More stories

  • in

    Ecological niche models for the assessment of site suitability of sea cucumbers and sea urchins in China

    FAO (Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department). The State of World Fisheries and Aquaculture 2020 (Food and Agriculture Organization of the United Nations, 2020).Costello, C. et al. The future of food from the sea. Nature 588(7836), 1–6 (2020).
    Google Scholar 
    Sarah, A. B. et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 26(12), 1780–1797 (2020).
    Google Scholar 
    FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Academic Journal Electronic Publishing House, 1949–1975). https://www.cafs.ac.cn/kxyj/qgyytjnj.htm. (in Chinese).FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Agriculture Press, 2021). (in Chinese).Shelton, W. L. & Rothbard, S. Exotic species in global aquaculture—a review. Isr. J. Aquac. 58(1), 3–28 (2006).
    Google Scholar 
    Ju, R. et al. Emerging risks of non-native species escapes from aquaculture: Call for policy improvements in China and other developing countries. J. Appl. Ecol. 57, 86–90 (2020).
    Google Scholar 
    Zhu, C. & Dong S. Aquaculture site selection and carrying capacity management in the People’s Republic of China. In Site Selection and Carrying Capacities for Inland and Coastal Aquaculture (eds Ross, L. G., Telfer, T. C., Falconer, L., Soto, D. & Aguilar Manjarrez, J.) 219–230 (FAO/Institute of Aquaculture, Expert Workshop, 6–8 December 2010, University of Stirling, UK, FAO, Rome, 2013).Falconer, L., Telfer, T. C. & Ross, L. G. Investigation of a novel approach for aquaculture site selection. J. Environ. Manag. 181, 791–804 (2016).
    Google Scholar 
    Liu, Y. et al. Spatiotemporal variations in suitable areas for Japanese scallop aquaculture in the Dalian coastal area from 2003 to 2012. Aquaculture 422, 172–183 (2014).
    Google Scholar 
    Reverter, M. et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 11, 1870 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eve, G., Marc, B. & Montserrat, R. Immune response of the sea cucumber Parastichopus regalis to different temperatures: Implications for aquaculture purposes. Aquaculture 497, 357–363 (2018).
    Google Scholar 
    Gentry, R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1(9), 1317 (2017).PubMed 

    Google Scholar 
    Kim, B. et al. Impact of seawater temperature on Korean aquaculture under representative concentration pathways (RCP) scenarios. Aquaculture 542(3), 736893 (2021).
    Google Scholar 
    Wentz, F. J. et al. Satellite measurements of sea surface temperature through clouds. Science 288(5467), 847–850 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mediodia, H. Effects of sea surface temperature on tuna catch: Evidence from countries in the Eastern Pacific Ocean. Ocean. Coast. Manag. 209, 105657 (2021).
    Google Scholar 
    Liu, S., Zhang, Z., Wu, J. & Yu W. Spatial and temporal variations of potential habitats of jumbo flying squid Dosidicus gigas off Peru under increasing sea surface Temperature. Fish. Sci. (2020). (in Chinese with an English Abstract).Nian, R. et al. The identification and prediction in abundance variation of Atlantic cod via long short-term memory with periodicity, time–frequency co-movement, and lead-lag effect across sea surface temperature, sea surface salinity, catches, and prey biomass from 1919 to 2016. Front. Mar. Sci. 8, 665716 (2021).
    Google Scholar 
    Radiarta, I. & Saitoh, S. Biophysical models for Japanese scallop, Mizuhopecten yessoensis, aquaculture site selection in Funka Bay, Hokkaido, Japan, using remotely sensed data and geographic information system. Aquacult. Int. 17(5), 403 (2009).
    Google Scholar 
    Laama, C. & Bachar, N. Evaluation of site suitability for the expansion of mussel farming in the Bay of Souahlia (Algeria) using empirical models. J. Appl. Aquac. 31(4), 337–355 (2019).
    Google Scholar 
    Liu, Y. et al. Impact of iceanographic environmental shifts and atmospheric events on the sustainable development of coastal aquaculture: A case study of kelp and scallops in southern Hokkaido, Japan. Sustainability 7(2), 1263–1279 (2015).
    Google Scholar 
    Foo, S. & Gregory, P. Sea surface temperature in coral reef restoration outcomes. Environ. Res. Lett. 15(7), 074045 (2020).ADS 

    Google Scholar 
    Warren, D. & Seifert, S. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21(2), 335–342 (2011).PubMed 

    Google Scholar 
    Warren, D., Glor, R. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3), 607–611 (2010).
    Google Scholar 
    Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 222(8), 1343–1346 (2011).
    Google Scholar 
    Bo, Z., Xin-Jun, C. & Gang, L. Relationship between the resource and fishing ground of mackerel and environmental factors based on GAM and GLM models in the East China Sea and Yellow Sea. Shuichan Xuebao 32(3), 379–386 (2008) (in Chinese with an English abstract).
    Google Scholar 
    Chen, P. & Chen, X. Analysis of habitat distribution of Argentine shortfin squid (Illex argentinus) in the southwest Atlantic Ocean using maximum entropy model. Shuichan Xuebao 40(6), 893–902 (2016) (in Chinese with an English abstract).
    Google Scholar 
    Zhang, S., Shi, Y., Li, F., Zhu, M. & Wei, Z. Prediction of potential fishing ground for Pacific saury (Cololabis saira) based on MAXENT model. J. Ocean. Univ. China 29(2), 280–286 (2020) (in Chinese with an English abstract).
    Google Scholar 
    Phillips, S. & Elith, J. On estimating probability of presence from use–availability or presence–background data. Ecology 94(6), 1409–1419 (2013).PubMed 

    Google Scholar 
    Yang, H. et al. Current advances and technological prospects of the sea cucumber seed industry in China. Mar. Sci. 7, 2–9 (2020) (in Chinese with an English abstract).CAS 

    Google Scholar 
    Chang, Y., Ding, J., Song, J. & Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins (Ocean Press, Beijing, 2004) (in Chinese).
    Google Scholar 
    Li, C. & Hu, W. Status, trend and countermeasure in development of sea cucumber Apostichopus Japonicus Selenka industry in China. Mar. Econ. China. 1, 3–20 (2017) (in Chinese with an English abstract).
    Google Scholar 
    FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook. China Agriculture Press; 2003. (in Chinese).FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Agriculture Press, 2012). (in Chinese).He, C. & Huang, G. On Apostichopus japonicus culture in China and major culture provinces. Fish. Inf. St. (2014). (in Chinese with an English abstract).Su, L., Zhou, C., Hu, L. & Xu, J. Development status and sustainable development of Apostichopus japonicus industry in south China. Fish. Sci. Technol. Inf. 2, 57–60 (2014) (in Chinese).
    Google Scholar 
    Guo, F. Research and analysis report on sea cucumber Apostichopus japonicus aquaculture industry in typical regions of North and South China: A case study of Wafangdian city and Xiapu county. Masteral dissertation, Dalian Ocean University. (2021). (in Chinese with an English abstract).Agatsuma, Y. Strongylocentrotus intermedius. In Sea Urchins: Biology and Ecology 4th edn (ed. Lawrence, J. M.) 609–621 (Elsevier, Amsterdam, 2020).
    Google Scholar 
    Wang, Z. & Chang, Y. Studies on hatching of Japanese sea urchin Strongylocentrotus intermedius. J. Fish. Sci. C 4(1), 60–67 (1997) (in Chinese with an English abstract).
    Google Scholar 
    Liao, Y. Fauna of China: Echinodermata: Holothuroidea (Science Press, 1997) (in Chinese).Merckx, B. et al. Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. Ecol. Model. 222(3), 588–597 (2011).CAS 

    Google Scholar 
    Matthew, A. A method for implementing a statistically significant number of data classes in the Jenks algorithm. In Proceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery 35–38 (Tianjin, China. 2009).Zhao, G. Water environment analysis of two typical breeding patterns. Masteral dissertation, Hebei Agricultural University. (2019). (in Chinese with an English abstract).Liu, C. & Lan, Y. Situation and countermeasure of sea cucumber culturing industry in Fujian Province. J. Fujian Fish. (2013). (in Chinese with an English abstract).Fei, G. et al. Effect of water temperature on digestive enzyme activity and gut mass in sea cucumber Apostichopus japonicus (Selenka), with special reference to aestivation. J. Oceanol. Limnol. 27(4), 714–722 (2009).
    Google Scholar 
    Han, C., Lin, P., et al. A study on key technique of Stichopus japonicus Selenka farming in southern sea area. Mod. Fish. Inf. (2011). (in Chinese with an English abstract).Chang, Y., Wang, Z. & Wang, G. Effect of temperature and algae on feeding and growth in sea urchin, Strongylocentrotus intermedius. J. Fish. China. (1997). (in Chinese with an English abstract).Lawrence, J. et al. Temperature effect of feed consumption, absorption, and assimilation efficiencies and production of the sea urchin Strongylocentrotus intermedius. J. Shellfish Res. 28, 389–395 (2009).
    Google Scholar 
    Zhao, C. et al. Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius. J. Mar. Biolog. Assoc. 96(1), 185–195 (2015).
    Google Scholar 
    Lawrence, J., Zhao, C. & Chang, Y. Large-scale production of sea urchin (Strongylocentrotus intermedius) seed in a hatchery in China. Aquac. Int. 27(1), 1–7 (2019).CAS 

    Google Scholar 
    Chang, Y. et al. Aquaculture of Strongylocentrotus intermedius in Fujian coastal areas. South China Fish. Sci. 16(3), 1–9 (2020).
    Google Scholar 
    Yu, Z. Raft culture technique of sea urchin in south China. China Fish. 376(003), 57–57 (2007) (in Chinese).
    Google Scholar  More

  • in

    A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites

    Site selectionWe selected 104 sites covering a range of ecological, land cover, and climate conditions across North America (Table 1). These sites were selected because they are part of either the National Ecological Observatory Network (NEON) or AmeriFlux network, all have PhenoCams, and each has at least one year of available flux data between 2017 and 2021. Among the included sites, 44 are part of the NEON.Table 1 List of AmeriFlux and NEON sites included in the dataset. .Full size tablePlanetScope image database compilationThe LSP metrics included in the dataset are derived from a database of daily 3 m PlanetScope imagery. To compile this database, a Python script was created to search, request, and download imagery using Planet’s RESTful API interface (https://developers.planet.com/docs/apis/data/). For each site, the area of interest (AOI) was defined using a GeoJSON file that prescribed a 10 by 10 km box centered over the flux tower at each site. Each GeoJSON was then used to submit search requests to the API. As part of the search process, the following filters were applied to ensure that good quality images with adequate clear sky views and high-accuracy geolocation were downloaded: (1) quality category identified as ‘standard’; (2) cloud cover less than or equal to 50%; and (3) ground control is ‘true’. Filtering was performed using all available PlanetScope ‘PSScene4Band’ imagery from 2016 to 2022. Once the API completed the search, the Python script read the search results, submitted orders, and the selected imagery was downloaded from Planet’s cloud-based system to local storage. During execution of the Python script, a log file was created to keep track of successful and failed orders. If an order failed, the script was run again targeting the specific order that failed. The resulting dataset included over 1.8 million unique files with, on average, 3,885 scene images for each site (i.e., the number of images, on average, that overlap part of each 10 by 10 km site), and had a total volume of 62.2 TB.Image processingTo ensure that high-quality image time series were used to generate LSP metrics, we used PlanetScope per-pixel quality assurance information to exclude pixels that had low quality in all 4 bands (i.e., blue, green, red, and near-infrared). Specifically, we excluded pixels where the Unusable Data Mask (layer ‘umd’) was not 0 (i.e., we retained pixels that were not cloud contaminated or located in non-image areas) and pixels where the Usable Data Mask (layer ‘umd2’) is 0 (i.e., we retained pixels that were not contaminated by snow, shadow, haze, or clouds). We then cropped all the images to exclude pixels outside of the 10 by 10 km window centered over each tower. We selected this window size based on published results showing that 80% of the average monthly footprint at eddy covariance towers ranges from 103 to 107 square meters22. Note that the swath for PlanetScope imagery often did not cover entire sites and some sites (e.g., the tall tower at US-Pfa) have larger footprints than other sites. Similarly, most sites had multiple PlanetScope image acquisitions on the same day. To create image time series, we mosaiced all available imagery at each site on each date, and, under the assumption that geolocation error was non-systematic and modest, we created a single image for each date using the mean surface reflectance for pixels with multiple values on the same day. The resulting database of daily surface reflectance images were sorted in chronological order, sub-divided into 200 sub-areas at each site (i.e., 0.5 km2 each), and then stored as image stacks to facilitate parallel processing to estimate LSP metrics, where each image stack included all images from July 1, 2016 through January 31, 2022.Creation of daily EVI2 time seriesTo estimate LSP metrics we adapted the algorithm described by Bolton et al.19, which was originally implemented to estimate LSP metrics from harmonized Landsat and Sentinel-2 (HLS) imagery, for use with PlanetScope imagery. Prior to LSP estimation, daily images of the two-band Enhanced Vegetation Index30 (EVI2) data were generated from PlanetScope imagery and then interpolated to create smooth time series of daily EVI2 values at each pixel in three main steps. First, sources of variation related to clouds, atmospheric aerosols, and snow were detected and removed from the EVI2 time series at each pixel based on data masks provided with PlanetScope imagery (described above) and outlier detection criteria (i.e., de-spiking and removing negative EVI2 values). Second, we identified the ‘background’ EVI2 value (the minimum EVI2 value outside of the growing season) based on the 10th percentile of snow-free EVI2 values at each pixel. Any dates with EVI2 values below the background value were replaced with the background EVI2. Third, penalized cubic smoothing splines were used to gap-fill and smooth the data to create daily EVI2 time series across all years of available data. Complete details on these steps are given in Bolton et al.19. This approach has been tested and shown to yield PlanetScope EVI2 time series that are consistent with both EVI2 time series from HLS imagery and time series of the Green Chromatic Coordinate (GCC) from PhenoCam imagery26. We used the EVI2 instead of other vegetation indices such as the Enhanced Vegetation Index (EVI) or the Normalized Difference Vegetation Index (NDVI) because EVI2 is less sensitive to noise from atmospheric effects relative to EVI and is less prone to saturation over dense canopies and noise from variation in soil background reflectance over sparse canopies relative to the NDVI30,32. Thus, phenological metrics from EVI2 time series tend to have better agreement with PhenoCam observations than corresponding metrics from NDVI33.Identifying phenological cyclesPrior to estimating LSP metrics, we first identity unique growth cycles by searching the period before and after each local peak in the daily PlanetScope EVI2 time series. To be considered a valid growth cycle, the difference in EVI2 between the local minimum and maximum was required to be at least 0.1 and greater than 35% of the total range in EVI2 over the 24-month period centered on the target year ± 6 months. The start of each growth cycle is restricted to occur within 185 days before the peak of the cycle and at least 30 days after the previous peak. The same procedure was applied in reverse at the end of the cycle to constrain the range of end dates for each growth cycle. This procedure is applied recursively over the time series until each local peak has been assessed and all growth cycles (with associated green-up period, peak greenness, and green-down period) are identified in the time series at each pixel. As part of this process, the algorithm provides the number of growth cycles identified for each year in the time series.Retrieving LSP metricsLSP metrics are estimated for each pixel in up to two growth cycles in each year. If no growth cycles are detected, the algorithm returns fill values for all timing metrics, but does report values for the four annual metrics: EVImax, EVIamp, EVIarea, and numObs (see below). If more than two growth cycles are detected, which is rare but does occur (e.g., alfalfa, which is harvested and regrows multiple times in a year), the algorithm records 7 LSP metrics for each of the two growth cycles with the largest EVI2 amplitudes. The resulting dataset includes seven ‘timing’ metrics that identify the timing of greenup onset, mid-greenup, maturity, peak EVI2, greendown onset, mid-greendown, and dormancy. These metrics record the day of year (DOY) when the EVI2 time series exceeds 15%, 50%, and 90% of EVI2 amplitude during the greenup phase, reaches its maximum, and goes below 90%, 50%, and 15% of EVI2 amplitude during the greendown phase. In addition, the algorithm records three complementary metrics that characterize the magnitude of seasonality and total ‘greenness’ at each pixel in each growth cycle: the EVI2 amplitude, the maximum EVI2, and the growing season integral of EVI2, which is calculated as the sum of daily EVI2 values between the growth cycle start- and end-dates (i.e., from greenup onset to dormancy).Quality assurance flagsQuality Assurance (QA) values are estimated at each pixel based on the density of observations and the quality of spline fits during each phenophase of the growing season. A QA value of 1 (high quality) is assigned if the correlation between observed versus fitted daily EVI2 values is greater than 0.75 and the maximum gap during each phase is less than 30 days. A QA value of 2 (moderate quality) is assigned if the correlation coefficient is less than 0.75 or the length of the maximum gap over the segment is greater than 30 days. A QA value of 3 (low quality) is assigned if the correlation coefficient is less than 0.75 and the length of the maximum gap over the segment is greater than 30 days. A QA value of 4 is assigned if no growth cycles were detected or insufficient data were available to run the algorithm. More

  • in

    Stable isotopes unveil one millennium of domestic cat paleoecology in Europe

    Turner, D. & Bateson, P. (eds) The Domestic Cat: The Biology of Its Behaviour (Cambridge Univ. Press, 2000).
    Google Scholar 
    Bradshaw, J. W. S., Goodwin, D., Legrand-Defrétin, V. & Nott, H. M. R. Food selection by the domestic cat, an obligate carnivore. Comp. Biochem. Physiol. A Physiol. 114, 205–209 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trouwborst, A., McCormack, P. C. & Martínez Camacho, E. Domestic cats and their impacts on biodiversity: A blind spot in the application of nature conservation law. People Nat. 2, 235–250 (2020).Article 

    Google Scholar 
    Crowley, S. L., Cecchetti, M. & McDonald, R. A. Our wild companions: Domestic cats in the anthropocene. Trends Ecol. Evol. 35, 477–483 (2020).PubMed 
    Article 

    Google Scholar 
    Driscoll, C. A. et al. The Near Eastern origin of cat domestication. Science 317, 519–523 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Neer, W., Linseele, V., Friedman, R. & De Cupere, B. More evidence for cat taming at the Predynastic elite cemetery of Hierakonpolis (Upper Egypt). J. Archaeol. Sci. 45, 103–111 (2014).Article 

    Google Scholar 
    Ottoni, C. et al. The palaeogenetics of cat dispersal in the ancient world. Nat. Ecol. Evol. 1, 0139 (2017).Article 

    Google Scholar 
    Baca, M. et al. Human-mediated dispersal of cats in the Neolithic Central Europe. Heredity 121, 557–563 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vigne, J. The beginning of cat domestication in East and West Asia. Doc. Archaeobiol. 15, 343–354 (2019).
    Google Scholar 
    Krajcarz, M. et al. Ancestors of domestic cats in Neolithic Central Europe: Isotopic evidence of a synanthropic diet. Proc. Natl. Acad. Sci. USA 117, 17710–17719 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piontek, A. M. et al. Analysis of cat diet across an urbanisation gradient. Urban Ecosyst. 24, 59–69 (2021).Article 

    Google Scholar 
    Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Chang. Biol. 17, 3503–3510 (2011).ADS 
    Article 

    Google Scholar 
    Moseby, K. E., Peacock, D. E. & Read, J. L. Catastrophic cat predation: A call for predator profiling in wildlife protection programs. Biol. Conserv. 191, 331–340 (2015).Article 

    Google Scholar 
    Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Beaumont, M. et al. Genetic diversity and introgression in the Scottish wildcat. Mol. Ecol. 10, 319–336 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beugin, M. P. et al. Hybridization between Felis silvestris silvestris and Felis silvestris catus in two contrasted environments in France. Ecol. Evol. 10, 263–276 (2020).PubMed 
    Article 

    Google Scholar 
    Biró, Z., Lanszki, J., Szemethy, L., Heltai, M. & Randi, E. Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: Trophic niche overlap among cat groups in Hungary. J. Zool. 266, 187–196 (2005).Article 

    Google Scholar 
    Széles, G. L., Purger, J. J., Molnár, T. & Lanszki, J. Comparative analysis of the diet of feral and house cats and wildcat in Europe. Mammal. Res. 63, 43–53 (2018).Article 

    Google Scholar 
    Ottoni, C. & Van Neer, W. The dispersal of the domestic cat paleogenetic and zooarcheological evidence. Near East. Archaeol. 83, 38–45 (2020).Article 

    Google Scholar 
    Bitz-Thorsen, J. & Gotfredsen, A. B. Domestic cats (Felis catus) in Denmark have increased significantly in size since the Viking Age. Danish J. Archaeol. 7, 241–254 (2018).Article 

    Google Scholar 
    Faure, E. & Kitchener, A. C. An archaeological and historical review of the relationships between felids and people. Anthrozoos 22, 221–238 (2009).Article 

    Google Scholar 
    von den Driesch, A. Kulturgeschichte der Hauskatze. In Krankheiten der Katze, Bd. 1 (eds Schmidt, V. & Horzinek, M. C.) 17–40 (Fischer, 1992).
    Google Scholar 
    Głażewska, I. & Kijewski, T. A new view on the European feline population from mtDNA analysis in Polish domestic cats. Forensic Sci. Int. Genet. 27, 116–122 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cucchi, T. et al. Tracking the Near Eastern origins and European dispersal of the western house mouse. Sci. Rep. 10, 8276 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Klinken, G. J., Richards, M. P. & Hedges, B. E. M. An overview of causes for stable isotopic variations in past European human populations: environmental, ecophysiological, and cultural effects. In Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. & Katzenberg, M.) 39–63 (Kluwer Academic Publishers, 2002). https://doi.org/10.1007/0-306-47194-9_3.Chapter 

    Google Scholar 
    Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E. & Bocherens, H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 69–82 (2008).Article 

    Google Scholar 
    Koch, P. L. Isotopic study of the biology of modern and fossil vertebrates. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 99–154 (Blackwell Publishing Ltd, 2007). https://doi.org/10.1002/9780470691854.ch5.Chapter 

    Google Scholar 
    Hofman-Kamińska, E. et al. Foraging habitats and niche partitioning of European large herbivores during the holocene—Insights from 3D dental microwear texture analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 183–195 (2018).Article 

    Google Scholar 
    Bocherens, H., Hofman-Kamińska, E., Drucker, D. G., Schmölcke, U. & Kowalczyk, R. European bison as a refugee species? Evidence from isotopic data on Early Holocene bison and other large herbivores in northern Europe. PLoS ONE 10, 1–19 (2015).Article 
    CAS 

    Google Scholar 
    Hu, Y. et al. Earliest evidence for commensal processes of cat domestication. Proc. Natl. Acad. Sci. USA. 111, 116–120 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haruda, A. F. et al. The earliest domestic cat on the Silk Road. Sci. Rep. 10, 11241 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meckstroth, A. M., Miles, A. K. & Chandra, S. Diets of introduced predators using stable isotopes and stomach contents. J. Wildl. Manag. 71, 2387–2392 (2007).Article 

    Google Scholar 
    McDonald, B. W. et al. High variability within pet foods prevents the identification of native species in pet cats’ diets using isotopic evaluation. PeerJ 8, e8337 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stewart, G. R., Aidar, M. P. M., Joly, C. A. & Schmidt, S. Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia 131, 468–472 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    Graven, H., Keeling, R. F. & Rogelj, J. Changes to carbon isotopes in atmospheric CO2 over the industrial era and into the future. Glob. Biogeochem. Cycles 34, 1–21 (2020).Article 
    CAS 

    Google Scholar 
    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Linderholm, A. & Kjellström, A. Stable isotope analysis of a medieval skeletal sample indicative of systemic disease from Sigtuna Sweden. J. Archaeol. Sci. 38, 925–933 (2011).Article 

    Google Scholar 
    Webb, E. C. et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. Archaeol. Anthropol. Sci. 10, 1–18 (2018).Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am. J. Phys. Anthropol. 133, 682–697 (2007).PubMed 
    Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Fast or feast: Reconstructing diet in later medieval England by stable isotope analysis. J. Archaeol. Sci. 32, 39–48 (2005).Article 

    Google Scholar 
    van der Sluis, L. G., Hollund, H. I., Kars, H., Sandvik, P. U. & Denham, S. D. A palaeodietary investigation of a multi-period churchyard in Stavanger, Norway, using stable isotope analysis (C, N, H, S) on bone collagen. J. Archaeol. Sci. Rep. 9, 120–133 (2016).
    Google Scholar 
    Polet, C. & Katzenberg, M. A. Reconstruction of the diet in a mediaeval monastic community from the coast of Belgium. J. Archaeol. Sci. 30, 525–533 (2003).Article 

    Google Scholar 
    Kosiba, S. B., Tykot, R. H. & Carlsson, D. Stable isotopes as indicators of change in the food procurement and food preference of Viking Age and Early Christian populations on Gotland (Sweden). J. Anthropol. Archaeol. 26, 394–411 (2007).Article 

    Google Scholar 
    Olsen, K. C. et al. Isotopic anthropology of rural German medieval diet: Intra- and inter-population variability. Archaeol. Anthropol. Sci. 10, 1053–1065 (2018).Article 

    Google Scholar 
    Benevolo, L. The European City (Blackwell Publishers, 1993).
    Google Scholar 
    Barrett, J. et al. Detecting the medieval cod trade: A new method and first results. J. Archaeol. Sci. 35, 850–861 (2008).Article 

    Google Scholar 
    Barrett, J. H. et al. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 38, 1516–1524 (2011).Article 

    Google Scholar 
    Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343 (2007).Article 

    Google Scholar 
    Heaton, T. H. E. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. J. Archaeol. Sci. 26, 637–649 (1999).Article 

    Google Scholar 
    Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA. 110, 12589–12594 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Styring, A. K. et al. Refining human palaeodietary reconstruction using amino acid δ15N values of plants, animals and humans. J. Archaeol. Sci. 53, 504–515 (2015).CAS 
    Article 

    Google Scholar 
    Guiry, E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Front. Ecol. Evol. 7, 313 (2019).Article 

    Google Scholar 
    Fuller, B. T., Müldner, G., Van Neer, W., Ervynck, A. & Richards, M. P. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). J. Anal. At. Spectrom. 27, 807–820 (2012).CAS 
    Article 

    Google Scholar 
    Robson, H. K. et al. Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe. Environ. Archaeol. 21, 105–118 (2016).Article 

    Google Scholar 
    Hobson, K. A., Piatt, J. F. & Pitocchelli, J. Using stable isotopes to determine seabird trophic relationships. J. Anim. Ecol. 63, 786–798 (1994).Article 

    Google Scholar 
    Guiry, E. & Buckley, M. Urban rats have less variable, higher protein diets. Proc. R. Soc. B Biol. Sci. 285, 20181441 (2018).Article 
    CAS 

    Google Scholar 
    Bicknell, A. W. J. et al. Stable isotopes reveal the importance of seabirds and marine foods in the diet of St Kilda field mice. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Hoffmann, R. C. Medieval fishing. In Working with Water in Medieval Europe. Technology and Resource-Use (ed. Squatriti, P.) 331–393 (Brill, 2000).
    Google Scholar 
    Gillies, C. & Clout, M. The prey of domestic cats (Felis catus) in two suburbs of Auckland City, New Zealand. J. Zool. 259, 309–315 (2003).Article 

    Google Scholar 
    Brickner-Braun, I., Geffen, E. & Yom-Tov, Y. The domestic cat as a predator of Israeli wildlife. Isr. J. Ecol. Evol. 53, 129–142 (2007).Article 

    Google Scholar 
    Flockhart, D. T. T., Norris, D. R. & Coe, J. B. Predicting free-roaming cat population densities in urban areas. Anim. Conserv. 19, 472–483 (2016).Article 

    Google Scholar 
    Castañeda, I., Zarzoso-Lacoste, D. & Bonnaud, E. Feeding behaviour of red fox and domestic cat populations in suburban areas in the south of Paris. Urban Ecosyst. 23, 731–743 (2020).Article 

    Google Scholar 
    Zhu, Y., Siegwolf, R. T. W., Durka, W. & Körner, C. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162, 853–863 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Männel, T. T., Auerswald, K. & Schnyder, H. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob. Ecol. Biogeogr. 16, 583–592 (2007).Article 

    Google Scholar 
    Pińska, K. & Badura, M. Warunki przyrodnicze i dieta roślinna mieszkańców Pucka w późnym średniowieczu. In Puck – kultura materialna małego miasta w późnym średniowieczu (ed. Starski, M.) 517 (Uniwersytet Warszawski, 2017).
    Google Scholar 
    Lefebvre, A. et al. Morphology of estuarine bedforms, Weser Estuary, Germany. Earth Surf. Process. Landforms 47, 242–256 (2022).ADS 
    Article 

    Google Scholar 
    Bischop, D. & Von der Küchelmann, H. C. Küche in den Graben – Bremens Stadtgraben und die Essgewohnheiten seiner Anwohner an der Wende zur Frühen Neuzeit. In Lebensmittel im Mittelalter und in der frühen Neuzeit. Erzeugung, Verarbeitung, Versorgung. Beiträge des 16. Kolloquiums des Arbeitskreises zur archäologischen Erforschung des mittelalterlichen Handwerks, Soester Beiträge zur Archäologie 15 (ed. Melzer, W.) 137–151 (Mocker und Jahn, 2018).
    Google Scholar 
    Elmshäuser, K. & Pordzik, V. V. Lachsgarnen, Tomen und Kumpanen – Die älteste Bremer Fischeramtsrolle. Bremisches Jahrb. 98, 13–72 (2019).
    Google Scholar 
    Küchelmann, H. C. Viel Butter bei wenig Fisch. Zwei Fischknochenkomplexe des 12.–13. Jahrhunderts aus der Bremer Altstadt. In Grenzen überwinden. Archäologie zwischen Disziplin und Disziplinen. Festschrift für Uta Halle zum 65. Geburtstag, Internationale Archäologie Studia Honoraria 40 (eds Kahlow, S. et al.) 413–426 (Verlag Marie Leidorf GmbH, 2021).
    Google Scholar 
    Schwarcz, H. P. & Schoeninger, M. J. Stable isotope analyses in human nutritional ecology. Am. J. Phys. Anthropol. 34, 283–321 (1991).Article 

    Google Scholar 
    Wallace, M. et al. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol. 45, 388–409 (2013).Article 

    Google Scholar 
    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 18, 249–259 (1991).Article 

    Google Scholar 
    Ervynck, A. Orant, pugnant, laborant. The diet of the three orders in the feudal society of medieval north-western Europe. In Behaviour Behind Bones. The Zooarchaeology of Ritual, Religion, Status and Identity (eds O’Day, S. J. et al.) 215–223 (Oxbow Books, 2004).
    Google Scholar 
    von den Driesch, A. A guide to the measurement of animal bones from archaeological sites. Peabody Museum Bull. 1, 1–137 (1976).
    Google Scholar 
    O’Connor, T. P. Wild or domestic? Biometric variation in the cat Felis silvestris Schreber. Int. J. Osteoarchaeol. 17, 581–595 (2007).Article 

    Google Scholar 
    Kratochvíl, Z. Schadelkriterien der Wild- und Hauskatze (Felis silvestris silvestris Schreber 1777 und Felis s. f. catus L. 1758). Acta Sci. Nat. Brno 7, 1–50 (1973).
    Google Scholar 
    Kratochvíl, Z. Das Postkranialskelett der Wild- und Hauskatze (Felis silvestris und F. lybica f. catus). Acta Sci. Nat. Brno 10, 1–43 (1976).
    Google Scholar 
    Dyce, K. M., Sack, W. O. & Wensing, C. J. G. Textbook of Veterinary Anatomy (Saunders/Elsevier, 2010).
    Google Scholar 
    Krajcarz, M. et al. On the trail of the oldest domestic cat in Poland. An insight from morphometry, ancient DNA and radiocarbon dating. Int. J. Osteoarchaeol. 26, 912–919 (2016).Article 

    Google Scholar 
    Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430 (1995).CAS 
    Article 

    Google Scholar 
    Bronk Ramsey, C., Dee, M., Lee, S., Nakagawa, T. & Staff, R. Developments in the calibration and modeling of radiocarbon dates. Radiocarbon 52, 953–961 (2010).Article 

    Google Scholar 
    Ferreira, J. P., Leitão, I., Santos-Reis, M. & Revilla, E. Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS ONE 6, e25970 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pirie, T. J., Thomas, R. L. & Fellowes, M. D. E. Pet cats (Felis catus) from urban boundaries use different habitats, have larger home ranges and kill more prey than cats from the suburbs. Landsc. Urban Plan. 220, 104338 (2022).Article 

    Google Scholar 
    Bocherens, H. et al. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina cave (Sclayn, Belgium). Quat. Res. 48, 370–380 (1997).Article 

    Google Scholar 
    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Boudin, M., Boeckx, P., Vandenabeele, P. & Van Strydonck, M. Improved radiocarbon dating of contaminated protein-containing archaeological samples via cross-flow nanofiltrated amino acids. Rapid Commun. Mass Spectrom. 27, 2039–2050 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wojcieszak, M., Van Den Brande, T., Ligovich, G. & Boudin, M. Pretreatment protocols performed at the Royal Institute for Cultural Heritage (RICH) prior to AMS 14C measurements. Radiocarbon 62, e14–e24 (2020).Article 

    Google Scholar 
    Hammer, Ø. PAST. PAleontological Statistics. Version 4.05 Reference manual (Natural History Museum University of Oslo, 2021).
    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Using metabarcoding and droplet digital PCR to investigate drivers of historical shifts in cyanobacteria from six contrasting lakes

    Paerl, H. W. & Huisman, J. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27–37 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Paerl, H. W. & Paul, V. J. Climate change: links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reissig, M., Trochine, C., Queimaliños, C., Balseiro, E. & Modenutti, B. Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biol. Conserv. 132, 437–447 (2006).Article 

    Google Scholar 
    Britton, J. R., Davies, G. D. & Harrod, C. Trophic interactions and consequent impacts of the invasive fish Pseudorasbora parva in a native aquatic foodweb: a field investigation in the UK. Biol. Invasions 12, 1533–1542 (2010).Article 

    Google Scholar 
    Beaulieu, M., Pick, F. & Gregory-Eaves, I. Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnol. Oceanogr. 58, 1736–1746 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    O’Neil, J. M., Davis, T. W., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).Article 
    CAS 

    Google Scholar 
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management. (E & FN Spon, 1999).Sukenik, A., Quesada, A. & Salmaso, N. Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodivers. Conserv. 24, 889–908 (2015).Article 

    Google Scholar 
    Ibelings, B. W., Bormans, M., Fastner, J. & Visser, P. M. CYANOCOST special issue on cyanobacterial blooms: synopsis—a critical review of the management options for their prevention, control and mitigation. Aquat. Ecol. 50, 595–605 (2016).CAS 
    Article 

    Google Scholar 
    Paerl, H. W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4, 988–1012 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01254 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ewing, H. A. et al. “New” cyanobacterial blooms are not new: two centuries of lake production are related to ice cover and land use. Ecosphere 11, e03170 (2020).Article 

    Google Scholar 
    McGlone, M. S. & Wilmshurst, J. M. Dating initial Maori environmental impact in New Zealand. Quat. Int. 59, 5–16 (1999).Article 

    Google Scholar 
    Brooking, A. P. D. of H. T. & Brooking, T. The History of New Zealand. (Greenwood Publishing Group, 2004).Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G. & Worthy, T. H. Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. PNAS 105, 7676–7680 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGlone, M. S. The Polynesian settlement of New Zealand in relation to environmental and biotic changes. N. Z. J. Ecol. 12, 115–129 (1989).
    Google Scholar 
    McGlone, M. S. Polynesian deforestation of New Zealand: a preliminary synthesis. Archaeol. Ocean. 18, 11–25 (1983).Article 

    Google Scholar 
    McWethy, D. B. et al. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. PNAS 107, 21343–21348 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McWethy, D. B., Wilmshurst, J. M., Whitlock, C., Wood, J. R. & McGlone, M. S. A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. PLoS ONE 9, e111328 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Star, P. New Zealand environmental history: a question of attitudes. Environ. Hist. Camb. 9, 463–475 (2003).Article 

    Google Scholar 
    Clark, A. H. The Invasion of New Zealand by Plants, People, and Animals (Rutgers University Press, 1949).
    Google Scholar 
    Wilmshurst, J. M. Human effects on the environment: European impact. Te Ara: The Encyclopedia of New Zealand https://teara.govt.nz/en/human-effects-on-the-environment/page-3 (2007).Smol, J. P. The ratio of diatom frustules to chrysophycean statospores: a useful paleolimnological index. Hydrobiologia 123, 199–208 (1985).Article 

    Google Scholar 
    Rees, A. B. H., Cwynar, L. C. & Cranston, P. S. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. J. Paleolimnol. 40, 1159–1178 (2008).ADS 
    Article 

    Google Scholar 
    Epp, L. S., Stoof, K. R., Trauth, M. H. & Tiedemann, R. Historical genetics on a sediment core from a Kenyan lake: intraspecific genotype turnover in a tropical rotifer is related to past environmental changes. J. Paleolimnol. 43, 939–954 (2010).ADS 
    Article 

    Google Scholar 
    Buchaca, T. et al. Rapid ecological shift following piscivorous fish introduction to increasingly eutrophic and warmer Lake Furnas (Azores Archipelago, Portugal): a paleoecological approach. Ecosystems 14, 458–477 (2011).CAS 
    Article 

    Google Scholar 
    Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).Article 

    Google Scholar 
    Giguet-Covex, C. et al. Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nat. Commun. 5, 3211 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nelson-Chorney, H. T. et al. Environmental DNA in lake sediment reveals biogeography of native genetic diversity. Front. Ecol. Environ. 17, 313–318 (2019).
    Google Scholar 
    Capo, E. et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: overview and recommendations. Quaternary 4, 6 (2021).Article 

    Google Scholar 
    Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21, 1794–1805 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).Article 

    Google Scholar 
    Keeley, N., Wood, S. A. & Pochon, X. Development and preliminary validation of a multi-trophic metabarcoding biotic index for monitoring benthic organic enrichment. Ecol. Ind. 85, 1044–1057 (2018).CAS 
    Article 

    Google Scholar 
    Monchamp, M.-E., Walser, J.-C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pal, S., Gregory-Eaves, I. & Pick, F. R. Temporal trends in cyanobacteria revealed through DNA and pigment analyses of temperate lake sediment cores. J. Paleolimnol. 54, 87–101 (2015).ADS 
    Article 

    Google Scholar 
    Dodsworth, W. Temporal Trends in Cyanobacteria Through Paleo-Genetic Analyses. (Université d’Ottawa/University of Ottawa, 2020). https://doi.org/10.20381/ruor-24401.Rinta-Kanto, J. M. et al. The diversity and distribution of toxigenic Microcystis spp. in present day and archived pelagic and sediment samples from Lake Erie. Harmful Algae 8, 385–394 (2009).CAS 
    Article 

    Google Scholar 
    Zastepa, A. et al. Reconstructing a long-term record of microcystins from the analysis of lake sediments. Sci. Total Environ. 579, 893–901 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schallenberg, M. et al. Ecosystem services of lakes. In Ecosystem Services in New Zealand (ed. Dymond, J.) 23 (Manaaki Whenua Press, 2013).
    Google Scholar 
    Ministry for the Environment & Ausseil, A.-G. Our freshwater 2020. www.mfe.govt.nz (2020).Takiwa—Map Page. https://lernz.takiwa.co/map.Leathwick, J. et al. Freshwater ecosystems of New Zealand (FENZ) geodatabase. Users guide. (2010).Cochrane, L. Reconstructing Ecological Change, Catchment Disturbance, and Anthropogenic Impact over the last 3000 years at Lake Pounui, Wairarapa, New Zealand. (2017).Burns, C. W. & Mitchell, S. F. Seasonal succession and vertical distribution of phytoplankton in Lake Hayes and Lake Johnson, South Island, New Zealand. N. Z. J. Mar. Freshw. Res. 8, 167–209 (1974).Article 

    Google Scholar 
    Lawa. Land, Air, Water Aotearoa (LAWA) https://www.lawa.org.nz/ (2018).Bunny, T., Perrie, A., Milne, J. & Keenan, L. Lake water quality in the Ruamāhanga Whaitua. 17 (2014).McKinnon, M. Volcanic Plateau region: The lure of trout. Te Ara—The Encyclopedia of New Zealand https://teara.govt.nz/en/volcanic-plateau-region/page-8 (2015).Burns, C. W. & Mitchell, S. F. Seasonal succession and vertical distribution of zooplankton in Lake Hayes and Lake Johnson. N. Z. J. Mar. Freshw. Res. 14, 189–204 (1980).Article 

    Google Scholar 
    Schallenberg, M. & Schallenberg, L. Lake Hayes restoration and monitoring plan. 55 https://a234f952-dbf2-444e-983e-ef311d984ee7.filesusr.com/ugd/c1b10b_d2993ed023cd4bdbac7eef71a89c2de7.pdf (2017).NIWA. NIWA https://niwa.co.nz/.Mackereth, F. J. H. A portable core sampler for lake deposits. Limnol. Oceanogr. 3, 181–191 (1958).ADS 
    Article 

    Google Scholar 
    Howarth, J. D., Fitzsimons, S. J., Norris, R. J. & Jacobsen, G. E. Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand. Geology 40, 1091–1094 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Trodahl, M. I., Rees, A. B. H., Newnham, R. M. & Vandergoes, M. J. Late Holocene geomorphic history of Lake Wairarapa, North Island, New Zealand. N. Z. J. Geol. Geophys. 59, 330–340 (2016).CAS 
    Article 

    Google Scholar 
    Khan, S., Puddick, J., Burns, C. W., Closs, G. & Schallenberg, M. Palaeolimnological evaluation of historical nutrient and food web contributions to the eutrophication of two monomictic lakes. Submitted for Journal Publication (2022).Rinta-Kanto, J. M. et al. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 39, 4198–4205 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nübel, U., Garcia-Pichel, F. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332 (1997).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. (2020).Wickham, H. et al. Welcome to the Tidyverse. J. Open Sour. Softw. 4, 1686 (2019).ADS 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Glöckner, F. O. et al. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 261, 169–176 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. 2019. (2019).Williams, P. A. & Cameron, E. K. Creating gardens: the diversity and progression of European plant introductions. In Biological Invasions in New Zealand Vol. 186 (eds Allen, R. B. & Lee, W. G.) 33–47 (Springer-Verlag, 2006).Chapter 

    Google Scholar 
    Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00149 (2018).Article 

    Google Scholar 
    Chen, H. & Boutros, P. C. VennDiagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinform. 12, 35 (2011).Article 

    Google Scholar 
    Juggins, S. rioja: analysis of quaternary science data. (2020).de Vries, A. & Ripley, B. D. ggdendro: create dendrograms and tree diagrams using ‘ggplot2’. (2022).Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 
    Anderson, M. J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Soo, R. M. et al. An expanded genomic representation of the phylum Cyanobacteria. Genome Biol. Evol. 6, 1031–1045 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacKeigan, P. W. et al. Comparing microscopy and DNA metabarcoding techniques for identifying cyanobacteria assemblages across hundreds of lakes. Harmful Algae 113, 102187 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood, S. A. et al. Trophic state and geographic gradients influence planktonic cyanobacterial diversity and distribution in New Zealand lakes. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw234 (2017).Article 
    PubMed 

    Google Scholar 
    Becker, S., Richl, P. & Ernst, A. Seasonal and habitat-related distribution pattern of Synechococcus genotypes in Lake Constance. FEMS Microbiol. Ecol. 62, 64–77 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P., Handley, B. A. & Hayes, P. K. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology (Reading) 154, 3347–3357 (2008).Article 
    CAS 

    Google Scholar 
    Pilon, S. et al. Contrasting histories of microcystin-producing cyanobacteria in two temperate lakes as inferred from quantitative sediment DNA analyses. Lake Reserv. Manag. 35, 102–117 (2019).CAS 
    Article 

    Google Scholar 
    Queenstown’s Pioneering Beginnings. https://www.queenstownnz.co.nz/stories/post/queenstowns-pioneer-beginnings/ (2017).Fish, G. R. A limnological study of four lakes near Rotorua. N. Z. J. Mar. Freshw. Res. 4, 165–194 (1970).Article 

    Google Scholar 
    Lake Rotoehu—Lakes Water Quality Society. https://lakeswaterquality.co.nz/lake-rotoehu/.Bay of Plenty Regional Council, Rotorua District Council, & Te Arawa Lakes Trust. Lake Rotoehu Action Plan. 61 http://www.rotorualakes.co.nz/vdb/document/76 (2007).Hobbs, W. O. et al. Using a lake sediment record to infer the long-term history of cyanobacteria and the recent rise of an anatoxin producing Dolichospermum sp.. Harmful Algae 101, 101971 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    de la Escalera, G. M., Antoniades, D., Bonilla, S. & Piccini, C. Application of ancient DNA to the reconstruction of past microbial assemblages and for the detection of toxic cyanobacteria in subtropical freshwater ecosystems. Mol. Ecol. 23, 5791–5802 (2014).Article 
    CAS 

    Google Scholar 
    Retrolens—Historical Imagery Resource. https://retrolens.co.nz/.Strayer, D. L. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshw. Biol. 55, 152–174 (2010).Article 

    Google Scholar 
    Hall, S. R. & Mills, E. L. Exotic species in large lakes of the world. Aquat. Ecosyst. Health Manag. 3, 105–135 (2000).Article 

    Google Scholar 
    Gehrke, P. C. & Harris, J. H. The role of fish in cyanobacterial blooms in Australia. Mar. Freshw. Res. 45, 905–915 (1994).Article 

    Google Scholar 
    Burns, C. W. & Schallenberg, M. Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. J. Plankton Res. 20, 1501–1525 (1998).Article 

    Google Scholar 
    Rowe, D. K. & Schallenberg, M. Food webs in lakes. In Freshwaters of New Zealand (ed. Harding, J. S.) 23 (Wellington, N.Z.: New Zealand Hydrological Society, 2004).Gliwicz, Z. M. & Pijanowska, J. The role of predation in zooplankton succession. In Plankton Ecology: Succession in Plankton Communities (ed. Sommer, U.) 253–296 (Springer, 1989).Chapter 

    Google Scholar 
    Vanni, M. J. & Findlay, D. L. Trophic cascades and phytoplankton community structure. Ecology 71, 921–937 (1990).Article 

    Google Scholar 
    Smith, K. F. & Lester, P. J. Trophic interactions promote dominance by cyanobacteria (Anabaena spp.) in the pelagic zone of lower Karori reservoir, Wellington, New Zealand. N. Z. J. Mar. Freshw. Res. 41, 143–155 (2007).Article 

    Google Scholar 
    Smith, K. F. & Lester, P. J. Cyanobacterial blooms appear to be driven by top-down rather than bottom-up effects in the Lower Karori Reservoir (Wellington, New Zealand). N. Z. J. Mar. Freshw. Res. 40, 53–63 (2006).CAS 
    Article 

    Google Scholar 
    Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24, 949–971 (2015).Article 

    Google Scholar 
    Pulina, S. et al. Picophytoplankton seasonal dynamics and interactions with environmental variables in three Mediterranean coastal lagoons. Estuaries Coasts 40, 469–478 (2017).CAS 
    Article 

    Google Scholar 
    Callieri, C. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw. Rev. 1, 1–28 (2008).Article 

    Google Scholar 
    Keefer, D. K. Investigating landslides caused by earthquakes: a historical review. Surv. Geophys. 23, 473–510 (2002).ADS 
    Article 

    Google Scholar 
    Fan, X. et al. Earthquake-induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev. Geophys. 57, 421–503 (2019).ADS 
    Article 

    Google Scholar 
    Manighetti, I. et al. Repeated giant earthquakes on the Wairarapa fault, New Zealand, revealed by Lidar-based paleoseismology. Sci. Rep. 10, 2124 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McSaveney, E. Historic earthquakes: the 1942 Wairarapa earthquakes. Te Ara Encyclopedia of New Zealand https://teara.govt.nz/en/historic-earthquakes/page-9 (2006).New Zealand’s environmental reporting series: our atmosphere and climate. (Ministry for the Environment & Stats NZ, 2020).Beng, K. C. & Corlett, R. T. Applications of environmental DNA (eDNA) in ecology and conservation: opportunities, challenges and prospects. Biodivers. Conserv. 29, 2089–2121 (2020).Article 

    Google Scholar 
    Freeland, J. R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome https://doi.org/10.1139/gen-2016-0100 (2016).Article 
    PubMed 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, M. A. et al. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA https://doi.org/10.1002/edn3.160 (2020).Article 

    Google Scholar 
    Corinaldesi, C., Beolchini, F. & Dell’anno, A. Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Mol. Ecol. 17, 3939–3951 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eichmiller, J. J., Best, S. E. & Sorensen, P. W. Effects of temperature and trophic state on degradation of environmental DNA in lake water. Environ. Sci. Technol. 50, 1859–1867 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).Article 

    Google Scholar 
    Seymour, M. et al. Acidity promotes degradation of multi-species environmental DNA in lotic mesocosms. Commun. Biol. https://doi.org/10.1038/s42003-017-0005-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dommain, R. et al. The challenges of reconstructing tropical biodiversity with sedimentary ancient DNA: a 2200-year-long metagenomic record from Bwindi Impenetrable Forest, Uganda. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00218 (2020).Article 

    Google Scholar 
    Jöhnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).ADS 
    Article 

    Google Scholar 
    Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. PNAS 103, 12115–12120 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Deep-sea infauna with calcified exoskeletons imaged in situ using a new 3D acoustic coring system (A-core-2000)

    Joos, F., Plattner, G. K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413), 464–467 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, K. L. et al. Climate, carbon cycling, and deep-ocean ecosystems. Proc. Nat. Acad. Sci USA 106, 19211–19218 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Ramirez-Llodra, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pham, C. K. et al. Marine litter distribution and density in European Seas, from the shelves to deep basins. PLoS ONE 9, e95839 (2014).ADS 
    Article 

    Google Scholar 
    Angel, M. What is the deep sea? In Deep-sea fishes (eds Randall, D. & Farrell, A.) 1–41 (Academic Publishing, 1997).
    Google Scholar 
    Smith, C. R., De Leo, F. C., Bernardino, A. F., Sweetman, A. K. & Arbizu, P. M. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).Article 

    Google Scholar 
    Thurber, A. R. et al. Ecosystem function and services provided by the deep sea. Biogeosciences 11, 3941–3963 (2014).ADS 
    Article 

    Google Scholar 
    Solan, M. et al. Extinction and ecosystem function in the marine benthos. Science 306(5699), 1177–1180 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Danise, S., Twitchett, R. J., Little, C. T. & Clemence, M. E. The impact of global warming and anoxia on marine benthic community dynamics: An example from the Toarcian (Early Jurassic). PLoS ONE 8(2), e56255 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Nomaki, H. et al. In situ experimental evidences for responses of abyssal benthic biota to shifts in phytodetritus compositions linked to global climate change. Glob. Chang. Biol. 27, 6139–6155 (2021).Article 

    Google Scholar 
    Viehman, H. A. & Zydlewski, G. B. Fish interactions with a commercial-scale tidal energy device in the natural environment. Estuaries Coast 38(1), 241–252 (2015).Article 

    Google Scholar 
    Danovaro, R. et al. Implementing and innovating marine monitoring approaches for assessing marine environmental status. Front. Mar. Sci. 3, 213 (2016).Article 

    Google Scholar 
    Mizuno, K. et al. An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation. Sci. Rep. 10(1), 12416. https://doi.org/10.1038/s41598-020-69400-5 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eleftheriou, A., & Moore, D. C. (2013). Macrofauna techniques. Methods for the study of marine benthos, 175–251.Solan, M. et al. In situ quantification of bioturbation using time lapse fluorescent sediment profile imaging (f SPI), luminophore tracers and model simulation. Mar. Ecol. Prog. Ser. 271, 1–12 (2004).ADS 
    Article 

    Google Scholar 
    Hale, R. et al. High-resolution computed tomography reconstructions of invertebrate burrow systems. Sci. Data 2(1), 1–5 (2015).Article 

    Google Scholar 
    Plets, R. M. et al. The use of a high-resolution 3D Chirp sub-bottom profiler for the reconstruction of the shallow water archaeological site of the Grace Dieu (1439), River Hamble, UK. J. Archaeol. Sci. 36(2), 408–418 (2009).Article 

    Google Scholar 
    Mizuno, K. et al. Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom. Case Stud. Nondestruct. Test. Evaluat. 5, 1–8 (2016).CAS 
    Article 

    Google Scholar 
    Suganuma, H., Mizuno, K. & Asada, A. Application of wavelet shrinkage to acoustic imaging of buried asari clams using high-frequency ultrasound. J. Appl. Phys. 57(7S1), 07LG08 (2018).Article 

    Google Scholar 
    Dorgan, K. M. et al. Impacts of simulated infaunal activities on acoustic wave propagation in marine sediments. J. Acoust. Soc. Am. 147(2), 812–823 (2020).ADS 
    Article 

    Google Scholar 
    Mizuno, K., Cristini, P., Komatitsch, D. & Capdeville, Y. Numerical and experimental study of wave propagation in water-saturated granular media using effective method theories and a full-wave numerical simulation. IEEE J. Ocean. Eng. 45(3), 772–785 (2020).ADS 
    Article 

    Google Scholar 
    Schulze, I. et al. Laboratory measurements to image endobenthos and bioturbation with a high-frequency 3D seismic lander. Geosciences 11(12), 508 (2021).ADS 
    Article 

    Google Scholar 
    Hashimoto, J. et al. Deep-sea communities dominated by the giant clam, Calyptogena soyoae, along the slope foot of Hatsushima Island, Sagami Bay, central Japan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 71(12), 179–192 (1989).Article 

    Google Scholar 
    Fujikura, K., Hashimoto, J. & Okutani, T. Estimated population densities of megafauna in two chemosynthesisbased communities: A cold seep in Sagami Bay and a hydrothermal vent in the Okinawa Trough. Benthos. Res. 57(1), 21–30 (2002).Article 

    Google Scholar 
    Childress, J. J. & Girguis, P. R. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J. Exp. Biol. 214(2), 312–325 (2011).CAS 
    Article 

    Google Scholar 
    Okuba, K. (2021). Basic study on sonar system development for exploring infaunal bivalves. Master thesis, GSFS, The University of Tokyo (in Japanese).Stoll, R. D. & Bryan, G. M. Wave attenuation in saturated sediments. The J. Acoust. Soc. Am. 47(5B), 1440–1447 (1970).ADS 
    Article 

    Google Scholar 
    Schwartz, L. & Plona, T. J. Ultrasonic propagation in close-packed disordered suspensions. J. Appl. Phys. 55(11), 3971–3977 (1984).ADS 
    Article 

    Google Scholar 
    Seike, K., Shirai, K. & Murakami-Sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS ONE 12(8), e0182753. https://doi.org/10.1371/journal.pone.0182753 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Plant phenology changes and drivers on the Qinghai–Tibetan Plateau

    Lieth, H. Phenology and Seasonality Modeling Vol. 8 (Springer, 2013).Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agric. For. Meteorol. 291, 108077 (2020).Article 

    Google Scholar 
    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Article 

    Google Scholar 
    Shen, X. et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric. For. Meteorol. 259, 240–249 (2018).Article 

    Google Scholar 
    Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).
    Google Scholar 
    Zhu, J., Zhang, Y. & Wang, W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol. Lett. 12, 20150749 (2016).Article 

    Google Scholar 
    Chen, J. et al. Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. Sci. Total Environ. 728, 138891 (2020).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Wolkovich, E. M. & Donahue, M. J. How phenological tracking shapes species and communities in non-stationary environments. Biol. Rev. Camb. Philos. Soc. 96, 2810–2827 (2021).Article 

    Google Scholar 
    Xu, X., Riley, W. J., Koven, C. D., Jia, G. & Zhang, X. Earlier leaf-out warms air in the north. Nat. Clim. Chang. 10, 370–375 (2020).Article 

    Google Scholar 
    D’Amato, G. et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 75, 2219–2228 (2020).Article 

    Google Scholar 
    Garcia-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: a review. Allergy 72, 1849–1858 (2017).Article 

    Google Scholar 
    Ge, Q., Dai, J., Liu, J., Zhong, S. & Liu, H. The effect of climate change on the fall foliage vacation in China. Tour. Manag. 38, 80–84 (2013).Article 

    Google Scholar 
    Liu, J., Cheng, H., Jiang, D. & Huang, L. Impact of climate-related changes to the timing of autumn foliage colouration on tourism in Japan. Tour. Manag. 70, 262–272 (2019).Article 

    Google Scholar 
    Fan, B. et al. Earlier vegetation green-up has reduced spring dust storms. Sci. Rep. 4, 6749 (2014).Article 

    Google Scholar 
    Minoli, S. et al. Global response patterns of major rainfed crops to adaptation by maintaining current growing periods and irrigation. Earths Future 7, 1464–1480 (2019).Article 

    Google Scholar 
    Shen, M. et al. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. Natl Sci. Rev. 22, 454–467 (2015).Article 

    Google Scholar 
    You, Q., Wang, D., Jiang, Z. & Kang, S. Diurnal temperature range in CMIP5 models and observations on the Tibetan Plateau. Q. J. R. Meteorol. Soc. 143, 1978–1989 (2017).Article 

    Google Scholar 
    You, Q. et al. Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Clim. Dyn. 57, 17–35 (2021).Article 

    Google Scholar 
    Zhu, Y.-Y. & Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Change Res. 11, 239–251 (2020).Article 

    Google Scholar 
    Lun, Y. et al. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 41, 3994–4018 (2021).Article 

    Google Scholar 
    Song, L., Zhuang, Q., Yin, Y., Wu, S. & Zhu, X. Intercomparison of model-estimated potential evapotranspiration on the Tibetan Plateau during 1981–2010. Earth Interact. 21, 1–22 (2017).Article 

    Google Scholar 
    You, Q., Min, J. & Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 36, 2660–2670 (2016).Article 

    Google Scholar 
    He, J.-S. et al. Above-belowground interactions in alpine ecosystems on the roof of the world. Plant Soil 458, 1–6 (2020).Article 

    Google Scholar 
    Kuang, X. & Jiao, J. J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 121, 3979–4007 (2016).Article 

    Google Scholar 
    Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).Article 

    Google Scholar 
    Shen, M., Tang, Y., Chen, J., Zhu, X. & Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 151, 1711–1722 (2011).Article 

    Google Scholar 
    Ganjurjav, H. et al. Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agric. For. Meteorol. 287, 107943 (2020).Article 

    Google Scholar 
    Peng, J., Wu, C., Wang, X. & Lu, L. Spring phenology outweighed climate change in determining autumn phenology on the Tibetan Plateau. Int. J. Climatol. 41, 3725–3742 (2021).Article 

    Google Scholar 
    Chen, X., An, S., Inouye, D. W. & Schwartz, M. D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Change Biol. 21, 3635–3646 (2015).Article 

    Google Scholar 
    Zheng, Z. et al. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 194–202 (2016).Article 

    Google Scholar 
    Zhu, W. et al. Divergent shifts and responses of plant autumn phenology to climate change on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 239, 166–175 (2017).Article 

    Google Scholar 
    Sun, Q., Li, B., Jiang, Y., Chen, X. & Zhou, G. Declined trend in herbaceous plant green-up dates on the Qinghai–Tibetan Plateau caused by spring warming slowdown. Sci. Total Environ. 772, 145039 (2021).Article 

    Google Scholar 
    Sun, Q., Li, B., Zhou, G., Jiang, Y. & Yuan, Y. Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 284, 107896 (2020).Article 

    Google Scholar 
    Jiang, Y. et al. Divergent shifts in flowering phenology of herbaceous plants on the warming Qinghai–Tibetan plateau. Agric. For. Meteorol. 307, 108502 (2021).Article 

    Google Scholar 
    Cong, N., Shen, M. & Piao, S. Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. J. Plant Ecol. 10, 744–752 (2016).
    Google Scholar 
    Shi, C. et al. Effects of warming on chlorophyll degradation and carbohydrate accumulation of Alpine herbaceous species during plant senescence on the Tibetan Plateau. PLoS ONE 9, e107874 (2014).Article 

    Google Scholar 
    Morisette, J. T. et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 7, 253–260 (2009).Article 

    Google Scholar 
    Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).Article 

    Google Scholar 
    Vitasse, Y. et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. Camb. Philos. Soc. 96, 1816–1835 (2021).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).Article 

    Google Scholar 
    Estiarte, M. & Penuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).Article 

    Google Scholar 
    Penuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).Article 

    Google Scholar 
    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 7, 359–363 (2017).Article 

    Google Scholar 
    Ran, Y., Li, X. & Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 12, 595–608 (2018).Article 

    Google Scholar 
    Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).Article 

    Google Scholar 
    Sun, R. et al. Interannual variability of the North Pacific mixed layer associated with the spring Tibetan Plateau thermal forcing. J. Clim. 32, 3109–3130 (2019).Article 

    Google Scholar 
    Zhang, J., Wu, L., Huang, G., Zhu, W. & Zhang, Y. The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction. J. Geophys. Res. Atmos. 116, D05106 (2011).Article 

    Google Scholar 
    Wu, G. et al. Tibetan Plateau climate dynamics: recent research progress and outlook. Natl Sci. Rev. 2, 100–116 (2015).Article 

    Google Scholar 
    Wang, Y., Zhao, P., Yu, R. & Rasul, G. Inter-decadal variability of Tibetan spring vegetation and its associations with eastern China spring rainfall. Int. J. Climatol. 30, 856–865 (2010).Article 

    Google Scholar 
    Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).Article 

    Google Scholar 
    Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 189-190, 71–80 (2014).Article 

    Google Scholar 
    Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).Article 

    Google Scholar 
    Wang, C. et al. Assessing phenological change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS time series. Int. J. Biometeorol. 59, 11–23 (2015).Article 

    Google Scholar 
    Wang, K. et al. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int. J. Digit. Earth 8, 58–75 (2013).Article 

    Google Scholar 
    Meng, F., Huang, L., Chen, A., Zhang, Y. & Piao, S. Spring and autumn phenology across the Tibetan Plateau inferred from normalized difference vegetation index and solar-induced chlorophyll fluorescence. Big Earth Data 5, 182–200 (2021).Article 

    Google Scholar 
    Wang, X., Wu, C., Peng, D., Gonsamo, A. & Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 256–257, 61–74 (2018).Article 

    Google Scholar 
    Li, P. et al. Change in autumn vegetation phenology and the climate controls from 1982 to 2012 on the Qinghai–Tibet Plateau. Front. Plant Sci. 10, 1677 (2019).Article 

    Google Scholar 
    Zhu, W., Zheng, Z., Jiang, N. & Zhang, D. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agric. For. Meteorol. 248, 177–184 (2018).Article 

    Google Scholar 
    Xia, J. et al. Interannual variation in the start of vegetation growing season and its response to climate change in the Qinghai–Tibet Plateau derived from MODIS data during 2001 to 2016. J. Appl. Remote Sens. 13, 048506 (2019).Article 

    Google Scholar 
    Huang, K. et al. Impacts of snow cover duration on vegetation spring phenology over the Tibetan Plateau. J. Plant Ecol. 12, 583–592 (2019).Article 

    Google Scholar 
    Li, P. et al. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 637-638, 855–864 (2018).Article 

    Google Scholar 
    Liu, X. et al. Driving forces of the changes in vegetation phenology in the Qinghai–Tibet Plateau. Remote Sens. 13, 4952 (2021).Article 

    Google Scholar 
    Piao, S. et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai–Xizang Plateau. Agric. For. Meteorol. 151, 1599–1608 (2011).Article 

    Google Scholar 
    Wang, Z. et al. Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. J. Veg. Sci. 24, 189–201 (2013).Article 

    Google Scholar 
    Du, M. et al. in Proc. MODSIM 2007 Int. Congr. Model. Simul. (eds Oxley, L. & Kulasiri, D.) 2146–2152 (Modelling and Simulation Society of Australia and New Zealand, 2007).Wang, S. P. et al. Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology 95, 3387–3398 (2014).Article 

    Google Scholar 
    Che, M. et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 189–190, 81–90 (2014).Article 

    Google Scholar 
    Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl Acad. Sci. USA 110, 4309–4314 (2013).Article 

    Google Scholar 
    Maisongrande, P., Duchemin, B. & Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens. 25, 9–14 (2010).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS vegetation index user’s guide (MOD13 series) version 3.00, June 2015 (collection 6) (Univ. Arizona, 2015).Beck, H. E. et al. Global evaluation of four AVHRR–NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 115, 2547–2563 (2011).Article 

    Google Scholar 
    Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens. Environ. 191, 145–155 (2017).Article 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).Article 

    Google Scholar 
    Ding, M. et al. Temperature dependence of variations in the end of the growing season from 1982 to 2012 on the Qinghai–Tibetan Plateau. GISci. Remote Sens. 53, 147–163 (2015).Article 

    Google Scholar 
    Cheng, M., Jin, J. & Jiang, H. Strong impacts of autumn phenology on grassland ecosystem water use efficiency on the Tibetan Plateau. Ecol. Indic. 126, 107682 (2021).Article 

    Google Scholar 
    Pedelty, J. et al. in Proc. 2007 IEEE Int. Geosci. Remote Sensing Symp. 1021–1025 (IEEE, 2007).Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 117, G04003 (2012).Article 

    Google Scholar 
    Yang, B. et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl Acad. Sci. USA 114, 6966–6971 (2017).Article 

    Google Scholar 
    Shishov, V. V. et al. VS-oscilloscope: a new tool to parameterize tree radial growth based on climate conditions. Dendrochronologia 39, 42–50 (2016).Article 

    Google Scholar 
    Zhao, Y., Zhou, T., Zhang, W. & Li, J. Change in precipitation over the Tibetan Plateau projected by weighted CMIP6 models. Adv. Atmos. Sci. 39, 1133–1150 (2022).Article 

    Google Scholar 
    Lalande, M., Ménégoz, M., Krinner, G., Naegeli, K. & Wunderle, S. Climate change in the High Mountain Asia in CMIP6. Earth Syst. Dyn. 12, 1061–1098 (2021).Article 

    Google Scholar 
    Jin, Z. et al. Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics. Clim. Change 138, 617–632 (2016).Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Cao, R., Shen, M., Zhou, J. & Chen, J. Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agric. For. Meteorol. 249, 176–186 (2018).Article 

    Google Scholar 
    Li, P. et al. Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agric. For. Meteorol. 308–309, 108571 (2021).Article 

    Google Scholar 
    Lang, W., Chen, X., Qian, S., Liu, G. & Piao, S. A new process-based model for predicting autumn phenology: how is leaf senescence controlled by photoperiod and temperature coupling? Agric. For. Meteorol. 268, 124–135 (2019).Article 

    Google Scholar 
    Yang, Z. et al. Phylogenetic conservatism in heat requirement of leaf-out phenology, rather than temperature sensitivity, in Tibetan Plateau. Agric. For. Meteorol. 304-305, 108413 (2021).Article 

    Google Scholar 
    Gao, B., Li, J. & Wang, X. Impact of frozen soil changes on vegetation phenology in the source region of the Yellow River from 2003 to 2015. Theor. Appl. Climatol. 141, 1219–1234 (2020).Article 

    Google Scholar 
    Jiang, H. et al. The impacts of soil freeze/thaw dynamics on soil water transfer and spring phenology in the Tibetan Plateau. Arct. Antarct. Alp. Res. 50, e1439155 (2018).Article 

    Google Scholar 
    Li, G., Jiang, C., Cheng, T. & Bai, J. Grazing alters the phenology of alpine steppe by changing the surface physical environment on the northeast Qinghai-Tibet Plateau, China. J. Environ. Manage. 248, 109257 (2019).Article 

    Google Scholar 
    Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77 (2019).Article 

    Google Scholar 
    Liu, L. et al. Effects of elevation on spring phenological sensitivity to temperature in Tibetan Plateau grasslands. Chin. Sci. Bull. 59, 4856–4863 (2014).Article 

    Google Scholar 
    Cong, N. et al. Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998–2012. Agric. For. Meteorol. 232, 650–658 (2017).Article 

    Google Scholar 
    Shen, M. et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Change Biol. 22, 3057–3066 (2016).Article 

    Google Scholar 
    Du, J. et al. Daily minimum temperature and precipitation control on spring phenology in arid-mountain ecosystems in China. Int. J. Climatol. 40, 2568–2579 (2020).Article 

    Google Scholar 
    Shen, M. Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 108, E91–E92 (2011).Article 

    Google Scholar 
    An, S. et al. Precipitation and minimum temperature are primary climatic controls of alpine grassland autumn phenology on the Qinghai-Tibet Plateau. Remote Sens. 12, 431 (2020).Article 

    Google Scholar 
    Zu, J. et al. Biological and climate factors co-regulated spatial-temporal dynamics of vegetation autumn phenology on the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 69, 198–205 (2018).
    Google Scholar 
    Qiao, C. et al. Vegetation phenology in the Qilian mountains and its response to temperature from 1982 to 2014. Remote Sens. 13, 286 (2021).Article 

    Google Scholar 
    Yang, Z. et al. Asymmetric responses of the end of growing season to daily maximum and minimum temperatures on the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 13,78–13,287 (2017).
    Google Scholar 
    Dorji, T. et al. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob. Change Biol. 19, 459–472 (2013).Article 

    Google Scholar 
    Li, X., Zhang, L. & Luo, T. Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau. Sci. Rep. 10, 18797 (2020).Article 

    Google Scholar 
    Zhang, X. et al. Effects of climate change on the growing season of alpine grassland in Northern Tibet, China. Glob. Ecol. Conserv. 23, e01126 (2020).Article 

    Google Scholar 
    Sun, Q. et al. A prognostic phenology model for alpine meadows on the Qinghai–Tibetan Plateau. Ecol. Indic. 93, 1089–1100 (2018).Article 

    Google Scholar 
    Zhu, J., Zhang, Y. & Jiang, L. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agric. For. Meteorol. 233, 242–249 (2017).Article 

    Google Scholar 
    Shen, M. et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc. Natl Acad. Sci. USA 110, E2329 (2013).
    Google Scholar 
    Fu, Y. S. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Meng, F. D. et al. Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology 98, 734–740 (2017).Article 

    Google Scholar 
    Wang, S. et al. Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan plateau. Agric. For. Meteorol. 189–190, 220–228 (2014).Article 

    Google Scholar 
    Jiang, L. L. et al. Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology 97, 1961–1969 (2016).Article 

    Google Scholar 
    Li, X. et al. Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nat. Commun. 7, 12489 (2016).Article 

    Google Scholar 
    Meng, F. et al. Nonlinear responses of temperature sensitivities of community phenophases to warming and cooling events are mirroring plant functional diversity. Agric. For. Meteorol. 253–254, 31–37 (2018).Article 

    Google Scholar 
    Meng, F. et al. Divergent responses of community reproductive and vegetative phenology to warming and cooling: asymmetry versus symmetry. Front. Plant Sci. 10, 1310 (2019).Article 

    Google Scholar 
    Zhang, Z., Niu, K., Liu, X., Jia, P. & Du, G. Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow. J. Plant Ecol. 7, 231–239 (2013).Article 

    Google Scholar 
    Xi, Y. et al. Nitrogen addition alters the phenology of a dominant alpine plant in Northern Tibet. Arct. Antarct. Alp. Res. 47, 511–518 (2018).Article 

    Google Scholar 
    Yin, T.-F., Zheng, L.-L., Cao, G.-M., Song, M.-H. & Yu, F.-H. Species-specific phenological responses to long-term nitrogen fertilization in an alpine meadow. J. Plant Ecol. 10, 301–309 (2016).
    Google Scholar 
    Liu, L. et al. Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow. Agric. For. Meteorol. 236, 36–47 (2017).Article 

    Google Scholar 
    Liu, Y. et al. Effects of nitrogen addition and mowing on reproductive phenology of three early-flowering forb species in a Tibetan alpine meadow. Ecol. Eng. 99, 119–125 (2017).Article 

    Google Scholar 
    Zhu, J., Zhang, Y. & Liu, Y. Effects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan alpine meadow. Sci. Rep. 6, 27781 (2016).Article 

    Google Scholar 
    Li, Y. et al. The effects of grazing regimes on phenological stages, intervals and divergences of alpine plants on the Qinghai–Tibetan Plateau. J. Veg. Sci. 30, 134–145 (2019).Article 

    Google Scholar 
    Dorji, T. et al. Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agric. Ecosyst. Environ. 291, 106795 (2020).Article 

    Google Scholar 
    Meng, F. et al. Opposite effects of winter day and night temperature changes on early phenophases. Ecology 100, e02775 (2019).Article 

    Google Scholar 
    Meng, F. et al. Temperature sensitivity thresholds to warming and cooling in phenophases of alpine plants. Clim. Change 139, 579–590 (2016).Article 

    Google Scholar 
    Suonan, J., Classen, A. T., Sanders, N. J. & He, J. S. Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere 10, e02543 (2019).Article 

    Google Scholar 
    Ganjurjav, H. et al. Phenological changes offset the warming effects on biomass production in an alpine meadow on the Qinghai–Tibetan Plateau. J. Ecol. 109, 1014–1025 (2020).Article 

    Google Scholar 
    Jiang, Z. et al. Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim. Change 110, 385–401 (2011).Article 

    Google Scholar 
    Huang, X. et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 10, 2453–2463 (2016).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).Article 

    Google Scholar 
    Wang, C. & Tang, Y. Responses of plant phenology to nitrogen addition: a meta-analysis. Oikos 128, 1243–1253 (2019).Article 

    Google Scholar 
    Chen, H., Zhu, Q., Wu, N., Wang, Y. & Peng, C. H. Delayed spring phenology on the Tibetan Plateau may also be attributable to other factors than winter and spring warming. Proc. Natl Acad. Sci. USA 108, E93 (2011).
    Google Scholar 
    Zhang, L. et al. Effect of warming and degradation on phenophases of Kobresia pygmaea and Potentilla multifida on the Tibetan Plateau. Agric. Ecosyst. Environ. 300, 106998 (2020).Article 

    Google Scholar 
    Lin, X. et al. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 41, 718–725 (2009).Article 

    Google Scholar 
    Sa, C. et al. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau. J. Arid Land 13, 332–349 (2021).Article 

    Google Scholar 
    Zheng, J., Xu, X., Jia, G. & Wu, W. Understanding the spring phenology of Arctic tundra using multiple satellite data products and ground observations. Sci. China Earth Sci. 63, 1599–1612 (2020).Article 

    Google Scholar 
    Wu, W., Sun, Y., Xiao, K. & Xin, Q. Development of a global annual land surface phenology dataset for 1982–2018 from the AVHRR data by implementing multiple phenology retrieving methods. Int. J. Appl. Earth Obs. Geoinf. 103, 102487 (2021).
    Google Scholar 
    Karkauskaite, P., Tagesson, T. & Fensholt, R. Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone. Remote Sens. 9, 485 (2017).Article 

    Google Scholar 
    Yang, Y., Guan, H., Shen, M., Liang, W. & Jiang, L. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob. Change Biol. 21, 652–665 (2015).Article 

    Google Scholar 
    Zhang, J. et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 169, 1–16 (2020).Article 

    Google Scholar 
    Shen, M. et al. Earlier-season vegetation has greater temperature sensitivity of spring phenology in northern hemisphere. PLoS ONE 9, e88178 (2014).Article 

    Google Scholar 
    Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120, 1658–1665 (2015).Article 

    Google Scholar 
    Cook, B. I. et al. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15, 1283–1294 (2012).Article 

    Google Scholar 
    Wang, C., Cao, R., Chen, J., Rao, Y. & Tang, Y. Temperature sensitivity of spring vegetation phenology correlates to within-spring warming speed over the Northern Hemisphere. Ecol. Indic. 50, 62–68 (2015).Article 

    Google Scholar 
    Gao, M. et al. Three-dimensional change in temperature sensitivity of northern vegetation phenology. Glob. Change Biol. 26, 5189–5201 (2020).Article 

    Google Scholar 
    Zohner, C. M., Benito, B. M., Fridley, J. D., Svenning, J. C. & Renner, S. S. Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia. Ecol. Lett. 20, 452–460 (2017).Article 

    Google Scholar 
    Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).Article 

    Google Scholar 
    Huang, J. G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).Article 

    Google Scholar 
    Iler, A. M., CaraDonna, P. J., Forrest, J. R. K. & Post, E. Demographic consequences of phenological shifts in response to climate change. Annu. Rev. Ecol. Evol. Syst. 52, 221–245 (2021).Article 

    Google Scholar 
    Chen, S., Huang, Y., Gao, S. & Wang, G. Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence. Sci. Total Environ. 663, 45–59 (2019).Article 

    Google Scholar 
    Jin, J. et al. Grassland production in response to changes in biological metrics over the Tibetan Plateau. Sci. Total Environ. 666, 641–651 (2019).Article 

    Google Scholar 
    Kang, X. et al. Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sens. 8, 391 (2016).Article 

    Google Scholar 
    Zheng, Z., Zhu, W. & Zhang, Y. Direct and lagged effects of spring phenology on net primary productivity in the alpine grasslands on the Tibetan Plateau. Remote Sens. 12, 1223 (2020).Article 

    Google Scholar 
    Wang, S. et al. Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agric. For. Meteorol. 232, 235–246 (2017).Article 

    Google Scholar 
    Li, S., Zhang, H., Zhou, X., Yu, H. & Li, W. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau. Ecosyst. Serv. 43, 101090 (2020).Article 

    Google Scholar 
    Meng, F. et al. Enhanced spring temperature sensitivity of carbon emission links to earlier phenology. Sci. Total Environ. 745, 140999 (2020).Article 

    Google Scholar 
    Hu, G. et al. The divergent impact of phenology change on the productivity of alpine grassland due to different timing of drought on the Tibetan Plateau. Land Degrad. Dev. 32, 4033–4041 (2021).Article 

    Google Scholar 
    Li, P., Zhu, W. & Xie, Z. Diverse and divergent influences of phenology on herbaceous aboveground biomass across the Tibetan Plateau alpine grasslands. Ecol. Indic. 121, 107036 (2021).Article 

    Google Scholar 
    He, M. et al. Relationships between wood formation and cambium phenology on the Tibetan Plateau during 1960–2014. Forests 9, 86 (2018).Article 

    Google Scholar 
    Wang, J., Li, M., Yu, C. & Fu, G. The change in environmental variables linked to climate change has a stronger effect on aboveground net primary productivity than does phenological change in alpine grasslands. Front. Plant Sci. 12, 798633 (2022).Article 

    Google Scholar 
    Shen, W., Zhang, L. & Luo, T. Causes for the increase of early-season freezing events under a warmer climate at alpine treelines in southeast Tibet. Agric. For. Meteorol. 316, 108863 (2022).Article 

    Google Scholar 
    Ye, D.-Z. & Wu, G.-X. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol. Atmos. Phys. 67, 181–198 (1998).Article 

    Google Scholar 
    Cao, R., Feng, Y., Liu, X., Shen, M. & Zhou, J. Uncertainty of vegetation green-up date estimated from vegetation indices due to snowmelt at northern middle and high latitudes. Remote Sens. 12, 190 (2020).Article 

    Google Scholar 
    Zeng, L., Wardlow, B. D., Xiang, D., Hu, S. & Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 237, 111511 (2020).Article 

    Google Scholar 
    Cao, R. et al. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 217, 244–257 (2018).Article 

    Google Scholar 
    Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).Article 

    Google Scholar 
    Wang, C. et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 196, 1–12 (2017).Article 

    Google Scholar 
    Yang, W. et al. A semi-analytical snow-free vegetation index for improving estimation of plant phenology in tundra and grassland ecosystems. Remote Sens. Environ. 228, 31–44 (2019).Article 

    Google Scholar 
    Wang, C., Chen, J., Tang, Y., Black, T. A. & Zhu, K. A novel method for removing snow melting-induced fluctuation in GIMMS NDVI3g data for vegetation phenology monitoring: a case study in deciduous forests of North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 800–807 (2018).Article 

    Google Scholar 
    Helman, D. Land surface phenology: What do we really ‘see’ from space? Sci. Total Environ. 618, 665–673 (2018).Article 

    Google Scholar 
    Steltzer, H. & Post, E. Ecology. Seasons and life cycles. Science 324, 886–887 (2009).Article 

    Google Scholar 
    Liang, L., Schwartz, M. D. & Fei, S. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sens. Environ. 115, 143–157 (2011).Article 

    Google Scholar 
    Li, R. et al. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall. Sci. Rep. 6, 20985 (2016).Article 

    Google Scholar 
    Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, e01436 (2016).Article 

    Google Scholar 
    Van Nuland, M. E. et al. Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate-driven range shifts. New Phytol. 232, 762–775 (2021).Article 

    Google Scholar 
    Mutz, J., McClory, R., van Dijk, L. J. A., Ehrlen, J. & Tack, A. J. M. Pathogen infection influences the relationship between spring and autumn phenology at the seedling and leaf level. Oecologia 197, 447–457 (2021).Article 

    Google Scholar 
    Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).Article 

    Google Scholar 
    Gao, M. et al. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun. 10, 2970 (2019).Article 

    Google Scholar  More

  • in

    Win-win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry

    Ethical statementEthics approval was obtained for this study from the ethics committee of the University of Goettingen (Chair: Prof. Dr. Peter-Tobias Stoll) under the reference number 17./04.22Wurz.Study areaAll plots were situated in northeastern Madagascar in the SAVA region (Supplementary Fig. 1). The natural vegetation is tropical lowland rainforest, but deforestation rates are high30,67.The region is globally and nationally one of the most biodiverse places with high levels of endemism17,68. Forest loss is mainly driven by slash-and-burn shifting hill rice cultivation58. The region is characterized by a warm and humid climate with an annual rainfall of 2255 mm and a mean annual temperature of 23,9 °C (mean value of 60 plots extracted from CHELSA climatology69). Vanilla is the main cash crop in the SAVA region, making Madagascar the main vanilla producer globally21,22. Vanilla prices have shown strong fluctuations over the past years, with a price boom between 2014 and 2019 triggering an expansion of vanilla agroforestry in the region22,23.Study designWe selected 10 villages based on the 60 villages selected within the Diversity Turn in Land Use Science project22 (Supplementary Fig. 1). We selected the villages based on the list of villages for our study region from official election lists which listed all villages within a fokontany individually22. Village boundaries, demographics, infrastructure were defined based on a rapid survey with the village chief. Among the 60 villages, we considered all villages without coconut plantations, with less than 40% water (river, sea, and lakes) to avoid a strong influence of water elements and with forest fragments and shifting cultivation present within a 2 km radius around the village. Two of these 17 villages overlapped within a 2 km radius of the villages, thus we randomly selected one of them, resulting in 14 villages. We visited these 14 villages in a randomized order and stopped after we found 10 villages which fulfilled the necessary criteria (all land-use types present, willing to participate). In each of the 10 villages, we selected three vanilla agroforests, one forest fragment, and two fallows. Overall, we studied 60 plots across 10 villages and 10 plots in one protected old-growth forest (Marojejy National Park). All plots had a minimum distance of 260 m and a mean minimum distance of 794 m (SD = 468 m) to each other. Plot elevation ranged between 10 and 819 m.a.s.l. (mean  = 205 m, SD = 213 m; Supplementary Table 20).Plot selectionIn each of the 10 villages, we selected three vanilla agroforests with low, medium, and high canopy closure, respectively, covering a within village canopy cover gradient. To refine our vanilla agroforest classification, we used interviews with the plot owners to categorize all vanilla agroforests based on land-use history into fallow- and forest-derived agroforests15. Forest-derived vanilla agroforests are established within forest fragments, which have been manually thinned of dense understory vegetation. Fallow-derived vanilla agroforests are established on formerly slashed and burned plots, where vegetation has been cleared for hill rice production (shifting cultivation system locally called tavy). Out of our 30 vanilla agroforests, 20 vanilla agroforests were fallow-derived and 10 vanilla agroforests were forest-derived, roughly matching the proportion of fallow- and forest-derived vanilla agroforests across the study region (70% are fallow-derived vanilla agroforests, 27% are forest-derived vanilla agroforests and 3% of unknown origin22.In addition to vanilla agroforests, we selected one forest fragment in each village. Forest fragments were located inside the agricultural landscape and were remnants of the once continuous forest; these fragments are frequently used for natural product extraction. Forest fragments have not been burned or clear cut in living memory, yet the ongoing resource extraction results in a much simplified stand structure and fewer large trees compared to old-growth forest12. Furthermore, we chose one herbaceous and one woody fallow in each of the 10 study villages. Both fallow types form part of the shifting hill rice production cycle and represent the fallow period at different stages after the crop production. Herbaceous fallows have been slashed and burned multiple times with the last cultivation cycle at the end of 2016, one year prior to the first species data collection in 2017, and thereafter left fallow11. The continuous succession of herbaceous fallows turns them into woody fallows with the domination of woody plants including shrubs, trees, and sometimes bamboo. Our 10 woody fallows have last burned 4–16 years before data collection. In this study, we combine both herbaceous and woody fallows into the category “fallow”. Generally, fallows occur in different forms in the study region. The characteristics of fallows depend on the frequency of past fires and the length of fallow periods in between crop cultivation11. Frequent burning results in a loss of native and woody species and a dominance of exotic species and grasses11. In later fallow cycles, fern species increasingly appear11.Due to the commonly repeated slashing and burning, secondary forests are very rare in the study region. Shifting cultivation prevails in Madagascar70, because it is an important option for people to grow food because means for agricultural intensification are scarce. According to our baseline survey (performed in 60 villages in our study region), 90% of the interviewed farmers grow rice for subsistence in addition to growing vanilla22. Out of this sample, 64% of farmers grow rice in irrigated paddies and 26% of farmers use shifting cultivation.We also studied 10 plots at two sites in Marojejy National Park, the only remaining, continuous old-growth forest at a low altitude in our study area71. We chose accessible old-growth forest plots with a minimum distance of 250 m from the forest edge. Five of the 10 old-growth forest plots were located in Manantenina Valley, the other five old-growth forest plots were situated in the eastern part of Marojejy National Park, called Bangoabe area. Illegal selective logging has occurred in some parts of the park. During our plot selection, we avoided sites with traces of selective logging.Land-use history classificationTo collect information on the land-use history or farm history, interviews with farmers are common72,73. We did interviews with the plot owner. Questions on land-use history were binary (forest-derived or fallow-derived) and did not include information on the detailed land-use history (e.g. frequency of burning, past crop systems). Thus, we consider this selfreported data very reliable. The land-use categorization derived by farmers was confirmed by our visual plot inspections (forest-derived vanilla agroforests do have a quite distinctive vegetation structure compared to fallow-derived vanilla agroforests). Additionally, data on tree species composition and soil characteristics show evident differences between the categories and back up the binary land-use history categorization. Analysis of tree species composition showed that fallow- and forest-derived vanilla agroforests differ significantly in tree species composition12. Soil analysis (see Fig. S9) showed that our fallow-derived vanilla agroforests are associated with fertility-related variables such as an increase in calcium, pH, nitrogen, and phosphorus, which is common after slas-and-burn agriculture74,75.Plot designWe collected species data on plots with a radius of 25 m (1964 m2, 0.1964 ha). We established our circular plots in a homogeneous area of the land-use type or forest. Adjacent land uses were usually different because farmers generally own small-scale land with a mean size of 0.66 ha (mean size of agroforests). We assessed vanilla plant data (yield, vine length, vine age, planting density) on 36 vanilla pieds on each of 30 circular vanilla plots (Supplementary Fig. 8). We defined one vanilla pied (foot in French) as the combination of a vanilla vine and a minimum of one support tree. The 36 vanilla pieds were evenly selected in each of the circular plots based on a sampling protocol to ensure comprehensive and unbiased sampling. We chose vanilla pieds independent of age, length or health condition. We marked the 36 selected vanilla pieds per plot with a unique barcode to assess vanilla yield (April 2018) and other plant health variables on the same plant (not used in this study). However, for 37 vanilla pieds (out of a total of 1080 marked vanilla pieds), the barcodes were lost or unreadable and we selected a new plant closest to the original position (independent of age, length, or condition) and marked it with a new unique barcode. We measured the size of the vanilla agroforest by walking with the agroforest owner and a hand-held GPS device at the perimeter of the plot.Vanilla planting densityWe counted each vanilla pied on each 25 m circular plot by dividing the plot in four-quarter segments. We calculated the area of each 25 m radius plot including slope correction and calculated vanilla planting density (vanilla pieds per hectare) by dividing the number of vanilla pieds by the slope-corrected plot area.Vanilla yieldWe measured yield on 30 vanilla plantations (10 forest-derived vanilla plantations and 20 fallow-derived vanilla plantations); three in each of our 10 study villages. We measured vanilla yield on a total of 36 vanilla pieds between March and April 2018. We assessed the vanilla yield before harvest to ensure an accurate yield assessment due to two reasons. Firstly, vanilla pods are commonly harvested successively due to their differing pollination date and maturity requiring multiple visits over several weeks. Secondly, theft of vanilla pods is commonplace around harvest time. We, therefore, estimated the weight of the on-plant-hanging vanilla pods by measuring pod volume and relating this to a prior established volume–weight correlation. This is possible because vanilla pods only grow in length and width in the first 8 weeks of their development76. Our yield assessment consisted of one interview part with the plot owner and one measurement part. The interview part included questions about the occurrence of theft and early harvest on the plantation. During the measurement part, we assessed the number, diameter, and length of all vanilla pods. We measured vanilla pod length with a ruler starting at the junction of stem and pod until the tip of the pod without considering the bending of the pod. We measured the diameter at the widest part of the pod using a caliper. We firstly calculated pod volume based on the standard volume cylinder formula using the measured diameter (cm) and length (cm): V = πr2h.Secondly, we calculated the weight (g) of each pod by using the linear regression equation (y = bx + a) of a weight–volume correlation of 114 vanilla pods from 114 different agroforests (weight, length, and diameter of these 114 green vanilla was assessed post-harvest in 2017). We calculated the weight of all measured pods of the harvest in 2018 based on the formula:$${{{{{rm{volume}}}}}}={{{{{rm{pi }}}}}}({{{{{rm{diameter}}}}}}({{{{{rm{mm}}}}}})/20)^wedge 2ast {{{{{rm{length}}}}}}({{{{{rm{cm}}}}}})$$Here, we divided the pod diameter (mm) by 20 to obtain the radius and to transform millimeters to centimeters. Weight was defined as volume*0.5662 + 0.9699. No vanilla pods were stolen or already harvested on our 36 vanilla pieds and hence we did not need to account for it in our vanilla yield calculation.Vanilla vine lengthWe assessed vanilla vine length for all 36 vanilla pieds (same vanilla pieds as used for the yield assessment) on each plot by measuring the total length of the vine from the lowest to the highest part with a measuring stick. If the vanilla vine was looped on the support tree (= vanilla vine is hanging in multiple loops on the support tree), we measured from the top height of the looping of the vanilla vine until the lowest height of the vine. At the medium height of the vanilla vine, we counted the number of times the vanilla vine passed through. We calculated the total length of the liana by multiplying the maximum height of the vanilla vine by the number of times the vine passed through the middle. In some cases, the vanilla vine looped at two different heights, we thus considered the middle between the two looping heights as the top height. If vanilla vines grew on two different support trees, we considered them as one vanilla pieds if support trees were More

  • in

    Invasive brown treesnakes (Boiga irregularis) move short distances and have small activity areas in a high prey environment

    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. 105, 19052–19059 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lima, S. L. & Dill, L. M. Behavioral decisions made under the risk of predation: A review and prospectus. Can. J. Zool. 68, 619–640 (1990).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, 1122–1133. https://doi.org/10.1126/science.aaa2478 (2015).CAS 
    Article 

    Google Scholar 
    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 1–13. https://doi.org/10.3389/fevo.2015.00155 (2016).ADS 
    Article 

    Google Scholar 
    Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00150 (2018).Article 

    Google Scholar 
    Boutin, S. Food supplementation experiments with terrestrial vertebrates: Patterns, problems, and the future. Can. J. Zool. 68, 203–220 (1990).Article 

    Google Scholar 
    Adams, E. S. Approaches to the study of territory size and shape. Annu. Rev. Ecol. Syst. 32, 277–303. https://doi.org/10.1146/annurev.ecolsys.32.081501.114034 (2001).Article 

    Google Scholar 
    Ruffino, L., Salo, P., Koivisto, E., Banks, P. B. & Korpimaki, E. Reproductive responses of birds to experimental food supplementation: A meta-analysis. Front. Ecol. Evol. 11, 1–13. https://doi.org/10.1186/s12983-014-0080-y (2014).CAS 
    Article 

    Google Scholar 
    Taylor, E. N., Malawy, M. A., Browning, D. M., Lemar, S. V. & DeNardo, D. F. Effects of food supplementation on the physiological ecology of female western diamond-backed rattlesnakes (Crotalus atrox). Oecologia 144, 206–213. https://doi.org/10.1007/s00442-005-0056-x (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    Wasko, D. K. & Sasa, M. Food resources influence spatial ecology, habitat selection, and foraging behavior in an ambush-hunting snake (Viperidae: Bothrops asper): An experimental study. Zoology 115, 179–187. https://doi.org/10.1016/j.zool.2011.10.001 (2012).Article 
    PubMed 

    Google Scholar 
    Glaudas, X. & Alexander, G. J. Food supplementation affects the foraging ecology of a low-energy, ambush-foraging snake. Behav. Ecol. Sociobiol. 71, 1–11. https://doi.org/10.1007/s00265-016-2239-3 (2017).Article 

    Google Scholar 
    Secor, S. M. & Nagy, K. A. Bioenergetic correlates of foraging mode for the snakes Crotalus cerastes and Masticophis flagellum. Ecology 75, 1600–1614 (1994).Article 

    Google Scholar 
    Christy, M. T., Savidge, J. A., Yackel Adams, A. A., Gragg, J. E. & Rodda, G. H. Experimental landscape reduction of wild rodents increases movements in the invasive brown treesnake (Boiga irregularis). Manag. Biol. Invasions 8, 455–467. https://doi.org/10.3391/mbi.2017.8.4.01 (2017).Article 

    Google Scholar 
    Neilson, E. W., Avgar, T., Burton, A. C., Broadley, K. & Boutin, S. Animal movement affects interpretation of occupancy models from camera-trap surveys of unmarked animals. Ecosphere 9, 1–15. https://doi.org/10.1002/ecs2.2092 (2018).Article 

    Google Scholar 
    Efford, M. G. & Dawson, D. K. Occupancy in continuous habitat. Ecosphere 3, 1–15. https://doi.org/10.1890/ES11-00308.1 (2012).Article 

    Google Scholar 
    Tang, Z., Huang, Q., Wu, H., Kuang, L. & Fu, S. The behavioral response of prey fish to predators: The role of predator size. PeerJ 5, 1–13. https://doi.org/10.7717/peerj.3222 (2017).Article 

    Google Scholar 
    Thorsen, M., Shorten, R., Lucking, R. & Lucking, V. Norway rats (Rattus norvegicus) on Fregate Island, Seychelles: The invasion; subsequent eradication attempts and implications for the island’s fauna. Biol. Cons. 96, 133–138 (2000).Article 

    Google Scholar 
    Rodda, G. H. Foraging behavior of the brown tree snake, Boiga irregularis. Herpetol. J. 2, 110–114 (1992).
    Google Scholar 
    Savidge, J. A. Extinction of an island forest avifauna by an introduced snake. Ecology 68, 660–668 (1987).Article 

    Google Scholar 
    Rodda, G. H., McCoid, M. J., Fritts, T. H. & Campbell, E. W. III. Population trends and limiting factors in Boiga irregularis. In Problem Snake Management: The Habu and the Brown Treesnake (eds Rodda, G. H. et al.) 236–256 (Cornell University Press, 1999).Chapter 

    Google Scholar 
    Yackel Adams, A. A., Lardner, B., Knox, A. J. & Reed, R. N. Inferring the absence of an incipient population during a rapid response for an invasive species. PLoS ONE 13, 1–13 (2018).Article 
    CAS 

    Google Scholar 
    Clark, L., Clark, C. & Siers, S. Brown tree snake methods and approaches for control. In Ecology and Management of Terrestrial Vertebrate Invasive Species in the United States (eds Pitt, W. C. et al.) 107–134 (CRC Press, 2018).
    Google Scholar 
    Christy, M. T., Yackel Adams, A. A., Rodda, G. H., Savidge, J. A. & Tyrrell, C. L. Modelling detection probabilities to evaluate management and control tools for an invasive species. J. Appl. Ecol. 47, 106–113 (2010).Article 

    Google Scholar 
    Tyrrell, C. L. et al. Evaluation of trap capture in a geographically closed population of brown treesnakes on Guam. J. Appl. Ecol. 46, 128–135 (2009).Article 

    Google Scholar 
    Siers, S. R., Yackel Adams, A. A. & Reed, R. N. Behavioral differences following ingestion of large meals and consequences for management of a harmful invasive snake: A field experiment. Ecol. Evol. 8, 10075–10093 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santana-Bendix, M. A. Movements, Activity Patterns and Habitat Use of Boiga irregularis (Colubridae), an Introduced Predator in the Island of Guam (University of Arizona, 1994).
    Google Scholar 
    Tobin, M. E., Sugihara, R. T., Pochop, P. A. & Linnell, M. A. Nightly and seasonal movements of Boiga irregularis on Guam. J. Herpetol. 33, 281–291 (1999).Article 

    Google Scholar 
    Lardner, B., Savidge, J. A., Reed, R. N. & Rodda, G. H. Movements and activity of juvenile brown treesnakes (Boiga irregularis). Copeia 2014, 428–436 (2014).Article 

    Google Scholar 
    Siers, S. R., Savidge, J. A. & Reed, R. N. Invasive brown treesnake movements at road edges indicate road-crossing avoidance. J. Herpetol. 48, 500–505 (2014).Article 

    Google Scholar 
    Wiewel, A. S., Yackel Adams, A. A. & Rodda, G. H. Distribution, density, and biomass of introduced small mammals in the southern Marian Islands. Pac. Sci. 63, 205–222 (2009).Article 

    Google Scholar 
    Camp, R. J., Amidon, F. A., Marshall, A. P. & Pratt, T. K. Bird populations on the island of Tinian; Persistence despite wholesale loss of native forests. Pac. Sci. 66, 283–298. https://doi.org/10.2984/66.3.3 (2012).Article 

    Google Scholar 
    Lardner, B., Yackel Adams, A. A., Knox, A. J., Savidge, J. A. & Reed, R. N. Do observer fatigue and taxon bias compromise visual encounter surveys for small vertebrates?. Wildl. Res. 46, 127–135 (2019).Article 

    Google Scholar 
    Mathies, T., Levine, B., Engeman, R. & Savidge, J. A. Pheromonal control of the invasive brown treesnake: Potency of female sexual attractiveness pheromone varies with ovarian state. Int. J. Pest Manag. https://doi.org/10.1080/09670874.2013.784374 (2013).Article 

    Google Scholar 
    Boback, S. M., Nafus, M. G., Yackel Adams, A. A. & Reed, R. N. Use of visual surveys and radiotelemetry reveals sources of detection bias for a cryptic snake at low densities. Ecosphere https://doi.org/10.1002/ecs2.3000 (2020).Article 

    Google Scholar 
    Harper, G. A. & Rutherford, M. Home range and population density of black rats (Rattus rattus) on a seabird island: A case for a marine subsidised effect?. N. Z. J. Ecol. 40, 219–228 (2016).
    Google Scholar 
    Hochachka, W. M., Martin, K., Doyle, F. & Krebs, C. J. Monitoring vertebrate populations using observational data. Can. J. Zool. 78, 521–529 (2000).Article 

    Google Scholar 
    Wiewel, A. S., Yackel Adams, A. A. & Rodda, G. H. Evaluating abundance estimate precision and the assumptions of a count-based index for small mammals. J. Wildl. Manag. 73, 761–771. https://doi.org/10.2193/2008-180 (2009).Article 

    Google Scholar 
    Fauteux, D. et al. Evaluation of invasive and non-invasive methods to monitor rodent abundance in the Arctic. Ecosphere 9, 1–18. https://doi.org/10.1002/ecs2.2124 (2018).Article 

    Google Scholar 
    Siers, S. R. et al. Assessment of brown treesnake activity and bait take following large-scale snake suppression in Guam. (ed APHIS USDA, WS, NWRC) (Final Report QA-2438, Hilo, HI, 2018).McQueen, D. J., Post, J. R. & Mills, E. L. Trophic relationships in fresh-water pelagic ecosystems. Can. J. Fish. Aquat. Sci. 43, 1571–1581 (1986).Article 

    Google Scholar 
    Sih, A., Crowley, P., McPeek, M., Petranka, J. & Strohmeier, K. Predation, competition, and prey communities: A review of field experiments. Annu. Rev. Ecol. Syst. 16, 269–311 (1985).Article 

    Google Scholar 
    Dorcas, M. E. et al. Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc. Natl. Acad. Sci. 109, 2418–2422. https://doi.org/10.1073/pnas.1115226109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Miranda, E. B. P. The plight of reptiles as ecological actors in the tropics. Front. Ecol. Evol. 5, 1–15. https://doi.org/10.3389/fevo.2017.00159 (2017).Article 

    Google Scholar 
    Campbell, E. W. III., Yackel Adams, A. A., Converse, S. J., Fritts, T. H. & Rodda, G. H. Do predators control prey species abundance? An experimental test with brown treesnakes on Guam. Ecology 93, 1194–1203 (2012).PubMed 
    Article 

    Google Scholar 
    Lindell, L. E. & Forsman, A. Density effects and snake predation: Prey limitation and reduced growth rate of adders at high density of conspecifics. Can. J. Zool. 74, 1000–1007 (1996).Article 

    Google Scholar 
    Schoener, T. W., Spiller, D. A. & Losos, J. B. Predation on a common Anolis lizard: Can the food-web effects of a devastating predator be reversed?. Ecol. Monogr. 72, 383–407 (2002).Article 

    Google Scholar 
    McCleery, R. A. et al. Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades. Proc. R. Soc. Lond. 282, 20150120. https://doi.org/10.1098/rspb.2015.0120 (2015).Article 

    Google Scholar 
    Plummer, M. V. & Congdon, J. D. Radiotelemetric study of activity and movements of racers (Coluber constrictor) associated with a Carolina bay in South Carolina. Copeia 1994, 20–26 (1994).Article 

    Google Scholar 
    Madsen, T. & Shine, R. Seasonal migration of predators and prey—A study of pythons, and rats in tropical Australia. Ecology 77, 149–156 (1996).Article 

    Google Scholar 
    Chandler, C. J., Van Helden, B., Close, P. G. & Speldewinde, P. C. 2D or not 2D? Three-dimensional home range analysis better represents space use by an arboreal mammal. Acta Oecol. 105, 103576. https://doi.org/10.1016/j.actao.2020.103576 (2020).Article 

    Google Scholar 
    Udyawer, V., Simpfendorfer, C. A. & Heupel, M. R. Diel patterns in three-dimensional use of space by sea snakes. Anim. Biotelem. 3, 1–9. https://doi.org/10.1186/s40317-015-0063-6 (2015).Article 

    Google Scholar 
    Shine, R. Reproduction in Australian elapid snakes II. Female reproductive cycles. Aust. J. Zool. 25, 655–666 (1977).Article 

    Google Scholar 
    Murcia, C. Edge effects in fragmented forests: Implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matlack, G. R. Microenvironment variation within and among forest edge sites in the eastern United States. Biol. Cons. 66, 185–194 (1993).Article 

    Google Scholar 
    Kapos, V. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Trop. Ecol. 5, 173–185 (1989).Article 

    Google Scholar 
    Williams-Linera, G. Vegetation structure and environmental conditions of forest edges in Panama. J. Ecol. 78, 356–373 (1990).Article 

    Google Scholar 
    Matlack, G. R. Vegetation dynamics of the forest edge: Trends in space and successional time. J. Ecol. 82, 113–123 (1994).Article 

    Google Scholar 
    Chen, J., Franklin, J. F. & Spies, T. A. Vegetation responses to edge environments in old-growth douglas-fir forests. Ecol. Appl. 2, 387–396 (1992).PubMed 
    Article 

    Google Scholar 
    Gates, J. E. Powerline corridors, edge effects, and wildlife in forested landscapes of the central Appalachians. In Wildlife and Habitats in Managed Landscapes (eds Rodiek, J. E. & Bolen, E. G.) 13–32 (Island Press, 1991).
    Google Scholar 
    Kroodsma, R. L. Edge effect on breeding forest birds along a power-line corridor. J. Appl. Ecol. 19, 361–370 (1982).Article 

    Google Scholar 
    Morgan, K. A. & Gates, J. E. Bird population patterns in forest edge and strip vegetation at Remington Farms, Maryland. J. Wildl. Manag. 46, 933–944 (1982).Article 

    Google Scholar 
    Weatherhead, P. J. & Charland, M. B. Habitat selection in an Ontario population of the snake, Elaphe obsoleta. J. Herpetol. 19, 12–19 (1985).Article 

    Google Scholar 
    Durner, G. M. & Gates, J. E. Spatial ecology of black rat snakes on Remington Farms, Maryland. J. Wildl. Manag. 57, 812–826 (1993).Article 

    Google Scholar 
    Mushinsky, H. R. Foraging ecology. In Snakes: Ecology and Evolutionary Biology (eds Seigel, R. A. et al.) 302–334 (Macmillan Publishing Company, 1987).
    Google Scholar 
    Fritts, T. H., Scott, N. J. Jr. & Smith, B. J. Trapping Boiga irregularis on Guam using bird odors. J. Herpetol. 23, 189–192 (1989).Article 

    Google Scholar 
    Shivik, J. A. Brown tree snake response to visual and olfactory cues. J. Wildl. Manag. 62, 105–111 (1998).Article 

    Google Scholar 
    Simkova, O., Frydlova, P., Zampachova, B., Frynta, D. & Landova, E. Development of behavioral profile in the Northern common boa (Boa imperator): Repeatable independent traits or personality?. PLoS ONE 12, 1–35. https://doi.org/10.1371/journal.pone.0177911 (2017).CAS 
    Article 

    Google Scholar 
    Fritts, T. H., McCoid, M. J. & Gomez, D. M. Dispersal of snakes to extralimital islands: Incidents of the brown treesnake, Boiga irregularis, dispersing to islands in ships and aircraft. In Problem Snake Management: The Habu and the Brown Treesnake (eds Rodda, G. H. et al.) 209–223 (Cornell University Press, 1999).
    Google Scholar 
    Yackel Adams, A. A. et al. Can we prove that an undetected species is absent? Evaluating whether brown treesnakes are established on the island of Saipan using surveillance and expert opinion. Manag. Biol. Invas. 12, 901–926 (2021).Article 

    Google Scholar 
    Siers, S. R. & Savidge, J. A. Restoration Plan for the Habitat Management Unit, Naval Support Activity Andersen, Guam 1–238 (Colorado State University, 2017).
    Google Scholar 
    Dorr, B. S., Clark, C. S. & Savarie, P. (USDA APHIS WS National Wildlife Research Center, Fort Collins, CO, 2016).Reinert, H. K. & Cundall, D. An improved surgical implantation method for radio-tracking snakes. Copeia 1982, 702–705 (1982).Article 

    Google Scholar 
    Shine, R. Strangers in a strange land: Ecology of the Australian colubrid snakes. Copeia 1991, 120–131 (1991).Article 

    Google Scholar 
    Savidge, J. A., Qualls, F. J. & Rodda, G. H. Reproductive biology of the brown tree snake, Boiga irregularis (Reptilia: Colubridae), during colonization of Guam and comparison with that in their native range. Pac. Sci. 61, 191–199 (2007).Article 

    Google Scholar 
    Yackel Adams, A. A. & Nafus, M. G. Brown Treesnake visual survey and radiotelemetry data, Guam 2015: U.S. Geological Survey data release. https://doi.org/10.5066/P939BM0W (2020).Savidge, J. A. Food habits of Boiga irregularis, an introduced predator on Guam. J. Herpetol. 22, 275–282 (1988).Article 

    Google Scholar 
    Reed, R. N. & Boback, S. M. Does body size predict dates of species description among North American and Australian reptiles and amphibians?. Glob. Ecol. Biogeogr. 11, 41–47 (2002).Article 

    Google Scholar 
    Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).Article 

    Google Scholar 
    R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    Simpfendorfer, C. A., Olsen, E. M., Heupel, M. R. & Moland, E. Three-dimensional kernel utilization distributions improve estimates of space use in aquatic animals. Can. J. Fish. Aquat. Sci. 69, 565–572 (2012).Article 

    Google Scholar 
    Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).Article 

    Google Scholar 
    Cooper, N. W., Sherry, T. W. & Marra, P. P. Modeling three-dimensional space use and overlap in birds. Auk 131, 681–693 (2014).Article 

    Google Scholar 
    ArcGIS Desktop (Environmental Systems Research, 2017).Nafus, M. G., Boback, S. M., Klug, P. E., Yackel Adams, A. A. & Reed, R. N. Brown treesnake movement following snake suppression in the Habitat Management Unit on Northern Guam from 2015. U.S Geological Survey data release. https://doi.org/10.5066/P95QJ2PE (2022). More