142, and 0.034, among which the correlation coefficient of the first pair was the largest, so the first pair was selected for analysis. The topographic factors and landscape indices highly correlated with the first pair of typical variables were elevation, surface relief and CA and SHAPE, respectively. According to Tables 8 and 9, their mechanism of action was that the greater the elevation, the smaller the surface relief, resulting in a larger patch size and more complex shape of the vegetation, and therefore a more frequent exchange of energy with the outside world and a greater ability to survive.Table 7 Significance test of typical correlation coefficient in the Longkaikou study area.Full size tableTable 8 Standardized canonical correlation coefficients of terrain factors in the Longkaikou study area.Full size tableTable 9 Standardized typical correlation coefficients of landscape pattern in the Longkaikou study area.Full size tableThe number of samples in the study area of Xiluodu was 41,010, and the overall accuracy of the model was 61.4%. The terrain factors, in descending order of importance, were elevation  > surface relief  > ground roughness  > aspect  > slope  > terrain moisture index, with values of 0.395, 0.209, 0.157, 0.123, 0.073, and 0.043, respectively (Fig. 11). It can be seen that the vegetation distribution in the WLFZ was most influenced by the elevation, followed by the surface relief.According to the typical correlation analysis, six pairs of typical variables were calculated for the Xiluodu study area, of which the first four pairs had typical P values less than 0.05 (Table 10), indicating that the correlation reached a significant level, and their correlation coefficients were 0.299, 0.208, 0.102, and 0.033, and the first pair was the largest, so the first pair was selected for analysis.The topographic factors and landscape indices with high correlation with the first pair of typical variables were elevation,surface relief and CA, PAFRAC, respectively, and according to Tables 11 and 12, their mechanism of action was that the greater the elevation, the greater the surface relief, leading to a smaller patch area and simpler shape of the vegetation.Figure 11Ranking of important values of topographic factors in the Xiluodu study area (Drawn with Origin 2018_64Bit, and the URL is https://www.OriginLab.cn/).Full size imageTable 10 Significance test of typical correlation coefficient in the Xiluodu study area.Full size tableTable 11 Standardized canonical correlation coefficients of terrain factors in the Xiluodu study area.Full size tableTable 12 Standardized typical correlation coefficients of landscape pattern in the Xiluodu study area.Full size tableLimiting factors of vegetation restoration in WLFZPreliminary studies showed that after long-term water level fluctuations in the cascade reservoirs, most of the vegetation in the WLFZs of the cascade reservoirs in the Jinsha River basin could be restored to different degrees, however, the restored species types were relatively simple, all of them were herbaceous plants, and mainly annual herbaceous plants. The restoration of the WLFZs of different reservoirs varied significantly, with vegetation coverage of more than 46% and 27 species types in the better restored areas, such as the Longkou study area, while the vegetation coverage of the less restored areas was usually less than 5% and 5–12 species types, and some areas even had no grass, such as the Ludila study area. According to the statistics (Fig. 12), the habitats in the study area of different reservoirs in the Jinsha River basin were significantly heterogeneous, with significant differences in climate, soil conditions, topography, and water level drop, etc. Because of the inconsistent range of values and units of different environmental factors, comparative analysis was performed by normalization, as shown in Fig. 12, vegetation cover was significantly correlated with the average soil Ph and the average thickness of the subsurface 30 cm soil layer, and the two study areas with average soil Ph greater than 8, Pear Garden and Rudyra, were almost completely bare. These two study areas were almost dominated by sand and gravel, with thin soils averaging  8 and soil thickness  More

  • in

    Summer matters for peatlands

    Amesbury, M. J., Gallego-Sala, A. & Loisel, J. Nat. Geosci. 12, 880–883 (2019).CAS 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Earth Syst. Sci. Data 14, 1917–2005 (2022).Article 

    Google Scholar 
    Helbig, M. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01428-z (2022).Article 

    Google Scholar 
    Morris, P. J. Nat. Clim. Change 11, 560–562 (2021).Article 

    Google Scholar 
    Huang, Y. et al. Nat. Clim. Change 11, 618–622 (2021).CAS 
    Article 

    Google Scholar 
    Laine, A. M. et al. Glob. Change Biol. 25, 1995–2008 (2019).Article 

    Google Scholar 
    Hanson, P. J. et al. AGU Adv. 1, e2020AV000163 (2020).Article 

    Google Scholar 
    Aurela, M., Laurila, T. & Tuovinen, J.-P. Geophys. Res. Lett. 31, L16119 (2004).Article 

    Google Scholar 
    Rinne, J. et al. Phil. Trans. R. Soc. B 375, 20190517 (2020).CAS 
    Article 

    Google Scholar 
    Xia, J. et al. Nat. Geosci. 7, 173–180 (2014).CAS 
    Article 

    Google Scholar 
    Tang, R. et al. Nat. Clim. Change 12, 380–385 (2022).CAS 
    Article 

    Google Scholar  More

  • in

    Reply to: Fire activity as measured by burned area reveals weak effects of ENSO in China

    Resco de Dios et al. claim that the modulation of ENSO on fire in China is weak. They base their claim on the insignificant correlations they find between gridded area and ENSO indices on individual grid points in China. Unlike their analysis of individual grid points, our analyses were based on the covariance of data on these grid points. Combining all grid points, our correlation analysis increases the degree of freedom, raises the likelihood of a significance test, and therefore is reliable and robust. Fire in individual grid points can be noisy on a local scale, while climate plays a more critical role in modulating large-scale fires.Many previous studies revealed the dominant impacts of ENSO in different regions of China7, 8. Resco de Dios et al. stated that the ENSO could only influence the ignitions and thus has little effect on fire activity. In fact, fuel availability and flammability are also key factors in fire occurrence, particularly for large-scale fires9. This is evidenced by the strong correlations between fire occurrence and interannual climate variability.China’s fire policy not only suppresses existing fires but also prevents human-ignited fire occurrences. As revealed in previous studies, the fire suppression policy since 1987 decreased not only burnt areas but also fire occurrences10.The study by Resco de Dios et al. was based on MODIS-derived annual area burned, which differs from our ground-truthed WFAC fire occurrence dataset. The MODIS cannot sufficiently distinguish the wildfire from the frequent crop fires and thus vastly misinterrupt the crop fires as wildfire, especially over the northern plains where forests are rare. Here, we show that the EOF analyses of the WFAC can also reveal the dipole fire pattern between southwestern and southeastern China. We highlight that the dipole fire pattern and ENSO modulation are on large scales. The fire control policy not only suppresses existing fires but also prevents human-ignited fire occurrences, and thus plays an effective role in reducing five activities in China. More

  • in

    Rewetting global wetlands effectively reduces major greenhouse gas emissions

    Lindgren, A., Hugelius, G. & Kuhry, P. Extensive loss of past permafrost carbon but a net accumulation into present-day soils. Nature 560, 219–222 (2018).Article 

    Google Scholar 
    Nichols, J. E. & Peteet, D. M. Rapid expansion of northern peatlands and doubled estimate of carbon storage. Nat. Geosci. 12, 917–921 (2019).Article 

    Google Scholar 
    Bridgham, S. D. et al. The carbon balance of North American wetlands. Wetlands 26, 889–916 (2006).Article 

    Google Scholar 
    Dixon, M. J. R. et al. Tracking global change in ecosystem area: the wetland extent trends index. Biol. Conserv. 193, 27–35 (2016).Article 

    Google Scholar 
    Darrah, S. E. et al. Improvements to the Wetland Extent Trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Indic. 99, 294–298 (2019).Article 

    Google Scholar 
    Asselen, S. et al. Drivers of wetland conversion: a global meta-analysis. PLoS ONE 8, e81292 (2013).Article 

    Google Scholar 
    Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934–941 (2014).Article 

    Google Scholar 
    Galatowitsch, S. M. in The Wetland Book II: Distribution, Description, and Conservation (eds Finlayson, C.M. et al.) 359–367 (Springer, 2018).Limpert, K. E. et al. Reducing emissions from degraded floodplain wetlands. Front. Environ. Sci. 8, 8 (2020); https://doi.org/10.3389/fenvs.2020.00008Laine, J. et al. Effect of water-level drawdown on global climatic warming: northern peatlands. AMBIO 25, 179–184 (1996).
    Google Scholar 
    Ise, T. et al. High sensitivity of peat decomposition to climate change through water-table feedback. Nat. Geosci. 1, 763–766 (2008).Article 

    Google Scholar 
    Saunois, M. et al. The global methane budget 2000–2017. Earth. Syst. Sci. Data 12, 1561–1623 (2020).Article 

    Google Scholar 
    Leifeld, J. et al. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change 9, 945–947 (2019).Article 

    Google Scholar 
    Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).Article 

    Google Scholar 
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeoscience 9, 1053–1071 (2012).Article 

    Google Scholar 
    Prananto, J. A. et al. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).Article 

    Google Scholar 
    Jauhiainen, J. et al. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89, 3503–3514 (2008).Article 

    Google Scholar 
    Bridgham, S. D. et al. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol. 19, 1325–1346 (2013).Article 

    Google Scholar 
    Schuldt, R. et al. Modelling Holocene carbon accumulation and methane emissions of boreal wetlands—an Earth system model approach. Biogeosciences 10, 1659–1674 (2012).Article 

    Google Scholar 
    McNicol, G. et al. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland. Glob. Change Biol. 23, 2768–2782 (2017).Article 

    Google Scholar 
    Yu, K. et al. Redox window with minimum global warming potential contribution from rice soils. Soil Sci. Soc. Am. J. 68, 2086–2091 (2004).Article 

    Google Scholar 
    Huang, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Change 11, 618–622 (2021).Article 

    Google Scholar 
    Ojanen, P. & Minkkinen, K. Rewetting offers rapid climate benefits for tropical and agricultural peatlands but not for forestry‐drained peatlands. Glob. Biogeochem. Cycles 34, e2019GB006503 (2020).Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).
    Google Scholar 
    Strack, M., Keith, A. M. & Xu, B. Growing season carbon dioxide and methane exchange at a restored peatland on the Western Boreal Plain. Ecol. Eng. 64, 231–239 (2014).Article 

    Google Scholar 
    Karki, S. et al. Carbon balance of rewetted and drained peat soils used for biomass production: a mesocosm study. Glob. Change Biol. Bioenergy 8, 969–980 (2016).Article 

    Google Scholar 
    Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: methane emission versus carbon sequestration. Tellus B 53, 521–528 (2001).
    Google Scholar 
    Moore, T. R. et al. A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems 14, 646–657 (2011).Article 

    Google Scholar 
    Zhu, X. et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl Acad. Sci. USA 110, 6328–6333 (2013).Article 

    Google Scholar 
    Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).Article 

    Google Scholar 
    Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).Article 

    Google Scholar 
    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).Article 

    Google Scholar 
    Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. 14, 225–230 (2021).Article 

    Google Scholar 
    Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).Article 

    Google Scholar 
    Schuur, E. A. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Climate legacies drive global soil carbon stocks in terrestrial ecosystems. Sci. Adv. 3, e1602008 (2017).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).Article 

    Google Scholar 
    Baird, A. J. et al. Validity of managing peatlands with fire. Nat. Geosci. 12, 884–885 (2019).Article 

    Google Scholar 
    Ritchie, H., Roser, M. & Rosado, P. CO2 and GHG Emissions: Atmospheric Concentrations (Our World in Data, 2020); https://ourworldindata.org/atmospheric-concentrations#citationFriedlingstein, P. et al. Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).Article 

    Google Scholar 
    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).Article 

    Google Scholar 
    Jaenicke, J. et al. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig. Adapt. Strateg. Glob. Change 15, 223–239 (2010).Article 

    Google Scholar 
    Wohl, E. Landscape-scale carbon storage associated with beaver dams. Geophys. Res. Lett. 40, 3631–3636 (2013).Article 

    Google Scholar 
    Law, A. et al. Using ecosystem engineers as tools in habitat restoration and rewilding: beaver and wetlands. Sci. Total Environ. 605–606, 1021–1030 (2017).Article 

    Google Scholar 
    Brown, L. E. et al. Macroinvertebrate community assembly in pools created during peatland restoration. Sci. Total Environ. 569, 361–372 (2016).Article 

    Google Scholar 
    Finlayson, C. M. & Rea, N. Reasons for the loss and degradation of Australian wetlands. Wetl. Ecol. Manage. 7, 1–11 (1999).Article 

    Google Scholar 
    Liu, J. et al. Water conservancy projects in China: achievements, challenges and way forward. Glob. Environ. Change 23, 633–643 (2013).Article 

    Google Scholar 
    Rogelj, J. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 2 (IPCC, WMO, 2018).Svensson, B. H. & Rosswall, T. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos 43, 341–350 (1984).Article 

    Google Scholar 
    Waddington, J. M. & Roulet, N. T. Atmosphere–wetland carbon exchanges: scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Glob. Biogeochem. Cycles 10, 233–245 (1996).Article 

    Google Scholar 
    Kling, G. W. et al. The flux of CO2 and CH4 from lakes and rivers in Arctic Alaska. Hydrobiologia 240, 23–36 (1992).Article 

    Google Scholar 
    Humphreys, E. R. et al. Two bogs in the Canadian Hudson Bay lowlands and a temperate bog reveal similar annual net ecosystem exchange of CO2. Arct. Antarct. Alp. Res. 46, 103–113 (2014).Article 

    Google Scholar 
    Caffrey, J. M. Factors controlling net ecosystem metabolism in US estuaries. Estuaries 27, 90–101 (2004).Article 

    Google Scholar 
    Roberts, B. J. et al. Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10, 588–606 (2007).Article 

    Google Scholar 
    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T.F. et al.) 710–714 (Cambridge Univ. Press, 2013).Glenn, A. J. et al. Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex. Agric. For. Meteorol. 140, 115–135 (2006).Article 

    Google Scholar 
    Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).Article 

    Google Scholar 
    Zhao, J. et al. Intensified inundation shifts a freshwater wetland from a CO2 sink to a source. Glob. Change Biol. 25, 3319–3333 (2019).Article 

    Google Scholar 
    Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 55006 (2014).Article 

    Google Scholar 
    Peng, Z. & Peng, G. Suitability mapping of global wetland areas and validation with remotely sensed data. Sci. China Earth Sci. 57, 2883–2892 (2014).
    Google Scholar 
    Zhang, B. et al. Methane emissions from global wetlands: an assessment of the uncertainty associated with various wetland extent data sets. Atmos. Environ. 165, 310–321 (2017).Article 

    Google Scholar 
    Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).Article 

    Google Scholar 
    ERA5 Monthly Averaged Data on Pressure Levels from 1979 to Present (ECMWF, 2020); https://doi.org/10.24381/cds.6860a573FAOSTAT Emissions Database (FAO, 2020); http://www.fao.org/faostat/en/#data/GTQiu, C. et al. Large historical carbon emissions from cultivated northern peatlands. Sci. Adv. 7, eabf1332 (2021).Article 

    Google Scholar 
    Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. Biogeosci. 111, G01008 (2006).
    Google Scholar 
    Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).Article 

    Google Scholar 
    Matthews, E. & Fung, I. Methane emission from natural wetlands: global distribution, area, and environmental characteristics of sources. Glob. Biogeochem. Cycles 1, 61–86 (1987).Article 

    Google Scholar 
    Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013).Article 

    Google Scholar 
    Papa, F. et al. Interannual variability of surface water extent at the global scale, 1993–2004. J. Geophys. Res. Atmos. 115, D12111 (2010).Article 

    Google Scholar 
    Junk, W. J. et al. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat. Sci. 75, 151–167 (2013).Article 

    Google Scholar 
    Schroeder, R. et al. Development and evaluation of a multi-year fractional surface water data set derived from active/passive microwave remote sensing data. Remote Sens. 7, 16688–16732 (2015).Article 

    Google Scholar 
    Vanessa, R. et al. A global assessment of inland wetland conservation status. Bioscience 6, 523–533 (2017).
    Google Scholar 
    Davidson, N. et al. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).Article 

    Google Scholar 
    ArcWorld 1:3 M. Continental Coverage (ESRI, 1992); http://www.oceansatlas.org/subtopic/en/c/593/Digital Chart of the World 1:1 M (ESRI, 1993); https://www.ngdc.noaa.gov/mgg/topo/report/s5/s5Avii.htmlGlobal Wetlands (UNEP-WCMC, 1993); https://www.arcgis.com/home/item.html?id=105a402642e146eaa665315279a322d1Moreno-Mateos, D. et al. Structural and functional loss in restored wetland ecosystems. PLoS Biol. 10, e1001247 (2012).Article 

    Google Scholar 
    Ramsar COP12 DOC.8 Report of the Secretary General to COP12 on the Implementation of the Convention (Ramsar Convention Secretariat, 2015).Page, S. E. et al. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).Article 

    Google Scholar 
    Swindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).Article 

    Google Scholar  More