More stories

  • in

    Linking personality traits and reproductive success in common marmoset (Callithrix jacchus)

    Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 
    Article 

    Google Scholar 
    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    Gasparini, C., Speechley, E. M. & Polverino, G. The bold and the sperm: Positive association between boldness and sperm number in the guppy. R. Soc. Open Sci. 6, 190474 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jokela, M., Alvergne, A., Pollet, T. V. & Lummaa, V. Reproductive behavior and personality traits of the five factor model. Eur. J. Pers. 25, 487–500 (2011).Article 

    Google Scholar 
    Schuett, W., Dall, S. R. X. & Royle, N. J. Pairs of zebra finches with similar ‘personalities’ make better parents. Anim. Behav. 81, 609–618 (2011).Article 

    Google Scholar 
    Vetter, S. G. et al. Shy is sometimes better: Personality and juvenile body mass affect adult reproductive success in wild boars, Sus scrofa. Anim. Behav. 115, 193–205 (2016).Article 

    Google Scholar 
    Weiss, A. Personality traits: A view from the animal kingdom. J. Pers. 86, 12–22 (2018).PubMed 
    Article 

    Google Scholar 
    Bergmüller, R. & Taborsky, M. Animal personality due to social niche specialisation. Trends Ecol. Evol. 25, 504–511 (2010).PubMed 
    Article 

    Google Scholar 
    Montiglio, P. O., Wey, T. W., Chang, A. T., Fogarty, S. & Sih, A. Correlational selection on personality and social plasticity: Morphology and social context determine behavioural effects on mating success. J. Anim. Ecol. 86, 213–226 (2017).PubMed 
    Article 

    Google Scholar 
    Wolf, M. & McNamara, J. M. On the evolution of personalities via frequency-dependent selection. Am. Nat. 179, 679–692 (2012).PubMed 
    Article 

    Google Scholar 
    Munson, A. A., Jones, C., Schraft, H. & Sih, A. You’re just my type: Mate choice and behavioral types. Trends Ecol. Evol. 35, 823–833 (2020).PubMed 
    Article 

    Google Scholar 
    Muller, H. & Chittka, L. Animal personalities: The advantage of diversity. Curr. Biol. 18, 961–963 (2008).Article 
    CAS 

    Google Scholar 
    Biro, P. A. & Stamps, J. A. Are animal personality traits linked to life-history productivity?. Trends Ecol. Evol. 23, 361–368 (2008).PubMed 
    Article 

    Google Scholar 
    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. B 271, 847–852 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boon, A. K., Réale, D. & Boutin, S. The interaction between personality, offspring fitness and food abundance in North American red squirrels. Ecol. Lett. 10, 1094–1104 (2007).PubMed 
    Article 

    Google Scholar 
    Nicolaus, M., Tinbergen, J. M., Ubels, R., Both, C. & Dingemanse, N. J. Density fluctuations represent a key process maintaining personality variation in a wild passerine bird. Ecol. Lett. 19, 478–486 (2016).PubMed 
    Article 

    Google Scholar 
    Altschul, D. M. et al. Personality links with lifespan in chimpanzees. eLife 7, e33781 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Réale, D., Martin, J., Coltman, D. W., Poissant, J. & Festa-Bianchet, M. Male personality, life-history strategies and reproductive success in a promiscuous mammal. J. Evol. Biol. 22, 1599–1607 (2009).PubMed 
    Article 

    Google Scholar 
    Brent, L. J. N. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).PubMed 
    Article 

    Google Scholar 
    Rangassamy, M., Dalmas, M., Féron, C., Gouat, P. & Rödel, H. G. Similarity of personalities speeds up reproduction in pairs of a monogamous rodent. Anim. Behav. 103, 7–15 (2015).Article 

    Google Scholar 
    Schuett, W., Tregenza, T. & Dall, S. R. X. Sexual selection and animal personality. Biol. Rev. 85, 217–246 (2010).PubMed 
    Article 

    Google Scholar 
    Carlstead, K., Fraser, J., Bennett, C. & Kleiman, D. G. Black rhinoceros (Diceros bicornis) in US zoos: II. Behavior, breeding success, and mortality in relation to housing facilities. Zoo Biol. 18, 35–52 (1999).Article 

    Google Scholar 
    Martin-Wintle, M. S. et al. Do opposites attract? Effects of personality matching in breeding pairs of captive giant pandas on reproductive success. Biol. Conserv. 207, 27–37 (2017).Article 

    Google Scholar 
    Fox, R. A. & Millam, J. R. Personality traits of pair members predict pair compatibility and reproductive success in a socially monogamous parrot breeding in captivity. Zoo Biol. 33, 166–172 (2014).PubMed 
    Article 

    Google Scholar 
    Choi, S., Grocutt, E., Erlandsson, R. & Angerbjörn, A. Parent personality is linked to juvenile mortality and stress behavior in the arctic fox (Vulpes lagopus). Behav. Ecol. Sociobiol. 73, 162 (2019).Article 

    Google Scholar 
    Kappeler, P. M. & van Schaik, C. P. Evolution of primate social systems. Int. J. Primatol. 23, 707–740 (2002).Article 

    Google Scholar 
    Tardif, S. D. et al. Reproduction in captive common marmosets (Callithrix jacchus). Comp. Med. 53, 364–368 (2003).CAS 
    PubMed 

    Google Scholar 
    Marini, R., Wachtman, L., Tardif, S., Mansfield, K. & Fox, J. The Common Marmoset in Captivity and Biomedical Research (Academic Press, 2019). https://doi.org/10.1016/C2016-0-00861-6.Book 

    Google Scholar 
    Arruda, M. D. F., Yamamoto, M. E., Pessoa, D. M. A. & Araujo, A. Taxonomy and Natural History. In The Common Marmoset in Captivity and Biomedical Research (eds Marini, R. et al.) 3–15 (Academic Press, 2019). https://doi.org/10.1016/B978-0-12-811829-0.00001-7.Chapter 

    Google Scholar 
    Buchanan-Smith, H. M. Marmosets and tamarins. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals (eds Hubrecht, R. & Kirkwood, J.) (Wiley-Blackwell, 2010). https://doi.org/10.1002/9781444318777.ch36.Chapter 

    Google Scholar 
    Smucny, D. A. et al. Reproductive output, maternal age, and survivorship in captive common marmoset females (Callithrix jacchus). Am. J. Primatol. 64, 107–121 (2004).PubMed 
    Article 

    Google Scholar 
    Ash, H. & Buchanan-Smith, H. M. Long-term data on reproductive output and longevity in captive female common marmosets (Callithrix jacchus). Am. J. Primatol. 76, 1062–1073 (2014).PubMed 
    Article 

    Google Scholar 
    Frye, B. M. et al. After short interbirth intervals, captive callitrichine monkeys have higher infant mortality. iScience 25, 103724 (2022).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCoy, D. E. et al. A comparative study of litter size and sex composition in a large dataset of callitrichine monkeys. Am. J. Primatol. 81, e23038 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaquish, C. E., Tardif, S. D. & Cheverud, J. M. Interactions between infant growth and survival: Evidence for selection on age-specific body weight in captive common marmosets (Callithrix jacchus). Am. J. Primatol. 42, 269–280 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, S. D. & Jaquish, C. E. Number of ovulations in the marmoset monkey (Callithrix jacchus): Relation to body weight, age and repeatability. Am. J. Primatol. 42, 323–329 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poole, T. B. & Evans, R. G. Reproduction, infant survival and productivity of a colony of common marmosets (Callithrix jacchus jacchus). Lab. Anim. 16, 88–97 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tardif, S. D., Richter, C. B. & Carson, R. L. Effects of sibling-rearing experience on future reproductive success in two species of callitrichidae. Am. J. Primatol. 6, 377–380 (1984).PubMed 
    Article 

    Google Scholar 
    Rothe, H., Koenig, A. & Darms, K. Infant survival and number of helpers in captive groups of common marmosets (Callithrix jacchus). Am. J. Primatol. 30, 131–137 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koski, S. E., Buchanan-Smith, H. M., Burkart, J. M., Bugnyar, T. & Weiss, A. Common marmoset (Callithrix jacchus) personality. J. Comp. Psychol. 131, 326–336 (2017).PubMed 
    Article 

    Google Scholar 
    Šlipogor, V., Burkart, J. M., Martin, J. S., Bugnyar, T. & Koski, S. E. Personality method validation in common marmosets (Callithrix jacchus): Getting the best of both worlds. J. Comp. Psychol. 134, 52–70 (2020).PubMed 
    Article 

    Google Scholar 
    Weiss, A., Yokoyama, C., Hayashi, T. & Inoue-Murayama, M. Personality, subjective well-being, and the serotonin 1a receptor gene in common marmosets (Callithrix jacchus). PLoS ONE 16, e0238663 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freeman, H., Gosling, S. D. & Schapiro, S. J. Comparison of methods for assessing personality in nonhuman primates. In Personality and Temperament in Nonhuman Primates (eds Weiss, A. et al.) 17–40 (Springer, 2011).Chapter 

    Google Scholar 
    Finkenwirth, C. & Burkart, J. M. Why help? Relationship quality, not strategic grooming predicts infant-care in group-living marmosets. Physiol. Behav. 193, 108–116 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haines, J. A. et al. Sex- and context-specific associations between personality and a measure of fitness but no link with life history traits. Anim. Behav. 167, 23–39 (2020).Article 

    Google Scholar 
    Carlstead, K., Mellen, J. & Kleiman, D. G. Black rhinoceros (Diceros bicornis) in US zoos: I. Individual behavior profiles and their relationship to breeding success. Zoo Biol. 18, 17–34 (1999).Article 

    Google Scholar 
    Berg, V., Lummaa, V., Lahdenperä, M., Rotkirch, A. & Jokela, M. Personality and long-term reproductive success measured by the number of grandchildren. Evol. Hum. Behav. 35, 533–539 (2014).Article 

    Google Scholar 
    Silva, H. P. A. & Sousa, M. B. C. The pair-bond formation and its role in the stimulation of reproductive function in female common marmosets (Callithrix jacchus). Int. J. Primatol. 18, 387–400 (1997).Article 

    Google Scholar 
    Cavanaugh, J., Mustoe, A. C., Taylor, J. H. & French, J. A. Oxytocin facilitates fidelity in well-established marmoset pairs by reducing sociosexual behavior toward opposite-sex strangers. Psychoneuroendocrinology 49, 1–10 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersen, I. L., Nævdal, E. & Bøe, K. E. Maternal investment, sibling competition, and offspring survival with increasing litter size and parity in pigs (Sus scrofa). Behav. Ecol. Sociobiol. 65, 1159–1167 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnstone-Yellin, T. L., Shipley, L. A., Myers, W. L. & Robinson, H. S. To twin or not to twin? Trade-offs in litter size and fawn survival in mule deer. J. Mammal. 90, 453–460 (2009).Article 

    Google Scholar 
    Ariyomo, T. O. & Watt, P. J. The effect of variation in boldness and aggressiveness on the reproductive success of zebrafish. Anim. Behav. 83, 41–46 (2012).Article 

    Google Scholar 
    Patterson, L. D. & Schulte-Hostedde, A. I. Behavioural correlates of parasitism and reproductive success in male eastern chipmunks, Tamias striatus. Anim. Behav. 81, 1129–1137 (2011).Article 

    Google Scholar 
    Mutzel, A., Dingemanse, N. J., Araya-Ajoy, Y. G. & Kempenaers, B. Parental provisioning behaviour plays a key role in linking personality with reproductive success. Proc. R. Soc. B 280, 20131019 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costa, T. S. O. et al. Individual behavioral differences and health of golden-headed lion tamarins (Leontopithecus chrysomelas). Am. J. Primatol. 82, e23118 (2020).PubMed 
    Article 

    Google Scholar 
    Harrison, P. M. et al. Personality-dependent spatial ecology occurs independently from dispersal in wild burbot (Lota lota). Behav. Ecol. 26, 483–492 (2015).Article 

    Google Scholar 
    Tardif, S. D., Power, M., Oftedal, O. T., Power, R. A. & Layne, D. G. Lactation, maternal behavior and infant growth in common marmoset monkeys (Callithrix jacchus): Effects of maternal size and litter size. Behav. Ecol. Sociobiol. 51, 17–25 (2001).Article 

    Google Scholar 
    Mills, D. A., Windle, C. P., Baker, H. F. & Ridley, R. M. Analysis of infant carrying in large, well-established family groups of captive marmosets (Callithrix jacchus). Primates 45, 259–265 (2004).PubMed 
    Article 

    Google Scholar 
    Leutenegger, W. Maternal-fetal weight relationships in primates. Folia Primatol. 20, 280–293 (1973).CAS 
    Article 

    Google Scholar 
    Schultz-Darken, N., Ace, L. & Ash, H. Behavior and behavioral management. In The Common Marmoset in Captivity and Biomedical Research (eds Marini, R. et al.) 109–117 (Academic Press, 2019). https://doi.org/10.1016/b978-0-12-811829-0.00007-8.Chapter 

    Google Scholar 
    Bardi, M. & Petto, A. J. Parental failure in captive common marmosets (Callithrix jacchus): A comparison with tamarins. Folia Primatol. 73, 46–48 (2002).Article 

    Google Scholar 
    Barbosa, M. N. & da Silva Mota, M. T. Alloparental responsiveness to newborns by nonreproductive, adult male, common marmosets (Callithrix jacchus). Am. J. Primatol. 75, 145–152 (2013).PubMed 
    Article 

    Google Scholar 
    Rutherford, J. N. et al. Womb to womb: Maternal litter size and birth weight but not adult characteristics predict early neonatal death of offspring in the common marmoset monkey. PLoS ONE 16, e0252093 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkenwirth, C., Martins, E., Deschner, T. & Burkart, J. M. Oxytocin is associated with infant-care behavior and motivation in cooperatively breeding marmoset monkeys. Horm. Behav. 80, 10–18 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards, H. A., Dugdale, H. L., Richardson, D. S., Komdeur, J. & Burke, T. Extra-pair parentage and personality in a cooperatively breeding bird. Behav. Ecol. Sociobiol. 72, 37 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schürch, R. & Heg, D. Variation in helper type affects group stability and reproductive decisions in a cooperative breeder. Ethology 116, 257–269 (2010).Article 

    Google Scholar 
    Class, B. & Dingemanse, N. J. A variance partitioning perspective of assortative mating: Proximate mechanisms and evolutionary implications. J. Evol. Biol. 35, 483–490 (2022).PubMed 
    Article 

    Google Scholar 
    Scherer, U., Godin, J. G. J. & Schuett, W. Do female rainbow kribs choose males on the basis of their apparent aggression and boldness? A non-correlational mate choice study. Behav. Ecol. Sociobiol. 74, 34 (2020).Article 

    Google Scholar 
    Schuett, W., Godin, J.-G.J. & Dall, S. R. X. Do female zebra finches, Taeniopygia guttata, choose their mates based on their ‘personality’?. Ethology 117, 908–917 (2011).Article 

    Google Scholar 
    Ophir, A. G., Crino, O. L., Wilkerson, Q. C., Wolff, J. O. & Phelps, S. M. Female-directed aggression predicts paternal behavior, but female prairie voles prefer affiliative males to paternal males. Brain. Behav. Evol. 71, 32–40 (2008).PubMed 
    Article 

    Google Scholar 
    Lazaro-Perea, C. Intergroup interactions in wild common marmosets, Callithrix jacchus: Territorial defence and assessment of neighbours. Anim. Behav. 62, 11–21 (2001).Article 

    Google Scholar 
    Koski, S. E. & Burkart, J. M. Common marmosets show social plasticity and group-level similarity in personality. Sci. Rep. 5, 8878 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Norman, M., Rowden, L. J. & Cowlishaw, G. Potential applications of personality assessments to the management of non-human primates: A review of 10 years of study. PeerJ 9, e12044 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gorsuch, R. L. Factor Analysis 2nd edn. (Lawrence Erlbaum Associates, 1983).MATH 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    Christensen, R. H. B. Ordinal—Regression Models for Ordinal Data. R package version 2019.4-25. (2019).Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer-Verlag, 2002). https://doi.org/10.1007/b97636.Book 
    MATH 

    Google Scholar 
    Bartoń, K. Mu-MIn: Multi-model inference. R package version 2019 1.43.6. (2019).Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richards, S. A. Dealing with overdispersed count data in applied ecology. J. Appl. Ecol. 45, 218–227 (2008).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.2.7 (2020).Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.2 (2020)du Sert, N. P. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020).Article 
    CAS 

    Google Scholar  More

  • in

    Responses of alpine summit vegetation under climate change in the transition zone between subtropical and tropical humid environment

    Chen, I. C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026. https://doi.org/10.1126/science.1206432 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115. https://doi.org/10.1038/nclimate1329 (2012).ADS 
    Article 

    Google Scholar 
    Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. 115, 201713936. https://doi.org/10.1073/pnas.1713936115 (2018).CAS 
    Article 

    Google Scholar 
    Gigauri, K., Akhalkatsi, M., Abdaladze, O. & Nakhutsrishvili, G. Alpine plant distribution and thermic vegetation indicator on GLORIA summits in the Central Greater Caucasus. Pak. J. Bot. 48, 1893–1902 (2016).
    Google Scholar 
    Gritsch, A., Dirnböck, T. & Dullinger, S. Recent changes in alpine vegetation differ among plant communities. J. Veg. Sci. 27, 1177–1186. https://doi.org/10.1111/jvs.12447 (2016).Article 

    Google Scholar 
    Speed, J. D. M., Austrheim, G., Hester, A. J. & Mysterud, A. Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23, 617–625. https://doi.org/10.1111/j.1654-1103.2012.01391.x (2012).Article 

    Google Scholar 
    Grytnes, J. A. et al. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol. Biogeogr. 23, 876–884. https://doi.org/10.1111/geb.12170 (2014).Article 

    Google Scholar 
    Johnson, D. R., Ebert-May, D., Webber, P. J. & Tweedie, C. E. Forecasting alpine vegetation change using repeat sampling and a novel modeling approach. Ambio 40, 693. https://doi.org/10.1007/s13280-011-0175-z (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amagai, Y., Kudo, G. & Sato, K. Changes in alpine plant communities under climate change: Dynamics of snow-meadow vegetation in northern Japan over the last 40 years. Appl. Veg. Sci. 21, 561–571. https://doi.org/10.1111/avsc.12387 (2018).Article 

    Google Scholar 
    Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327. https://doi.org/10.1126/science.1199040 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Engler, R. et al. 21st century climate change threatens mountain flora unequally across Europe. Global Change Biol. 17, 2330–2341. https://doi.org/10.1111/j.1365-2486.2010.02393.x (2011).ADS 
    Article 

    Google Scholar 
    Matteodo, M., Ammann, K., Verrecchia, E. P. & Vittoz, P. Snowbeds are more affected than other subalpine–alpine plant communities by climate change in the Swiss Alps. Ecol. Evol. 6, 6969–6982. https://doi.org/10.1002/ece3.2354 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl. Acad. Sci. 106, 19637–19643. https://doi.org/10.1073/pnas.0901562106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cuesta, F. et al. Thermal niche traits of high alpine plant species and communities across the tropical Andes and their vulnerability to global warming. J. Biogeogr. 47, 408–420. https://doi.org/10.1111/jbi.13759 (2020).Article 

    Google Scholar 
    Hamid, M., Khuroo, A. A., Malik, A. H., Ahmad, R. & Singh, C. P. Assessment of alpine summit flora in Kashmir Himalaya and its implications for long-term monitoring of climate change impacts. J. Mt. Sci. 17, 1974–1988. https://doi.org/10.1007/s11629-019-5924-7 (2020).Article 

    Google Scholar 
    Steinbauer, K., Lamprecht, A., Semenchuk, P., Winkler, M. & Pauli, H. Dieback and expansions: Species-specific responses during 20 years of amplified warming in the high Alps. Alpine Bot. 130, 1–11. https://doi.org/10.1007/s00035-019-00230-6 (2019).Article 

    Google Scholar 
    Noroozi, J. et al. Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges. Sci. Rep. 8, 10345. https://doi.org/10.1038/s41598-018-28504-9 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Testolin, R. et al. Global patterns and drivers of alpine plant species richness. Global Ecol. Biogeogr. 30, 12181–12231. https://doi.org/10.1111/geb.13297 (2021).Article 

    Google Scholar 
    Körner, C. in Alpine Plant Life Ch. 1. Plant ecology at high elevations, 1–22 (Springer, 2021).Smith, J. G., Sconiers, W., Spasojevic, M. J., Ashton, I. W. & Suding, K. N. Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arct. Antarct. Alp. Res. 44, 135–142. https://doi.org/10.1657/1938-4246-44.1.135 (2012).Article 

    Google Scholar 
    Körner, C. Alpine Plant Life. (Springer, 2021).Pauli, H. et al. The GLORIA field manual–standard Multi-Summit approach, supplementary methods and extra approaches. 5th edn, (GLORIA-Coordination, Austrian Academy of Sciences & University of Natural Resources and Life Sciences, 2015).Kuo, C.-C., Su, Y., Liu, H.-Y. & Lin, C.-T. Assessment of climate change effects on alpine summit vegetation in the transition of tropical to subtropical humid climate. Plant Ecol. 222, 933–951. https://doi.org/10.1007/s11258-021-01152-2 (2021).Article 

    Google Scholar 
    Suonan, J., Classen, A. T., Zhang, Z. & He, J. S. Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Funct. Ecol. 31, 2147–2156. https://doi.org/10.1111/1365-2435.12909 (2017).Article 

    Google Scholar 
    Lamprecht, A. et al. Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alpine Bot. 131, 27–39. https://doi.org/10.1007/s00035-021-00246-x (2021).Article 

    Google Scholar 
    Barthlott, W., Mutke, J., Rafiqpoor, D., Kier, G. & Kreft, H. Global centers of vascular plant diversity. Nova Acta Leopold. 92, 61–83 (2005).
    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. 106, 9322–9327. https://doi.org/10.1073/pnas.0810306106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, S.-F. Historical biogeography of the flora of Taiwan. J. Natl. Taiwan Museum 64, 33–63. https://doi.org/10.1111/j.1756-1051.1995.tb02123.x (2011).Article 

    Google Scholar 
    Beck, H. E. et al. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214. https://doi.org/10.1038/sdata.2018.214 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    TCCIP. The past and future of climate in Taiwan. 1–31 (National Science and Technology Center for Disaster Reduction & Research Center for Environmental Change, Academia Sinica, New Taipei City, 2018).Central Weather Bureau. in The Typhoon Database (ed Central Weather Bureau;) (https://rdc28.cwb.gov.tw/TDB/, 2021).Henny, L., Thorncroft, C. D., Hsu, H.-H. & Bosart, L. F. Extreme rainfall in Taiwan: Seasonal statistics and trends. J. Climate https://doi.org/10.1175/jcli-d-20-0999.1 (2021).Article 

    Google Scholar 
    Tu, J.-Y. & Chou, C. Changes in precipitation frequency and intensity in the vicinity of Taiwan: Typhoon versus non-typhoon events. Environ. Res. Lett. 8, 014023. https://doi.org/10.1088/1748-9326/8/1/014023 (2013).ADS 
    Article 

    Google Scholar 
    Liang, A., Oey, L., Huang, S. & Chou, S. Long-term trends of typhoon-induced rainfall over Taiwan: In situ evidence of poleward shift of typhoons in western North Pacific in recent decades. J. Geophys. Res. Atmos. 122, 2750–2765. https://doi.org/10.1002/2017jd026446 (2017).ADS 
    Article 

    Google Scholar 
    Lee, Y.-C., Wang, C.-C., Weng, S.-P., Chen, C.-T. & Cheng, C.-T. Future projections of meteorological drought characteristics in Taiwan. Atmos. Sci. https://doi.org/10.3966/025400022019034701003 (2019).Article 

    Google Scholar 
    Kudo, G., Kawai, Y., Amagai, Y. & Winkler, D. E. Degradation and recovery of an alpine plant community: Experimental removal of an encroaching dwarf bamboo. Alpine Bot. 127, 75–83. https://doi.org/10.1007/s00035-016-0178-2 (2017).Article 

    Google Scholar 
    Richman, S. K., Levine, J. M., Stefan, L. & Johnson, C. A. Asynchronous range shifts drive alpine plant–pollinator interactions and reduce plant fitness. Global Change Biol. 26, 3052–3064. https://doi.org/10.1111/gcb.15041 (2020).ADS 
    Article 

    Google Scholar 
    Spasojevic, M. J., Bowman, W. D., Humphries, H. C., Seastedt, T. R. & Suding, K. N. Changes in alpine vegetation over 21 years: Are patterns across a heterogeneous landscape consistent with predictions? Ecosphere 4, 1–18. https://doi.org/10.1890/es13-00133.1 (2013).Article 

    Google Scholar 
    Rogora, M. et al. Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci. Total Environ. 624, 1429–1442. https://doi.org/10.1016/j.scitotenv.2017.12.155 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Malanson, G. P., Resler, L. M., Butler, D. R. & Fagre, D. B. Mountain plant communities: Uncertain sentinels? Prog. Phys. Geogr. Earth Environ. 43, 521–543. https://doi.org/10.1177/0309133319843873 (2019).Article 

    Google Scholar 
    Berauer, B. J. et al. Low resistance of montane and alpine grasslands to abrupt changes in temperature and precipitation regimes. Arct Antarct. Alp. Res. 51, 215–231. https://doi.org/10.1080/15230430.2019.1618116 (2019).Article 

    Google Scholar 
    Körner, C. in Alpine Plant Life Ch. 9. Water relations, 333–383 (Springer, 2021).Cai, Y. et al. Photosynthetic response of an alpine plant, rhododendron delavayi Franch, to water stress and recovery: The role of Mesophyll conductance. Front. Plant Sci. 6, 1089. https://doi.org/10.3389/fpls.2015.01089 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. in Sustainable Agriculture (eds E. Lichtfouse et al.) 153–188 (Springer, 2009).Greenwood, S., Chen, J. C., Chen, C. T. & Jump, A. S. Temperature and sheltering determine patterns of seedling establishment in an advancing subtropical treeline. J. Veg. Sci. 26, 711–721. https://doi.org/10.1111/jvs.12269 (2015).Article 

    Google Scholar 
    Morley, P. J., Donoghue, D. N. M., Chen, J. C. & Jump, A. S. Montane forest expansion at high elevations drives rapid reduction in non-forest area, despite no change in mean forest elevation. J. Biogeogr. 47, 2405–2416. https://doi.org/10.1111/jbi.13951 (2020).Article 

    Google Scholar 
    Salick, J., Ghimire, S. K., Fang, Z., Dema, S. & Konchar, K. M. Himalayan alpine vegetation, climate change and mitigation. J. Ethnobiol. 34, 276–293. https://doi.org/10.2993/0278-0771-34.3.276 (2014).Article 

    Google Scholar 
    Winkler, M. et al. The rich sides of mountain summits–a pan-European view on aspect preferences of alpine plants. J. Biogeogr. 43, 2261–2273. https://doi.org/10.1111/jbi.12835 (2016).Article 

    Google Scholar 
    Verheyen, K. et al. Combining biodiversity resurveys across regions to advance global change research. Bioscience 67, 73–83. https://doi.org/10.1093/biosci/biw150 (2016).Article 
    PubMed 

    Google Scholar 
    Ganjurjav, H. et al. Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow. Sci. Rep. 6, 1–10. https://doi.org/10.1038/srep23356 (2016).CAS 
    Article 

    Google Scholar 
    Nagy, L., Kreyling, J., Gellesch, E., Beierkuhnlein, C. & Jentsch, A. Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int. J. Biometeorol. 57, 579–588. https://doi.org/10.1007/s00484-012-0585-z (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jump, A. S., Huang, T.-J. & Chou, C.-H. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35, 204–210. https://doi.org/10.1111/j.1600-0587.2011.06984.x (2012).Article 

    Google Scholar 
    Cowles, J., Boldgiv, B., Liancourt, P., Petraitis, P. S. & Casper, B. B. Effects of increased temperature on plant communities depend on landscape location and precipitation. Ecol. Evol. 8, 5267–5278. https://doi.org/10.1002/ece3.3995 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oldfather, M. F. & Ackerly, D. D. Increases in thermophilus plants in an arid alpine community in response to experimental warming. Arct. Antarct. Alp. Res. 51, 201–214. https://doi.org/10.1080/15230430.2019.1618148 (2019).Article 

    Google Scholar 
    Shao, K.-T. Taiwan’s biodiversity research achievements over the past 10 years (2001–2011). Biodivers. Sci. https://doi.org/10.3724/sp.j.1003.2012.06123 (2012).Article 

    Google Scholar 
    Chen, J.-M., Lu, F.-C., Kuo, S.-L. & Shih, C.-F. Summer climate variability in Taiwan and associated large-scale processes. J. Meteorol. Soc. Japan 83, 499–516. https://doi.org/10.2151/jmsj.83.499 (2005).ADS 
    Article 

    Google Scholar 
    Chen, T.-C., Wang, S.-Y., Huang, W.-R. & Yen, M.-C. Variation of the East Asian summer monsoon rainfall. J. Climate 17, 744–762. https://doi.org/10.1175/1520-0442(2004)017%3c0744:voteas%3e2.0.co;2 (2004).ADS 
    Article 

    Google Scholar 
    Thornthwaite, C. W. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. https://doi.org/10.2307/210739 (1948).Article 

    Google Scholar 
    Kambach, S. et al. Of niches and distributions: Range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates. Ecography 42, 467–477. https://doi.org/10.1111/ecog.03495 (2019).Article 

    Google Scholar 
    Luna, B. & Moreno, J. M. Range-size, local abundance and germination niche-breadth in Mediterranean plants of two life-forms. Plant Ecol. 210, 85–95. https://doi.org/10.1007/s11258-010-9740-y (2010).Article 

    Google Scholar 
    Newbold, T. Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog. Phys. Geog. 34, 3–22. https://doi.org/10.1177/0309133309355630 (2010).Article 

    Google Scholar 
    Karger, D. N., Wilson, A. M., Mahony, C., Zimmermann, N. E. & Jetz, W. Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Sci. Data 8, 307. https://doi.org/10.1038/s41597-021-01084-6 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Welham, S. J., Gezan, S. A., Clark, S. J. & Mead, A. Statistical Methods in Biology: Design and Analysis of Experiments and Regression. (Chapman and Hall/CRC, 2014).R: A Language and Environment for Statistical Computing v. 4.0.3 (2021).Beguería, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023. https://doi.org/10.1002/joc.3887 (2014).Article 

    Google Scholar 
    rgbif: Interface to the Global Biodiversity Information Facility API v. 3.7.1 (2022). More

  • in

    Soil carbon stocks in forest-tundra ecotones along a 500 km latitudinal gradient in northern Norway

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, 1–11 (2009).Article 
    CAS 

    Google Scholar 
    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wardle, D. A., Nilsson, M. C., Zackrisson, O. & Gallet, C. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol. Biochem. 35, 827–835 (2003).CAS 
    Article 

    Google Scholar 
    Moen, J., Cairns, D. M. & Lafon, C. W. Factors structuring the treeline ecotone in Fennoscandia. Plant Ecol. Divers. 1, 77–87 (2008).Article 

    Google Scholar 
    Sjögersten, S. & Wookey, P. A. Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland. Soil Biol. Biochem. 34, 1633–1646 (2002).Article 

    Google Scholar 
    Sjögersten, S., Turner, B. L., Mahieu, N., Condron, L. M. & Wookey, P. A. Soil organic matter biochemistry and potential susceptibility to climatic change across the forest-tundra ecotone in the Fennoscandian mountains. Glob. Change Biol. 9, 759–772 (2003).ADS 
    Article 

    Google Scholar 
    IPCC. IPCC report global warming of 1.5 °C. Ipcc Sr15. 2, 17–20 (2018).
    Google Scholar 
    Hobbie, S. E., Nadelhoffer, K. J. & Högberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242, 163–170 (2002).CAS 
    Article 

    Google Scholar 
    DeLuca, T. H. & Boisvenue, C. Boreal forest soil carbon: Distribution, function and modelling. Forestry 85, 161–184 (2012).Article 

    Google Scholar 
    Hansson, A., Dargusch, P. & Shulmeister, J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci. 18, 291–306 (2021).Article 

    Google Scholar 
    Sjögersten, S. & Wookey, P. A. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone. Ambio 38, 2–10 (2009).PubMed 
    Article 

    Google Scholar 
    Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kullman, L. Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J. Ecol. 90, 68–77 (2002).Article 

    Google Scholar 
    Lloyd, A. H. & Fastie, C. L. Recent changes in treeline forest distribution and structure in interior Alaska. Ecoscience 10, 176–185 (2003).Article 

    Google Scholar 
    Truong, C., Palmé, A. E. & Felber, F. Recent invasion of the mountain birch Betula pubescens ssp. tortuosa above the treeline due to climate change: Genetic and ecological study in northern Sweden. J. Evol. Biol. 20, 369–380 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Danby, R. K. & Hik, D. S. Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J. Ecol. 95, 352–363 (2007).Article 

    Google Scholar 
    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).PubMed 
    Article 

    Google Scholar 
    Tingstad, L., Olsen, S. L., Klanderud, K., Vandvik, V. & Ohlson, M. Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone. Oecologia 179, 599–608 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    Hofgaard, A. Inter-Relationships between treeline position, species diversity, land use and climate change in the Central Scandes Mountains of Norway. Annika Hofgaard Source Glob. Ecol. Biogeogr. Lett. 6(6), 419–429 (1997).Article 

    Google Scholar 
    Olsson, E. G. A., Austrheim, G. & Grenne, S. N. Landscape change patterns in mountains, land use and environmental diversity, Mid-Norway 1960–1993. Landsc. Ecol. 15, 155–170 (2000).Article 

    Google Scholar 
    Weintraub, M. N. & Schimel, J. P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils. Ecosystems 6, 129–143 (2003).CAS 
    Article 

    Google Scholar 
    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).Kammer, A. et al. Treeline shifts in the Ural mountains affect soil organic matter dynamics. Glob. Change Biol. 15, 1570–1583 (2009).ADS 
    Article 

    Google Scholar 
    Parker, T. C., Subke, J. A. & Wookey, P. A. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline. Glob. Change Biol. 21, 2070–2081 (2015).ADS 
    Article 

    Google Scholar 
    Speed, J. D. M. et al. Continuous and discontinuous variation in ecosystem carbon stocks with elevation across a treeline ecotone. Biogeosciences 12, 1615–1627 (2015).ADS 
    Article 

    Google Scholar 
    Hartley, I. P. et al. A potential loss of carbon associated with greater plant growth in the European Arctic. Nat. Clim. Chang. 2, 875–879 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Yoo, K., Amundson, R., Heimsath, A. M. & Dietrich, W. E. Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma 130, 47–65 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhu, M. et al. Soil organic carbon as functions of slope aspects and soil depths in a semiarid alpine region of Northwest China. CATENA 152, 94–102 (2017).CAS 
    Article 

    Google Scholar 
    Hilli, S., Stark, S. & Derome, J. Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Appl. Soil Ecol. 46, 200–208 (2010).Article 

    Google Scholar 
    Parker, T. C. et al. Exploring drivers of litter decomposition in a greening Arctic: Results from a transplant experiment across a treeline. Ecology 99, 2284–2294 (2018).PubMed 
    Article 

    Google Scholar 
    Strand, L. T., Callesen, I., Dalsgaard, L. & de Wit, H. A. Carbon and nitrogen stocks in Norwegian forest soils—The importance of soil formation, climate, and vegetation type for organic matter accumulation. Can. J. For. Res. 46, 1459–1473 (2016).CAS 
    Article 

    Google Scholar 
    Thieme, N., Bollandsås, O. M., Gobakken, T. & Næsset, E. Detection of small single trees in the forest-tundra ecotone using height values from airborne laser scanning. Can. J. Remote Sens. 37, 264–274 (2011).ADS 
    Article 

    Google Scholar 
    Mienna, I. M., Klanderud, K., Ørka, H. O., Bryn, A. & Bollandsås, O. M. Land cover classification of treeline ecotones along a 1100 km latitudinal transect using spectral- and three-dimensional information from UAV -based aerial imagery. Remote Sens. Ecol. Conserv. https://doi.org/10.1002/rse2.260 (2022).Article 

    Google Scholar 
    Tveito, O. E., Bjørdal, I., Skjelvåg, A. O. & Aune, B. A GIS-based agro-ecological decision system based on gridded climatology. Meteorol. Appl. 12, 57–68 (2005).ADS 
    Article 

    Google Scholar 
    Carter, T. R. Changes in the thermal growing season in Nordic countries during the past century and prospects for the future. Agric. Food Sci. Finl. 7, 161–179 (1998).Article 

    Google Scholar 
    Abdi, H. Partial least square regression PLS-regression. Encyclopedia Res. Methods Social Sci. 792.295 (2003).Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).CAS 
    Article 

    Google Scholar 
    Liland, K. H., Mevik, B.-H., Wehrens, R. & Hiemstra, P. Package ‘ pls ’. (2021).Mevik, B.-H. & Wehrens, R. Introduction to the pls Package. Help Sect. ‘pls’ Packag. RStudio Softw. 1–23 (2015).Huang, X. et al. Soil moisture dynamics within soil profiles and associated environmental controls. CATENA 136, 189–196 (2016).Article 

    Google Scholar 
    Trap, J., Hättenschwiler, S., Gattin, I. & Aubert, M. Forest ageing: An unexpected driver of beech leaf litter quality variability in European forests with strong consequences on soil processes. For. Ecol. Manage. 302, 338–345 (2013).Article 

    Google Scholar 
    Sørensen, M. V. et al. Draining the pool? Carbon storage and fluxes in three alpine plant communities. Ecosystems 21, 316–330 (2018).Article 
    CAS 

    Google Scholar 
    Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the Northern High Latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Chang. Biol. 16, 641–656 (2010).ADS 
    Article 

    Google Scholar 
    Sturm, M. et al. Snow—Shrub interactions in Arctic Tundra : A hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).ADS 
    Article 

    Google Scholar 
    Grogan, P. & Jonasse, S. Ecosystem CO2 production during winter in a Swedish subarctic region: The relative importance of climate and vegetation type. Glob. Change Biol. 12, 1479–1495 (2006).ADS 
    Article 

    Google Scholar 
    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–617 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wiesmeier, M. et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 333, 149–162 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Brooks, P. D. & Williams, M. W. Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrological processes 13, 2177–2190 (1999).Broll, G. et al. Landscape mosaic in the treeline ecotone on Mt. Rodjanoaivi, Subarctic Finland. Fenn. J. Geogr. 185, 89–105 (2007).
    Google Scholar 
    Turetsky, M. R. The role of bryophytes in carbon and nitrogen cycling. Bryologist 106, 395–409 (2003).Article 

    Google Scholar  More

  • in

    Impacts on tourism demand

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Selection on offspring size and contemporary evolution under ocean acidification

    Sunday, J. M., Crim, R. N., Harley, C. D. G. & Hart, M. W. Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS ONE 6, e22881 (2011).CAS 
    Article 

    Google Scholar 
    Kelly, M. W. & Hofmann, G. E. Adaptation and the physiology of ocean acidification. Funct. Ecol. 27, 980–990 (2013).Article 

    Google Scholar 
    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).Article 

    Google Scholar 
    Reusch, T. B. H. Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants. Evol. Appl. 7, 104–122 (2014).Article 

    Google Scholar 
    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).Article 

    Google Scholar 
    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).Article 

    Google Scholar 
    Przeslawski, R., Byrne, M. & Mellin, C. A review and meta-analysis of the effects of multiple abiotic stressors on marine embryos and larvae. Glob. Change Biol. 21, 2122–2140 (2015).Article 

    Google Scholar 
    Cattano, C., Claudet, J., Domenici, P. & Milazzo, M. Living in a high CO2 world: a global meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol. Monogr. 88, 320–335 (2018).Article 

    Google Scholar 
    Lohbeck, K., Riebesell, U. & Reusch, T. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–351 (2012).CAS 
    Article 

    Google Scholar 
    Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Change 11, 780–786 (2021).Article 

    Google Scholar 
    Kelly, M. W., Padilla-Gamiño, J. L. & Hofmann, G. E. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Glob. Change Biol. 19, 2536–2546 (2013).Article 

    Google Scholar 
    Pespeni, M. H. et al. Evolutionary change during experimental ocean acidification. Proc. Natl Acad. Sci. USA 110, 6937–6942 (2013).CAS 
    Article 

    Google Scholar 
    Foo, S. A., Dworjanyn, S. A., Poore, A. G. B., Harianto, J. & Byrne, M. Adaptive capacity of the sea urchin Heliocidaris erythrogramma to ocean change stressors: responses from gamete performance to the juvenile. Mar. Ecol. Prog. Ser. 556, 161–172 (2016).CAS 
    Article 

    Google Scholar 
    Malvezzi, A. J. et al. A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification. Evol. Appl. 8, 352–362 (2015).CAS 
    Article 

    Google Scholar 
    Bitter, M. C., Kapsenberg, L., Gattuso, J.-P. & Pfister, C. A. Standing genetic variation fuels rapid adaptation to ocean acidification. Nat. Commun. 10, 5821 (2019).CAS 
    Article 

    Google Scholar 
    Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Pearson Prentice Hall, 1996).Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Ishimatsu, A., Hayashi, M. & Kikkawa, T. Fishes in high-CO2, acidified oceans. Mar. Ecol. Prog. Ser. 373, 295–302 (2008).CAS 
    Article 

    Google Scholar 
    Melzner, F. et al. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6, 2313–2331 (2009).CAS 
    Article 

    Google Scholar 
    Timothy A. Mousseau and Charles W. Fox. Maternal Effects as Adaptations 178–201 (Oxford Univ. Press, 1998).Marshall, D., Allen, R. & Crean, A. The ecological and evolutionary importance of maternal effects in the sea. Oceanogr. Mar. Biol. 46, 203–250 (2008).
    Google Scholar 
    Tasoff, A. J. & Johnson, D. W. Can larvae of a marine fish adapt to ocean acidification? Evaluating the evolutionary potential of California grunion (Leuresthes tenuis). Evol. Appl. 12, 560–571 (2019).CAS 
    Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).Article 

    Google Scholar 
    Shimada, Y., Shikano, T., Murakami, N., Tsuzaki, T. & Seikai, T. Maternal and genetic effects on individual variation during early development in Japanese flounder Paralichthys olivaceus. Fish. Sci. 73, 244–249 (2007).CAS 
    Article 

    Google Scholar 
    Johnson, D. W., Christie, M. R. & Moye, J. Quantifying evolutionary potential of marine fish larvae: heritability, selection, and evolutionary constraints. Evolution 64, 2614–2628 (2010).Article 

    Google Scholar 
    Miles, C. M., Hadfield, M. G. & Wayne, M. L. Heritability for egg size in the serpulid polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 340, 155–162 (2007).Article 

    Google Scholar 
    Iguchi, K. & Yamaguchi, M. Adaptive significance of inter- and intrapopulational egg size variation in ayu Plecoglossus altivelis (osmeridae). Copeia 1994, 184–190 (1994).Article 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. Effects of settler size and density on early post-settlement survival of Ciona intestinalis in the field. Mar. Ecol. Prog. Ser. 259, 139–144 (2003).Article 

    Google Scholar 
    González-Ortegón, E. & Giménez, L. Environmentally mediated phenotypic links and performance in larvae of a marine invertebrate. Mar. Ecol. Prog. Ser. 502, 185–195 (2014).Article 

    Google Scholar 
    Pan, T.-C. F., Applebaum, S. L. & Manahan, D. T. Experimental ocean acidification alters the allocation of metabolic energy. Proc. Natl Acad. Sci. USA 112, 4696–4701 (2015).CAS 
    Article 

    Google Scholar 
    Rollinson, N. & Hutchings, J. A. Environmental quality predicts optimal egg size in the wild. Am. Nat. 181, 76–90 (2013).Article 

    Google Scholar 
    Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Oxford Univ. Press, 1998).Munday, P. L. Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep. 6, 99 (2014).Article 

    Google Scholar 
    Murray, C. S., Malvezzi, A., Gobler, C. J. & Baumann, H. Offspring sensitivity to ocean acidification changes seasonally in a coastal marine fish. Mar. Ecol. Prog. Ser. 504, 1–11 (2014).Article 

    Google Scholar 
    Baumann, H. Experimental assessments of marine species sensitivities to ocean acidification and co-stressors: how far have we come? Can. J. Zool. 97, 399–408 (2019).Article 

    Google Scholar 
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).Article 
    CAS 

    Google Scholar 
    Bell, G. Evolutionary rescue and the limits of adaptation. Phil. Trans. R. Soc. B 368, p20120080 (2013).Article 

    Google Scholar 
    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).Article 

    Google Scholar 
    Smyder, E. A., Martin, K. L. M. & Gatten, R. E. Jr Temperature effects on egg survival and hatching during the extended incubation period of California grunion, Leuresthes tenuis. Copeia 2002, 313–320 (2002).Article 

    Google Scholar 
    Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).CAS 
    Article 

    Google Scholar 
    Van Noordwijk, A. J. & de Jong, G. Acquisition and allocation of resources: their influence on variation in life history tactics. Am. Nat. 128, 137–142 (1986).Article 

    Google Scholar 
    Davidson, C. Spatial and Temporal Variability of Coastal Carbonate Chemistry in the Southern California Region. MSc thesis, Univ. California, San Diego (2015).Jones, J. M., Sweet, J., Brzezinski, M. A., McNair, H. M. & Passow, U. Evaluating carbonate system algorithms in a nearshore system: does total alkalinity matter? PLoS ONE 11, e0165191 (2016).Article 
    CAS 

    Google Scholar 
    Gruber, N. et al. Rapid progression of ocean acidification in the California current system. Science 337, 220–223 (2012).CAS 
    Article 

    Google Scholar 
    Turi, G., Lachkar, Z., Gruber, N. & Münnich, M. Climatic modulation of recent trends in ocean acidification in the California current system. Environ. Res. Lett. 11, 014007 (2016).Article 

    Google Scholar 
    Northcott, D. et al. Impacts of urban carbon dioxide emissions on sea-air flux and ocean acidification in nearshore waters. PLoS ONE 14, e0214403 (2019).CAS 
    Article 

    Google Scholar 
    Rausher, M. D. The measurement of selection on quantitative traits: biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).Article 

    Google Scholar 
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, 2002).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kruuk, L. E. B. Estimating genetic parameters in natural populations using the animal model. Phil. Trans. R. Soc. B 359, 873–890 (2004).Article 

    Google Scholar 
    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, (2010).Heidelberger, P. & Welch, P. D. Simulation run length control in the presence of an initial transient. Oper. Res. 31, 1109–1144 (1983).Article 

    Google Scholar 
    Clark, F. N. The Life History of Leuresthes Tenuis, an Atherine Fish with Tide Controlled Spawning Habits Fish Bulletin No. 10 (California Department of Fish and Game, 1925).Johnson, D.W. Data from: Selection on offspring size and contemporary evolution under ocean acidification. Dryad https://doi.org/10.5061/dryad.0gb5mkm3w (2022) More

  • in

    Last glacial loess dynamics in the Southern Caucasus (NE-Armenia) and the phenomenon of missing loess deposition during MIS-2

    Lehmkuhl, F. et al. Loess landscapes of Europe-mapping, geomorphology, and zonal differentiation. Earth-Sci. Rev. 215, 103496 (2021).Article 

    Google Scholar 
    Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M. A. & Gao, G. Loess genesis and worldwide distribution. Earth Sci. Rev. 201, 102947 (2020).Article 

    Google Scholar 
    Moine, O. et al. The impact of last Glacial climate variability in west-European loess revealed by radiocarbon dating of fossil earthworm granules. PNAS 114, 6209–6214 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. PNAS 114, E10632–E10638 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rousseau, D.-D. et al. Link between European and North Atlantic abrupt climate changes over the last glaciation. Geophys. Res. Lett. 34, L22713 (2007).ADS 
    Article 

    Google Scholar 
    Rousseau, D.-D. et al. Eurasian contribution to the last glacial dust cycle: how are loess sequences built?. Clim. Past. 13, 1181–1197 (2017).Article 

    Google Scholar 
    Fischer, P. et al. Millennial-scale terrestrial ecosystem responses to Upper Pleistocene climatic changes: 4D-reconstruction of the Schwalbenberg Loess-Palaeosol-Sequence (Middle Rhine Valley, Germany). CATENA 196, 104913 (2021).Article 

    Google Scholar 
    Wolf, D. et al. Evidence for strong relations between the Upper Tagus Loess Formation (Central Iberia) and the marine atmosphere off the Iberian Margin during the Last Glacial Period. Quat. Res. 101, 84–113 (2021).Article 

    Google Scholar 
    Porter, S. & An, Z. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375, 305–308 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Sun, Y. et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nat. Geosci. 5, 46–49 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Zeeden, C. et al. Patterns and timing of loess-palaeosol transitions in Eurasia: Constraints for palaeoclimate studies. Glob. Planet. Change 162, 1–7 (2018).ADS 
    Article 

    Google Scholar 
    Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys. Res. Lett. 39, L01705 (2012).ADS 
    Article 

    Google Scholar 
    Cheng, H. et al. The Asian monsoon over the past 640,000 years and ice age terminations. Nature 534, 640–646 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiang, J. C. H. et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quat. Sci. Rev. 108, 111–129 (2015).ADS 
    Article 

    Google Scholar 
    Youn, J. H., Seong, Y. B., Choi, J. H., Abdrakhmatov, K. & Ormukov, C. Loess deposits in the northern Kyrgyz Tien Shan: Implications for the paleoclimate reconstruction during the Late Quaternary. CATENA 117, 81–93 (2014).Article 

    Google Scholar 
    Li, Y. et al. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin. Clim. Past 14, 271–286 (2018).Article 

    Google Scholar 
    Frechen, M., Oches, E. A. & Kohfeld, K. E. Loess in Europe—Mass accumulation rates during the Last Glacial Period. Quat. Sci. Rev. 22, 1835–1857 (2003).ADS 
    Article 

    Google Scholar 
    Antoine, P. et al. High resolution record of the last climatic cycle in the southern carpathian basin at Surduk (vojvodina, Serbia). Quat. Int. 198, 19–36 (2009).MathSciNet 
    Article 

    Google Scholar 
    Antoine, P. et al. Upper Pleistocene loess-palaeosols records from Northern France in the European context: Environmental background and dating of the Middle Palaeolithic. Quat. Int. 411, 4–24 (2016).Article 

    Google Scholar 
    Kang, S., Roberts, H. M., Wang, X., An, Z. S. & Wang, M. Mass accumulation rate changes in Chinese loess during MIS 2, and asynchrony with records from Greenland ice cores and North Pacific Ocean sediments during the last glacial maximum. Aeol. Res. 19, 251–258 (2015).Article 

    Google Scholar 
    Fitzsimmons, K. E. et al. Loess accumulation in the Tian Shan piedmont: Implications for palaeoenvironmental change in arid Central Asia. Quat. Int. 469, 30–43 (2018).Article 

    Google Scholar 
    Li, Y., Song, Y., Qiang, M., Miao, Y. & Zeng, M. Atmospheric dust variations in the Ili Basin, northwest China, during the last glacial period as revealed by a high mountain loess-paleosol sequence. J. Geophys. Res. Atmos. 124, 8449–8466 (2019).ADS 
    Article 

    Google Scholar 
    Pinto, J. G. & Ludwig, P. Extratropical cyclones over the North Atlantic and western Europe during the last glacial maximum and implications for proxy interpretation. Clim. Past 16, 611–626 (2020).Article 

    Google Scholar 
    Cheng, L. et al. Drivers for asynchronous patterns of dust accumulation in central and eastern Asia and in Greenland during the Last Glacial Maximum. Geophys. Res. Lett. 48, e2020GL01194 (2021).
    Google Scholar 
    Fenn, K. et al. A tale of two signals: Global and local influences on the Late Pleistocene loess sequences in Bulgarian Lower Danube. Quat. Sci. Rev. 274, 107264 (2021).Article 

    Google Scholar 
    Song, Y. et al. Spatio-temporal distribution of Quaternary loess across Central Asia. Palaeogeogr. Palaeoclim. Palaeoecol. 567, 110279 (2021).ADS 
    Article 

    Google Scholar 
    Hughes, P. D. & Gibbard, P. L. A stratigraphical basis for the Last Glacial Maximum (LGM). Quat. Int. 383, 174–185 (2015).Article 

    Google Scholar 
    Baykal, Y. et al. Detrital zircon U-Pb age analysis of last glacial loess sources and proglacial sediment dynamics in the Northern European Plain. Quat. Sci. Rev. 274, 107265 (2021).Article 

    Google Scholar 
    Pötter, S. et al. Disentangling sedimentary pathways for the Pleniglacial Lower Danube loess based on geochemical signatures. Front. Earth Sci. 9, 150 (2021).ADS 
    Article 

    Google Scholar 
    Prud’homme, C. et al. δ13C signal of earthworm calcite granules: A new proxy for palaeoprecipitation reconstructions during the Last Glacial in western Europe. Quat. Sci. Rev. 179, 158–166 (2018).ADS 
    Article 

    Google Scholar 
    Obreht, I. et al. A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian Basin. Earth-Sci. Rev. 190, 498–520 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Joannin, S. et al. Vegetation, fire and climate history of the Lesser Caucasus: A new Holocene record from Zarishat fen (Armenia). J. Quat. Sci. 29, 70–82 (2014).Article 

    Google Scholar 
    Brittingham, A. et al. Influence of the north atlantic oscillation on δD and δ18O in meteoric water in the Armenian highland. J. Hydrol. 575, 513–522 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Bohn, U., Zazanashvili, N. & Nakhutsrishvili, G. The map of the natural vegetation of Europe and its application in the caucasus ecoregion. Bull. Georgian Natl. Acad. Sci. 175, 112–121 (2007).
    Google Scholar 
    Trigui, Y. et al. First calibration and application of leaf wax n-alkane biomarkers in Loess-Paleosol sequences and modern plants and soils in Armenia. Geosciences 9, 263 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Richter, C. et al. New insights into southern Caucasian glacial-interglacial climate conditions inferred from Quaternary Gastropod Fauna. J. Quat. Sci. 35, 634–649 (2020).Article 

    Google Scholar 
    Kharzyan, E. Geological Map of Republic of Armenia (Ministry of Nature Protection of Republic of Armenia, 2005).
    Google Scholar 
    Sosson, M. et al. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geol. Soc. Spec. Publ. 340, 329–352 (2010).ADS 
    Article 

    Google Scholar 
    Lomax, J. et al. Testing post-IR-IRSL dating on Armenian loess palaeosol sections against independent age control. Quat. Geochron. 69, 101265 (2021).Article 

    Google Scholar 
    Újvári, G., Kovács, J., Varga, G., Raucsik, B. & Markovic, S. B. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: A review. Quat. Sci. Rev. 29, 3157–3166 (2010).ADS 
    Article 

    Google Scholar 
    Rudnick, R. L. & Gao, S. Composition of the continental crust. In The Crust (ed. Rudnick, R. L.) 1–64 (Elsevier-Pergamon, 2003).
    Google Scholar 
    Újvári, G., Varga, A. & Balogh-Brunstad, Z. Origin, weathering, and geochemical composition of loess in southwestern Hungary. Quat. Res. 69, 421–437 (2008).Article 
    CAS 

    Google Scholar 
    Galoyan, G. et al. Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): Evidence for Jurassic Back-arc opening and hot spot event between the South Armenian Block and Eurasia. J. Asian Earth Sci. 34, 135–153 (2009).ADS 
    Article 

    Google Scholar 
    Hässig, M. et al. New structural and petrological data on the Amasia ophiolites (NW Sevan-Akera suture zone, Lesser Caucasus): Insights for a large-scale obduction in Armenia and NE Turkey. Tectonophysics 588, 135–153 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Sahakyan, L. et al. Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): Evidence of a subduction geodynamic environment. in Tectonic Evolution of the Eastern Black Sea and Caucasus (eds. Sosson, M., Stephenson, R. A., Adamia, S. A.). Geological Society Special Publication. Vol. 428. (2016).Obreht, I. et al. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Sci. Rep. 6, 36334 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Profe, J., Wacha, L., Frechen, M., Ohlendorf, C. & Zolitschka, B. XRF scanning of discrete samples—A chemostratigraphic approach exemplified for loess-paleosol sequences from the Island of Susak, Croatia. Quat. Int. 494, 34–51 (2018).Article 

    Google Scholar 
    Profe, J., Zolitschka, B., Schirmer, W., Frechen, M. & Ohlendorf, C. Geochemistry unravels MIS3/2 paleoenvironmental dynamics at the loess-paleosol sequence Schwalbenberg II, Germany. Palaeogeogr. Palaeoclim. Palaeoecol. 459, 537–551 (2016).ADS 
    Article 

    Google Scholar 
    Zeeden, C. et al. Three climatic cycles recorded in a loess-palaeosol sequence at Semlac (Romania)—Implications for dust accumulation in south-eastern Europe. Quat. Sci. Rev. 154, 130–142 (2016).ADS 
    Article 

    Google Scholar 
    Song, Y. et al. Magnetic stratigraphy of the Danube loess: A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia. J. Asian Earth Sci. 155, 68–80 (2018).ADS 
    Article 

    Google Scholar 
    Rouzaut, S. & Orgeira, M. J. Influence of volcanic glass on the magnetic signal of different paleosols in Córdoba, Argentina. Stud. Geophys. Geod. 61, 361–384 (2017).ADS 
    Article 

    Google Scholar 
    Campodonico, V. A., Rouzaut, S. & Pasquini, A. I. Geochemistry of a Late Quaternary loess-paleosol sequence in central Argentina: Implications for weathering, sedimentary recycling and provenance. Geoderma 351, 235–249 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Wolf, D. et al. Loess in Armenia—Stratigraphic findings and palaeoenvironmental indications. Proc. Geol. Assoc. 127, 29–39 (2016).Article 

    Google Scholar 
    Buggle, B. et al. Iron mineralogical proxies and Quaternary climate change in SE-European Loess–Paleosol sequences. CATENA 117, 4–22 (2014).CAS 
    Article 

    Google Scholar 
    Bradák, B. et al. Magnetic susceptibility in the European Loess Belt: New and existing models of magnetic enhancement in Loess. Palaeogeogr. Palaeoclim. Palaeoecol. 569, 110329 (2021).ADS 
    Article 

    Google Scholar 
    Laag, C. et al. A detailed paleoclimate proxy record for the Middle Danube Basin over the Last 430 kyr: A rock magnetic and colorimetric study of the Zemun loess-paleosol sequence. Front. Earth Sci. 9, 600086 (2021).ADS 
    Article 

    Google Scholar 
    Baumgart, P., Hambach, U., Meszner, S. & Faust, D. An environmental magnetic fingerprint of periglacial loess: Records of Late Pleistocene loess–palaeosol sequences from eastern Germany. Quat. Int. 296, 82–93 (2013).Article 

    Google Scholar 
    Boers, N., Ghil, M. & Rousseau, D.-D. Ocean circulation, ice shelf, and sea ice interactions explain Dansgaard-Oeschger cycles. PNAS 115, E11005–E11014 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for Dansgaard-Oeschger cycles. Nat. Rev. Earth Environ. 1, 677–693 (2020).ADS 
    Article 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).ADS 
    Article 

    Google Scholar 
    Martrat, B. et al. Four climate cycles ofrecurring deep and surface water destabilizations on the Iberian margin. Science 317, 502–507 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Broecker, W. S. Massive iceberg discharges as triggers for global climate change. Nature 372, 421–424 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    Jin, L., Chen, F., Ganopolski, A. & Claussen, M. Response of East Asian climate to Dansgaard/Oeschger and Heinrich events in a coupled model of intermediate complexity. J. Geophys. Res. 112, D06117 (2007).ADS 

    Google Scholar 
    Sun, Y., Wang, X., Liu, Q. & Clemens, S. C. Impacts of post-depositional processes on rapid monsoon signals recorded by the last glacial loess deposits of northern China. Earth Planet. Sci. Lett. 289, 171–179 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, S. & Ding, Z. A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochem. Geophys. Geosyst. 15, 798–814 (2014).ADS 
    Article 

    Google Scholar 
    Obreht, I. et al. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal. Sci. Rep. 7, 5848 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Antoine, P. et al. Evidence of rapid and cyclic eolian deposition during the Last Glacial in European loess series (Loess events): The high-resolution records from Nussloch (Germany). Quat. Sci. Rev. 28, 2955–2973 (2009).ADS 
    Article 

    Google Scholar 
    Rousseau, D. D. et al. North Atlantic abrupt climatic events of the last glacial period recorded in Ukrainian loess deposits. Clim. Past 7, 221–234 (2011).Article 

    Google Scholar 
    Machalett, B. et al. Aeolian dust dynamics in Central Asia during the Pleistocene: driven by the long-term migration, seasonality and permanency of the Asiatic polar front. Geophys. Geochem. Geosyst. 9, Q08Q09 (2008).Article 
    CAS 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Kutzbach, J., Chen, G., Cheng, H., Edwards, R. & Liu, Z. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Clim. Dynam. 42, 1079–1095 (2014).ADS 
    Article 

    Google Scholar 
    Marković, S. B. et al. Danube loess stratigraphy—Towards a pan-European loess stratigraphic model. Earth Sci. Rev. 148, 228–258 (2015).ADS 
    Article 

    Google Scholar 
    Li, G. et al. Paleoenvironmental changes recorded in a luminescence dated loess/paleosol sequence from the Tianshan Mountains, arid central Asia, since the penultimate glaciation. Earth Planet. Sci. Lett. 448, 1–12 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lomax, J. et al. A luminescence-based chronology for the Harletz Loess sequence, Bulgaria. Boreas 48, 179–194 (2019).Article 

    Google Scholar 
    Kehl, M. et al. Pleistocene dynamics of dust accumulation and soil formation in the southern Caspian Lowlands—New insights from the loess-paleosol sequence at Neka-Abelou, northern Iran. Quat. Sci. Rev. 253, 106774 (2021).Article 

    Google Scholar 
    Ganopolski, A., Calov, R. & Claussen, M. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Clim. Past 6, 229–244 (2010).Article 

    Google Scholar 
    Malinsky-Buller, A. et al. Evidence for Middle Palaeolithic occupation and landscape change in central Armenia at the open-air site of Alapars-1. Quat. Res. 99, 223–247 (2021).Article 

    Google Scholar 
    Rao, Z. et al. High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Sci. Rep. 3, 2785 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, T., Marković, S. B., Zech, M., Hambach, U. & Sümegi, P. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quat. Sci. Rev. 30, 662–681 (2011).ADS 
    Article 

    Google Scholar 
    Torfstein, A., Goldstein, S. L., Stein, M. & Enzel, Y. Impacts of abrupt climate changes in the Levant from Last Glacial Dead Sea levels. Quat. Sci. Rev. 69, 1–7 (2013).ADS 
    Article 

    Google Scholar 
    Pickarski, N., Kwiecien, O., Langgut, D. & Litt, T. Abrupt climate and vegetation variability of eastern Anatolia during the last glacial. Clim. Past 11, 1491–1505 (2015).Article 

    Google Scholar 
    Wegwerth, A. et al. Northern hemisphere climate control on the environmental dynamics in the glacial Black Sea “Lake”. Quat. Sci. Rev. 135, 41–53 (2016).ADS 
    Article 

    Google Scholar 
    Ollivier, V., Fontugne, M. & Lyonnet, B. Geomorphic response and 14C chronology of base-level changes induced by Late Quaternary Caspian Sea mobility (middle Kura Valley, Azerbaijan). Geomorphology 230, 109–124 (2015).ADS 
    Article 

    Google Scholar 
    Egeland, C. P. et al. Bagratashen 1, a stratified open-air Middle Paleolithic site in the Debed river valley of northeastern Armenia: A preliminary report. Archaeol. Res. Asia 8, 1–20 (2016).Article 

    Google Scholar 
    von Suchodoletz, H., Gärtner, A., Zielhofer, C. & Faust, D. Eemian and post-Eemian fluvial dynamics in the Lesser Caucasus. Quat. Sci. Rev. 191, 189–203 (2018).ADS 
    Article 

    Google Scholar 
    Langbein, W. B. & Schumm, S. A. Yield of sediment in relation to mean annual precipitation. Trans. Am. Geophys. Union 39, 1076–1084 (1958).ADS 
    Article 

    Google Scholar 
    Wolman, M. G. & Miller, J. P. Magnitude and frequency of forces in geomorphic processes. J. Geol. 68, 54–74 (1960).ADS 
    Article 

    Google Scholar 
    Svirčev, Z. et al. Importance of biological loess crusts for loess formation in semi-arid environments. Quat. Int. 296, 206–215 (2013).Article 

    Google Scholar 
    Reber, R. et al. Glacier advances in northeastern Turkey before and during the global Last Glacial Maximum. Quat. Sci. Rev. 101, 177–192 (2014).ADS 
    Article 

    Google Scholar 
    Ammann, C., Jenny, B., Kammer, K. & Messerli, B. Late Quaternary glacier response to humidity changes in the arid Andes of Chile (18–29 °S). Palaeogeogr. Palaeoclim. Palaeoecol. 172, 313–326 (2001).ADS 
    Article 

    Google Scholar 
    Domínguez-Villar, D. et al. Early maximum extent of paleoglaciers from Mediterranean mountains during the last glaciation. Sci. Rep. 3, 2034 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spötl, C. et al. Increased autumn and winter precipitation during the Last Glacial Maximum in the European Alps. Nat. Commun. 12, 1839 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shumilovskikh, L. S. et al. Orbital and millennial-scale environmental changes between 64 and 20 ka BP recorded in Black Sea sediments. Clim. Past 10, 939–954 (2014).Article 

    Google Scholar 
    Wegwerth, A. et al. Black Sea temperature response to glacial millennial-scale climate variability. Geophys. Res. Lett. 42, 8147–8154 (2015).ADS 
    Article 

    Google Scholar 
    Sarıkaya, M. A., Zreda, M., Çiner, A. & Zweck, C. Cold and wet Last Glacial Maximum on Mount Sandıras, SW Turkey, inferred from cosmogenic dating and glacier modeling. Quat. Sci. Rev. 27, 769–780 (2008).ADS 
    Article 

    Google Scholar 
    Lézine, A.-M. et al. Lake Ohrid, Albania, provides an exceptional multi-proxy record of environmental changes during the last glacial–interglacial cycle. Palaeogeogr. Palaeoclim. Palaeoecol. 287, 116–127 (2010).ADS 
    Article 

    Google Scholar 
    Tecsa, V. et al. Revisiting the chronostratigraphy of late Pleistocene loess-paleosol sequences in southwestern Ukraine: OSL dating of Kurortne section. Quat. Int. 542, 65–79 (2020).Article 

    Google Scholar 
    Luetscher, M. et al. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nat. Commun. 6, 6344 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ludwig, P., Schaffernicht, E. J., Shao, Y. & Pinto, J. G. Regional atmospheric circulation over Europe during the Last Glacial Maximum and its links to precipitation. J. Geophys. Res.-Atmos. 121, 2130–2145 (2016).ADS 
    Article 

    Google Scholar 
    Schaffernicht, E. J., Ludwig, P. & Shao, Y. Linkage between dust cycle and loess of the last glacial maximum in Europe. Atmos. Chem. Phys. 20, 4969–4986 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Beghin, P. et al. What drives LGM precipitation over the western Mediterranean? A study focused on the Iberian Peninsula and northern Morocco. Clim. Dyn. 46, 2611–2631 (2016).Article 

    Google Scholar 
    Sümegi, P. et al. Vegetation and land snail-based reconstruction of the palaeocological changes in the forest steppe eco-region of the Carpathian Basin during last glacial warming. Glob. Ecol. Conserv. 33, e01976 (2022).Article 

    Google Scholar 
    Chen, J. et al. Revisiting Late Pleistocene Loess-Paleosol sequences in the Azov Sea Region of Russia: Chronostratigraphy and paleoenvironmental record. Front. Earth Sci. 9, 808157 (2022).Article 

    Google Scholar 
    Xepos, S. Analysis of trace elements in geological materials, soils and sludges. Spectro XRF Rep. 193, 1–5 (2007).
    Google Scholar 
    Buggle, B. et al. Geochemical characterization and origin of Southeastern and Eastern European loesses (Serbia, Romania, Ukraine). Quat. Sci. Rev. 27, 1058–1075 (2008).ADS 
    Article 

    Google Scholar 
    Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Dearing, J. Environmental Magnetic Susceptibility: Using the Bartington MS2 System (Chi Publishing, 1999).
    Google Scholar 
    Buylaert, J., Murray, A. S., Thomsen, K. J. & Jain, M. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiat. Meas. 44, 560–565 (2009).CAS 
    Article 

    Google Scholar 
    Lomax, J. et al. Establishing a luminescence-based chronostratigraphy for the Last Glacial-interglacial cycle of the Loess-Palaeosol sequence Achajur (Armenia). Front. Earth Sci. 9, 755084 (2021).Article 

    Google Scholar 
    Lamothe, M., Auclair, M., Hamzaoui, C. & Huot, S. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiat. Meas. 37, 493–498 (2003).CAS 
    Article 

    Google Scholar 
    Tudyka, K. et al. Increased dose rate precision in combined α and β counting in the μDose system—A probabilistic approach to data analysis. Radiat. Meas. 134, 106310 (2020).CAS 
    Article 

    Google Scholar 
    Kolb, T. et al. The µDose-system: Determination of environmental dose rates by combined alpha and beta counting—Performance tests and practical experiences. GChron 4, 1–31 (2021).ADS 

    Google Scholar 
    Durcan, J. A., King, G. & Duller, G. DRAC: Dose rate and age calculator for trapped charge dating. Quat. Geochron. 28, 54–61 (2015).Article 

    Google Scholar 
    von Suchodoletz, H. & Faust, D. Late Quaternary fluvial dynamics and landscape evolution at the lower Shulaveris Ghele River (southern Caucasus). Quat. Res. 89, 254–269 (2018).Article 

    Google Scholar 
    von Suchodoletz, H. et al. Late Pleistocene river migrations in response to thrust belt advance and sediment-flux steering e the Kura River (southern Caucasus). Geomorphology 266, 53–65 (2016).ADS 
    Article 

    Google Scholar 
    Ryan, W. B. F. et al. Global multi-resolution topography (GMRT) synthesis data set. Geochem. Geophys. Geosyst. 10, Q03014 (2009).ADS 
    Article 

    Google Scholar 
    Nalivkin, D. V. et al. Geologicheskaya Karta Kavkaza, Mashtav 1:500.000 (Geological Map of the Caucasus, Scale 1:500,000). (Ministry of Geology of the USSR, 1976). More

  • in

    Modeling geographical invasions of Solenopsis invicta influenced by land-use patterns

    This study used comprehensive surveillance data to profile RIFA invasions in time and space on an isolated island. By using this surveillance data, which were collected regularly together with information on land-use in different years, distinctions of RIFA severity can be compared, and RIFA SIRH were therefore identified. Our statistical model decomposed the spatial invasion risk into four geographic and anthropogenic factors: land-use characteristics, distances from RIFA sampling location to the nearest road, and spatial factors. For land use from 2014 to 2017, agricultural land, transportation usage, and land-use change had significantly higher odds of RIFA SIRH than natural land cover. Regarding the distance from the nearest road, RIFA invasions were most likely ( > 60%) to occur within 350 m from the nearest road on the transportation usage land. Meanwhile, it was likely ( > 60%) to have RIFA invasions within 150 m from the nearest road in areas where land-use change had occurred between 2014 and 2016. Finally, the highest risks of RIFA SIRH were identified around the pier area and the area of the earliest RIFA invasions on Kinmen. Our study provided an example showing how RIFA gradually expanded to the entire isolated island.Highest risks for agricultural land, transportation usage, and land-use changeAgricultural landThe vulnerability of agricultural lands to RIFA invasions has been reported in many studies. For example, a review by Apperson and Adams showed that RIFA often infested soybean fields in the United States28. Way and Khoo reviewed the RIFA infestation of crop plants, including sugar cane and cotton29, and indicated that crop invasion by RIFAs was a common occurrence. The study conducted by Stuhler et al. demonstrated that in unthinned patches, RIFA mounds were likely to occur in agricultural lands compared to woodlands in South Carolina30. Thus, the results of our study align with the literature in finding that agricultural land tends to be highly assailable by RIFAs.The large majority of agricultural lands on Kinmen Island include sorghum farms, peanut farms, and other food crop farms31. These farms need to be plowed or cultivated at least twice per year. Therefore, soil disturbances by humans could be the reason for the defenselessness against RIFA invasions. The potential mechanism is that soil disturbances destroy habitats for all living organisms, including RIFA. However, RIFAs reestablished their colonies faster than others30,32. Thus, RIFAs became one of the dominant species in highly disturbed areas. Higher soil disturbances associated with higher RIFA abundances were evidenced by the study by Stuhler et al.30 in which the authors compared the thinned areas to unthinned areas, identifying more RIFA mounds in thinned plots. King and Tschinkel also conducted a field experiment on different levels of soil disturbances. They demonstrated that higher numbers of RIFAs persisted at higher levels of disturbance (i.e., plowing) than at lower levels (i.e., mowing)32.Land for transportation usageThe land-use type for transportation purposes, including roads and ports (i.e., seaports and airports), was also identified as a risk factor for RIFA SIRH in this study (Table 2). Among the 1814 sampling tubes in the transportation area, there were 1768 sampling tubes for roads and 46 for ports. As most of the sampling tubes were set along roads in the present study, it could be deduced that roadsides or road cuts were at risk of being infested by RIFA. This result was in compliance with previous studies in the U.S., showing that areas beside roads such as roadsides and road margins provided suitable habitats for RIFA development11,33,34,35,36,37.Roadsides or road cuts had significant risks of RIFA SIRH in Kinmen, which could be due to frequent disturbances from vehicles. In Kinmen, most roads have only one lane or two narrow lanes. When two vehicles traveling in opposite directions pass each other, they will sometimes take turns or pull over onto the side, resulting in frequent soil disturbance. Roadsides or areas near roads are generally considered highly disturbed10,11,34,38, and narrow and disturbed areas suitable for RIFA establishment were demonstrated by Stiles and Jones12.In addition to disturbances along roads, some vehicles may also transport RIFAs in potted plants and soil. Newly-mated queens may potentially attach to the surface of vehicles and fall during transportation, further facilitating invasions near roadsides. This traffic-related dispersal process has been documented in many plant species39,40,41.Road maintenance could also be a reason for the high risks near roadsides. Road maintenance involves moving soil from one place and adding soil to construction sites. If the transported soil is contaminated by RIFAs, the maintenance areas will likely be occupied by RIFA. A case report by King et al. revealed how RIFA spread to roadsides by road maintenance32.Ports, in addition to roads, are another land type for transportation usages. Our finding was in line with previous studies showing that airports or seaports were common areas of RIFA invasion in Taiwan and neighboring countries. For example, Taoyuan International Airport was considered one of the earliest RIFA infestation locations in Taiwan42,43. RIFAs were also detected in container yards in Taiwan’s Kaohsiung commercial port in 201844. In other Asia–Pacific countries, such as China, South Korea, Japan, and Australia, RIFAs have also been reported at ports in the last decade44,45.Ports in this study consist of one seaport and one airport (Fig. 1). Based on the predicted risk of RIFA SIRH (Fig. 8a), one of the highest risk areas was around Shuitou Pier in Jincheng township (Fig. 1). The Pier area had high risks could be because it is one of the cargo container entrances on Kinmen Island. Shipping cargo containers have been suggested to facilitate the movement of RIFAs from abroad or between domestic ports42,43,44. Container yards can become infested when RIFA-contaminated cargo containers are unloaded44,46. In addition to possible contributions from cargos, the pier area had high risks of invasions, which could be due to environmental conditions. This can be supported by the risk of spatial factors, showing that the Pier area had high risks (Fig. 8c). One of the possible environmental factors could be that floating rubbish tends to accumulate in the Pier area47. Studies have shown that nonnative species, including ants, can travel with marine litter to new locations32,48,49,50,51.The Kinmen Shangyi Airport is the other cargo entrance in Kinmen (Fig. 1). Intuitionally, because of cargo containers, the airport area was expected to have risks similar to those in the pier area; however, the risks of RIFA invasions in the airport area were considerably lower (Fig. 8a). The differences in risks could be due to their cargo carrying capacities. In 2018, the airport had 6778 tons of cargo, but the pier had one million tons of cargo52,53. Differences in the types of cargo between the two locations may also play a role in invasion risks. From 2001 to 2018, the majority of goods arriving at the Pier included building stones and block stones from China53. These products have higher risks of being contaminated by RIFAs than goods such as ferrous articles and eggs arriving from the airport of Taiwan53,54.Land-use changeThe land-use change category was identified as a risk factor for RIFA SIRH in the current study. Among land-use change areas, 61.6% were natural land cover in 2014 but were converted to agricultural land, transportation areas, and artificial structures in 2017, which we designated development-related areas (Fig. 6).As previously mentioned, the reasons why the land-use change category had a high risk of RIFA invasion could be due to anthropogenic disturbances. Taking development-related areas as an example, when natural land cover such as forests are changed to other land usages, the first step may be to remove vegetation by clearcutting or plowing. These activities involve soil or habitat disturbances and could aid in the establishment of RIFA populations55. Then, if lands are changed to build houses or schools (i.e., artificial structures), soil disturbances could also occur during construction activities56. For lands that are changed to transportation usages, moving and adding RIFA-contaminated soil could occur during road construction.Effects of roads on RIFA SIRHDistances to the nearest roads were important for understanding invasion where undergoing land-use change, as well in places used as transportation lands (Fig. 7). These land-use categories share a common feature: roads. Meanwhile, agriculture lands had the greatest level of RIFA SIRH, but did not show interaction with distance to roads (Table 2). This could be because agriculture lands were far from roads as compared to land-use change and transportation lands. The median distances to roads from these three land-use categories supported this speculation. Therefore, from this study, it can be deduced that the roads could play a role to transport RIFAs to areas closer to road (i.e., land-use change and transportation). However, the effects of roads on RIFA SIRH did not appear when the areas away from roads (i.e., agricultural lands).Lowest risk in natural land coverIn the present study, natural land cover were identified as the lowest risk category of RIFA SIRH among the five land-use categories (Fig. 8d). This finding was in line with the study conducted by Brown et al., showing that a high percentage of canopy cover was associated with a low mean number of RIFAs in Texas between 2008 and 201057. In addition, Tschinkel and King investigated longleaf pine forests in Florida in 2012 and found that RIFA had difficulty establishing long-term colonies in the forest35. However, in another longleaf pine forest in Georgia, the ant survey conducted by Stuble et al. revealed that RIFAs were the predominant species in the ant community from 2006 to 200758. Wetlands also had high numbers of RIFAs. In northern Florida, Tschinkel observed that RIFA mounds clustered near pond margins11.Natural land cover in Kinmen had the lowest risk of RIFA invasions, which could be because most areas ( > 75%, data not shown) are forests. The forests are preserved and protected by the Forestry Bureau of Taiwan. Because of protection, forests can avoid most anthropogenic disturbances, such as soil excavation, which are known as one of the factors facilitating RIFA relocation32,59,60. Additionally, the forest environment is cool, humid, and shaded, which are unfavorable environmental conditions for RIFAs1,12,30,34,61,62.Implications of study findings for RIFA management in KinmenPublic communicationsTo date, the Kinmen County Animal and Plant Disease Control Center (KAPCDC) has launched a program aimed at raising public awareness of RIFAs on the island through newspapers, social media, and posters. In addition, for RIFA control, the KAPCDC has listed certified pesticides such as pyriproxyfen and lambda-cyhalothrin for the use of controlling RIFAs on agricultural lands. Nevertheless, our study documented that a greater risk of RIFA invasions still occurred on agricultural lands and lands used for transportation, suggesting communications should target owners of agricultural lands as well as the general public in future campaigns. Many individuals of the general public may not be able to identify ant species, so communications should therefore emphasize the importance of reporting any ant mounds, especially along roads. As different sociodemographic groups react to source information differently, communications have to be tailored to ages and educational levels7. For example, for students in primary school, the study by Madeira et al. showed that by teaching activities including insect specimens and short-film presentations, students increased their awareness of the importance of pest control63. For owners of agricultural lands and workers at ports, educational activities on basic RIFA knowledge and pesticide treatments with suitable communication methods may be needed. Those methods included regular face-to-face discussions on RIFA elimination strategies in the meetings of farmers’ associations or a system sharing updated materials likely to be contaminated with RIFAs64,65.RIFA control personnelTo prioritize resources, according to the findings from this study, we suggest that government staff focus on the controls within 350 m from the nearest road on transportation usage land and within 150 m from the nearest road on the areas where land-use change occurred between 2014 and 2016. The authorities could consider integrated pest management approaches, which include chemical and biological controls, to preserve the local ecosystem66.For agricultural lands, RIFA management mainly relies on awareness and reports from owners, as control personnel cannot perform inspections and intervention on private agricultural lands without the owners’ permissions, Although control personnel cannot directly perform interventions on private land, plant quarantine officers in seaports, which were a high-risk area in this study, can prevent RIFA importation by checking cargos to ensure that RIFAs are not stowaways on materials such as plants, rocks, and soil. More

  • in

    Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior

    Diverse oviposition rates of Drosophila females after long exposure to waspsTo investigate whether D. melanogaster change oviposition behavior when they cohabit with Lb female wasps, we designed an experimental procedure and monitored egg laying for a much longer time than in previous experiments – approximately 20 days. Specifically, twenty 3-day-old female and five 3-day-old male D. melanogaster adults were placed in standard fly bottles containing fly food dishes. Flies were housed with twenty 2-day-old Lb female wasps (exposed) or without any female wasps (unexposed). The fly food dishes were replaced daily, and fly eggs were counted daily (Fig. 1a). Consistent with previous observations24, the exposed Drosophila females had significantly reduced oviposition numbers compared to the unexposed flies (Fig. 1b). This response lasted approximately 6 days in the presence of Lb females. After that, we surprisingly found that the number of eggs laid by the exposed flies did not differ from the numbers laid by the unexposed controls (Fig. 1b). This variation led us to speculate that this decreased oviposition may have been induced by the diverse life-threatening pressure when D. melanogaster females encounter different aged wasps, as old ones present less danger to their offspring28,29, or simply indicate that the flies become habituated to the constant presence of wasps.Fig. 1: D. melanogaster oviposition rates are altered in the presence of young Lb females.a Standard oviposition assay design. Each bottle contained twenty Canton-S (CS) female flies and five CS male flies, either with twenty female Lb wasps (exposed) or with no wasps (unexposed). Flies aged 3 days post-eclosion and wasps aged 2 days post-emergence were used. The food dishes were replaced daily, and the eggs laid each day were counted. b The daily number of eggs laid by the unexposed and exposed CS flies. Flies were exposed to wasps for 20 days. The experiment was performed eighteen times. Data represent the mean ± SEM. Significance was determined by two-way ANOVA with Sidak’s multiple comparisons test, p values are indicated in Source Data file (***p  More