More stories

  • in

    Microbiota succession throughout life from the cradle to the grave

    Chu, D. M. et al. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ward, T. L. et al. Development of the human mycobiome over the first month of life and across body sites. mSystems 3, e00140–17 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oh, J. et al. Biogeography and individuality shape function in the human skin metagenome. Nature 514, 59–64 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abeles, S. R. et al. Human oral viruses are personal, persistent and gender-consistent. ISME J. 8, 1753–1767 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet. 13, 151–170 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lauber, C. L., Hamady, M., Knight, R. & Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75, 5111–5120 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zengler, K. & Zaramela, L. S. The social network of microorganisms – how auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smits, S. A. et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357, 802–806 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rasko, D. A. Changes in microbiome during and after travellers’ diarrhea: what we know and what we do not. J. Travel. Med. 24, S52–S56 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dini-Andreote, F., Stegen, J. C., van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yassour, M. et al. Natural history of the infant gut microbiome and impact of antibiotic treatment on bacterial strain diversity and stability. Sci. Transl. Med. 8, 343ra81 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bokulich, N. A. et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci. Transl. Med. 8, 343ra82 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vangay, P. et al. US immigration westernizes the human gut microbiome. Cell 175, 962–972.e10 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregory, A. C. et al. The gut virome database reveals age-dependent patterns of virome diversity in the human gut. Cell Host Microbe 28, 724–740.e8 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510.e12 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaura, E. et al. Same exposure but two radically different responses to antibiotics: resilience of the salivary microbiome versus long-term microbial shifts in feces. mBio 6, e01693–15 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4554–4561 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hsiao, A. et al. Members of the human gut microbiota involved in recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chng, K. R. et al. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nat. Ecol. Evol. 4, 1256–1267 (2020).PubMed 
    Article 

    Google Scholar 
    Gibbons, S. M. Keystone taxa indispensable for microbiome recovery. Nat. Microbiol. 5, 1067–1068 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C. & Gasbarrini, A. Proteobacteria: a common factor in human diseases. Biomed. Res. Int. 2017, 9351507 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biagi, E. et al. Gut microbiota and extreme longevity. Curr. Biol. 26, 1480–1485 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lynn, M. A. et al. Early-life antibiotic-driven dysbiosis leads to dysregulated vaccine immune responses in mice. Cell Host Microbe 23, 653–660.e5 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thorburn, A. N. et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6, 7320 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomez de Agüero, M. et al. The maternal microbiota drives early postnatal innate immune development. Science 351, 1296–1302 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Macpherson, A. J., de Agüero, M. G. & Ganal-Vonarburg, S. C. How nutrition and the maternal microbiota shape the neonatal immune system. Nat. Rev. Immunol. 17, 508–517 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakajima, A. et al. Maternal high fiber diet during pregnancy and lactation influences regulatory T cell differentiation in offspring in mice. J. Immunol. 199, 3516–3524 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jamalkandi, S. A. et al. Oral and nasal probiotic administration for the prevention and alleviation of allergic diseases, asthma and chronic obstructive pulmonary disease. Nutr. Res. Rev. 34, 1–16 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Örtqvist, A. K., Lundholm, C., Halfvarson, J., Ludvigsson, J. F. & Almqvist, C. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut 68, 218–225 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Munyaka, P. M., Eissa, N., Bernstein, C. N., Khafipour, E. & Ghia, J.-E. Antepartum antibiotic treatment increases offspring susceptibility to experimental colitis: a role of the gut microbiota. PLoS ONE 10, e0142536 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulfer, A. F. et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat. Microbiol. 3, 234–242 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, J. et al. High-fat maternal diet during pregnancy persistently alters the offspring microbiome in a primate model. Nat. Commun. 5, 3889 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Torres, J. et al. Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 69, 42–51 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Milliken, S., Allen, R. M. & Lamont, R. F. The role of antimicrobial treatment during pregnancy on the neonatal gut microbiome and the development of atopy, asthma, allergy and obesity in childhood. Expert. Opin. Drug. Saf. 18, 173–185 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santacruz, A. et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104, 83–92 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trevisanuto, D. et al. Fetal placental inflammation is associated with poor neonatal growth of preterm infants: a case-control study. J. Matern. Fetal Neonatal Med. 26, 1484–1490 (2013).PubMed 
    Article 

    Google Scholar 
    Song, S. J. et al. Naturalization of the microbiota developmental trajectory of Cesarean-born neonates after vaginal seeding. Med 2, 951–964.e5 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abu-Raya, B., Michalski, C., Sadarangani, M. & Lavoie, P. M. Maternal immunological adaptation during normal pregnancy. Front. Immunol. 11, 575197 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, L. A. et al. The transfer of immunity from mother to child. Ann. NY. Acad. Sci. 987, 199–206 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dominguez-Bello, M. G. et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat. Med. 22, 250–253 (2016). This study demonstrates that ‘seeding’ infants born by caesarean delivery with the vaginal microbiota of the mother at birth partially naturalizes development of the microbial community.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145.e5 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helve, O. et al. 2843. Maternal fecal transplantation to infants born by cesarean section: safety and feasibility. Open. Forum Infect. Dis. 6, S68 (2019).PubMed Central 
    Article 

    Google Scholar 
    Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014). This study shows that severe acute malnutrition leads to immature microbial development and introduces a metric for the measure of microbiota maturity.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Groer, M. W. et al. Development of the preterm infant gut microbiome: a research priority. Microbiome 2, 38 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021). This report describes the immune development driven by microbial interactions and the negative impact of lack of HMO-utilizing microorganisms on the immune system.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sela, D. A. & Mills, D. A. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol. 18, 298–307 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seppo, A. E. et al. Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle. Allergy 76, 3489–3503 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Triantis, V., Bode, L. & van Neerven, R. J. J. Immunological effects of human milk oligosaccharides. Front. Pediatr. 6, 190 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yu, Z.-T., Chen, C. & Newburg, D. S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23, 1281–1292 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).Article 
    CAS 

    Google Scholar 
    McDonald, D. et al. American gut: an open platform for citizen science microbiome research. mSystems 3, e00031–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Odamaki, T. et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol. 16, 90 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schei, K. et al. Early gut mycobiota and mother-offspring transfer. Microbiome 5, 107 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alonso, R., Pisa, D., Fernández-Fernández, A. M. & Carrasco, L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front. Aging Neurosci. 10, 159 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagpal, R. et al. Gut mycobiome and its interaction with diet, gut bacteria and Alzheimer’s disease markers in subjects with mild cognitive impairment: a pilot study. EBioMedicine 59, 102950 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmad, H. F. et al. Gut mycobiome dysbiosis is linked to hypertriglyceridemia among home dwelling elderly Danes. Preprint at bioRxiv https://doi.org/10.1101/2020.04.16.044693 (2020).Article 

    Google Scholar 
    Wampach, L. et al. Colonization and succession within the human gut microbiome by archaea, bacteria, and microeukaryotes during the first year of life. Front. Microbiol. 8, 738 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. et al. The stepwise assembly of the neonatal virome is modulated by breastfeeding. Nature 581, 470–474 (2020). This study describes the assembly of the human virome during development.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lim, E. S. et al. Early life dynamics of the human gut virome and bacterial microbiome in infants. Nat. Med. 21, 1228–1234 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. et al. Dynamics of the stool virome in very early-onset inflammatory bowel disease. J. Crohns. Colitis 14, 1600–1610 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koren, O. & Rautava, S. The Human Microbiome in Early Life: Implications to Health and Disease (Academic, 2020).Reyes, A. et al. Gut DNA viromes of Malawian twins discordant for severe acute malnutrition. Proc. Natl Acad. Sci. USA 112, 11941–11946 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oude Munnink, B. B. & van der Hoek, L. Viruses causing gastroenteritis: the known, the new and those beyond. Viruses 8, 42 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Woolhouse, M., Scott, F., Hudson, Z., Howey, R. & Chase-Topping, M. Human viruses: discovery and emergence. Phil. Trans. R. Soc. B 367, 2864–2871 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rascovan, N., Duraisamy, R. & Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol. 70, 125–141 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mason, M. R., Chambers, S., Dabdoub, S. M., Thikkurissy, S. & Kumar, P. S. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 6, 67 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dzidic, M. et al. Oral microbiome development during childhood: an ecological succession influenced by postnatal factors and associated with tooth decay. ISME J. 12, 2292–2306 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Merglova, V. & Polenik, P. Early colonization of the oral cavity in 6- and 12-month-old infants by cariogenic and periodontal pathogens: a case-control study. Folia Microbiol. 61, 423–429 (2016).CAS 
    Article 

    Google Scholar 
    Gomez, A. & Nelson, K. E. The oral microbiome of children: development, disease, and implications beyond oral health. Microb. Ecol. 73, 492–503 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cephas, K. D. et al. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS ONE 6, e23503 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crielaard, W. et al. Exploring the oral microbiota of children at various developmental stages of their dentition in the relation to their oral health. BMC Med. Genomics 4, 22 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darwazeh, A. M. & al-Bashir, A. Oral candidal flora in healthy infants. J. Oral. Pathol. Med. 24, 361–364 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stecksén-Blicks, C., Granström, E., Silfverdal, S. A. & West, C. E. Prevalence of oral Candida in the first year of life. Mycoses 58, 550–556 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ghannoum, M. A. et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 6, e1000713 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brusa, T., Conca, R., Ferrara, A., Ferrari, A. & Pecchioni, A. The presence of methanobacteria in human subgingival plaque. J. Clin. Periodontol. 14, 470–471 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrari, A., Brusa, T., Rutili, A., Canzi, E. & Biavati, B. Isolation and characterization ofMethanobrevibacter oralis sp. nov. Curr. Microbiol. 29, 7–12 (1994).CAS 
    Article 

    Google Scholar 
    Nguyen-Hieu, T., Khelaifia, S., Aboudharam, G. & Drancourt, M. Methanogenic archaea in subgingival sites: a review. APMIS 121, 467–477 (2013).PubMed 
    Article 

    Google Scholar 
    Abeles, S. R., Ly, M., Santiago-Rodriguez, T. M. & Pride, D. T. Effects of long term antibiotic therapy on human oral and fecal viromes. PLoS ONE 10, e0134941 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pérez-Brocal, V. & Moya, A. The analysis of the oral DNA virome reveals which viruses are widespread and rare among healthy young adults in Valencia (Spain). PLoS ONE 13, e0191867 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dye, B. A., Li, X. & Thornton-Evans, G. Oral health disparities as determined by selected healthy people 2020 oral health objectives for the United States, 2009–2010. NCHS Data Brief. 104, 1–8 (2012).
    Google Scholar 
    Baker, J. L., Bor, B., Agnello, M., Shi, W. & He, X. Ecology of the oral microbiome: beyond bacteria. Trends Microbiol. 25, 362–374 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gaitanis, G. et al. Variation of cultured skin microbiota in mothers and their infants during the first year postpartum. Pediatr. Dermatol. 36, 460–465 (2019).PubMed 

    Google Scholar 
    Lee, Y. W., Yim, S. M., Lim, S. H., Choe, Y. B. & Ahn, K. J. Quantitative investigation on the distribution of Malassezia species on healthy human skin in Korea. Mycoses 49, 405–410 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Byrd, A. L., Belkaid, Y. & Segre, J. A. The human skin microbiome. Nat. Rev. Microbiol. 16, 143–155 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sugita, T. et al. Quantitative analysis of the cutaneous Malassezia microbiota in 770 healthy Japanese by age and gender using a real-time PCR assay. Med. Mycol. 48, 229–233 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Probst, A. J., Auerbach, A. K. & Moissl-Eichinger, C. Archaea on human skin. PLoS ONE 8, e65388 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hulcr, J. et al. A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS ONE 7, e47712 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moya, A. & Brocal, V. P. The Human Virome: Methods and Protocols (Springer, 2018).Foulongne, V. et al. Human skin microbiota: high diversity of DNA viruses identified on the human skin by high throughput sequencing. PLoS ONE 7, e38499 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc. Natl Acad. Sci. USA 107, 7503–7508 (2010). This study shows that cohabitating identical twins result in different microbial communities, highlighting the many unknown processes that lead to the unique human microbiota.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shao, Y. et al. Stunted microbiota and opportunistic pathogen colonization in caesarean-section birth. Nature 574, 117–121 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ainonen, S. et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr. Res. 91, 154–162 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, X., Lu, Y., Chen, T. & Li, R. The female vaginal microbiome in health and bacterial vaginosis. Front. Cell. Infect. Microbiol. 11, 631972 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wells, J. S., Chandler, R., Dunn, A. & Brewster, G. The vaginal microbiome in U.S. black women: a systematic review. J. Womens Health 29, 362–375 (2020).Article 

    Google Scholar 
    Martino, C. et al. Context-aware dimensionality reduction deconvolutes gut microbial community dynamics. Nat. Biotechnol. 39, 165–168 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Furman, O. et al. Stochasticity constrained by deterministic effects of diet and age drive rumen microbiome assembly dynamics. Nat. Commun. 11, 1904 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henderickx, J. G. E., Zwittink, R. D., van Lingen, R. A., Knol, J. & Belzer, C. The preterm gut microbiota: an inconspicuous challenge in nutritional neonatal care. Front. Cell. Infect. Microbiol. 9, 85 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malamitsi-Puchner, A. et al. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum. Dev. 81, 387–392 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stokholm, J. et al. Maturation of the gut microbiome and risk of asthma in childhood. Nat. Commun. 9, 141 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Andersen, V., Möller, S., Jensen, P. B., Møller, F. T. & Green, A. Caesarean delivery and risk of chronic inflammatory diseases (inflammatory bowel disease, rheumatoid arthritis, coeliac disease, and diabetes mellitus): a population based registry study of 2,699,479 births in Denmark during 1973–2016. Clin. Epidemiol. 12, 287–293 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blustein, J. et al. Association of caesarean delivery with child adiposity from age 6 weeks to 15 years. Int. J. Obes. 37, 900–906 (2013).CAS 
    Article 

    Google Scholar 
    Ardic, C., Usta, O., Omar, E., Yıldız, C. & Memis, E. Caesarean delivery increases the risk of overweight or obesity in 2-year-old children. J. Obstet. Gynaecol. 41, 374–379 (2021).PubMed 
    Article 

    Google Scholar 
    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martinez, K. A. 2nd et al. Increased weight gain by C-section: functional significance of the primordial microbiome. Sci. Adv. 3, eaao1874 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Livanos, A. E. et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat. Microbiol. 1, 16140 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moya-Pérez, A. et al. Intervention strategies for cesarean section–induced alterations in the microbiota-gut-brain axis. Nutr. Rev. 75, 225–240 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Braniste, V. et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci. Transl. Med. 6, 263ra158 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Forbes, J. D. et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr. 172, e181161 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shenhav, L. & Azad, M. B. Using community ecology theory and computational microbiome methods to study human milk as a biological system. mSystems 7, e01132–21 (2022).PubMed Central 
    Article 

    Google Scholar 
    Kaetzel, C. S. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism. Immunol. Lett. 162, 10–21 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munblit, D., Verhasselt, V. & Warner, J. O. Human Milk Composition and Health Outcomes in Children (Frontiers Media, 2019).Mastromarino, P. et al. Correlation between lactoferrin and beneficial microbiota in breast milk and infant’s feces. Biometals 27, 1077–1086 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coats, S. R., Pham, T.-T. T., Bainbridge, B. W., Reife, R. A. & Darveau, R. P. MD-2 mediates the ability of tetra-acylated and penta-acylated lipopolysaccharides to antagonize Escherichia coli lipopolysaccharide at the TLR4 signaling complex. J. Immunol. 175, 4490–4498 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Denou, E. et al. Defective NOD 2 peptidoglycan sensing promotes diet‐induced inflammation, dysbiosis, and insulin resistance. EMBO Mol. Med. 7, 259–274 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16, 341–352 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen, T. et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell 165, 1551 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao, J., Fiscella, K. A. & Gill, S. R. Oral microbiome: possible harbinger for children’s health. Int. J. Oral. Sci. 12, 12 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe 25, 656–667.e8 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allaband, C. et al. Intermittent hypoxia and hypercapnia alter diurnal rhythms of luminal gut microbiome and metabolome. mSystems 6, e00116–e00121 (2021).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Marotz, C. et al. Quantifying live microbial load in human saliva samples over time reveals stable composition and dynamic load. mSystems 6, e01182–20 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouslimani, A. et al. The impact of skin care products on skin chemistry and microbiome dynamics. BMC Biol. 17, 47 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009). This study demonstrates the important variability between body habitats and between individuals across the same body habitat.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet–microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaramela, L. S. et al. Gut bacteria responding to dietary change encode sialidases that exhibit preference for red meat-associated carbohydrates. Nat. Microbiol. 4, 2082–2089 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Etemadi, A. et al. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, j1957 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durack, J. & Lynch, S. V. The gut microbiome: relationships with disease and opportunities for therapy. J. Exp. Med. 216, 20–40 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3–dependent inflammation after skin injury. Nat. Med. 15, 1377–1382 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chng, K. R. et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat. Microbiol. 1, 16106 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. et al. Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. J. Invest. Dermatol. 138, 1137–1145 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shirtliff, M. E., Peters, B. M. & Jabra-Rizk, M. A. Cross-kingdom interactions: Candida albicans and bacteria. FEMS Microbiol. Lett. 299, 1–8 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santus, W., Devlin, J. R. & Behnsen, J. Crossing kingdoms: how the mycobiota and fungal-bacterial interactions impact host health and disease. Infect. Immun. 89, e00648–20 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taur, Y. et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci. Transl. Med. 10, eaap9489 (2018). This study shows that autologous faecal microbiota transplantation helps to restore the microbiota of patients who underwent antibiotic treatment.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Nood, E., Dijkgraaf, M. G. W. & Keller, J. J. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 2145 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tariq, R., Pardi, D. S., Bartlett, M. G. & Khanna, S. Low cure rates in controlled trials of fecal microbiota transplantation for recurrent Clostridium difficile infection: a systematic review and meta-analysis. Clin. Infect. Dis. 68, 1351–1358 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Panigrahi, P. et al. Corrigendum: a randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 553, 238 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halkjær, S. I. et al. Faecal microbiota transplantation alters gut microbiota in patients with irritable bowel syndrome: results from a randomised, double-blind placebo-controlled study. Gut 67, 2107–2115 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Korpela, K. et al. Maternal fecal microbiota transplantation in cesarean-born infants rapidly restores normal gut microbial development: a proof-of-concept study. Cell 183, 324–334.e5 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morton, J. T. et al. Learning representations of microbe–metabolite interactions. Nat. Methods 16, 1306–1314 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strandwitz, P. et al. GABA-modulating bacteria of the human gut microbiota. Nat. Microbiol. 4, 396–403 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rubin, B. E. et al. Species- and site-specific genome editing in complex bacterial communities. Nat. Microbiol. 7, 34–47 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954–17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mu, A. et al. Effects on the microbiome during treatment of a staphylococcal device infection. Preprint at Research Square https://doi.org/10.21203/rs.3.rs-969336/v1 (2021).Article 

    Google Scholar 
    Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012). This study reports microbial community alterations between older individuals (aged 65 years and older) dependent on whether they live in the company of others or alone, the latter of which was correlated to worse outcomes (that is, frailty and co-morbidity).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, L. et al. A cross-sectional study of compositional and functional profiles of gut microbiota in Sardinian centenarians. mSystems 4, e00325–19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kong, F. et al. Gut microbiota signatures of longevity. Curr. Biol. 26, R832–R833 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claesson, M. J. et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4586–4591 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Toole, P. W. & Jeffery, I. B. Gut microbiota and aging. Science 350, 1214–1215 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Shibagaki, N. et al. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci. Rep. 7, 10567 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu, S., Wang, Y., Zhao, L., Sun, X. & Feng, Q. Microbiome succession with increasing age in three oral sites. Aging 12, 7874–7907 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwartz, J. L. et al. Old age and other factors associated with salivary microbiome variation. BMC Oral. Health 21, 490 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strati, F. et al. Age and gender affect the composition of fungal population of the human gastrointestinal tract. Front. Microbiol. 7, 01227 (2016).Article 

    Google Scholar 
    Wu, L. et al. Age-related variation of bacterial and fungal communities in different body habitats across the young, elderly, and centenarians in Sardinia. mSphere 5, e00558–19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagpal, R. et al. Gut microbiome and aging: physiological and mechanistic insights. Nutr. Healthy Aging 4, 267–285 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilmanski, T. et al. Gut microbiome pattern reflects healthy ageing and predicts survival in humans. Nat. Metab. 3, 274–286 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021). This study finds that centenarians often had high abundances of microorganisms that produced unique secondary bile acids, namely various isoforms of lithocholic acid.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gill-King, H. in Forensic Taphonomy: the Postmortem Fate of Human Remains 93–108 (CRC, 1997).Janaway, R. C., Percival, S. L. & Wilson, A. S. in Microbiology and Aging (ed. Percival, S. L) 313–334 (Humana, 2009).Forbes, S. L., Perrault, K. A. & Comstock, J. L. in Taphonomy of Human Remains: Forensic Analysis of the Dead and the Depositional Environment (eds Schotsmans, E. M. J., Márquez-Grant, N. & Forbes, S. L.) 26–38 (Wiley, 2017).Heimesaat, M. M. et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS ONE 7, e40758 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkinson, R. A. et al. in Criminal and Environmental Soil Forensics (eds Ritz, K., Dawson, L. & Miller, D.) 379–394 (Springer, 2009).Metcalf, J. L. et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 351, 158–162 (2016). This study finds that the time since death was predictable through the microbial community composition independent of the soil type and season.CAS 
    PubMed 
    Article 

    Google Scholar 
    DeBruyn, J. M. & Hauther, K. A. Postmortem succession of gut microbial communities in deceased human subjects. PeerJ 5, e3437 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pechal, J. L., Schmidt, C. J., Jordan, H. R. & Benbow, M. E. A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci. Rep. 8, 5724 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kodama, W. A. et al. Trace evidence potential in postmortem skin microbiomes: from death scene to morgue. J. Forensic Sci. 64, 791–798 (2019).PubMed 
    Article 

    Google Scholar 
    Hauther, K. A., Cobaugh, K. L., Jantz, L. M., Sparer, T. E. & DeBruyn, J. M. Estimating time since death from postmortem human gut microbial communities. J. Forensic Sci. 60, 1234–1240 (2015).PubMed 
    Article 

    Google Scholar 
    Burcham, Z. M. et al. Fluorescently labeled bacteria provide insight on post-mortem microbial transmigration. Forensic Sci. Int. 264, 63–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burcham, Z. M. et al. Bacterial community succession, transmigration, and differential gene transcription in a controlled vertebrate decomposition model. Front. Microbiol. 10, 745 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balzan, S., de Almeida Quadros, C., de Cleva, R., Zilberstein, B. & Cecconello, I. Bacterial translocation: overview of mechanisms and clinical impact. J. Gastroenterol. Hepatol. 22, 464–471 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Metcalf, J. L. et al. A microbial clock provides an accurate estimate of the postmortem interval in a mouse model system. eLife 2, e01104 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hyde, E. R., Haarmann, D. P., Petrosino, J. F., Lynne, A. M. & Bucheli, S. R. Initial insights into bacterial succession during human decomposition. Int. J. Leg. Med. 129, 661–671 (2015).Article 

    Google Scholar 
    Javan, G. T., Finley, S. J., Smith, T., Miller, J. & Wilkinson, J. E. Cadaver thanatomicrobiome signatures: the ubiquitous nature of Clostridium species in human decomposition. Front. Microbiol. 8, 2096 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, H. R. et al. A machine learning approach for using the postmortem skin microbiome to estimate the postmortem interval. PLoS ONE 11, e0167370 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Belk, A. et al. Microbiome data accurately predicts the postmortem interval using random forest regression models. Genes 9, 104 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Metcalf, J. L. Estimating the postmortem interval using microbes: knowledge gaps and a path to technology adoption. Forensic Sci. Int. Genet. 38, 211–218 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Deel, H. et al. A pilot study of microbial succession in human rib skeletal remains during terrestrial decomposition. mSphere 6, e0045521 (2021).PubMed 
    Article 

    Google Scholar 
    Metcalf, J. L. et al. Microbiome tools for forensic science. Trends Biotechnol. 35, 814–823 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, T. T., Hathaway, H., Kosciolek, T., Knight, R. & Jeste, D. V. Gut microbiome in serious mental illnesses: a systematic review and critical evaluation. Schizophr. Res. 234, 24–40 (2021).PubMed 
    Article 

    Google Scholar 
    Jeste, D. V., Koh, S. & Pender, V. B. Perspective: social determinants of mental health for the new decade of healthy aging. Am. J. Geriatr. Psychiatry 30, 733–736 (2022).PubMed 
    Article 

    Google Scholar 
    Matijašić, M. et al. Gut microbiota beyond bacteria-mycobiome, virome, archaeome, and eukaryotic parasites in IBD. Int. J. Mol. Sci. 21, 2668 (2020).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morton, J. T. et al. Establishing microbial composition measurement standards with reference frames. Nat. Commun. 10, 2719 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gerber, G. K. The dynamic microbiome. FEBS Lett. 588, 4131–4139 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vázquez-Baeza, Y. et al. Guiding longitudinal sampling in IBD cohorts. Gut 67, 1743–1745 (2018).PubMed 
    Article 

    Google Scholar 
    Kane, P. B., Bittlinger, M. & Kimmelman, J. Individualized therapy trials: navigating patient care, research goals and ethics. Nat. Med. 27, 1679–1686 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, S. et al. Human skin, oral, and gut microbiomes predict chronological age. mSystems 5, e00630–19 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franzosa, E. A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Nat. Acad. Sci. USA 112, E2930–E2938 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vangay, P. et al. Microbiome metadata standards: report of the national microbiome data collaborative’s workshop and follow-on activities. mSystems 6, e01194–20 (2021).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Biogeographic implication of temperature-induced plant cell wall lignification

    Körner, C. The cold range limit of trees. Trends Ecol. Evo. 36, 979–989 (2021).Article 

    Google Scholar 
    Körner, C. Alpine Treelines (Springer, 2012).Miehe, G., Miehe, S., Vogel, J., Co, S. & Duo, L. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27, 169–173 (2007).Article 

    Google Scholar 
    Hoch, G. & Körner, C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct. Ecol. 19, 941–951 (2005).Article 

    Google Scholar 
    von Humboldt, A. & Bonpland, A. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind. Tübingen, Bey F.G. Cotta (1807).Körner, C. Climatic treelines: conventions, global patterns, causes. Erdkunde 61, 315–324 (2007).Article 

    Google Scholar 
    Piermattei, A., Crivellaro, A., Carrer, M. & Urbinati, C. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees Struct. Funct. 29, 613–620 (2015).CAS 
    Article 

    Google Scholar 
    Körner, C. et al. Life at 0 °C: the biology of the alpine snowbed plant Soldanella pulsatilla. Alp. Bot. 129, 63–80 (2019).Article 

    Google Scholar 
    Crivellaro, A. & Büntgen, U. New evidence of thermally-constraint plant cell wall lignification. Trends Plant Sci. 24, 322–324 (2020).Article 
    CAS 

    Google Scholar 
    Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).Article 

    Google Scholar 
    Dolezal, J. et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6, 24881 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryan, M. G. & Yoder, B. J. Hydraulic limits to tree height and tree growth. Biosci 47, 235–242 (1997).Article 

    Google Scholar 
    Koch, G. W., Sillett, S. C., Jennings, G. M. & Davis, S. D. The limits to tree height. Nature 428, 851–854 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2003).Scherrer, D. & Körner, C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602–2613 (2010).
    Google Scholar 
    Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Planta 147, 46–54 (2013).CAS 
    Article 

    Google Scholar 
    Plomion, C., Leprovost, G. & Stokes, A. Wood formation in trees. Plant Physiol. 127, 1513–1523 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rossi, S., Deslauriers, A., Anfodillo, T. & Carraro, V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia 152, 1–12 (2007).PubMed 
    Article 

    Google Scholar 
    Moura, J. C. M. S., Bonine, C. A. V., Viana, J. O. F., Dornelas, M. C. & Mazzafera, P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 52, 360–376 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weng, J. K. & Chapple, C. The origin and evolution of lignin biosynthesis. N. Phytol. 187, 273–285 (2010).CAS 
    Article 

    Google Scholar 
    Niklas, K. J., Cobb, E. D. & Matas, A. J. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. 68, 5261–5269 (2017).CAS 

    Google Scholar 
    Popper, Z. A. et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62, 567–590 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Piquemal, J. et al. Down regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 13, 71–83 (1998).CAS 
    Article 

    Google Scholar 
    Renault, H., Werck-Reichhart, D. & Weng, J.-K. Harnessing lignin evolution for biotechnological applications. Curr. Opin. Biotechnol. 56, 105–111 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schenk, H. J., Espino, S., Rich-Cavazos, S. M. & Jansen, S. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 105, 172–185 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Polo, C. C. et al. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Sci. Rep. 10, 6023 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meents, M. J., Watanabe, Y. & Samuels, A. L. The cell biology of secondary cell wall biosynthesis. Ann. Bot. 121, 1107–1125 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, M. M. & Sederoff, R. R. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol. 110, 3–13 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schweingruber, F. H. & Büntgen, U. What is ‘wood’ – An anatomical re-definition. Dendrochronologia 31, 187–191 (2013).Article 

    Google Scholar 
    Ellenberg, H. & Mueller-Dombois, D. A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. Inst. ETH Z.ürich. 37, 56–73 (1967).
    Google Scholar 
    Kim, W. J., Campbell, A. G. & Koch, P. Chemical variation in Lodgepole pine with latitude, elevation, and diameter class. Prod. J. 39, 7–12 (1989).CAS 

    Google Scholar 
    Gindl, W., Grabner, M. & Wimmer, R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, Struct. Funct. 14, 409–414 (2000).Article 

    Google Scholar 
    Schenker, G., Lens, A., Körner, C. & Hoch, G. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol. 34, 302–313 (2014).PubMed 
    Article 

    Google Scholar 
    Nagelmüller, S., Hiltbrunner, E. & Körner, C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants 9, plx054 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ji, H. et al. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Gen. 11, e1005471 (2015).Article 
    CAS 

    Google Scholar 
    Büntgen, U. Re-thinking the boundaries of dendrochronology. Dendrochronologia 53, 1–4 (2019).Article 

    Google Scholar 
    Piermattei, A. et al. A millennium-long ‘Blue-Ring’ chronology from the Spanish Pyrenees reveals sever ephemeral summer cooling after volcanic eruptions. Environ. Res. Lett. 15, 124016 (2020).Article 

    Google Scholar 
    Montwé, D., Isaac-Rentin, M., Hamman, A. & Spiecker, H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Comm. 9, 1574 (2018).Article 
    CAS 

    Google Scholar 
    Barros, J., Serk, H., Granlund, I. & Pesquet, E. The cell biology of lignification in higher plants. Ann. Bot. 115, 1053–1074 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, Z. & Mohnen, D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Cri. Rev. Biochem. Mol. Biol. 49, 212–241 (2014).CAS 
    Article 

    Google Scholar 
    Liu, Q., Luo, L. & Zheng, L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 19, 335 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kumar, M., Campbell, L. & Turner, S. Secondary cell walls: biosynthesis and manipulation. J. Exp. Bot. 67, 515–531 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mellerowicz, E. J., Baucher, M., Sundberg, B. & Boerjan, W. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 47, 239–274 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Petit, G., Anfodillo, T., Carraro, V., Grani, F. & Carrer, M. Hydraulic constraints limit height growth in trees at high altitude. N. Phytol. 189, 241–252 (2010).Article 

    Google Scholar 
    Li, L. et al. Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc. Natl Acad. Sci. USA 100, 4939–4944 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baldacci-Cresp, F. et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant J. 102, 1074–1089 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).PubMed 
    Article 

    Google Scholar 
    Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. J. Veg. Sci. 25, 967–977 (2014).Article 

    Google Scholar 
    Körner, C. Coldest places on earth with angiosperm plant life. Alp. Bot. 121, 11–22 (2011).Article 

    Google Scholar 
    GBIF.org. GBIF Occurrence Download. https://doi.org/10.15468/dl.ms4hjt (2018).Chamberlain, S., Ram, K. & Hart, T. Spocc: Interface to Specie Occurrence Data Sources, R package v.0.9.0. http://CRAN.R-project.org/package=spocc (2018).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Hijmans, R. J. Raster: geographic data analysis and modelling, R package v.2.2-12. http://CRAN.R-project.org/package=raster (2014).Gärtner, H. et al. A technical perspective in modern tree-ring research – How to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 97, e52337 (2015).
    Google Scholar 
    Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Techniques for Plant Stem Analysis (Verlag Kessel, 2013).Ghislan, B., Engel, J. & Clair, B. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA J. 40, 1–20 (2019).Article 

    Google Scholar 
    Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 1 (Springer, 2011).Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 2 (Springer, 2013).Dolezal, J., Dvorsky, M., Börner, A., Wild, J. & Schweingruber, F. H. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, the Western Himalaya (Springer International Publishing, 2018).Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software 559 for Ordination, Version 5.0 (Cambridge Univ. Press, 2012).Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 (Cambridge Univ. Press, 2014). More

  • in

    The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables

    Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60, 17–34 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, Q. et al. Gut bacterial communities of Lymantria xylina and their associations with host development and diet. Microorganisms 9(9), 1860 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yuan, X. et al. Comparison of gut bacterial communities of Grapholita molesta (Lepidoptera: Tortricidae) reared on different host plants. Int. J. Mol. Sci. 22(13), 6843 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, Y. et al. Comparison of gut bacterial communities and their associations with host diets in four fruit borers. Pest Manag. Sci. 76(4), 1353–1362 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lauzon, C. R., Sjogren, R. E. & Prokopy, R. J. Enzymatic capabilities of bacteria associated with apple maggot flies: A postulated role in attraction. J. Chem. Ecol. 26, 953–967 (2000).CAS 
    Article 

    Google Scholar 
    Douglas, A. E. The microbial dimension in insect nutritional ecology. Funct. Ecol. 23, 38–47 (2009).Article 

    Google Scholar 
    Kaltenpoth, M. & Engl, T. Defensive microbial symbionts in Hymenoptera. Funct. Ecol. 28(2), 315–327 (2014).Article 

    Google Scholar 
    Bruner-Montero, G., Wood, M., Horn, H. A., Gemperline, E., Li, L. & Currie, C. R. Symbiont-mediated protection of acromyrmex leaf-cutter ants from the entomopathogenic fungus Metarhizium anisopliae. mBio 12(6), e0188521 (2021).Zhang, Q. et al. Enterobacter hormaechei in the intestines of housefly larvae promotes host growth by inhibiting harmful intestinal bacteria. Parasit. Vector. 14(1), 598 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, S., et al. The gut microbiota in Camellia weevils are influenced by plant secondary metabolites and contribute to saponin degradation. mSystems 5(2), e00692–19 (2020).Sato, Y. et al. Insecticide resistance by a host-symbiont reciprocal detoxification. Nat. Commun. 12(1), 6432 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jordan, H. R. & Tomberlin, J. K. Microbial influence on reproduction, conversion, and growth of mass produced insects. Curr. Opin. Insect Sci. 48, 57–63 (2021).PubMed 
    Article 

    Google Scholar 
    Strano, C. P., Malacrinò, A., Campolo, O. & Palmeri, V. Influence of host plant on Thaumetopoea pityocampa gut bacterial community. Microb. Ecol. 75(2), 487–494 (2018).PubMed 
    Article 

    Google Scholar 
    Mason, C. J. et al. Diet influences proliferation and stability of gut bacterial populations in herbivorous lepidopteran larvae. PLoS ONE 15(3), e0229848 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammer, T. J., Janzen, D. H., Hallwachs, W., Jaffe, S. P. & Fierer, N. Caterpillars lack a resident gut microbiome. Proc. Natl. Acad. Sci. USA 114, 9641–9646 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scully, E. D. et al. Host-plant induced changes in microbial community structure and midgut gene expression in an invasive polyphage (Anoplophora glabripennis). Sci. Rep. 8(1), 9620 (2018).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. F. irst report of outbreaks of the fall armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in west and central Africa. PLoS ONE 11(10), e0165632 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagoshi, R. N. et al. Southeastern Asia fall armyworms are closely related to populations in Africa and India, consistent with common origin and recent migration. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Beuzelin, J. M., Larsen, D. J., Roldán, E. L. & Schwan Resende, E. Susceptibility to chlorantraniliprole in fall armyworm (Lepidoptera: Noctuidae) populations infesting sweet corn in southern florida. J. Econ. Entomol. 115(1), 224–232 (2022).Montezano, D. G. et al. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 26, 286–300 (2018).Article 

    Google Scholar 
    Jones, A. G., Mason, C. J., Felton, G. W. & Hoover, K. Host plant and population source drive diversity of microbial gut communities in two polyphagous insects. Sci. Rep. 9(1), 2792 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mason, C. J., Hoover, K. & Felton, G. W. Effects of maize (Zea mays) genotypes and microbial sources in shaping fall armyworm (Spodoptera frugiperda) gut bacterial communities. Sci. Rep. 119(1), 4429 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    Lv, D. et al. Comparison of gut bacterial communities of fall armyworm (Spodoptera frugiperda) reared on different host plants. Int. J. Mol. Sci. 22(20), 11266 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Y. P. et al. Effects of host plants on bacterial community structure in larvae midgut of Spodoptera frugiperda. Insects 13(4), 373 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, J. et al. Cabbage cultivars influence transfer and toxicity of cadmium in soil-Chinese flowering cabbage Brassica campestris-cutworm Spodoptera litura larvae. Ecotoxicol. Environ. Saf. 213, 112076 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abdullah, A., Ullah, M. I., Raza, A. M., Arshad, M. & Afzal, M. Host plant selection affects biological parameters in armyworm, Spodoptera litura (Lepidoptera: Noctuidae). Pak. J. Zool. 51(6), 2117–2123 (2019).Article 

    Google Scholar 
    Gopalakrishnan, R. & Kalia, V. K. Biology and biometric characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on different host plants with regard to diet. Pest Manag. Sci. 78(5), 2043–2051 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    He, L. et al. Larval diet affects development and reproduction of East Asian strain of the fall armyworm Spodoptera frugiperda. J. Integr. Agr. 20(3), 736–744 (2021).Article 

    Google Scholar 
    He, L., Wu, Q., Gao, X. & Wu, K. Population life tables for the invasive fall armyworm, Spodoptera frugiperda fed on major oil crops planted in China. J. Integr. Agr. 20(3), 745–754 (2021).Article 

    Google Scholar 
    Xie, W. et al. Age-stage, two-sex life table analysis of Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae) reared on maize and kidney bean. Chem. Biol. Technol. Ag. 8, 44 (2021).CAS 
    Article 

    Google Scholar 
    Gopalakrishnan, R. & Kalia, V. K. Biology and biometric characteristics of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on different host plants with regard to diet. Pest Manag. Sci. 78(5), 2043–2051 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, P. et al. Host selection and adaptation of the invasive pest Spodoptera frugiperda to indica and japonica rice cultivars. Entomol. Gen. https://doi.org/10.1127/entomologia/2022/1330 (2022).Article 

    Google Scholar 
    Wu, L. et al. Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables. J. Integr. Agr. 20(3), 755–763 (2021).Article 

    Google Scholar 
    Wu, F. et al. Population development, fecundity, and flight of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on three green manure crops: implications for an ecologically based pest management approach in China. J. Econ. Entomol. 115(1), 124–132 (2022).PubMed 
    Article 

    Google Scholar 
    Hou, M. L. & Sheng, C. F. Effects of different foods on growth, development and reproduction of cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Acta Entomol. Sin. 43, 168–175 (2000).CAS 

    Google Scholar 
    Wang, X. L. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Näsvall, K. et al. Host plant diet affects growth and induces altered gene expression and microbiome composition in the wood white (Leptidea sinapis) butterfly. Mol. Ecol. 30(2), 499–516 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ort, B. S., Bantay, R. M., Pantoja, N. A. & O’Grady, P. M. Fungal diversity associated with Hawaiian Drosophila host plants. PLoS ONE 7(7), e40550 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Fruit host-dependent fungal communities in the microbiome of wild Queensland fruit fly larvae. Sci. Rep. 10(1), 16550 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeng, J. Y. et al. Avermectin stress varied structure and function of gut microbial community in Lymantria dispar asiatica (Lepidoptera: Lymantriidae) larvae. Pestic. Biochem Physiol. 164, 196–202 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, C., Zhang, J., Tan, H., Fu, Z. & Wang, X. Characterization of the gut microbiome in the beet armyworm Spodoptera exigua in response to the short-term thermal stress. J. Asia-Pac. Entomol. 25, 101863 (2022).Article 

    Google Scholar 
    Rozadilla, G., Cabrera, N. A., Virla, E. G., Greco, N. M. & McCarthy, C. B. Gut microbiota of Spodoptera frugiperda (J.E. Smith) larvae as revealed by metatranscriptomic analysis. J. Appl. Entomol. 144, 351–363 (2020).CAS 
    Article 

    Google Scholar 
    Ugwu, J. A., Liu, M., Sun, H. & Asiegbu, F. O. Microbiome of the larvae of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) from maize plants. J. Appl. Entomol. 144, 764–776 (2020).CAS 
    Article 

    Google Scholar 
    Wang, X. et al. Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 11, 1366 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yang, F. Y. et al. Differential profiles of gut microbiota and metabolites associated with host shift of Plutella xylostella. Int. J. Mol. Sci. 21, 6283 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Shao, Y. et al. Crystallization of alpha- and beta-carotene in the foregut of Spodoptera larvae feeding on a toxic food plant. Insect Biochem. Mol. Biol. 41, 273–281 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santos, T. A., Scorzoni, L., Correia, R., Junqueira, J. C. & Anbinder, A. L. Interaction between Lactobacillus reuteri and periodontopathogenic bacteria using in vitro and in vivo (G mellonella) approaches. Pathog. Dis. 78(8), ftaa044 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Biedermann, P. & Vega, F. E. Ecology and evolution of insect-fungus mutualisms. Annu. Rev. Entomol. 65, 431–455 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, Q., Yao, Z., Cai, Z., Bai, S. & Zhang, H. Gut fungal community and its probiotic effect on Bactrocera dorsalis. Insect Sci. https://doi.org/10.1111/1744-7917.12986 (2021).Article 
    PubMed 

    Google Scholar 
    Bing, X. L., Gerlach, J., Loeb, G. & Buchon, N. Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio 9, e02199-e2117 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keebaugh, E. S., Ryuichi, Y., Benjamin, O., Ludington, W. B. & Ja, W. W. Microbial quantity impacts Drosophila nutrition, development, and lifespan. Iscience 4, 247–259 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deutscher, A. T., Chapman, T. A., Shuttleworth, L. A., Riegler, M. & Reynolds, O. L. Tephritid-microbial interactions to enhance fruit fly performance in sterile insect technique programs. BMC Microbiol. 19, 287 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurung, K., Wertheim, B. & Falcao Salles, J. The microbiome of pest insects: it is not just bacteria. Entomol. Exp. Appl. 167, 156–170 (2019).Article 

    Google Scholar 
    Sun, J., Xia, Y. & Ming, D. Whole-genome sequencing and bioinformatics analysis of Apiotrichum mycotoxinivorans: Predicting putative zearalenone-degradation enzymes. Front. Microbiol. 11, 1866 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qian, X. J. et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Apiotrichum porosum DSM27194. Fuel 290, 119811 (2021).CAS 
    Article 

    Google Scholar 
    Passos, D. F., Pereira, N. & Castro, A. M. A comparative review of recent advances in cellulases production by Aspergillus, Penicillium and Trichoderma strains and their use for lignocellulose deconstruction. Curr. Opin. Green Sustain Chem. 14, 60–66 (2018).Article 

    Google Scholar 
    Višňovská, D. et al. Caterpillar gut and host plant phylloplane mycobiomes differ: a new perspective on fungal involvement in insect guts. FEMS Microbiol. Ecol. 96(9), fiaa116 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Shu, B. et al. Growth inhibition of Spodoptera frugiperda larvae by camptothecin correlates with alteration of the structures and gene expression profiles of the midgut. BMC Genomics 22, 391 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Estimation of nutrient loads with the use of mass-balance and modelling approaches on the Wełna River catchment example (central Poland)

    Case study areaThe studied catchment (2 621 km2) is located in the central-western part of Poland, and constitutes a part of the Oder River basin. The Wełna River (118 km) discharges to the Warta River near the town of Oborniki18, with an average flow rate of 8.1 m3s−1 (1980–2019) in this profile19. The natural conditions in this catchment favour the development of intensive agriculture, which covers almost 72% of this area (1888 km2) and contributes to the high consumption of mineral fertilizers20. Forest areas cover another 22% of this catchment (589 km2), while urbanised ones only 4% (93 km2) (Fig. 1). The Wełna River catchment is inhabited by approx. 230,000 people, of which only approx. 74% is served by wastewater treatment facilities21.Figure 1Localisation of the Wełna River catchment with its land use forms and nutrient sources. This figure was created using ArcGIS 10.2.1 for Desktop available at https://www.esri.com/en-us/home. Licence granted to Institute of Meteorology and Water Management.Full size imageInput dataBoth the mass-balance method and the modelling method require a similar amount and type of input data (Supplementary Table S1). Basic information on the Wełna River daily flow rates and nutrient concentrations in the closing profile of the catchment (Oborniki) has been obtained from the state monitoring services (Institute of Meteorology and Water Management—National Research Institute—IMGW-PIB13 and State Environmental Monitoring22—SEM) (Supplementary Table S1). They have formed the basis for the estimation of the share of individual sources in the mass-balance method, as well as for the calibration of the Macromodel DNS/SWAT in the modelling method. Other data, such as maps of elevation, river network and soil maps, as well as meteorological data, necessary for the development of an accurate representation of the studied catchment area on the Macromodel DNS/SWAT digital platform, were also obtained from state repositories. Data on the land use comes from the Corine Land Cover8, while detailed information on nutrient sources has been obtained mostly from the Local Data Bank of statistical information. The utilisation of the collected database has been presented in Fig. 2, and described in the following text. The comparison of the results for nutrient loads from both method was based on the year 2017, which was characterised by the maximum amount of monitoring data for both flows (365 measurements) (IMGW-PIB) and total nitrogen (TN) and total phosphorus (TP) (12 measurements–SEM). The average air temperature in 2017 in Poland was 1.5 °C higher than the long-term average (1971–2000) and was over 10 °C which resulted from the warm autumn and the end of the year. The time of the snow cover presence was shorter than the long-term data, and the rest of the year was classified as thermally normal.Figure 2Methodology diagram with relevant chapters marked in grey ovals (green—steps and data used for Mass Balance method, blue—steps data used for Modelling method, green/blue—steps and data used for both methods).Full size imageIn terms of precipitation, 2017 was assessed as wet, similarly due to rainy autumn and summer. In the Wełna River catchment area, the annual rainfall was about 770 mm, however high variability of precipitation conditions in particular months, from extremely wet to very dry, should be noted23. Therefore hydrologically, 2017 was considered normal with the flows only slightly lower than the long-term average.Mass-balance methodThe first method used for the quantification of sources and loads in the studied area was the static mass-balance method. It is widely used by the Polish administration authorities responsible for water management17. This method is based on the assumption that the sum of the nutrient loads in the river’s closing profile (selected based on access to the monitoring data) and its retention in the catchment equals the emission of nutrients in a given time. Such assumption allows the apportioning of the river loads among identified sources and the estimation of their contribution to the total loads, based on known or assumed values of their retention.River load calculationThe total load of nutrients discharged from the catchment was calculated using the daily flow rate and nutrient concentrations in the closing profile of the catchment area (Oborniki, Fig. 1) from the SEM (Supplementary Table S1). The daily river load was calculated using the following Eq. 5:$${L}_{river}=0.0864sum_{t=1}^{n=365}{({Q}_{t}cdot {C}_{t})}_{t}$$
    (1)
    where: Lriver is the annual load [kga-1], n is the number of days, t is the consecutive day, Ct is the concentration [mg L-1], Qt is the mean daily flow rate [Ls-1], and 0.0864 is the unit conversion.Due to the fact that the flow rate is measured daily and nutrient concentrations only 12 times a year, the linear interpolation method5 was used to obtain the daily concentration values:$${x}_{k}={x}_{a}+kcdot frac{{x}_{b}-{x}_{a}}{n+1}$$
    (2)
    where: xk is the interpolated concentration value, xa is the first of the two measured concentration values between which the concentrations are interpolated, xb is the second of the two measured concentration values between which the concentrations are interpolated, k is the consecutive number of missing value and n is number of missing values.Source apportionmentFor the mass-balance method, data on nutrient loads for source apportionment (emission inventory) was collected in order to proceed with further calculations. The calculations were performed for 2017, due to the availability of river monitoring data and the nutrient sources were divided into 7 categories, based on the HELCOM guidelines5: municipal (MWS) and industrial (INS) point sources, municipal diffuse sources (SCS), forestry (MFS), agriculture (AGS), natural background (NBS) and atmospheric deposition (ATS). The category of “unknown sources” (UKS) was taken into account, in order to include possible discrepancies in nutrients load apportionment, and to cover eventual differences between calculated river load and inventoried emission.The MWS loads were calculated on the basis of the number of inhabitants served by the wastewater treatment plants (WWTPs)21. In the Wełna River catchment, 151 771 inhabitants were served by the 12 WWTPs covered by the National Wastewater Treatment Program (NWTP)24, which provides information on the total discharge volume from each facility. For 5 of these plants, information on influent/effluent nutrient concentrations was also available, allowing the direct calculation of discharged loads. For the remaining seven facilities, the loads were calculated on the basis of the mean influent concentration information, available for the WWTPs covered by the NWTP (80 mgL−1 and 12 mgL−1 for TN and TP, respectively), and approximated nutrient reduction level in non-biological WWTPs. This reduction level, based on data from the NWTP, was set at 65% for TN and 35% for TP24. Another 19 350 inhabitants of this catchment were connected to the small WWTPs, not included in the NWTP. This part of the MWS load was calculated using the mean daily wastewater outflow (0.12 m3day−1 per person), the same mean nutrient concentrations and reduction levels as presented above. Additionally, the remaining 25% of the catchment’s population (58,000) is not connected to any WWTP and uses septic tanks and other types of individual wastewater treatment systems. The load from this source was expressed as SCS, and calculated using unit loads set on 11 gday−1 per person and 1.6 gday-1 per person for TN and TP, respectively17. The industrial nutrient input information (INS) was gathered directly from the Statistics Poland office database21.The AGS load was calculated using nitrate and phosphate concentrations in shallow groundwater (90 cm below the ground surface), from 22 sampling points located on agricultural areas in the Wełna River catchment17. Concentrations were recalculated to TN and TP respectively and averaged. Thus, the obtained mean concentrations were 8.25 mgL−1 of TN and 1.92 mgL−1 of TP. Subsequently, load values were calculated by multiplying these concentrations by the outflow from agricultural areas, calculated as a share of the total catchment outflow respective to the agricultural use of the area. The calculated loads were multiplied by coefficients reflecting the share of monitored outflow (groundwaters and tile drainage) from the agricultural runoff (1.11 for TN and 4.17 for TP)25. Subsequently, the natural background (NBS) was subtracted from the AGS load.The load corresponding to NBS was calculated using the total catchment outflow and nutrient concentration values reflecting conditions in undisturbed areas of pre-human activity, set as 0.15 mgL−1 and 0.02 mgL−1, for TN and TP respectively17. The MFS load was also calculated in a similar way, using nutrient concentrations set to represent forest catchment as 0.31 mgL−1 and 0.038 mgL−117 and the outflow calculated as the share of the total catchment area, respective for the catchment part covered by forest. Also in this case, the NBS load has been subtracted. As for the ATS load, data on pollutant deposition into the ground from precipitation was taken from the SEM network26. This data was based on precipitation and its chemistry measurements taken from 22 monitoring stations covering the entire territory of Poland. The total load from the point and diffuse sources was calculated by adding the loads mentioned above. The eventual difference between the river load (“River load calculation” Section) and inventoried emission (“Mass-balance method” Section) accounted for the other sources (UKS).Load apportionmentThe contribution of each source to the calculated river load was calculated based on a simplified equation modified from HELCOM5:$${L}_{river}=DP+LOD-RP-RD$$
    (3)
    where: Lriver is the river load [kga−1], DP is the load from point sources (MWS and INS) [kga−1], LOD is the load from diffuse sources (SCS, ATS, MFS, AGS and, NBS) [kga−1], RP is the point source retention [kga−1] and RD is the diffuse source retention [kga−1].In the adopted mass-balance method, it is assumed that nutrient load from the point sources (DP) is introduced directly into the river bed phase, while load from the diffuse sources (LOD) is discharged into both phases of the catchment, land and river bed ones. In both phases, self-purification processes are taking place, resulting in the reduction of nutrient loads on the way from the source to the catchment closing profile. However, due to the limited amount of data, the self-purification processes in the river have been omitted, therefore the point source retention (RP) equalled 0 kga−1. Subsequently, the diffuse source retention (RD) has been estimated on the basis of the difference between each nutrient load of the river (Lriver) and the point sources (LOD). The remaining river load has been then attributed proportionally to the contribution of the particular diffuse sources to the total source apportionment (emission inventory).Modelling methodThe digital platform, the Macromodel DNS with the SWAT module27,28,29,30,31,32, was used for comparison for the nutrient balancing method described in “Mass-balance method” Section. This advanced dynamic tool tracks nitrogen and phosphorus migration paths in the river basin taking into account their spatial and temporal variability. For this purpose, it takes into account a very extensive input database, similar to that used in the mass balance method (Supplementary Table S1). Natural and anthropogenic processes that affect the transport and transformation of nutrients, are also part of this platform. The SWAT module (version 2012) is a tool which operates in the spatial information system (GIS) and is fully integrated with it. Using the digital elevation model (DEM), the SWAT module divided the entire analysed Wełna River catchment into a total of 225 sub-catchments of an average area of 11.5 km2. The subsequent use of data on land use (forests, agriculture and urbanised areas) and the types of soils (31 classes) allowed the authors to identify a total of 2824 hydrological response units (HRUs), homogeneous in terms of vegetation, soil and topography33. Afterwards, a simulation of soil water content, evapotranspiration, surface runoff, primary and underground flows was carried out in accordance with the water balance Eq. (4), which represents the basis for the quantitative component and the HRU.$${SW}_{t}={SW}_{0}+sum_{i=1}^{t}({R}_{day}-{Q}_{surf}-{E}_{a}-{W}_{seep}-{Q}_{gw})$$
    (4)
    where: SWt is the final soil water content (mm H2O), SW0 is the initial soil water content (mm H2O), Rday is the amount of precipitation (mm H2O), Qsurf is amount of surface runoff (mm H2O), Ea is the amount of evapotranspiration (mm H2O), Wseep is the amount of water entering the vadose zone from the soil profile (mm H2O), Qgw is the amount of return flow (mm H2O).The model directs all runoff flows generated by each HRU through the channel network, thus simulating a catchment. The water balance equation also represents a basis for the simulation, transport and transformation of nutrients required for the quantitative component of the model. This tool models forms of nitrogen, organic and inorganic , different forms of phosphorus in soil34, as well as organic nitrogen and phosphorus forms associated with plant residues, microbial biomass and soil humus35,36,37,38. Final results of simulations are produced by the SWAT model as all the forms of nitrogen and phosphorus (in kilograms of N and P per a time unit, respectively) are then summed up to give TN and TP values. To verify that the model properly predicts TN and TP values its results are calibrated with the TN and TP values resulting from SEM, as described in Sect. 2.4.1. Moreover, the particular forms of nitrogen and phosphorus have also been compared with the modelling results (Supplementary Table S4). A detailed overview of the migration and transformation pathways of nitrogen and phosphorus forms in the catchment has been presented in the Supplementary Information (Sect. S1), while mathematical description of these processes is included in the theoretical documentation of the SWAT model39.Similarly, as in the case of the mass-balance method, diffuse sources of nutrients from agriculture (AGS), forestry (MFS) or urban areas (URB) in SWAT were simulated in the land phase of the catchment. In the land phase, the model simulates both the infiltration of nutrients into the soil (fertilization, plant biomass, precipitation) and their removal from it (volatilization, denitrification, erosion, surface runoff). Additionally, changes in the distribution of nutrients in the soil (uptake by plants) and the low mobility of phosphorus itself are also taken into account39,40,41.Pollutants from municipal and industrial point sources (MWS, INS) are introduced directly into the river bed phase. The exception here is the nutrient load from municipal diffuse sources (SCS) which, reduced as a result of the self-purification processes taking place in the land phase, is also treated in the model as point sources. The SCS nutrient load mainly derives from leaking or illegally emptied septic tanks. For this purpose, septic tanks have been divided into three types: leaky, partially illegally emptied, and sealed septic tanks, legally emptied. The loads from the legally emptied tanks are included in the effluents from WWTPs reported in the catchment. While for the remaining types, their loads are calculated using factors depending on their effectiveness in nutrient removal (15 – 50%). The final nutrient load derived from these types of facilities is then calculated, taking into consideration the number of inhabitants using the different types of septic tanks and the average chemical composition of wastewater21.The load of nutrients from the atmospheric deposition (ATS) affects both land and river phases due to the presence of two deposition mechanisms in the SWAT module, i.e., wet and dry deposition. The model also allows for the determination of nutrient loads generated as a result of natural processes of nitrogen and phosphorus transformation and transport in the soil, with the omission of all anthropogenic pressure—natural background (NBS).Calibration, verification and validationThe SWAT module for the Wełna River has been calibrated, verified and validated using the SWAT-CUP software42. For the quantitative component (water circulation in the catchment), the implemented daily flow data (source: IMGW-PIB) for the period of 18 years (2001–2018) came from the water gauge stations on the Wełna River (Pruśce and Kowanówko) and its tributary (the Flinta River-Ryczywół) (Fig. 1). The qualitative component (nitrogen and phosphorus concentration in the catchment) was gathered from the SEM stations localised at the Wełna River (Oborniki and Rogoźno) (Fig. 1) and covered a period of 13 years (2005–2018). Three statistical measures, coefficient of determination (R2)43, percent bias (PBIAS)44, and Kling-Gupta efficiency (KGE)45, have been used to indicate the Wełna River model performance (Supplementary Tables S2 and S3). In terms of the quantitative component, the calibration and verification coefficients R2, KGE and PBIAS classified the model performance generally as good and very good for the main river (Wełna), and satisfactory and good for its tributary (Flinta). During the validation procedure, all coefficient values rated the model performance for daily flow simulations as very good. In terms of qualitative components, the model performance for TN simulations can be considered as very good or good, according to the all-applied coefficients. Lower model performance, mostly satisfactory, was observed for TP mainly due to the variability of phosphorus temporal distribution patterns (Supplementary Table S2). The entire process was described in detail in Orlińska-Woźniak et al46.Variant scenariosIn order to determine the contribution of individual sources to the total load of nutrients in the profile closing the analysed catchment, a final simulation of the model was used and subjected to calibration, verification and validation procedures, and called the baseline scenario (A0). Subsequent so-called variant scenarios (A1–A5), i.e. model simulations, were developed. In variant scenarios the values of selected parameters were changed in relation to the A0 scenario. This was used both in the river bed phase for point sources (A1) and for individual diffuse sources (A2–5), thus imitating surface changes for particular types of land use in the land phase of the catchment (Fig. 3).Figure 3Variant analysis diagram for assessment of nutrient loads (L) for particular modelling scenarios and sources described in the text: MWS, INS, SCS—point sources, URB—urban, AGS—agricultural, MFS—forest.Full size imageIn the A1 scenario, all parameterized and aggregated point sources (MWS, INS, SCS) for each relevant sub-basin (LMWS,INS,SCS), were removed from the model to calculate their contribution to the total nutrient loads in the closing profile of the studied catchment (LA1).In the next two scenarios (A2 and A3), concerning urban and agricultural land use, their surface areas (5 663 ha and 192 917 ha, respectively) were successively replaced by the forest land use. This procedure was based on the assumption that the forest is the primary type of land use for this catchment area47. In order to completely eliminate the influence of these areas, the nutrient loads from the relevant surface area occupied by forest land use were subtracted, in order to estimate the contribution of urban and agricultural land (LURB and LAGS, respectively).The change in land use from urbanised and agricultural areas to forest areas increased their percentage of the catchment area to almost 100%, thus the original image of the catchment area and the nutrient load at its mouth. On this basis, in scenario A4, the nutrient load from forests LMFS, which currently occupy only 20% of the catchment area (A0), flowing to the closing profile, was calculated from the proportion.The A5 scenario is the difference between the nutrient load from the A0 scenario and the sum of the remaining loads from the subsequent variant scenarios (A1–A4). In this way, both the natural background (NBS) and atmospheric deposition (ATS) were taken into account. More

  • in

    Balsam fir (Abies balsamea) needles and their essential oil kill overwintering ticks (Ixodes scapularis) at cold temperatures

    Kilpatrick, A. M. et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos. Trans. R. Soc. B-Biol. Sci. 372, 15. https://doi.org/10.1098/rstb.2016.0117 (2017).Article 

    Google Scholar 
    Adenubi, O. T. et al. Pesticidal plants as a possible alternative to synthetic acaricides in tick control: A systematic review and meta-analysis. Ind. Crop. Prod. 123, 779–806. https://doi.org/10.1016/j.indcrop.2018.06.075 (2018).CAS 
    Article 

    Google Scholar 
    Jordan, R. A. & Schulze, T. L. Availability and nature of commercial tick control services in three Lyme disease endemic states. J. Med. Entomol. 57, 807–814. https://doi.org/10.1093/jme/tjz215 (2019).CAS 
    Article 

    Google Scholar 
    Isman, M. B. Botanical insecticides in the twenty-first century – Fulfilling their promise?. Ann. Rev. Entomol. 65, 233–249 (2020).CAS 
    Article 

    Google Scholar 
    Eisen, L. Control of ixodid ticks and prevention of tick-borne diseases in the United States: The prospect of a new Lyme disease vaccine and the continuing problem with tick exposure on residential properties. Ticks Tick-Borne Dis. https://doi.org/10.1016/j.ttbdis.2021.101649 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos, A. C. C. et al. Apis mellifera (Insecta: Hymenoptera) in the target of neonicotinoids: A one-way ticket? Bioinsecticides can be an alternative. Ecotoxicol. Environ. Safe. 163, 28–36. https://doi.org/10.1016/j.ecoenv.2018.07.048 (2018).CAS 
    Article 

    Google Scholar 
    Matos, W. B. et al. Potential source of ecofriendly insecticides: Essential oil induces avoidance and cause lower impairment on the activity of a stingless bee than organosynthetic insecticides, in laboratory. Ecotoxicol. Environ. Safe. 209, 111764. https://doi.org/10.1016/j.ecoenv.2020.111764 (2021).CAS 
    Article 

    Google Scholar 
    Gashout, H. A., Guzman-Novoa, E., Goodwin, P. H. & Correa-Benítez, A. Impact of sublethal exposure to synthetic and natural acaricides on honey bee (Apis mellifera) memory and expression of genes related to memory. J. Insect Physiol. 121, 104014. https://doi.org/10.1016/j.jinsphys.2020.104014 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Eisen, L. & Dolan, M. C. Evidence for personal protective measures to reduce human contact with Blacklegged ticks and for environmentally based control methods to suppress host-seeking Blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J. Med. Entomol. 53, 1063–1092. https://doi.org/10.1093/jme/tjw103 (2016).Article 
    PubMed 

    Google Scholar 
    Dyer, M. C., Requintina, M. D., Berger, K. A., Puggioni, G. & Mather, T. N. Evaluating the effects of minimal risk natural products for control of the tick, Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 58, 390–397. https://doi.org/10.1093/jme/tjaa188 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schulze, T. L. & Jordan, R. A. Synthetic pyrethroid, natural product, and entomopathogenic fungal acaricide product formulations for sustained early season suppression of host-seeking Ixodes scapularis (Acari: Ixodidae) and Amblyomma americanum nymphs. J. Med. Entomol. 58, 814–820. https://doi.org/10.1093/jme/tjaa248 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bharadwaj, A., Stafford, K. C. & Behle, R. W. Efficacy and environmental persistence of nootkatone for the control of the Blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol. 49, 1035–1044. https://doi.org/10.1603/me11251 (2012).Article 
    PubMed 

    Google Scholar 
    Pavela, R. & Sedlák, P. Post-application temperature as a factor influencing the insecticidal activity of the essential oil from Thymus vulgaris. Ind. Crop. Prod. 113, 46–49 (2018).CAS 
    Article 

    Google Scholar 
    Brunner, J. L., Killilea, M. & Ostfeld, R. S. Overwintering survival of nymphal Ixodes scapularis (Acari: Ixodidae) under natural conditions. J. Med. Entomol. 49, 981–987. https://doi.org/10.1603/me12060 (2012).Article 
    PubMed 

    Google Scholar 
    Chown, S. L. & Nicolson, S. W. Insect Physiol. Ecol. (Oxford University Press, 2004).Ogden, N. H., Beard, C. B., Ginsberg, H. S. & Tsao, J. I. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Entomol. 58, 1536–1545 (2021).Article 

    Google Scholar 
    Ballard, K. & Bone, C. Exploring spatially varying relationships between Lyme disease and land cover with geographically weighted regression. Appl. Geo. 127, 102383 (2021).Article 

    Google Scholar 
    Neelakanta, G., Sultana, H., Fish, D., Anderson, J. F. & Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120, 3179–3190. https://doi.org/10.1172/jci42868 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adamo, S. A. Animals have a Plan B: how insects deal with the dual challenge of predators and pathogens. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 190, 381–390. https://doi.org/10.1007/s00360-020-01282-5 (2020).Article 

    Google Scholar 
    Adamo, S. A. How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp. Biochem. Physiol. B-Biochem. Molec. Biol. https://doi.org/10.1016/j.cbpb.2021.110564 (2021).Article 

    Google Scholar 
    Linske, M. A. et al. Impacts of deciduous leaf litter and snow presence on nymphal Ixodes scapularis (Acari: Ixodidae) overwintering survival in coastal New England, USA. Insects https://doi.org/10.3390/insects10080227 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burtis, J. C., Fahey, T. J. & Yavitt, J. B. Survival and energy use of Ixodes scapularis nymphs throughout their overwintering period. Parasitol. 146, 781–790. https://doi.org/10.1017/s0031182018002147 (2019).Article 

    Google Scholar 
    Boehnke, D., Gebhardt, R., Petney, T. & Norra, S. On the complexity of measuring forests microclimate and interpreting its relevance in habitat ecology: the example of Ixodes ricinus ticks. Parasit. Vectors 10, 549. https://doi.org/10.1186/s13071-017-2498-5 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindsay, L. R. et al. Survival and development of Ixodes scapularis (Acari, Ixodidae) under various climatic conditions in Ontario, Canada. J. Med. Entomol. 32, 143–152. https://doi.org/10.1093/jmedent/32.2.143 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindsay, L. R. et al. Survival and development of the different life stages of Ixodes scapularis (Acari: Ixodidae) held within four habitats on Long Point, Ontario, Canada. J. Med. Entomol. 35, 189–199. https://doi.org/10.1093/jmedent/35.3.189 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ginsberg, H. S. et al. Woodland type and spatial distribution of nymphal Ixodes scapularis (Acari: Ixodidae). Environ. Entomol. 33, 1266–1273. https://doi.org/10.1603/0046-225x-33.5.1266 (2004).Article 

    Google Scholar 
    Clow, K. M. et al. The influence of abiotic and biotic factors on the invasion of Ixodes scapularis in Ontario, Canada. Ticks Tick-Borne Dis. 8, 554–563. https://doi.org/10.1016/j.ttbdis.2017.03.003 (2017).Article 
    PubMed 

    Google Scholar 
    Natural Resources Canada. Balsam fir, (2015).Khatchikian, C. E. et al. Recent and rapid population growth and range expansion of the Lyme disease tick vector, Ixodes scapularis North America. Evolution 69, 1678–1689. https://doi.org/10.1111/evo.12690 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichette, A., Larouche, P. L., Lebrun, M. & Legault, J. Composition and antibacterial activity of Abies balsamea essential oil. Phytotherapy Res. 20, 371–373 (2006).CAS 
    Article 

    Google Scholar 
    Poaty, B., Lahlah, J., Porqueres, F. & Bouafif, H. Composition, antimicrobial and antioxidant activities of seven essential oils from the North American boreal forest. World J. Microbiol. Biotechnol. 31, 907–919. https://doi.org/10.1007/s11274-015-1845-y (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beasley, T. M. & Schumacker, R. E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Ed. 64, 79–93. https://doi.org/10.1080/00220973.1995.9943797 (1995).Article 

    Google Scholar 
    Canon, L., Deslauriers, A., Mshvildadze, V. & Pichette, A. Volatile compounds in the foliage of balsam fir analyzed by static headspace gas chromotography (HS-GS): An example of the spruce budworm defoliation effect in the boreal forest of Quebec, Canada. Microchem. J. 110, 587–590 (2013).Article 

    Google Scholar 
    Faraone, N., MacPherson, S. & Hillier, N. K. Behavioral responses of Ixodes scapularis tick to natural products: development of novel repellents. Exp. Appl. Acarol. 79, 195–207. https://doi.org/10.1007/s10493-019-00421-0 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    McMillan, L. E., Miller, D. W. & Adamo, S. A. Eating when ill is risky: immune defense impairs food detoxification in the caterpillar Manduca sexta. J. Exp. Biol. 221, 173336 (2018).
    Google Scholar 
    Gazave, E., Chevillon, C., Lenormand, T., Marquine, M. & Raymond, M. Dissecting the cost of insecticide resistance genes during the overwintering period of the mosquito Culex pipiens. Heredity 87, 441–448 (2001).CAS 
    Article 

    Google Scholar 
    Lalouette, L., Williams, C. M., Hervant, F., Sinclair, B. J. & Renault, D. Metabolic rate and oxidative stress in insects exposed to low temperature thermal fluctuations. Comp. Biochem. Physiol. A 158, 229–234 (2011).CAS 
    Article 

    Google Scholar 
    Clark, D. D. Lower temperature limits for activity of several Ixodid ticks: Effects of body size and rate of temperature change. J. Med. Entomol. 32, 449–452 (1995).CAS 
    Article 

    Google Scholar 
    Carroll, J. F. & Kramer, M. Winter activity of Ixodes scapularis (Acari : Ixodidae) and the operation of deer-targeted tick control devices in Maryland. J. Med. Entomol. 40, 238–244. https://doi.org/10.1603/0022-2585-40.2.238 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ginsberg, H. S. et al. Environmental factors affecting survival of immature Ixodes scapularis and implications for geographical distribution of Lyme disease: the climate/behavior hypothesis. PLoS ONE 12, e0168723. https://doi.org/10.1371/journal.pone.0168723 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quadros, D. G., Johnson, T. L., Whitney, T. R., Oliver, J. D. & Chavez, A. S. O. Plant-derived natural compounds for tick pest control in livestock and wildlife: Pragmatism or utopia?. Insects https://doi.org/10.3390/insects11080490 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ogendo, J. et al. Biocontrol potential of selected plant essential oil constituents as fumigants of insect pests attacking stored food commodities. Health 10, 287–318 (2011).
    Google Scholar 
    Panella, N. A., Karchesy, J., Maupin, G. O., Malan, J. C. & Piesman, J. Susceptibility of immature Ixodes scapularis (Acari: Ixodidae) to plant-derived acaricides. J. Med. Entomol. 34, 340–345 (1997).CAS 
    Article 

    Google Scholar 
    Rosado-Aguilar, J. A. et al. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 238, 66–76. https://doi.org/10.1016/j.vetpar.2017.03.023 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jaenson, T. G. T., Carboui, S. & Palsson, K. Repellency of oils of lemon eucalyptus, geranium, and lavender and the mosquito repellent MyggA natural to Ixodes ricinus (Acari : Ixodidae) in the laboratory and field. J. Med. Entomol. 43, 731–736. https://doi.org/10.1603/0022-2585(2006)43[731:Rooole]2.0.Co;2 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Eigbrett, C. Natural Sourcing Organic Essential Oils Oxford, Connecticut, USA, .praannaturals.com/downloads/msds/SDS_Organic_Essential_Oil_Fir_Balsam_Canada.pdf (2016).Schulze, T. L. et al. Efficacy of granular deltamethrin against Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J. Med. Entomol. 38, 344–346. https://doi.org/10.1603/0022-2585-38.2.344 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, S. P. et al. Effect of a botanical acaricide on Ixodes scapularis (Acari: Ixodidae) and nontarget arthropods. J. Med. Entomol. 50, 126–136. https://doi.org/10.1603/me12124 (2013).Article 
    PubMed 

    Google Scholar 
    Burtis, J. C., Yavitt, J. B., Fahey, T. J. & Ostfeld, R. S. Ticks as soil-dwelling arthropods: an intersection between disease and soil ecology. J. Med. Entomol. 56, 1555–1564. https://doi.org/10.1093/jme/tjz116 (2019).Article 
    PubMed 

    Google Scholar 
    Burtis, J. C., Ostfeld, R. S., Yavitt, J. B. & Fahey, T. J. The relationship between soil arthropods and the overwinter survival of Ixodes scapularis (Acari: Ixodidae) under manipulated snow cover. J. Med. Entomol. 53, 225–229. https://doi.org/10.1093/jme/tjv151 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guerra, M. et al. Predicting the risk of Lyme disease: Habitat suitability for Ixodes scapularis in the north central United States. Emerg. Infect. Dis. 8, 289–297. https://doi.org/10.3201/eid0803.010166 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bunnell, J. E., Price, S. D., Das, A., Shields, T. M. & Glass, G. E. Geographic information systems and spatial analysis of adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic region of the USA. J. Med. Entomol. 40, 570–576. https://doi.org/10.1603/0022-2585-40.4.570 (2003).Article 
    PubMed 

    Google Scholar 
    Lubelczyk, C. B. et al. Habitat associations of Ixodes scapularis (Acari: Ixodidae) in Maine. Environ. Entomol. 33, 900–906. https://doi.org/10.1603/0046-225x-33.4.900 (2004).Article 

    Google Scholar 
    Killilea, M. E., Swei, A., Lane, R. S., Briggs, C. J. & Ostfeld, R. S. Spatial dynamics of Lyme disease: A review. EcoHealth 5, 167–195. https://doi.org/10.1007/s10393-008-0171-3 (2008).Article 
    PubMed 

    Google Scholar 
    Stafford, K. C. Survival of immature Ixodes scapularis (Acari: Ixodidae) at different relative humidities. J. Med. Entomol. 31, 310–314 (1994).Article 

    Google Scholar 
    Bertrand, M. R. & Wilson, M. L. Microclimate-dependent survival of unfed adult Ixodes scapularis (Acari: Ixodidae) in Nature: Life cycle and study design implications. J. Med. Entomol. 33, 619–627 (1996).CAS 
    Article 

    Google Scholar 
    Lindsay, L. R. et al. Microclimate and habitat in relation to Ixodes scapularis (Acari: Ixodidae) populations on Long Point, Ontario, Canada. J. Med. Entomol. 36, 255–262. https://doi.org/10.1093/jmedent/36.3.255 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, C., Spielman, A. & Krause, P. J. Coinfecting deer-associated zoonoses: Lyme disease, babesiosis, and ehrlichiosis. Clin. Infect. Dis. 33, 676–685 (2001).CAS 
    Article 

    Google Scholar 
    Hinckley, A. F. et al. effectiveness of residential acaricides to prevent Lyme and other tick-borne diseases in humans. J. Infect. Dis. 214, 182–188. https://doi.org/10.1093/infdis/jiv775 (2016).Article 
    PubMed 

    Google Scholar 
    Keesing, F. et al. Effects of Ttck-control interventions on tick abundance, human encounters with Ttcks, and incidence of tickborne diseases in residential neighborhoods, New York, USA. Emerg. Infect. Dis. 28, 957–966. https://doi.org/10.3201/eid2805.211146 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayes, L. E., Scott, J. A. & Stafford, K. C. Influences of weather on Ixodes scapularis nymphal densities at long-term study sites in Connecticut. Ticks Tick-Borne Dis. 6, 258–266. https://doi.org/10.1016/j.ttbdiS.2015.01.006 (2015).Article 
    PubMed 

    Google Scholar 
    Rand, P. W. et al. Trial of a minimal-risk botanical compound to control the vector tick of Lyme disease. J. Med. Entomol. 47, 695–698 (2010).CAS 
    Article 

    Google Scholar 
    United Nations. Convention on Biological Diversity. (1992).Convention on International Trade in Endangered Species of Wild Fauna and Flora. (1973).Burtis, J. C. Method for the efficient deployment and recovery of Ixodes scapularis (Acari: Ixodidae) nymphs and engorged larvae from field microcosms. J. Med. Entomol. 54, 1778–1782. https://doi.org/10.1093/jme/tjx157 (2017).Article 
    PubMed 

    Google Scholar 
    Nova Scotia Department of Natural Resources and Renewables Trees of the Acadian Forest (2021). More

  • in

    Why the ocean virome matters

    Kyoto University microbiome researcher Hiroyuki Ogata says that the recent work2,3 further connects RNA viruses and the carbon pump, which affects the Earth’s biogeochemical cycles and thus its climate. And it sheds light on the diversity, evolution and ecology of RNA viruses, which has not previously been possible through applying the techniques of traditional DNA-based metagenomics. The team found many new lineages at the phylum-level by using “highly sensitive” computational approaches.It’s possible to assess the ecosystem impact of viruses by inferring auxiliary metabolic genes (AMGs). AMGs hint at the ways RNA viruses manipulate the physiology of their hosts as they seek to maximize production of more virus through the host. As Jian explains, labs have identified a variety of AMGs that are encoded by DNA viruses and, he says, it’s “well-recognized” that AMGs probably play a role in marine ecosystems. It was unknown if AMGs could be found in RNA viruses, which the recent Science paper2 has now established, he says. Jian sees this work as providing “a very important foundational dataset” for exploring questions connected to AMGs. “In my opinion, if more long-sequence or complete marine RNA virus genomes can be obtained in the future, and they can be further connected with specific hosts, it will greatly promote the understanding of the ecological impact of RNA viruses in the oceans.”To tease out AMGs, the scientists used a variety of tools, such as viral identification software for both DNA and RNA viruses, says Wainaina. The ones for DNA viruses are available on Cyverse, and the protocols for the tools from the Sullivan lab are on protocols.io. One method for RNA viruses is in progress and will be soon available on Cyverse, he says. DNA viral identification tools include VirSorter2, a pipeline for identifying viral sequence from metagenomics data, and the protocol for using this and other tools are also on protocols.io. To identify AMGs from viral sequence that had been identified through VirSorter, the team used use DRAM-v, a software tool from the lab of microbiome researcher Kelly Wrighton at Colorado State University. Her group had created Distilled and Refined Annotation of Metabolism (DRAM), a framework to resolve metabolic information from microbial data. The companion tool DRAM-v is for viruses and can be applied to metagenomic data sets for annotating metagenomics-based assembled genomes, for example through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, and to contiguous viral sequences identified by VirSorter.The hunt for AMGs is one instance in which the team needed to determine in each case whether a sequence was likely ‘stolen’ from host cells, says Dominguez-Huerta. RNA viral genomes are less than 40 kilobases long and usually have complicated genomic organization, both in a structural genomics sense related to the physical arrangement of genes along the viral genome and in a functional sense in terms of transcription and translation: there are overlapping genes, frameshifts and more, all of which makes this kind of annotation difficult. And sometimes information in the annotation databases is wrong and indicates that a match is cellular when it is in fact viral. Thus, to find AMGs, “we don’t have a defined clean methodology automated in a pipeline yet,” he says. It remains a time-consuming task. Assigning putative function to the protein sequences encoded by AMGs also involves checking the literature and comparing different annotation sources.Dominguez-Huerta says he and the team were glad they could assemble AMG functionalities to suggest the range of ways in which RNA viruses manipulate the metabolisms of their hosts—from photosynthesis to central carbon metabolism to vacuolar digestion and RNA repair. This overview let them see how some AMGs are repeated across different viruses across the oceans. Finding AMGs in long-read sequence is what he calls a “fire test” for the lab. To avoid ‘false AMGs’ from unreliable matches, they use BLASTP, the Basic Alignment Search Tool that compares a protein query sequence to a protein database.“I am fascinated by the ability of viruses to metabolic reprogram not only their hosts but more importantly at the ecosystem level,” says Wainaina. It is probable that the AMGs the team identified “are a central cog in microbial metabolism networks.” Current and future modeling efforts will hopefully provide insights into the ecosystem roles of viruses—both DNA viruses and RNA viruses—and on a global scale both within the ocean ecosystem and beyond.Host inference is challenging, says Dominguez-Huerta, because, for example, viruses with RNA genomes do not share genetic information with their host genomic DNA the way dsDNA viruses do when they infect bacteria. That means there is no clear signal to be derived from the host genome to help one guess the possible host. But sometimes RNA viruses do integrate into host genomes, and those, likely more accidental, events were sufficient for the scientists to capture some signal to infer hosts. “We also performed statistical co-occurrence analytics using abundances to infer the hosts with certain success,” he says.Unlike dsDNA viruses, RNA viruses infect mostly eukaryotes, from protists and fungi to invertebrates and fish larvae; only a minority infect bacteria. Overall, the team has been able to capture “a picture of dsDNA viruses infecting prokaryotes and RNA viruses infecting eukaryotes in the oceans, complementing each other in their marine hosts,” says Dominguez-Huerta. The fact that the scientists can infer “that RNA viruses can steal genes from the host,” in the form of AMGs, to then reprogram host metabolism matters not only as scientists complete the picture of how viruses directly tune the activity of hosts during infection, but also in regard to how this influences biogeochemical cycles, he says. “We think that these AMGs are incorporated into the RNA virus genomes from cellular mRNA transcripts by non-homologous recombination,” he says. This gives, in his view, a new picture of RNA viruses, which, despite their small genome sizes, can squeeze in protein-coding genes. Such proteins could be sufficient to boost the production of virus particles per infected cell, perhaps increasing viral fitness in the difficult conditions of the oligotrophic open ocean and letting the viruses better propagate in the environment.More generally, says Dominguez-Huerta, capturing RNA from ocean samples is difficult, because RNA is physically fragile and degrades rapidly. When digging into metatranscriptomic data, which include the RNA from plankton and RNA from other organisms, less than 1% of this RNA is likely to be viral RNA, he says. Previously, some labs have first purified RNA from samples, enriched it for replicating RNA viruses and then applied a method called dsRNA-seq to recover dsRNA virus sequence and replicate sequences from single-stranded RNA viruses. For future ocean RNA virus projects, he says that the lab is currently working on a wet-lab method to purify RNA virus particles from seawater to solve the challenges of obtaining viral RNA for analysis. More

  • in

    Trawling the ocean virome

    Microbial biodiversity surveys have often been done in a number of generally better-studied regions3, as with the San Pedro Time Series from the San Pedro Channel off the coast of Southern California. Global surveys have also been emerging, such as the Sorcerer II Global Ocean Sampling Expedition from 2004 to 2006 launched by J. Craig Venter. There are also data and samples from the Malaspina circumnavigation, an expedition devoted to data collection on ocean biodiversity and climate change that was led by the Spanish Ministry of Science and Innovation.As microbiome researcher Shinichi Sunagawa of the ETH Zurich and colleagues point out4, sequencing technologies have advanced such that they now enable systematic and quantitative global ocean surveys. These advances, in turn, made it possible to find and assess marine double-stranded DNA virus populations. This latest work on marine RNA viruses, says Sunagawa, in which he was also involved, embeds new phylum-level findings into a “robust taxonomic framework.” In his view, this research ranks in importance with the reconstruction a few years ago of a group of bacterial genomes representing more than 35 phyla that the researchers call “the candidate phyla radiation”5. If one counts viruses in with other taxonomic groups, the finding might be the largest single expansion of established microbial taxonomy, he says. And he especially likes the definition of a new basal Orthornavirae megataxon, the proposed phylum ‘Taraviricota’. This proposed phylum is one of several findings from recently published analyses of sampling data from Tara Oceans1,2, a global expedition supported by the Tara Ocean Foundation, or Fondation Tara Océan, based in France and with many partner organizations and supporters. The foundation is a major source of global data about the ocean and ocean microbes and, as its president Étienne Bourgois says, it’s a “family project.” The family business is the French fashion house agnès b., founded by his mother Agnès Troublé.Because the family cares about the sea, they bought a 36-meter schooner from Lady Pippa Blake, widow of yachtsman and explorer Sir Peter Blake, after pirates killed him during an environmental expedition in the Amazon delta, and turned it into the expedition vessel and floating science laboratory Tara, devoted to understanding and protecting the world’s marine environment. It’s a way to continue what Peter Blake started, to continue the conversation about the ocean and do research as well, says sailor-scientist Romain Troublé, executive director of the foundation and nephew of Agnès Troublé. The boat had been previously owned by explorer Jean-Louis Étienne. The foundation has supported several expeditions with Tara including the Tara Oceans and Tara Oceans Polar Circle expeditions, as well as Tara Mission Microbiomes, which is currently underway. The equilibrium of the planet “depends on the microbiome of the ocean in the same way we depend on our own microbiome,” says Romain Troublé. Viruses are part of the larger picture of how life is supported on the planet. It’s “a great mystery of the century” to decipher the roles, behaviors and functions of the ocean microbiome, including its beneficial effects. Over the last decade, he says, the expeditions have, for example, collected plankton samples from coastal waters, coral reefs and the high seas around the world for scientists to ask questions of. Microplastics in the ocean concentrate chemical pollutants such as pesticides, and microplastics appear to be substrates for distinct microbiomes. Polystyrene and polypropylene, for example, harbor different microbial communities. “We call it the plastisphere,” he says. All sample collection, not just of microplastics, happens with a view to scientific rigor to assure data quality, says Troublé. Many institutes are part of and support the expeditions through the Tara Ocean Foundation, including AtlantECO, the French Ministry of Research, the Swiss National Science Foundation, the US National Science Foundation, the European Molecular Biology Laboratory and the French National Centre for Scientific Research.Tara Oceans was an expedition initiated by EMBL researcher Eric Karsenti, here in the foreground. He is checking a rosette of Niskin bottles that collect water, and ocean microbe samples, at various depths. Sensors capture parameters such as temperature.
    Credit: Fondation Tara OcéanIts expedition Tara Oceans was initiated by cell and marine biologist Eric Karsenti of the European Molecular Biology Laboratory. The expedition ran from 2009 to 2013 and covered 125,000 kilometers of ocean, taking ocean water and samples. It collected nearly 35,000 samples of viruses, algae and plankton and delivered more than 60 terabases of DNA and RNA sequences.The research community strives to follow FAIR data principles, the principles of findability, accessibility, interoperability and reusability, says Sunagawa. Tara Ocean’s data troves can be found, for instance, in the European Nucleotide Archive (ENA), Pangeaea, Cyverse, iVIRUS and on Genoscope. Other data-collection efforts target users with less programming experience and offer various types of data relevant to marine microbial research, he says: for example, the Ocean Gene Atlas, a portal to search for a gene or protein sequence to see, for instance, its abundance on an ocean map. The Ocean Barcode Atlas lets users explore, for example, operational taxonomic units (OTU) data and plankton communities from Tara Oceans and OTUs from Malaspina prokaryote data. Sunagawa also points to the Ocean Microbiomics Database and its high-quality genome-resolved information about the global microbiome, which has sequencing data from 2003 onwards and which includes Tara Oceans data as well as datasets such as the Hawaii Ocean Time-Series (HOT), the Bermuda Atlantic Time-series Study (BATS), with its collection of ocean data dating back to 1988, and BioGeotraces, with hydrographic and marine geochemical data from various expeditions.The recent publications on RNA viruses1,2, in which Sunagawa was also involved, have expanded the known diversity of these viruses, he says. They build on efforts by, for example, the research team that created and applied a cloud-based infrastructure called Serratus6, with which researchers can perform sequence alignment using bowtie2 for nucleotide sequences and DIAMOND2 for protein sequences in ‘ultra-high throughput’ on a petabase scale. Using Serratus, the team identified more than 130,000 previously unknown RNA viruses, both on land and in the oceans. The wealth of resources for microbial and viral data about the oceans is helpful to the research community, but “we could still improve the connectivity between various datasets though,” says Sunagawa. That would help, for example, with searching and finding data products that are derived from primary data, such as identifiers of individual genome assemblies, genes and metagenome assembled genomes, which are all presented in different online locations. But connecting data resources is a project that itself takes resources, and such projects are hard to get funding for.Going forward, it will be challenging, says Sunagawa, to update and keep up to date both past projects and ongoing projects such as the Global Ocean Ship-based Hydrographic Investigations program (GO-SHIP), which is focused on physical oceanography; the Antarctic Circumnavigation Expedition (ACE), on carbon-cycle marine biogeochemistry; Mission Microbiomes; and many more. “And ultimately, we will need to cross boundaries that currently separate biome-focused research to better understand processes at the sea–land–atmosphere interfaces.”Tara Mission Microbiomes has been underway for nearly two years and wraps up in October 2022. At press time, the schooner Tara was off the Angolan Coast. At the end of the expedition, it will have traveled a total of 70,000 km of ocean area around South America, Africa, Europe and Antarctica. Mission Microbiomes is part of the EU-funded AtlantECO and also includes 42 research organizations from 13 countries. The microbiome mission is collecting data on how climate change is affecting the marine microbiome, on how pollution, microplastics pollution in particular, affects the marine environments and on the beneficial impact of the ocean microbiome.Krill are small ocean crustaceans that mainly eat phytoplankton and are a food source for animals such as whales and seals. Krill play a crucial role in biogeochemical cycles.
    Credit: F. Aurat, Fondation Tara OcéanChris Bowler, from the Institut de Biologie de l’École Normale Supérieure, is scientific director of the Tara Oceans consortium, was scientific coordinator of the Tara Oceans expedition and was onboard in Antarctica during the Tara Mission Microbiomes expedition to collect data on the impact of icebergs on the Weddell Sea ecosystem. The project’s scientists in Tara Mission Microbiomes, he says, are studying specific processes, including the Amazon plume, the Malvinas confluence, the impact of tabular icebergs in the Weddell Sea, the Benguela upwelling and more. The data from this expedition will be similar to those from Tara Oceans but, he says, “we will have much more contextual data related to the specific processes we have been studying.” The applied techniques are all ones that have undergone much advancement since Tara Oceans, he says. They include long-read sequencing, Hi-C sequencing to capture chromatin organization on a genome-wide basis and various types of microscopy.Data and results from previous and ongoing expeditions are impressive, says Sunagawa but “we are still data-limited in our field of research.” Geographically, sampling stations are usually still separated by hundreds of kilometers, and often they are even further apart than that. This means that what is missing is both temporal and seasonal resolution, “and we keep detecting new organisms,” he says. Tara Mission Microbiomes will help to fill in some of these gaps. The mission is unlike Tara Oceans, with its focus more on coastal areas and environmental pollutants such as microplastics. Sunagawa and his group are not currently involved with Tara Mission Microbiomes, “but we look forward to seeing the first results coming out soon.”Through photosynthesis, phytoplankton deliver oxygen to the planet. They are food for zooplankton, which are food for other marine organisms. This food web and its associated decomposition are part of the ocean’s carbon pump, in which marine viruses play an important role that scientists have only begun exploring.
    Credit: M. Bardy, Fondation Tara Océan More

  • in

    Chlorophytes response to habitat complexity and human disturbance in the catchment of small and shallow aquatic systems

    Response of chlorophytes to environmental variables in field vs. forest pondsOur study demonstrated that human-originated transformation in the catchment area surrounding a small water body may influence the water conditions in terms of physical, chemical, and biological parameters as well as the ecological state of the aquatic environment in respect to green algae communities.Chlorophytes inhabiting field ponds were more abundant compared with the forest ponds. This shows that field ponds, due to the higher values of TRP and water conductivity, created favorable conditions for chlorophyte development. The high concentrations of TRP and conductivity in aquatic environments are characteristic in the case of agricultural catchments exposed to anthropogenic pressure because of the inflow from the surrounding fertilized fields42. In this type of pond, we also observed significantly higher water temperatures and pH due to the lack of trees around them compared to the forest ponds, two factors which also positively influenced the growth of chlorophytes. Both the higher light intensity and the smaller size of the field ponds cause earlier warming up than the forest ponds and give an advantage to high light tolerant species. Moreover, it is well known that an increase in temperature stimulates the release of phosphorus from the bottom sediments, so this could be another reason for the higher levels of TRP in the field ponds. Our CCA analysis showed that TRP and conductivity were the strongest determinants of the distribution of chlorophyte species in the examined water bodies. We found a large group of dominant species indicated high values of TRP (e.g. Ankistrodesmus falcatus, A. arcuatus, Monoraphidium griffithii, Pseudopediastrum boryanum, Pediastrum duplex, Scenedesmus obtusus, Scenedesmus arcuatus var. gracilis, Desmodesmus communis, Coelastrum microporum), and another group of species (e.g. Kirchneriella irregularis var. spiralis, Tetraedron minimum, Scenedesmus ecornis) that preferred high levels of conductivity.In the field ponds generally higher mean abundances of filtrators and Rotifera were observed. This could be another important factor stimulating the growth of chlorophytes and increasing their abundances by the resupply of nutrients through excretion43,44. On the other hand, the high densities of algae could be the factor that caused better zooplankton development, and therefore its abundance in field ponds was greater. Filtrating cladocerans and Rotifera also had a significant influence on the distribution of chlorophyte dominating species. However, even though the total abundance of both chlorophytes and filtering zooplankton was greater in the field ponds, CCA analysis revealed a negative relationship existing between filtrators and most dominant species of chlorophytes (e.g. Pandorina morum, Willea rectangularis, Desmodesmus armatus, Nephrochlamys willeana, Cosmarium trilobulatum). Only two chlorophyte species—Lemmermannnia tetrapedia and Tetraedron triangulare—co-occurred with cladoceran zooplankton. These latter species are very small compared to the species above and can therefore be overlooked by filtrators, which have a choice of larger and perhaps more nutritiously satisfying algae of the genus Pandorina, Crucigeniella, Cosmarium or Nephrochlamys, but still of a size suitable for zooplankton. It can also be interpreted in such a way that Crucigenia and Tetraedron are among the r-strategists that reproduce very quickly, so grazing pressure by zooplankton can stimulate their rapid development45 and thus they remain at a stable level.Specific environmental conditions prevailing in the field ponds resulted in a high number of exclusive taxa44, found only in this type of water body. Moreover, a greater diversity of the representatives of different functional groups were found here, compared to the forest ponds.Analyzing the distribution of chlorophytes in terms of phytoplankton functional groups39,40, we found that group W1 was represented by only one species, Gonium pectorale. This was especially noted in the field water bodies. This group is known to prefer small water bodies rich in organic matter from husbandry or sewage40, which suggests that the field catchment in our study migh be a supplier of these substances. It also proves that field surroundings are far more human impacted. In the field ponds we observed a higher abundance of chlorophytes belonging to the groups G (Eudorina elegans, Pandorina morum, Pandorina smithii and Volvox aureus), J (e.g. representatives of the genus Actinastrum, Chlorotetraedron, Coelastrum, Crucigenia, Desmodesmus/Scenedesmus, Golenkinia, Pediastrum, Tetraedron, Tetrastrum, Westella, Willea/Crucigeniella), W0 (genera Chlamydomonas, Chlorangiopsis, Chlamydomonadopsis, Planktococcomyxa/Coccomyxa) and X3 (Chlorella sp.), typical for shallow nutrient-rich waters (G and J), ponds with extremely high organic contents (W0), and for shallow well-mixed layers (X3), according to classification given by Padisak et al.40. Considering that nitrogen compounds had a similar level in both types of ponds it can be stated that the representatives of the above mentioned functional groups of chlorophytes associated with the field ponds were presumably dependent on higher concentrations of TRP and conductivity and not that much on nitrogen concentrations.In the forest ponds significantly higher values of water saturation were recorded compared to the field ponds. Moreover, the lack of inflow of fertilizers from the catchment area resulted in lower TRP concentrations, which along with lower water temperatures, pH and conductivity in the forest ponds may have contributed to the reduced abundance of chlorophytes compared to the field water bodies. RDA analysis showed that some dominant chlorophyte species (e.g. Closterium moniliferum, Closterium tumidulum, Cosmarium trilobulatum and Mougeotia sp.) were associated with this type of small water body. At the same time the abundance of these species was smaller in the field ponds. We also found that chlorophyte diversity (Shannon–Weaver index) was greater in the forest ponds. This suggests that water bodies located within the forested area, usually more natural ponds being less exposed to anthropogenic pressure, are characterized by greater biodiversity. Moreover, in this type of water body we found many exclusive species39, not reported from the field ponds. Interestingly, about the half of these taxa belonged to desmids, which prefer lower pH and conductivity46, conditions typical for forest ponds. This could be also a reason for the dominance of desmid species with the highest abundance/frequency, associated with forest ponds.Taking into consideration the phytoplankton functional groups39,40 our study showed that the chlorophytes associated with forest ponds prefer mesotrophic waters (from the group TD: Cladophora glomerata, Geminella turfosa, Geminella planctonica, Microspora sp., Netrium digitus, Oedogonium sp., Oocystidium ovale, Spirogyra sp. Zygnema sp. and those belonging to the group N: mainly genera Closterium, Cosmarium, Euastrum, Micrasterias, Staurastrum, Staurodesmus, Xanthidium). This explains their greater share in the less fertile forest ponds. Another group associated with the forest ponds – T (Mougeotia sp., Binuclearia lauterbornii) contains species tolerant to light deficiency, so they were able to develop well in the more shaded water bodies located in the forest catchment.Chlorophyte community structure in two types of habitats (open water vs. macrophyte-dominated zone)In our study, the type of habitat (open water and macrophyte-dominated zones) also had a significant structuring effect on chlorophytes. There were a group of species linked to the open water zone (Pandorina morum, Nephrochlamys willeana, Oocystis lacustris, Scenedesmus armatus, Scenedesmus intermedius and Desmodesmus communis), being negatively related to vegetated stations at the same time. Generally, we found here a higher mean abundance of chlorophytes compared to the macrophyte-dominated zones, possibly due to the higher values of nutrients such as NH4 and TRP, the conditions favouring the development of many algae species. The results of the CCA analysis with habitats confirmed the high importance of both nutritional factors in structuring the distribution of chlorophyte species. There was a group of species associated with a rise in the concentration of ammonium (e.g. Scenedesmus arcuatus var. gracilis, Pediastrum duplex, Closterium moniliferum, Closterium tumidulum, Cosmarium trilobulatum, Willea rectangularis) as well as with phosphates (Monoraphidium tortile, Scenedesmus ecornis, Tetradesmus lagerheimii and Tetraedron minimum). Generally, high abundance of chlorophytes in the open water area was accompanied by a small-sized fraction of zooplankton–rotifers. Therefore, rotifers had a lower impact on the distribution of chlorophytes than filtrators. The increasing numbers of cladocerans contributed to the lowering abundance of some chlorophytes, such as Monoraphidium tortile, Scenedesmus ecornis, Tetradesmus lagerheimii or Tetraedron minimum. This shows that filtrators, whose densities were significantly higher among macrophytes, were able to control the development of some chlorophyte species much more efficiently than small-bodied rotifers.The effect of habitat was also visible in the case of phytoplankton functional groups39,40. We found that representatives of the group N (e.g. Closterium, Cosmarium, Euastrum, Micrasterias, Staurastrum) had a significantly higher mean abundance in the open water zones compared to the macrophyte-dominated zones. Interestingly, according to Padisak et al.40 group N prefers less fertile (mesotrophic) conditions, which is inconsistent with our results. However, we think that their association with the open water sites could be connected rather with the place/level where they live in the water column, rather than with the trophic state of water. The above mentioned chlorophytes taxonomically belong to desmids, which are mostly benthic organisms. Their greater quantitative share in the samples from the open water areas could be an effect of the intensive water mixing in the shallow ponds due to the lack of macrophytes. Neustupa et al.47 confirm that desmids are able to form tychoplanktonic communities due to water movements. In the samples collected from the macrophyte-dominated stations the mean abundance of desmids was generally lower, probably because of the macrophyte stabilizing effect. Aquatic plants are known to reduce turbidity and stabilize bottom sediments48, so they can prevent any intensive water mixing in ponds. In the examined open water stations, we also found a higher mean abundance of chlorophytes typical for shallow nutrient-rich waters (group G: Eudorina, Pandorina, Volvox and group K: Radiococcus) and/or for ponds with extremely high organic contents (group W0: e.g. Chlamydomonas), which proves that the sites lacking macrophytes were more fertile. Additionally, clearly more representatives from the codon J and X1 (typical for waters with high trophic levels) and a greater diversity of the representatives of different functional groups were recorded in the open water area compared to the macrophyte-dominated zones.The macrophyte-dominated stations had more abundant communities of filtrators, as aquatic plants are known to provide a profitable shelter for zooplankton49. Cladoceran predominance among macrophytes may have been a force reducing green algae numbers. The chlorophytes of the investigated ponds were mostly small- or medium-size species. Their size distribution makes them a high quality food for zooplankton, particularly for cladoceran filtrators. According to RDA analysis apart from pond size, the presence of filtrators significanly reduced the abundance of several chlorophyte dominating species. The lower algae abundance among macrophytes compared to the open water zone could also be explained by competition between algae and macrophytes for light and nutrients37,50 and/or with the secretion of allelopathic substances e.g. by Ceratophyllum demersum51 inhibiting algal development. Our studies demonstrated that among chemical factors which clearly differentiated the two types of analysed habitat, TRP and NH4 significantly influenced the distribution of chlorophyte dominating species. The lower levels of these parameters in macrophyte-dominated zones suggest that the nutrient uptake by aquatic plants in the investigated water bodies was high. There are many reports on the decrease of nutrient concentrations by macrophytes30,37,52, which are consistent with our observations. Despite lower, compared to the open water zone, chlorophyte densities within the macrophyte-dominated zones there was a group of species (e.g. Mougeotia sp., Pediastrum tetras, Scenedesmus obtusus, Monoraphidium contortum) that selectively chose vegetated stands. Furthermore, we found a great number29 of exclusive chlorophyte species for macrophyte-dominated zones. Half of these taxa belong to desmids, which are often periphytic organisms associated with aquatic macrophytes53,54.Preference towards macrophyte-dominated stations was also documented for two phytoplankton functional groups (T: Mougeotia sp. and Binuclearia lauterbornii and TD: e.g., Spirogyra sp., Zygnema sp., Cladophora glomerata, Oedogonium sp.) and one group which occurred exlusively among vegetated sites (MP—Ulothrix). Interestingly, all the representatives of these groups had a similar filamentous morphological form, which suggests that many of them are of epithytic origin, coexisting within aquatic plants. Two more groups—X2 (Pseudodidymocystis/Didymocystis, Pteromonas) and W1 (Gonium pectorale) were clearly affected by the presence of macrophytes. According to Padisak et al.40, codons TD and X2 indicate mesoeutrophic conditions and their higher abundances in the macrophyte-dominated zones also proves that plants contribute to lowering the trophic levels in the examined ponds. On the other hand, the relatively high abundance of the representative of the group W1 in these habitats suggests that macrophytes could enrich ponds with organic matter during the process of their decomposition.Concluding, our results prove that different types of catchment area (field and forest) as well as different types of habitats (open water zone and macrophyte-dominated zone) create distinct, specific conditions (dependent on some physical–chemical and biological variables) for the occurrence of chlorophytes in small water bodies. We conclude that cosmopolitan chlorophytes undoubtedly respond to the level of habitat heterogeneity, contributing to the ecological assessment of small water bodies. Chlorophytes in particularl react to the level of human transformation in the ponds’ vicinities. This is why we suggest using them for water quality evaluation in ponds. This interdisciplinary research significantly broadens the knowledge, not only about the response of chlorophytes to physical–chemical parameters of water, but also about the food preferences of zooplankton for which green algae are the basic food, and vice versa about the impact of zooplankton on microalgae communities. The analyses provide valuable information on chlorophytes-zooplankton interactions and also about the relationships between chlorophytes and macrophytes. Received data emphasize the high value of field ponds, underestimated habitats particularly vulnerable to destruction in the agricultural landscape. The research will help to better understand the functioning of poorly studied small water bodies, which will contribute to the preservation of their biodiversity and protection against degradation. They will also be useful in the management of small water bodies based on the specificity of chlorophyte occurrence in various habitats and catchment type ponds. Moreover, these results are important in a broader context, as the interactions between the studied organisms and the physico-chemical parameters of water in small bodies of water are to some extent universal, so the analyses will broaden the knowledge about the functioning of larger bodies of water. More