More stories

  • in

    Weak effects on growth and cannibalism under fluctuating temperatures in damselfly larvae

    Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42. https://doi.org/10.1111/brv.12216 (2017).Article 
    PubMed 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. The impacts of repeated cold exposure on insects. J. Exp. Biol. 215, 1607–1613. https://doi.org/10.1242/jeb.059956 (2012).Article 
    PubMed 

    Google Scholar 
    Bale, J. & Hayward, S. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingsolver, J. G. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L. Physiol. Biochem. Zool. 73, 621–628 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stange, E. E. & Ayres, M. P. Climate change impacts: Insects (JohnWiley & Sons, 2010).
    Google Scholar 
    Chapman, A. D. Numbers of Living Species in Australia and the World: Report for the Department of the Environment and Heritage Canberra, Australia (Department of the Environment and Heritage, 2006).
    Google Scholar 
    Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140. https://doi.org/10.1146/annurev-ento-010814-021017 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506. https://doi.org/10.1111/j.1365-2486.2005.00904.x (2005).ADS 
    Article 

    Google Scholar 
    Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543. https://doi.org/10.1111/geb.12865 (2019).Article 

    Google Scholar 
    Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. 118, e2002543117. https://doi.org/10.1073/pnas.2002543117 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCain, C. M. & Garfinkel, C. F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 47, 111–118. https://doi.org/10.1016/j.cois.2021.06.003 (2021).Article 
    PubMed 

    Google Scholar 
    Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).Book 

    Google Scholar 
    Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 332–342. https://doi.org/10.1086/377187 (2003).Article 
    PubMed 

    Google Scholar 
    Jensen, J. L. W. V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ruel, J. J. & Ayres, M. P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361–366 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding in Manduca sexta Caterpillars. Physiol. Zool. 70, 631–638. https://doi.org/10.1086/515872 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 
    Article 

    Google Scholar 
    Robinet, C. & Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142 (2010).PubMed 
    Article 

    Google Scholar 
    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 281, 20132612 (2014).Article 

    Google Scholar 
    Sandehson, D. E. The relation of temperature to the growth of insects. J. Econ. Entomol. 3, 113–140 (1910).Article 

    Google Scholar 
    Cook, W. C. Some Effects of Alternating Temperatures on the Growth and Metabolism of Cutworm Larvae (Oxford University Press, 1927).
    Google Scholar 
    Kingsolver, J. G., Ragland, G. J. & Diamond, S. E. Evolution in a constant environment: Thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta. Evolution 63, 537–541. https://doi.org/10.1111/j.1558-5646.2008.00568.x (2009).Article 
    PubMed 

    Google Scholar 
    Eldridge, W. H., Sweeney, B. W. & Law, J. M. Fish growth, physiological stress, and tissue condition in response to rate of temperature change during cool or warm diel thermal cycles. Can. J. Fish. Aquat. Sci. 72, 1527–1537 (2015).CAS 
    Article 

    Google Scholar 
    Bernhardt, J. R., Sunday, J. M., Thompson, P. L. & O’Connor, M. I. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proc. R. Soc. B Biol. Sci. 285, 20181076. https://doi.org/10.1098/rspb.2018.1076 (2018).Article 

    Google Scholar 
    Morissette, J., Swart, S., Maccormack, T. J., Currie, S. & Morash, A. J. Thermal variation near the thermal optimum does not affect the growth, metabolism or swimming performance in wild Atlantic salmon Salmo salar. J. Fish Biol. 98, 1585–1589. https://doi.org/10.1111/jfb.14348 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bozinovic, F. et al. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool. 84, 543–552 (2011).PubMed 
    Article 

    Google Scholar 
    Boggs, C. L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17, 69–73. https://doi.org/10.1016/j.cois.2016.07.004 (2016).Article 
    PubMed 

    Google Scholar 
    Lemoine, N. P., Drews, W. A., Burkepile, D. E. & Parker, J. D. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122, 1669–1678. https://doi.org/10.1111/j.1600-0706.2013.00457.x (2013).Article 

    Google Scholar 
    Vangansbeke, D. et al. Prey consumption by phytoseiid spider mite predators as affected by diurnal temperature variations. Biocontrol 60, 595–603 (2015).Article 

    Google Scholar 
    Davies, C., Coetzee, M. & Lyons, C. L. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter-and intra-specific competition. Parasit. Vectors 9, 1–9 (2016).Article 

    Google Scholar 
    Delava, E., Fleury, F. & Gibert, P. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association. J. Therm. Biol. 60, 95–102 (2016).PubMed 
    Article 

    Google Scholar 
    Amarasekare, P. & Coutinho, R. M. Effects of temperature on intraspecific competition in ectotherms. Am. Nat. 184, E50–E65. https://doi.org/10.1086/677386 (2014).Article 
    PubMed 

    Google Scholar 
    Jiang, L. & Morin, P. J. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. J. Anim. Ecol. 73, 569–576 (2004).Article 

    Google Scholar 
    Novich, R. A., Erickson, E. K., Kalinoski, R. M. & DeLong, J. P. The temperature independence of interaction strength in a sit-and-wait predator. Ecosphere 5, 1–9 (2014).Article 

    Google Scholar 
    Fox, L. R. Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975).Article 

    Google Scholar 
    Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).Article 

    Google Scholar 
    Nishimura, K. & Isoda, Y. Evolution of cannibalism: Referring to costs of cannibalism. J. Theor. Biol. 226, 293–302. https://doi.org/10.1016/j.jtbi.2003.09.007 (2004).ADS 
    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Crumrine, P. W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol. 44, 761–770 (2010).Article 

    Google Scholar 
    Reglero, P., Urtizberea, A., Torres, A. P., Alemany, F. & Fiksen, Ø. Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar. Ecol. Prog. Ser. 433, 205–219 (2011).ADS 
    Article 

    Google Scholar 
    Nilsson-Örtman, V., Stoks, R. & Johansson, F. Competitive interactions modify the temperature dependence of damselfly growth rates. Ecology 95, 1394–1406. https://doi.org/10.1890/13-0875.1 (2014).Article 
    PubMed 

    Google Scholar 
    Pritchard, G. & Leggott, M. Temperature, incubation rates and the origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: A review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Johansson, F. & Crowley, P. H. Larval cannibalism and population dynamics of dragonflies. In Aquatic Insects: Challenges to Populations 36–54 (CABI, 2008).Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).PubMed 
    Article 

    Google Scholar 
    Hyeun-Ji, L. & Johansson, F. Compensating for a bad start: Compensatory growth across life stages in an organism with a complex life cycle. Can. J. Zool. 94, 41–47 (2016).Article 

    Google Scholar 
    Sokolovska, N., Rowe, L. & Johansson, F. Fitness and body size in mature odonates. Ecol. Entomol. 25, 239–248. https://doi.org/10.1046/j.1365-2311.2000.00251.x (2000).Article 

    Google Scholar 
    Karl, T. R. Modern global climate change. Science 302, 1719–1723. https://doi.org/10.1126/science.1090228 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Meehl, G. A. et al. Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
    Google Scholar 
    Meehl, G. A. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Khelifa, R. Spatiotemporal Pattern of Phenology Across Geographic Gradients in Insects, in Chapter 1 (Geographic Gradients in Climate Change Response Explained by Non-linear Thermal-Performance Curves) (University of Zurich, 2017).
    Google Scholar 
    Boudot, J. P. & Kalkman, V. Atlas of the European Dragonflies and Damselflies (KNNV Publishing, 2015).
    Google Scholar 
    Norling, U. Growth, winter preparations and timing of emergence in temperate zone Odonata: Control by a succession of larval response patterns. Int. J. Odonatol. 24, 1–36 (2021).Article 

    Google Scholar 
    Sniegula, S. & Johansson, F. Photoperiod affects compensating developmental rate across latitudes in the damselfly Lestes sponsa. Ecol. Entomol. 35, 149–157. https://doi.org/10.1111/j.1365-2311.2009.01164.x (2010).Article 

    Google Scholar 
    Sniegula, S., Golab, M. J. & Johansson, F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim. Ecol. 88, 637–648. https://doi.org/10.1111/1365-2656.12947 (2019).Article 
    PubMed 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benke, A. C. A method for comparing individual growth rates of aquatic insects with special reference to the Odonata. Ecology 51, 328–331 (1970).Article 

    Google Scholar 
    Nilsson-Örtman, V., Stoks, R., De Block, M. & Johansson, F. Generalists and specialists along a latitudinal transect: Patterns of thermal adaptation in six species of damselflies. Ecology 93, 1340–1352. https://doi.org/10.1890/11-1910.1 (2012).Article 
    PubMed 

    Google Scholar 
    Eklund, A. et al. Sveriges Framtida Klimat: Underlag Till Dricksvattenutredningen (SMHI, 2015).
    Google Scholar 
    McPeek, M. A. Determination of species composition in the Enallagma damselfly assemblages of permanent lakes. Ecology 71, 83–98. https://doi.org/10.2307/1940249 (1990).Article 

    Google Scholar 
    Kirillin, G. et al. FLake-global: Online lake model with worldwide coverage. Environ. Model. Softw. 26, 683–684. https://doi.org/10.1016/j.envsoft.2010.12.004 (2011).Article 

    Google Scholar 
    SMHI. Advanced Climate Change Scenario Service. https://www.smhi.se.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Suhling, F., Suhling, I. & Richter, O. Temperature response of growth of larval dragonflies–An overview. Int. J. Odonatol. 18, 15–30 (2015).Article 

    Google Scholar 
    Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: A new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 1, 1. https://doi.org/10.1111/2041-210X.13585 (2021).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).CAS 
    Article 

    Google Scholar 
    Hemmingsen, A. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium. Energy Metab. Relat. Body Size Respir. Surf. Evol. 9, 6–110 (1960).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Logan, J. D., Wolesensky, W. & Joern, A. Temperature-dependent phenology and predation in arthropod systems. Ecol. Model. 196, 471–482. https://doi.org/10.1016/j.ecolmodel.2006.02.034 (2006).Article 

    Google Scholar 
    Pink, M. & Abrahams, M. V. Temperature and its impact on predation risk within aquatic ecosystems. Can. J. Fish. Aquat. Sci. 73, 869–876. https://doi.org/10.1139/cjfas-2015-0302 (2016).Article 

    Google Scholar 
    DeAngelis, D., Cox, D. & Coutant, C. Cannibalism and size dispersal in young-of-the-year largemouth bass: Experiment and model. Ecol. Model. 8, 133–148 (1980).Article 

    Google Scholar 
    Fagan, W. F. & Odell, G. M. Size-dependent cannibalism in praying mantids: Using biomass flux to model size-structured populations. Am. Nat. 147, 230–268 (1996).Article 

    Google Scholar 
    Dong, Q. & Deangelis, D. L. Consequences of cannibalism and competition for food in a smallmouth bass population: An individual-based modeling study. Trans. Am. Fish. Soc. 127, 174–191 (1998).Article 

    Google Scholar 
    Verheyen, J. & Stoks, R. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs. J. Anim. Ecol. 88, 624–636. https://doi.org/10.1111/1365-2656.12946 (2019).Article 
    PubMed 

    Google Scholar 
    Starr, S. M. & McIntyre, N. E. Effects of water temperature under projected climate change on the development and survival of Enallagma civile (Odonata: Coenagrionidae). Environ. Entomol. 49, 230–237. https://doi.org/10.1093/ee/nvz138 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Culler, L. E., McPeek, M. A. & Ayres, M. P. Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia 176, 653–660. https://doi.org/10.1007/s00442-014-3058-8 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Dokulil, M. T. et al. Increasing maximum lake surface temperature under climate change. Clim. Change https://doi.org/10.1007/s10584-021-03085-1 (2021).Article 

    Google Scholar 
    Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 2nd edn. (Kendall/Hunt Publishing Company, 1984).
    Google Scholar 
    Verdonschot, R. & Peeters, E. T. Preference of larvae of Enallagma cyathigerum (Odonata: Coenagrionidae) for habitats of varying structural complexity. Eur. J. Entomol. 109, 229–234 (2012).Article 

    Google Scholar 
    McCarty, J. P., Wolfenbarger, L. L. & Wilson, J. A. eLS 1–13 (Wiley, 2017).Book 

    Google Scholar 
    Holzmann, K. L. Challenges in a Changing Climate: The Effect of Temperature Variation on Growth and Competition in Damselflies Independent thesis Advanced level (degree of Master (Two Years) thesis, Uppsala University. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-467582 (2022). More

  • in

    The role of plant functional groups mediating climate impacts on carbon and biodiversity of alpine grasslands

    Data management and workflowsWe adopt best-practice approaches for open and reproducible research planning, execution, reporting, and management throughout the project (see e.g.29,30,31,32). Specifically, we use community-approved standards for experimental design and data collection29, and clean and manage the data using a fully scripted and reproducible data workflow, with data and code deposited at open repositories (Fig. 2).Fig. 2The data collection and management workflow of the FunCaB project. Reproducibility throughout the research process is assured as follows: Experimental design and data collection was based on best-practice community methods and protocols, adapted for the projects’ needs. Measurements were digitalized and the raw data stored in the project Open Science Foundation (OSF) repository before the raw data were cleaned and managed through code-based data curation, with version control secured via GitHub. The clean data are stored at the OSF repository, and a time-stamped version of the code to retrieve and clean data is provided through Zenodo. This data paper describes and documents the data collection and workflow, and describes how to access and use clean data, raw data, and code.Full size imageResearch site selection and basic information, and general study setupSite selectionOur study is conducted across the twelve calcareous grassland experimental sites in the Vestland Climate Grid (VCG), in south-western Norway (Fig. 1a). The VCG sites were chosen to fit within a climate grid reflecting a fully factorial design encompassing the major bioclimatic variation in Norway. Potential sites were identified using a combination of topographic maps, geological maps (NGU) and interpolated maps of summer temperature and annual precipitation using the 1960–1990 climate normal (100 m resolution gridded data, met.no; see33 and references therein). The three temperature levels (alpine, sub-alpine, boreal) and four levels of precipitation in the climate grid (Fig. 1b) were selected to reflect a difference in mean growing season temperature of ca. 2 °C between three temperature levels (alpine = 6.5 °C, sub-alpine = 8.5 °C, boreal = 10.5 °C mean temperature of the four warmest months of the year) and a difference in mean annual precipitation of 700 mm between four precipitation levels (precipitation levels 1 – 4 representing 700 mm, 1400 mm, 2100 mm, and 2800 mm, respectively). Climate data for the site selection was based on 100-m resolution downscaled data using the 1960–1990 climate normal from met.no. The final sites were selected from approximately 200 potential sites visited and surveyed in the summer of 2008, with selection criteria set to ensure that other factors such as grazing regime and history, bedrock, vegetation type and structure, slope and exposure were kept as constant as possible among the selected sites34. Geographical distance between sites is on average 15 km and ranges from 175 km to 650 m.Study system and experimental area selection within sitesAt each site, we selected an experimental area of ca. 75 –200 m2, targeting a homogeneous and representative part of the target grassland vegetation at large at that site. The experimental areas were placed on southerly-facing slopes, avoiding depressions and concave areas in the landscape and other features such as big rocks or formations that may affect light conditions, hydrology and/or snowdrift. The target vegetation type was forb-rich semi-natural upland grassland vegetation34,35, within the plant sociological association Potentillo-Festucetum ovinae tending towards Potentillo-Poligonium vivipara in the alpine sites and Nardo-Agrostion tenuis in some lowland sites36. The most common vascular plants across sites, based on sum of covers, are the graminoids Agrostis capillaris, Festuca rubra, Avenella flexuosa, Anthoxanthum odoratum, and Nardus stricta and the forbs Leucantemum vulgare, Hypericum maculatum, Silene acaulis, Alchemilla alpina, and Lotus corniculatus. Common bryophytes are Pleurotium schreberi, Hylocomium splendens, Polythricum spp, Racomitrium lanuginosum, R. fasciculare, and Dicranum spp. All sites were moderately grazed prior to the study by sheep, cattle, goats, reindeer, deer, moose, and/or horses; and the experimental areas were fenced for the duration of the study to prevent animal and human disturbance of the experimental infrastructure. The fenced area was lightly mowed at the end of each growing season to mimic past grazing pressure and minimize fence effects. For further description of the sites, see34 and for access to and further description of site-level data, see35.Block and experimental plot setupWithin these study areas we established four blocks, with a distance between the blocks ranging from one up to (in rare cases) 50 meters. Blocks were selectively placed in homogenous grassland vegetation, avoiding rocks, depressions, and other features as described above. Each block accommodates eight 25 × 25 cm plots, with at least 25 cm between adjacent plots. If a plot contained more than 10% bare rock, shrubs, or other non-grassland features, they were rejected or moved slightly to avoid these features. The plots were permanently marked with four aluminium 10-cm long pipes in the soil in the outer corners of all the 25 × 25 cm treatment plots, ensuring the pipes to fit the corners of a standardized vegetation analysis frame (aluminium frame demarking a 25 × 25 cm inner area, with poles fixed in the corners that fit into the aluminium tubes used for plot demarcation in the field). The upslope left corner tube was marked with a colour-coded waterproof tape. Note that in 31 out of 48 cases (12 sites × 4 blocks), the blocks were located within larger experimental blocks in the VCG sites, and control plots and various block-level data are then shared with other experiments in these larger blocks. Linking keys are described in the FunCaB data dictionaries below (see Fig. 3 and data records iii-vii below). For some datasets, additional plots within blocks were needed. These are described as needed below.Fig. 3Data structure for the FunCaB functional group removal experiment and associated Vestland Climate Grid (VCG) and FUNDER project data. Within each of the three projects, boxes represent data tables. The FunCaB project data tables include biomass of functional groups removed and forb species-level biomass (datasets i, ii), soil temperature and moisture (datasets iii, iv) plant community composition and the associated taxon table (dataset v), seedling recruitment (dataset vi), ecosystem carbon fluxes (dataset vii) and reflectance (dataset viii). Names of individual data tables are given in the coloured title area, and a selection of the main variables available within tables in the internal lists. For full sets of variables for each FunCaB dataset, see Tables 3–9. The lines linking three of the boxes exemplify links using species as keys across tables, note that all bold variables are shared between several tables and can be used as keys to join them. Keys can also be used to link to/from data from other projects in the VCG (for general VCG project keys, see top right hatched outline box, for keys between the FunCaB and FUNDER projects see the bottom right hatched outline box (both including an example value for each variable on the right). The (other) datasets* boxes refer to extensive datasets on plant community composition, cover, biomass, fitness, and reproduction available from previous projects in the VCG27 and upcoming datasets in the FUNDER project.Full size imageBackground abiotic and biotic data from the Vestland Climate GridThe Vestland Climate Grid field sites were established in 2008, and from a series of research projects within the grid over the years we have collected a broad range of datasets on the climate and environment, soils, land-use and environment, vegetation, and ecosystems, along with basic descriptive data of the 12 sites, as described in34. All these datasets are available from the previous projects through the VCG OSF (Open Science Framework) repository35, and the results are presented in associated papers, see for example34,37,38,39,40,41,42,43,44,45. The overall data structure, and the most relevant datasets from the VCG for the FunCaB project is laid out in Fig. 3, and briefly described below. Code to download and link these data to the FunCaB experimental data and sites are provided in the FunCaB github repository28 (see R/download_VCG_data).A new research project, ‘FUNDER – Direct and indirect climate impacts on the biodiversity and FUNctioning of the UNDERground ecosystem’ funded by the Norwegian Research Council KLIMAFORSK programme (project number 315249, 2021 – 2025) will augment the FunCaB experiment with data on the belowground components of the plant-soil ecosystem, including roots, mesofauna, fungi and microbes. These upcoming data will all link with the FunCaB and VCG project based on the given experimental, site and organismal keys, as indicated in Fig. 3.VCG Basic site-level attributesBasic descriptive data on the 12 sites include latitude, longitude, elevation, geology, land-use, soils, and their position within the climate grid (precipitation and temperature levels). These data are described in34,40, provided in35, and can be downloaded using28 (see R/download_VCG_data). For convenience, the climate grid information is also provided in the biomass dataset (see below).VCG Site-level climate dataTemperature was measured continuously at each of the 12 VCG sites at four heights (2 m and 30 cm above ground, at ground level, and 5 cm below ground), soil moisture was measured continuously with two replicate loggers ca. 5 cm below ground, and precipitation was measured at each site during the snow-free season. For these measurements, we used Delta T GP1 loggers (Delta T devices, Cambridge, UK) equipped with two temperature probes, two SM200 moisture sensors which were later replaced as necessary with SM300 and SM150T loggers, and an ARG 100 tipping bucket (EML LTD, North Shields, UK) from 2009 onwards. UTL-3 version 3.0 temperature loggers (GEOTEST AG, Zollikofen, Switzerland) were used for measuring the 2 m and 30 cm temperatures. Soil moisture was measured as the mean of four measurements taken along each side of the turf, several times during the growing season using a Delta T HH2 version 2.3 Moisture Meter with the same probes as for the GP1 logger (SM200, SM150T). These data are described in34,40, provided in35, and can be downloaded using28 (see folder R/download_VCG_data).VCG Soil chemical and structural dataOver the years, various soil chemical variables have been measured at the block level within each of the 12 VCG sites, including soil pH (2009) and % Loss-On-Ignition (2009, 2013), and available N, as sum of N available as NH4-N and NO3-N (available N per deployment period, 2010 & 2012). Soil pH was measured after adding 50 ml distilled water to 25 g soil and mixing for two hours. Loss-on-ignition (LOI), was measured by weighing dry soil (105 °C for 24, one hour in a desiccator), and burnt soil (six hours at 550 °C, one hour in the desiccator) and calculating LOI as the (burnt soil mass/dry soil mass) × 100. NH4-N and NO3-N were measured using in-situ ion exchange resin bags (IERBs) were used to measure the amount of plant-available nutrients in the soil. These data are partially described in34,40, and the full data are provided in35.VCG Litter decomposition dataDecomposition has been assessed at each of the 12 VCG sites using local plant litter and the Tea Bag Index method (Keuskamp et al., 2013). Local litter (dead leaves detached from live plants) was collected at each site in 2013 or 2014, with the specific timing of the collections at each site tuned to ensure that litter was present, not covered by snow, and not decomposed. In practice, this necessitated litter collection after snowmelt in spring in many sites. The litter was washed, dried, and stored in dark, dry, cool conditions. In 2016, five replicate litter bags containing 1 g of graminoid litter were buried at each site, and collected at four points in time after burial (1, 2, 3 and 12 months). Harvested litter bags were cleaned (soil and roots removed), dried for 48 h at 60 °C and weighed. The Tea Bag Index method46 was used in 2014, 2015 and 2016 to measure decomposition at all sites of the climate grid. At each site, 10 replicates of each tea type were buried pair-wise, 8 cm below ground and with at least 10 cm between the tea bags. For a couple of sites, the number of replicate tea bag pairs was higher in 2015 (12 replicates at the site Gudmedalen and 16 replicates at Låvisdalen). After collection, adhering soil particles and roots were removed and the tea bags were dried (48 h at 60 °C) and weighed. These data are partially described in47, and the full data are provided in35 and can be downloaded using28 (see folder R/download_VCG_data).VCG Species-level cover, biomass, and performance dataA variety of plant species and community composition, cover, biomass, fitness, and reproductive data exists for the sites and blocks in the VCG from 2008 to 2021. These data are described in e.g34,37,38,41,43,44,45,48,49,50, and provided in35.VCG Site-level plant functional traitsIn 2016 and 2017, we measured 11 leaf functional traits that are related to potential physiological growth rates and environmental tolerance of plants, following the standardized protocols in Pérez-Harguindeguy et al.51: leaf area (LA, cm2), leaf thickness (LT, mm), leaf dry matter content (LDMC, g/g), specific leaf area (SLA, cm2/g), carbon (C, %), nitrogen (N, %), phosphorus (P, %), carbon nitrogen ratio (C:N), nitrogen phosphorus ratio (N:P), carbon13 isotope ratio (δ13C, ‰), and nitrogen15 isotope ratio (δ15N, ‰). Trait data are available at the site level for species making up at least 80% of the vegetation cover in the control plots at each of the 12 VCG sites. The plants were collected outside of the experimental plots and within a 50 m perimeter from the blocks, and we aimed to collect up to five individuals from each species in each site. To avoid repeated sampling from a single clone, we selected individuals that were visibly separated from other ramets of that species. The sampled plant individuals were labelled, put in plastic bags with moist paper towels, and stored in darkness at 4 °C until processing, which was done as soon as possible and always within 4 days. These data are described in52, provided in35, and can be downloaded using28 (see folder R/download_VCG_data).Experimental designThe functional group removal experiment was designed to examine the impact of aboveground interactions among the major plant functional groups – graminoids, forbs and bryophytes – on the performance and functioning of other components of the vegetation and ecosystem. The experiment consists of eight 25 × 25 cm plots per site and block, with a fully factorial combination of removals of three plant functional groups, with treatments randomized within each block. The general experimental design, with the different removal treatments detailed, are provided as an insert to the timeline in Fig. 1c. The functional groups are delineated and abbreviated in the various datasets as follows: G = graminoids (including grasses, sedges and rushes), F = forbs (including herbaceous forbs, pteridophytes, dwarf-shrubs, and small individuals of trees and shrubs), B = Bryophytes (including mosses, liverworts, and hornworts). Note that all species are also coded by their respective functional group into which they were classified in the FunCaB taxon table. The experimental treatments are coded by functional group removed so that FGB = bare-ground gaps with all plants removed, FB = only graminoids remaining, GB = only forbs remaining, GF = only bryophytes remaining, B = graminoids and forbs remaining, F = bryophytes and graminoids remaining, G = bryophytes and forbs remaining, and C = intact vegetation controls with no vegetation removed. In 2016, four extra control (XC) plots were marked per site for aboveground biomass harvest and ecosystem carbon flux measurements. This sampling regime gave a total of 384 plots in the core FunCaB experiment, plus the additional 48 controls in 2016.Functional group removals were done once in 2015 (at peak growing season due to late snowmelt), twice per year in 2016 and 2017 (after the spring growth and at peak growing season) and annually from 2018 to 2021 (at peak growing season) as regrowth had declined (see below) and biannual removals were no longer necessary. At each sampling, all above-ground biomass of the relevant plant functional group was removed from each plot as follows: for each plot, all the above-ground parts of the relevant functional group(s) were removed using scissors and tweezers to cut the plants at the ground layer (i.e., the soil-vegetation interface). Roots and other below-ground parts were not removed, and non-target plant functional groups and litter were left intact.Species identification, taxonomy, and floraAll vascular plant species were identified to the species level in the field, with nomenclature following Lid and Lid53. Exceptions are sterile specimens of species that are not possible to identify without reproductive parts, and where flowers are either too rare or individuals too short-lived for comparisons of the position of individuals within the plots over years to be used to ascertain identifications (For example, Alchemilla spp. excluding A. alpina, and the annual Euphrasia spp.). Species identifications were confirmed by comparing records over time as described below. All unidentified specimens are included and flagged in the dataset, as described in Data Records below. The full taxon names are provided in the taxon table on OSF (Fig. 3).Dataset collection methodsDatasets (i–ii): Biomass and functional group removalAs described above, functional group removals were done once in 2015 at peak growing season, and twice per year in 2016 and 2017 (after the spring growth; at peak growing season) and annually at peak growing season from 2018 to 2021. For each removal plot and occasion, a picture was taken of the plot pre-removal, the biomass to be removed was collected in separate pre-marked paper bags for each functional group (graminoids, forbs and bryophytes), and a picture was taken post-removal. The collected biomass was then dried at 60 °C for 48 hours and weighed to the nearest 0.01 g (Model LPG-1002, VWR). From the four extra control (XC) plots in 2016, total above-ground biomass as well as litter (defined as dead biomass detached from live plants, see28) was collected at peak growing season. From these plots, biomass was sorted into functional groups as described above, except the forb functional group, which was sorted into species. The graminoid and bryophyte functional groups, each forb species, and litter were individually dried and weighed as described above. The data is available as (i) a biomass dataset, consisting of the removed biomass per plot, date, removal treatment, and functional group for all treatment plots, and the total biomass per functional group plus litter for the extra control plots in 2016, and (ii) a species-level forb biomass dataset from the extra control plots in 2016 (Fig. 3, Table 1).Datasets (iii-iv) – Soil microclimateWe measured soil temperature 3–5 cm below the soil surface for each plot using iButton temperature sensors (DS1922L, Manufacturer reports temperature accuracy of ±0.5 °C, Maxim Integrated INC., San Jose, CA, USA). The data are reported with a resolution of 0.0625 at 140 min intervals from June 2015 to July 2016. We measured soil moisture as volumetric soil moisture; expressed as % water volume per soil volume ((m3 water /m3 soil) × 100). These measurements were done c. 3–5 times during the growing seasons from 2015–2019, usually in connection with the flux and vegetation measurements, by taking the average of four measurements, one at each side of each plot (SM300, Manufacturer reports accuracy ±2.5% vol over 0 to 50% vol and 0–60 °C, Delta-T Devices, Cambridge, UK). The data is available as (iii) temperature and (iv) volumetric soil moisture % per plot and time point (temperature) or date (moisture) (Fig. 3, Table 1).Dataset (v): Vascular plant community composition and vegetation structureWe recorded the full vascular plant species composition of all experimental plots in 2015 (pre treatment), and the control plots plus the extra control plots in 2016. In 2017, 2018, and 2019, we recorded the community composition in controls and in the functional groups that remained in the experimental plots according to the plot’s treatment. At each analysis, each plot was sub-divided into 25 5 × 5 cm subplots, using a subplot overlay. We first recorded all species of vascular plants in the central five subplots, (i.e., the central + shaped area of each plot, Fig. 1c) noting the subplot cover of each species present in each of the five subplots (1 – 25% = 1, 26 – 50% = 2, 51 – 75% = 3, >76% = 4). Additionally, we noted if the individual was fertile (records circled if buds, flowers, or fruits were present). The five subplots were recorded and numbered (1-5) by row, and from left to right, starting from the top up-slope subplot. For the entire 25 × 25 cm plot, any additional species not present in one of the central subplots were recorded and their fertility noted. We then visually estimated the percentage cover of each vascular plant species in the whole plot to the nearest 1% and measured vegetation height in mm at four points within the plot. Note that the total coverage in each plot can exceed 100% due to layering of the vegetation. The vascular plant vegetation data is available as percentage cover and fertility status (sterile or fertile) per species per subplot and plot per sampling date, and vegetation height in mm per plot per sampling date (Fig. 3, Table 1).Other variables that were measured were percentage cover of bryophytes, litter, bare ground, and rock (measured per plot and per subplot) and moss layer depth in mm (mean of 4 measurements/plot), date of analysis, recorder/scribe (if any), and free-text comments. These data are available as % cover, depth in mm, date (year.month.day) and text strings per subplot and /or plot per sampling date (Fig. 3, Table 1).Dataset (vi): Seedling recruitmentThe total number of forb seedlings that emerged in the plots was recorded in 2018 and 2019. At peak growing season in 2018 (round 1, July-August, depending on site), all dicotyledonous seedlings were marked with wooden toothpicks and their x and y coordinates in the plot (mm, recorded from the bottom left hand-corner of the plot, Fig. 1c) and tentative species identity noted. Toward the end of the growing season (round 2, August-September, depending on site), each plot was revisited, seedling survival established, and any further seedlings marked. Survival (recorded when a seedling was present in subsequent surveys; recorded as mortality if absent) and new seedling emergence were followed up in the same manner in 2019 (rounds 3 and 4, respectively). Species identification was (re)assessed at all censuses and corrected if needed as the seedlings grew and identification uncertainty decreased. New seedlings were differentiated from emergent clonal ramets by looking for cotyledons or signs of above- or below-ground ramet connections. These data are available as talleys of seedlings, each with a status (dead or alive) and species identity (or NA when not identifiable), per subplot and /or plot per sampling round (Fig. 3, Table 1).Dataset (vii): Ecosystem carbon flux data and flux calculationsCarbon flux measurementsEcosystem CO2 fluxes were measured to estimate net ecosystem exchange (NEE), ecosystem respiration (Reco) and gross primary production (GPP). The dataset covers the years 2015, 2016 and 2017, and individual plots have multiple measurements for ecosystem carbon flux per year as detailed below. At peak growing season in 2015, a median of 2 sets of paired carbon flux measurements were measured pre-removal for all plots, where a paired set consist of a light and a dark flux measurement of an individual plot. In 2016, a median of 8 sets of paired measurements were made for all control plots, and a median of 7 for the 4 extra controls (see experimental design above). In the data files, some additional measurements exist for other experiments in the VCG sites (a median of 7 paired sets of measurements for controls (TTC) and graminoid removal plots (RTC), see42 for a presentation of this experiment and35 for technical details). In 2017, a median of 5 paired sets of measurements were made for all treated plots in nine of the sites, excluding the second wettest precipitation level (sites Gudmedalen, Rambera, and Arhelleren). These measurements were made ca. 1 week after the first round of plant functional group removals in that season.At each sampling occasion, a clear chamber (25 × 25 × 40 cm) equipped with two fans for air circulation and connected to an infrared gas analyzer (Li-840; Manufacturer reports accuracy within 1.5% of the reading value; LI-COR Biosciences, Lincoln, NE, USA) was used to measure CO2 fluxes at all plots. To prevent cutting of roots and disruption of water flow in the plots by installing collars, we instead attached a windshield to the bottom of the chamber and weighed it down on the ground by a heavy chain to prevent wind-air mixing. At each sampling occasion we made paired measurements of fluxes under light and dark conditions, covering the chamber with a fitted light-excluding cover for the dark measurements.NEE was estimated from measurements of CO2 flux under ambient light and dark conditions: NEElight = GPP – Reco, NEEdark = (-) Reco. We define NEE such that negative values reflect CO2 uptake in the ecosystem, and positive values reflect CO2 release from the ecosystem to the atmosphere. For each measurement, CO2 concentration was recorded at 5 s intervals over a period of 90–120 s. NEE was calculated from the temporal change of CO2 concentration within the closed chamber according to the following formula:$$NEE=frac{delta C{O}_{2}}{delta t}times frac{PV}{Rtimes Atimes (T+273.15)}$$where (delta frac{C{O}_{2}}{delta t}) is the slope of the CO2 concentration against time (µmol mol−1 s−1), P is the atmospheric pressure (kPa), R is the gasconstante (8.314 kPa m3 K−1 mol−1), T is the air temperature inside the chamber (°C), V is the chamber volume (m3) and A is the surface area (m2).Light intensity was measured as photosynthetically active radiation (PAR, µmol m−2 s−1) using a quantum sensor (Li-190; Manufacturer reports absolute calibration accuracy of ±5%; LI-COR Biosciences, Lincoln, NE, USA) placed inside the chamber. Temperature inside the chamber was measured using an iButton temperature logger (DS1922L, Manufacturer reports temperature accuracy of ±0.5 °C, Maxim Integrated, San Jose, CA, USA). Volumetric soil moisture content (m3 water/m3 soil) × 100 was measured by calculating the average of four measurements with a soil moisture sensor (SM300, Manufacturer reports moisture accuracy of ±2.5%, Delta-T Devices, Cambridge, UK), taken at each side of a plot.Data management and calculationsData from the LiCOR data logger and iButton was downloaded in the field and stored. The information from the field data sheets (metadata of CO2 measurements and plot soil moisture) was manually entered into digital worksheets, manually proof-read and stored. Data from the data logger (PAR and CO2) and the iButton temperature logger were linked based on information from the field data sheets. All measurements were first visually evaluated for quality and only measurements that showed a consistent linear relationship between CO2 over a time for a period of at least 60 s were used for NEE calculations. A second inclusion criterion was that this relationship had R2 ≤ 0.2 or R2 ≥ 0.8 for NEE measurement in light conditions and R2 ≥ 0.8 for NEE dark measurements (Reco). Measurements of NEE in light conditions with R2 ≤ 0.2 ensures representation of measurements with equal rates for Reco and GPP. Third, paired measurements that were more than 2 h apart were excluded. These data are available as raw fluxes and as GPP and Reco per plot per measurement (Fig. 3, Table 1).Dataset (vi): ReflectanceReflectance measures of Normalized Difference Vegetation Index (NDVI) were taken for each plot during the 2019 (post functional group removal) and 2021 (pre and post removal) field seasons (July-August), using a Trimble Greenseeker Handheld Crop Sensor (Trimble Inc., Sunnydale, CA, USA). As the sensor measures an elliptical plane, two measures perpendicular to each other were taken for each subplot (25 × 25 cm plot), with the centre of each ellipse being the centre of the subplot. Care was taken to ensure that sampling quadrat frames were not within the sensor range when conducting measurements (see methods Dataset ii). Measures of NDVI were taken at 60 cm above the surface where possible. Height was measured perpendicular to the sampled ground surface. These data are available as reflectance per plot per sampling date (Fig. 3, Table 1). More

  • in

    Modeling the spatial distribution of Culicoides species (Diptera: Ceratopogonidae) as vectors of animal diseases in Ethiopia

    MacLachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koenraadt, C. J. M. et al. Bluetongue, Schmallenberg—What is next? Culicoides-borne viral diseases in the 21st Century. BMC Res. Notes 10, 77 (2014).
    Google Scholar 
    Dennis, S. J., Meyers, A. E., Hitzeroth, I. I. & Rybicki, E. P. African horse sickness: A review of current understanding and vaccine development in the. Viruses 11, 844 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Collins, Á. B., Doherty, M. L., Barrett, D. J. & Mee, J. F. Schmallenberg virus: A systematic international literature review (2011–2019) from an Irish perspective. Ir. Vet. J. 72, 1–22 (2019).Article 

    Google Scholar 
    Tkuwet, G. & Firesbhat, A. A review on African horse sickness. Eur. J. Appl. Sci. 7, 213–219 (2015).CAS 

    Google Scholar 
    Mellor, P. S. & Hamblin, C. African horse sickness. Vet. Res. 35, 445–466 (2004).PubMed 
    Article 

    Google Scholar 
    Coetzee, P., Stokstad, M., Venter, E. H., Myrmel, M. & Van Vuuren, M. Bluetongue: A historical and epidemiological perspective with the emphasis on South Africa. Virol. J. 9, 198 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cagienard, A., Griot, C., Mellor, P. S., Denison, E. & Stärk, K. D. Bluetongue vector species of Culicoides in Switzerland. Med. Vet. Entomol. 20, 239–247 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oluwayelu, D., Adebiyi, A. & Tomori, O. Endemic and emerging arboviral diseases of livestock in Nigeria: A review. Parasit. Vectors 11, 1–12 (2018).Article 

    Google Scholar 
    Sibhat, B., Ayelet, G., Gebremedhin, E. Z., Skjerve, E. & Asmare, K. Seroprevalence of Schmallenberg virus in dairy cattle in Ethiopia. Acta Trop. 178, 61–67 (2018).PubMed 
    Article 

    Google Scholar 
    Aklilu, N. et al. African horse sickness outbreaks caused by multiple virus types in Ethiopia. Transbound. Emerg. Dis. 61, 185–192 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rojas, J. M., Rodríguez-Martín, D., Martín, V. & Sevilla, N. Diagnosing bluetongue virus in domestic ruminants: Current perspectives. Vet. Med. Res. Rep. 10, 17 (2019).
    Google Scholar 
    Gizaw, D., Sibhat, D., Ayalew, B. & Sehal, M. Sero-prevalence study of bluetongue infection in sheep and goats in selected areas of Ethiopia. Ethiop. Vet. J. 20, 105 (2016).Article 

    Google Scholar 
    Abera, T. et al. Bluetongue disease in small ruminants in south western Ethiopia: Cross-sectional sero-epidemiological study. BMC Res. Notes 11, 112 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mellor, P. S., Boorman, J. & Baylis, M. Culicoides biting midges: Their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antivir. Res. 100, 102–113 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sick, F., Beer, M., Kampen, H. & Wernike, K. Culicoides biting midges—Underestimated vectors for arboviruses of public health and veterinary importance. Viruses 11, 376 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Blanda, V. et al. Geo-statistical analysis of Culicoides spp. distribution and abundance in Sicily, Italy. Parasit. Vectors 11, 78 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vasić, A. et al. Species diversity, host preference and arbovirus detection of Culicoides (Diptera: Ceratopogonidae) in south-eastern Serbia. Parasit. Vectors 12, 1–9 (2019).Article 

    Google Scholar 
    Martin, E. et al. Culicoides species community composition and infection status with parasites in an urban environment of east central Texas, USA. Parasit. Vectors 12, 1–10 (2019).Article 

    Google Scholar 
    Gusmão, G. M. C., Brito, G. A., Moraes, L. S., Bandeira, M. D. C. A. & Rebêlo, J. M. M. Temporal variation in species abundance and richness of Culicoides (Diptera: Ceratopogonidae) in a tropical equatorial area. J. Med. Entomol. https://doi.org/10.1093/jme/tjz015 (2019).Article 
    PubMed 

    Google Scholar 
    Sghaier, S. et al. New species of the genus Culicoides (Diptera Ceratopogonidae) for Tunisia, with detection of Bluetongue viruses in vectors. Vet. Ital. 53, 357–366 (2017).PubMed 

    Google Scholar 
    Gordon, S. J. G. et al. The occurrence of Culicoides species, the vectors of arboviruses, at selected trap sites in Zimbabwe. Onderstepoort J. Vet. Res. 82, e1–e8 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Villard, P. et al. Modeling Culicoides abundance in mainland France: Implications for surveillance. Parasit. Vectors 12, 1–10 (2019).Article 

    Google Scholar 
    Diarra, M. et al. Spatial distribution modelling of Culicoides (Diptera: Ceratopogonidae) biting midges, potential vectors of African horse sickness and bluetongue viruses in Senegal. Parasit. Vectors 11, 341 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calvete, C. et al. Spatial distribution of Culicoides imicola, the main vector of bluetongue virus, Spain. Vet. Rec. 158, 130–131 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Modelling the distributions of Culicoides bluetongue virus vectors in Sicily in relation to satellite-derived climate variables. Med. Vet. Entomol. 18, 90–101 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Spatial and temporal distribution of bluetongue and its Culicoides vectors in Bulgaria. Med. Vet. Entomol. 20, 335–344 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leta, S. et al. Modeling the global distribution of Culicoides imicola: An ensemble approach. Sci. Rep. 9, 1–9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Mulatu, T. & Hailu, A. The occurrence and identification of Culicoides species in the Western Ethiopia. Acad. J. Entomol. 12, 40–43 (2019).
    Google Scholar 
    Khamala, C. P. M. & Kettle, D. S. The Culicoides Latreille (Diptera: Ceratopogonidae) of East Africa. Trans. R. Entomol. Soc. Lond. 123, 1–95 (1971).Article 

    Google Scholar 
    Venter, G. J. Specie di Culicoides (Diptera: Ceratopogonidae) vettori del virus della Bluetongue in Sud Africa. Vet. Ital. 51, 325–333 (2015).PubMed 

    Google Scholar 
    Mathieu, B. et al. Development and validation of IIKC: An interactive identification key for Culicoides (Diptera: Ceratopogonidae) females from the Western Palaearctic region. Parasit. Vectors 5, 137 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—A platform for ensemble forecasting of species distributions. Ecography (Cop.) 32, 369–373 (2009).Article 

    Google Scholar 
    Baylis, M., Bouayoune, H., Touti, J. & El Hasnaoui, H. Use of climatic data and satellite imagery to model the abundance of Culicoides imicola, the vector of African horse sickness virus, in Morocco. Med. Vet. Entomol. 12, 255–266 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diarra, M. et al. Modelling the abundances of two major culicoides (Diptera: Ceratopogonidae) species in the Niayes area of Senegal. PLoS One 10, e0131021 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ramilo, D. W., Nunes, T., Madeira, S., Boinas, F. & da Fonseca, I. P. Geographical distribution of Culicoides (DIPTERA: CERATOPOGONIDAE) in mainland Portugal: Presence/absence modelling of vector and potential vector species. PLoS One 12, e0180606 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul-de-sac’ for endemic fishes facing climate change. Glob. Chang. Biol. 16, 3233–3245 (2010).ADS 
    Article 

    Google Scholar 
    Tiffin, P. & Ross-Ibarra, J. Goal-oriented evaluation of species distribution models accuracy and precision: True Skill Statistic profile and uncertainty maps. PeerJ PrePints https://doi.org/10.7287/peerj.preprints.488v1 (2014).Article 

    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Demissie, G. H. Seroepidemiological study of African horse sickness in southern Ethiopia. Open Sci. Repos. Vet. Med. 10, e70081919 (2013).
    Google Scholar 
    Zeleke, A., Sori, T., Powel, K., Gebre-Ab, F. & Endebu, B. Isolation and identification of circulating serotypes of African horse sickness virus in Ethiopia. J. Appl. Res. Vet. Med. 3, 40–43 (2005).
    Google Scholar 
    Ayelet, G. et al. Outbreak investigation and molecular characterization of African horse sickness virus circulating in selected areas of Ethiopia. Acta Trop. 127, 91–96 (2013).PubMed 
    Article 

    Google Scholar 
    Gulima, D. Seroepidemiological study of bluetongue in indigenous sheep in selected districts of Amhara National Regional State, north western Ethiopia. Ethiop. Vet. J. 13, 1–15 (2009).
    Google Scholar 
    Borkent, A. & Dominiak, P. Catalog of the biting midges of the world (Diptera: Ceratopogonidae). Zootaxa 4787, 1–377 (2020).Article 

    Google Scholar 
    Borkent, A. & Wirth, W. W. World species of biting midges (Diptera: Ceratopogonidae). Bull. Am. Museum Nat. Hist. 233, 5–195 (1997).
    Google Scholar 
    Guichard, S. et al. Worldwide niche and future potential distribution of Culicoides imicola, a major vector of bluetongue and African horse sickness viruses. PLoS One 9, e112491 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Becker, E. E. E., Venter, G. J., Labuschagne, K., Greyling, T. & van Hamburg, H. Occurrence of Culicoides species Diptera: Ceratopogonidae) in the Khomas region of Namibia during the winter months. Vet. Ital. 48, 45–54 (2012).PubMed 

    Google Scholar 
    Capela, R. et al. Spatial distribution of Culicoides species in Portugal in relation to the transmission of African horse sickness and bluetongue viruses. Med. Vet. Entomol. 17, 165–177 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvete, C. et al. Modelling the distributions and spatial coincidence of bluetongue vectors Culicoides imicola and the Culicoides obsoletus group throughout the Iberian peninsula. Med. Vet. Entomol. 22, 124–134 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 498–511 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Foxi, C. et al. Role of different Culicoides vectors (Diptera: Ceratopogonidae) in bluetongue virus transmission and overwintering in Sardinia (Italy). Parasit. Vectors 9, 440 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musuka, G. N., Mellor, P. S., Meiswinkel, R., Baylis, M. & Kelly, P. J. Prevalence of Culicoides imicola and other species (Diptera: Ceratopogonidae) ateight sites in Zimbabwe: To the editor. J. S. Afr. Vet. Assoc. 72, 62–63 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meiswinkel, R. The 1996 outbreak of African horse sickness in South Africa—the entomological perspective. Arch. Virol. Suppl. 14, 69–83 (1998).CAS 
    PubMed 

    Google Scholar 
    Jean Pierre, T. et al. Characteristics, classification and genesis of vertisols under seasonally contrasted climate in the Lake Chad Basin, Central Africa. J. Afr. Earth Sci. 150, 176–193 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Elias, E. Characteristics of Nitisol profiles as affected by land use type and slope class in some Ethiopian highlands. Environ. Syst. Res. 6, 1–15 (2017).Article 

    Google Scholar 
    Nachtergaele, F. The classification of leptosols in the world reference base for soil resources.Veronesi, E., Venter, G. J., Labuschagne, K., Mellor, P. S. & Carpenter, S. Life-history parameters of Culicoides (Avaritia) imicola Kieffer in the laboratory at different rearing temperatures. Vet. Parasitol. 163, 370–373 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Verhoef, F. A. A., Venter, G. J. & Weldon, C. W. Thermal limits of two biting midges, Culicoides imicola Kieffer and C. bolitinos Meiswinkel (Diptera: Ceratopogonidae). Parasites Vectors 7, 384 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conte, A., Goffredo, M., Ippoliti, C. & Meiswinkel, R. Influence of biotic and abiotic factors on the distribution and abundance of Culicoides imicola and the Obsoletus Complex in Italy. Vet. Parasitol. 150, 333–344 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martinez-de la Puente, J., Navarro, J., Ferraguti, M., Soriguer, R. & Figuerola, J. First molecular identification of the vertebrate hosts of Culicoides imicola in Europe and a review of its blood-feeding patterns worldwide: Implications for the transmission of bluetongue disease and African horse sickness. Med. Vet. Entomol. 31, 333–339 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Purse, B. V. et al. Impacts of climate, host and landscape factors on Culicoides species in Scotland. Med. Vet. Entomol. 26, 168–177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leta, S. et al. Updating the global occurrence of Culicoides imicola, a vector for emerging viral diseases. Sci. Data 6, 1–8 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Ordering and topological defects in social wasps’ nests

    Camazine, S. et al. Self-organization in Biological Systems (Princeton University Press, Princeton, 2001).
    Google Scholar 
    Tschinkel, W. R. The nest architecture of the Florida harvester ant, Pogonomyrmex badius. J. Insect Sci. 4(1), 21 (2004).MathSciNet 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, C. R. et al. Army ants dynamically adjust living bridges in response to a cost-benefit trade-off. Proc. Natl. Acad. Sci. 112(49), 15113–15118 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grassé, P. P. Termitology. Termite anatomy-physiology-biology-systematics. Vol. II. Colony foundation-construction. Termitology. Termite anatomy-physiology-biology-systematics. Vol. II. Colony foundation-construction. Masson, Paris, (1984).Theraulaz, G., Bonabeau, E. & Deneubourg, J. L. The mechanisms and rules of coordinated building in social insects (In Information Processing in Social Insects, Birkhäuser, Basel, 1999).Hansell, M. & Hansell, M. H. Animal Architecture (Oxford University Press, Oxford, 2005).Book 

    Google Scholar 
    Peters, J. M., Peleg, O. & Mahadevan, L. Collective ventilation in honeybee nests. J. R. Soc. Interface 16(150), 20180561 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grassé, P. P. La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux, 6(1):41–80 (1959).Theraulaz, G. & Bonabeau, E. Coordination in Distributed Building. Science 269(5224), 686–688 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonabeau, E., Theraulaz, G., Deneubourg, J. L. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12(5), 188–193 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Khuong, A. et al. Stigmergic construction and topochemical information shape ant nest architecture. Proc. Natl. Acad. Sci. 113(5), 1303–1308 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pénzes, Z. & Karsai, I. Round shape combs produced by Stigmergic scripts in social wasp. Proc. Eur. Conf. Artif. Life 93, 896–905 (1993).
    Google Scholar 
    Karsai, I. Decentralized control of construction behavior in paper wasps: an overview of the Stigmergy Approach. Artif. Life 5(2), 117–136 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Perna, A. & Theraulaz, G. When social behaviour is moulded in clay: On growth and form of social insect nests. J. Exp. Biol. 220(1), 83–91 (2017).PubMed 
    Article 

    Google Scholar 
    Gallo, V. & Chittka, L. Cognitive Aspects of Comb-Building in the Honeybee?. Front. Psychol. 9, 900 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hales, T. C. The Honeycomb Conjecture. Discrete Comput. Geom. 25(1), 1–22 (2001).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Tóth, L. F. What the bees know and what they do not know. Bull. Am. Math. Soc. 70(4), 468–481 (1964).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Jeanne, R. L. The Adaptiveness of Social Wasp Nest Architecture. Q. Rev. Biol. 50(3), 267–287 (1975).Article 

    Google Scholar 
    Karsai, I. & Pénzes, Z. Optimality of cell arrangement and rules of thumb of cell initiation in Polistes dominulus: A modeling approach. Behav. Ecol. 11(4), 387–395 (1999).Article 

    Google Scholar 
    Pirk, C., Hepburn, H., Radloff, S. & Tautz, J. Honeybee combs: construction through a liquid equilibrium process? Naturwissenschaften, 91(7) (2004).Karihaloo, B. L., Zhang, K. & Wang, J. Honeybee combs: How the circular cells transform into rounded hexagons. J. R. Soc. Interface 10(86), 20130299 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bauer, D. & Bienefeld, K. Hexagonal comb cells of honeybees are not produced via a liquid equilibrium process. Naturwissenschaften 100(1), 45–49 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mermin, N. D. The topological theory of defects in ordered media. Rev. Mod. Phys. 51(3), 591–648 (1979).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Bhattacharjee, S. M. Use of Topology in physical problems. In Topology and Condensed Matter Physics (eds Bhattacharjee, S. M. et al.) 171–216 (Springer, Singapore, 2017).MATH 
    Chapter 

    Google Scholar 
    Griffin, S. M. & Spaldin, N. A. On the relationship between topological and geometric defects. J. Phys.: Condens. Matter 29(34), 343001 (2017).
    Google Scholar 
    Harris, W. F. Disclinations. Sci. Am. 237(6), 130–145 (1977).MathSciNet 
    Article 

    Google Scholar 
    de Gennes, P.-G. The Physics of liquid crystals (Clarendon Press, Oxford, 1979).
    Google Scholar 
    Iorio, A. & Sen, S. Virus Structure: From Crick and Watson to a New Conjecture. In arXiv 0707, 3690 (2007).Lee, K. C., Yu, Q. & Erb, U. Mesostructure of Ordered Corneal Nano-nipple Arrays: The Role of 5–7 Coordination Defects. Sci. Rep. 6(1), 28342 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128(5), 501–503 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, J., Alfè, D., Michaelides, A. & Wang, E. Stone-Wales defects in graphene and other planar sp2 -bonded materials. Phys. Rev. B 80(3), 033407 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Heggie, M. I., Haffenden, G. L., Latham, C. D. & Trevethan, T. The Stone-Wales transformation: From fullerenes to graphite, from radiation damage to heat capacity. Philos.Trans. Royal Soc. A Math. Phys. Eng. Sci. 374(2076), 20150317 (2016).ADS 
    Article 
    CAS 

    Google Scholar 
    Eberhard, M. J. W. The Social Biology of Polistine Wasps. Misc. Publ. Museum Zoology Univ. Michigan 140, 110 (1969).
    Google Scholar 
    Jeanne, R. L. A latitudinal gradient in rates of ant predation. Ecology 60(6), 1211–1224 (1979).Article 

    Google Scholar 
    Seeley, T. & Heinrich, B. (1981). Regulation of temperature in the nests of social insects. John Wiley and Sons, Inc, pp. 224–234.Wenzel, J. W. Evolution of nest architecture. In The Social Biology Wasps (eds Ross, K. G. & Matthews, R. W.) 480–519 (Cornell University Press, Ithaca, New York, 1991).
    Google Scholar 
    Karsai, I. & Pénzes, Z. (1998). Nest shapes in paper wasps: Can the variability of forms be deduced from the same construction algorithm? Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1402):1261–1268.Carpenter, J. M. Phylogeny and biogeography of Polistes. In Natural History and Evolution of Paper-Wasps (eds Turillazzi, S. & Eberhard, M. J. W.) 18–57 (Oxford University Press, Oxford, Newyork, 1996).
    Google Scholar 
    Ceccolini, F. New records and distribution update of Polistes (Gyrostoma) wattii Cameron, 1900 (Hymenoptera: Vespidae: Polistinae). Caucasian Entomol. Bull. 15(2), 323–326 (2019).Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, London, 2015).MATH 
    Book 

    Google Scholar 
    Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28(2), 784–805 (1983).ADS 
    CAS 
    Article 

    Google Scholar 
    Schilling, T., Pronk, S., Mulder, B. & Frenkel, D. Monte Carlo study of hard pentagons. Phys. Rev. E 71(3), 036138 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/ (2020).Bishop, M. & Bruin, C. The pair correlation function: A probe of molecular order. Am. J. Phys. 52(12), 1106–1108 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    Fleury, P. A. Phase Transitions, Critical Phenomena, and Instabilities. Science 211, 125–131 (1981).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Wenzel, J. W. Endogenous factors, external cues, and eccentric construction in Polistes annularis (Hymenoptera: Vespidae). J. Insect Behavior 2(5), 679–699 (1989).Article 

    Google Scholar 
    Zsoldos. Effect of topological defects on graphene geometry and stability. Nanotechnol. Sci. Appl., p. 101 (2010).Ophus, C., Shekhawat, A., Rasool, H. & Zettl, A. Large-scale experimental and theoretical study of graphene grain boundary structures. Phys. Rev. B 92(20), 205402 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Kosterlitz, J. M. (2016). Commentary on ‘Ordering, metastability and phase transitions in two-dimensional systems’ J M Kosterlitz and D J Thouless (1973 J. Phys. C: Solid State Phys. 6 1181-203)-the early basis of the successful Kosterlitz-Thouless theory. Journal of Physics: Condensed Matter28:481001.Hepburn, H. R. & Whiffler, L. A. Construction defects define pattern and method in comb building by honeybees. Apidologie 22(4), 381–388 (1991).Article 

    Google Scholar 
    Smith, M. L., Napp, N. & Petersen, K. H. Imperfect comb construction reveals the architectural abilities of honeybees. Proc. Natl. Acad. Sci. 118(31), e2103605118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nazzi, F. The hexagonal shape of the honeycomb cells depends on the construction behavior of bees. Sci. Rep. 6(1), 28341 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tarnai, T. Buckling patterns of shells and spherical honeycomb structures. Symmetry, pp. 639–652 (1989).Downing, H. & Jeanne, R. The regulation of complex building behaviour in the paper wasp, Polistes fuscatus (Insecta, Hymenoptera, Vespidae). Anim. Behav. 39(1), 105–124 (1990).Article 

    Google Scholar  More

  • in

    Post-foraging in-colony behaviour of a central-place foraging seabird

    Naef-Daenzer, B. Patch time allocation and patch sampling by foraging great and blue tits. Anim. Behav. 59, 989–999 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kotler, B. P., Brown, J. S. & Bouskila, A. Apprehension and time allocation in gerbils: The effects of predatory risk and energetic state. Ecology 85, 917–922 (2004).Article 

    Google Scholar 
    Wajnberg, E., Bernhard, P., Hamelin, F. & Boivin, G. Optimal patch time allocation for time-limited foragers. Behav. Ecol. Sociobiol. 60, 1–10 (2006).Article 

    Google Scholar 
    Embar, K., Kotler, B. P. & Mukherjee, S. Risk management in optimal foragers: The effect of sightlines and predator type on patch use, time allocation, and vigilance in gerbils. Oikos 120, 1657–1666 (2011).Article 

    Google Scholar 
    Lima, S. L. & Bednekoff, P. A. Temporal variation in danger drives antipredator behavior: The predation risk allocation hypothesis. Am. Nat. 153, 649–659 (1999).PubMed 
    Article 

    Google Scholar 
    Beauchamp, G. & Ruxton, G. D. A reassessment of the predation risk allocation hypothesis: A comment on Lima and Bednekoff. Am. Nat. 177, 143–146 (2011).PubMed 
    Article 

    Google Scholar 
    Ferrari, M. C. O., Sih, A. & Chivers, D. P. The paradox of risk allocation: A review and prospectus. Anim. Behav. 78, 579–585 (2009).Article 

    Google Scholar 
    Wolf, L. L. & Hainsworth, F. R. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128 (1975).Article 

    Google Scholar 
    Litzow, M. A. & Piatt, J. F. Variance in prey abundance influences time budgets of breeding seabirds: Evidence from pigeon guillemots Cepphus columba. J. Avian Biol. 34, 54–64 (2003).Article 

    Google Scholar 
    Rishworth, G. M., Tremblay, Y. & Green, D. B. Drivers of time-activity budget variability during breeding in a pelagic seabird. PLoS One 9, e116544 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stephens, D. W., Brown, J. S. & Ydenberg, R. C. Foraging: Behavior and Ecology. (The University of Chicago Press, 2007).Orians, G. & Pearson, N. On the theory of central place foraging. In Analysis of Ecological Systems (eds. Horn, D., Mitchell, R. & Stairs, G.) 154–177 (The Ohio State University Press, 1979).Chaurand, T. & Weimerskirch, H. The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: A previously undescribed strategy of food provisioning in a pelagic seabird. J. Anim. Ecol. 63, 275–282 (1994).Article 

    Google Scholar 
    Weimerskirch, H. et al. Alternate long and short foraging trips in pelagic seabird parents. Anim. Behav. 47, 472–476 (1994).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. 23, 1372–1378 (2012).Article 

    Google Scholar 
    Welcker, J. et al. Flexibility in the bimodal foraging strategy of a high Arctic alcid, the little auk Alle alle. J. Avian Biol. 40, 388–399 (2009).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M. & Kidawa, D. Flexibility of little auks foraging in various oceanographic features in a changing Arctic. Sci. Rep. https://doi.org/10.1038/s41598-020-65210-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shoji, A. et al. Dual foraging and pair coordination during chick provisioning by Manx shearwaters: Empirical evidence supported by a simple model. J. Exp. Biol. 218, 2116–2123 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, R. A., Wakefield, E. D., Croxall, J. P., Fukuda, A. & Higuchi, H. Albatross foraging behaviour: No evidence for dual foraging, and limited support for anticipatory regulation of provisioning at South Georgia. Mar. Ecol. Prog. Ser. 391, 279–292 (2009).ADS 
    Article 

    Google Scholar 
    Brown, Z. W., Welcker, J., Harding, A. M. A., Walkusz, W. & Karnovsky, N. J. Divergent diving behavior during short and long trips of a bimodal forager, the little auk Alle alle. J. Avian Biol. 43, 215–226 (2012).Article 

    Google Scholar 
    Baduini, C. L. & Hyrenbach, K. D. Biogeography of procellariiform foraging strategies: Does ocean productivity influence provisioning?. Mar. Ornithol. 31, 101–112 (2003).
    Google Scholar 
    Navarro, J. & González-Solís, J. Environmental determinants of foraging strategies in Cory’s shearwaters Calonectris diomedea. Mar. Ecol. Prog. Ser. 378, 259–267 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ochi, D., Oka, N. & Watanuki, Y. Foraging trip decisions by the streaked shearwater Calonectris leucomelas depend on both parental and chick state. J. Ethol. 28, 313–321 (2010).Article 

    Google Scholar 
    Congdon, B. C., Krockenberger, A. K. & Smithers, B. V. Dual-foraging and co-ordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar. Ecol. Prog. Ser. 301, 293–301 (2005).ADS 
    Article 

    Google Scholar 
    Peck, D. R. & Congdon, B. C. Colony-specific foraging behaviour and co-ordinated divergence of chick development in the wedge-tailed shearwater Puffinus pacificus. Mar. Ecol. Prog. Ser. 299, 289–296 (2005).ADS 
    Article 

    Google Scholar 
    Weimerskirch, H. How can a pelagic seabird provision its chick when relying on a distant food resource? Cyclic attendance at the colony, foraging decision and body condition in sooty shearwaters. J. Anim. Ecol. 67, 99–109 (1998).Article 

    Google Scholar 
    Stempniewicz, L. BWP update. Little Auk (Alle alle). J. Birds West. Palearct. 3, 175–201 (2001).
    Google Scholar 
    Wojczulanis-Jakubas, K. & Jakubas, D. When and why does my mother leave me? The question of brood desertion in the Dovekie (Alle Alle). Auk 129, 632–637 (2012).Article 

    Google Scholar 
    Harding, A. M. A., Van Pelt, T. I., Lifjeld, J. T. & Mehlum, F. Sex differences in little auk Alle alle parental care: Transition from biparental to paternal-only care. Ibis (Lond. 1859). 146, 642–651 (2004).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K. et al. Duration of female parental care and their survival in the little auk Alle alle—Are these two traits linked ?. Behav. Ecol. Sociobiol. 74, 1–11 (2020).Article 

    Google Scholar 
    Wojczulanis, K., Dariusz, J. & Lech, S. The Little Auk Alle alle: An ecological indicator of a changing Arctic and a model organism. Polar Biol. https://doi.org/10.1007/s00300-021-02981-7 (2021).Article 

    Google Scholar 
    Steen, H., Vogedes, D., Broms, F., Falk-Petersen, S. & Berge, J. Little auks (Alle alle) breeding in a High Arctic fjord system: Bimodal foraging strategies as a response to poor food quality?. Polar Res. 26, 118–125 (2007).Article 

    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D., Karnovsky, N. J. & Walkusz, W. Foraging strategy of little auks under divergent conditions on feeding grounds. Polar Res. 29, 22–29 (2010).Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L., Darecki, M. & Stempniewicz, L. Foraging strategy of the little auk Alle alle throughout breeding season—switch from unimodal to bimodal pattern. J. Avian Biol. 45, 551–560 (2014).Article 

    Google Scholar 
    Jakubas, D., Iliszko, L., Wojczulanis-Jakubas, K. & Stempniewicz, L. Foraging by little auks in the distant marginal sea ice zone during the chick-rearing period. Polar Biol. 35, 73–81 (2012).Article 

    Google Scholar 
    Jakubas, D. et al. Intra-seasonal variation in zooplankton availability, chick diet and breeding performance of a high Arctic planktivorous seabird. Polar Biol. 391, 1547–1561 (2016).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging closer to the colony leads to faster growth in little auks. Mar. Ecol. Prog. Ser. 489, 263–278 (2013).ADS 
    Article 

    Google Scholar 
    Stempniewicz, L. Predator-prey interactions between Glaucous Gull Larus hyperboreus and Little Auk Alle alle in Spitsbergen. Acta Ornithol. 29, 155–170 (1995).
    Google Scholar 
    Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Changes in the glaucous gull predatory pressure on little auks in Southwest Spitsbergen. Waterbirds 28, 430–435 (2005).Article 

    Google Scholar 
    Kharitonov, S. Methods and Theoretical Aspects of Seabird Studies. (Proc 5 All-Russian Mar Biol School, Marine Biological Institute, 2007).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Avifauna of Hornsund area, SW Spitsbergen: Present state and recent changes. Polish Polar Res. 29, 187–197 (2008).
    Google Scholar 
    Keslinka, K. L., Wojczulanis-Jakubas, K., Jakubas, D. & Neubauer, G. Determinants of the little auk (Alle alle) breeding colony location and size in W and NW coast of Spitsbergen. PLoS One 14, 1–20 (2019).
    Google Scholar 
    Kidawa, D., Barcikowski, M. & Palme, R. Parent-offspring interactions in a long-lived seabird, the Little Auk (Alle alle): Begging and provisioning under simulated stress. J. Ornithol. 158, 145–157 (2017).Article 

    Google Scholar 
    Welcker, J., Beiersdorf, A., Varpe, Ø. & Steen, H. Mass fluctuations suggest different functions of bimodal foraging trips in a central-place forager. Behav. Ecol. https://doi.org/10.1093/beheco/ars131 (2012).Article 

    Google Scholar 
    Jakubas, D. & Wojczulanis, K. Predicting the sex of Dovekies by discriminant analysis. Waterbirds 30, 92–96 (2007).Article 

    Google Scholar 
    Grissot, A. et al. Parental coordination of chick provisioning in a planktivorous arctic seabird under divergent conditions on foraging grounds. Front. Ecol. Evol. 7, 349 (2019).Article 

    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R. (2019).Wojczulanis-Jakubas, K., Jakubas, D. & Stempniewicz, L. Sex-specific parental care by incubating Little Auks (Alle alle). Ornis Fenn. 86, 140–148 (2009).
    Google Scholar 
    Welcker, J., Steen, H., Harding, A. M. A. & Gabrielsen, G. W. Sex-specific provisioning behaviour in a monomorphic seabird with a bimodal foraging strategy. Ibis (Lond. 1859). 151, 502–513 (2009).Article 

    Google Scholar 
    Kidawa, D. et al. Parental efforts of an Arctic seabird, the little auk Alle alle under variable foraging conditions. Mar. Biol. Res. 11, 349–360 (2015).Article 

    Google Scholar 
    Wickham, H. Hadley Wickham. Media 35, 211 (2009).
    Google Scholar 
    Karnovsky, N. J. et al. Inter-colony comparison of diving behavior of an Arctic top predator: Implications for warming in the Greenland Sea. Mar. Ecol. Prog. Ser. 440, 229–240 (2011).ADS 
    Article 

    Google Scholar 
    Karnovsky, N. et al. Foraging distributions of little auks Alle alle across the Greenland Sea: Implications of present and future Arctic climate change. Mar. Ecol. Prog. Ser. 415, 283–293 (2010).ADS 
    Article 

    Google Scholar 
    Gremillet, D. et al. Little auks buffer the impact of current Arctic climate change. Mar. Ecol. Prog. Ser. 454, 197–206 (2012).ADS 
    Article 

    Google Scholar 
    Harding, A. M. A. et al. Flexibility in the parental effort of an Arctic-breeding seabird. Funct. Ecol. 23, 348–358 (2009).Article 

    Google Scholar 
    Jakubas, D. et al. Foraging effort does not influence body condition and stress level in little auks. Mar. Ecol. Prog. Ser. 432, 277–290 (2011).ADS 
    Article 

    Google Scholar 
    Jakubas, D., Wojczulanis-Jakubas, K., Iliszko, L. M., Strøm, H. & Stempniewicz, L. Habitat foraging niche of a High Arctic zooplanktivorous seabird in a changing environment. Sci. Rep. 7, 1–14 (2017).CAS 
    Article 

    Google Scholar  More

  • in

    Flow patterns in circular fish tanks and its relations with flow rate and nozzle features

    Rotational velocityFigure 3 shows the effect of flow rate, nozzle diameter and number of nozzles on the rotational velocity of water in a circular tank. The results indicate that the rotational velocity increases with increasing flow rates and deceasing nozzle diameter. It could be seen that, the rotational velocity decreased from 10.1 to 5.0 cm s−1, when the nozzle diameter increased from 10 to 20 mm, respectively for 5 nozzles used, and it decreased from 5.1 to 4.0 cm s−1, when the nozzle diameter increased from 10 to 15 mm, respectively, for 10 nozzles used with 5 m3 h−1 flow rate. At 15 m3 h−1, the rotational velocity was decreased from 23.5 to 17.5, 12.0 to 7.5, 10.0 to 6.9, 7.6 to 4.7 and 5.9 to 4.0 cm s−1 when the nozzle diameter increased from 10 to 20 mm, respectively, for 5, 10, 15, 20 and 25 nozzles, respectively. The results also indicate that when the nozzle diameter increased from 20 to 25 mm, the rotational velocity decreased from 19.0 to 16.5, 12.0 to 10.0 and 7.1 to 5.5 cm s−1 for 3, 6 and 9 nozzles, respectively, with 15 m3 h−1 flow rate.Figure 3Effect of flow rate, nozzle diameter and number of nozzles on the rotational velocity of water in a circular tank.Full size imageAt 30 m3 h−1 flow rate, the highest value of the rotational velocity was 33.5 cm s−1 was found for 5 nozzles and 10 mm nozzle diameter. While, the lowest value of the rotational velocity was 7.3 cm s−1 was found for 25 nozzles and 25 mm nozzle diameter. At 45 m3 h−1 flow rate, the rotational velocity ranged from 11.0 to 49.9 cm s−1 for all treatments under study.At 60 m3 h−1 flow rate, the rotational velocity deceased from 61.0 to 50.1, 47.7 to 34.0, 36.3 to 23.0, 23.5 to 17.5, 21.0 to 15.0 and 17.0 to 11.5 cm s−1 when the nozzle diameter increased from 10 to 20 mm, respectively at 5, 10, 15, 20, 25 and 30 number of nozzles. The results also indicate that, when the nozzle diameter increased from 20 to 25 mm, the rotational velocity decreased from 56.0 to 47.0, 43.0 to 33.0, 27.0 to 22.0 and 19.0 to 16.5 cm s−1 at 3, 6, 9 and 12 nozzles, respectively.At 75 m3 h−1 flow rate, the rotational velocity deceased from 60.9 to 49.1, 48.4 to 38.0, 39.0 to 30, 31.8 to 23.0, 23.5 to 17.5 and 22.0 to 15.0 cm s−1 when the nozzle diameter increased from 10 to 20 mm, respectively for 5, 10, 15, 20, 25 and 30 nozzles, respectively. The results also indicate that, when the nozzle diameter increased from 20 to 25 mm, the rotational velocity decreased from 50.48 to 43.0 to 38.5, 33.0 to 27.5 and 23.5 to 22.0 cm s−1 for 3, 6, 9 and 12 nozzles, respectively.The results also indicate that the highest values of the rotational velocities were 10.1, 23.5, 33.5, 49.9, 60.9 and 61.0 cm s−1 were found for 5 nozzles and 10 mm nozzle diameter at 5, 15, 30, 45, 60 and 75 m3 h−1 flow rate, respectively. While, the lowest values of the rotational velocities were 4.0, 7.5 and 11.5 cm s−1 for 25 nozzles and 15 mm nozzle diameter at 5, 15 and 30 m3 h−1 flow rate, respectively. They were 11.5 and 15 cm s−1 were found for 30 nozzles and 15 mm nozzle diameter at 60 and 75 m3 h−1 flow rate, respectively. The velocity of water obtained seemed to be in the recommended range of safe and proper velocity for fish according to12. Due to it is effective compromise to allow heavy solids settle rapidly, yet sufficiently fast to create “good” hydraulics. Timmons and Youngs18 mentioned that the water velocity needed to maintain self-cleaning properties ranges from 3 to 40 cm s−1 varying greatly according to the physical properties of the biosolids. When fish swims at lower speed than its optimal, a large amount of energy will be used for higher spontaneous activity such as aggression. In contrast, when fish swim at higher speed than optimal, they become stressful, unstable, increase lactate production and fatigue6.Multiple regression analysis was carried out to obtain a relationship between the rotational velocity of water as dependent variable and different both of flow rate and nozzle diameter as independent variables. The best fit for this relationship with coefficient of determination of 0.95 and an error of 1.06% is in the following form:-$$ RV = 6.97 + 0.41Q – 0.19Dquad {text{R}}^{{2}} = 0.95 $$
    (3)
    where RV is the rotational velocity of water, cm s−1, Q is the water flow rate, m3 h−1, D is the nozzle diameter, mm.This equation could be applied in the range of 5 to 75 m3 h−1 water flow rate and from 10 to 25 mm of nozzle diameter.Impulse force of waterFigure 4 shows the effect of flow rate, diameter and number of nozzles on the impulse force of water in a circular tank. The results indicate that the impulse force of water increases with increasing flow rates and deceasing nozzle diameter and number of nozzles. It could be seen that, the impulse force of water decreased from 5.1 to 1.7 N, when the number of nozzles increased from 5 to 15, respectively at 10 nozzle diameter, and it decreased from 2.3 to 1.2 N, when the number of nozzles increased from 5 to 10, respectively, at 15 diameter nozzle with 5 m3 h−1 flow rate. At 15 m3 h−1, the impulse force of water was decreased from 84.7 to 9.4 N when the number of nozzles increased from 5 to 30, respectively 10 mm diameter nozzle. The results also indicate that when the number of nozzles increased from 5 to 25, the impulse force of water decreased from 14.8 to 1.4 N at 15 mm nozzle diameter, respectively, and it decreased from 9.5 to 1.9 and 5.3 to 1.3 N at 20 and 25 mm, respectively, when the number of nozzles increased from 3 to 9.Figure 4Effect of flow rate, nozzle diameter and number of nozzles on the impulse force of water in a circular tank.Full size imageAt 30 m3 h−1 flow rate, the impulse force of water deceased from 84.7 to 46.9, 56.9 to 14.8, 28.5 to 5.3, 14.9 to 3.0 and 11.8 to 2.2 N when the nozzle diameter increased from 10 to 15 mm, respectively at 5, 10, 15, 20 and 25 nozzles. The results also indicate that, when the nozzle diameter increased from 20 to 25 mm, the impulse force of water decreased from 21.4 to 14.9, 14.8 to 5.4, 5.3 to 2.2 and 2.3 to 1.9 N for 3, 6, 9 and 12 nozzles, respectively.At 45 m3 h−1 flow rate, the impulse force of water was ranged from 2.1 to 111.2 N for all treatments under this study. Also, at 60 m3 h−1 flow rate, the impulse force of water ranged from 5.1 to 151.3 N for all treatments under this study. At 75 m3 h−1 flow rate, the highest value of the impulse force of water 211.2 N was found for 5 numbers of nozzles and 10 mm nozzle diameter, respectively. While, the lowest value of the impulse force of water was 9.1 N was found for 12 nozzles and 25 mm nozzle diameter, respectively.The results also indicate that the highest value of the impulse force of water 211.2 N was found for 5 nozzles and 10 mm nozzle diameter at 75 m3 h−1 flow rate, respectively. While, the lowest value of the impulse force of water was 1.2 N was found for 10 nozzles and 15 mm nozzle diameter at 5 m3 h−1 flow rate, respectively.The results indicated that, the relationship between the rotational velocity and impulse force of water is linear relationship at the same treatments. When the rotational velocity increased from 10.7 to 37.6, 8.1 to 28.8, 10.2 to 36.0 and 11.0 to 31.9 cm s−1, the impulse force of water increased from 3.1 to 106.6, 1.8 to 31.1, 1.3 to 32.5 and 1.4 to 22.8 N, respectively, at the same treatments. The trend of these results agreed with those obtained by19.Multiple regression analysis was carried out to obtain a relationship between the impulse force of water as dependent variable and different both of flow rate and nozzle diameter as independent variables. The best fit for this relationship with coefficient of determination of 0.88 and an error of 2.13% is in the following form:-$$ F_{i} = 38.18 + 0.67Q – 2.35Dquad {text{R}}^{{2}} = 0.88 $$
    (4)
    This equation could be applied in the range of 5 to 75 m3 h−1 water flow rate and from 10 to 25 mm of nozzle diameter.Average velocity of waterFigure 5 shows the effect of flow rate, diameter and number of nozzles on the average velocity of water in a circular tank. The results indicate that the average velocity of water increases with increasing flow rates and deceasing nozzle diameter and number of nozzles. It could be seen that, the average velocity of water decreased from 3.32 to 1.59 cm s−1, when the number of nozzles increased from 5 to 15, respectively at 10 nozzle diameter, and it decreased from 1.13 to 1.07 cm s−1, when the number of nozzles increased from 5 to 10, respectively, at 15 diameter nozzle with 5 m3 h−1 flow rate. At 15 m3 h−1, the average velocity of water was decreased from 12.03 to 4.33 cm s−1 when the number of nozzles increased from 5 to 30, respectively 10 mm diameter nozzle. The results also indicate that when the number of nozzles increased from 5 to 25, the average velocity of water decreased from 6.93 to 2.89 cm s−1 at 15 mm nozzle diameter, respectively, and it decreased from 7.55 to 4.00 and 4.89 to 2.95 cm s−1 at 20 and 25 mm, respectively, when the number of nozzles increased from 3 to 9.Figure 5Effect of flow rate, nozzle diameter and number of nozzles on the average velocity of water in a circular tank.Full size imageAt 30 m3 h−1 flow rate, the highest value of the average velocity of water 18.51 cm s−1 was found for 5 nozzles and 10 mm nozzle diameter. While, the lowest value of the average velocity of water was 4.65 cm s−1 was found for 12 nozzles and 25 mm nozzle diameter. At 45 m3 h−1 flow rate, the average velocity of water ranged from 6.66 to 23.26 for all treatments under study, also, at 60 m3 h−1 flow rate, the average velocity of water ranged from 9.23 to 34.82 for all treatments under study. At 75 m3 h−1 flow rate, the average velocity of water ranged from 10.00 to 48.76 for all treatment of this study.The results also indicate that the highest value of the average velocity of water 48.76 cm s−1 was found for 5 nozzles and 10 mm nozzle diameter at 75 m3 h−1 flow rate, respectively. While, the lowest value of the average velocity of water was 1.07 cm s−1 was found for 10 nozzles and 15 mm nozzle diameter at 5 m3 h−1 flow rate, respectively. These results agreed with those obtained by18,20. Fish distribution in the circular tank is influenced by the heterogeneity of water velocity in the area between inlet flow and the center of the tank9. Fish distribution in the circular tank is mostly concentrated in the area between high and low velocity area. The high velocity area will be avoided by most fishes as it requires high swimming energy, while dead volumes (low velocity area) are unfavorable condition for fish (low DO and higher metabolites accumulation)21.Multiple regression analysis was carried out to obtain a relationship between the average velocity of water as dependent variable and different both of flow rate and nozzle diameter as independent variables. The best fit for this relationship with coefficient of determination of 0.91 and an error of 1.48% is in the following form:$$ V_{avg} = 6.53 + 0.26Q – 0.37Dquad {text{R}}^{{2}} = 0.91 $$
    (5)
    This equation could be applied in the range of 5 to 75 m3 h−1 water flow rate and from 10 to 25 mm of nozzle diameter. More

  • in

    Multidecadal, continent-level analysis indicates agricultural practices impact wheat aphid loads more than climate change

    El Bilali, H., Callenius, C., Strassner, C. & Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur 8, e00154 (2019).Article 

    Google Scholar 
    De Raymond, A. B. & Goulet, F. Science, technology and food security: An introduction. Sci. Technol. Soc. 25, 7–18 (2020).Article 

    Google Scholar 
    Wang, C. et al. Occurrence of crop pests and diseases has largely increased in China since 1970. Nat. Food 3, 57–65 (2022).Article 

    Google Scholar 
    Deutsch, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science 361, 916–919 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Verger, P. J. P. & Boobis, A. R. Reevaluate pesticides for food security and safety. Science 341, 717–718 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Humann‐Guilleminot, S. et al. A nation‐wide survey of neonicotinoid insecticides in agricultural land with implications for agri‐environment schemes. J. Appl. Ecol. 56, 1502–1514 (2019).Article 
    CAS 

    Google Scholar 
    Haynes, K. J., Allstadt, A. J. & Klimetzek, D. Forest defoliator outbreaks under climate change: Effects on the frequency and severity of outbreaks of five pine insect pests. Glob. Change Biol. 20, 2004–2018 (2014).Article 

    Google Scholar 
    Sheppard, L., Bell, J. R., Harrington, R. & Reuman, D. C. Changes in large-scale climate alter spatial synchrony of aphid pests. Nat. Clim. Change 6, 610–613 (2016).Article 

    Google Scholar 
    Skendžić, S. et al. The impact of climate change on agricultural insect pests. Insects 12, 440 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    WASDE. World Agricultural Supply and Demand Estimates 1554–9089 (World Agricultural Outlook Board, 2012).FAOSTAT. Food and agriculture organisation of the United Nations. http://faostat.fao.org/ (2018).Bellard, C. et al. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bebber, D. P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 53, 335–356 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jactel, H., Koricheva, J. & Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103–108 (2019).PubMed 
    Article 

    Google Scholar 
    Stephane, A. P., Derocles, D. H., Lunt Sophie, C. F. & Moss., B. Climate warming alters the structure of farmland tritrophic ecological networks and reduces crop yield. Mol. Ecol. 27, 4931–4946 (2018).Article 

    Google Scholar 
    Nechols, J. R. The potential impact of climate change on non-target risks from imported generalist natural enemies and on biological control. Bio. Control 66, 37–44 (2021).
    Google Scholar 
    Tian, B. et al. Elevated temperature reduces wheat grain yield by increasing pests and decreasing soil mutualists. Pest Manag. Sci. 75, 466–475 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehmann, P. et al. Complex responses of global insect pests to climate warming. Front. Ecol. Environ. 18, 141–150 (2020).Article 

    Google Scholar 
    Zhao, F., Zhang, W., Hoffmann, A. A. & Ma, C. Night warming on hot days produces novel impacts on development, survival, and reproduction in a small arthropod. J. Anim. Ecol. 83, 769–778 (2014).PubMed 
    Article 

    Google Scholar 
    Marini, L. et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 40, 1426–1435 (2017).Article 

    Google Scholar 
    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).Article 

    Google Scholar 
    Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. & Lindroth, R. L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gagic, V. et al. Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proc. Natl Acad. Sci. USA 118, 1–6 (2021).Article 
    CAS 

    Google Scholar 
    Paredes, D. et al. Landscape simplification increases vineyard pest outbreaks and insecticide use. Ecol. Lett. 24, 73–83 (2021).PubMed 
    Article 

    Google Scholar 
    Brattsten, L. B., Holyoke, C. W., Leeper, J. R. & Raffa, K. F. Insecticide resistance: Challenge to pest management and basic research. Science 231, 1255–1260 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haddi, K. et al. Rethinking biorational insecticides for pest management: Unintended effects and consequences. Pest Manag. Sci. 76, 2286–2293 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gould, F., Brown, Z. S. & Kuzma, J. Wicked evolution: Can we address the sociobiological dilemma of pesticide resistance? Science 360, 728–732 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wei, N. et al. Transcriptome analysis and identification of insecticide tolerance-related genes after exposure to insecticide in Sitobion avenae. Genes 1012, 951 (2019).Article 
    CAS 

    Google Scholar 
    Gong, X. et al. Feasibility of reinforced post-endogenous denitrification coupling with synchronous nitritation, denitrification and phosphorus removal for high-nitrate sewage treatment using limited carbon source in municipal wastewater. Chemosphere 269, 128687 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. et al. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).CAS 
    Article 

    Google Scholar 
    Muneret, L. et al. Evidence that organic farming promotes pest control. Nat. Sustain 1, 361–368 (2018).Article 

    Google Scholar 
    Lu, Y. et al. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).PubMed 
    Article 

    Google Scholar 
    Baillod, A. B., Tscharntke, T., Clough, Y. & Batary, P. Landscape‐scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. J. Appl. Ecol. 54, 1804–1813 (2017).Article 

    Google Scholar 
    Gagic, V. et al. Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecol. Lett. 20, 1427–1436 (2017).PubMed 
    Article 

    Google Scholar 
    Zhang, W. et al. Multidecadal, county-level analysis of the effects of land use, Bt cotton, and weather on cotton pests in China. Proc. Natl Acad. Sci. USA 115, 700–7709 (2018).
    Google Scholar 
    Horgan, F. G. et al. Population development of rice black bug, Scotinophara latiuscula (Breddin), under varying nitrogen in a field experiment. Entomol. Gen. 37, 19–33 (2018).Article 

    Google Scholar 
    Butler, J., Garratt, M., & Leather, S. Fertilisers and insect herbivores: A meta‐analysis. Ann. Appl. Biol. 161, 223–233 (2012).Article 

    Google Scholar 
    Aqueel, M. A. et al. Effect of plant nutrition on aphid size, prey consumption, and life history characteristics of green lacewing. Insect Sci. 21, 74–82 (2014).PubMed 
    Article 

    Google Scholar 
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: Is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    Winqvist, C. et al. Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. J. Appl. Ecol. 48, 570–579 (2011).Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macfadyen, S. et al. Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control? Ecol. Lett. 12, 229–238 (2009).PubMed 
    Article 

    Google Scholar 
    Liu, J., Ning, J., Kuang, W. & Xu, X. Spatio-temporal patterns and characteristics of land-use change in China during 2010-2015. J. Geogr. Sci. 73, 789–802 (2018).
    Google Scholar 
    Ma, C., Ma, G. & Zhao, F. Impact of global warming on cereal aphids. Chin. J. Appl. Entomol. 51, 1435–1443 (2014).
    Google Scholar 
    Han, Z. et al. Effects of simulated climate warming on the population dynamics of Sitobion avenae (Fabricius) and its parasitoids in wheat fields. Pest Manag. Sci. 75, 3252–3259 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meisner, M. H., Harmon, J. P. & Ives, A. R. Temperature effects on long‐term population dynamics in a parasitoid-host system. Ecol. Monogr. 84, 457–476 (2014).Article 

    Google Scholar 
    Xiao, H. et al. Exposure to mild temperatures decreases overwintering larval survival and post-diapause reproductive potential in the rice stem borer Chilo suppressalis. J. Pest Sci. 90, 117–125 (2017).Article 

    Google Scholar 
    Senior, V. L. et al. Phenological responses in a sycamore-aphid-parasitoid system and consequences for aphid population dynamics: A 20 year case study. Glob. Change Biol. 26, 2814–2828 (2020).Article 

    Google Scholar 
    Chiu, M. C., Chen, Y. H. & Kuo, M. H. The effect of experimental warming on a low‐latitude aphid, Myzus varians. Entomol. Exp. Appl. 142, 216–222 (2012).Article 

    Google Scholar 
    Adler, L. S., De Valpine, P., Harte, J. & Call, J. Effects of long-term experimental warming on aphid density in the field. J. Kans. Entomol. Soc. 80, 156–169 (2007).Article 

    Google Scholar 
    Clement, S. L., Husebye, D. S. & Eigenbrode, S. D. Aphid Biodiversity under Environmental Change 107–129 (Springer, 2010).Van der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philos. T. Roy. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    Evans, E. W. Multitrophic interactions among plants, aphids, alternate prey and shared natural enemies—a review. Eur. J. Entomol. 105, 369–380 (2013).Article 

    Google Scholar 
    Sigsgaard, L. A survey of aphids and aphid parasitoids in cereal fields in Denmark, and the parasitoids’ role in biological control. J. Appl. Entomol. 126, 101–107 (2002).Article 

    Google Scholar 
    Diehl, E., Sereda, E., Wolters, V. & Birkhofer, K. Effects of predator specialization, host plant and climate on biological control of aphids by natural enemies: a meta‐analysis. J. Appl. Ecol. 50, 262–270 (2013).Article 

    Google Scholar 
    Hopper, K. R. et al. Natural enemy impact on the abundance of Diuraphis noxia (Homoptera: Aphididae) in wheat in Southern France. Environ. Entomol. 24, 402–408 (1995).Article 

    Google Scholar 
    Latham, D. R. & Mills, N. J. Quantifying aphid predation: The mealy plum aphid Hyalopterus pruni in California as a case study. J. Appl. Ecol. 47, 200–208 (2010).Article 

    Google Scholar 
    Östman, Ö., Ekbom, B. & Bengtsson, J. Yield increase attributable to aphid predation by ground-living polyphagous natural enemies in spring barley in Sweden. Ecol. Econ. 45, 149–158 (2003).Article 

    Google Scholar 
    Snyder, W. E. & Ives, A. R. Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid control. Ecology 84, 91–107 (2003).Article 

    Google Scholar 
    Freier, B., Triltsch, H., Möwes, M. & Moll, E. The potential of predators in natural control of aphids in wheat: results of a ten-year field study in two German landscapes. Biocontrology 52, 775–788 (2007).Article 

    Google Scholar 
    Barczak, T., Dębek-Jankowska, A. & Bennewicz, J. Primary parasitoid and hyperparasitoid guilds (Hymenoptera) of grain aphid (Sitobion avenae F.) in northern Poland. Arch. Biol. Sci. 66, 1141–1148 (2014).Article 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W., Jiang, F. & Ou, J. Global pesticide consumption and pollution: With China as a focus. P. Intern. Acad. Ecol. Environ. Sci. 1, 125–144 (2011).CAS 

    Google Scholar 
    El-Wakeil, N., Gaafar, N., Sallam, A. & Volkmar, C. Side Effects of Insecticides on Natural Enemies and Possibility of their Integration in Plant Protection Strategies. Insecticides: Development of Safer and More Effective Technologies Agricultural and Biological Sciences (ed Trdan, S.) 1–56 (Intech Open Access Publisher, 2013).Peshin, R. & Dhawan, A. K. Integrated Pest Management: Innovation-Development Process (Springer Science & Business Media, 2009).Jia, B., Hong, S., Zhang, Y. & Cao, Y. Toxicity and safety of 12 insecticides to Diadegma semiclausum. J. Shanxi Agric. Sci. 43, 999–1002 (2015).
    Google Scholar 
    Emery, S. E. et al. High agricultural intensity at the landscape scale benefits pests, but low intensity practices at the local scale can mitigate these effects. Agric. Ecosyst. Environ. 306, 107199 (2021).Article 

    Google Scholar 
    Aqueel, M. A. & Leather, S. R. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.)(Homoptera: Aphididae) on different wheat cultivars. Crop. Prot. 30, 216–221 (2011).Article 

    Google Scholar 
    Gao, J., Guo, H. J., Sun, Y. C. & Ge, F. Juvenile hormone mediates the positive effects of nitrogen fertilization on weight and reproduction in pea aphid. Pest Manag. Sci. 74, 2511–2519 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnett, K. L. & Facey, S. L. Grasslands, invertebrates, and precipitation: A review of the effects of climate change. Front. Plant. Sci. 7, 1196 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, X. et al. Engineering plants for aphid resistance: Current status and future perspectives. Theor. Appl. Genet. 127, 2065–2083 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, E. A. et al. The interplay of landscape composition and configuration: New pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 

    Google Scholar 
    Steckel, J. et al. Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biol. Conserv. 172, 56–64 (2014).Article 

    Google Scholar 
    Lu, Y. H. et al. Major ecosystems in China: Dynamics and challenges for sustainable management. Environ. Manag. 48, 13–27 (2011).Article 

    Google Scholar 
    Wood, G. A. et al. Real-time measures of canopy size as a basis for spatially varying nitroge applications to winter wheat sown at different seed rates. Biosyst. Eng. 84, 513–531 (2003).Article 

    Google Scholar 
    NOAA. https://www.ncdc.noaa.gov/cdo-web/ (2018).WORLD BANK GROUP. https://climateknowledgeportal.worldbank.org/download-data (2018). More

  • in

    Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon

    Adams, V. M., Iacona, G. D. & Possingham, H. P. Weighing the benefits of expanding protected areas versus managing existing ones. Nat. Sustain. 2, 404–411 (2019).Article 

    Google Scholar 
    Blicharska, M. et al. Biodiversity’s contributions to sustainable development. Nat. Sustain. 2, 1083–1093 (2019).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).CAS 
    Article 

    Google Scholar 
    Sonter, L. J., Barrett, D. J., Soares-filho, B. S. & Moran, C. J. Global demand for steel drives extensive land-use change in Brazil’ s Iron Quadrangle. Glob. Environ. Change 26, 63–72 (2014).Article 

    Google Scholar 
    Siqueira-Gay, J., Soares-Filho, B., Sánchez, L. E., Oviedo, A. & Sonter, L. J. Proposed legislation to mine Brazil’s Indigenous lands will threaten Amazon forests and their valuable ecosystem services. One Earth 3, 356–362 (2020).Article 

    Google Scholar 
    El Bizri, H. R., Macedo, J. C. B. M., Plaglia, A. P. & Morcatty, T. Q. Mining undermining Brazil’s environment. Science 353, 2–3 (2016).Article 

    Google Scholar 
    Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014).CAS 
    Article 

    Google Scholar 
    Rudke, A. P. et al. Impact of mining activities on areas of environmental protection in the southwest of the Amazon: a GIS- and remote sensing-based assessment. J. Environ. Manage. 263, 110392 (2020).Article 

    Google Scholar 
    Naughton-Treves, L. & Holland, M. B. Losing ground in protected areas? Science 364, 832–833 (2019).CAS 
    Article 

    Google Scholar 
    Kroner, R. E. G. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019).Article 
    CAS 

    Google Scholar 
    Pack, S. M. et al. Protected area downgrading, downsizing, and degazettement (PADDD) in the Amazon. Biol. Conserv. 197, 32–39 (2016).Article 

    Google Scholar 
    PADDDtracker.org Data Release Version 2.0 (Conservation International and World Wildlife Fund, 2019); https://doi.org/10.5281/zenodo.3371733Bebbington, A. J., Humphreys, D., Aileen, L., Rogan, J. & Agrawal, S. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).CAS 
    Article 

    Google Scholar 
    Paiva, P. F. P. R. et al. Deforestation in protect areas in the Amazon: a threat to biodiversity. Biodivers. Conserv. 29, 19–38 (2020).Article 

    Google Scholar 
    Boldy, R., Santini, T., Annandale, M., Erskine, P. D. & Sonter, L. J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.12.005 (2020).Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: spatial distribution and implications for conservation. J. Environ. Manage. 180, 409–420 (2016).Article 

    Google Scholar 
    Kobayashi, H., Watando, H. & Kakimoto, M. A global extent site-level analysis of land cover and protected area overlap with mining activities as an indicator of biodiversity pressure. J. Clean. Prod. 84, 459–468 (2014).Article 

    Google Scholar 
    Craig, M. D., White, D. A., Stokes, V. L. & Prince, J. Can postmining revegetation create habitat for a threatened mammal? Ecol. Manage. Restor. 18, 149–155 (2017).Article 

    Google Scholar 
    Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).Article 
    CAS 

    Google Scholar 
    Siqueira-Gay, J., Sonter, L. J. & Sánchez, L. E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662 (2020).Article 

    Google Scholar 
    Siqueira-Gay, J. & Sánchez, L. E. Keep the Amazon niobium in the ground. Environ. Sci. Policy 111, 1–6 (2020).CAS 
    Article 

    Google Scholar 
    Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).Article 

    Google Scholar 
    Raiter, K. G., Possingham, H. P., Prober, S. M. & Hobbs, R. J. Under the radar: mitigating enigmatic ecological impacts. Trends Ecol. Evol. 29, 635–644 (2014).Article 

    Google Scholar 
    Whitehead, A. L., Kujala, H. & Wintle, B. A. Dealing with cumulative biodiversity impacts in strategic environmental assessment: a new frontier for conservation planning. Conserv. Lett. 10, 195–204 (2017).Article 

    Google Scholar 
    Jenner, N. Making Mining ‘Forest-Smart’: Executive Summary Report (World Bank, 2019); http://documents.worldbank.org/curated/en/369711560319906622/Making-Mining-Forest-Smart-Executive-Summary-ReportRenca: Situação legal dos direitos minerários da reserva nacional do cobre (WWF, 2017).Soares-Filho, B. S., Cerqueira, G. C. & Pennachin, C. L. DINAMICA—a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier. Ecol. Modell. 154, 217–235 (2002).Article 

    Google Scholar 
    Strand, J. et al. Spatially explicit valuation of the Brazilian Amazon forest’s ecosystem services. Nat. Sustain. 1, 657–664 (2018).Article 

    Google Scholar 
    Barber, C. P., Cochrane, M. A., Souza, C. M. & Laurance, W. F. Roads, deforestation, and the mitigating effect of protected areas in the Amazon. Biol. Conserv. 177, 203–209 (2014).Article 

    Google Scholar 
    Rorato, A. C. et al. Brazilian Amazon Indigenous peoples threatened by mining bill. Environ. Res. Lett. 15, 1040a3 (2020).Article 

    Google Scholar 
    Villén-Pérez, S., Anaya-Valenzuela, L., Conrado da Cruz, D. & Fearnside, P. M. Mining threatens isolated Indigenous peoples in the Brazilian Amazon. Glob. Environ. Change 72, (2022).Siqueira-Gay, J. & Sánchez, L. E. The outbreak of illegal gold mining in the Brazilian Amazon boosts deforestation. Reg. Environ. Change 21, 28 (2021).Article 

    Google Scholar 
    Sonter, L. J., Dade, M. C., Watson, J. E. M. & Valenta, R. K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174 (2020).CAS 
    Article 

    Google Scholar 
    Tallis, H., Kennedy, C. M., Ruckelshaus, M., Goldstein, J. & Kiesecker, J. M. Mitigation for one & all: an integrated framework for mitigation of development impacts on biodiversity and ecosystem services. Environ. Impact Assess. Rev. 55, 21–34 (2015).Article 

    Google Scholar 
    Bull, J. W. et al. Quantifying the “avoided” biodiversity impacts associated with economic development. Front. Ecol. Environ. https://doi.org/10.1002/fee.2496 (2022).Gastauer, M. et al. Mine land rehabilitation: modern ecological approaches for more sustainable mining. J. Clean. Prod. 172, 1409–1422 (2018).Article 

    Google Scholar 
    Souza, B. A., Rosa, J. C. S., Siqueira-Gay, J. & Sánchez, L. E. Mitigating impacts on ecosystem services requires more than biodiversity offsets. Land Use Policy 105, 105393 (2021).Article 

    Google Scholar 
    Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017).Article 

    Google Scholar 
    Good Practice Handbook: Cumulative Impact Assessment and Management, Guidance for the Private Sector in Emerging Markets (IFC, 2013).Gunn, J. H. & Noble, B. F. Integrating cumulative effects in regional strategic environmental assessment frameworks: lessons from practice. J. Environ. Assess. Policy Manage. 11, 267–290 (2009).Article 

    Google Scholar 
    Ferrante, L. & Fearnside, P. M. The Amazon’ s road to deforestation. Science 20, 20–22 (2020).
    Google Scholar 
    Runge, C. A., Tulloch, A. I. T., Gordon, A. & Rhodes, J. R. Quantifying the conservation gains from shared access to linear infrastructure. Conserv. Biol. 31, 1428–1438 (2017).Article 

    Google Scholar 
    Kiesecker, J. M., Copeland, H., Pocewicz, A. & McKenney, B. Development by design: blending landscape-level planning with the mitigation hierarchy. Front. Ecol. Environ. 8, 261–266 (2010).Article 

    Google Scholar 
    Heiner, M. et al. Moving from reactive to proactive development planning to conserve Indigenous community and biodiversity values. Environ. Impact Assess. Rev. 74, 1–13 (2019).Article 

    Google Scholar 
    Pfaff, A., Robalino, J., Herrera, D. & Sandoval, C. Protected areas’ impacts on Brazilian Amazon deforestation: examining conservation–development interactions to inform planning. PLoS ONE 10, 1–17 (2015).Article 
    CAS 

    Google Scholar 
    Almeida, C. A. et al. High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5 / TM and MODIS data. Acta Amazon. 46, 291–302 (2008).Article 

    Google Scholar 
    Asner, G. P. & Tupayachi, R. Accelerated losses of protected forests from gold mining in the Peruvian Amazon. Environ. Res. Lett. 12, 094004 (2016).Article 

    Google Scholar 
    Boham-Carter, G. F. Geographic Information Systems for Geoscientists: Modelling with GIS (Elsevier, 1994).Soares-Filho, B., Rodrigues, H. & Follador, M. A hybrid analytical–heuristic method for calibrating land-use change models. Environ. Model. Softw. 43, 80–87 (2013).Article 

    Google Scholar 
    INPE. TerraClass https://www.terraclass.gov.br/geoportal-aml/ (2021).INPE. Slope http://www.dsr.inpe.br/topodata/acesso.php (2020).Ministério do Meio Ambiente (MMA). Conservation units http://mapas.mma.gov.br/i3geo/datadownload.htm (2022).Fundação Nacional do Índio (FUNAI). Indigenous lands http://www.funai.gov.br/index.php/shape (2021).Leite-Filho, A., Soares-filho, B. S., Davis, J. & Rodrigues, H. Dinamica EGO Guidebook (Centro de Sensoriamento Remoto, UFMG, 2020).Serviço Geológico do Brasil. Mineral deposits https://geosgb.cprm.gov.br/ (2020).Soares-Filho, B. et al. Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: the Santarém-Cuiabá corridor. Glob. Change Biol. 10, 745–764 (2004).Article 

    Google Scholar 
    Centro de Sensoriamento Remoto. Biodiversity https://csr.ufmg.br/amazones/biodiversity/ (2021).Fahrig, L. Ecological responses to habitat fragmentation per se. Annu. Rev. Ecol. Evol. Syst. 48, 1–23 (2017).Pardini, R., de Bueno, A. A., Gardner, T. A., Prado, P. I. & Metzger, J. P. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes. PLoS ONE 5, e13666 (2010).Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest cover in Brazil’s Legal Amazon from 2001 to 2017. Sci. Rep. 10, 5803 (2020).CAS 
    Article 

    Google Scholar 
    Cabral, A. I. R., Saito, C., Pereira, H. & Laques, A. E. Deforestation pattern dynamics in protected areas of the Brazilian Legal Amazon using remote sensing data. Appl. Geogr. 100, 101–115 (2018).Article 

    Google Scholar 
    Colson, F., Bogaert, J. & Ceulemans, R. Fragmentation in the Legal Amazon, Brazil: can landscape metrics indicate agricultural policy differences? Ecol. Indic. 11, 1467–1471 (2011).Article 

    Google Scholar 
    Monmonier, M. S. Measures of pattern complexity for choroplethic maps. Am. Cartogr. 1, 159–169 (1974).Article 

    Google Scholar 
    Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 60, 102007 (2020).Article 

    Google Scholar 
    Soares-Filho, B. et al. Roads, http://maps.csr.ufmg.br/ (2016). More