Predicting suitable habitats of Melia azedarach L. in China using data mining
Chen, L. et al. Geographic variation in traits of fruit stones and seeds of Melia azedarach. J. Beijing For. Univ. 36, 15–20 (2014).CAS
Google Scholar
Angamuthu, D., Purushothaman, I., Kothandan, S. & Swaminathan, R. Antiviral study on Punica granatum L., Momordica charantia L., Andrographis paniculata Nees, and Melia azedarach L., to human herpes virus-3. Eur. J. Integr. Med. 28, 98–108. https://doi.org/10.1016/j.eujim.2019.04.008 (2019).Article
Google Scholar
Wang, N. et al. Selective ERK1/2 agonists isolated from Melia azedarach with potent anti-leukemic activity. BMC Cancer 19, 1–9. https://doi.org/10.1186/s12885-019-5914-8 (2019).CAS
Article
Google Scholar
Khoshraftar, Z., Safekordi, A., Shamel, A. & Zaefizadeh, M. Evaluation of insecticidal activity of nanoformulation of Melia azedarach (leaf) extract as a safe environmental insecticide. Int. J. Environ. Sci. Technol. 17, 1159–1170. https://doi.org/10.1007/s13762-019-02448-7 (2020).CAS
Article
Google Scholar
Sivaraj, I., Nithaniyal, S., Bhooma, V., Senthilkumar, U. & Parani, M. Species delimitation of Melia dubia Cav. from Melia azedarach L. complex based on DNA barcoding. Botany 96, 329–336. https://doi.org/10.1139/cjb-2017-0148 (2018).CAS
Article
Google Scholar
Liao, B. et al. Population structure and genetic relationships of Melia Taxa in China assayed with sequence-related amplified polymorphism (SRAP) markers. Forests 7, 81. https://doi.org/10.3390/f7040081 (2016).Article
Google Scholar
Wu, L., Kaewmano, A., Fu, P., Wang, W. & Fan, Z. Intra-annual radial growth of Melia azedarach in a tropical moist seasonal forest and its response to environmental factors in Xishuangbanna Southwest China. Acta Ecol. Sin. 40, 6831–6840. https://doi.org/10.5846/stxb202003120508 (2020).Article
Google Scholar
Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 C. Science 365, eaaw6974. https://doi.org/10.1126/science.aaw6974 (2019).CAS
Article
PubMed
Google Scholar
López-Tirado, J., Vessella, F., Schirone, B. & Hidalgo, P. J. Trends in evergreen oak suitability from assembled species distribution models: Assessing climate change in south-western Europe. New For. 49, 471–487. https://doi.org/10.1007/s11056-018-9629-5 (2018).Article
Google Scholar
Xu, Y. et al. Modelling the effects of climate change on the distribution of endangered Cypripedium japonicum in China. Forests 12, 429. https://doi.org/10.3390/f12040429 (2021).Article
Google Scholar
Booth, T. H. Species distribution modelling tools and databases to assist managing forests under climate change. For. Ecol. Manag. 430, 196–203. https://doi.org/10.1016/j.foreco.2018.08.019 (2018).Article
Google Scholar
Dyderski, M. K., Paź, S., Frelich, L. E. & Jagodziński, A. M. How much does climate change threaten European forest tree species distributions?. Glob. Change Biol. 24, 1150–1163. https://doi.org/10.1111/gcb.13925 (2018).ADS
Article
Google Scholar
Zhong, Y. et al. A generalized linear mixed model approach to assess emerald ash Borer diffusion. ISPRS Int. J. Geo Inf. 9, 414. https://doi.org/10.3390/ijgi9070414 (2020).Article
Google Scholar
Chang, Z., Meng, J., Shi, Y. & Mo, F. Lnc RNA recognition by fusing multiple features and its function prediction. CAAI Trans. Intell. Syst. 13, 928–934. https://doi.org/10.11992/tis.201806008 (2018).Article
Google Scholar
Shiferaw, H., Bewket, W. & Eckert, S. Performances of machine learning algorithms for mapping fractional cover of an invasive plant species in a dryland ecosystem. Ecol. Evol. 9, 2562–2574. https://doi.org/10.1002/ece3.4919 (2019).Article
PubMed
PubMed Central
Google Scholar
Tang, X., Yuan, Y., Li, X. & Zhang, J. Maximum entropy modeling to predict the impact of climate change on pine wilt disease in China. Front. Plant Sci. 12, 764. https://doi.org/10.3389/fpls.2021.652500 (2021).Article
Google Scholar
Chhogyel, N., Kumar, L., Bajgai, Y. & Jayasinghe, L. S. Prediction of Bhutan’s ecological distribution of rice (Oryza sativa L.) under the impact of climate change through maximum entropy modelling. J. Agric. Sci. 158, 25–37. https://doi.org/10.1017/S0021859620000350 (2020).Article
Google Scholar
Ahmad, Z. et al. Melia Azedarach impregnated Co and Ni zero-valent metal nanoparticles for organic pollutants degradation: Validation of experiments through statistical analysis. J. Mater. Sci. Mater. Electron. 31, 16938–16950. https://doi.org/10.1007/s10854-020-04250-5 (2020).CAS
Article
Google Scholar
Hijmans, R. J., Huaccho, L. & Zhang, D. In I International Conference on Sweetpotato. Food and Health for the Future 583, 41–49.Luo, M., Wang, H. & Lyu, Z. Evaluating the performance of species distribution models Biomod2 and MaxEnt using the giant panda distribution data. J. Appl. Ecol. 28, 4001–4006. https://doi.org/10.13287/j.1001-9332.201712.011 (2017).Article
Google Scholar
Wang, T., Wang, G., Innes, J. L., Seely, B. & Chen, B. ClimateAP: An application for dynamic local downscaling of historical and future climate data in Asia Pacific. Front. Agric. Sci. Eng. 4, 448–458. https://doi.org/10.15302/J-FASE-2017172 (2017).CAS
Article
Google Scholar
Yang, X.-Q., Kushwaha, S., Saran, S., Xu, J. & Roy, P. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L Lesser Himalayan foothills. Ecol. Eng. 51, 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004 (2013).CAS
Article
Google Scholar
Pepe, M. S., Cai, T. & Longton, G. Combining predictors for classification using the area under the receiver operating characteristic curve. Biometrics 62, 221–229. https://doi.org/10.1111/j.1541-0420.2005.00420.x (2006).MathSciNet
Article
PubMed
MATH
Google Scholar
McHugh, M. L. Interrater reliability: The kappa statistic. Biochem. Med. 22, 276–282. https://hrcak.srce.hr/89395 (2012).Article
Google Scholar
Lu, C. Y., Gu, W., Dai, A. H. & Wei, H. Y. Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China. Ecol. Model. 242, 105–115. https://doi.org/10.1016/j.ecolmodel.2012.06.002 (2012).Article
Google Scholar
Zhang, L. et al. The basic principle of random forest and its applications in ecology: A case study of Pinus yunnanensis. Acta Ecol. Sin. 34, 650–659. https://doi.org/10.5846/stxb201306031292 (2014).Article
Google Scholar
Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576. https://doi.org/10.1111/j.1472-4642.2009.00567.x (2009).Article
Google Scholar
Akpoti, K., Kabo-Bah, A. T., Dossou-Yovo, E. R., Groen, T. A. & Zwart, S. J. Mapping suitability for rice production in inland valley landscapes in Benin and Togo using environmental niche modeling. Sci. Total Environ. 709, 136165. https://doi.org/10.1016/j.scitotenv.2019.136165 (2020).ADS
CAS
Article
PubMed
Google Scholar
Dutra Silva, L., de Brito, A. E., Vieira Reis, F., Bento Elias, R. & Silva, L. Limitations of species distribution models based on available climate change data: a case study in the Azorean forest. Forests 10, 575. https://doi.org/10.3390/f10070575 (2019).Article
Google Scholar
Lin, H. Y. et al. Climate-based approach for modeling the distribution of montane forest vegetation in Taiwan. Appl. Veg. Sci. 23, 239–253. https://doi.org/10.1111/avsc.12485 (2020).Article
Google Scholar
Zhang, L. et al. Consensus forecasting of species distributions: The effects of niche model performance and niche properties. PLoS ONE 10, e0120056. https://doi.org/10.1371/journal.pone.0120056 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang, H. The optimality of naive Bayes. Am. Assoc. Artif. Intell. 1, 3 (2004).
Google Scholar
Wang, Q., Nguyen, T.-T., Huang, J. Z. & Nguyen, T. T. An efficient random forests algorithm for high dimensional data classification. Adv. Data Anal. Classif. 12, 953–972. https://doi.org/10.1007/s11634-018-0318-1 (2018).MathSciNet
Article
MATH
Google Scholar
Zheng-tao, Y., Bin, D., Bo, H., Lu, H. & Jian-yi, G. Word sense disambiguation based on bayes model and information gain. Proc. Int. J. Adv. Sci. Technol. 2, 153–157. https://doi.org/10.1109/FGCN.2008.188 (2009).Article
Google Scholar
Yu, B. et al. SubMito-XGBoost: Predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting. Bioinformatics 36, 1074–1081. https://doi.org/10.1093/bioinformatics/btz734 (2020).CAS
Article
PubMed
Google Scholar
Hailu, B. T., Siljander, M., Maeda, E. E. & Pellikka, P. Assessing spatial distribution of Coffea arabica L. in Ethiopia’s highlands using species distribution models and geospatial analysis methods. Ecol. Inf. 42, 79–89. https://doi.org/10.1016/j.ecoinf.2017.10.001 (2017).Article
Google Scholar
Ramirez-Reyes, C. et al. Embracing ensemble species distribution models to inform at-risk species status assessments. J. Fish Wildl. Manag. 12, 98–111. https://doi.org/10.3996/JFWM-20-072 (2021).Article
Google Scholar
Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773. https://doi.org/10.1111/j.1472-4642.2008.00482.x (2008).Article
Google Scholar
Feng, L., Sun, J., Shi, Y., Wang, G. & Wang, T. Predicting suitable habitats of camptotheca acuminata considering both climatic and soil variables. Forests 11, 891. https://doi.org/10.3390/f11080891 (2020).Article
Google Scholar
Wang, T., Campbell, E. M., O’Neill, G. A. & Aitken, S. N. Projecting future distributions of ecosystem climate niches: Uncertainties and management applications. For. Ecol. Manag. 279, 128–140. https://doi.org/10.1016/j.foreco.2012.05.034 (2012).Article
Google Scholar
Wang, T., Hamann, A., Spittlehouse, D. L. & Murdock, T. Q. ClimateWNA—high-resolution spatial climate data for western North America. J. Appl. Meteorol. Climatol. 51, 16–29. https://doi.org/10.1175/JAMC-D-11-043.1 (2012).ADS
Article
Google Scholar
Feng, L. et al. Predicting suitable habitats of ginkgo biloba L. fruit forests in China. Clim. Risk Manag. 34, 100364. https://doi.org/10.1016/j.crm.2021.100364 (2021).Article
Google Scholar
Wang, T., Hamann, A., Spittlehouse, D. & Carroll, C. Locally downscaled and spatially customizable climate data for historical and future periods for North America. PLoS ONE 11, e0156720. https://doi.org/10.1371/journal.pone.0156720 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
Guo, Y. et al. Spatial prediction and delineation of Ginkgo biloba production areas under current and future climatic conditions. Ind. Crops Prod. 166, 113444. https://doi.org/10.1016/j.indcrop.2021.113444 (2021).Article
Google Scholar
Jiao, C., Lan, G., Sun, Y., Wang, G. & Sun, Y. Dopamine alleviates chilling stress in watermelon seedlings via modulation of proline content, antioxidant enzyme activity, and polyamine metabolism. J. Plant Growth Regul. 40, 2. https://doi.org/10.1007/s00344-020-10096-2 (2021).CAS
Article
Google Scholar
Thakur, S., Thakur, I. & Sankanur, M. Assessment of genetic diversity in drek (Melia azedarach) using molecular markers. J. Tree Sci. 36, 78–85. https://doi.org/10.5958/2455-7129.2017.00011.5 (2017).Article
Google Scholar
Sivasubramaniam, K. et al. Seed priming: Triumphs and tribulations. The Madras Agricultural Journal 98, 197–209. https://www.researchgate.net/publication/267298497 (2011).
Google Scholar
Xu, L. et al. Effect of salt stress on growth and physiology in Melia azedarach seedlings of six provenances. Int. J. Agric. Biol. 20, 471–480. https://doi.org/10.17957/IJAB/15.0618 (2018).CAS
Article
Google Scholar
Lenoir, J., Gégout, J.-C., Marquet, P., De Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science. 320, 1768–1771. https://doi.org/10.1126/science.1156831 (2008).ADS
CAS
Article
PubMed
Google Scholar
Ou-Yang, C.-F. et al. Impact of equatorial and continental airflow on primary greenhouse gases in the northern South China Sea. Environ. Res. Lett. 10, 065005. https://doi.org/10.1088/1748-9326/10/6/065005 (2015).ADS
CAS
Article
Google Scholar
Liu, B., Zhu, C., Su, J., Ma, S. & Xu, K. Record-breaking northward shift of the western North Pacific subtropical high in July 2018. J. Meteorol. Soc. Japan. 97, 913–925. https://doi.org/10.2151/jmsj.2019-047 (2019).ADS
Article
Google Scholar
Huang, J. et al. Dryland climate change: Recent progress and challenges. Rev. Geophys. 55, 719–778. https://doi.org/10.1002/2016RG000550 (2017).ADS
Article
Google Scholar
Thuiller, W., Lavorel, S., Araújo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. 102, 8245–8250. https://doi.org/10.1073/pnas.0409902102 (2005).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Waldvogel, A. M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18. https://doi.org/10.1002/evl3.154 (2020).Article
PubMed
PubMed Central
Google Scholar
Vilà-Cabrera, A., Coll, L., Martínez-Vilalta, J. & Retana, J. Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. For. Ecol. Manag. 407, 16–22. https://doi.org/10.1016/j.foreco.2017.10.021 (2018).Article
Google Scholar
He, X., Li, J., Wang, F., Zhang, J. & Chen, X. Variation and selection of Melia azedarach provenances and families. J. Northeast For. Univ. 47, 1–7. https://doi.org/10.13332/j.1000-1522.20170321 (2019).CAS
Article
Google Scholar
Smith, A. B., Alsdurf, J., Knapp, M., Baer, S. G. & Johnson, L. C. Phenotypic distribution models corroborate species distribution models: A shift in the role and prevalence of a dominant prairie grass in response to climate change. Glob. Change Biol. 23, 4365–4375. https://doi.org/10.1111/gcb.13666 (2017).Article
Google Scholar
Bellon, M. R., Dulloo, E., Sardos, J., Thormann, I. & Burdon, J. J. In situ conservation—harnessing natural and human-derived evolutionary forces to ensure future crop adaptation. Evol. Appl. 10, 965–977. https://doi.org/10.1111/eva.12521 (2017).Article
PubMed
PubMed Central
Google Scholar
Bidak, L. M., Heneidy, S. Z., Halmy, M. W. A. & El-Kenany, E. T. Sustainability potential for Ginkgo biloba L. plantations under climate change uncertainty: An ex-situ conservation perspective. Acta Ecol. Sin. 42, 101–114. https://doi.org/10.1016/j.chnaes.2021.09.012 (2021).Article
Google Scholar
Qin, F., Liu, S. & Yu, S. Effects of allelopathy and competition for water and nutrients on survival and growth of tree species in Eucalyptus urophylla plantations. For. Ecol. Manag. 424, 387–395. https://doi.org/10.1016/j.foreco.2018.05.017 (2018).Article
Google Scholar
Zabel, F. et al. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 10, 1–10. https://doi.org/10.1038/s41467-019-10775-z (2019).ADS
CAS
Article
Google Scholar More