More stories

  • in

    Harnessing the microbiome to prevent global biodiversity loss

    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 461, 472–475 (2009).Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sweet, M., Burian, A. & Bulling, M. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. J. Invertebr. Pathol. 186, 107538 (2021).PubMed 
    Article 

    Google Scholar 
    Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).PubMed 
    Article 

    Google Scholar 
    Doering, T. et al. Towards enhancing coral heat tolerance: a ‘microbiome transplantation’ treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santos, H. F. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).Article 
    CAS 

    Google Scholar 
    Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoyt, J. R. et al. Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Sci. Rep. 9, 9158 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).PubMed 
    Article 

    Google Scholar 
    Daisley, B. A. et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun. Biol. 3, 534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Powell, J. E., Carver, Z., Leonard, S. P. & Moran, N. A. Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiol. Spectr. 9, e0010321 (2021).PubMed 
    Article 

    Google Scholar 
    Borges, D., Guzman-Novoa, E. & Goodwin, P. H. Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms 9, 481 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daisley, B. A. et al. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 14, 476–491 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trinder, M. et al. Probiotic Lactobacillus rhamnosus reduces organophosphate pesticide absorption and toxicity to Drosophila melanogaster. Appl. Environ. Microbiol. 82, 6204–6213 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge. (International Coral Reef Society, Future Earth Coasts, 2021).Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).PubMed 
    Article 

    Google Scholar 
    Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).PubMed 
    Article 

    Google Scholar 
    Wilkins, L. G. E. et al. Host-associated microbiomes and their roles in marine ecosystem functions. PLoS Biol. 17, e3000533 (2019).Humphreys, C. P. et al. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat. Commun. 1, 103 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Koskella, B. & Bergelson, J. The study of host-microbiome (co)evolution across levels of selection. Phil. Trans. R. Soc. Lond. B 375, 20190604 (2020).Article 

    Google Scholar 
    Keller-Costa, T. et al. Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome 9, 72 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).PubMed 
    Article 

    Google Scholar 
    Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).Article 

    Google Scholar 
    Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024–1033 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Balbín-Suárez, A. et al. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol. Ecol. 97, fiab031 (2021).Erlacher, A., Cardinale, M., Grosch, R., Grube, M. & Berg, G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front. Microbiol. 5, 175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shahi, F., Redeker, K. & Chong, J. Rethinking antimicrobial stewardship paradigms in the context of the gut microbiome. JAC Antimicrob. Resist. 1, dlz015 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020).PubMed 
    Article 

    Google Scholar 
    McBurney, M. I. et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr. 149, 1882–1895 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).Article 

    Google Scholar 
    Woodhams, D. C. et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75, 1049–1062 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Voyles, J. et al. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359, 1517–1519 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peixoto, R. S., Harkins, D. M. & Nelson, K. E. Advances in microbiome research for animal health. Annu. Rev. Anim. Biosci. 9, 289–311 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blanck, H. & Wängberg, S.-Å. Induced community tolerance in marine periphyton established under arsenate stress. Can. J. Fish. Aquat. Sci. 45, 1816–1819 (1988).Article 

    Google Scholar 
    French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).PubMed 
    Article 

    Google Scholar 
    Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    De Schryver, P. & Vadstein, O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8, 2360–2368 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonnenschein, E. C., Jimenez, G., Castex, M. & Gram, L. The Roseobacter-group bacterium Phaeobacter as a safe probiotic solution for aquaculture. Appl. Environ. Microbiol. 87, e0258120 (2021).PubMed 
    Article 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).Quraishi, M. N. et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46, 479–493 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freedman, S. B. et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N. Engl. J. Med. 379, 2015–2026 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabana, M. D. et al. Early probiotic supplementation for eczema and asthma prevention: a randomized controlled trial. Pediatrics 140, e20163000 (2017).Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Alvise, P. W. et al. Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS ONE 7, e43996 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dittmann, K. K. et al. Changes in the microbiome of mariculture feed organisms after treatment with a potentially probiotic strain of Phaeobacter inhibens. Appl. Environ. Microbiol. 86, e00499-20 (2020).Metchnikoff, E. The Prolongation of Life: Optimistic Studies (Heinemann, 1907).Khanna, S., Jones, C., Jones, L., Bushman, F. & Bailey, A. Increased microbial diversity found in successful versus unsuccessful recipients of a next-generation FMT for recurrent Clostridium difficile infection. Open Forum Infect. Dis 5, 304–309(2015).Kachrimanidou, M. & Tsintarakis, E. Insights into the role of human gut microbiota in Clostridioides difficile infection. Microorganisms 8, 200 (2020).Aggarwala, V. et al. Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nat. Microbiol. 6, 1309–1318 (2021).Zachow, C., Müller, H., Tilcher, R., Donat, C. & Berg, G. Catch the best: novel screening strategy to select stress protecting agents for crop plants. Agronomy 3, 794–815 (2013).Article 
    CAS 

    Google Scholar 
    Berg, G., Kusstatscher, P., Abdelfattah, A., Cernava, T. & Smalla, K. Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Front. Microbiol. 12, 650610 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ehlers, R.-U. in Regulation of Biological Control Agents (ed. Ehlers, R.-U.) 3–23 (Springer Netherlands, 2011).CDC. V-Safe After Vaccination Health Checker https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafe.html (2022).Bok, K., Sitar, S., Graham, B. S. & Mascola, J. R. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 54, 1636–1651 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vestal, R. Fecal microbiota transplant. Hosp. Med. Clin. 5, 58–70 (2016).Article 

    Google Scholar 
    Jansen, J. W. Fecal microbiota transplant vs oral vancomycin taper: important undiscussed limitations. Clin. Infect. Dis. 64, 1292–1293 (2017).PubMed 
    Article 

    Google Scholar 
    Basson, A. R., Zhou, Y., Seo, B., Rodriguez-Palacios, A. & Cominelli, F. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl. Res. 226, 1–11 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).PubMed 
    Article 

    Google Scholar 
    Slatko, B. E., Luck, A. N., Dobson, S. L. & Foster, J. M. Wolbachia endosymbionts and human disease control. Mol. Biochem. Parasitol. 195, 88–95 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahantarig, A. & Kittayapong, P. Endosymbiotic Wolbachia bacteria as biological control tools of disease vectors and pests. J. Appl. Entomol. 135, 479–486 (2011).Article 

    Google Scholar 
    Turner, J. et al. Extreme temperatures in the Antarctic. J. Clim. 34, 2653–2668 (2021).Article 

    Google Scholar 
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).Article 

    Google Scholar 
    Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. Ecol. Manage. 259, 685–697 (2010).Article 

    Google Scholar 
    Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittebole, X., De Roock, S. & Opal, S. M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5, 226–235 (2014).PubMed 
    Article 

    Google Scholar 
    Sieiro, C. et al. A hundred years of bacteriophages: can phages replace antibiotics in agriculture and aquaculture? Antibiotics 9, 493 (2020).Rulkens, W. Increasing the environmental sustainability of sewage treatment by mitigating pollutant pathways. Environ. Eng. Sci. 23, 650–665 (2006).Obotey Ezugbe, E. & Rathilal, S. Membrane technologies in wastewater treatment: a review. Membranes 10, 89 (2020).Lee, C. S., Robinson, J. & Chong, M. F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92, 489–508 (2014).Guo, W.-Q., Yang, S.-S., Xiang, W.-S., Wang, X.-J. & Ren, N.-Q. Minimization of excess sludge production by in-situ activated sludge treatment processes–a comprehensive review. Biotechnol. Adv. 31, 1386–1396 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meiling, S. S. et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front. Mar. Sci. 8, 670829 (2021).Hunt, P. R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 37, 50–59 (2017).Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K. & Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci. Total Environ. 763, 143038 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Microbiota Vault. A Vault for Humanity https://www.microbiotavault.org/ (2021).Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria (FAO, WHO, 2001).Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).PubMed 
    Article 

    Google Scholar 
    Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).PubMed 
    Article 

    Google Scholar 
    Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, A. et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9, e0085921 (2021).PubMed 
    Article 

    Google Scholar 
    Bagga, D. et al. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 9, 486–496 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patel, R. M. & Underwood, M. A. Probiotics and necrotizing enterocolitis. Semin. Pediatr. Surg. 27, 39–46 (2018).PubMed 
    Article 

    Google Scholar 
    Tobias, J. et al. Bifidobacterium longum subsp. infantis EVC001 administration is associated with a significant reduction in the incidence of necrotizing enterocolitis in very low birth weight infants. J. Pediatr. https://doi.org/10.1016/j.jpeds.2021.12.070 (2022).Koziol, L. et al. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. Bioscience 68, 996–1006 (2018).Article 

    Google Scholar 
    Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).PubMed 
    Article 

    Google Scholar 
    Evensen, Ø. & Leong, J.-A. C. DNA vaccines against viral diseases of farmed fish. Fish. Shellfish Immunol. 35, 1751–1758 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burridge, L., Weis, J. S., Cabello, F., Pizarro, J. & Bostick, K. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306, 7–23 (2010).CAS 
    Article 

    Google Scholar 
    Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J. & Gibson, L. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274, 1–14 (2008).Article 

    Google Scholar 
    Irianto, A. & Austin, B. Probiotics in aquaculture. J. Fish. Dis. 25, 633–642 (2002).Article 

    Google Scholar 
    Assefa, A. & Abunna, F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int. 2018, 5432497 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hoseinifar, S. H., Sun, Y.-Z., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Castex, M., Leclercq, E., Lemaire, P. & Chim, L. Dietary probiotic Pediococcus acidilactici MA18/5M improves the growth, feed performance and antioxidant status of penaeid shrimp Litopenaeus stylirostris: a growth-ration-size approach. Animals 11, 3451 (2021).Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol. 28, 1010–1021 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chmiel, J. A., Daisley, B. A., Burton, J. P. & Reid, G. Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. Mbio 10, e01395-19 (2019).Daisley, B. A. et al. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model. Appl. Environ. Microbiol. 84, e02820-17 (2018).Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature 568, 387–390 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. Bioessays 43, e2100068 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).PubMed 
    Article 

    Google Scholar 
    Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgans, C. A., Hung, J. Y. & Bourne, D. G. Symbiodiniaceae probiotics for use in bleaching recovery. Restoration 28, 282–288 (2020).Zhang, Y. et al. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol. 21, 130 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Assis, J. M. et al. Delivering beneficial microorganisms for corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, G. et al. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification. Sci. Rep. 6, 35971 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    VanCompernolle, S. E. et al. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J. Virol. 79, 11598–11606 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harris, R. N., Lauer, A., Simon, M. A., Banning, J. L. & Alford, R. A. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis. Aquat. Organ. 83, 11–16 (2009).PubMed 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jin Song, S. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).CAS 
    Article 

    Google Scholar 
    Küng, D. et al. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS ONE 9, e87101 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Micalizzi, E. W. & Smith, M. L. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can. J. Microbiol. 66, 593–599 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gabriel, K. T., Joseph Sexton, D. & Cornelison, C. T. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens. J. Appl. Microbiol. 124, 1024–1031 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Woodhams, D. C., Bletz, M., Kueneman, J. & McKenzie, V. Managing amphibian disease with skin microbiota. Trends Microbiol. 24, 161–164 (2016).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Seed choice in ground beetles is driven by surface-derived hydrocarbons

    Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40, 45–44 (2015).Article 

    Google Scholar 
    Zalucki, M., Furlong, M. J., Schellhorn, N. A., Macfadyen, S. & Davies, A. P. Assessing the impact of natural enemies in agroecosystems: toward “real” IPM or in quest of Holy Grail? Insect. Sci. 22, 1–5 (2015).PubMed 
    Article 

    Google Scholar 
    Van Lenteren, J. C., Bolckmans, K., Kohl, J., Ravensberg, W. J. & Urabaneja, A. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63, 39–59 (2018).Article 

    Google Scholar 
    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biological control agents. Annu. Rev. Entomol. 47, 561–594 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B. 273, 1715–1727 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Nouhuys, S., Niemikapee, S. & Hanski, I. Variation in a host-parasitoid interaction across independent populations. Insects 3, 1236–1256 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hedlund, K., Vet, L. E. M. & Dicke, M. Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos 77, 390–398 (1996).Article 

    Google Scholar 
    Evans, E. W., Stevenson, A. T. & Richards, D. R. Essential versus alternative foods of insect predators: benefits of a mixed diet. Oelcologia 121, 107–112 (1999).Article 

    Google Scholar 
    Lovei, G. L. & Sunderland, K. M. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41, 231–256 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kromp, B. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyt. Environ. 74, 187–228 (1999).Article 

    Google Scholar 
    Tuf, H., Dedek, P. & Vesley, M. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature, or habitat? Arch. Biol. Sci. 64, 721–732 (2012).Article 

    Google Scholar 
    Firlej, A., Doyon, J., Harwood, J. D. & Brodeur, J. A multi-approach study to delineate interaction between carabid beetles and soybean aphids. Environ. Entomol. 42, 89–96 (2013).PubMed 
    Article 

    Google Scholar 
    Clark, M. S., Luna, J. M., Stone, N. D. & Youngman, R. R. Generalist predator consumption of armyworm (Lepidoptera: Noctuidae) and effect of predator removal and damage in no-till corn. Environ. Entomol. 23, 617–622 (1994).Article 

    Google Scholar 
    Floate, K. D., Doane, J. F. & Gillot, C. Carabid predators of the wheat midge (Diptera: Cecidomyiidae) in Saskatchewan. Environ. Entomol. 19, 1503–1511 (1990).Article 

    Google Scholar 
    Barsics, F., Haubruge, E. & Verheggen, F. J. Wireworms’ management: an overview of the existing methods, with particular regards to Agriotis spp. (Coleoptera: Elateridae). Insects 4, 117–152 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oberholzer, F., Escher, N. & Frank, T. The potential of carabid beetles (Coleoptera) to reduce slug damage to oilseed rape in the laboratory. Eur. J. Entomol. 100, 81–85 (2003).Article 

    Google Scholar 
    Honek, A., Martinkova, Z. & Jarosik, V. Ground beetles Carabidae as seed predators. Eur. J. Entomol. 100, 531–544 (2003).Article 

    Google Scholar 
    Lundgren, J. G. Relationship of Natural Enemies and Non-prey Foods 1–460 (Springer, 2009).Carbonne, B. et al. The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey. Sci. Rep. 10, 1935 (2020).Article 
    CAS 

    Google Scholar 
    Wilder, S. M., Norris, M., Lee, R. W., Raubenheimer, D. & Simpson, S. J. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16, 895–902 (2013).PubMed 
    Article 

    Google Scholar 
    Denno, R. F. & Fagan, W. F. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84, 2522–2531 (2003).Article 

    Google Scholar 
    Saska, P. & Jarosik, V. Laboratory study of larval food requirements in nine species of Amara (Coleoptera: Carabidae). Plant Prot. 37, 103–110 (2001).
    Google Scholar 
    Saska, P., Van der Werf, W. & Westerman, P. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of weed seed predation. Bull. Entomological Res. 98, 169–181 (2008).CAS 
    Article 

    Google Scholar 
    Talarico, F., Giglio, A., Pizzolotto, R. & Brandmayr, P. P. A synthesis of the feeding habits and reproductive rhythms in Italian seed feeding ground beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 325–336 (2016).Article 

    Google Scholar 
    Fawki, S., Bak, S. S. & Toft, S. Food preference and food value for the carabid beetles Pterostichus melanarius, P. versicolor, and Carabus nemoralis. Eur. Carabidol. 114, 99–109 (2003).
    Google Scholar 
    Frei, B., Guenay, Y., Bohan, B. A., Traugett, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across central Europe. J. Plant Sci. 92, 935–942 (2019).
    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. Brassicaceous weed seed predation by ground beetles (Coleoptera: Carabidae). Weed. Sci. 64, 294–302 (2016).Article 

    Google Scholar 
    Saska, P., Honek, A., Foffova, H. & Martinkova, Z. Burial-induced changes in the seed preferences of carabid beetles (Coleoptera: Carabidae). Eur. J. Entomol. 116, 113–140 (2019).Article 

    Google Scholar 
    Saska, P., Honek, A. & Martinkova, Z. Preference of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 65, 57–76 (2019).Article 

    Google Scholar 
    Sih, A. & Christensen, B. Optimal diet theory: when does it work, and when and why does it fail? Anim. Behav. 61, 379–390 (2001).Article 

    Google Scholar 
    Barron, A. B., Gurney, K. N., Meah, L. F. S., Vasilaki, E. & Marshall, J. A. R. Decision-making and action selection in insects: inspiration from vertebrate-based theories. Front. Behav. Neurosci. 9, 216 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: a review. Weed. Sci. 63, 355–376 (2015).Article 

    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. Seed detection and discrimination by ground beetles (Coleoptera: Carabidae) are associated with olfactory cues. PLoS One 12, e0170593 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Law, J. J. & Gallagher, R. S. The role of imbibition on seed selection by Harpalus pensylvanicus. Appl. Soil. Ecol. 87, 118–124 (2015).Article 

    Google Scholar 
    Davis, A. S., Schutte, B. J., Iannuzzi, J. & Renner, K. A. Chemical and physical defenses of weed seeds in relation to soil seedbank persistence. Weed Sci. 56, 676–684 (2008).CAS 
    Article 

    Google Scholar 
    Ali, K. A. & Willneborg., C. J. C. J. The biology of seed discrimination and its role in shaping the foraging ecology of carabids: a review. Ecol. Evol. 11, 13702–13722 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wheater, C. P. Prey detection by some predatory Coleoptera (Carabidae and Staphylinidae). J. Zool. 215, 171–185 (1989).Article 

    Google Scholar 
    Mundy, C. A., Aleen-Williams, L. J., Underwood, N. & Warrington, S. Prey selection and foraging behavior by Pterostichus cupreus L. (Col., Carabidae) under laboratory conditions. J. Appl. Entomol. 124, 349–358 (2000).Article 

    Google Scholar 
    Kielty, J. P., Allen-Williams, L. J., Underwood, N. & Eastwood, E. A. Behavioral responses of three species of ground beetles (Carabidae: Coloeptera) to olfactory cues associated with prey and habitat. J. Insect. Behav. 9, 237–249 (1996).Article 

    Google Scholar 
    Tréfás, H., Canning, H., McKinlay, R. G., Armstrong, G. & Bujaki, G. Preliminary experiments on the olfactory responses of Pterostichus melanarius Illiger (Coleoptera:Carabidae) to intact plants. Agric. Entomol. 3, 71–76 (2001).Article 

    Google Scholar 
    McKemey, A. R., Symondson, W. O. C. & Glen, D. M. Predation and prey size choice by the carabid Pterostichus melanarius (Coleoptera: Carabidae): the dangers of extrapolating from laboratory to field. Bull. Entomol. Res. 93, 227–234 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas, R. S., Glen, D. M. & Symondson, W. O. C. Prey detection through olfaction by the soil-dwelling larvae of the carabid predator Pterostichus melanarius. Soil Biol. Biochem. 40, 207–216 (2008).CAS 
    Article 

    Google Scholar 
    Talarico, F. et al. Electrophysiological and behavioral analyses on prey selecting in the myrmecophagous carabid beetle Siagona europaea Dejean 1826 (Coleoptera: Carabidae). Etho. Ecol. Evol. 22, 375–384 (2010).Article 

    Google Scholar 
    Dessaint, F., Chadoeuf, R. & Barrales, G. Spatial pattern analysis of weed seeds in the cultivated soil seed bank. J. Appl. Ecol. 28, 721–730 (1991).Article 

    Google Scholar 
    Oster, M., Smith, L., Beck, J. J., Howard, A. & Field, C. B. Orientational behavior of predaceous ground beetle species in response to volatile emissions identified from yellow starthistle damaged by an invasive slug. Arthropod-Plant. Inte. 8, 429–437 (2014).Article 

    Google Scholar 
    Srinivasan, M. V., Poteser, M. & Karl, K. Motion detection in insect orientation and navigation. Vis. Res. 39, 2749–2766 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sato, K. & Touhara, K. Insect olfaction: receptors, signal transduction, and behavior. Cell 47, 121–138 (2009).CAS 

    Google Scholar 
    Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Ann. Rev. Entomol. 58, 373–391 (2013).CAS 
    Article 

    Google Scholar 
    Schmidt, H. R. & Benton, R. Molecular mechanisms of olfactory detection in insects: beyond receptors. Open Biol. 10, 200252 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prokopy, R. J. & Owens, E. D. Visual detection of plants by herbivorous insects. Ann. Rev. Entomol. 28, 337–364 (1983).Article 

    Google Scholar 
    Ploomi, A. et al. Antennal sensilla in ground beetles (Coleoptera: Carabidae). Agron. Res. 1, 221–228 (2003).
    Google Scholar 
    Merivee, E. et al. Electrophysiological responses from neurons of antennal taste sensilla in the polyphagous predatory ground beetle Pterostichus oblongopunctatus (Fabricius 1787) to plant sugars and amin acids. J. Insect. Physiol. 54, 1213–1219 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Merivee, E., Ploomi, A., Luik, A., Rahi, M. & Smmelselg, V. Antennal sensilla of the ground beetle Platynus dorsalis (Pontoppidan, 1763) (Coleoptera: Carabidae). Micros. Res. Tech. 55, 339–349 (2001).CAS 
    Article 

    Google Scholar 
    Merivee, E. et al. Antennal sensilla of the ground beetle Bembidion properans Steph. (Coleoptera: Carabidae). Micron 33, 429–440 (2002).PubMed 
    Article 

    Google Scholar 
    Giglio, A., Perotta, E., Talarico, F., Brandmayr, T. E. & Ferrera, E. A. Sensilla on the maxillary and labial palps in a helicophagous ground beetle larva (Coleoptera: Carabidae). Acta Zool. 200, 1463–6393 (2013).
    Google Scholar 
    Van Naters, W. V. D. G. & Carlson, J. R. J. R. Receptors and neurons for fly odors in Drosophila. Curr. Biol. 17, 606–612 (2007).Article 
    CAS 

    Google Scholar 
    Amrein, H. & Throne, N. Gustatory perception and behavior in Dropsophila melanogaster. Curr. Biol. 15, R673–R684 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Su, C. Y., Menuz, K. & Carlson, J. R. Olfactory perception: receptors, cells, and circuits. Cell 139, 45–59 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krieger, J. & Breer, H. Olfactory receptors in invertebrates. Science 286, 720–723 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapman, R. F. The Insects: Structure and Function 4th edn, 1–584 (Cambridge University Press, 1998).Bhandari, S. R., Jo, J. S. & Lee, J. G. Comparisons of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20, 15827–15841 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reifenrath, K., Riederer, M. & Muller, M. Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol. Exp. Appl. 115, 41–50 (2005).CAS 
    Article 

    Google Scholar 
    Stadler, E. & Reifenrath, K. Glucosinolates on the leaf surface perceived by insect herbivores: review of ambiguous results and new investigations. Phytoch. Rev. 8, 207–225 (2009).Article 
    CAS 

    Google Scholar 
    Sharma, A., Sandhi, R. K. & Reddy, G. V. P. A review of interactions between insect biological control agents and semiochemicals. Insects 10, 439 (2019).PubMed Central 
    Article 

    Google Scholar 
    Warwick, S. I., Francis, A. & Susko, D. J. The biology of Canadian weeds. 9. Thlaspi arvense L. (updated). Can. J. Plant. Sci. 82, 803–823 (2002).Article 

    Google Scholar 
    Moyna, P. & Garcia, M. Chemical composition of oat seed epicuticular lipids. J. Sci. Food Agric. 34, 209–211 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kunst, L. & Samuels, A. L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51–80 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eigenbrode, S. D. & Espelie, K. E. Effects of plants epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40, 171–194 (1995).Article 

    Google Scholar 
    Finch, S. Volatile plant chemicals and their effect on host plant by the cabbage root fly (Delia brassicae). Entomol. Exp. Appl. 24, 350–359 (1978).CAS 
    Article 

    Google Scholar 
    Udayagiri, S. & Mason, C. E. Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. J. Chem. Ecol. 23, 1675–1687 (1997).CAS 
    Article 

    Google Scholar 
    Adati, T. & Matsuda, K. The effect of leaf surface wax on feeding of the strawberry leaf beetle, Galerucella vittaticollis, with reference to host plant preference. Tohoku. J. Agric. Res. 50, 57–61 (2000).
    Google Scholar 
    Damon, S. J., Groves, R. L. & Harvey, M. J. Variation for epicuticular waxes on onion foliage and impacts on numbers of onion thrips. J. Am. Soc. Hortic. Sci. 139, 495–501 (2014).CAS 
    Article 

    Google Scholar 
    Braccini, C. L., Vega, A. S., Chludil, H. D., Leicach, S. R. & Fernandez, P. C. Host selection, oviposition behavior and leaf traits in a specialist willow sawfly on species of Salix (Salicaceae). Ecol. Entomol. 38, 617–626 (2013).Article 

    Google Scholar 
    Wojcicka, A. Effects of epicuticular waxes from triticale on the feeding behaviour and mortality of the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). J. Plant. Prot. Res. 56, 39–44 (2016).CAS 
    Article 

    Google Scholar 
    Medina, E. et al. Taxonomic significance of the epicuticular wax composition in species of genus Clusia from Panama. Biochem. Syst. Ecol. 34, 319–326 (2006).CAS 
    Article 

    Google Scholar 
    Schulz-Bohm, K., Martin-Sanchez, L. & Garbeva, P. Microbial volatiles: small molecules with an inter-kingdom interactions. Front. Microbiol. 8, 2484 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ali, K. A. Mechanisms of Seed Discrimination and Selective Seed Foraging in Carabid Weed Seed Predators. https://harvest.usask.ca/bitstream/handle/10388/13815/ALI-DISSERTATION-2022.pdf?sequence=1&isAllowed=y (2022).Webster, B., Qvarfordt, E., Olsson, U. & Glinwood, R. Different roles for innate and learnt behavioral responses to odors in insect host location. Behav. Ecol. 24, 366–372 (2013).Article 

    Google Scholar 
    Luff, M. L. Adult and larval feeding habits of Pterostichus madidus (F.) (Carabidae: Coleoptera). J. Nat. Hist. 8, 403–409 (1974).Article 

    Google Scholar 
    Blubaugh, C. K. & Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 64, 80–86 (2016).Article 

    Google Scholar 
    Blubaugh, C. K., Hagler, J. R., Machtley, S. A. & Kaplan, I. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric. Ecosyst. Environ. 231, 264–270 (2016).Article 

    Google Scholar 
    Foffova, H. et al. Which seed properties determine the preferences of carabid beetles seed predators? Insects 11, 757 (2020).Petit, S., Boursault, A. & Bohan, D. A. Weed seed choice by carabid beetles (Coleoptera: Carabidae): linking field measurements and laboratory diet assessments. Eur. J. Entomol. 111, 615–620 (2014).Article 

    Google Scholar 
    Carbonne, B. et al. Direct and indirect effects of landscape and field management intensity on carabids through trophic resources and weeds. J. Appl. Ecol. 59, 176–187 (2022).Article 

    Google Scholar 
    Foffova, H., Bohan, D. A. & Saska, P. Do properties and species of weed seeds affect their consumption by carabid beetles? Acta Zool. Acad. Sci. Hung. 66, 37–48 (2020b).Article 

    Google Scholar 
    De Heij, S. E. & Willenborg, C. J. Connected carabids: network interactions and their impact on biocontrol by carabid beetles. Bioscience 70, 90–500 (2020).Article 

    Google Scholar 
    Honek, A., Martinkova, Z., Saska, P. & Pekar, S. Size and taxonomic constraints determine seed preference of Carabidae (Coleoptera). Basic Appl. Ecol. 8, 343–353 (2007).Article 

    Google Scholar 
    Spence, J. R. & Niemela, J. K. Sampling carabid assemblages with pitfall traps: the madness and the method. Can. Entomol. 126, 881–884 (1994).Article 

    Google Scholar 
    Lindroth, C. H. The Ground Beetles (Carabidae, excluding Cicindelinae) of Canada and Alaska. Supplement 20, 24, 29, 33, 34, 35. Part I, pages I–XLVIII, 1969. Part II, pages 1–200, 1961. Part III, pages 201–408, 1963. Part IV, pages 409–648, 1966. Part V, pages 649–944, 1968. Part VI, pages 945–1192 (Opusca Entomology, 1961–1969).White, S. S., Renner, K. A., Menalled, F. D. & Landis, D. A. Feeding preferences of weed seed predators and effect on weed emergence. Weed. Sci. 55, 606–612 (2007).CAS 
    Article 

    Google Scholar 
    Glinwood, R., Ahmed, E., Ovarfordt, E. & Ninkovic, V. Olfactory learning of plant genotypes by a polyphagous predator. Oecologia 166, 637–647 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sablon, L., Dickens, J. C., Haubruge, E. H. & Verhggen., F. J. Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and potential for alternative control methods. Insects 4, 31–54 (2013).Article 

    Google Scholar 
    Zhang, L., Li, H. & Zhang, L. Two olfactory pathways to detect aldehydes on locust mouthpart. Int. J. Biol. Sci. 13, 759–771 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pekar, S. & Hruskova, M. M. How granivorous Coreus marginatus (Hemiptera: Cereidae) recognizes its food. Acta Ethol. 9, 26–30 (2006).Article 

    Google Scholar 
    Ardenghi, N., Mulch, A., Pross, J. & Niedermeyer, E. M. Leaf wax n-alkane extraction: an optimized procedure. Org. Geochem. 113, 283–292 (2017).CAS 
    Article 

    Google Scholar 
    Takahashi, S. & Gassa, A. Roles of cuticular hydrocarbons in intra- and interspecific recognition behavior of two Rhinotermitidae species. J. Chem. Ecol. 21, 1837–1845 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Nobre, J. S. & Singer, J. D. M. Residual analysis for linear mixed models. Biom. J. 49, 863–875 (2007).PubMed 
    Article 

    Google Scholar 
    Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).Article 

    Google Scholar  More

  • in

    Mapping peat thickness and carbon stocks of the central Congo Basin using field data

    Field-data collectionFieldwork was conducted in DRC between January 2018 and March 2020. Ten transects (4–11 km long) were installed, identical to the approach in ref. 9, in locations that were highly likely to be peatland. These were selected to help test hypotheses about the role of vegetation, surface wetness, nutrient status and topography in peat accumulation (Fig. 1a and Supplementary Table 1). A further eight transects (0.5–3 km long) were installed to assess our peat mapping capabilities (Fig. 1a and Supplementary Table 1).Every 250 m along each transect, land cover was classified as one of six classes: water, savannah, terra firme forest, non-peat-forming seasonally inundated forest, hardwood-dominated peat swamp forest or palm-dominated peat swamp forest. Peat swamp forest was classified as palm dominated when >50% of the canopy, estimated by eye, was palms (commonly Raphia laurentii or Raphia sese). In addition, several ground-truth points were collected at locations in the vicinity of each transect from the clearly identifiable land-cover classes water, savannah and terra firme forest.Peat presence/absence was recorded every 250 m along all transects, and peat thickness (if present) was measured by inserting metal poles into the ground until the poles were prevented from going any further by the underlying mineral layer, identical to the pole method of ref. 9. In addition, a core of the full peat profile was extracted every kilometre along the ten hypothesis-testing transects, if peat was present, with a Russian-type corer (52 mm stainless steel Eijkelkamp model); these 63 cores were sealed in plastic for laboratory analysis.Peat-thickness laboratory measurementsPeat was defined as having an organic matter (OM) content of ≥65% and a thickness of ≥0.3 m (sensu ref. 9). Therefore, down-core OM content of all 63 cores was analysed to measure peat thickness. The organic matter content of each 0.1-m-thick peat sample was estimated via loss on ignition (LOI), whereby samples were heated at 550 °C for 4 h. The mass fraction lost after heating was used as an estimate of total OM content (% of mass). Peat thickness was defined as the deepest 0.1 m with OM ≥ 65%, after which there is a transition to mineral soil. Samples below this depth were excluded from further analysis. Rare mineral intrusions into the peat layer above this depth, where OM 4× the mean Cook’s distance were excluded as influential outliers. Mean pole-method offset was significantly higher along the DRC transects (0.94 m) than along those in ROC (0.48 m; P  More

  • in

    Farm size affects the use of agroecological practices on organic farms in the United States

    Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 4, 1150–1152 (2020).PubMed 
    Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).Article 

    Google Scholar 
    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).Article 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Krebs, A. V. The Corporate Reapers: The Book of Agribusiness (Essential Books, 1992).Mortensen, D. A. & Smith, R. G. Confronting barriers to cropping system diversification. Front. Sustain. Food Syst. 4, 564197 (2020).Article 

    Google Scholar 
    2017 Census of Agriculture – 2019 Organic Survey (USDA NASS, 2020); https://www.nass.usda.gov/Publications/AgCensus/2017/index.phpFarms and Land in Farms 2019 Summary (USDA NASS, 2020); https://usda.library.cornell.edu/concern/publications/5712m6524Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).PubMed 
    Article 

    Google Scholar 
    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seufert, V. & Ramankutty, N. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    USDA AMS. National Organic Program; Final Rule, 7 CFR Part 205. Fed. Regist. 65, 80547–80684 (2000).
    Google Scholar 
    Wezel, A. et al. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 29, 503–515 (2009).Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).PubMed 
    Article 

    Google Scholar 
    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed 
    Article 

    Google Scholar 
    Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).
    Google Scholar 
    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Article 

    Google Scholar 
    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).PubMed 
    Article 

    Google Scholar 
    Faucon, M.-P., Houben, D. & Lambers, H. Plant functional traits: soil and ecosystem services. Trends Plant Sci. 22, 385–394 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Hose, T. et al. The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Appl. Soil Ecol. 75, 189–198 (2014).Article 

    Google Scholar 
    Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).CAS 
    Article 

    Google Scholar 
    Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).Article 

    Google Scholar 
    Willekens, K., Vandecasteele, B., Buchan, D. & De Neve, S. Soil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping system. Appl. Soil Ecol. 82, 61–71 (2014).Article 

    Google Scholar 
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212 (2013).Article 

    Google Scholar 
    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 

    Google Scholar 
    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A. & Eitzel, M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J. Environ. Qual. 39, 76–84 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eyhorn, F. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).Article 

    Google Scholar 
    Buck, D., Getz, C. & Guthman, J. From farm to table: the organic vegetable commodity chain of northern California. Sociol. Rural. 37, 3–20 (1997).Article 

    Google Scholar 
    Guthman, J. Raising organic: an agro-ecological assessment of grower practices in California. Agric. Hum. Values 17, 257–266 (2000).Article 

    Google Scholar 
    Guthman, J. The trouble with ‘organic lite’ in California: a rejoinder to the ‘conventionalisation’ debate. Sociol. Rural. 44, 301–316 (2004).Article 

    Google Scholar 
    Darnhofer, I., Lindenthal, T., Bartel-Kratochvil, R. & Zollitsch, W. Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review. Agron. Sustain. Dev. 30, 67–81 (2010).Article 

    Google Scholar 
    Constance, D. H., Choi, J. Y. & Lyke-Ho-Gland, H. Conventionalization, bifurcation, and quality of life: certified and non-certified organic farmers in Texas. J. Rural Soc. Sci. 23, 208–234 (2008).
    Google Scholar 
    2017 Census of Agriculture – United States Summary and State Data (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.php2017 Census of Agriculture: Characteristics of All Farms and Farms with Organic Sales (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.phpPonisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20 (2014).Article 

    Google Scholar 
    Gomiero, T., Pimentel, D. & Paoletti, M. G. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011).Article 

    Google Scholar 
    Tittonell, P. et al. Agroecology in large scale farming—a research agenda. Front. Sustain. Food Syst. 4, 584605 (2020).Article 

    Google Scholar 
    Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).PubMed 
    Article 

    Google Scholar 
    Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).PubMed 
    Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 

    Google Scholar 
    Olimpi, E. M. et al. Evolving food safety pressures in California’s central coast region. Front. Sustain. Food Syst. 3, 102 (2019).Article 

    Google Scholar 
    Karp, D. S. et al. The unintended ecological and social impacts of food safety regulations in California’s central coast region. BioScience 65, 1173–1183 (2015).Article 

    Google Scholar 
    Bovay, J., Ferrier, P. & Zhen, C. Estimated Costs for Fruit and Vegetable Producers To Comply With the Food Safety Modernization Act’s Produce Rule, EIB-195 (U.S. Department of Agriculture, Economic Research Service, 2018).Coombes, B. & Campbell, H. Dependent reproduction of alternative modes of agriculture: organic farming in New Zealand. Sociol. Rural. 38, 127–145 (1998).Article 

    Google Scholar 
    Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J. & Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 6, 94–110 (2007).Article 

    Google Scholar 
    Smith, E. & Marsden, T. Exploring the ‘limits to growth’ in UK organics: beyond the statistical image. J. Rural Stud. 20, 345–357 (2004).Article 

    Google Scholar 
    Howard, P. H. Concentration and Power in the Food System: Who Controls What We Eat? (Bloomsbury, 2016).Arcuri, A. The transformation of organic regulation: the ambiguous effects of publicization. Regul. Gov. 9, 144–159 (2015).Article 

    Google Scholar 
    Seufert, V., Ramankutty, N. & Mayerhofer, T. What is this thing called organic? – How organic farming is codified in regulations. Food Policy 68, 10–20 (2017).Article 

    Google Scholar 
    Guthman, J. in Alternative Food Politics: From the Margins to the Mainstream (eds. Phillipov, M. & Kirkwood, K.) 23–36 (Routledge, 2019).Jaffee, D. & Howard, P. H. Corporate cooptation of organic and fair trade standards. Agric. Hum. Values 27, 387–399 (2010).Article 

    Google Scholar 
    Campbell, H. & Rosin, C. After the ‘organic industrial complex’: an ontological expedition through commercial organic agriculture in New Zealand. J. Rural Stud. 27, 350–361 (2011).Article 

    Google Scholar 
    Lockie, S. & Halpin, D. The ‘conventionalisation’ thesis reconsidered: structural and ideological transformation of Australian organic agriculture. Sociol. Rural. 45, 284–307 (2005).Article 

    Google Scholar 
    Prokopy, L. S. et al. Adoption of agricultural conservation practices in the United States: evidence from 35 years of quantitative literature. J. Soil Water Conserv. 74, 520–534 (2019).Article 

    Google Scholar 
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).Article 

    Google Scholar 
    Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 40, 187–189 (2016).Article 

    Google Scholar 
    Hill, S. B. Redesigning the food system for sustainability. Alternatives 12, 32–36 (1985).
    Google Scholar 
    Padel, S., Levidow, L. & Pearce, B. UK farmers’ transition pathways towards agroecological farm redesign: evaluating explanatory models. Agroecol. Sustain. Food Syst. 44, 139–163 (2020).Article 

    Google Scholar 
    Esquivel, K. E. et al. The ‘sweet spot’ in the middle: why do mid-scale farms adopt diversification practices at higher rates? Front. Sustain. Food Syst. 5, 734088 (2021).Article 

    Google Scholar 
    Brislen, L. Meeting in the middle: scaling-up and scaling-over in alternative food networks. Cult. Agric. Food Environ. 40, 105–113 (2018).Article 

    Google Scholar 
    De Master, K. New inquiries into the agri-cultures of the middle. Cult. Agric. Food Environ. 40, 130–135 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.7.4-1 https://CRAN.R-project.org/package=emmeans (2021).Wasserstein, R. L. & Lazar, N. A. The ASA statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).Article 

    Google Scholar 
    Krueger, J. I. & Heck, P. R. Putting the P-value in its place. Am. Stat. 73, 122–128 (2019).Article 

    Google Scholar 
    Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond ‘p < 0.05’. Am. Stat. 73(Suppl. 1), 1–19 (2019).Article  Google Scholar  Agresti, A. Categorical Data Analysis (Wiley, 2013). More

  • in

    Wastewater is a robust proxy for monitoring circulating SARS-CoV-2 variants

    Our long-term surveillance of SARS-CoV-2 in Austria demonstrated that WBE alone yields a time-resolved map of the genetic dynamics during a pandemic. Yet one task of pathogenomic surveillance is to link genetic pathogen information with clinical manifestation and the immunological status of patients. WBE is limited in that regard since the available data are anonymized to start with. Nonetheless, WBE provides invaluable population-level guidance on epidemiological developments, which complements case-based surveillance and provides information for optimal resource allocation. This notion can also be transferred to a global perspective. WBE provides a tool to shed light on blind spots of pathogen surveillance in places and communities with poor healthcare accessibility. If carefully set up and used in respectful and coequal terms, WBE of infectious diseases could make an important contribution to global safety.To this end, several challenges must be overcome. Current WBE methods need to be expanded to other pathogens beyond SARS-CoV-2 and validated with case-based epidemiological data. Furthermore, current methods must be adapted and optimized to be applicable in locations without a centralized sewer infrastructure5. Finally, international sharing of wastewater-based pathogen sequencing data will be needed to unleash the full potential of WBE for global pathogen surveillance.We are confident that our study will support initiatives already working in these directions, as well as encouraging intensified efforts to exploit such population-level surveillance approaches in the global fight against infectious diseases.
    Fabian Amman
    1
    & Andreas Bergthaler
    2

    1
    CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria

    2
    Medical University Vienna, Vienna, Austria More

  • in

    Drivers and trends of global soil microbial carbon over two decades

    Predictors of microbial carbon stocksWe used a machine learning modeling approach to predict soil microbial carbon from a set of environmental covariates. To account for stochastic variability, we ran a set of models to assess the importance of environmental factors, which showed that the contribution of each variable to the model fit differed between runs, with some overlap between a number of them (Fig. 2b). Mean annual temperature was always the most important variable, with soil organic carbon and soil pH following. Clay content, precipitation, land-cover type, nitrogen content, and sand content contributed roughly equally to explaining variations in microbial carbon. Finally, NDVI and elevation had the lowest variable importance. Coniferous forests had the highest and most variable predicted values of microbial carbon (Supplementary Figs. 1, 2), which can be explained by high soil organic matter and a thick litter layer26. Tropical forests also had fairly high values of microbial carbon, while shrublands and croplands had the lowest values26. We used partial prediction response curves to evaluate the direction and range of effect of the predictor variables (Supplementary Figs. 1, 2). In agreement with the variable importance measure, variables that scored high often showed strong effects on the predicted microbial carbon values, while variables with a low variable importance score (e.g., elevation, NDVI, and sand content) only showed smaller responses. The only exception was for precipitation, which had a relatively high variable importance, although the response curves only showed a weak effect of precipitation for forests and grasslands, with limited effect on other land-cover types (Supplementary Fig. 2). The importance of precipitation might also indicate that this relationship involves interactions with other variables7,28. Overall, the differences in microbial carbon between land-cover types showed mostly similar patterns across the range of variables. Soil organic carbon and nitrogen content had a positive and mostly linear effect on microbial carbon (Supplementary Fig. 1). In contrast, clay content, soil pH, and mean temperature had non-linear relationships, with high microbial carbon in the low range of these variables and a rapid decrease that reached an asymptote at low microbial carbon values for the higher portion of the range. Soil pH patterns showed a decrease in microbial carbon for values between 4.1 and 5.8, and a constant pattern between 5.8 and 8.6. Contrary to our expectations, we did not find a parabolic effect of soil pH on microbial carbon26. Instead, our model predicted higher values in very acidic soils with a pH below 5.2, which are rare globally and almost only found in central Amazonia. Similarly, locations with a clay content lower than 16.9% had higher values in microbial carbon, and then stabilized until 51.0%.Fig. 2: Microbial carbon stock spatial predictions and temporal trends.a Microbial carbon stock predictions for 2013. b Variable importance from 100 random forest model runs, calculated by the mean decrease in accuracy after variable permutation. Variables were ordered by the median variable importance. SOC soil organic carbon, NDVI normalized difference vegetation index. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. c Relative microbial carbon stocks rate of change in percentage per year.Full size imageMean temperature showed an interesting shift with much higher microbial carbon values with a mean annual temperature below zero, but had otherwise a limited effect on microbial carbon values in the rest of the range above zero up to 28.9 °C. Based on partial predictions (Supplementary Figs. 1–2), microbial carbon decreased monotonically with an increase in temperature (with all other variables fixed to their median), with the relationship being mostly stable for parts of the range. We observed an especially sharp decrease at around 0°C, which is in agreement with the patterns observed in the data. The reason for sites with a mean annual temperature below the freezing point to have higher microbial carbon stocks is not fully understood. This could be due to a regime shift in which microbial communities are in a semi-dormant state for a major part of the year35. Moreover, it could also be in part explained by the soil organic carbon content that follows a similar trend and accumulates in higher latitude soils9, thus promoting higher microbial carbon stocks. Within these cold, high organic carbon soils, large microbial populations can be maintained, due to the low temperature that reduces metabolic requirements35. In contrast, at higher temperatures, metabolic activity increases and requires more resources and nutrients to maintain microorganisms alive. Experimental evidence is divided about the effects of warming on microbial carbon18,36, highlighting the strong context-dependency of this relationship, although global observations show a clear pattern, where low-temperature sites have higher soil microbial carbon stocks. Despite this uncertainty, there is a strong indication that a warming soil would tend to lose organic carbon17,37, and subsequent patterns in microbial carbon can also be expected, because of the dependency on organic substrate9,26,38. These dynamics were observed in Melillo et al.39, where the warming of sites in a mid-latitude forest ecosystem led to a decrease in soil carbon, followed by a decrease in microbial carbon12.Even with predictions being made for each grid location separately, microbial carbon values showed distinctive patterns and transitions over the globe (Fig. 2a). While temporal changes took place, broad spatial patterns were relatively constant over the range of years studied (Supplementary Movie 1). The highest microbial carbon stock values ranging from 1.50 to 7.00 t ha−1 were found at high latitudes in the Northern Hemisphere in areas of coniferous forest. Tropical humid regions also showed high microbial carbon values between 0.50 and 1.50 t ha−1 in the Amazon Rainforest and Central Africa. The main regions with low microbial carbon below 0.30 t ha−1 were in Eastern South America, areas directly south of the Sahara Desert, East Africa, and most of Australia, all of which mostly correspond to shrublands. Cropland areas as seen in India were also predicted with low microbial carbon values ranging from 0.06 to 0.38 t ha−1. A strong latitudinal gradient was visible for North America and Eurasia, with the highest microbial carbon stocks at high latitude, medium values in temperate ecosystems, and decreasing values towards the Equator. Positive coastal effects can also be observed, mostly on the Eastern South American and Australian coasts. In total, we estimated that there is 4.34 Gt of microbial carbon in the 5 to 15 cm layer for the predicted areas. Using the coefficient of variation calculated from the variability assessment set of models, we found that predictions made for the Amazon Basin, Northern Canada, and South-East Russia were more variable than for other regions (Supplementary Fig. 3a). Especially Western Europe, Central North America, and South-East Asia, however, showed high stability in the predictions between model runs.Drivers of changeThe analysis of the rate of change of microbial carbon stocks over time revealed that large regions of the globe experienced important changes in soil microbial carbon stocks between 1992 and 2013, with contrasting patterns across areas, and overall larger regions showed a decrease rather than an increase in microbial carbon stocks (Fig. 2c and Supplementary Fig. 3b). To account for spatial differences in microbial carbon stocks, we calculated the relative rate of change in percentage for each location (Fig. 2c). When considering all predictable regions together, microbial carbon stocks in the 5–15 cm layer showed a decrease of 7.09 Mt per year, summing to 148.80 Mt between 1992 and 2013, or 3.4% of the global microbial carbon pool predicted (Supplementary Fig. 4a; p = 0.038). The main regions with a microbial carbon loss higher than 0.7 kg ha−1 y−1 were in Northern Canada and a large continuous region in North-Eastern Europe. These northern regions accounted for an important part of the global loss in microbial carbon stocks, with large areas that had both a high soil microbial carbon stock and a fast decrease (Figs. 3 and 4). Other areas of high loss were in the Amazon basin, Western Argentina, the USA East Coast, Southern South Africa, and South-East Russia. The main continuous region of microbial carbon increase above 0.7 kg ha−1 y−1 was in central Russia, with smaller regions present in India, Europe, Central North America, and parts of Africa. Besides these general patterns, predictions vary at the local scale, and they consider the effects of parameters including soil properties, elevation, and land-cover type, which change between neighbor locations and affect the observed patterns. This is especially visible in the Americas, where both increases and decreases happen side-by-side.Fig. 3: Status of microbial carbon stocks between 1992 and 2013.Bivariate plot comparing the relative microbial carbon stock rate of change (% per year) with the amount of microbial carbon stock. The status groups were allocated using quantile distributions.Full size imageFig. 4: Distribution and classification of point values from the locations in Fig. 3.The assignment of points into the 9 groups was performed using quantile distributions. Areas in dark red are especially vulnerable to climate and land-cover change.Full size imagePatterns in the relative rate of change have a lot in common with that of absolute change, with a few notable differences (Fig. 2c and Supplementary Fig. 3b). Both positive and negative stock changes in tropical and subtropical regions are more prominent in relative terms, as these regions typically have low microbial carbon stocks. Similarly, regions in Central Russia with high microbial carbon stocks show less decrease in relative terms. To assess how stable these trends are over time, we show the p values of the rate of change for the 22 years (Supplementary Fig. 3c). The largest region with low p values is associated with more significant trends in Western Russia, and corresponds to an area with a fast loss of microbial carbon. India and Central Russia show high p values, and are informative of high variability compared to the strength of the signal. Considering that only up to 22 data points are available for each grid location and that especially climatic conditions vary considerably from year to year, p values are only provided as a complementary assessment. We can summarize the global situation by combining the two maps of microbial carbon stocks and relative rate of change to categorize and define vulnerable locations that experienced a high loss of microbial carbon (Figs. 3 and 4), and where the provision of soil functions is potentially at risk.It is informative to look at regional trends, by grouping grid locations using the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) sub-regions, and assessing regional-scale changes in microbial carbon stocks (Fig. 5, Supplementary Table 1). The main regions that contributed to microbial carbon loss were North America with a decrease of 62.49 Mt of microbial carbon and Eastern Europe with 60.88 Mt over the studied period, although both trends had high yearly variability and were non-significant. The region with the highest increase was North-East Asia with a gain of 4.49 Mt, but this change was also non-significant. The Caribbean was the only region to show a significant increase in soil microbial carbon stocks over time (+2.1% over 22 y, p = 0.017), while significant decreases in stocks were found in North Africa (−4.1%, p  More

  • in

    Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species

    Laxminarayan R, Duse A, Wattal C, Zaidi AKM, Wertheim HFL, Sumpradit N, et al. Antibiotic resistance—the need for global solutions. Lancet Infect Dis. 2013;13:1057–98.PubMed 
    Article 

    Google Scholar 
    Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.CAS 
    Article 

    Google Scholar 
    O’Neil J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. The review on antimicrobial resistance. 2014. https://amr-review.org/sites/default/files/AMRReviewPaper-Tacklingacrisisforthehealthandwealthofnations_1.pdf.Pang Z, Raudonis R, Glick BR, Lin T-J, Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019;37:177–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vandeplassche E, Tavernier S, Coenye T, Crabbé A. Influence of the lung microbiome on antibiotic susceptibility of cystic fibrosis pathogens. Eur Respir Rev. 2019;28:190041.PubMed 
    Article 

    Google Scholar 
    Wheatley R, Diaz Caballero J, Kapel N, de Winter FHR, Jangir P, Quinn A, et al. Rapid evolution and host immunity drive the rise and fall of carbapenem resistance during an acute Pseudomonas aeruginosa infection. Nat Commun. 2021;12:2460.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adamowicz EM, Flynn J, Hunter RC, Harcombe WR. Cross-feeding modulates antibiotic tolerance in bacterial communities. ISME J. 2018;12:2723–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allison DG, Matthews MJ. Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J Appl Bacteriol. 1992;73:484–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beaudoin T, Yau YCW, Stapleton PJ, Gong Y, Wang PW, Guttman DS, et al. Staphylococcus aureus with Pseudomonas aeruginosa biofilm enhances tobramycin resistance. Npj Biofilms Microbiomes. 2017;3:25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bottery MJ, Matthews JL, Wood AJ, Johansen HK, Pitchford JW, Friman V-P. Inter-species interactions alter antibiotic efficacy in bacterial communities. ISME J. 2022;16:812–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Elias S, Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012;36:990–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoffman LR, Deziel E, D’Argenio DA, Lepine F, Emerson J, McNamara S, et al. Selection for Staphylococcus aureus small-colony variants due to growth in the presence of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2006;103:19890–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Molina-Santiago C, Daddaoua A, Fillet S, Duque E, Ramos J-L. Interspecies signalling: Pseudomonas putida efflux pump TtgGHI is activated by indole to increase antibiotic resistance: Antibiotic resistance. Environ Microbiol. 2014;16:1267–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Orazi G, O’Toole GA. Pseudomonas aeruginosa alters Staphylococcus aureus sensitivity to vancomycin in a biofilm model of cystic fibrosis infection. mBio. 2017;8:e00873–17. https://doi.org/10.1128/mBio.00873-17.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perlin MH, Clark DR, McKenzie C, Patel H, Jackson N, Kormanik C, et al. Protection of Salmonella by ampicillin-resistant Escherichia coli in the presence of otherwise lethal drug concentrations. Proc R Soc B Biol Sci. 2009;276:3759–68.CAS 
    Article 

    Google Scholar 
    Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol. 2008;68:75–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sherrard LJ, McGrath SJ, McIlreavey L, Hatch J, Wolfgang MC, Muhlebach MS, et al. Production of extended-spectrum β -lactamases and the potential indirect pathogenic role of Prevotella isolates from the cystic fibrosis respiratory microbiota. Int J Antimicrob Agents. 2016;47:140–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tognon M, Köhler T, Gdaniec BG, Hao Y, Lam JS, Beaume M, et al. Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa. ISME J. 2017;11:2233–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adamowicz EM, Muza M, Chacón JM, Harcombe WR. Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica. PLOS Pathog. 2020;16:e1008700.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bottery MJ, Pitchford JW, Friman V-P. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J. 2021;15:939–48.PubMed 
    Article 

    Google Scholar 
    Estrela S, Brown SP. Community interactions and spatial structure shape selection on antibiotic resistant lineages. PLOS Comput Biol. 2018;14:e1006179.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Klümper U, Recker M, Zhang L, Yin X, Zhang T, Buckling A, et al. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 2019;13:2927–37.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:754.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sorg RA, Lin L, van Doorn GS, Sorg M, Olson J, Nizet V, et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLOS Biol. 2016;14:e2000631.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kulczycki LL, Kostuch M, Bellanti JA. A clinical perspective of cystic fibrosis and new genetic findings: relationship of CFTR mutations to genotype-phenotype manifestations. Am J Med Genet. 2003;116A:262–7.PubMed 
    Article 

    Google Scholar 
    Flume PA, Mogayzel PJ, Robinson KA, Rosenblatt RL, Quittell L, Marshall BC. Cystic fibrosis pulmonary guidelines: pulmonary complications: hemoptysis and pneumothorax. Am J Respir Crit Care Med. 2010;182:298–306.PubMed 
    Article 

    Google Scholar 
    Belkin RA, Henig NR, Singer LG, Chaparro C, Rubenstein RC, Xie SX, et al. Risk factors for death of patients with cystic fibrosis awaiting lung transplantation. Am J Respir Crit Care Med. 2006;173:659–66.PubMed 
    Article 

    Google Scholar 
    Martin C, Hamard C, Kanaan R, Boussaud V, Grenet D, Abély M, et al. Causes of death in French cystic fibrosis patients: the need for improvement in transplantation referral strategies! J Cyst Fibros. 2016;15:204–12.PubMed 
    Article 

    Google Scholar 
    Döring G, Conway SP, Heijerman HGM, Hodson ME, Høiby N, Smyth A, et al. Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J. 2000;16:749.PubMed 
    Article 

    Google Scholar 
    Marshall B, Faro A, Brown W, Elbert A, Fink A, Cromwell E, et al. Patient registry, annual data report. Bethesda, Maryland: Cystic Fibrosis Foundation; 2020. https://www.cff.org/sites/default/files/2021-11/Patient-Registry-Annual-Data-Report.pdf.Vongthilath R, Richaud Thiriez B, Dehillotte C, Lemonnier L, Guillien A, Degano B, et al. Clinical and microbiological characteristics of cystic fibrosis adults never colonized by Pseudomonas aeruginosa: analysis of the French CF registry. PLOS ONE. 2019;14:e0210201.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zolin A, Orenti A, Jung A, van Rens J. ECFSPR annual report 2019. Denmark: European Cystic Fibrosis Society Patient Registry; 2021. https://www.ecfs.eu/sites/default/files/general-content-files/working-groups/ecfs-patient-registry/ECFSPR_Report_2019_v1_16Feb2022.pdf.Conrad D, Haynes M, Salamon P, Rainey PB, Youle M, Rohwer F. Cystic fibrosis therapy: a community ecology perspective. Am J Respir Cell Mol Biol. 2013;48:150–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Filkins LM, Graber JA, Olson DG, Dolben EL, Lynd LR, Bhuju S, et al. Coculture of Staphylococcus aureus with Pseudomonas aeruginosa drives S. aureus towards fermentative metabolism and reduced viability in a cystic fibrosis model. J Bacteriol. 2015;197:2252–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci USA. 2012;109:5809–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ballestero S, Vírseda I, Escobar H, Suárez L, Baquero F. Stenotrophomonas maltophilia in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 1995;14:728–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gladman G, Connor PJ, Williams RF, David TJ. Controlled study of Pseudomonas cepacia and Pseudomonas maltophilia in cystic fibrosis. Arch Dis Child. 1992;67:192–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goss CH. Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis. Thorax. 2004;59:955–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14:293–304.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goss CH, Otto K, Aitken ML, Rubenfeld GD. Detecting Stenotrophomonas maltophilia does not reduce survival of patients with cystic fibrosis. Am J Respir Crit Care Med. 2002;166:356–61.PubMed 
    Article 

    Google Scholar 
    Alonso A, Martínez JL. Multiple antibiotic resistance in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1997;41:1140–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang L, Li XZ, Poole K. Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother. 2000;44:287–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abda EM, Krysciak D, Krohn-Molt I, Mamat U, Schmeisser C, Förstner KU, et al. Phenotypic heterogeneity affects Stenotrophomonas maltophilia K279a colony morphotypes and β-lactamase expression. Front Microbiol. 2015;6:1373.Okazaki A, Avison MB. Induction of L1 and L2 β-lactamase production in Stenotrophomonas maltophilia is dependent on an AmpR-type regulator. Antimicrob Agents Chemother. 2008;52:1525–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh TR, Hall L, Assinder SJ, Nichols WW, Cartwright SJ, MacGowan AP, et al. Sequence analysis of the L1 metallo-β-lactamase from Xanthomonas maltophilia. Biochim Biophys Acta. 1994;1218:199–201.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang Z, Liu W, Cui Q, Niu W, Li H, Zhao X, et al. Prevalence and detection of Stenotrophomonas maltophilia carrying metallo-I2-lactamase blaL1 in Beijing, China. Front Microbiol. 2014;5:692.Kataoka D, Fujiwara H, Kawakami T, Tanaka Y, Tanimoto A, Ikawa S, et al. The indirect pathogenicity of Stenotrophomonas maltophilia. Int J Antimicrob Agents. 2003;22:601–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24:327–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGuigan L, Callaghan M. The evolving dynamics of the microbial community in the cystic fibrosis lung. Environ Microbiol. 2015;17:16–28.PubMed 
    Article 

    Google Scholar 
    Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun. 2018;9:1599.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mahrt N, Tietze A, Künzel S, Franzenburg S, Barbosa C, Jansen G, et al. Bottleneck size and selection level reproducibly impact evolution of antibiotic resistance. Nat Ecol Evol. 2021;5:1233–1242.Govaert L, Altermatt F, De Meester L, Leibold MA, McPeek MA, Pantel JH, et al. Integrating fundamental processes to understand eco‐evolutionary community dynamics and patterns. Funct Ecol. 2021;35:2138–55.Article 

    Google Scholar 
    Palmer KL, Aye LM, Whiteley M. Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol. 2007;189:8079–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Souza Barbosa F, Capra Pezzi L, Tsao M, Oliveira TF, Manoela Dias Macedo S, Schapoval EES, et al. Stability and degradation products of imipenem applying High‐Resolution Mass Spectrometry: an analytical study focused on solutions for infusion. Biomed Chromatogr. 2018;33:4471.Verpooten G, Verbist L, Buntinx A, Entwistle L, Jones K, Broe M. The pharmacokinetics of imipenem (thienamycin-formamidine) and the renal dehydropeptidase inhibitor cilastatin sodium in normal subjects and patients with renal failure. Br J Clin Pharmacol. 1984;18:183–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H, Luo Y-F, Williams BJ, Blackwell TS, Xie C-M. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int J Med Microbiol. 2012;302:63–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kousser C, Clark C, Sherrington S, Voelz K, Hall RA. Pseudomonas aeruginosa inhibits Rhizopus microsporus germination through sequestration of free environmental iron. Sci Rep. 2019;9:5714.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schalk IJ, Guillon L. Pyoverdine biosynthesis and secretion in Pseudomonas aeruginosa: implications for metal homeostasis: pyoverdine biosynthesis. Environ Microbiol. 2013;15:1661–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duan X, Pan Y, Cai Z, Liu Y, Zhang Y, Liu M, et al. rpoS-mutation variants are selected in Pseudomonas aeruginosa biofilms under imipenem pressure. Cell Biosci. 2021;11:138.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu K, Chen S, Sysoeva TA, You L. Universal antibiotic tolerance arising from antibiotic-triggered accumulation of pyocyanin in Pseudomonas aeruginosa. PLOS Biol. 2019;17:e3000573.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    El-Fouly MZ, Sharaf AM, Shahin AAM, El-Bialy HA, Omara AMA. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa. J Radiat Res Appl Sci. 2015;8:36–48.CAS 
    Article 

    Google Scholar 
    Baron SS, Rowe JJ. Antibiotic action of pyocyanin. Antimicrob Agents Chemother. 1981;20:814–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kimura M, Ohta T. The average number of generations until fixation of a mutant gene in a finite population. Genetics. 1969;61:763–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meirelles LA, Perry EK, Bergkessel M, Newman DK. Bacterial defenses against a natural antibiotic promote collateral resilience to clinical antibiotics. PLOS Biol. 2021;19:e3001093.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall JPJ, Harrison E, Brockhurst MA. Competitive species interactions constrain abiotic adaptation in a bacterial soil community. Evol Lett. 2018;2:580–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scanlan PD, Hall AR, Blackshields G, Friman V-P, Davis MR, Goldberg JB, et al. Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol. 2015;32:1425–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finkel SE. Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol. 2006;4:113–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gefen O, Fridman O, Ronin I, Balaban NQ. Direct observation of single stationary-phase bacteria reveals a surprisingly long period of constant protein production activity. Proc Natl Acad Sci. 2014;111:556–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang Z, Zhang L, Huang Y, Qing Y, Cao K, Tian G, et al. OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China. Infect Genet Evol. 2014;21:124–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hirabayashi A, Kato D, Tomita Y, Iguchi M, Yamada K, Kouyama Y, et al. Risk factors for and role of OprD protein in increasing minimal inhibitory concentrations of carbapenems in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol. 2017;66:1562–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang H, Jeanteur D, Pattus F, Hancock REW. Membrane topology and site-specific mutagenesis of Pseudomonas aeruginosa porin OprD. Mol Microbiol. 1995;16:931–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fournier D, Richardot C, Müller E, Robert-Nicoud M, Llanes C, Plésiat P, et al. Complexity of resistance mechanisms to imipenem in intensive care unit strains of Pseudomonas aeruginosa. J Antimicrob Chemother. 2013;68:1772–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kao C-Y, Chen S-S, Hung K-H, Wu H-M, Hsueh P-R, Yan J-J, et al. Overproduction of active efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa isolated from patients with bloodstream infections in Taiwan. BMC Microbiol. 2016;16:107.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ocampo-Sosa AA, Cabot G, Rodríguez C, Roman E, Tubau F, Macia MD, et al. Alterations of OprD in carbapenem-intermediate and -susceptible strains of Pseudomonas aeruginosa isolated from patients with bacteremia in a Spanish multicenter study. Antimicrob Agents Chemother. 2012;56:1703–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shu J-C, Kuo A-J, Su L-H, Liu T-P, Lee M-H, Su I-N, et al. Development of carbapenem resistance in Pseudomonas aeruginosa is associated with OprD polymorphisms, particularly the amino acid substitution at codon 170. J Antimicrob Chemother. 2017;72:2489–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pernet E, Guillemot L, Burgel P-R, Martin C, Lambeau G, Sermet-Gaudelus I, et al. Pseudomonas aeruginosa eradicates Staphylococcus aureus by manipulating the host immunity. Nat Commun. 2014;5:5105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Briaud P, Camus L, Bastien S, Doléans-Jordheim A, Vandenesch F, Moreau K. Coexistence with Pseudomonas aeruginosa alters Staphylococcus aureus transcriptome, antibiotic resistance and internalization into epithelial cells. Sci Rep. 2019;9:16564.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Khare A, Tavazoie S. Multifactorial competition and resistance in a two-species bacterial system. PLOS Genet. 2015;11:e1005715.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mashburn LM, Jett AM, Akins DR, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol. 2005;187:554–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cirz RT, O’Neill BM, Hammond JA, Head SR, Romesberg FE. Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol. 2006;188:7101–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    García-Contreras R, Nuñez-López L, Jasso-Chávez R, Kwan BW, Belmont JA, Rangel-Vega A, et al. Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating. ISME J. 2015;9:115–25.PubMed 
    Article 
    CAS 

    Google Scholar 
    Moradali MF, Ghods S, Rehm BHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 2017;7:39.Vogt SL, Green C, Stevens KM, Day B, Erickson DL, Woods DE, et al. The stringent response is essential for Pseudomonas aeruginosa virulence in the rat lung agar bead and Drosophila melanogaster feeding models of infection. Infect Immun. 2011;79:4094–104.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baron SS, Terranova G, Rowe JJ. Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol. 1989;18:223–30.CAS 
    Article 

    Google Scholar 
    Castañeda-Tamez P, Ramírez-Peris J, Pérez-Velázquez J, Kuttler C, Jalalimanesh A, Saucedo-Mora MÁ, et al. Pyocyanin restricts social cheating in Pseudomonas aeruginosa. Front Microbiol. 2018;9:1348.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fontoura R, Spada JC, Silveira ST, Tsai SM, Brandelli A. Purification and characterization of an antimicrobial peptide produced by Pseudomonas sp. strain 4B. World J Microbiol Biotechnol. 2009;25:205–13.CAS 
    Article 

    Google Scholar 
    Hassan HM, Fridovich I. Mechanism of the antibiotic action pyocyanine. J Bacteriol. 1980;141:156–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Machan ZA, Pitt TL, White W, Watson D, Taylor GW, Cole PJ, et al. Interaction between Pseudomonas aeruginosa and Staphylococcus aureus: description of an antistaphylococcal substance. J Med Microbiol. 1991;34:213–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raji El Feghali PA, Nawas T. Pyocyanin: a powerful inhibitor of bacterial growth and biofilm formation. Madridge J Case Rep Stud. 2018;3:101–7.Article 

    Google Scholar 
    Saha S, Thavasi R, Jayalakshmi S. Phenazine pigments from Pseudomonas aeruginosa and their application as antibacterial agent and food colourants. Res J Microbiol. 2008;3:122–8.CAS 
    Article 

    Google Scholar 
    Schiessl KT, Hu F, Jo J, Nazia SZ, Wang B, Price-Whelan A, et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat Commun. 2019;10:762.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jagmann N, Brachvogel H-P, Philipp B. Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila: parasitic growth of Pseudomonas aeruginosa. Environ Microbiol. 2010;12:1787–802.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noto MJ, Burns WJ, Beavers WN, Skaar EP. Mechanisms of pyocyanin toxicity and genetic determinants of resistance in Staphylococcus aureus. J Bacteriol. 2017;199:00221–17.Venkataraman A, Rosenbaum MA, Perkins SD, Werner JJ, Angenent LT. Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy Environ Sci. 2011;4:4550.CAS 
    Article 

    Google Scholar 
    Waite RD, Qureshi MR, Whiley RA. Modulation of behaviour and virulence of a high alginate expressing Pseudomonas aeruginosa strain from cystic fibrosis by oral commensal bacterium Streptococcus anginosus. PLOS ONE. 2017;12:e0173741.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Whooley MA, McLoughlin AJ. The regulation of pyocyanin production in Pseudomonas aeruginosa. Eur J Appl Microbiol Biotechnol. 1982;15:161–6.CAS 
    Article 

    Google Scholar 
    Elbargisy RM. Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of Pseudomonas aeruginosa. Saudi J Biol Sci. 2021;28:993–1000.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gupta S, Laskar N, Kadouri DE. Evaluating the effect of oxygen concentrations on antibiotic sensitivity, growth, and biofilm formation of human pathogens. Microbiol Insights. 2016;9. https://doi.org/10.4137/MBI.S40767.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, et al. Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Investig. 2002;109:317–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Skurnik D, Roux D, Cattoir V, Danilchanka O, Lu X, Yoder-Himes DR, et al. Enhanced in vivo fitness of carbapenem-resistant oprD mutants of Pseudomonas aeruginosa revealed through high-throughput sequencing. Proc Natl Acad Sci USA. 2013;110:20747–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Higgins S, Heeb S, Rampioni G, Fletcher MP, Williams P, Cámara M. Differential regulation of the phenazine biosynthetic operons by quorum sensing in Pseudomonas aeruginosa PAO1-N. Front Cell Infect Microbiol. 2018;8:252.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dragoš A, Martin M, Falcón García C, Kricks L, Pausch P, Heimerl T, et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol. 2018;3:1451–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    Cuthbertson L, Walker AW, Oliver AE, Rogers GB, Rivett DW, Hampton TH, et al. Lung function and microbiota diversity in cystic fibrosis. Microbiome. 2020;8:45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD. Characterization of bacterial community diversity in cystic fibrosis lung infections by use of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. J Clin Microbiol. 2004;42:5176–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Workentine ML, Sibley CD, Glezerson B, Purighalla S, Norgaard-Gron JC, Parkins MD, et al. Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS ONE. 2013;8:e60225.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valdezate S. Persistence and variability of Stenotrophomonas maltophilia in cystic fibrosis patients, Madrid, 1991-8. Emerg Infect Dis. 2001;7:113–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dalbøge CS, Hansen CR, Pressler T, Høiby N, Johansen HK. Chronic pulmonary infection with Stenotrophomonas maltophilia and lung function in patients with cystic fibrosis. J Cyst Fibros. 2011;10:318–25.PubMed 
    Article 

    Google Scholar 
    Jeon YD, Jeong WY, Kim MH, Jung IY, Ahn MY, Ann HW, et al. Risk factors for mortality in patients with Stenotrophomonas maltophilia bacteremia. Medicine. 2016;95:e4375.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sherrard LJ, Tunney MM, Elborn JS. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet Lond Engl. 2014;384:703–13.CAS 
    Article 

    Google Scholar 
    Choi K-H, Schweizer HP. Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc. 2006;1:153–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jelsbak L, Johansen HK, Frost A-L, Thøgersen R, Thomsen LE, Ciofu O, et al. Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun. 2007;75:2214–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yeung ATY, Parayno A, Hancock REW. Mucin promotes rapid surface motility in Pseudomonas aeruginosa. mBio. 2012;3:300073–12.Kirchner S, Fothergill JL, Wright EA, James CE, Mowat E, Winstanley C. Use of artificial sputum medium to test antibiotic efficacy against Pseudomonas aeruginosa in conditions more relevant to the cystic fibrosis lung. J Vis Exp. 2012;64:3857.Hill DB, Long RF, Kissner WJ, Atieh E, Garbarine IC, Markovetz MR, et al. Pathological mucus and impaired mucus clearance in cystic fibrosis patients result from increased concentration, not altered pH. Eur Respir J. 2018;52:1801297.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benoni G, Cuzzolin L, Bertrand C, Puchetti V, Velo G. Imipenem kinetics in serum, lung tissue and pericardial fluid in patients undergoing thoracotomy. J Antimicrob Chemother. 1987;20:725–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Radhakrishnan M, Jaganath A, Rao GSU, Kumari HBV. Nebulized imipenem to control nosocomial pneumonia caused by Pseudomonas aeruginosa. J Crit Care. 2008;23:148–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wenzler E, Fraidenburg DR, Scardina T, Danziger LH. Inhaled antibiotics for gram-negative respiratory infections. Clin Microbiol Rev. 2016;29:581–632.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters.Version 12.0, 2022. http://www.eucast.org.Kang D, Revtovich AV, Chen Q, Shah KN, Cannon CL, Kirienko NV. Pyoverdine-dependent virulence of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Front Microbiol. 2019;10:2048.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin LW, Reid DW, Sharples KJ, Lamont IL. Pseudomonas siderophores in the sputum of patients with cystic fibrosis. BioMetals. 2011;24:1059–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, et al. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol. 2009;175:2473–88.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA. 2013;110:17981–6.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sass G, Nazik H, Penner J, Shah H, Ansari SR, Clemons KV, et al. Studies of Pseudomonas aeruginosa mutants indicate pyoverdine as the central factor in inhibition of Aspergillus fumigatus biofilm. J Bacteriol. 2018;200:00345–17.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Deatherage DE, Barrick JE. Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. In: Sun L, Shou W, editors. Engineering and Analyzing Multicellular Systems. New York, NY: Springer New York; 2014. p. 165–88.Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    STEM learning communities promote friendships but risk academic segmentation

    Xie, Y., Fang, M. & Shauman, K. STEM education. Annu. Rev. Sociol. 41, 331–357 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, X. STEM attrition: College students’ paths into and out of STEM fields. National Center for Education Statistics. Retrieved from http://ies.ed.gov/pubsearch/pubsinfo.asp?pubid=2014001rev. Accessed 22 September 2021.Huang G, Taddese N, Walter E (2000) Entry and persistence of women and minorities in college science and engineering education. National Center for Education Statistics. Retrieved from https://eric.ed.gov/?id=ED566411. Accessed 22 September 2021.Hurtado, S., Eagan, K., & Chang, M. Degrees of Success: Bachelor’s Degree Completion Rates among Initial STEM Majors (Higher Education Research Institute, Los Angeles, CA) (2010).National Science Foundation, Broadening Participation Working Group (2014) Pathways to broadening participation in response to the CEOSE 2011–2012 recommendation. National Science Foundation. Retrieved from https://www.nsf.gov/pubs/2015/nsf15037/nsf15037.pdf. Accessed 22 Sep 2021.James, S. M. & Singer, S. R. From the NSF: The National Science Foundation’s investments in broadening participation in science, technology, engineering, and mathematics education through research and capacity building. CBE Life Sci. Educ. 15(3), 1–8 (2016).Article 

    Google Scholar 
    Smith, B. L., MacGregor, J., Matthews, R. & Gabelnick, F. Learning communities: Reforming undergraduate education (Jossey-Bass, 2004).
    Google Scholar 
    Andrade, M. S. Learning communities: Examining positive outcomes. J. Coll. Stud. Ret. 9(1), 1–20 (2007).Article 

    Google Scholar 
    Maton, K. I., Pollard, S. A., McDougall Weise, T. V. & Hrabowski, F. A. Meyerhoff Scholars Program: A strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics. Mt Sinai J. Med. 79(5), 610–623 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dagley, M., Georgiopoulos, M., Reece, A. & Young, C. Increasing retention and graduation rates through a STEM learning community. J. Coll. Stud. Ret. 18(2), 167–182 (2016).Article 

    Google Scholar 
    National Survey of Student Engagement (2015) Engagement Insights: Survey Findings on the Quality of Undergraduate Education—Annual Results 2015 (Bloomington, IN).Tinto, V. Leaving college: Rethinking the causes and cures of student attrition (University of Chicago Press, 1987).
    Google Scholar 
    Tinto, V. Learning better together: The impact of learning communities on student success. Higher Educ. Monogr. Ser. 1(8), 1–8 (2003).
    Google Scholar 
    Otto, S., Evins, M. A., Boyer-Pennington, M. & Brinthaupt, T. M. Learning communities in higher education: Best practices. Journal of Student Success and Retention 2(1), 1–20 (2015).
    Google Scholar 
    Boda, Z., Elmer, T., Vörös, A. & Stadtfeld, C. Short-term and long-term effects of a social network intervention on friendships among university students. Sci. Rep. 10(1), 1–2 (2020).Article 
    CAS 

    Google Scholar 
    Hotchkiss, J. L., Moore, R. E. & Pitts, M. M. Freshman learning communities, college performance, and retention. Educ. Econ. 14(2), 197–210 (2006).Article 

    Google Scholar 
    Whalen, D. F. & Shelley, M. C. Academic success for STEM and non-STEM majors. J. STEM Educ. 11(1), 45–60 (2010).
    Google Scholar 
    Xu, D., Solanki, S., McPartlan, P. & Sato, B. EASEing students into college: The impact of multidimensional support for underprepared students. Educ. Res. 47(7), 435–450 (2018).Article 

    Google Scholar 
    Jaffee, D., Carle, A., Phillips, R. & Paltoo, L. Intended and unintended consequences of first-year learning communities: An initial investigation. J. First-Year Exp. Stud. Trans. 20(1), 53–70 (2008).
    Google Scholar 
    Tinto, V. & Goodsell, A. Freshman interest groups and the first-year experience: Constructing student communities in a large university. J. First Year Exp. Stud. Trans. 6(1), 7–28 (1994).
    Google Scholar 
    Domizi, D. Student perceptions about their informal learning experiences in a first-year residential learning community. J. First Year Exp. Stud. Transit. 20(1), 97–110 (2008).
    Google Scholar 
    Lee, D. S. & Lemieux, T. Regression discontinuity designs in economics. J. Econ. Lit. 2, 281–355 (2010).Article 

    Google Scholar 
    Jacob, R., Zhu, P., Somers, M.A., & Bloom, H. A Practical Guide to Regression Discontinuity (MDRC, New York, NY, 2012).Hays, R. B. & Oxley, D. Social network development and functioning during a life transition. J. Pers. Soc. Psychol. 50(2), 305–313 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freeman, T. M., Anderman, L. H. & Jensen, J. M. Sense of belonging in college freshmen at the classroom and campus levels. J. Exp. Educ. 75(3), 203–220 (2007).Article 

    Google Scholar 
    Zumbrunn, S., McKim, C., Buhs, E. & Hawley, L. R. Support, belonging, motivation, and engagement in the college classroom: A mixed method study. Instr. Sci. 42(5), 661–684 (2014).Article 

    Google Scholar 
    Hasan, S. & Bagde, S. The mechanics of social capital and academic performance in an Indian college. Am. Sociol. Rev. 78(6), 1009–1032 (2013).Article 

    Google Scholar 
    Stadtfeld, C., Vörös, A., Elmer, T., Boda, Z. & Raabe, I. J. Integration in emerging social networks explains academic failure and success. Proc. Natl. Acad. Sci. USA 116(3), 792–797 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kraemer, B. A. The academic and social integration of Hispanic students into college. Rev. High Educ. 20(2), 163–179 (1997).Article 

    Google Scholar 
    Nora, A. Two-year colleges and minority students’ educational aspirations: Help or hindrance. Higher Educ. Handb. Theory Res. 9(3), 212–247 (1993).
    Google Scholar 
    McCabe, J.M. Connecting in College: How Friendship Networks Matter for Academic and Social Success (University of Chicago Press, Chicago, IL, 2016).Felten, P., & Lambert, L. M. Relationship-rich Education: How Human Connections Drive Success in College (Johns Hopkins University Press, Baltimore, MD, 2020).Hallinan, M. T. The peer influence process. Stud. Educ. Eval. 7(3), 285–306 (1981).Article 

    Google Scholar 
    Thomas, S. L. Ties that bind: A social network approach to understanding student integration and persistence. J. Higher Educ. 71(5), 591–615 (2000).
    Google Scholar 
    Turetsky, K. M., Purdie-Greenaway, V., Cook, J. E., Curley, J. P. & Cohen, G. L. A psychological intervention strengthens students’ peer social networks and promotes persistence in STEM. Sci. Adv. 6(45), 1–10 (2020).Article 

    Google Scholar 
    Dokuka, S., Valeeva, D. & Yudkevich, M. How academic achievement spreads: The role of distinct social networks in academic performance diffusion. PLoS ONE 15(7), 1–16 (2020).Article 
    CAS 

    Google Scholar 
    Epstein, J. L. & Karweit, N. (eds) Friends in school: Patterns of selection and influence in secondary schools (Academic Press, 1983).
    Google Scholar 
    Feld, S. L. The focused organization of social ties. AJS 86(5), 1015–1035 (1981).
    Google Scholar 
    Rivera, M. T., Soderstrom, S. B. & Uzzi, B. Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms. Annu. Rev. Sociol. 36, 91–115 (2010).Article 

    Google Scholar 
    Mollenhorst, G., Volker, B. & Flap, H. Changes in personal relationships: How social contexts affect the emergence and discontinuation of relationships. Soc. Netw. 37, 65–80 (2014).Article 

    Google Scholar 
    Thomas, R. J. Sources of friendship and structurally induced homophily across the life course. Sociol Perspect 62(6), 822–843 (2019).Article 

    Google Scholar 
    Kubitschek, W. N. & Hallinan, M. T. Tracking and students’ friendships. Soc. Psychol. Q 46, 1–5 (1998).Article 

    Google Scholar 
    Frank, K. A., Muller, C. & Mueller, A. S. The embeddedness of adolescent friendship nominations: The formation of social capital in emergent network structures. AJS 119(1), 216–253 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kossinets, G. & Watts, D. J. Origins of homophily in an evolving social network. AJS 115(2), 405–450 (2009).
    Google Scholar 
    Wimmer, A. & Lewis, K. Beyond and below racial homophily: ERG models of a friendship network documented on Facebook. AJS 116(2), 583–642 (2010).PubMed 

    Google Scholar 
    Hallinan, M. T. & Sørensen, A. B. Ability grouping and student friendships. Am. Educ. Res. J. 51, 485–499 (1985).Article 

    Google Scholar 
    Leszczensky, L. & Pink, S. Ethnic segregation of friendship networks in school: Testing a rational-choice argument of differences in ethnic homophily between classroom-and grade-level networks. Soc. Netw. 42, 18–26 (2015).Article 

    Google Scholar 
    DiMaggio, P. & Garip, F. Network effects and social inequality. Annu. Rev. Sociol. 54, 93–118 (2012).Article 

    Google Scholar 
    Johnson, A. M. ‘“I can turn it on when i need to”’: Pre-college Integration, culture, and peer academic engagement among black and Latino/a engineering Students. Sociol. Educ. 56, 1–20 (2019).Article 

    Google Scholar 
    Perry, B. L., Pescosolido, B. A. & Borgatti, S. P. Egocentric network analysis: Foundations, methods, and models (Cambridge University Press, 2018).Book 

    Google Scholar 
    Wasserman, S. & Faust, K. Social network analysis: Methods and applications (Cambridge University Press, 1994).MATH 
    Book 

    Google Scholar 
    Hartup, W. W. & Stevens, N. Friendships and adaptation in the life course. Psychol. Bull. 121(3), 355 (1997).Article 

    Google Scholar 
    Vaquera, E. & Kao, G. Do you like me as much as I like you? Friendship reciprocity and its effects on school outcomes among adolescents. Soc. Sci. Res. 37(1), 55–72 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Imbens, G. W. & Lemieux, T. Regression discontinuity designs: A guide to practice. J. Econom. 142(2), 615–635 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Imbens, G. W. & Angrist, J. D. Identification and estimation of local average treatment effects. Econometrica 62(2), 467–475 (1994).MATH 
    Article 

    Google Scholar 
    Robins, G., Pattison, P., Kalish, Y. & Lusher, D. An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007).Article 

    Google Scholar 
    Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M. & Morris, M. Statnet: Software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 24(1), 1548–7660 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calonico, S., Cattaneo, M. D. & Titiunik, R. Optimal data-driven regression discontinuity plots. J. Am. Stat. Assoc. 110(512), 1753–1769 (2015).MathSciNet 
    CAS 
    MATH 
    Article 

    Google Scholar 
    Duxbury, S. W. The problem of scaling in exponential random graph models. Sociol. Methods Res. https://doi.org/10.1177/0049124120986178:1-39 (2021).MathSciNet 
    Article 

    Google Scholar 
    McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: Homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001).Article 

    Google Scholar 
    Kadushin, C. Understanding social networks: Theories, concepts, and findings (Oxford University Press, 2012).
    Google Scholar 
    Flashman, J. Academic achievement and its impact on friend dynamics. Sociol. Educ. 85(1), 61–80 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carrell, S. E., Sacerdote, B. I. & West, J. E. From natural variation to optimal policy? The importance of endogenous peer group formation. Econometrica 81(3), 855–882 (2013).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Cox, A. B. Cohorts, ‘“siblings”,’ and mentors: Organizational structures and the creation of social capital. Sociol. Educ. 90(1), 47–63 (2017).Article 

    Google Scholar 
    Valente, T. W. Network interventions. Science 337(6090), 49–53 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nunn, L. M. College belonging: How first-year and first-generation students navigate campus life (Rutgers University Press, 2021).Book 

    Google Scholar 
    Garlick, R. Academic peer effects with different group assignment policies: Residential tracking versus random assignment. Am. Econ. J. Appl. Econ. 10(3), 345–369 (2018).Article 

    Google Scholar 
    Carrell, S. E., Fullerton, R. L. & West, J. E. Does your cohort matter? Measuring peer effects in college achievement. J. Labor. Econ. 27(3), 439–464 (2009).Article 

    Google Scholar 
    Lomi, A., Snijders, T. A., Steglich, C. E. & Torló, V. J. Why are some more peer than others? Evidence from a longitudinal study of social networks and individual academic performance. Soc. Sci. Res. 40(6), 1506–1520 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poldin, O., Valeeva, D. & Yudkevich, M. Which peers matter: How social ties affect peer-group effects. Res. High Educ. 57(4), 448–468 (2016).Article 

    Google Scholar 
    Raabe, I. J., Boda, Z. & Stadtfeld, C. The social pipeline: How friend influence and peer exposure widen the STEM gender gap. Sociol. Educ. 92(2), 105–123 (2019).Article 

    Google Scholar 
    Burt, R. S. Structural holes and good ideas. AJS 110(2), 349–399 (2004).
    Google Scholar 
    Oakes, J. Keeping track: How schools structure inequality (Yale University Press, 2005).
    Google Scholar 
    Park JJ et al. (2021) Who are you studying with? The role of diverse friendships in STEM and corresponding inequality. Res. High Educ. https://doi.org/10.1007/s11162-021-09638-8.Marsden, P. V. & Campbell, K. E. Measuring tie strength. Soc. Forces 63(2), 482–501 (1984).Article 

    Google Scholar 
    Mattie, H., Engø-Monsen, K., Ling, R. & Onnela, J. P. Understanding tie strength in social networks using a local “bow tie” framework. Sci. Rep. 8(1), 1–9 (2018).CAS 
    Article 

    Google Scholar 
    Sørensen, A. B. Organizational differentiation of students and educational opportunity. Sociol. Educ. 43(4), 355–376 (1970).Article 

    Google Scholar  More