More stories

  • in

    Acoustic characteristics of sound produced by males of Bactrocera oleae change in the presence of conspecifics

    Benelli, G. et al. Sexual communication and related behaviours in Tephritidae: Current knowledge and potential applications for Integrated Pest Management. J. Pest Sci. 87, 385–405 (2014).Article 

    Google Scholar 
    Kuba, H. & Sokei, Y. The production of pheromone clouds by spraying in the melon fly, Dacus cucurbitae coquillett (Diptera: Tephritidae). J. Ethol. 6, 105–110 (1988).Article 

    Google Scholar 
    Fletcher, B. S. The structure and function of the sex pheromone glands of the male Queensland fruit fly, Dacus tryoni.. J. Insect Physiol. 15, 1309–1322 (1969).Article 

    Google Scholar 
    Nation, J. L. Courtship behavior and evidence for a sex attractant in the male Caribbean fruit fly, Anastrepha suspensa. Ann. Entomol. Soc. Am. 65, 1364–1367 (1972).Article 

    Google Scholar 
    Arita, L. H. & Kaneshiro, K. Y. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. (EUA) 43, 135–143 (1989).
    Google Scholar 
    Briceño, R.D. & Eberhard, W.G. Male wing positions during courtship by Mediterranean fruit flies (Ceratitis capitata) (Diptera: Tephritidae). J. Kansas Entomol. Soc. 143–47 (2000).Benelli, G. et al. Male wing vibration in the mating behavior of the Olive fruit fly Bactrocera oleae (Rossi) (Diptera: Tephritidae). J. Insect Behav. 25, 590–603 (2012).Article 

    Google Scholar 
    Feron, M. L’appel sonore du mâle dans le comportement sexuel de Dacus oleae Gmel [Dipt Trypetidae]. Bull. Soc. Entomol. Fr. 65, 139–143 (1960).Article 

    Google Scholar 
    Feron, M. & Andrieu, A. J. Etude des signaux acoustiques du male dans le comportement sexuel de Dacus Oleae Gmel (Dipt. Trypetidae). Ann. Epiphyt. 13, 269–276 (1962).
    Google Scholar 
    Rolli, K. Die akustischen Sexualsignale von Ceratitis capitata Wied. Und Dacus oleae Gmel. Z. Angew. Entomol. 81, 219–223 (1976).Article 

    Google Scholar 
    Webb, J. C., Calkins, C. O., Chambers, D. L., Schwienbacher, W. & Russ, K. Acoustical aspects of behavior of Mediterranean fruit fly, Ceratitis capitata: Analysis and identification of courtship sounds. Entomol. Exp. Appl. 33, 1–8 (1983).Article 

    Google Scholar 
    Mankin, R. W., Lemon, M., Harmer, A. M. T., Evans, C. S. & Taylor, P. W. Time pattern and frequency analyses of sounds produced by irradiated and untreated male Bactrocera tryoni (Diptera: Tephritidae) during mating behavior. Ann. Entomol. Soc. Am. 101, 664–674 (2008).Article 

    Google Scholar 
    Miyatake, T. & Kanmiya, K. Male courtship song in circadian rhythm mutants of Bactrocera cucurbitae (Tephritidae: Diptera). J. Insect Physiol. 50, 85–91 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sivinski, J., Burk, T. & Webb, J. Acoustic courtship signals in the Caribbean fruit fly, Anastrepha suspensa (Loew). Anim. Behav. 32, 1011–1016 (1984).Article 

    Google Scholar 
    Mankin, R. W. et al. Broadcasts of wing-fanning vibrations recorded from calling male Ceratitis capitata (Diptera: Tephritidae) increase captures of females in traps. J. Econ. Entomol. 97, 1299–1309 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankin, R. W., Petersson, E., Epsky, N. D., Heath, R. R. & Sivinski, J. Exposure to male pheromones enhances Anastrepha suspensa (Diptera: Tephritidae) female response to male calling song. Fla. Entomol. 83, 411 (2000).CAS 
    Article 

    Google Scholar 
    Sivinski, J. & Webb, J. C. Changes in a Caribbean fruit fly acoustic signal with social situation (Diptera: Tephritidae)1. Ann. Entomol. Soc. Am. 79, 146–149 (1986).Article 

    Google Scholar 
    Canale, A. et al. The courtship song of fanning males in the fruit fly parasitoid Psyttalia concolor (Szépligeti) (Hymenoptera: Braconidae). Bull. Entomol. Res. 103, 303–309 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wicker-Thomas, C. Pheromonal communication involved in courtship behavior in Diptera. J. Insect. Physiol. 53, 1089–1100 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tan, K.H., Nishida, R., Jang, E.B. & Shelly, T.E. Pheromones, male lures, and trapping of tephritid fruit flies. In: Trapping and the Detection, Control, and Regulation of Tephritid Fruit Flies: Lures, Area-Wide Programs, And Trade Implications 15–74 (Springer, 2014).Poramarcom, R. Sexual communication in the Oriental fruit fly, Dacus dorsalis Hendel (Diptera: Tephritidae). Doctoral dissertation. (University of Hawaii at Manoa, 1988).Ekanayake, D. The mating system and courtship behaviour of the Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae). Doctoral dissertation. (Queensland University of Technology, 2017).Suzuki, Y. & Koyama, J. Courtship behavior of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). Appl. Entomol. Zool. 16, 164–166 (1981).Article 

    Google Scholar 
    Scolari, F., Valerio, F., Benelli, G., Papadopoulos, N. T. & Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 12, 408 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nieri, R., Anfora, G., Mazzoni, V. & Rossi Stacconi, M. V. Semiochemicals, semiophysicals and their integration for the development of innovative multi-modal systems for agricultural pests’ monitoring and control. Entomol. Gen. 42, 167–183 (2022).Article 

    Google Scholar 
    Cocroft, R. B. & Rodríguez, R. L. The behavioral ecology of insect vibrational communication. Bioscience 55, 323–334 (2005).Article 

    Google Scholar 
    Daane, K. M. & Johnson, M. W. Olive fruit fly: Managing an ancient pest in modern times. Annu. Rev. Entomol. 55, 151–169 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rice, R. E., Phillips, P. A., Stewart-Leslie, J. & Sibbett, G. S. Olive fruit fly populations measured in Central and Southern California. Calif. Agric. 57, 122–127 (2003).Article 

    Google Scholar 
    Wang, X. et al. Exploration for olive fruit fly parasitoids across Africa reveals regional distributions and dominance of closely associated parasitoids. Sci. Rep. 11, 1–14 (2021).Article 
    CAS 

    Google Scholar 
    Loher, W. & Zervas, G. The mating rhythm of the olive fruitfly, Dacus oleae Gmelin. Z. Angew. Entomol. 88, 425–435 (1979).Article 

    Google Scholar 
    Benelli, G. Aggression in Tephritidae flies: Where, when, why? Future directions for research in integrated pest management. Insects 6, 38–53 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benelli, G. Aggressive behavior and territoriality in the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae): Role of residence and time of day. J. Insect. Behav. 27, 145–161 (2014).Article 

    Google Scholar 
    Shelly, T. E. Aggression between wild and laboratory-reared sterile males of the mediterranean fruit fly in a natural habitat (Diptera: Tephritidae). Fla. Entomol. 83, 105–108 (2000).Article 

    Google Scholar 
    Ekanayake, W. M., Clarke, A. R. & Schutze, M. K. Close-distance courtship of laboratory reared Bactrocera tryoni (Diptera: Tephritidae). Austral. Entomol. 58, 578–588 (2019).Article 

    Google Scholar 
    Ant, T. et al. Control of the olive fruit fly using genetics-enhanced sterile insect technique. BMC Biol. 10, 1–8 (2012).Article 

    Google Scholar 
    Estes, A. M. et al. A basis for the renewal of sterile insect technique for the olive fly, Bactrocera oleae (Rossi). J. Appl. Entomol. 136, 1–16 (2012).Article 

    Google Scholar 
    Zanini, D., Geurten, B., Spalthoff, C. & Göpfert, M. C. Sound communication in Drosophila. In Insect Hearing and Acoustic Communication Animal Signals and Communication, Vol. 1 (ed. Hedwig, B.) (Springer, 2014).
    Google Scholar 
    Windmill, J. F. C. & Jackson, J. C. Mechanical specializations of insect ears. In Insect Hearing. Springer Handbook of Auditory Research, Vol. 55 (eds Pollack, G. et al.) (Springer, 2016).
    Google Scholar 
    Talyn, B. C. & Dowse, H. B. The role of courtship song in sexual selection and species recognition by female Drosophila melanogaster. Anim. Behav. 68, 1165–1180 (2004).Article 

    Google Scholar 
    Kanmiya, K. Acoustic studies on the mechanism of sound production in the mating songs of the melon fly, Dacus cucurbitae Coquillett (Diptera: Tephritidae). J. Ethol. 6, 143–151 (1988).Article 

    Google Scholar 
    Benelli, G. et al. Wing-fanning frequency as a releaser boosting male mating success—High-speed video analysis of courtship behavior in Campoplex capitator, a parasitoid of Lobesia botrana. Insect Sci. 27, 1298–1310 (2020).PubMed 
    Article 

    Google Scholar 
    Ge, J. et al. Pea leafminer Liriomyza huidobrensis (Diptera: Agromyzidae) uses vibrational duets for efficient sexual communication. Insect Sci. 26, 510–522 (2019).PubMed 
    Article 

    Google Scholar 
    Mazzoni, V., Anfora, G. & Virant-Doberlet, M. Substrate vibrations during courtship in three drosophila species. PLoS ONE 8, e80708 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McKelvey, E. G. Z. et al. Drosophila females receive male substrate-borne signals through specific leg neurons during courtship. Curr. Biol. 31, 3894–3904 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strauß, J., Stritih-Peljhan, N., Nieri, R., Virant-Doberlet, M., & Mazzoni, V. Communication by substrate-borne mechanical waves in insects: From basic to applied biotremology. In: Advances in Insect Physiology, vol. 61, 189–307 (Academic Press, 2021).Mazomenos, B. E. Effect of age and mating on pheromone production in the female olive fruit fly, Dacus oleae (Gmel.). J. Insect Physiol. 30, 765–769 (1984).CAS 
    Article 

    Google Scholar 
    Carpita, A. et al. (Z)-9-tricosene identified in rectal gland extracts of Bactrocera oleae males: First evidence of a male-produced female attractant in in olive fruit fly. Naturwissenschaften 99, 77–81 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Canale, A. et al. Behavioural and electrophysiological responses of the olive fruit fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), to male- and female-borne sex attractants. Chemoecology 23, 155–164 (2013).CAS 
    Article 

    Google Scholar 
    Mcdonald, P. T. Intragroup stimulation of pheromone release by male mediterranean fruit flies (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 80, 17–20 (1987).CAS 
    Article 

    Google Scholar 
    Iwahashi, O. & Majima, T. Lek formation and male–male competition in the melon fly, Dacus cucurbitae Coquillett: Diptera: Tephritidae. Appl. Entomol. Zool. 21, 70–75 (1986).Article 

    Google Scholar 
    Keiser, I., Kobayashi, R. M., Chambers, D. L. & Schneider, E. L. Relation of sexual dimorphism in the wings, potential stridulation, and illumination to mating of oriental fruit flies, melon flies, and Mediterranean fruit flies in Hawaii. Ann. Ent. Soc. Am. 66, 937–941 (1973).Article 

    Google Scholar 
    Benelli, G. & Canale, A. Aggressive behavior in olive fruit fly females: Oviposition site guarding against parasitic wasps. J. Insect Behav. 29, 680–688 (2016).Article 

    Google Scholar 
    Rohde, B. B. et al. An acoustic trap to survey and capture two neoscapteriscus species. Fla. Entomol. 102, 654–657 (2019).Article 

    Google Scholar 
    Shelly, T. E. Lek size and female visitation in two species of tephritid fruit flies. Anim. Behav. 62, 33–40 (2001).Article 

    Google Scholar 
    Niyazi, N., Shuker, D. M. & Wood, R. J. Male position and calling effort together influence male attractiveness in leks of the medfly, Ceratitis capitata (Diptera: Tephritidae): Male attractiveness in leks of Ceratitis capitata. Biol. J. Linn. Soc. Lond. 95, 479–487 (2008).Article 

    Google Scholar 
    Greenfield, M. D. Signal interactions and interference in insect choruses: Singing and listening in the social environment. J. Comp. Physiol. A 201, 143–154 (2015).Article 

    Google Scholar 
    Kouloussis, N. A. et al. Age related assessment of sugar and protein intake of Ceratitis capitata in ad libitum conditions and modeling its relation to reproduction. Front. Physiol. 8, 1–13 (2017).Article 

    Google Scholar 
    Boersma, P. & Van Heuven, V. Speak and unSpeak with PRAAT. Glot Int. 5, 341–347 (2001).
    Google Scholar 
    Joyce, A. L. et al. Effect of continuous rearing on courtship acoustics of five braconid parasitoids, candidates for augmentative biological control of Anastrepha species. Biocontrol 55, 573–582 (2010).Article 

    Google Scholar 
    Sall, J. et al. JMP Start Statistics: A Guide to Statistics and Data Analysis Using JMP (Sas Institute, 2017).
    Google Scholar  More

  • in

    Stochastic models of Mendelian and reverse transcriptional inheritance in state-structured cancer populations

    Pienta, K. J., Hammarlund, E. U., Austin, R. H., Axelrod, R., Brown, J. S. & Amend, S. R. Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. In Seminars in Cancer Biology, 1–15 (2020).Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA A Cancer J. Clin. 70(1), 7–30 (2020).Article 

    Google Scholar 
    Duesberg, P. & Rasnick, D. Aneuploidy, the somatic mutation that makes cancer a species of its own. Cell Motil. Cytoskelet. 47(2), 81–107 (2000).CAS 
    Article 

    Google Scholar 
    Hanahan, D. & Weinberg, R. A. Leading edge review hallmarks of cancer: The next generation. Cell 144, 646–674 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amend, S. R. et al. Polyploid giant cancer cells: Unrecognized actuators of tumorigenesis, metastasis, and resistance. Prostate 79(13), 1489–1497 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pienta, K. J. et al. Convergent evolution, evolving evolvability, and the origins of lethal cancer. Mol. Cancer Res. 18(6), 801–810 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pienta, K. J., Hammarlund, E. U., Axelrod, R., Brown, J. S. & Amend, S. R. Poly-aneuploid cancer cells promote evolvability, generating lethal cancer. Evol. Appl. 13(7), 1626–1634 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roychowdhury, S. et al. Personalized oncology through integrative high-throughput sequencing: A pilot study. Sci. Transl. Med. 3(111), 1–12 (2011).Article 
    CAS 

    Google Scholar 
    Kuczler, M. D., Olseen, A. M., Pienta, K. J. & Amend, S. R. ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid cancer cells (PACCs). Prog. Biophys. Mol. Biol. 165, 3–7 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 

    Brown, R. L. What evolvability really is. Br. J. Philos. Sci.65(3), 549–572 (2014).MathSciNet 
    Article 

    Google Scholar 
    Crother, B. I. & Murray, C. M. Early usage and meaning of evolvability. Ecol. Evol. 9(7), 3784–3793 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, J. L. & Wagner, A. The causes of evolvability and their evolution. Nat. Rev. Genet. 20, 24–38 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pigliucci, M. Is evolvability evolvable?. Genetics 9, 75–82 (2008).CAS 
    PubMed 

    Google Scholar 
    Sniegowski, P. D. & Murphy, H. A. Evolvability. Curr. Biol. 16, R831–R834 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kostecka, L. G., Pienta, K. J. & Amend, S. R. Polyaneuploid cancer cell dormancy: Lessons from evolutionary phyla. Front. Ecol. Evol. 9, 439 (2021).Article 

    Google Scholar 
    Rajaraman, R., Rajaraman, M. M., Rajaraman, S. R. & Guernsey, D. L. Neosis–a paradigm of self-renewal in cancer. Cell Biol. Int. 29(12), 1084–1097 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rajaraman, R., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, S. R. Neosis–A parasexual somatic reduction division in cancer. Int. J. Hum. Genet. 7(1), 29–48 (2007).CAS 
    Article 

    Google Scholar 
    Sundaram, M., Guernsey, D. L., Rajaraman, M. M. & Rajaraman, R. Neosis: A novel type of cell division in cancer. Cancer Biol. Ther. 3(2), 207–218 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gatenby, R. A., Cunningham, J. J. & Brown, J. S. Evolutionary triage governs fitness in driver and passenger mutations and suggests targeting never mutations. Nat. Commun. 5(1), 1–9 (2014).Article 

    Google Scholar 
    Bukkuri, A. & Brown, J. S. Evolutionary game theory: Darwinian dynamics and the G function approach. MDPI Games 12(4), 1–19 (2021).MathSciNet 
    MATH 

    Google Scholar 
    Lopez-Sánchez, L. M. et al. CoCl2, a mimic of hypoxia, induces formation of polyploid giant cells with stem characteristics in colon cancer. PLoS ONE 9(6), e99143 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mittal, K. et al. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer 116(9), 1186–1194 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Niu, N., Mercado-Uribe, I. & Liu, J. Dedifferentiation into blastomere-like cancer stem cells via formation of polyploid giant cancer cells. Oncogene 36(34), 4887–4900 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ogden, A., Rida, P. C. G., Knudsen, B. S., Kucuk, O. & Aneja, R. Docetaxel-induced polyploidization may underlie chemoresistance and disease relapse. Cancer Lett. 367, 89–92 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Puig, P. E. et al. Tumor cells can escape DNA-damaging cisplatin through DNA endoreduplication and reversible polyploidy. Cell Biol. Int. 32(9), 1031–1043 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, S. et al. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 33(1), 116–128 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, K. C. et al. The role of heterogeneous environment and docetaxel gradient in the emergence of polyploid, mesenchymal and resistant prostate cancer cells. Clin. Exp. Metastasis 36(2), 97–108 (2019).PubMed 
    Article 

    Google Scholar 
    Lin, K.-C. et al. Epithelial and mesenchymal prostate cancer cell population dynamics on a complex drug landscape. Converg. Sci. Phys. Oncol. 3(4), 045001 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boe, L. Mechanism for induction of adaptive mutations in Escherichia coli. Mol. Microbiol. 4(4), 597–601 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cairns, J. Mutation and cancer: The antecedents to our studies of adaptive mutation. Genetics 148(4), 1433–1440 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, B. G. Adaptive mutagenesis: A process that generates almost exclusively beneficial mutations. Genetica 102, 109 (1998).PubMed 
    Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7(2), 118–126 (1953).Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation. Adv. Genet. 10, 257–293 (1961).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jablonka, E. V. A. & Raz, G. A. L. Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. Q. Rev. Biol. 84(2), 131–176 (2009).PubMed 
    Article 

    Google Scholar 
    Steele, E. J. & Pollard, J. W. Hypothesis: Somatic hypermutation by gene conversion via the error prone DNA(longrightarrow )RNA(longrightarrow )DNA information loop. Mol. Immunol. 24(6), 667–673 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steele, E. J. Somatic hypermutation in immunity and cancer: Critical analysis of strand-biased and codon-context mutation signatures. DNA Repair 45, 1–24 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steele, E. J. Somatic Selection and Adaptive Evolution (Springer, US, 1979).
    Google Scholar 
    Steele, E. J., Lindley, R. A. & Blanden, R. V. Lamarck’s Signature (Perseus Books, 1998).
    Google Scholar 
    Foster, P. L. Adaptive mutation: Implications for evolution. Bioessays 22, 1067–1074 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCutcheon, J. P. & Moran, N. A. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10(1), 13–26 (2012).CAS 
    Article 

    Google Scholar 
    Badyaev, A. V. Stress-induced variation in evolution: From behavioural plasticity to genetic assimilation. Proc. R. Soc. B Biol. Sci. 272, 877–886 (2005).Article 

    Google Scholar 
    Bateman, K. G. The genetic assimilation of four venation phenocopies. J. Genet. 56(3), 443–474 (1959).Article 

    Google Scholar 
    Milkman, R. D. The genetic basis of natural variation. VI. Selection of a crossveinless strain of Drosophila by phenocopying at high temperature. Genetics 51(1), 87 (1965).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waddington, C. H. Genetic assimilation of the bithorax phenotype. Evolution 10(1), 1–13 (1956).Article 

    Google Scholar 
    Godoy, O., Saldaña, A., Fuentes, N., Valladares, F. & Gianoli, E. Forests are not immune to plant invasions: Phenotypic plasticity and local adaptation allow Prunella vulgaris to colonize a temperate evergreen rainforest. Biol. Invasions 13(7), 1615–1625 (2011).Article 

    Google Scholar 
    Schlichting, C. D. & Wund, M. A. Phenotypic plasticity and epigenetic marking: An assessment of evidence for genetic accommodation. Evolution 68(3), 656–672 (2014).PubMed 
    Article 

    Google Scholar 
    Otaki, J. M., Hiyama, A., Iwata, M. & Kudo, T. Phenotypic plasticity in the range-margin population of the lycaenid butterfly Zizeeria maha. BMC Evol. Biol. 10(1), 1–13 (2010).Article 

    Google Scholar 
    Aubret, F. & Shine, R. Genetic assimilation and the postcolonization erosion of phenotypic plasticity in island tiger snakes. Curr. Biol. 19(22), 1932–1936 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Losos, J. B., Irschick, D. J. & Schoener, T. W. Adaptation and constraint in the evolution of specialization of Bahamian Anolis lizards. Evolution 48(6), 1786–1798 (1994).PubMed 
    Article 

    Google Scholar 
    Losos, J. B. et al. Evolutionary implications of phenotypic plasticity in the hindlimb of the lizard Anolis sagrei. Evolution 54(1), 301–305 (2000).CAS 
    PubMed 

    Google Scholar 
    Sword, G. A. Density-dependent warning coloration. Nature 397(6716), 217 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Sword, G. A. A role for phenotypic plasticity in the evolution of aposematism. Proc. R. Soc. B Biol. Sci. 269(1501), 1639–1644 (2002).Article 

    Google Scholar 
    Clausen, J. & Hiesey, W. M. The balance between coherence and variation in evolution. Proc. Natl. Acad. Sci. 46(4), 494–506 (1960).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurevitch, J. Variation in leaf dissection and leaf energy budgets among populations of Achillea from an altitudinal gradient. Am. J. Bot. 75(9), 1298–1306 (1988).Article 

    Google Scholar 
    Gurevitch, J. & Schuepp, P. H. Boundary layer properties of highly dissected leaves: An investigation using an electrochemical fluid tunnel. Plant Cell Environ. 13(8), 783–792 (1990).Article 

    Google Scholar 
    Gurevitch, J. Sources of variation in leaf shape among two populations of Achillea lanulosa. Genetics 130(2), 385–394 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foster, P. L. Stress-induced mutagenesis in bacteria. Crit. Rev. Biochem. Mol. Biol. 42(5), 373–397 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soppa, J. Polyploidy in archaea and bacteria: About desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. Microb. Physiol. 24, 409–419 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bastide, A. & David, A. The ribosome, (slow) beating heart of cancer (stem) cell. Oncogenesis 7(4), 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Cairns, J., Overbaugh, J. & Miller, S. The origin of mutants. Nature 335, 142–145 (1988).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Foster, P. L. Adaptive mutation: The uses of adversity. Annu. Rev. Microbiol. 47, 467–504. https://doi.org/10.1146/annurev.mi.47.100193.002343 (2003).Article 

    Google Scholar 
    Lenski, R. E. & Mittler, J. E. The directed mutation controversy and neo-Darwinism. Science 259(5092), 188–194 (1993).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenski, R. E. & Sniegowski, P. D. “Adaptive mutation’’: The debate goes on. Science 269, 285–288 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Noller, H. F., Hoffarth, V. & Zimniak, L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science 256(5062), 1416–1419 (1992).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pribis, J. P. et al. Gamblers: An antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol. Cell 74(4), 785–800 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silvera, D., Formenti, S. C. & Schneider, R. J. Translational control in cancer. Nat. Rev. Cancer 10(4), 254–266 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shcherbakov, D. et al. Ribosomal mistranslation leads to silencing of the unfolded protein response and increased mitochondrial biogenesis. Commun. Biol. 2(1), 1–16 (2019).CAS 
    Article 

    Google Scholar 
    Truitt, M. L. & Ruggero, D. New frontiers in translational control of the cancer genome. Nat. Rev. Cancer 16(5), 288–304 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alphey, L. S., Crisanti, A., Randazzo, F. & Akbari, O. S. Opinion: Standardizing the definition of gene drive. Proc. Natl. Acad. Sci. USA 117(49), 30864 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Champer, J., Buchman, A. & Akbari, O. S. Cheating evolution: Engineering gene drives to manipulate the fate of wild populations. Nat. Rev. Genet. 17, 146–159 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Champer, S. E. et al. Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework. PLOS Comput. Biol. 17(12), e1009660 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Deredec, A., Burt, A. & Godfray, H. C. J. The population genetics of using homing endonuclease genes in vector and pest management. Genetics 179(4), 2013–2026 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heffel, M. G. & Finnigan, G. C. Mathematical modeling of self-contained CRISPR gene drive reversal systems. Sci. Rep. 9(1), 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Leftwich, P. T. et al. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem. Soc. Trans. 46, 1203–1212 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nijhout, H. F., Kudla, A. M. & Hazelwood, C. C. Genetic assimilation and accommodation: Models and mechanisms. Curr. Top. Dev. Biol. 141, 337–369 (2021).PubMed 
    Article 

    Google Scholar 
    Noble, C., Adlam, B., Church, G. M., Esvelt, K. M. & Nowak, M. A. Current CRISPR gene drive systems are likely to be highly invasive in wild populations. eLife 7, e33423 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Novozhilov, A. S., Karev, G. P. & Koonin, E. V. Mathematical modeling of evolution of horizontally transferred genes. Mol. Biol. Evol. 22(8), 1721–1732 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pigliucci, M. & Murren, C. J. Perspective: Genetic assimilation and a possible evolutionary paradox: Can macroevolution sometimes be so fast as to pass us by?. Evolution 57, 1455–1464 (2003).PubMed 
    Article 

    Google Scholar 
    Hammerstein, P. Darwinian adaptation, population genetics and the streetcar theory of evolution. J. Math. Biol. 34(5–6), 511–532 (1996).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Dieckmann, U. Coevolutionary Dynamics of Stochastic Replicator Systems (Central Library of the Research Center Jülich, 1994).
    Google Scholar 
    Dieckmann, U., Marrow, P. & Law, R. Evolutionary cycling in predator-prey interactions: population dynamics and the red queen. J. Theor. Biol. 176(1), 91–102 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dieckmann, U. & Law, R. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612 (1996).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Metz, J. A. J., Nisbet, R. M. & Geritz, S. A. H. How should we define ‘fitness’ for general ecological scenarios?. Trends Ecol. Evol. 7(6), 198–202 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldschmidt, R. Some aspects of evolution. Science 78(2033), 539–547 (1933).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vincent, T. L., Cohen, Y. & Brown, J. S. Evolution via strategy dynamics. Theor. Popul. Biol. 44(2), 149–176 (1993).MATH 
    Article 

    Google Scholar 
    Bell, G. Evolutionary rescue. Annu. Rev. Ecol. Evol. Syst. 48, 605–627 (2017).Article 

    Google Scholar  More

  • in

    Combining multi-marker metabarcoding and digital holography to describe eukaryotic plankton across the Newfoundland Shelf

    Lombard, F. et al. Consistent quantitative observations of planktonic ecosystems. Front. Mar. Sci. 6, 196. https://doi.org/10.3389/fmars.2019.00196 (2019).Article 

    Google Scholar 
    Sieracki, M. E., et al. Optical plankton imaging and analysis systems for ocean observation. Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, 878–885 (2010). https://doi.org/10.5270/OceanObs09.cwp.81.Irisson, J.-O., Ayata, S.-D., Lindsay, D. J., Karp-Boss, L. & Stemmann, L. Machine learning for the study of plankton and marine snow from images. Ann. Rev. Mar. Sci. 14(1), 277. https://doi.org/10.1146/annurev-marine-041921-013023 (2022).Article 
    PubMed 

    Google Scholar 
    Mars Brisbin, M., Brunner, O. D., Grossmann, M. M. & Mitarai, S. Paired high-throughput, in situ imaging and high-throughput sequencing illuminate acantharian abundance and vertical distribution. Limnol. Oceanogr. 65(12), 2953–2965. https://doi.org/10.1002/lno.11567 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Benfield, M. et al. RAPID: Research on automated plankton identification. Oceanography 20(2), 172–187. https://doi.org/10.5670/oceanog.2007.63 (2007).Article 

    Google Scholar 
    Colin, S. et al. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. Elife 6, e26066. https://doi.org/10.7554/eLife.26066 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, M. K. Principles and techniques of digital holographic microscopy. J. Photonics Energy. 1, 018005. https://doi.org/10.1117/6.0000006 (2010).Article 

    Google Scholar 
    Tahara, T., Quan, X., Otani, R., Takaki, Y. & Matoba, O. Digital holography and its multidimensional imaging applications: A review. Microscopy 67(2), 55–67. https://doi.org/10.1093/jmicro/dfy007 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jericho, S. K., Garcia-Sucerquia, J. F. W., Jericho, M. H. & Kreuzer, H. J. Submersible digital in-line holographic microscope. Rev. Sci. Instrum. 77(4), 043706. https://doi.org/10.1063/1.2193827 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Bochdansky, A. B., Jericho, M. H. & Herndl, G. J. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particlesto a depth of 6000 m. Limnol. Oceanogr: Methods 11, 28–40 (2013).Article 

    Google Scholar 
    Yourassowsky, C. & Dubois, F. High throughput holographic imaging-in-flow for the analysis of a wide plankton size range. Opt. Express 22(6), 6661. https://doi.org/10.1364/OE.22.006661 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Jericho, M. H. & Kreuzer, H. J. Point source digital in-line holographic microscopy. In Coherent Light Microscopy (eds Ferraro, P. et al.) 3–30 (Springer, 2011).Chapter 

    Google Scholar 
    Kanka, M., Riesenberg, R. & Kreuzer, H. J. Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34(8), 1162. https://doi.org/10.1364/OL.34.001162 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jericho, M. H., Kreuzer, H. J., Kanka, M. & Riesenberg, R. Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Appl. Opt. 51(10), 1503. https://doi.org/10.1364/AO.51.001503 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, Y. & Ozcan, A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods 136, 4–16 (2018).CAS 
    Article 

    Google Scholar 
    Sun, H. et al. digital holography for studies of marine plankton. Philos. Trans. R. Soc. A. 366, 1789–1806 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Bianco, V. et al. microplastic identification via holographic imaging and machine learning. Adv. Intell. Syst. 2(2), 1900153. https://doi.org/10.1002/aisy.201900153 (2020).Article 

    Google Scholar 
    Guo, B. et al. Automated plankton classification from holographic imagery with deep convolutional neural networks. Limnol. Oceanogr. 19(1), 21–36. https://doi.org/10.1002/lom3.10402 (2021).Article 

    Google Scholar 
    Nayak, A. R., Malkiel, E., McFarland, M. N., Twardowski, M. S. & Sullivan, J. M. A Review of holography in the aquatic sciences: In situ characterization of particles, plankton, and small scale biophysical interactions. Front. Mar. Sci. 7, 572147. https://doi.org/10.3389/fmars.2020.572147 (2021).Article 

    Google Scholar 
    Di Bella, J. M., Bao, Y., Gloor, G. B., Burton, J. P. & Reid, G. High throughput sequencing methods and analysis for microbiome research. J. Microbiol. Methods 95(3), 401–414. https://doi.org/10.1016/j.mimet.2013.08.011 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348(6237), 1261605–1261605. https://doi.org/10.1126/science.1261605 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lima-Mendez, G. et al. Determinants of community structure in the global plankton interactome. Science 348(6237), 1262073–1262073. https://doi.org/10.1126/science.1262073 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Santoferrara, L. et al. Perspectives from ten years of protist studies by high-throughput metabarcoding. J. Eukaryot. Microbiol. 67(5), 612–622. https://doi.org/10.1111/jeu.12813 (2020).Article 
    PubMed 

    Google Scholar 
    Eickbush, T. H. & Eickbush, D. G. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175(2), 477–485. https://doi.org/10.1534/genetics.107.071399 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirkham, A. R. et al. Basin-scale distribution patterns of photosynthetic picoeukaryotes along an Atlantic Meridional Transect: Marine photosynthetic picoeukaryote community structure. Environ. Microbiol. 13(4), 975–990. https://doi.org/10.1111/j.1462-2920.2010.02403.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Decelle, J. et al. PhytoREF: A reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15(6), 1435–1445. https://doi.org/10.1111/1755-0998.12401 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Phil. Trans. R. Soc. B. 371(1702), 20150331. https://doi.org/10.1098/rstb.2015.0331 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowart, D. A. et al. Metabarcoding is powerful yet still blind: A comparative analysis of morphological and molecular surveys of seagrass communities. PLoS ONE 10(2), e0117562. https://doi.org/10.1371/journal.pone.0117562 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stefanni, S. et al. Multi-marker metabarcoding approach to study mesozooplankton at basin scale. Sci. Rep. 8(1), 12085. https://doi.org/10.1038/s41598-018-30157-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pappalardo, P. et al. The role of taxonomic expertise in interpretation of metabarcoding studies. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab082 (2021).Article 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224. https://doi.org/10.3389/fmicb.2017.02224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, F., Massana, R., Not, F., Marie, D. & Vaulot, D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol. Ecol. 52(1), 79–92. https://doi.org/10.1016/j.femsec.2004.10.006 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sargent, E. C. et al. Evidence for polyploidy in the globally important diazotroph Trichodesmium. FEMS Microbiol. Lett. 363(21), 244. https://doi.org/10.1093/femsle/fnw244 (2016).CAS 
    Article 

    Google Scholar 
    Gong, W. & Marchetti, A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front. Mar. Sci. 6, 219. https://doi.org/10.3389/fmars.2019.00219 (2019).Article 

    Google Scholar 
    Biard, T. et al. Biogeography and diversity of collodaria (radiolaria) in the global ocean. ISME J. 11, 1331–1344 (2017).Article 

    Google Scholar 
    Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrenfeld, M. J. et al. The North Atlantic aerosol and marine ecosystem study (NAAMES): Science motive and mission overview. Front. Mar. Sci. 6, 122. https://doi.org/10.3389/fmars.2019.00122 (2019).Article 

    Google Scholar 
    Bolaños, L. M. et al. Seasonality of the microbial community composition in the North Atlantic. Front. Mar. Sci. 8, 624164. https://doi.org/10.3389/fmars.2021.624164 (2021).Article 

    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 44(2), 139–160. https://doi.org/10.1111/j.2517-6161.1982.tb01195.x (1982).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Decelle, J. & Not, F. Acantharia. ELS, 1–10 (2015). https://doi.org/10.1002/9780470015902.a0002102.pub2.Yu, L., An, Y. & Cai, L. Numerical reconstruction of digital holograms with variable viewing angles. Opt. Express 10(22), 1250. https://doi.org/10.1364/OE.10.001250 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Della Penna, A. & Gaube, P. Overview of (sub)mesoscale Ocean dynamics for the NAAMES field program. Front. Mar. Sci. 6, 384. https://doi.org/10.3389/fmars.2019.00384 (2019).Article 

    Google Scholar 
    Sverdrup, H. U. Oceanography for Meteorologists (Prentice Hall, 1942).Book 

    Google Scholar 
    Mahadevan, A. The impact of submesoscale physics on primary productivity of plankton. Annu. Rev. Mar. Sci. 8(1), 161–184. https://doi.org/10.1146/annurev-marine-010814-015912 (2016).ADS 
    Article 

    Google Scholar 
    Fratantoni, P. S. & Pickart, R. S. The Western North Atlantic shelfbreak current system in summer. J. Phys. Oceanogr. 37(10), 2509–2533. https://doi.org/10.1175/JPO3123.1 (2007).ADS 
    Article 

    Google Scholar 
    Bolaños, L. M. et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 14(7), 1663–1674. https://doi.org/10.1038/s41396-020-0636-0 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, S. J., Siegel, D. A. & Graff, J. R. Phytoplankton community composition determined from co-variability among phytoplankton pigments from the NAAMES field campaign. Front. Mar. Sci. 7, 215. https://doi.org/10.3389/fmars.2020.00215 (2020).Article 

    Google Scholar 
    Faure, E. et al. Mixotrophic protists display contrasted biogeographies in the global ocean. ISME J. 13(4), 1072–1083. https://doi.org/10.1038/s41396-018-0340-5 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fratantoni, P. S. & McCartney, M. S. Freshwater export from the labrador current to the North Atlantic Current at the tail of the grand banks of Newfoundland. Deep Sea Res. I. 57(2), 258–283. https://doi.org/10.1016/j.dsr.2009.11.006 (2010).Article 

    Google Scholar 
    Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24, 185–196. https://doi.org/10.1016/j.margen.2015.08.007 (2015).Article 

    Google Scholar 
    Jian, C., Salonen, A. & Korpela, K. Commentary: How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 11, 627910. https://doi.org/10.3389/fcimb.2021.627910 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djurhuus, A. et al. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding: Metabarcoding zooplankton from eDNA. Limnol. Oceanogr. Methods 16(4), 209–221. https://doi.org/10.1002/lom3.10237 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    del Campo, J. et al. The others: Our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29(5), 252–259. https://doi.org/10.1016/j.tree.2014.03.006 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karst, S. M. et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nat. Biotech. 36(2), 190–195. https://doi.org/10.1038/nbt.4045 (2018).CAS 
    Article 

    Google Scholar 
    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10(1), 5029. https://doi.org/10.1038/s41467-019-13036-1 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res. 47(18), e103–e103. https://doi.org/10.1093/nar/gkz569 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, Y., Gifford, S., Ducklow, H., Schofield, O. & Cassar, N. Towards quantitative microbiome community profiling using internal standards. Appl. Environ. Microbiol. 85(5), 18. https://doi.org/10.1128/AEM.02634-18 (2019).Article 

    Google Scholar 
    Vogt, M. et al. Global marine plankton functional type biomass distributions: Phaeocystis spp. Earth Syst. Sci. Data 5, 405–443. https://doi.org/10.5194/essdd-5-405-2012 (2012).ADS 
    Article 

    Google Scholar 
    MacNeil, L., Missan, S., Luo, J., Trappenberg, T. & LaRoche, J. Plankton classification with high-throughput submersible holographic microscopy and transfer learning. BMC Ecol. Evol. 21(1), 123. https://doi.org/10.1186/s12862-021-01839-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pan, J., del Campo, J. & Keeling, P. J. Reference tree and environmental sequence diversity of labyrinthulomycetes. J. Eukary. Microbiol. 64(1), 88–96. https://doi.org/10.1111/jeu.12342 (2017).Article 

    Google Scholar 
    Bochdansky, A. B., Clouse, M. A. & Herndl, G. J. Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J. 11(2), 362–373. https://doi.org/10.1038/ismej.2016.113 (2017).Article 
    PubMed 

    Google Scholar 
    Xie, N., Hunt, D. E., Johnson, Z. I., He, Y. & Wang, G. Annual partitioning patterns of Labyrinthulomycetes protists reveal their multifaceted role in marine microbial food webs. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01652-20 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walcutt, N. L. et al. Assessment of holographic microscopy for quantifying marine particle size and concentration. Limnol. Oceanogr. Methods 3, 10379. https://doi.org/10.1002/lom3.10379 (2020).Article 

    Google Scholar 
    Axler, K. et al. Fine-scale larval fish distributions and predator-prey dynamics in a coastal river-dominated ecosystem. Mar. Ecol. Prog. Ser. 650, 37–61. https://doi.org/10.3354/meps13397 (2020).ADS 
    Article 

    Google Scholar 
    Trudnowska, E. et al. Marine snow morphology illuminates the evolution of phytoplankton blooms and determines their subsequent vertical export. Nat. Commun. 12(1), 2816. https://doi.org/10.1038/s41467-021-22994-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González, P. et al. Automatic plankton quantification using deep features. J. Plankton Res. 41(4), 449–463. https://doi.org/10.1093/plankt/fbz023 (2019).Article 

    Google Scholar 
    Briseño-Avena, C. et al. Three-dimensional cross-shelf zooplankton distributions off the Central Oregon Coast during anomalous oceanographic conditions. Prog. Oceanogr. 188, 102436. https://doi.org/10.1016/j.pocean.2020.102436 (2020).Article 

    Google Scholar 
    Biard, T. et al. In situ imaging reveals the biomass of giant protists in the global ocean. Nature 532, 504–507 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Orenstein, E. C. et al. The scripps plankton camera system: A framework and platform for in situ microscopy. Limnol. Oceanogr. Methods 18(11), 681–695. https://doi.org/10.1002/lom3.10394 (2020).Article 

    Google Scholar 
    Fowler, B. L. et al. Dynamics and functional diversity of the smallest phytoplankton on the Northeast US Shelf. PNAS 117(22), 12215–12221. https://doi.org/10.1073/pnas.1918439117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11(1), 27–37. https://doi.org/10.1038/s41561-017-0028-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Ryabov, A. et al. Shape matters: The relationship between cell geometry and diversity in phytoplankton. Ecol. Lett. 24(4), 847–861. https://doi.org/10.1111/ele.13680 (2021).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Keeling, P. J. & del Campo, J. marine protists are not just big bacteria. Curr. Biol. 27(11), R541–R549. https://doi.org/10.1016/j.cub.2017.03.075 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y. & Bennabi, A. Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8(1), 14375. https://doi.org/10.1038/ncomms14375 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Desbruyères, D., Chafik, L. & Maze, G. A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016. Commun. Earth Environ. 2(1), 48. https://doi.org/10.1038/s43247-021-00120-y (2021).ADS 
    Article 

    Google Scholar 
    Mitchell, M. R. et al. Atlantic zone monitoring program protocol. Can. Tech. Rep. Hydrogr. Ocean Sci. 223, 1–23 (2002).
    Google Scholar 
    Li, W. K. W., Glen Harrison, W. & Head, E. J. H. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc. R. Soc. B. 273(1596), 1953–1960. https://doi.org/10.1098/rspb.2006.3529 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richardson, P. L. Florida current, gulf stream, and labrador current. In Encyclopedia of Ocean Sciences (ed. Steele, J. H.) 1054–1064 (Academic Press, 2001). https://doi.org/10.1006/rwos.2001.0357.Chapter 

    Google Scholar 
    Henson, S. A., Dunne, J. P. & Sarmiento, J. L. Decadal variability in North Atlantic phytoplankton blooms. J. Geophys. Res. 114(C4), C04013. https://doi.org/10.1029/2008JC005139 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Han, G., Lu, Z., Wang, Z., Helbig, J. & Chen, N. Seasonal variability of the labrador current and shelf circulation off Newfoundland. J. Geophys. Res. 113, 10. https://doi.org/10.1029/2007JC004376 (2008).Article 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8(9), e73051. https://doi.org/10.1371/journal.pone.0073051 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelley, D. “The Oce Package” In Oceanographic Analysis with R 91–101 (Springer, 2018).Book 

    Google Scholar 
    Oksanen, J., et al. vegan: Community Ecology Package. R package version 2.5-7 (2020). https://CRAN.R-project.org/package=vegan.Tomas, C. R. Identifying Marine Phytoplankton (Academic Press Inc, 1997).
    Google Scholar 
    Comeau, A. M., Li, W. K. W., Tremblay, J. -É., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE 6(11), e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Primers for marine microbiome studies. Environ. Microbiol. 18(5), 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walters, W. et al. Improved bacterial 16S rRNA gene (V4 and V4–5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. MSystems https://doi.org/10.1128/mSystems.00009-15 (2016).Article 
    PubMed 

    Google Scholar 
    Comeau, A. M., Douglas, G. M. & Langille, M. G. I. Microbiome helper: A custom and streamlined workflow for microbiome research. MSystems 2(1), e00127-e216. https://doi.org/10.1128/mSystems.00127-16 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotech. 37(8), 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).CAS 
    Article 

    Google Scholar 
    Amir, A. et al. Deblur rapidly resolves single-nucleotide community sequence patterns. MSystems 2(2), e00191-e216. https://doi.org/10.1128/mSystems.00191-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillou, L. et al. The protist ribosomal reference database (PR2): A catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41(D1), D597–D604. https://doi.org/10.1093/nar/gks1160 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohsen, A., Park, J., Chen, Y.-A., Kawashima, H. & Mizuguchi, K. Impact of quality trimming on the efficiency of reads joining and diversity analysis of Illumina paired-end reads in the context of QIIME1 and QIIME2 microbiome analysis frameworks. BMC Bioinform. 20(1), 581. https://doi.org/10.1186/s12859-019-3187-5 (2019).Article 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6(1), 90. https://doi.org/10.1186/s40168-018-0470-z (2018).MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willis, A. & Bunge, J. Estimating diversity via frequency ratios: estimating diversity via ratios. Biometrics 71(4), 1042–1049. https://doi.org/10.1111/biom.12332 (2015).MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407. https://doi.org/10.3389/fmicb.2019.02407 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quinn, T. P. et al. A field guide for the compositional analysis of any-omics data. GigaScience 8(9), 107. https://doi.org/10.1093/gigascience/giz107 (2019).CAS 
    Article 

    Google Scholar 
    Silverman, J. D., Roche, K., Mukherjee, S. & David, L. A. Naught all zeros in sequence count data are the same. Comput. Struct. Biotech. J. 18, 2789–2798. https://doi.org/10.1016/j.csbj.2020.09.014 (2020).CAS 
    Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar  More

  • in

    Socio-psychological determinants of Iranian rural households' adoption of water consumption curtailment behaviors

    Sun, C., Zhang, J., Ma, Q., Chen, Y. & Ju, H. Polycyclic aromatic hydrocarbons (PAHs) in water and sediment from a river basin: Sediment–water partitioning, source identification and environmental health risk assessment. Environ. Geochem. Health 39, 63–74 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Savari, M. & Shokati Amghani, M. Factors influencing farmers’ adaptation strategies in confronting the drought in Iran. Environ. Dev. Sustain. 2020 234 23, 4949–4972 (2020).Article 

    Google Scholar 
    Kumar Singh, P., Dey, P., Kumar Jain, S. & Mujumdar, P. P. Hydrology and water resources management in ancient India. Hydrol. Earth Syst. Sci. 24, 4691–4707 (2020).ADS 
    Article 

    Google Scholar 
    Warner, L. A. & Diaz, J. M. Amplifying the Theory of Planned behavior with connectedness to water to inform impactful water conservation program planning and evaluation. J. Agric. Educ. Ext. 27, 229–253 (2021).Article 

    Google Scholar 
    Warner, L. A. Who conserves and who approves? Predicting water conservation intentions in urban landscapes with referent groups beyond the traditional ‘important others’. Urban For. Urban Green. 60, 127070 (2021).Article 

    Google Scholar 
    Savari, M., Eskandari Damaneh, H. & Eskandari Damaneh, H. Drought vulnerability assessment: Solution for risk alleviation and drought management among Iranian farmers. Int. J. Disaster Risk Reduct. 67, 102654 (2022).Article 

    Google Scholar 
    Eskandari Damaneh, H. et al. Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province. Air Soil Water Res. https://doi.org/10.1177/1178622121101333214 (2021).Article 

    Google Scholar 
    Eskandari Damaneh, H., Khosravi, H., Habashi, K., Eskandari Damaneh, H. & Tiefenbacher, J. P. The impact of land use and land cover changes on soil erosion in western Iran. Nat. Hazards 110, 2185–2205 (2022).Article 

    Google Scholar 
    Savari, M., Abdeshahi, A., Gharechaee, H. & Nasrollahian, O. Explaining farmers’ response to water crisis through theory of the norm activation model: Evidence from Iran. Int. J. Disaster Risk Reduct. 60, 102284 (2021).Article 

    Google Scholar 
    Liu, J., Scanlon, B. R., Zhuang, J. & Varis, O. Food-energy-water nexus for multi-scale sustainable development. Resour. Conserv. Recycl. 154, 104565 (2020).Article 

    Google Scholar 
    Araya, F., Osman, K. & Faust, K. M. Perceptions versus reality: Assessing residential water conservation efforts in the household. Resour. Conserv. Recycl. 162, 105020 (2020).Article 

    Google Scholar 
    Omer, A., Elagib, N. A., Zhuguo, M., Saleem, F. & Mohammed, A. Water scarcity in the Yellow River Basin under future climate change and human activities. Sci. Total Environ. 749, 141446 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Aslam, S. et al. Sustainable model: Recommendations for water conservation strategies in a developing country through a psychosocial wellness program. Water (Switzerland) 13, 1–20 (2021).
    Google Scholar 
    Diaz, J., Odera, E. & Warner, L. Delving deeper: Exploring the influence of psycho-social wellness on water conservation behavior. J. Environ. Manag. 264, 110404 (2020).Article 

    Google Scholar 
    Fader, M., Shi, S., Von Bloh, W., Bondeau, A. & Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Brown, T. C., Mahat, V. & Ramirez, J. A. Adaptation to future water shortages in the United States caused by population growth and climate change. Earth’s Future 7, 219–234 (2019).ADS 
    Article 

    Google Scholar 
    Lall, U., Josset, L. & Russo, T. A snapshot of the world’s groundwater challenges. Annu. Rev. Environ. Resour. 45, 171–194 (2020).Article 

    Google Scholar 
    Jin, J. et al. Impacts of climate change on hydrology in the Yellow River Source Region, China. J. Water Clim. Change 11, 916–930 (2020).Article 

    Google Scholar 
    Cochand, F., Brunner, P., Hunkeler, D., Rössler, O. & Holzkämper, A. Cross-sphere modelling to evaluate impacts of climate and land management changes on groundwater resources. Sci. Total Environ. 798, 148759 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Waha, K. et al. Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Reg. Environ. Change 17, 1623–1638 (2017).Article 

    Google Scholar 
    Boretti, A. & Rosa, L. Reassessing the projections of the World Water Development Report. npj Clean Water 2, 1–6 (2019).Article 

    Google Scholar 
    Fragaszy, S. R. et al. Drought monitoring in the Middle East and North Africa (MENA) region. Bull. Am. Meteorol. Soc. 101, 1148–1173 (2020).Article 

    Google Scholar 
    Tajeri moghadam, M., Raheli, H., Zarifian, S. & Yazdanpanah, M. The power of the health belief model (HBM) to predict water demand management: A case study of farmers’ water conservation in Iran. J. Environ. Manag. 263, 110388 (2020).Article 

    Google Scholar 
    Marston, L., Ao, Y., Konar, M., Mekonnen, M. M. & Hoekstra, A. Y. High-resolution water footprints of production of the United States. Water Resour. Res. 54, 2288–2316 (2018).ADS 
    Article 

    Google Scholar 
    Savari, M. & Shokati Amghani, M. SWOT-FAHP-TOWS analysis for adaptation strategies development among small-scale farmers in drought conditions. Int. J. Disaster Risk Reduct. 67, 102695 (2022).Article 

    Google Scholar 
    Savari, M. & Moradi, M. The effectiveness of drought adaptation strategies in explaining the livability of Iranian rural households. Habitat Int. 124, 102560 (2022).Article 

    Google Scholar 
    Warner, L., Chaudhary, A. K., Rumble, J., Lamm, A. & Momol, E. Using audience segmentation to tailor residential irrigation water conservation programs. J. Agric. Educ. 58, 313–333 (2017).Article 

    Google Scholar 
    Tapsuwan, S., Cook, S. & Moglia, M. Willingness to pay for rainwater tank features: A post-drought analysis of Sydney water users. Water (Switzerland) 10, 1199 (2018).
    Google Scholar 
    Chubaka, C. E., Whiley, H., Edwards, J. W. & Ross, K. E. A review of roof harvested rainwater in Australia. J. Environ. Public Health 2018, 6471324 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Smith, H. M., Brouwer, S., Jeffrey, P. & Frijns, J. Public responses to water reuse—Understanding the evidence. J. Environ. Manag. 207, 43–50 (2018).CAS 
    Article 

    Google Scholar 
    Addo, I. B., Thoms, M. C. & Parsons, M. Barriers and drivers of household water-conservation behavior: A profiling approach. Water (Switzerland) 10, 1794 (2018).
    Google Scholar 
    Jarrett, W. B. A survey of the influences on water conservation behavior in Pickens and Oconee counties (2015).Yazdanpanah, M., Forouzani, M., Abdeshahi, A. & Jafari, A. Investigating the effect of moral norm and self-identity on the intention toward water conservation among Iranian young adults. Water Policy 18, 73–90 (2016).Article 

    Google Scholar 
    Sabzali Parikhani, R., Sadighi, H. & Bijani, M. Ecological consequences of nanotechnology in agriculture: Researchers’ perspective. J. Agric. Sci. Technol. 20, 205–219 (2018).
    Google Scholar 
    Moglia, M., Cook, S. & Tapsuwan, S. Promoting water conservation: Where to from here?. Water (Switzerland) 10, 1510 (2018).
    Google Scholar 
    Savari, M. & Zhoolideh, M. The role of climate change adaptation of small-scale farmers on the households food security level in the west of Iran. Dev. Pract. 31, 650–664 (2021).Article 

    Google Scholar 
    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Conserv. 205, 93–108 (2017).Article 

    Google Scholar 
    Kumar Chaudhary, A., Lamm, A. & Warner, L. Using cognitive dissonance to theoretically explain water conservation intentions. J. Agric. Educ. 59, 194–210 (2018).Article 

    Google Scholar 
    Russell, S. V. & Knoeri, C. Exploring the psychosocial and behavioural determinants of household water conservation and intention. Int. J. Water Resour. Dev. 36, 940–955 (2020).Article 

    Google Scholar 
    Savari, M., Yazdanpanah, M. & Rouzaneh, D. Factors affecting the implementation of soil conservation practices among Iranian farmers. Sci. Rep. 12, 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Savari, M., Zhoolideh, M. & Khosravipour, B. Explaining pro-environmental behavior of farmers: A case of rural Iran. Curr. Psychol. https://doi.org/10.1007/S12144-021-02093-9 (2021).Article 

    Google Scholar 
    Lee, M. & Tansel, B. Water conservation quantities vs customer opinion and satisfaction with water efficient appliances in Miami, Florida. J. Environ. Manag. 128, 683–689 (2013).Article 

    Google Scholar 
    Yazdanpanah, M., Klein, K., Zobeidi, T., Sieber, S. & Löhr, K. Why have economic incentives failed to convince farmers to adopt drip irrigation in southwestern Iran?. Sustainability 14, 1–15 (2022).Article 

    Google Scholar 
    Zobeidi, T., Yaghoubi, J. & Yazdanpanah, M. Developing a paradigm model for the analysis of farmers’ adaptation to water scarcity. Environ. Dev. Sustain. 24, 5400–5425 (2022).Article 

    Google Scholar 
    Russell, S. & Fielding, K. Water demand management research: A psychological perspective. Water Resour. Res. 46, 1–12 (2010).Article 

    Google Scholar 
    Shahangian, S. A., Tabesh, M., Yazdanpanah, M., Zobeidi, T. & Raoof, M. A. Promoting the adoption of residential water conservation behaviors as a preventive policy to sustainable urban water management. J. Environ. Manag. 313, 115005 (2022).Article 

    Google Scholar 
    Onwezen, M. C., Antonides, G. & Bartels, J. The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour. J. Econ. Psychol. 39, 141–153 (2013).Article 

    Google Scholar 
    Shahangian, S. A., Tabesh, M. & Yazdanpanah, M. Psychosocial determinants of household adoption of water-efficiency behaviors in Tehran capital, Iran: Application of the social cognitive theory. Urban Clim. 39, 100935 (2021).Article 

    Google Scholar 
    Yazdanpanah, M., Feyzabad, F. R., Forouzani, M., Mohammadzadeh, S. & Burton, R. J. F. Predicting farmers’ water conservation goals and behavior in Iran: A test of social cognitive theory. Land Use Policy 47, 401–407 (2015).Article 

    Google Scholar 
    Valizadeh, N., Bijani, M., Hayati, D. & Fallah Haghighi, N. Social-cognitive conceptualization of Iranian farmers’ water conservation behavior. Hydrogeol. J. 27, 1131–1142 (2019).ADS 
    Article 

    Google Scholar 
    Greaves, M., Zibarras, L. D. & Stride, C. Using the theory of planned behavior to explore environmental behavioral intentions in the workplace. J. Environ. Psychol. 34, 109–120 (2013).Article 

    Google Scholar 
    Wang, Y. et al. Analysis of the environmental behavior of farmers for non-point source pollution control and management: An integration of the theory of planned behavior and the protection motivation theory. J. Environ. Manag. 237, 15–23 (2019).Article 

    Google Scholar 
    Savari, M. & Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 263, 121512 (2020).CAS 
    Article 

    Google Scholar 
    Strydom, W. F. Applying the theory of planned behavior to recycling behavior in South Africa. Recycling 3, 43 (2018).Article 

    Google Scholar 
    Lam, S. P. Predicting intention to save water: Theory of planned behavior, response efficacy, vulnerability, and perceived efficiency of alternative solutions. J. Appl. Soc. Psychol. 36, 2803–2824 (2006).Article 

    Google Scholar 
    Abdulkarim, B., Yacob, M. R., Abdullahi, A. M. & Radam, A. Farmers’ perceptions and attitudes toward forest watershed conservation of the North Selangor Peat Swamp Forest. J. Sustain. For. 36, 309–323 (2017).
    Google Scholar 
    Yuriev, A., Dahmen, M., Paillé, P., Boiral, O. & Guillaumie, L. Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resour. Conserv. Recycl. 155, 104660 (2020).Article 

    Google Scholar 
    Bosnjak, M., Ajzen, I. & Schmidt, P. Editorial the theory of planned behavior: Selected recent advances and applications (1841).Ajzen, I. Consumer attitudes and behavior: The theory of planned behavior applied to food consumption decisions. Ital. Rev. Agric. Econ. 70(2), 121–138. https://doi.org/10.13128/REA-18003 (2015).Article 

    Google Scholar 
    Soorani, F. & Ahmadvand, M. Determinants of consumers’ food management behavior: Applying and extending the theory of planned behavior. Waste Manag. 98, 151–159 (2019).PubMed 
    Article 

    Google Scholar 
    Popa, B., Niță, M. D. & Hălălișan, A. F. Intentions to engage in forest law enforcement in Romania: An application of the theory of planned behavior. For. Policy Econ. 100, 33–43 (2019).Article 

    Google Scholar 
    Tam, K. P. Understanding the psychology X politics interaction behind environmental activism: The roles of governmental trust, density of environmental NGOs, and democracy. J. Environ. Psychol. 71, 101330 (2020).Article 

    Google Scholar 
    Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 50, 179–211 (1991).Article 

    Google Scholar 
    Icek, A. From intentions to actions: A theory of planned behavior. in Action Control 11–39 (1985).Empidi, A. V. A. & Emang, D. Understanding public intentions to participate in protection initiatives for forested watershed areas using the theory of planned behavior: A case study of Cameron highlands in Pahang, Malaysia. Sustainability 13, 4399 (2021).Article 

    Google Scholar 
    Holt, J. R. et al. Using the theory of planned behavior to understand family forest owners’ intended responses to invasive forest insects. Soc. Nat. Resour. 34, 1001–1018 (2021).Article 

    Google Scholar 
    Marcos, K. J., Moersidik, S. S. & Soesilo, T. E. B. Extended theory of planned behavior on utilizing domestic rainwater harvesting in Bekasi, West Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 716, 012054 (2021).Article 

    Google Scholar 
    Sánchez, M., López-Mosquera, N., Lera-López, F. & Faulin, J. An extended planned behavior model to explain the willingness to pay to reduce noise pollution in road transportation. J. Clean. Prod. 177, 144–154 (2018).Article 

    Google Scholar 
    Fernandez, M. E., Ruiter, R. A. C., Markham, C. M. & Kok, G. Intervention mapping: Theory-and evidence-based health promotion program planning: Perspective and examples. Front. Public Health 7, 209 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhong, F. et al. Quantifying the influence path of water conservation awareness on water-saving irrigation behavior based on the theory of planned behavior and structural equation modeling: A case study from Northwest China. Sustainability 11, 1–16 (2019).
    Google Scholar 
    Ullah, S. et al. Predicting behavioral intention of rural inhabitants toward economic incentive for deforestation in Gilgit-Baltistan, Pakistan. Sustainability 13, 1–17 (2021).
    Google Scholar 
    Koop, S. H. A., Van Dorssen, A. J. & Brouwer, S. Enhancing domestic water conservation behaviour: A review of empirical studies on influencing tactics. J. Environ. Manag. 247, 867–876 (2019).CAS 
    Article 

    Google Scholar 
    Goh, E., Ritchie, B. & Wang, J. Non-compliance in national parks: An extension of the theory of planned behaviour model with pro-environmental values. Tour. Manag. 59, 123–127 (2017).Article 

    Google Scholar 
    Liang, Y., Kee, K. F. & Henderson, L. K. Towards an integrated model of strategic environmental communication: Advancing theories of reactance and planned behavior in a water conservation context. J. Appl. Commun. Res. 46, 135–154 (2018).CAS 
    Article 

    Google Scholar 
    Gkargkavouzi, A., Halkos, G. & Matsiori, S. Environmental behavior in a private-sphere context: Integrating theories of planned behavior and value belief norm, self-identity and habit. Resour. Conserv. Recycl. 148, 145–156 (2019).Article 

    Google Scholar 
    Vaske, J. J., Landon, A. C. & Miller, C. A. Normative influences on farmers’ intentions to practice conservation without compensation. Environ. Manag. 66, 191–201 (2020).Article 

    Google Scholar 
    Nguru, W. M., Gachene, C. K., Onyango, C. M., Ng’ang’a, S. K. & Girvetz, E. H. Factors constraining the adoption of soil organic carbon enhancing technologies among small-scale farmers in Ethiopia. Heliyon 7, e08497 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Møller, M., Haustein, S. & Bohlbro, M. S. Adolescents’ associations between travel behaviour and environmental impact: A qualitative study based on the Norm-Activation Model. Travel Behav. Soc. 11, 69–77 (2018).Article 

    Google Scholar 
    Savari, M., Naghibeiranvand, F. & Asadi, Z. Modeling environmentally responsible behaviors among rural women in the forested regions in Iran. Glob. Ecol. Conserv. 35, e02102 (2022).Article 

    Google Scholar 
    van Valkengoed, A. M. & Steg, L. Meta-analyses of factors motivating climate change adaptation behaviour. Nat. Clim. Chang. 9, 158–163 (2019).ADS 
    Article 

    Google Scholar 
    Maduku, D. K. Water conservation campaigns in an emerging economy: How effective are they?. Int. J. Advert. 40, 452–472 (2021).Article 

    Google Scholar 
    Thøgersen, J. & Grønhøj, A. Electricity saving in households—A social cognitive approach. Energy Policy 38, 7732–7743 (2010).Article 

    Google Scholar 
    Ouellette, J. A. & Wood, W. Habit and intention in everyday life: The multiple processes by which past behavior predicts future behavior. Psychol. Bull. 124, 54–74 (1998).Article 

    Google Scholar 
    Ajzen, I. The theory of planned behavior: Frequently asked questions. Hum. Behav. Emerg. Technol. 2, 314–324 (2020).Article 

    Google Scholar 
    Hofmann, W., Gschwendner, T., Friese, M., Wiers, R. W. & Schmitt, M. Working memory capacity and self-regulatory behavior: toward an individual differences perspective on behavior determination by automatic versus controlled processes. J. Pers. Soc. Psychol. 95, 962–977 (2008).PubMed 
    Article 

    Google Scholar 
    Jorgensen, B. S., Martin, J. F., Pearce, M. W. & Willis, E. M. Aligning theory and measurement in behavioral models of water conservation. Water Policy 17, 762–776 (2015).Article 

    Google Scholar 
    Barr, S. & Gilg, A. W. A conceptual framework for understanding and analyzing attitudes towards environmental behaviour. Geogr. Ann. Ser. B Hum. Geogr. 89 B, 361–379 (2007).Article 

    Google Scholar 
    Hansmann, R., Bernasconi, P., Smieszek, T., Loukopoulos, P. & Scholz, R. W. Justifications and self-organization as determinants of recycling behavior: The case of used batteries. Resour. Conserv. Recycl. 47, 133–159 (2006).Article 

    Google Scholar 
    Tang, Z., Chen, X. & Luo, J. Determining socio-psychological drivers for rural household recycling behavior in developing countries: A case study from Wugan, Hunan, China. Environ. Behav. 43, 848–877 (2011).Article 

    Google Scholar 
    Krejcie, R. V. & Morgan, W. D. (1970) “Determining sample size for research activities”, educational and psychological measurement. Int. J. Employ. Stud. 18, 89–123 (1996).
    Google Scholar 
    Gregory, G. D. & Di Leo, M. Repeated behavior and environmental psychology: The role of personal involvement and habit formation in explaining water consumption. J. Appl. Soc. Psychol. 33, 1261–1296 (2003).Article 

    Google Scholar 
    Keramitsoglou, K. M. & Tsagarakis, K. P. Raising effective awareness for domestic water saving: Evidence from an environmental educational programme in Greece. Water Policy 13, 828–844 (2011).Article 

    Google Scholar 
    Chaudhary, A. K. et al. Using the theory of planned behavior to encourage water conservation among extension clients. J. Agric. Educ. 58, 185–202 (2017).Article 

    Google Scholar 
    Pradhananga, A. K., Davenport, M. A., Fulton, D. C., Maruyama, G. M. & Current, D. An integrated moral obligation model for landowner conservation norms. Soc. Nat. Resour. 30, 212–227 (2017).Article 

    Google Scholar 
    Heath, Y. & Gifford, R. Extending the theory of planned behavior: Predicting the use of public transportation. J. Appl. Soc. Psychol. 32, 2154–2189 (2002).Article 

    Google Scholar 
    Bodimeade, H. et al. Testing the direct, indirect, and interactive roles of referent group injunctive and descriptive norms for sun protection in relation to the theory of planned behavior. J. Appl. Soc. Psychol. 44, 739–750 (2014).Article 

    Google Scholar 
    Veisi, K., Bijani, M. & Abbasi, E. A human ecological analysis of water conflict in rural areas: Evidence from Iran. Glob. Ecol. Conserv. 23, e01050 (2020).Article 

    Google Scholar 
    Botetzagias, I., Dima, A. F. & Malesios, C. Extending the Theory of Planned Behavior in the context of recycling: The role of moral norms and of demographic predictors. Resour. Conserv. Recycl. 95, 58–67 (2015).Article 

    Google Scholar 
    Martínez-Espiñeira, R., García-Valiñas, M. A. & Nauges, C. Households’ pro-environmental habits and investments in water and energy consumption: Determinants and relationships. J. Environ. Manag. 133, 174–183 (2014).Article 

    Google Scholar 
    Dolnicar, S., Hurlimann, A. & Grün, B. Water conservation behavior in Australia. J. Environ. Manag. 105, 44–52 (2012).Article 

    Google Scholar 
    Untaru, E. N., Ispas, A., Candrea, A. N., Luca, M. & Epuran, G. Predictors of individuals’ intention to conserve water in a lodging context: The application of an extended Theory of Reasoned Action. Int. J. Hosp. Manag. 59, 50–59 (2016).Article 

    Google Scholar 
    Khoshmaram, M., Shiri, N., Shinnar, R. S. & Savari, M. Environmental support and entrepreneurial behavior among Iranian farmers: The mediating roles of social and human capital. J. Small Bus. Manag. https://doi.org/10.1111/jsbm.1250158,1064-1088 (2020).Article 

    Google Scholar 
    Benitez, J., Henseler, J., Castillo, A. & Schuberth, F. How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Inf. Manag. 57, 103168 (2020).Article 

    Google Scholar 
    Sarstedt, M., Ringle, C. M. & Hair, J. F. Partial least squares structural equation modeling. in Handbook of Market Research 1–47. https://doi.org/10.1007/978-3-319-05542-8_15-2 (2021).Clark, W. A. & Finley, J. C. Determinants of water conservation intention in Blagoevgrad, Bulgaria. Soc. Nat. Resour. 20, 613–627 (2007).Article 

    Google Scholar 
    De Dominicis, S., Sokoloski, R., Jaeger, C. M. & Schultz, P. W. Making the smart meter social promotes long-term energy conservation. Palgrave Commun. 5, 1–8 (2019).Article 

    Google Scholar 
    Wang, S., Hung, K. & Huang, W.-J. Motivations for entrepreneurship in the tourism and hospitality sector: A social cognitive theory perspective. Int. J. Hosp. Manag. https://doi.org/10.1016/j.ijhm.2018.11.018 (2018).Article 

    Google Scholar 
    Ramirez, E., Kulinna, P. H. & Cothran, D. Constructs of physical activity behaviour in children: The usefulness of Social Cognitive Theory. Psychol. Sport Exerc. 13, 303–310 (2012).Article 

    Google Scholar 
    Glanz, K., Rimer, B. K. & Viswanath, K. Health and Health (2002). More

  • in

    Warming response of peatland CO2 sink is sensitive to seasonality in warming trends

    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).CAS 
    Article 

    Google Scholar 
    Tang, R. et al. Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming. Nat. Clim. Change 12, 380–385 (2022).CAS 
    Article 

    Google Scholar 
    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 
    Article 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).CAS 
    Article 

    Google Scholar 
    Treat, C. C. et al. Widespread global peatland establishment and persistence over the last 130,000 y. Proc. Natl Acad. Sci. USA 116, 4822–4827 (2019).CAS 
    Article 

    Google Scholar 
    Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. Biogeosci. 111, G01008 (2006).
    Google Scholar 
    Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Change 11, 70–77 (2021).Article 

    Google Scholar 
    Helbig, M. et al. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Glob. Change Biol. 23, 3231–3248 (2017).Article 

    Google Scholar 
    Koebsch, F. et al. Refining the role of phenology in regulating gross ecosystem productivity across European peatlands. Glob. Change Biol. 26, 876–887 (2020).Article 

    Google Scholar 
    Huang, Y. et al. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nat. Clim. Change 11, 618–622 (2021).CAS 
    Article 

    Google Scholar 
    Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).CAS 

    Google Scholar 
    Helfter, C. et al. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences 12, 1799–1811 (2015).Article 

    Google Scholar 
    Järveoja, J., Nilsson, M. B., Gažovič, M., Crill, P. M. & Peichl, M. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland. Glob. Change Biol. 24, 3436–3451 (2018).Article 

    Google Scholar 
    Mäkiranta, P. et al. Responses of phenology and biomass production of boreal fens to climate warming under different water-table level regimes. Glob. Change Biol. 24, 944–956 (2018).Article 

    Google Scholar 
    Li, Q. et al. Abiotic and biotic drivers of microbial respiration in peat and its sensitivity to temperature change. Soil Biol. Biochem. 153, 108077 (2021).CAS 
    Article 

    Google Scholar 
    Moore, T. R. et al. Spring photosynthesis in a cool temperate bog. Glob. Change Biol. 12, 2323–2335 (2006).Article 

    Google Scholar 
    Korrensalo, A. et al. Species-specific temporal variation in photosynthesis as a moderator of peatland carbon sequestration. Biogeosciences 14, 257–269 (2017).CAS 
    Article 

    Google Scholar 
    Weltzin, J. F. et al. Response of bog and fen plant communities to warming and water-table manipulations. Ecology 81, 3464–3478 (2000).Article 

    Google Scholar 
    Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).Article 
    CAS 

    Google Scholar 
    Bubier, J., Crill, P., Mosedale, A., Frolking, S. & Linder, E. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Glob. Biogeochem. Cycles 17, 1066 (2003).Article 
    CAS 

    Google Scholar 
    Moore, T. R. & Knowles, R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci. 69, 33–38 (1989).CAS 
    Article 

    Google Scholar 
    Nichols, D. S. Temperature of upland and peatland soils in a north central Minnesota forest. Can. J. Soil Sci. 78, 493–509 (1998).Article 

    Google Scholar 
    Bellisario, L. M., Moore, T. R. & Bubier, J. L. Net ecosystem CO2 exchange in a boreal peatland, northern Manitoba. Écoscience 5, 534–541 (1998).Article 

    Google Scholar 
    Yu, Z. et al. Peatlands and their role in the global carbon cycle. Eos 92, 97–98 (2011).Article 

    Google Scholar 
    Hanson, P. J. et al. Rapid net carbon loss from a whole-ecosystem warmed peatland. AGU Adv. 1, e2020AV000163 (2020).Article 

    Google Scholar 
    Vincent, L. A. et al. Observed trends in Canada’s climate and influence of low-frequency variability modes. J. Clim. 28, 4545–4560 (2015).Article 

    Google Scholar 
    Templer, P. H. et al. Climate Change Across Seasons Experiment (CCASE): a new method for simulating future climate in seasonally snow-covered ecosystems. PLoS ONE 12, e0171928 (2017).Article 
    CAS 

    Google Scholar 
    Peichl, M. et al. A 12-year record reveals pre-growing season temperature and water table level threshold effects on the net carbon dioxide exchange in a boreal fen. Environ. Res. Lett. 9, 055006 (2014).Article 

    Google Scholar 
    Helbig, M., Humphreys, E. R. & Todd, A. Contrasting temperature sensitivity of CO2 exchange in peatlands of the Hudson Bay Lowlands, Canada. J. Geophys. Res. Biogeosci. 124, 2126–2143 (2019).CAS 
    Article 

    Google Scholar 
    Griffis, T. J., Rouse, W. R. & Waddington, J. M. Interannual variability of net ecosystem CO2 exchange at a subarctic fen. Glob. Biogeochem. Cycles 14, 1109–1121 (2000).CAS 
    Article 

    Google Scholar 
    Bubier, J. L., Crill, P. M., Moore, T. R., Savage, K. & Varner, R. K. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Glob. Biogeochem. Cycles 12, 703–714 (1998).CAS 
    Article 

    Google Scholar 
    Park, S.-B. et al. Temperature control of spring CO2 fluxes at a coniferous forest and a peat bog in Central Siberia. Atmosphere 12, 984 (2021).CAS 
    Article 

    Google Scholar 
    Adkinson, A. C., Syed, K. H. & Flanagan, L. B. Contrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada. J. Geophys. Res. Biogeosci. 116, G01004 (2011).Article 
    CAS 

    Google Scholar 
    Heiskanen, L. et al. Carbon dioxide and methane exchange of a patterned subarctic fen during two contrasting growing seasons. Biogeosciences 18, 873–896 (2021).CAS 
    Article 

    Google Scholar 
    Lafleur, P. M., Roulet, N. T., Bubier, J. L., Frolking, S. & Moore, T. R. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Glob. Biogeochem. Cycles 17, 1036 (2003).Article 
    CAS 

    Google Scholar 
    Joiner, D. W., Lafleur, P. M., McCaughey, J. H. & Bartlett, P. A. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J. Geophys. Res. Atmos. 104, 27663–27672 (1999).CAS 
    Article 

    Google Scholar 
    McVeigh, P., Sottocornola, M., Foley, N., Leahy, P. & Kiely, G. Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog. Agric. For. Meteorol. 194, 8–19 (2014).Article 

    Google Scholar 
    Helbig, M. et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Change 10, 555–560 (2020).CAS 
    Article 

    Google Scholar 
    Bourgault, M.-A., Larocque, M. & Garneau, M. How do hydrogeological setting and meteorological conditions influence water table depth and fluctuations in ombrotrophic peatlands? J. Hydrol. X 4, 100032 (2019).Article 

    Google Scholar 
    Yurova, A., Wolf, A., Sagerfors, J. & Nilsson, M. Variations in net ecosystem exchange of carbon dioxide in a boreal mire: modeling mechanisms linked to water table position. J. Geophys. Res. Biogeosci. 112, G02025 (2007).Article 
    CAS 

    Google Scholar 
    Laine, A. M. et al. Warming impacts on boreal fen CO2 exchange under wet and dry conditions. Glob. Change Biol. 25, 1995–2008 (2019).Article 

    Google Scholar 
    Chivers, M. R., Turetsky, M. R., Waddington, J. M., Harden, J. W. & McGuire, A. D. Effects of experimental water table and temperature manipulations on ecosystem CO2 fluxes in an Alaskan rich fen. Ecosystems 12, 1329–1342 (2009).CAS 
    Article 

    Google Scholar 
    Juszczak, R. et al. Ecosystem respiration in a heterogeneous temperate peatland and its sensitivity to peat temperature and water table depth. Plant Soil 366, 505–520 (2013).CAS 
    Article 

    Google Scholar 
    Hao, D. et al. Estimating hourly land surface downward shortwave and photosynthetically active radiation from DSCOVR/EPIC observations. Remote Sens. Environ. 232, 111320 (2019).Article 

    Google Scholar 
    O’Donnell, J. A., Romanovsky, V. E., Harden, J. W. & McGuire, A. D. The effect of moisture content on the thermal conductivity of moss and organic soil horizons from black spruce ecosystems in interior Alaska. Soil Sci. 174, 646–651 (2009).Article 
    CAS 

    Google Scholar 
    Nijp, J. J. et al. Rain events decrease boreal peatland net CO2 uptake through reduced light availability. Glob. Change Biol. 21, 2309–2320 (2015).Article 

    Google Scholar 
    Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).CAS 
    Article 

    Google Scholar 
    Samson, M. et al. The impact of experimental temperature and water level manipulation on carbon dioxide release in a poor fen in northern Poland. Wetlands 38, 551–563 (2018).Article 

    Google Scholar 
    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034 (2021).CAS 
    Article 

    Google Scholar 
    Hemes, K. S., Runkle, B. R. K., Novick, K. A., Baldocchi, D. D. & Field, C. B. An ecosystem-scale flux measurement strategy to assess natural climate solutions. Environ. Sci. Technol. 55, 3494–3504 (2021).CAS 
    Article 

    Google Scholar 
    Walker, T. W. N. et al. A systemic overreaction to years versus decades of warming in a subarctic grassland ecosystem. Nat. Ecol. Evol. 4, 101–108 (2020).Article 

    Google Scholar 
    Xu, B. et al. Seasonal variability of forest sensitivity to heat and drought stresses: a synthesis based on carbon fluxes from North American forest ecosystems. Glob. Change Biol. 26, 901–918 (2020).Article 

    Google Scholar 
    Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49–52 (2008).CAS 
    Article 

    Google Scholar 
    Joyce, P. et al. How robust Is the apparent break-down of northern high-latitude temperature control on spring carbon uptake? Geophys. Res. Lett. 48, e2020GL091601 (2021).Article 

    Google Scholar 
    Grant, R. F. et al. Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Tree Physiol. 29, 1–17 (2009).CAS 
    Article 

    Google Scholar 
    Kwon, M. J. et al. Siberian 2020 heatwave increased spring CO2 uptake but not annual CO2 uptake. Environ. Res. Lett. 16, 124030 (2021).CAS 
    Article 

    Google Scholar 
    Yu, Z., Griffis, T. J. & Baker, J. M. Warming temperatures lead to reduced summer carbon sequestration in the U.S. Corn Belt. Commun. Earth Environ. 2, 53 (2021).Article 

    Google Scholar 
    Wang, S. et al. Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agric. For. Meteorol. 295, 108195 (2020).Article 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 5391 (2018).CAS 
    Article 

    Google Scholar 
    Lin, X. et al. Siberian and temperate ecosystems shape Northern Hemisphere atmospheric CO2 seasonal amplification. Proc. Natl Acad. Sci. USA 117, 21079–21087 (2020).CAS 
    Article 

    Google Scholar 
    Helbig, M. et al. Warming response of peatland CO2 sink is sensitive to seasonality in warming trends. Zenodo https://doi.org/10.5281/zenodo.6685222 (2022).Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC (2015); https://doi.org/10.5067/MODIS/MOD13Q1.006Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Lees, K. J. et al. Using spectral indices to estimate water content and GPP in Sphagnum moss and other peatland vegetation. IEEE Trans. Geosci. Remote Sens. 58, 4547–4557 (2020).Article 

    Google Scholar 
    Bennett, A. C., McDowell, N. G., Allen, C. D. & Anderson-Teixeira, K. J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 1, 15139 (2015).Article 

    Google Scholar 
    Page, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).Article 

    Google Scholar 
    Juottonen, H. et al. Integrating decomposers, methane-cycling microbes and ecosystem carbon fluxes along a peatland successional gradient in a land uplift region. Ecosystems https://doi.org/10.1007/s10021-021-00713-w (2021). More

  • in

    Rates and drivers of aboveground carbon accumulation in global monoculture plantation forests

    Database representativeness of global monoculture plantationsOur database includes 4756 measurements of carbon in aboveground live tree biomass in monoculture plantations, collected from 829 distinct sites across the globe (Fig. 1). These sites were primarily in Asia (59%), Europe (16%), North America (15%), and South America (4%), with the remainder located in Oceania and Africa (~5%). The dataset included 240 species from 96 distinct genera of tree; however, 33 genera were poorly represented (n  More

  • in

    Weak effects on growth and cannibalism under fluctuating temperatures in damselfly larvae

    Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42. https://doi.org/10.1111/brv.12216 (2017).Article 
    PubMed 

    Google Scholar 
    Marshall, K. E. & Sinclair, B. J. The impacts of repeated cold exposure on insects. J. Exp. Biol. 215, 1607–1613. https://doi.org/10.1242/jeb.059956 (2012).Article 
    PubMed 

    Google Scholar 
    Bale, J. & Hayward, S. Insect overwintering in a changing climate. J. Exp. Biol. 213, 980–994 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingsolver, J. G. Feeding, growth, and the thermal environment of cabbage white caterpillars, Pieris rapae L. Physiol. Biochem. Zool. 73, 621–628 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stange, E. E. & Ayres, M. P. Climate change impacts: Insects (JohnWiley & Sons, 2010).
    Google Scholar 
    Chapman, A. D. Numbers of Living Species in Australia and the World: Report for the Department of the Environment and Heritage Canberra, Australia (Department of the Environment and Heritage, 2006).
    Google Scholar 
    Colinet, H., Sinclair, B. J., Vernon, P. & Renault, D. Insects in fluctuating thermal environments. Annu. Rev. Entomol. 60, 123–140. https://doi.org/10.1146/annurev-ento-010814-021017 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506. https://doi.org/10.1111/j.1365-2486.2005.00904.x (2005).ADS 
    Article 

    Google Scholar 
    Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543. https://doi.org/10.1111/geb.12865 (2019).Article 

    Google Scholar 
    Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. 118, e2002543117. https://doi.org/10.1073/pnas.2002543117 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCain, C. M. & Garfinkel, C. F. Climate change and elevational range shifts in insects. Curr. Opin. Insect Sci. 47, 111–118. https://doi.org/10.1016/j.cois.2021.06.003 (2021).Article 
    PubMed 

    Google Scholar 
    Angilletta, M. J. Jr. & Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, 2009).Book 

    Google Scholar 
    Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 332–342. https://doi.org/10.1086/377187 (2003).Article 
    PubMed 

    Google Scholar 
    Jensen, J. L. W. V. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ruel, J. J. & Ayres, M. P. Jensen’s inequality predicts effects of environmental variation. Trends Ecol. Evol. 14, 361–366 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kingsolver, J. G. & Woods, H. A. Thermal sensitivity of growth and feeding in Manduca sexta Caterpillars. Physiol. Zool. 70, 631–638. https://doi.org/10.1086/515872 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bale, J. S. et al. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).ADS 
    Article 

    Google Scholar 
    Robinet, C. & Roques, A. Direct impacts of recent climate warming on insect populations. Integr. Zool. 5, 132–142 (2010).PubMed 
    Article 

    Google Scholar 
    García-Robledo, C., Kuprewicz, E. K., Staines, C. L., Erwin, T. L. & Kress, W. J. Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc. Natl. Acad. Sci. 113, 680–685. https://doi.org/10.1073/pnas.1507681113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B Biol. Sci. 281, 20132612 (2014).Article 

    Google Scholar 
    Sandehson, D. E. The relation of temperature to the growth of insects. J. Econ. Entomol. 3, 113–140 (1910).Article 

    Google Scholar 
    Cook, W. C. Some Effects of Alternating Temperatures on the Growth and Metabolism of Cutworm Larvae (Oxford University Press, 1927).
    Google Scholar 
    Kingsolver, J. G., Ragland, G. J. & Diamond, S. E. Evolution in a constant environment: Thermal fluctuations and thermal sensitivity of laboratory and field populations of Manduca sexta. Evolution 63, 537–541. https://doi.org/10.1111/j.1558-5646.2008.00568.x (2009).Article 
    PubMed 

    Google Scholar 
    Eldridge, W. H., Sweeney, B. W. & Law, J. M. Fish growth, physiological stress, and tissue condition in response to rate of temperature change during cool or warm diel thermal cycles. Can. J. Fish. Aquat. Sci. 72, 1527–1537 (2015).CAS 
    Article 

    Google Scholar 
    Bernhardt, J. R., Sunday, J. M., Thompson, P. L. & O’Connor, M. I. Nonlinear averaging of thermal experience predicts population growth rates in a thermally variable environment. Proc. R. Soc. B Biol. Sci. 285, 20181076. https://doi.org/10.1098/rspb.2018.1076 (2018).Article 

    Google Scholar 
    Morissette, J., Swart, S., Maccormack, T. J., Currie, S. & Morash, A. J. Thermal variation near the thermal optimum does not affect the growth, metabolism or swimming performance in wild Atlantic salmon Salmo salar. J. Fish Biol. 98, 1585–1589. https://doi.org/10.1111/jfb.14348 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bozinovic, F. et al. The mean and variance of environmental temperature interact to determine physiological tolerance and fitness. Physiol. Biochem. Zool. 84, 543–552 (2011).PubMed 
    Article 

    Google Scholar 
    Boggs, C. L. The fingerprints of global climate change on insect populations. Curr. Opin. Insect Sci. 17, 69–73. https://doi.org/10.1016/j.cois.2016.07.004 (2016).Article 
    PubMed 

    Google Scholar 
    Lemoine, N. P., Drews, W. A., Burkepile, D. E. & Parker, J. D. Increased temperature alters feeding behavior of a generalist herbivore. Oikos 122, 1669–1678. https://doi.org/10.1111/j.1600-0706.2013.00457.x (2013).Article 

    Google Scholar 
    Vangansbeke, D. et al. Prey consumption by phytoseiid spider mite predators as affected by diurnal temperature variations. Biocontrol 60, 595–603 (2015).Article 

    Google Scholar 
    Davies, C., Coetzee, M. & Lyons, C. L. Effect of stable and fluctuating temperatures on the life history traits of Anopheles arabiensis and An. quadriannulatus under conditions of inter-and intra-specific competition. Parasit. Vectors 9, 1–9 (2016).Article 

    Google Scholar 
    Delava, E., Fleury, F. & Gibert, P. Effects of daily fluctuating temperatures on the Drosophila-Leptopilina boulardi parasitoid association. J. Therm. Biol. 60, 95–102 (2016).PubMed 
    Article 

    Google Scholar 
    Amarasekare, P. & Coutinho, R. M. Effects of temperature on intraspecific competition in ectotherms. Am. Nat. 184, E50–E65. https://doi.org/10.1086/677386 (2014).Article 
    PubMed 

    Google Scholar 
    Jiang, L. & Morin, P. J. Temperature-dependent interactions explain unexpected responses to environmental warming in communities of competitors. J. Anim. Ecol. 73, 569–576 (2004).Article 

    Google Scholar 
    Novich, R. A., Erickson, E. K., Kalinoski, R. M. & DeLong, J. P. The temperature independence of interaction strength in a sit-and-wait predator. Ecosphere 5, 1–9 (2014).Article 

    Google Scholar 
    Fox, L. R. Cannibalism in natural populations. Annu. Rev. Ecol. Syst. 6, 87–106 (1975).Article 

    Google Scholar 
    Polis, G. A. The evolution and dynamics of intraspecific predation. Annu. Rev. Ecol. Syst. 12, 225–251 (1981).Article 

    Google Scholar 
    Nishimura, K. & Isoda, Y. Evolution of cannibalism: Referring to costs of cannibalism. J. Theor. Biol. 226, 293–302. https://doi.org/10.1016/j.jtbi.2003.09.007 (2004).ADS 
    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Crumrine, P. W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius. Aquat. Ecol. 44, 761–770 (2010).Article 

    Google Scholar 
    Reglero, P., Urtizberea, A., Torres, A. P., Alemany, F. & Fiksen, Ø. Cannibalism among size classes of larvae may be a substantial mortality component in tuna. Mar. Ecol. Prog. Ser. 433, 205–219 (2011).ADS 
    Article 

    Google Scholar 
    Nilsson-Örtman, V., Stoks, R. & Johansson, F. Competitive interactions modify the temperature dependence of damselfly growth rates. Ecology 95, 1394–1406. https://doi.org/10.1890/13-0875.1 (2014).Article 
    PubMed 

    Google Scholar 
    Pritchard, G. & Leggott, M. Temperature, incubation rates and the origins of dragonflies. Adv. Odonatol. 3, 121–126 (1987).
    Google Scholar 
    Hassall, C. & Thompson, D. J. The effects of environmental warming on Odonata: A review. Int. J. Odonatol. 11, 131–153 (2008).Article 

    Google Scholar 
    Johansson, F. & Crowley, P. H. Larval cannibalism and population dynamics of dragonflies. In Aquatic Insects: Challenges to Populations 36–54 (CABI, 2008).Rudolf, V. H. W. & Rasmussen, N. L. Ontogenetic functional diversity: Size structure of a keystone predator drives functioning of a complex ecosystem. Ecology 94, 1046–1056 (2013).PubMed 
    Article 

    Google Scholar 
    Hyeun-Ji, L. & Johansson, F. Compensating for a bad start: Compensatory growth across life stages in an organism with a complex life cycle. Can. J. Zool. 94, 41–47 (2016).Article 

    Google Scholar 
    Sokolovska, N., Rowe, L. & Johansson, F. Fitness and body size in mature odonates. Ecol. Entomol. 25, 239–248. https://doi.org/10.1046/j.1365-2311.2000.00251.x (2000).Article 

    Google Scholar 
    Karl, T. R. Modern global climate change. Science 302, 1719–1723. https://doi.org/10.1126/science.1090228 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Meehl, G. A. et al. Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).
    Google Scholar 
    Meehl, G. A. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Khelifa, R. Spatiotemporal Pattern of Phenology Across Geographic Gradients in Insects, in Chapter 1 (Geographic Gradients in Climate Change Response Explained by Non-linear Thermal-Performance Curves) (University of Zurich, 2017).
    Google Scholar 
    Boudot, J. P. & Kalkman, V. Atlas of the European Dragonflies and Damselflies (KNNV Publishing, 2015).
    Google Scholar 
    Norling, U. Growth, winter preparations and timing of emergence in temperate zone Odonata: Control by a succession of larval response patterns. Int. J. Odonatol. 24, 1–36 (2021).Article 

    Google Scholar 
    Sniegula, S. & Johansson, F. Photoperiod affects compensating developmental rate across latitudes in the damselfly Lestes sponsa. Ecol. Entomol. 35, 149–157. https://doi.org/10.1111/j.1365-2311.2009.01164.x (2010).Article 

    Google Scholar 
    Sniegula, S., Golab, M. J. & Johansson, F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J. Anim. Ecol. 88, 637–648. https://doi.org/10.1111/1365-2656.12947 (2019).Article 
    PubMed 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675. https://doi.org/10.1038/nmeth.2089 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benke, A. C. A method for comparing individual growth rates of aquatic insects with special reference to the Odonata. Ecology 51, 328–331 (1970).Article 

    Google Scholar 
    Nilsson-Örtman, V., Stoks, R., De Block, M. & Johansson, F. Generalists and specialists along a latitudinal transect: Patterns of thermal adaptation in six species of damselflies. Ecology 93, 1340–1352. https://doi.org/10.1890/11-1910.1 (2012).Article 
    PubMed 

    Google Scholar 
    Eklund, A. et al. Sveriges Framtida Klimat: Underlag Till Dricksvattenutredningen (SMHI, 2015).
    Google Scholar 
    McPeek, M. A. Determination of species composition in the Enallagma damselfly assemblages of permanent lakes. Ecology 71, 83–98. https://doi.org/10.2307/1940249 (1990).Article 

    Google Scholar 
    Kirillin, G. et al. FLake-global: Online lake model with worldwide coverage. Environ. Model. Softw. 26, 683–684. https://doi.org/10.1016/j.envsoft.2010.12.004 (2011).Article 

    Google Scholar 
    SMHI. Advanced Climate Change Scenario Service. https://www.smhi.se.R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Suhling, F., Suhling, I. & Richter, O. Temperature response of growth of larval dragonflies–An overview. Int. J. Odonatol. 18, 15–30 (2015).Article 

    Google Scholar 
    Padfield, D., O’Sullivan, H. & Pawar, S. rTPC and nls.multstart: A new pipeline to fit thermal performance curves in R. Methods Ecol. Evol. 1, 1. https://doi.org/10.1111/2041-210X.13585 (2021).Article 

    Google Scholar 
    Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).CAS 
    Article 

    Google Scholar 
    Hemmingsen, A. Reports of the Steno Memorial Hospital and Nordisk Insulin Laboratorium. Energy Metab. Relat. Body Size Respir. Surf. Evol. 9, 6–110 (1960).
    Google Scholar 
    Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Logan, J. D., Wolesensky, W. & Joern, A. Temperature-dependent phenology and predation in arthropod systems. Ecol. Model. 196, 471–482. https://doi.org/10.1016/j.ecolmodel.2006.02.034 (2006).Article 

    Google Scholar 
    Pink, M. & Abrahams, M. V. Temperature and its impact on predation risk within aquatic ecosystems. Can. J. Fish. Aquat. Sci. 73, 869–876. https://doi.org/10.1139/cjfas-2015-0302 (2016).Article 

    Google Scholar 
    DeAngelis, D., Cox, D. & Coutant, C. Cannibalism and size dispersal in young-of-the-year largemouth bass: Experiment and model. Ecol. Model. 8, 133–148 (1980).Article 

    Google Scholar 
    Fagan, W. F. & Odell, G. M. Size-dependent cannibalism in praying mantids: Using biomass flux to model size-structured populations. Am. Nat. 147, 230–268 (1996).Article 

    Google Scholar 
    Dong, Q. & Deangelis, D. L. Consequences of cannibalism and competition for food in a smallmouth bass population: An individual-based modeling study. Trans. Am. Fish. Soc. 127, 174–191 (1998).Article 

    Google Scholar 
    Verheyen, J. & Stoks, R. Temperature variation makes an ectotherm more sensitive to global warming unless thermal evolution occurs. J. Anim. Ecol. 88, 624–636. https://doi.org/10.1111/1365-2656.12946 (2019).Article 
    PubMed 

    Google Scholar 
    Starr, S. M. & McIntyre, N. E. Effects of water temperature under projected climate change on the development and survival of Enallagma civile (Odonata: Coenagrionidae). Environ. Entomol. 49, 230–237. https://doi.org/10.1093/ee/nvz138 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Culler, L. E., McPeek, M. A. & Ayres, M. P. Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia 176, 653–660. https://doi.org/10.1007/s00442-014-3058-8 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Dokulil, M. T. et al. Increasing maximum lake surface temperature under climate change. Clim. Change https://doi.org/10.1007/s10584-021-03085-1 (2021).Article 

    Google Scholar 
    Merritt, R. W. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 2nd edn. (Kendall/Hunt Publishing Company, 1984).
    Google Scholar 
    Verdonschot, R. & Peeters, E. T. Preference of larvae of Enallagma cyathigerum (Odonata: Coenagrionidae) for habitats of varying structural complexity. Eur. J. Entomol. 109, 229–234 (2012).Article 

    Google Scholar 
    McCarty, J. P., Wolfenbarger, L. L. & Wilson, J. A. eLS 1–13 (Wiley, 2017).Book 

    Google Scholar 
    Holzmann, K. L. Challenges in a Changing Climate: The Effect of Temperature Variation on Growth and Competition in Damselflies Independent thesis Advanced level (degree of Master (Two Years) thesis, Uppsala University. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-467582 (2022). More