More stories

  • in

    Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC, 2018. Summary for Policymakers. in Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) 32 (World Meteorological Organization, 2018).Kozlowski, T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 58, 107–222 (1992).Article 

    Google Scholar 
    Hartmann, H., Bahn, M., Carbone, M. & Richardson, A. D. Plant carbon allocation in a changing world–challenges and progress: Introduction to a Virtual Issue on carbon allocation. New Phytol. 227, 981–988 (2020).PubMed 
    Article 

    Google Scholar 
    Shahzad, T. et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146–155 (2015).CAS 
    Article 

    Google Scholar 
    Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).PubMed 
    Article 

    Google Scholar 
    Dijkstra, F. A., Zhu, B. & Cheng, W. Root effects on soil organic carbon: a double-edged sword. New Phytol. 230, 60–65 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakker, P. A. H. M., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberson, E. B. & Firestone, M. K. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58, 1284–1291 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C. & Peñuelas, J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409, 1–17 (2016).CAS 
    Article 

    Google Scholar 
    Ulrich, D. E. M. et al. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci. Rep. 9, 249 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oleghe, E., Naveed, M., Baggs, E. M. & Hallett, P. D. Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant Soil 421, 19–30 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).CAS 
    Article 

    Google Scholar 
    Liu, W., Xu, G., Bai, J. & Duan, B. Effects of warming and oxalic acid addition on plant–microbial competition in Picea brachytyla. Can. J. For. Res. https://doi.org/10.1139/cjfr-2020-0019 (2021).Article 

    Google Scholar 
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 1, 470–480 (2018).Article 
    CAS 

    Google Scholar 
    Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worchel, E. R., Giauque, H. E. & Kivlin, S. N. Fungal symbionts alter plant drought response. Microb. Ecol. 65, 671–678 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23, 25–41 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).PubMed 
    Article 

    Google Scholar 
    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).CAS 
    Article 

    Google Scholar 
    Wang, X., Tang, C., Severi, J., Butterly, C. R. & Baldock, J. A. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. 211, 864–873 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henry, A., Doucette, W., Norton, J. & Bugbee, B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 36, 904–912 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, O. C. et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob. Change Biol. 23, 1292–1304 (2017).ADS 
    Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karst, J., Gaster, J., Wiley, E. & Landhäusser, S. M. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 
    PubMed 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol. 38, 690–695 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166 (2014).Article 

    Google Scholar 
    Sevanto, S. & Dickman, L. T. Where does the carbon go?—Plant carbon allocation under climate change. Tree Physiol. 35, 581–584 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article 

    Google Scholar 
    Ruehr, N. K., Grote, R., Mayr, S. & Arneth, A. Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol. 39, 1285–1299 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farrar, J. & Jones, D. The control of carbon acquisition by roots. New Phytol. 147, 43–53 (2000).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. et al. Surplus carbon drives allocation and plant-soil interactions. Trends Ecol. Evol. 35, 1110–1118 (2020).PubMed 
    Article 

    Google Scholar 
    Costello, D. Important species of the major forage types in Colorado and Wyoming. Ecol. Monogr. 14, 107–134 (1944).Article 

    Google Scholar 
    Hunt, H. W. et al. Simulation model for the effects of climate change on temperate grassland ecosystems. Ecol. Model. 53, 205–246 (1991).Article 

    Google Scholar 
    Follett, R. F., Stewart, C. E., Pruessner, E. G. & Kimble, J. M. Effects of climate change on soil carbon and nitrogen storage in the US Great Plains. J. Soil Water Conserv. 67, 331–342 (2012).Article 

    Google Scholar 
    Belovsky, G. E. & Slade, J. B. Climate change and primary production: Forty years in a bunchgrass prairie. PLoS ONE 15, e0243496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Domanski, G. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 163, 421–431 (2000).CAS 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J., Dong, W., Yuan, W. & Zhang, Y. Responses of grassland and forest to temperature and precipitation changes in Northeast China. Adv. Atmos. Sci. 29, 1063–1077 (2012).Article 

    Google Scholar 
    Porras-Alfaro, A., Herrera, J., Natvig, D. O. & Sinsabaugh, R. L. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296, 65–75 (2007).CAS 
    Article 

    Google Scholar 
    Bokhari, U. G., Coleman, D. C. & Rubink, A. Chemistry of root exudates and rhizosphere soils of prairie plants. Can. J. Bot. 57, 1473–1477 (1979).CAS 
    Article 

    Google Scholar 
    Dormaar, J. F., Tovell, B. C. & Willms, W. D. Fingerprint composition of seedling root exudates of selected grasses. Rangel. Ecol. Manag. J. Range Manag. Arch. 55, 420–423 (2002).
    Google Scholar 
    Harris, S. A. Grasses (Reaktion Books, 2014).
    Google Scholar 
    Hoffman, A. M., Bushey, J. A., Ocheltree, T. W. & Smith, M. D. Genetic and functional variation across regional and local scales is associated with climate in a foundational prairie grass. New Phytol. 227, 352–364 (2020).PubMed 
    Article 

    Google Scholar 
    Gould, F. W. Grasses of the southwestern United States. (1951).Smith, S. E., Haferkamp, M. R. & Voigt, P. W. Gramas. in Warm-Season (C4) Grasses 975–1002 (Wiley, 2004). https://doi.org/10.2134/agronmonogr45.c30.Jackson, R. D., Paine, L. K. & Woodis, J. E. Persistence of native C4 grasses under high-intensity, short-duration summer bison grazing in the eastern tallgrass prairie. Restor. Ecol. 18, 65–73 (2010).Article 

    Google Scholar 
    Kim, S., Williams, A., Kiniry, J. R. & Hawkes, C. V. Simulating diverse native C4 perennial grasses with varying rainfall. J. Arid Environ. 134, 97–103 (2016).ADS 
    Article 

    Google Scholar 
    Sala, A., Fouts, W. & Hoch, G. Carbon storage in trees: Does relative carbon supply decrease with tree size? In Size-and age-related changes in tree structure and function 287–306 (Springer, 2011).Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yin, H. et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 19, 2158–2167 (2013).ADS 
    Article 

    Google Scholar 
    Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. 107, 10938–10942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zwetsloot, M. J., Kessler, A. & Bauerle, T. L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218, 530–541 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhen, W. & Schellenberg, M. P. Drought and N addition in the greenhouse experiment: blue grama and western wheatgrass. J. Agric. Sci. Technol. B 2, 29–37 (2012).
    Google Scholar 
    Bahn, M. et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol. 198, 116–126 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, M. F., Smith, W. K., Moore, T. S. & Christensen, M. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal bouteloua gracilis hbk lag ex steud. New Phytol. 88, 683–693 (1981).Article 

    Google Scholar 
    Weaver, J. E. Summary and interpretation of underground development in natural grassland communities. Ecol. Monogr. 28, 55–78 (1958).Article 

    Google Scholar 
    Carvalhais, L. C. et al. Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8, e68555 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dignac, M.-F. & Rumpel, C. Organic matter stabilization and ecosystem functions: proceedings of the fourth conference on the mechanisms of organic matter stabilization and destabilization (SOM-2010, Presqu’île de Giens, France). Biogeochemistry 112, 1–6 (2013).Article 

    Google Scholar 
    Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khaleghi, A. et al. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 9, 19250 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Werra, P., Péchy-Tarr, M., Keel, C. & Maurhofer, M. Role of gluconic acid production in the regulation of biocontrol traits of pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75, 4162–4174 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pang, Z. et al. Differential response to warming of the uptake of nitrogen by plant species in non-degraded and degraded alpine grasslands. J. Soils Sediments 19, 2212–2221 (2019).CAS 
    Article 

    Google Scholar 
    Blum, A. & Ebercon, A. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance1. Crop Sci. 16, 428–431 (1976).CAS 
    Article 

    Google Scholar 
    Verbruggen, N. & Hermans, C. Proline accumulation in plants: a review. Amino Acids 35, 753–759 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun, S. C., Paramasivan, M. & Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y., Ma, H., Chen, S., Gu, T. & Gong, J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J. Exp. Bot. 69, 579–588 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dien, D. C., Mochizuki, T. & Yamakawa, T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci. 22, 530–545 (2019).CAS 
    Article 

    Google Scholar 
    Traoré, O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A. & Boeuf-Tremblay, V. Effect of root mucilage and modelled root exudates on soil structure. Eur. J. Soil Sci. 51, 575–581 (2000).
    Google Scholar 
    Harun, S., Abdullah-Zawawi, M.-R., A-Rahman, M. R. A., Muhammad, N. A. N. & Mohamed-Hussein, Z.-A. SuCComBase: A manually curated repository of plant sulfur-containing compounds. Database J. Biol. Databases Curation 219, 21 (2019).
    Google Scholar 
    Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecol. Evol. 6, 7387–7396 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraus, T. E. C., Dahlgren, R. A. & Zasoski, R. J. Tannins in nutrient dynamics of forest ecosystems—A review. Plant Soil 256, 41–66 (2003).CAS 
    Article 

    Google Scholar 
    Madritch, M., Cavender-Bares, J., Hobbie, S. E. & Townsend, P. A. Linking foliar traits to belowground processes. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 173–197 (Springer, 2020). https://doi.org/10.1007/978-3-030-33157-3_8.Chapter 

    Google Scholar 
    Shaw, L. J., Morris, P. & Hooker, J. E. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8, 1867–1880 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, S. et al. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol. Res. 207, 100–107 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popa, V. I., Dumitru, M., Volf, I. & Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crops Prod. 27, 144–149 (2008).CAS 
    Article 

    Google Scholar 
    Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    el Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).CAS 
    Article 

    Google Scholar 
    Northup, R. R., Yu, Z., Dahlgren, R. A. & Vogt, K. A. Polyphenol control of nitrogen release from pine litter. Nature 377, 227 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmidt-Rohr, K., Mao, J.-D. & Olk, D. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. Proc. Natl. Acad. Sci. 101, 6351–6354 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salminen, J. & Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 25, 325–338 (2011).Article 

    Google Scholar 
    Ghanbary, E. et al. Drought and pathogen effects on survival, leaf physiology, oxidative damage, and defense in two middle eastern oak species. Forests 12, 247 (2021).Article 

    Google Scholar 
    Baetz, U. & Martinoia, E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19, 90–98 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, T.W.-M., Lane, A. N., Pedler, J., Crowley, D. & Higashi, R. M. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography–mass spectrometry. Anal. Biochem. 251, 57–68 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiao, M. et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation. Chem. Ecol. 30, 555–565 (2014).Article 
    CAS 

    Google Scholar 
    Hussein, R. A. & El-Anssary, A. A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herbal Medicine (IntechOpen, 2018). https://doi.org/10.5772/intechopen.76139.Oburger, E. & Jones, D. L. Sampling root exudates–mission impossible?. Rhizosphere 6, 116–133 (2018).Article 

    Google Scholar 
    Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–1 (2016).Article 
    CAS 

    Google Scholar 
    Sandnes, A., Eldhuset, T. D. & Wollebæk, G. Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol. Biochem. 37, 259–269 (2005).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Miao, Y., Lv, J., Huang, H., Cao, D. & Zhang, S. Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry. J. Environ. Sci. 98, 22–30 (2020).Article 

    Google Scholar 
    Grayston, S. J., Vaughan, D. & Jones, D. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 29–56 (1997).Article 

    Google Scholar 
    Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999 (2008).Article 

    Google Scholar 
    Ulrich, D. E. M., Sevanto, S., Peterson, S., Ryan, M. & Dunbar, J. Effects of soil microbes on functional traits of loblolly pine (Pinus taeda) seedling families from contrasting climates. Front. Plant Sci. 10, 1643 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol https://doi.org/10.1093/treephys/tpx163 (2018).Article 
    PubMed 

    Google Scholar 
    Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23, 375–396 (2003).CAS 
    Article 

    Google Scholar 
    Viant, M. R. & Sommer, U. Mass spectrometry based environmental metabolomics: A primer and review. Metabolomics 9, 144–158 (2013).CAS 
    Article 

    Google Scholar 
    Fiehn, O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114, 30.4.1-30.4.32 (2016).Article 

    Google Scholar 
    Hiller, K. et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kind, T. et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ulrich, E. L. et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 
    Article 

    Google Scholar 
    Tfaily, M. M., Hodgkins, S., Podgorski, D. C., Chanton, J. P. & Cooper, W. T. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 404, 447–457 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tolić, N. et al. Formularity: Software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tfaily, M. M. et al. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in Northern Minnesota. J. Geophys. Res. Biogeosci. 123, 479–494 (2018).CAS 
    Article 

    Google Scholar 
    Van Krevelen, D. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284 (1950).
    Google Scholar 
    Pett-Ridge, J. et al. Rhizosphere carbon turnover from cradle to grave: The role of microbe–plant interactions. in Rhizosphere Biology: Interactions Between Microbes and Plants 51–73 (Springer, 2021).Kuo, Y.-H., Lambein, F., Ikegami, F. & Parijs, R. V. Isoxazolin-5-ones and amino acids in root exudates of pea and sweet pea seedlings. Plant Physiol. 70, 1283–1289 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, M.-Y. et al. Antifungal activity of benzoic acid from bacillus subtilis GDYA-1 against fungal phytopathogens. Res. Plant Dis. 18, 109–116 (2012).CAS 
    Article 

    Google Scholar 
    Neumann, G. et al. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 5, 2 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Servillo, L. et al. Betaines and related ammonium compounds in chestnut (Castanea sativa Mill.). Food Chem. 196, 1301–1309 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, J. The influence of tall fescue cultivar and endophyte status on root exudate chemistry and rhizosphere processes. (2014).Loewus, F. A. & Murthy, P. P. N. myo-Inositol metabolism in plants. Plant Sci. 150, 1–19 (2000).CAS 
    Article 

    Google Scholar 
    Valluru, R. & Van den Ende, W. Myo-inositol and beyond—Emerging networks under stress. Plant Sci. 181, 387–400 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allard-Massicotte, R. et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7, e01664-16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muthuramalingam, P. et al. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 8, 9270 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chahed, A. et al. The rare sugar tagatose differentially inhibits the growth of Phytophthora infestans and Phytophthora cinnamomi by interfering with mitochondrial processes. Front. Microbiol. 11, 128 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mochizuki, S. et al. The rare sugar d-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun. Biol. 3, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Chapin III, F. S. The cost of tundra plant structures: evaluation of concepts and currencies. The American Naturalist, 133(1), 1–19 (1989). More

  • in

    Thermodynamic basis for the demarcation of Arctic and alpine treelines

    Explaining the heterogeneous organization of vegetation across landscapes has proved both a puzzling and an inspiring concept as patterns have formed naturally across the world. One such pattern is the existence of treelines, i.e., the demarcation zone between forestland and vegetation without trees1,2. There is a large body of work with developed and competing theories for understanding the specific limits and drivers for the non-existence of trees beyond a treeline. Yet after decades of study, there is still debate among ecologists and biologists over the mechanisms that limit the presence of trees beyond treelines. Current explanations are rooted in, but not limited to, consideration of factors such as excessive light and wind, limited CO(_2), and low temperatures1,3,4,5,6,7.
    With this in mind, we ask: Is there another perspective that could provide insights complementary to and beyond what has been developed through the prevailing mechanistic approach? While the existing explanations are based on ideas of structural stability (e.g., high winds above the treeline) and limited resources pertaining to water, energy, and nutrients1,3,4,5,6,7, we instead examine the question of what determines the existence of a treeline from the perspective of thermodynamic feasibility. Our premise is that the existence or non-existence of certain vegetation first and foremost has to be ascertained through thermodynamic feasibility or infeasibility, respectively. Therefore, we approach the question of the existence of treelines by asking: If certain vegetation does not exist at a given location, is there a role that the thermodynamic perspective can play in telling us that its existence is infeasible? By approaching the topic from the thermodynamic perspective, we seek to provide important complementary insight to the broad base of scientific understanding ecologists and biologists have developed to explain the existence of treelines. Further, this work lays out additional context for the discussion around the advance of treelines (e.g., why some treelines advance and others do not).For example, several theories assert that the stature of vegetation is limited by CO(_2) balance and photosynthetic requirements under harsh winter conditions1,6. Other hypotheses argue that plant life is instead limited by the atmospheric temperature and the local environments that the plants experience7,8. Is there a perspective that could unify both of these findings? Through this work, we demonstrate how thermodynamic infeasibility inferred from model simulations pertaining to counterfactual scenarios manifests through both of these physiological limits. This means that either of these limits, individually or together, could lead to the nonexistence of trees—which limiting factor is expressed first varies by location. Thus, the commonality among locations that have different limiting mechanisms can be found in the unifying concept of thermodynamic infeasibility. While CO(_2) limitation may prevail in one location and temperature-related constraints may be limiting in another, both lead to thermodynamic infeasibility, meaning that the thermal environment results in a mechanistic infeasibility, such as net CO(_2) loss. In the examples presented in this paper, thermodynamic infeasibility manifests through negative work associated with constraints arising from temperature gradients and net CO(_2) loss, demonstrating that both limitations can be encapsulated using the thermodynamic perspective.Ecosystem thermodynamicsIt is now generally accepted that observed patterns of vegetation composition and its organization are a result of self-organization, or the spontaneous emergence of pattern without external predetermination9,10. By framing ecosystems as open thermodynamic systems, we explore further the concept of thermodynamic feasibility and its role in the self-organization of vegetation structure. Vegetation structure consists of composition (i.e., the number and type of functional groups11) and organizational patterns on the landscape12. We focus on composition rather than the spatial pattern of vegetation organization. We utilize a one-dimensional ecohydrological model that incorporates representative functional groups with no lateral transport of energy or matter under the assumption that the vegetation composition and pattern remain spatially uniform at a given site. Thus, we are able to compare the vertical thermodynamic regimes of proximal ecosystems with varying vegetation composition. We present the case that observed organization reflected in the demarcation of differing vegetation structures on either side of a treeline is established in tandem with vertical thermodynamic gradients at a given location, driven by the incoming solar energy into an ecosystem. In other words, we hypothesize that beyond a treeline, the existence of trees is prevented by conditions of thermodynamic infeasibility.The application of thermodynamic theory to ecology has been studied for the better part of the last century through the introduction of theoretical thermodynamic properties, such as entropy and exergy, into environmental systems. This work asserts that open thermodynamic systems will evolve based on the strength of applied concentration gradients on the system and will undergo irreversible processes to dissipate energy and destroy these gradients through all means available13,14. In the context of ecosystems, fluxes of mass or energy from the external environment (i.e., above the canopy) result in concentration gradients within the system itself. State variables will transition along these gradients according to the second law of thermodynamics. When the magnitude of incoming energy and consequent spatial imbalance of energy becomes great enough, dissipative structures spontaneously emerge, or self-organize, and establish temperature gradients consistent with the dissipative need of the ecosystem13,15. In this paper we conceptualize the work performed by an ecosystem as its ability to dissipate these applied concentration gradients. Consequently, work is highly dependent upon the existence and composition of self-organized vegetation.In classical thermodynamics, work is performed due to a transfer, or physical movement, of heat15. In the context of ecosystems, work performed by an ecosystem is represented by the exchange of heat with the external environment outside the ecosystem control volume12. Work performed by an ecosystem is, therefore, estimated as the vertical transport of heat in the form of latent and sensible heat, driven by the vertical gradient in temperature within the control volume structured by both the incoming downward shortwave and longwave radiation and the vegetation structure. The bottom boundary of the ecosystem control volumes studied are significantly deep such that heat exchanges due to water infiltration at this interface are insignificant in magnitude relative to latent and sensible heat flux out of the top of the control volume above the canopy. Further, we ignore the substantially slower thermodynamic processes associated with geochemistry in the soil.The vertical temperature gradient creates a directionality of dissipation of incident radiation as heat leaves out of the ecosystem from higher surface temperatures to lower air temperatures. Throughout this paper, we measure work through the net sum of heat leaving the ecosystem as latent and sensible heat—which can either be positive or negative depending on the direction of the resultant temperature gradient (see “Thermodynamic Calculations” in the “Methods” section). This temperature gradient (Eq. 1) emerges as a result of self-organization through feedback between the incoming shortwave and longwave radiation, local environmental conditions, and the heat dissipation and work performed by the vegetation. The presence of ground cover, such as snow, is impacted by aboveground vegetation structure, which provides a physical buffer between the atmosphere and the ground, further influencing the thermal environment and temperature gradient.Although significant research has been conducted by studying plant response to snowpack7,16,17, including the physiological requirements for life under prolonged snowpack and alpine climatic conditions, the thermodynamic perspective provides further insight. In addition to the physiological/mechanistic response of plants to snowpack and other environmental conditions, the thermal regime of a column of land experiencing snowpack is fundamentally different when an ecosystem does or does not have plants with stature taller than the height of snowpack (e.g., trees). Presence of trees results in shading from solar radiation and a physical buffer between the earth/snow surface and the atmosphere. Thus, the thermal profile of an ecosystem reveals valuable information about ecosystem behavior, and there is a need to explore the thermodynamic relationship between solar radiation and vegetation composition under varying environmental conditions. Thus, through this paper we define the circumstances under which multiple functional groups that include trees are no longer feasible for the available solar radiation leading to demarcated zones identifiable as treelines.Work by Körner argues that the “climate [that] plants experience” is different than the ambient temperature7. By modeling the layers within the canopy of plants with differing stand heights and leaf distributions, we are able to characterize the thermal regime and the “climate [that] plants experience” throughout the course of a given year. This characterization helps us understand the fundamental changes in behavior under varying environmental conditions with and without trees.An ecosystem’s ability to perform work manifests into four distinct cases depending on the sign of the resultant temperature gradient and the net loss or gain of heat driven by the thermal environment derived from present ground cover, such as vegetation or snow: (1) First and most common during the day when photosynthesis is occurring, the temperature of the earth surface, which receives the solar radiation, is typically warmer than the air above the canopy, and heat leaves the ecosystem upward along the negative temperature gradient, corresponding to a positive work (Fig. 1a). (2) Even when the temperature of the earth surface is warmer than the air above the canopy, there can be situations when there is a net heat gain within the ecosystem, meaning that heat moves into the ecosystem against the direction of the temperature gradient. This case is rare and counterproductive to heat dissipation, corresponding to negative work. (3) Common during the night, temperature inversion emerges. In this case, the temperature gradient from the earth surface to the atmosphere can become positive, meaning that the temperature of the air above the canopy is greater than the temperature of the earth surface. As heat enters the ecosystem to warm the surface, positive work is performed since the heat is still moving along a negative temperature gradient into the ecosystem (Fig. 1b). (4) During snowmelt conditions during the day, particularly for Arctic and alpine ecosystems, temperature inversions also emerge18,19. When this occurs and the ecosystem experiences a net heat loss through latent and sensible heat from the canopy, the heat leaving the ecosystem travels opposite of the direction dictated by the temperature gradient. Thus, in this case, ecosystems perform negative work. Our findings demonstrate how extended periods of time in this last case of work lead to thermodynamic infeasibility for the alpine/Arctic ecosystem counterfactual vegetation scenarios; i.e., ecosystems with vegetation properties from below the treelines cannot be sustained under the environmental conditions above the treelines, and, hence, they do not occur in nature.A recent study concluded that at sites where multiple functional groups exist (e.g., forests), the vegetation structure in which all groups co-exist and interact is thermodynamically more advantageous and, thus, more likely to occur than any one of the individual functional groups that the forest comprises12. Thermodynamic advantage is defined by the production of larger fluxes of entropy, more work performed, and higher work efficiency – a quantity that captures how much of the incoming energy is converted into forms useful for actively dissipating heat. It is possible to envision that under certain environmental conditions, the thermodynamic advantage offered by the existence of multiple functional groups is not tenable, indicating a thermodynamic infeasibility. Thermodynamic infeasibility occurs when a particular vegetation structure is not supported by the thermal environment at a given location. The demarcation exhibited by treelines presents an ideal case to explore this scenario, in that there is a distinct transition from multiple functional groups below the treeline to a single functional group above.Research questionIn this paper, we examine vegetation above and below Arctic and alpine treelines to determine whether the absence of trees in ecosystems above treelines are a result of thermodynamic infeasibility. Simply speaking, we seek to answer the following research question: Is the non-existence of trees beyond the transition zone demarcated as a treeline a reflection of thermodynamic infeasibility associated with the presence of trees, and if so, how is this infeasibility exhibited?Figure 1Conceptual diagram of temperature gradients. The W+ arrow indicates the positive direction of work performed through heat transport. Although in different directions, in both cases (a) and (b), the work performed is positive because heat moves from high to low temperatures. (a) Typical summertime temperature gradients from the earth surface to the air above the canopy are negative for the two real scenarios: subalpine/sub-Arctic forest (left) and alpine tundra/Arctic meadow (right). (b) A conceptual temperature inversion, or positive temperature gradient, which arise when alpine/Arctic forest are simulated as counterfactuals.Full size imageTo address this question, we use an extensively validated multi-layer 1-D physics-based ecohydrological model, MLCan12,20,21,22,23,24,25,26, consisting of 20 above-ground layers, 1 ground surface layer, and 12 below-ground layers (see Supplementary Material). This model is chosen because of its ability to capture interactions among functional groups, such as the impact of shading on understory vegetation and the resulting thermal environment within the canopy23. To balance model performance and accuracy, standing plant species are aggregated into functional groups (i.e., evergreen needleleaf trees, shrubs, grasses; see Table 1) based on literature27,28,29,30. The model output is used to compare the thermodynamic work performed at paired sites above and below the respective treelines for three different locations: the Italian Alps (IT), the United States Rocky Mountains (US), and the Western Canadian Taiga-Tundra (CA) (Fig. 2; see Site Descriptions). For each site pair, four scenarios are performed (Table 1): (1) The subalpine/sub-Arctic forest ecosystems are modeled as they exist with multiple functional groups (Fig. 1a, left). (2) The alpine/Arctic ecosystems are modeled as they exist with one functional group (i.e., shrubs or grasses; Fig. 1a, right). (3) We construct counterfactual scenarios above the treeline in which the vegetation of the subalpine or sub-Arctic forest is simulated with the environmental conditions and parameters of the alpine meadow or Arctic tundra (i.e., adding hypothetical trees where none exist; Fig. 1b). (4) As a control, a final counterfactual scenario is constructed below the treeline in which we model the understory of the subalpine/sub-Arctic forest individually (i.e., removing trees from the existing ecosystem).Table 1 Simulation scenarios with observed and hypothetical vegetation.Full size tableThe simulation of these four scenarios facilitates comparison of the existing vegetation structure of each site with the corresponding counterfactual scenarios. By varying the model inputs of vegetation present at each site while holding the environmental conditions and site-specific parameters consistent, we are able to directly compare thermodynamic outcomes as a result of varying vegetation structure and determine whether the counterfactual scenario with the simulated forest is thermodynamically feasible. Model performance was judged based on comparison to observed heat fluxes, such as latent and sensible heat (see Supplementary Material, Figs. S1–S3). As detailed below, the analysis supports the conclusion that thermodynamic feasibility is an important and complementary condition to the usual considerations of resource availability, such as water and nutrients, which determines the organizing form and function of ecosystems. More

  • in

    Coronamoeba villafranca gen. nov. sp. nov. (Amoebozoa, Dermamoebida) challenges the correlation of morphology and phylogeny in Amoebozoa

    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119. https://doi.org/10.1111/jeu.12691 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smirnov, A. Amoebas, Lobose. In Encyclopedia of Microbiology (ed. Schaechter, M.) 191–212 (Elsevier, 2012).
    Google Scholar 
    Schaeffer, A. A. Taxonomy of the Amoebas: With Descriptions of Thirty-Nine New Marine and Freshwater Species (Carnegie Inst, 1926).
    Google Scholar 
    Page, F. C. The classification of “naked” amoebae (Phylum Rhizopoda). Arch. Protistenkd. 133, 199–217. https://doi.org/10.1016/S0003-9365(87)80053-2 (1987).Article 

    Google Scholar 
    Page, F. C. A New Key to Freshwater and Soil Gymnamoebae (Freshwater Biological Association, 1988).
    Google Scholar 
    Smirnov, A. V. & Goodkov, A. V. An illustrated list of basic morphotypes of Gymnamoebia (Rhizopoda, Lobosea). Protistology 1, 20–29 (1999).
    Google Scholar 
    Smirnov, A. V. & Brown, S. Guide to the methods of study and identification of soil gymnamoebae. Protistology 3, 148–190 (2004).
    Google Scholar 
    Bovee, E. C. & Jahn, T. L. Mechanisms of movement in taxonomy of Sarcodina. II. The organization of subclasses and orders in relationship to the classes Autotractea and Hydraulea. Am. Midland Nat. 73, 293–298. https://doi.org/10.2307/2423456 (1965).Article 

    Google Scholar 
    Bovee, E. C. & Jahn, T. L. Mechanisms of movement in taxonomy or sarcodina. III. Orders, suborders, families, and subfamilies in the superorder Lobida. Syst. Zool. 15, 229–240. https://doi.org/10.2307/sysbio/15.3.229 (1966).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bovee, E.C. & Sawyer, T.K. Marine Flora and Fauna of the Northeastern United States. Protozoa: Sarcodina: Amoebae. (NOAA Technical Report, 1979). https://doi.org/10.5962/bhl.title.63225.Jahn, T. L. & Bovee, E. C. Mechanisms of movement in taxonomy of Sarcodina. I. As a basis for a new major dichotomy into two classes, Autotractea and Hydraulea. Am. Midl. Nat. 73, 30–40. https://doi.org/10.2307/2423319 (1965).Article 

    Google Scholar 
    Jahn, T. L., Bovee, E. C. & Griffith, D. L. Taxonomy and evolution of the Sarcodina: A reclassification. Taxon 23, 483–496. https://doi.org/10.2307/1218771 (1974).Article 

    Google Scholar 
    Cavalier-Smith, T., Chao, E.E.-Y. & Oates, B. Molecular phylogeny of Amoebozoa and the evolutionary significance of the unikont Phalansterium. Eur. J. Protistol. 40, 21–48. https://doi.org/10.1016/j.ejop.2003.10.001 (2004).Article 

    Google Scholar 
    Smirnov, A. et al. Molecular phylogeny and classification of the lobose amoebae. Protist 156, 129–142. https://doi.org/10.1016/j.protis.2005.06.002 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Amaral Zettler, L. A. et al. A molecular reassessment of the leptomyxid amoebae. Protist 151, 275–282. https://doi.org/10.1078/1434-4610-00025 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bolivar, I., Fahrni, J. F., Smirnov, A. & Pawlowski, J. SSU rRNA-based phylogenetic position of the genera Amoeba and Chaos (Lobosea, Gymnamoebia): The origin of gymnamoebae revisited. Mol. Biol. Evol. 18, 2306–2314. https://doi.org/10.1093/oxfordjournals.molbev.a003777 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fahrni, J. F. et al. Phylogeny of lobose amoebae based on actin and small-subunit ribosomal RNA genes. Mol. Biol. Evol. 20, 1881–1886. https://doi.org/10.1093/molbev/msg201 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cavalier-Smith, T. et al. Multigene phylogeny resolves deep branching of Amoebozoa. Mol. Phylogenet. Evol. 83, 293–304. https://doi.org/10.1016/j.ympev.2014.08.011 (2015).Article 
    PubMed 

    Google Scholar 
    Cavalier-Smith, T., Chao, E. E. & Lewis, R. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol. Phylogenet. Evol. 99, 275–296. https://doi.org/10.1016/j.ympev.2016.03.023 (2016).Article 
    PubMed 

    Google Scholar 
    Kang, S. et al. Between a pod and a hard test: The deep evolution of amoebae. Mol. Biol. Evol. 34, 2258–2270. https://doi.org/10.1093/molbev/msx162 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tekle, Y. I. & Wood, F. C. Longamoebia is not monophyletic: Phylogenomic and cytoskeleton analyses provide novel and well-resolved relationships of amoebozoan subclades. Mol. Phylogenet. Evol. 114, 249–260. https://doi.org/10.1016/j.ympev.2017.06.019 (2017).Article 
    PubMed 

    Google Scholar 
    Tekle, Y. I., Wang, F., Wood, F. C., Anderson, O. R. & Smirnov, A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. bioRxiv https://doi.org/10.1101/2022.02.28.482369 (2022).Article 

    Google Scholar 
    Van Wichelen, J. et al. A hotspot of amoebae diversity: 8 new naked amoebae associated with the planktonic bloom-forming cyanobacterium microcystis. Acta Protozool. 55, 61–87. https://doi.org/10.4467/16890027AP.16.007.4942 (2016).Article 

    Google Scholar 
    Janicki, C. Paramoebenstudien (P. pigmentifera Grassi und P. chaetognathi Grassi). Z. Wiss. Zool. 103, 449–518 (1912).
    Google Scholar 
    Volkova, E. & Kudryavtsev, A. A morphological and molecular reinvestigation of Janickina pigmentifera (Grassi, 1881) Chatton 1953—an amoebozoan parasite of arrow-worms (Chaetognatha). Int. J. Syst. Evol. Microbiol. 71, 005094. https://doi.org/10.1099/ijsem.0.005094 (2021).CAS 
    Article 

    Google Scholar 
    Page, F. C. Taxonomic criteria for limax amoebae, with descriptions of 3 new species of Hartmannella and 3 of Vahlkampfia. J. Protozool. 14, 499–521 (1967).CAS 
    Article 

    Google Scholar 
    Page, F. C. & Blanton, R. L. The Heterolobosea (Sarcodina: Rhizopoda), a new class uniting the Schizopyrenida and the Acrasidae (Acrasida). Protistologica 21, 121–132 (1985).
    Google Scholar 
    Laurin, V., Labbé, N., Parent, S., Juteau, P. & Villemur, R. Microeukaryote diversity in a marine methanol-fed fluidized denitrification system. Microb. Ecol. 56, 637–648. https://doi.org/10.1007/s00248-008-9383-x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Page, F. C. A further study of taxonomic criteria for limax amoebae, with descriptions of new species and a key to genera. Arch. Protistenkd. 116, 149–184 (1974).
    Google Scholar 
    Page, F. C. Marine Gymnamoebae (Institute of Terrestrial Ecology, 1983).
    Google Scholar 
    Page, F. C. A light- and electron-microscopical comparison of limax and flabellate marine amoebae belonging to four genera. Protistologica 16, 57–78 (1980).
    Google Scholar 
    Kuiper, M. W. et al. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl. Environ. Microbiol. 72, 5750–5756. https://doi.org/10.1128/AEM.00085-06 (2006).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smirnov, A., Chao, E., Nassonova, E. & Cavalier-Smith, T. A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162, 545–570. https://doi.org/10.1016/j.protis.2011.04.004 (2011).Article 
    PubMed 

    Google Scholar 
    Page, F. C. & Blakey, S. M. Cell surface structure as a taxonomic character in the Thecamoebidae (Protozoa: Gymnamoebia). Zool. J. Linn. Soc. 66, 113–135. https://doi.org/10.1111/j.1096-3642.1979.tb01905.x (1979).Article 

    Google Scholar 
    Smirnov, A. V. & Goodkov, A. V. Paradermamoeba valamo gen. n., sp. n. (Gymnamoebia, Thecamoebidae)—a freshwater amoeba from bottom sediments. Zool. Zhurn. 72, 5–11 (1993) (In Russian with English summary).
    Google Scholar 
    Smirnov, A. & Goodkov, A. Ultrastructure and geographic distribution of the genus Paradermamoeba (Gymnamoebia, Thecamoebidae). Eur. J. Protistol. 40, 113–118. https://doi.org/10.1016/j.ejop.2003.12.001 (2004).Article 

    Google Scholar 
    Smirnov, A. V., Bedjagina, O. M. & Goodkov, A. V. Dermamoeba algensis n sp (Amoebozoa, Dermamoebidae)—an algivorous lobose amoeba with complex cell coat and unusual feeding mode. Eur. J. Protistol. 47, 67–78. https://doi.org/10.1016/j.ejop.2010.12.002 (2011).Article 
    PubMed 

    Google Scholar 
    Bailey, G. B., Day, D. B. & McCoomer, N. E. Entamoeba motility: Dynamics of cytoplasmic streaming, locomotion and translocation of surface-bound particles, and organization of the actin cytoskeleton in Entamoeba invadens. J. Protozool. 39, 267–272. https://doi.org/10.1111/j.1550-7408.1992.tb01313.x (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shiratori, T. & Ishida, K. I. Entamoeba marina n. sp.; a new species of Entamoeba isolated from tidal flat sediment of Iriomote Island, Okinawa, Japan. J. Eukaryot. Microbiol. 63, 280–286. https://doi.org/10.1111/jeu.12276 (2016).Article 
    PubMed 

    Google Scholar 
    Lahr, D. J., Laughinghouse, H. D. IV., Oliverio, A. M., Gao, F. & Katz, L. A. How discordant morphological and molecular evolution among microorganisms can revise our notions of biodiversity on Earth. BioEssays 36, 950–959. https://doi.org/10.1002/bies.201400056 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pomorski, P. et al. Actin dynamics in Amoeba proteus motility. Protoplasma 231, 31–41. https://doi.org/10.1007/s00709-007-0243-1 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rogerson, A., Anderson, O. R. & Vogel, C. Are planktonic naked amoebae predominately floc associated or free in the water column?. J. Plankton Res. 25, 1359–1365. https://doi.org/10.1093/plankt/fbg102 (2003).Article 

    Google Scholar 
    Kudryavtsev, A. Paravannella minima n. g. n. sp. (Discosea, Vannellidae) and distinction of the genera in the vannellid amoebae. Eur. J. Protistol. 50, 258–269. https://doi.org/10.1016/j.ejop.2013.12.004 (2014).Article 
    PubMed 

    Google Scholar 
    Kudryavtsev, A., Völcker, E., Clauß, S. & Pawlowski, J. Ovalopodium rosalinum sp. nov., Planopodium haveli gen. nov, sp. nov., Planopodium desertum comb. nov. and new insights into phylogeny of the deeply branching members of the order Himatismenida (Amoebozoa). Int. J. Sys. Evol. Microbiol. 71, 004737. https://doi.org/10.1099/ijsem.0.004737 (2021).CAS 
    Article 

    Google Scholar 
    Blandenier, Q. et al. Mycamoeba gemmipara nov. gen., nov. sp., the first cultured member of the environmental Dermamoebidae clade LKM74 and its unusual life cycle. J. Eukaryot. Microbiol. 64, 257–265. https://doi.org/10.1111/jeu.12357 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kudryavtsev, A. & Volkova, E. Cunea russae n. sp. (Amoebozoa, Dactylopodida), another cryptic species of Cunea Kudryavtsev and Pawlowski, 2015, inhabits a continental brackish-water biotope. Eur. J. Protistol. 73, 125685. https://doi.org/10.1016/j.ejop.2020.125685 (2020).Article 
    PubMed 

    Google Scholar 
    Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory, 1982).
    Google Scholar 
    Kudryavtsev, A. & Pawlowski, J. Cunea n. g. (Amoebozoa, Dactylopodida) with two cryptic species isolated from different areas of the ocean. Eur. J. Protistol. 51, 197–209. https://doi.org/10.1016/j.ejop.2015.04.002 (2015).Article 
    PubMed 

    Google Scholar 
    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA coding regions. Gene 71, 491–499. https://doi.org/10.1016/0378-1119(88)90066-2 (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yoon, H. S. et al. Broadly sampled multigene trees of eukaryotes. BMC Evol. Biol. 8, 14. https://doi.org/10.1186/1471-2148-8-14 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gouy, M., Tannier, E., Comte, N. & Parsons, D. P. Seaview version 5: A multiplatform software for multiple sequence alignment, molecular phylogenetic analyses, and tree reconciliation. In Multiple Sequence Alignment. Methods in Molecular Biology (ed. Katoh, K.) 241–260 (Humana, 2021). https://doi.org/10.1007/978-1-0716-1036-7_15.Chapter 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ronquist, F. et al. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le, S. Q. & Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25, 1307–1320. https://doi.org/10.1093/molbev/msn067 (2008).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Social senescence in red deer

    Snyder-Mackler, N. et al. Science 368, eaax9553 (2020).CAS 
    Article 

    Google Scholar 
    Wrzus, C., Hänel, M., Wagner, J. & Neyer, F. J. Psychol. Bull. 139, 53–80 (2013).Article 

    Google Scholar 
    Steptoe, A., Shankar, A., Demakakos, P. & Wardle, J. Proc. Natl Acad. Sci. USA 110, 5797–5801 (2013).CAS 
    Article 

    Google Scholar 
    Almeling, L., Hammerschmidt, K., Sennhenn-Reulen, H., Freund, A. M. & Fischer, J. Curr. Biol. 26, 1744–1749 (2016).CAS 
    Article 

    Google Scholar 
    Rosati, A. G. et al. Science 370, 473–476 (2020).CAS 
    Article 

    Google Scholar 
    Schino, G. & Pinzaglia, M. Am. J. Primatol. 80, e22746–e22747 (2018).Article 

    Google Scholar 
    Machanda, Z. P. & Rosati, A. G. Phil. Trans. R. Soc. Lond. B 375, 20190620 (2020).Article 

    Google Scholar 
    Kroeger, S. B., Blumstein, D. T. & Martin, J. G. A. Phil. Trans. R. Soc. Lond. B 376, 20190745 (2021).Article 

    Google Scholar 
    Weiss, M. N. et al. Proc. R. Soc. Lond. B 288, 20210617 (2021).
    Google Scholar 
    Albery, G. F. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01817-9 (2022).Article 
    PubMed 

    Google Scholar 
    Siracusa, E. R., Higham, J. P., Snyder-Mackler, N. & Brent, L. J. N. Biol. Lett. 18, 20210643 (2022).Article 

    Google Scholar 
    Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J. M. Funct. Ecol. 22, 393–406 (2008).Article 

    Google Scholar 
    Nussey, D. H., Froy, H., Lemaître, J.-F., Gaillard, J.-M. & Austad, S. N. Ageing Res. Rev. 12, 214–225 (2013).Article 

    Google Scholar  More

  • in

    Ageing red deer alter their spatial behaviour and become less social

    White, L. A., Forester, J. D. & Craft, M. E. Using contact networks to explore mechanisms of parasite transmission in wildlife. Biol. Rev. 92, 389–409 (2017).PubMed 
    Article 

    Google Scholar 
    Silk, M. J. et al. Using social network measures in wildlife disease ecology, epidemiology, and management. Bioscience 67, 245–257 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F., Kirkpatrick, L., Firth, J. A. & Bansal, S. Unifying spatial and social network analysis in disease ecology. J. Anim. Ecol. 90, 1–17 (2021).Article 

    Google Scholar 
    Evans, J. C., Silk, M. J., Boogert, N. J. & Hodgson, D. J. Infected or informed? Social structure and the simultaneous transmission of information and infectious disease. Oikos 129, 1271–1288 (2020).Article 

    Google Scholar 
    Aplin, L. M., Sheldon, B. C. & Morand-Ferron, J. Milk bottles revisited: social learning and individual variation in the blue tit, Cyanistes caeruleus. Anim. Behav. 85, 1225–1232 (2013).Article 

    Google Scholar 
    Silk, J. B. The adaptive value of sociality in mammalian groups. Phil. Trans. R. Soc. Lond. B 362, 539–559 (2007).Article 

    Google Scholar 
    Snyder-Mackler, N. et al. Social determinants of health and survival in humans and other animals. Science 368, eaax9553 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Machanda, Z. P. & Rosati, A. G. Shifting sociality during primate ageing. Phil. Trans. R. Soc. B 375, 20190620 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J. M. Measuring senescence in wild animal populations: towards a longitudinal approach. Funct. Ecol. 22, 393–406 (2008).Article 

    Google Scholar 
    van de Pol, M. & Verhulst, S. Age-dependent traits: a new statistical model to separate within- and between-individual effects. Am. Nat. 167, 766–773 (2006).PubMed 
    Article 

    Google Scholar 
    Froy, H. et al. Declining home range area predicts reduced late-life survival in two wild ungulate populations. Ecol. Lett. 21, 1001–1009 (2018).PubMed 
    Article 

    Google Scholar 
    Rosati, A. G. et al. Social selectivity in aging wild chimpanzees. Science 370, 473–476 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, S.-Y., Torres, R., Rodriguez, C. & Drummond, H. Effects of breeding success, mate fidelity and senescence on breeding dispersal of male and female blue-footed boobies. J. Anim. Ecol. 76, 471–479 (2007).PubMed 
    Article 

    Google Scholar 
    Webber, Q. M. R. & Vander Wal, E. An evolutionary framework outlining the integration of individual social and spatial ecology. J. Anim. Ecol. 87, 113–127 (2018).PubMed 
    Article 

    Google Scholar 
    Webber, Q. M. R. & Vander Wal, E. Trends and perspectives on the use of animal social network analysis in behavioural ecology: a bibliometric approach. Anim. Behav. 149, 77–87 (2019).Article 

    Google Scholar 
    Siracusa, E. R., Higham, J. P., Snyder-mackler, N. & Brent, L. J. N. Social ageing: exploring the drivers of late-life changes in social behaviour in mammals. Biol. Lett. 18, 20210643 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elliott, K. H. et al. Ageing gracefully: physiology but not behaviour declines with age in a diving seabird. Funct. Ecol. 29, 219–228 (2015).Article 

    Google Scholar 
    Aartsen, M. J., Van Tilburg, T., Smits, C. H. M. & Knipscheer, K. C. P. M. A longitudinal study of the impact of physical and cognitive decline on the personal network in old age. J. Soc. Pers. Relat. 21, 249–266 (2004).Article 

    Google Scholar 
    Brent, L. J. N., Ruiz-Lambides, A. & Platt, M. L. Family network size and survival across the lifespan of female macaques. Proc. R. Soc. B 284, 20170515 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turner, J. W., Robitaille, A. L., Bills, P. S. & Holekamp, K. E. Early-life relationships matter: social position during early life predicts fitness among female spotted hyenas. J. Anim. Ecol. 90, 183–196 (2021).PubMed 
    Article 

    Google Scholar 
    Almeling, L., Hammerschmidt, K., Sennhenn-Reulen, H., Freund, A. M. & Fischer, J. Motivational shifts in aging monkeys and the origins of social selectivity. Curr. Biol. 26, 1744–1749 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Albery, G. F. et al. Multiple spatial behaviours govern social network positions in a wild ungulate. Ecol. Lett. 24, 676–686 (2021).PubMed 
    Article 

    Google Scholar 
    Sanchez, J. N. & Hudgens, B. R. Interactions between density, home range behaviors, and contact rates in the Channel Island fox (Urocyon littoralis). Ecol. Evol. 5, 2466–2477 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. https://doi.org/10.1093/beheco/arz083 (2019).Krause, J., James, R., Franks, D. W. & Croft, D. P. Animal Social Networks (Oxford Univ. Press, 2015).Firth, J. A. et al. Wild birds respond to flockmate loss by increasing their social network associations to others. Proc. R. Soc. B 284, 20170299 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, J. C., Liechti, J. I., Boatman, B. & König, B. A natural catastrophic turnover event: individual sociality matters despite community resilience in wild house mice. Proc. R. Soc. B 287, 20192880 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rathke, E. & Fischer, J. Social aging in male and female Barbary macaques. Am. J. Primatol. https://doi.org/10.1002/ajp.23272 (2021).Kroeger, S. B., Blumstein, D. T. & Martin, J. G. A. A. How social behaviour and life-history traits change with age and in the year prior to death in female yellow-bellied marmots. Phil. Trans. R. Soc. B 376, 20190745 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brambilla, A., von Hardenberg, A., Sueur, C., Canedoli, C. & Stanley, C. Long term analysis of social structure: evidence of age-based consistent associations in Alpine ibex. bioRxiv 1–42 (2021).González, N. T. et al. Age-related change in adult chimpanzee social network integration. Evol. Med. Public Health 9, 448–459 (2021).Article 

    Google Scholar 
    Clutton-Brock, T. H., Guinness, F. E. & Albon, S. D. Red Deer: Behavior and Ecology of Two Sexes. Vol. 15 (Univ. Chicago Press, 1982).Nussey, D. H., Kruuk, L. E. B., Donald, A., Fowlie, M. & Clutton-Brock, T. H. The rate of senescence in maternal performance increases with early-life fecundity in red deer. Ecol. Lett. 9, 1342–1350 (2006).PubMed 
    Article 

    Google Scholar 
    Croft, D. P., James, R. & Krause, J. Exploring Animal Social Networks (Princeton Univ. Press, 2008).Tobler, W. R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234 (1970).Article 

    Google Scholar 
    Firth, J. A. & Sheldon, B. C. Social carry-over effects underpin trans-seasonally linked structure in a wild bird population. Ecol. Lett. 19, 1324–1332 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spiegel, O., Leu, S. T., Sih, A. & Bull, C. M. Socially interacting or indifferent neighbours? Randomization of movement paths to tease apart social preference and spatial constraints. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12553 (2016).Nussey, D. H. et al. The relationship between tooth wear, habitat quality and late-life reproduction in a wild red deer population. J. Anim. Ecol. 76, 402–412 (2007).PubMed 
    Article 

    Google Scholar 
    Loe, L. E., Mysterud, A., Langvatn, R. & Stenseth, N. C. Decelerating and sex-dependent tooth wear in Norwegian red deer. Oecologia 135, 346–353 (2003).PubMed 
    Article 

    Google Scholar 
    Peignier, M. et al. Space use and social association in a gregarious ungulate: testing the conspecific attraction and resource dispersion hypotheses. Ecol. Evol. 9, 5133–5145 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Franks, D. W., Ruxton, G. D. & James, R. Sampling animal association networks with the gambit of the group. Behav. Ecol. Sociobiol. 64, 493–503 (2010).Article 

    Google Scholar 
    Patterson, S. K., Strum, S. C. & Silk, J. B. Resource competition shapes female–female aggression in olive baboons, Papio anubis. Anim. Behav. 176, 23–41 (2021).Article 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Gilbertson, M. L. J., White, L. A. & Craft, M. E. Trade‐offs with telemetry‐derived contact networks for infectious disease studies in wildlife. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.13355 (2020).Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Siracusa, E. R. et al. Familiar neighbors, but not relatives, enhance fitness in a territorial mammal. Curr. Biol. 31, 438–445.e3 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nussey, D. H., Kruuk, L. E. B., Morris, A. & Clutton-Brock, T. H. Environmental conditions in early life influence ageing rates in a wild population of red deer. Curr. Biol. 17, 1000–1001 (2007).Article 
    CAS 

    Google Scholar 
    Castles, M. et al. Social networks created with different techniques are not comparable. Anim. Behav. 96, 59–67 (2014).Article 

    Google Scholar 
    Froy, H., Walling, C. A., Pemberton, J. M., Clutton-brock, T. H. & Kruuk, L. E. B. Relative costs of offspring sex and offspring survival in a polygynous mammal. Biol. Lett. 12, 20160417 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clutton-Brock, T. H., Albon, S. D. & Guinness, F. E. Fitness costs of gestation and lactation in wild mammals. Nature 337, 260–262 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cairns, S. J. & Schwager, S. J. A comparison of association indices. Anim. Behav. 35, 1454–1469 (1987).Article 

    Google Scholar 
    Brent, L. J. N. Friends of friends: are indirect connections in social networks important to animal behaviour? Anim. Behav. 103, 211–222 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Whitehead, H. Analyzing Animal Societies: Quantitative Methods for Vertebrate Social Analysis (Univ. Chicago Press, 2008).Calenge, C. Home range estimation in R: the adehabitatHR package. https://cran.r-project.org/web/packages/adehabitatHR/index.html (2011).Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    Rue, H. & Martino, S. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Stat. Methodol. 71, 319–392 (2009).Article 

    Google Scholar 
    Bakka, H. et al. Spatial modelling with R-INLA: a review. WIREs Comput. Stat. 10, e1443 (2018).Article 

    Google Scholar 
    Lindgren, F., Rue, H. & Lindstrom, J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. B 73, 423–498 (2011).Article 

    Google Scholar  More

  • in

    Glimmers of hope in large carnivore recoveries

    Possingham, H. P. et al. Limits to the use of threatened species lists. Trends Ecol. Evol. 17, 503–507 (2002).Article 

    Google Scholar 
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Knowlton, N. Ocean optimism: Moving beyond the obituaries in marine conservation. Annu. Rev. Mar. Sci. 13, 13 (2021).Article 

    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the anthropocene. Trends Ecol. Evol. 34(4), 369–383 (2019).PubMed 
    Article 

    Google Scholar 
    Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27, 265–271 (2012).PubMed 
    Article 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article 

    Google Scholar 
    Marshall, K. N., Stier, A. C., Samhouri, J. F., Kelly, R. P. & Ward, E. J. Conservation challenges of predator recovery. Conserv. Lett. 9, 70–78 (2016).Article 

    Google Scholar 
    Gregr, E. J. et al. Cascading social-ecological costs and benefits triggered by a recovering keystone predator. Science 368, 1243–1247 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, K. R. et al. The location and protection status of earth’s diminishing marine wilderness. Curr. Biol. 28, 2506-2512.e3 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Nielsen, M. R., Meilby, H., Smith-Hall, C., Pouliot, M. & Treue, T. The importance of wild meat in the global south. Ecol. Econ. 146, 696–705 (2018).Article 

    Google Scholar 
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv. Lett. 12, e12627 (2019).Article 

    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Carrizo, S. F. et al. Freshwater megafauna: Flagships for freshwater biodiversity under threat. Bioscience 67, 919–927 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1783 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Desforges, J.-P. et al. Predicting global killer whale population collapse from PCB pollution. Science 361, 1373–1376 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alava, J. J., Cheung, W. W. L., Ross, P. S. & Sumaila, U. R. Climate change–contaminant interactions in marine food webs: Toward a conceptual framework. Glob. Change Biol. 23, 3984–4001 (2017).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    House, P. H., Clark, B. L. & Allen, L. G. The return of the king of the kelp forest: Distribution, abundance, and biomass of Giant sea bass (Stereolepis gigas) off Santa Catalina Island, California, 2014–2015. Bull. South. Calif. Acad. Sci. 115, 1–14 (2016).
    Google Scholar 
    Waterhouse, L. et al. Recovery of critically endangered Nassau grouper (Epinephelus striatus) in the Cayman Islands following targeted conservation actions. Proc. Natl. Acad. Sci. 117, 1587–1595 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balmford, A. & Knowlton, N. Why Earth Optimism? (American Association for the Advancement of Science, 2017).Book 

    Google Scholar 
    Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).PubMed 
    Article 

    Google Scholar 
    Adams, W. M. & Sandbrook, C. Conservation, evidence and policy. Oryx 47, 329–335 (2013).Article 

    Google Scholar 
    Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl. Acad. Sci. 106, 20641–20645 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1107409108 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).Article 

    Google Scholar 
    Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011).PubMed 
    Article 

    Google Scholar 
    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature https://doi.org/10.1038/s41586-019-1444-4 (2019).Article 
    PubMed 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the anthropocene. Sci. Adv. 6, 7650 (2020).ADS 
    Article 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tom Gelatt (National Marine Mammal Laboratory, A. F. S. C. & Sweeney, K. IUCN red list of threatened species: Eumetopias jubatus. IUCN Red List of Threatened Species. https://www.iucnredlist.org/en (2016).Taylor, M. F. J., Suckling, K. F. & Rachlinski, J. J. The effectiveness of the endangered species act: A quantitative analysis. Bioscience 55, 360–367 (2005).Article 

    Google Scholar 
    Hejny, J. The Trump administration and environmental policy: Reagan redux?. J. Environ. Stud. Sci. 8, 197–211 (2018).Article 

    Google Scholar 
    Sanderson, F. J. et al. Assessing the performance of EU nature legislation in protecting target bird species in an era of climate change. Conserv. Lett. 9, 172–180 (2016).Article 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cuthbert, R. J. et al. Continuing mortality of vultures in India associated with illegal veterinary use of diclofenac and a potential threat from nimesulide. Oryx 50, 104–112 (2016).Article 

    Google Scholar 
    Margalida, A. & Oliva-Vidal, P. The shadow of diclofenac hangs over European vultures. Nat. Ecol. Evol. 1, 1050 (2017).PubMed 
    Article 

    Google Scholar 
    Williams, D. R., Balmford, A. & Wilcove, D. S. The past and future role of conservation science in saving biodiversity. Conserv. Lett. 13, e12720 (2020).Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).Article 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Juffe-Bignoli, D. et al. Protected Planet Report 2014: Tracking Progress Towards Global Targets for Protected Areas (Springer, 2014).
    Google Scholar 
    Turnbull, J. W., Johnston, E. L. & Clark, G. F. Evaluating the social and ecological effectiveness of partially protected marine areas. Conserv. Biol. 35, 921–932 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Redpath, S. M. et al. Don’t forget to look down: Collaborative approaches to predator conservation. Biol. Rev. 92, 2157–2163 (2017).PubMed 
    Article 

    Google Scholar 
    Hazzah, L. et al. Efficacy of two lion conservation programs in Maasailand, Kenya. Conserv. Biol. 28, 851–860 (2014).PubMed 
    Article 

    Google Scholar 
    Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arthington, A. H., Dulvy, N. K., Gladstone, W. & Winfield, I. J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 838–857 (2016).Article 

    Google Scholar 
    Castello, L. & Macedo, M. N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Change Biol. 22, 990–1007 (2016).ADS 
    Article 

    Google Scholar 
    Safford, R. et al. Vulture conservation: The case for urgent action. Bird Conserv. Int. 29, 1–9 (2019).Article 

    Google Scholar 
    Ogada, D. et al. Another continental vulture crisis: Africa’s vultures collapsing toward extinction. Conserv. Lett. 9, 89–97 (2016).ADS 
    Article 

    Google Scholar 
    Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).Article 

    Google Scholar 
    Hammerschlag, N. & Gallagher, A. J. Extinction risk and conservation of the earth’s national animal symbols. Bioscience 67, 744–749 (2017).Article 

    Google Scholar 
    Sutherland, W. J., Dicks, L. V., Ockendon, N. & Smith, R. K. What Works in Conservation 2015 (Open Book Publishers, 2015).Book 

    Google Scholar 
    Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finucci, B., Duffy, C. A. J., Francis, M. P., Gibson, C. & Kyne, P. M. The extinction risk of New Zealand chondrichthyans. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 783–797 (2019).Article 

    Google Scholar 
    Creel, S. et al. Questionable policy for large carnivore hunting. Science 350, 1473–1475 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    González, L. M. et al. Causes and spatio-temporal variations of non-natural mortality in the Vulnerable Spanish imperial eagle Aquila adalberti during a recovery period. Oryx 41, 495–502 (2007).Article 

    Google Scholar 
    Morandini, V., de Benito, E., Newton, I. & Ferrer, M. Natural expansion versus translocation in a previously human-persecuted bird of prey. Ecol. Evol. 7, 3682–3688 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goodrich, J. M. et al. Panthera tigris, Tiger. IUCN Red List Threat. Species (2015).Wikramanayake, E. et al. A landscape-based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).Article 

    Google Scholar 
    Bhattarai, B. R., Wright, W., Morgan, D., Cook, S. & Baral, H. S. Managing human-tiger conflict: Lessons from Bardia and Chitwan National Parks, Nepal. Eur. J. Wildl. Res. 65, 34 (2019).Article 

    Google Scholar 
    Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Courchamp, F. et al. The paradoxical extinction of the most charismatic animals. PLoS Biol. 16, e2003997 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).Article 

    Google Scholar 
    Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–578 (2016).PubMed 
    Article 

    Google Scholar 
    Guerra, A. S. Wolves of the sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Das, C. S. Pattern and characterisation of human casualties in Sundarban by tiger attacks, India. Sustain. For. 1, 1–10 (2018).
    Google Scholar 
    Packer, C. et al. Conserving large carnivores: Dollars and fence. Ecol. Lett. 16, 635–641 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dudley, S. F. J. A comparison of the shark control programs of New South Wales and Queensland (Australia) and KwaZulu-Natal (South Africa). Ocean Coast. Manag. 34, 1–27 (1997).Article 

    Google Scholar 
    O’Connell, C. P., Andreotti, S., Rutzen, M., Meӱer, M. & Matthee, C. A. Testing the exclusion capabilities and durability of the Sharksafe Barrier to determine its viability as an eco-friendly alternative to current shark culling methodologies. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 252–258 (2018).Article 

    Google Scholar 
    Gailey, G. et al. Effects of sea ice on growth rates of an endangered population of gray whales. Sci. Rep. 10, 1553 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, 3001 (2018).ADS 
    Article 

    Google Scholar 
    Ingeman, K. E., Samhouri, J. F. & Stier, A. C. Ocean recoveries for tomorrow’s Earth: Hitting a moving target. Science 363, 6425 (2019).Article 

    Google Scholar 
    Sánchez-Hernández, J. & Amundsen, P.-A. Ecosystem type shapes trophic position and omnivory in fishes. Fish Fish. 19, 1003–1015 (2018).Article 

    Google Scholar 
    Gainsbury, A. M., Tallowin, O. J. S. & Meiri, S. An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation. Mammal Rev. 48, 160–167 (2018).Article 

    Google Scholar 
    Faurby, S. et al. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).PubMed 
    Article 

    Google Scholar 
    Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN red list for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 
    Article 

    Google Scholar  More

  • in

    Bushmeat in Brazil

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Quantifying research waste in ecology

    Ioannidis, J. P. A., Fanelli, D., Dunne, D. D. & Goodman, S. N. Meta-research: evaluation and improvement of research methods and practices. PLoS Biol. 13, e1002264 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hampton, S. E. et al. The Tao of open science for ecology. Ecosphere 6, art120 (2015).Article 

    Google Scholar 
    Rothstein, H. R., Sutton, A. J. & Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments (John Wiley & Sons, 2005).Sutton, A. J. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) 435–452 (Russell Sage Foundation, 2009).Nakagawa, S., Koricheva, J., Macleod, M. & Viechtbauer, W. Introducing our series: research synthesis and meta-research in biology. BMC Biol. 18, 20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakagawa, S. et al. A new ecosystem for evidence synthesis. Nat. Ecol. Evol. 4, 498–501 (2020).PubMed 
    Article 

    Google Scholar 
    Coolidge, H. J. & Lord, R. H. in Archibald Cary Coolidge: Life and Letters 308 (Houghton Mifflin Harcourt, 1932).Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).Article 

    Google Scholar 
    Touchon, J. C. & McCoy, M. W. The mismatch between current statistical practice and doctoral training in ecology. Ecosphere 7, e01394 (2016).Article 

    Google Scholar 
    Begley, C. G. & Ellis, L. M. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aarts, A. A. et al. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).Article 
    CAS 

    Google Scholar 
    Camerer, C. F. et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2, 637–644 (2018).PubMed 
    Article 

    Google Scholar 
    Fraser, H., Parker, T., Nakagawa, S., Barnett, A. & Fidler, F. Questionable research practices in ecology and evolution. PLoS ONE 13, e0200303 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Culina, A., van den Berg, I., Evans, S. & Sánchez-Tójar, A. Low availability of code in ecology: a call for urgent action. PLoS Biol. 18, e3000763 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. Publication bias in ecology and evolution: an empirical assessment using the ‘trim and fill’ method. Biol. Rev. Camb. Philos. Soc. 77, 211–222 (2002).PubMed 
    Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behavior. Behav. Ecol. 14, 438–445 (2003).Article 

    Google Scholar 
    Cassey, P., Ewen, J. G., Blackburn, T. M. & Møller, A. P. A survey of publication bias within evolutionary ecology. Proc. Biol. Sci. 271, S451–S454 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kardish, M. R. et al. Blind trust in unblinded observation in ecology, evolution, and behavior. Front. Ecol. Evol. 3, 51 (2015).Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. Relationships fade with time: a meta-analysis of temporal trends in publication in ecology and evolution. Proc. Biol. Sci. 269, 43–48 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chalmers, I. & Glasziou, P. Avoidable waste in the production and reporting of research evidence. Lancet 374, 86–89 (2009).PubMed 
    Article 

    Google Scholar 
    Altman, D. G. The scandal of poor medical research. BMJ 308, 283–284 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glasziou, P. & Chalmers, I. Is 85% of health research really ‘wasted’? BMJ Opinion (14 January 2016).Glasziou, P. & Chalmers, I. Research waste is still a scandal. BMJ 363, k4645 (2018).Article 

    Google Scholar 
    Chalmers, I. et al. How to increase value and reduce waste when research priorities are set. Lancet 383, 156–165 (2014).PubMed 
    Article 

    Google Scholar 
    Kunin, W. E. Robust evidence of declines in insect abundance and biodiversity. Nature 574, 641–642 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christie, A. P. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat. Commun. 11, 6377 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, H. A. et al. Finding our way: on the sharing and reuse of animal telemetry data in Australasia. Sci. Total Environ. 534, 79–84 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koricheva, J. Non-significant results in ecology: a burden or a blessing in disguise? Oikos 102, 397–401 (2003).Article 

    Google Scholar 
    Bennett, L. T. & Adams, M. A. Assessment of ecological effects due to forest harvesting: approaches and statistical issues. J. Appl. Ecol. 41, 585–598 (2004).Article 

    Google Scholar 
    Duval, S. & Tweedie, R. A nonparametric ‘trim and fill’ method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 95, 89–98 (2012).
    Google Scholar 
    Brlík, V. et al. Weak effects of geolocators on small birds: a meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 89, 207–220 (2020).PubMed 
    Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behaviour. Behav. Ecol. 14, 438–445 (2003).Article 

    Google Scholar 
    Culina, A., Purgar, M. & Klanjscek, T. Datasets and codes for Purgar et al. 2022: quantifying research waste in ecology. Zenodo https://zenodo.org/record/6566100#.YrLWB-zMIqs (2022).Ferguson, C. et al. Europe PMC in 2020. Nucleic Acids Res. 49, D1507–D1514 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, C.-K. et al. Meta-Research: Evaluating the impact of open access policies on research institutions. eLife 9, e57067 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross-Hellauer, T. Open science, done wrong, will compound inequities. Nature 603, 363 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, A. C. et al. Assessing the effect of article processing charges on the geographic diversity of authors using Elsevier’s ‘Mirror journal’ system. Quant. Sci. Stud. 2, 1123–1143 (2021).Article 

    Google Scholar 
    Christie, A. P. et al. Reducing publication delay to improve the efficiency and impact of conservation science. PeerJ 9, e12245 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Desjardins-Proulx, P. et al. The case for open preprints in biology. PLoS Biol. 11, e1001563 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Dea, R. E. et al. Towards open, reliable, and transparent ecology and evolutionary biology. BMC Biol. 19, 68 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Culina, A. et al. Navigating the unfolding open data landscape in ecology and evolution. Nat. Ecol. Evol. 2, 420–426 (2018).PubMed 
    Article 

    Google Scholar 
    Culina, A., Crowther, T. W., Ramakers, J. J. C., Gienapp, P. & Visser, M. E. How to do meta-analysis of open datasets. Nat. Ecol. Evol. 2, 1053–1056 (2018).PubMed 
    Article 

    Google Scholar 
    Roche, D. G., Kruuk, L. E. B., Lanfear, R. & Binning, S. A. Public data archiving in ecology and evolution: how well are we doing? PLoS Biol. 13, e1002295 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Grainger, M. J., Bolam, F. C., Stewart, G. B. & Nilsen, E. B. Evidence synthesis for tackling research waste. Nat. Ecol. Evol. 4, 495–497 (2020).PubMed 
    Article 

    Google Scholar 
    Nørgaard, B. et al. Systematic reviews are rarely used to inform study design—a systematic review and meta-analysis. J. Clin. Epidemiol. 145, 1–13 (2022).PubMed 
    Article 

    Google Scholar 
    Webb, J. A. et al. Weaving common threads in environmental causal assessment methods: toward an ideal method for rapid evidence synthesis. Freshw. Sci. 36, 250–256 (2017).Article 

    Google Scholar 
    Collins, A., Coughlin, D., Miller, J. & Kirk, S. The Production of Quick Scoping Reviews and Rapid Evidence Assessments: A How to Guide (Joint Water Evidence Group, 2015).Carrick, J. et al. Is planting trees the solution to reducing flood risks? J. Flood Risk Manag. 12, e12484 (2019).Article 

    Google Scholar 
    Nuñez, M. A. & Amano, T. Monolingual searches can limit and bias results in global literature reviews. Nat. Ecol. Evol. 5, 264 (2021).PubMed 
    Article 

    Google Scholar 
    Morrison, A. et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int. J. Technol. Assess. Health Care 28, 138–144 (2012).PubMed 
    Article 

    Google Scholar 
    Wu, T., Li, Y., Bian, Z., Liu, G. & Moher, D. Randomized trials published in some Chinese journals: how many are randomized? Trials 10, 46 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorobeichik, E. L. & Kozlov, M. V. Impact of point polluters on terrestrial ecosystems: methodology of research, experimental design, and typical errors. Russ. J. Ecol. 43, 89–96 (2012).Article 

    Google Scholar 
    Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).PubMed 
    Article 

    Google Scholar 
    Transforming Our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).MacCoun, R. & Perlmutter, S. Blind analysis: hide results to seek the truth. Nature 526, 187–189 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, T. H. et al. Transparency in ecology and evolution: real problems, real solutions. Trends Ecol. Evol. 31, 711–719 (2016).PubMed 
    Article 

    Google Scholar 
    Announcement: reducing our irreproducibility. Nature 496, 398 (2013).Moher, D. et al. Increasing value and reducing waste in biomedical research: who’s listening? Lancet 387, 1573–1586 (2016).PubMed 
    Article 

    Google Scholar 
    Smaldino, P. E. & McElreath, R. The natural selection of bad science. R. Soc. Open Sci. 3, 160384 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vrieze, J. Landmark research integrity survey finds questionable practices are surprisingly common. ScienceInsider https://www.sciencemag.org/news/2021/07/landmark-research-integrity-survey-finds-questionable-practices-are-surprisingly-common (2021).Woolston, C. Impact factor abandoned by Dutch university in hiring and promotion decisions. Nature 595, 462 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Directorate-General for Research and Innovation (European Commission). Towards a Reform of the Research Assessment System. Scoping Report (Publications Office, 2021).Athena Research & Innovation Center, Directorate-General for Research and Innovation (European Commission), PPMI, UNU-MERIT. Monitoring the Open Access Policy of Horizon 2020. Final report (European Commission, 2021).Kwon, D. University of California and Elsevier forge open-access deal. TheScientist https://www.the-scientist.com/news-opinion/university-of-california-and-elsevier-forge-open-access-deal–68557 (2021).Vines, T. H. et al. Mandated data archiving greatly improves access to research data. FASEB J. 27, 1304–1308 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    NPQIP Collaborative Group. Did a change in Nature journals’ editorial policy for life sciences research improve reporting? BMJ Open Sci. 3, e000035 (2019).Article 

    Google Scholar 
    Glasziou, P. et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet 383, 267–276 (2014).PubMed 
    Article 

    Google Scholar 
    Fecher, B. & Friesike, S. in Opening Science: the Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (eds Bartling, S. & Friesike, S.) 17–47 (Springer International Publishing, 2014).Hardwicke, T. E. et al. Calibrating the scientific ecosystem through meta-research. Annu. Rev. Stat. Appl. 7, 11–37 (2020).Article 

    Google Scholar 
    McKiernan, E. C. et al. How open science helps researchers succeed. eLife 5, e16800 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fidler, F. et al. Metaresearch for evaluating reproducibility in ecology and evolution. Bioscience 67, 282–289 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).Article 

    Google Scholar 
    Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R. & Thomason, N. Impact of criticism of null-hypothesis significance testing on statistical reporting practices in conservation biology. Conserv. Biol. 20, 1539–1544 (2006).PubMed 
    Article 

    Google Scholar 
    Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).PubMed 
    Article 

    Google Scholar 
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshw. Biol. 60, 410–425 (2015).Article 

    Google Scholar 
    Haddaway, N. R., Styles, D. & Pullin, A. S. Evidence on the environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map. Environ. Evid. 3, 17 (2014).Article 

    Google Scholar 
    Heffner, R. A., Butler, M. J. & Reilly, C. K. Pseudoreplication revisited. Ecology 77, 2558–2562 (1996).Article 

    Google Scholar 
    Holman, L., Head, M. L., Lanfear, R. & Jennions, M. D. Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol. 13, e1002190 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hurlbert, S. H. & White, M. D. Experiments with freshwater invertebrate zooplanktivores: quality of statistical analyses. Bull. Mar. Sci. 53, 128–153 (1993).
    Google Scholar 
    Johnson, W. T.3rd & Freeberg, T. M. Pseudoreplication in use of predator stimuli in experiments on antipredator responses. Anim. Behav. 119, 161–164 (2016).Article 

    Google Scholar 
    Kozlov, M. V. Pseudoreplication in ecological research: the problem overlooked by Russian scientists. Zh. Obshch. Biol. 64, 292–307 (2003).CAS 
    PubMed 

    Google Scholar 
    Kozlov, M. V. Plant studies on fluctuating asymmetry in Russia: mythology and methodology. Russ. J. Ecol. 48, 1–9 (2017).Article 

    Google Scholar 
    McDonald, S., Cresswell, T., Hassell, K. & Keough, M. Experimental design and statistical analysis in aquatic live animal radiotracing studies: a systematic review. Crit. Rev. Environ. Sci. Technol. 52, 2772–2801 (2021).Article 

    Google Scholar 
    Møller, A. P., Thornhill, R. & Gangestad, S. W. Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim. Behav. 70, 497–506 (2005).Article 

    Google Scholar 
    Mrosovsky, N. & Godfrey, M. H. The path from grey literature to Red Lists. Endang. Species Res. 6, 185–191 (2008).
    Google Scholar 
    O’Brien, C., van Riper, C.3rd & Myers, D. E. Making reliable decisions in the study of wildlife diseases: using hypothesis tests, statistical power, and observed effects. J. Wildl. Dis. 45, 700–712 (2009).PubMed 
    Article 

    Google Scholar 
    Parker, T. H. What do we really know about the signalling role of plumage colour in blue tits? A case study of impediments to progress in evolutionary biology. Biol. Rev. Camb. Philos. Soc. 88, 511–536 (2013).PubMed 
    Article 

    Google Scholar 
    Ramage, B. S. et al. Pseudoreplication in tropical forests and the resulting effects on biodiversity conservation. Conserv. Biol. 27, 364–372 (2013).PubMed 
    Article 

    Google Scholar 
    Sallabanks, R., Arnett, E. B. & Marzluff, J. M. An evaluation of research on the effects of timber harvest on bird populations. Wildl. Soc. Bull. 28, 1144–1155 (2000).
    Google Scholar 
    Sánchez-Tójar, A. et al. Meta-analysis challenges a textbook example of status signalling and demonstrates publication bias. eLife 7, e37385 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waller, B., Warmelink, L., Liebal, K., Micheletta, J. & Slocombe, K. Pseudoreplication: a widespread problem in primate communication research. Anim. Behav. 86, 483–488 (2013).Article 

    Google Scholar 
    Van Wilgenburg, E. & Elgar, M. A. Confirmation bias in studies of nestmate recognition: a cautionary note for research into the behaviour of animals. PLoS ONE 8, e53548 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoccoz, N. G. Use, overuse, and misuse of significance tests in evolutionary biology and ecology. Bull. Ecol. Soc. Am. 72, 106–111 (1991).
    Google Scholar 
    Zaitsev, A. S., Gongalsky, K. B., Malmström, A., Persson, T. & Bengtsson, J. Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol. 98, 261–271 (2016).Article 

    Google Scholar 
    Zvereva, E. L. & Kozlov, M. V. Biases in studies of spatial patterns in insect herbivory. Ecol. Monogr. 89, e01361 (2019).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (RStudio, 2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar  More