More stories

  • in

    Coastal ecological impacts from pumice rafts

    Massive drift of pumice along the northeastern coast of Okinawa IslandA large amount of pumice stones reached and was deposited along the northeastern coast of Okinawa Island, that were brought by strong seasonal northeasterly winds (Supplementary Video 1). The pumice was thought to be brought by the Kuroshio countercurrent from sites near the Ogasawara Archipelago 1300 km away. Because the Kuroshio countercurrent is composed of various medium-sized eddies in the ocean, the current does not always flow in one direction and as a continuous flow27,28. The pumice drift was more strongly controlled by the seasonal northwesterly winds to be transported to Okinawa across the Philippine Sea (Fig. 1a). The pumice raft reached the northern part of Okinawa approximately 2 months after the eruption (Figs. 2, 3 and 4). According to a very recent report, the pumice clasts were drifting ashore in Thailand (traveling 4000 km-long distance) across the South China Sea within half a year of this eruption29. Most pumice stones were gray, but some pumice was banded, and others were black reflecting some compositional variation25,29 (Fig. 2d,e). The Kuroshio Current is faster than the Kuroshio countercurrent27, so some pumice clasts have already reached the main island of Japan25. Tracking the dispersal of the pumice will allow a better forecasting model based on observed raft trajectories by considering exact wind effects in the Philippine Sea30.Figure 2An example of a natural beach on Okinawa Island where pumice has washed ashore. (a) Appearance of natural sandy beaches on the northern part of Okinawa Island (Ibu beach, Kunigami Village, 26°75′57.88″ N, 128°32′23.32″ E). Photo was taken on 24 October 2021. Pumice drifted onto the sandy beach and formed a striped pattern. The white-capped waves indicate on the place where the reef edge exist. The white arrow points to the mangrove river estuary corresponding to Fig. 9. (b) Estimation of the pumice sedimentation depth on the original sand beach surface. (c) The high tide zone of the natural sandy beach is covered with pumice pebbles and stones. Yellow arrows indicate black pumice stones. Scale bar: 10 cm. (d, e) Front and back of examples of relatively large pumice stones from the same beach. The left image is mostly light brown, whereas the right image is almost black. Scale bars: 5 cm.Full size imageFigure 3Short-term migration of pumice from beaches as revealed by stationary observations. These four photos were taken at two sites on northern Okinawa Island on two consecutive days, 23 and 24 October 2021. (a, b) A sandy beach along the Sate Coast (26°78′84.56″ N, 128°22′30.57″ E). It was windy on the first day, and pumice stones were washed up with the waves. Almost all the pumice stones were removed from the beach and transported offshore on the following day. The black arrow in photo (a) indicates Cape Hedo, the northernmost tip of Okinawa Island. (c, d) At this gravelly beach (26°80′83.25″ N, 128°23′38.56″ E), pumice fully covers the seawall on the first day, but all of the pumice stones washed away, leaving the original gravels, on the following day. The white arrow in each photo indicates an identical marker stone placed on the beach. Weather data of northern Okinawa (https://www.data.jma.go.jp/obd/stats/etrn/view/daily_a1.php?prec_no=91&block_no=0901&year=2021&month=10&day=23&view=g_wsp) and tidal data (Naha: 26°13′ N, 127°40′ E) (https://www.data.jma.go.jp/gmd/kaiyou/db/tide/genbo/genbo.php) are provided by Japan Meteorological Agency.Full size imageFigure 4Pumice stones settled by marine organisms. (a) Pumice collected from Ibu beach on 31 October 2021. Two marine benthos coexist close together on a pumice stone. Scale bar: 1 cm. (b) Enlarged image of the Lepas barnacle. Scale bar: 3 mm. (c) Enlarged image of the bryozoan. Scale bar: 3 mm. (d) Stereo microscopic image of pumice pebbles of a few millimeters in diameter collected from Ibu beach on 15 January 2022. The light brown coloration indicates some algal/cyanobacterial growth on the pumice. Scale bar 1 mm. (e) Red autofluorescence was detected from pumice pebbles. Image corresponds to (d). Autofluorescence from microalgae was confirmed by Supplementary Fig. 2. Scale bar 1 mm. (f) Enlarged image of the center of the figure of (e) shows red autofluorescent signals with a diameter of 10–30 µm. Scale bar: 200 µm.Full size imageChanges in the coastal landscape: natural beaches and estuariesMarine calcifiers, including corals, calcareous algae, and foraminifers, produce white sandy beaches on Okinawa Island. However, the gray pumice drifting ashore changed the white sand beach, especially along the northeastern coastline. We observed several lines of pumice aggregations, suggesting that pumice was brought ashore by wavefronts several times produced by a strong north wind at the tide lines (Supplementary Video 1; Fig. 2a). At the same sampling site, the thickest depth of beached pumice was more than 30 cm (Fig. 2b; Supplementary Video 2). Most of the pumice stones were from 0.5 cm to 3 cm in diameter, with a few black pumice stones included (Fig. 2c: yellow arrow). Pumice stones arrived at the estuaries of some brackish rivers (Fig. 8, Supplementary Fig. 1a) and mangrove forests in northwest Okinawa (Fig. 9).Pumice stones and pumice rafts show dynamic behavior in a short period. We captured photographs 24 h apart at two positions on the shore of Okinawa, which allowed us to compare the pumice dynamics during this period (Fig. 3). Within that time frame, there were two high tides, and the tide level changed by up to 170 cm. As seen in Fig. 3a, on the first day, the coast was covered with pumice, and floating pumice could be seen on the seafront. The north wind was strong that day, as shown by the relatively high waves near the shore as well as white‐crested waves near the reef edge. By the following day, most of the pumice had been moved offshore by tides and winds (Fig. 3b), indicating that newly beached pumice raft deposits were removed quickly from open beach areas. At another site on a gravelly beach, pumice fully covered the seawall on the first day, but almost all of the pumice stones were washed away, leaving the original gravels, on the following day (Fig. 3c,d). Japan Meteorological Agency (Oku station: 232 m above sea level, latitude 26°50.1, longitude 128°16.3′) reported that northerly winds were blowing (mean wind speed: 3.4 m/s) on 23rd October in northern Okinawa. The following day, the wind direction changed to the east-southeast; blowing offshore (mean wind speed: 2.9 m/s), resulting in the dramatic removal of pumice form the coast (Fig. 3). These observations indicate that surface winds rather than ocean currents had a strong influence on the raft trajectory and residence time on beaches, and are consistent with past research5. These observations lead us to expect that the pumice rafts will disappear from the coast of Okinawa fairly quickly, but in fact, there have been many cases where they have come back again in a few days. Although the overall amount of pumice drifting has been decreasing, a small amount of pumice has been drifting in coastal area of Okinawa in May, 202231. It is unlikely that large amounts of pumice will drift repeatedly throughout Okinawa Prefecture as reported in this report, but it should be noted that detached pumice material remains in beach and river runoff.Biofouling of sessile organisms on pumice arriving to OkinawaIt is noteworthy that the pumice rafts traveled over the deep Philippine Sea for over 2 months, and on arrival in Okinawa there was little to no biofouling of the pumice (Fig. 2). Some stranded pumices observed on Okinawa beaches had become habitats for sessile organisms (Fig. 4), as reported in previous studies1,2,3,4,5,6,29. Goose barnacles (Lepas sp.) without external damage to the shell were the most abundant species observed on the pumice (Fig. 4b). Lepas is a common biofouling taxon distributed globally and plays a role in biofouling as a foundation organism. The shell growth rate is more than 1 mm/day in some Lepas species32 suggesting that the Lepas had been growing on the pumice for about two weeks. Measurements of the shell size of Lepas attached to the pumice collections conducted in the same area (Supplementary Video 2) showed a bias toward larger sizes in the second collection (5.92 ± 3.86 mm (average ± S.D.), n = 75, 13 November 2021) than in the first one (3.43 ± 1.08 mm, n = 21, 31 October 2021), and significant differences were detected between the measurement periods (Mann–Whitney U test, p  More

  • in

    Vertebrate growth plasticity in response to variation in a mutualistic interaction

    Pfennig, D. The adaptive significance of an environmentally-cued developmental switch in an anuran tadpole. Oecologia 85, 101–107 (1990).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brönmark, C. & Miner, J. G. Predator-induced phenotypical change in body morphology in Crucian carp. Science 258, 1348–1350 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wikelski, M. & Thom, C. Marine iguanas shrink to survive El Niño. Nature 403, 37–38 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huchard, E., English, S., Bell, M. B. V., Thavarajah, N. & Clutton-Brock, T. Competitive growth in a cooperative mammal. Nature 533, 532–534 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Travis, J. Evaluating the adaptive role of morphological plasticity. In: Ecological morphology (pp. 99–122) (The University of Chicago Press, Chicago, 1994).Lázaro, J., Dechmann, D. K. N., LaPoint, S., Wikelski, M. & Hertel, M. Profound reversible seasonal changes of individual skull size in a mammal. Curr. Biol. 27, R1106–R1107 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Lázaro, J. & Dechmann, D. K. Dehnel’s phenomenon. Ecol. Evol. 31, R463–R465 (2021).
    Google Scholar 
    Bronstein, J. L. The evolution of facilitation and mutualism. J. Ecol. 97, 1160–1170 (2009).Article 

    Google Scholar 
    Leigh, J. The evolution of mutualism. J. Environ. Biol. 23, 2507–2528 (2010).
    Google Scholar 
    Liu, C., Yang, D. R. & Peng, Y. Q. Body size in a pollinating fig wasp and implications for stability in a fig-pollinator mutualism. Entomol. Exper. Appl. 138, 249–255 (2011).Article 

    Google Scholar 
    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).Article 

    Google Scholar 
    Boucher, D., James, S. & Keeler, K. The ecology of mutualism. Annu. Rev. Ecol. Syst. 13, 315–347 (1982).Article 

    Google Scholar 
    Irwin, R. E. & Brody, A. K. Nectar robbing in Ipomopsis aggregata: effects on pollinator behavior and plant fitness. Oecologia 116, 519–527 (1998).ADS 
    PubMed 
    Article 

    Google Scholar 
    Allen, G. The Anemonefishes: their classification and biology (T.F.H. Publications, 1972).
    Google Scholar 
    Fautin, D.G. & Allen, G.R. Field guide to anemonefishes and their host sea anemones. (Western Australian Museum, Perth, 1992).Ollerton, J., McCollin, D., Fautin, D. G. & Allen, G. R. Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proc. R. Soc. B Biol. Sci. 274, 591–598 (2006).Article 

    Google Scholar 
    Fricke, H. & Fricke, S. Monogamy and sex change by aggressive dominance in coral reef fish. Nature 266, 830–832 (1977).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Buston, P. M. Size and growth modification in clownfish. Nature 424, 145–146 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariscal, R. N. The nature of the symbiosis between Indo-Pacific anemone fishes and sea anemones. Mar. Biol. 6, 58–65 (1970).Article 

    Google Scholar 
    Elliott, J. K., Elliott, J. M. & Mariscal, R. N. Host selection, location, and association behaviors of anemonefishes in field settlement experiments. Mar. Biol. 122, 377–389 (1995).Article 

    Google Scholar 
    Verde, A. E., Cleveland, A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis II: direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. Mar. Biol. 162, 2409–2429 (2015).Article 
    CAS 

    Google Scholar 
    Cleveland, A., Verde, E. A. & Lee, R. W. Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar. Biol. 158, 589–602 (2011).Article 

    Google Scholar 
    Sale, P. F. Effect of cover on agonistic behavior of a reef fish: a possible spacing mechanism. Ecology 53, 753–758 (1972).Article 

    Google Scholar 
    Fricke, H. W. & Holzberg, S. Social units and hermaphroditism in a pomacentrid fish. Naturwissenschaften 61, 367–368 (1974).ADS 
    Article 

    Google Scholar 
    Fricke, H. W. Control of different mating systems in a coral reef fish by one environmental factor. Anim. Behav. 28, 561–569 (1980).Article 

    Google Scholar 
    Mitchell, J. S. & Dill, L. M. Why is group size correlated with the size of the host sea anemone in the false clown anemonefish?. Canad. J. Zool. 83, 372–376 (2005).Article 

    Google Scholar 
    Chausson, J., Srinivasan, M. & Jones, G. P. Host anemone size as a determinant of social group size and structure in the orange clownfish (Amphiprion percula). PeerJ 6, e5841 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reed, C., Branconi, R., Majoris, J., Johnson, C. & Buston, P. Competitive growth in a social fish. Biol. Lett. 15, 20180737 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buston, P. M. Mortality is associated with social rank in the clown anemonefish (Amphiprion percula). Mar. Biol. 143, 811–815 (2003).Article 

    Google Scholar 
    Branconi, R. et al. Ecological and social constraints combine to promote evolution of non-breeding strategies in clownfish. Comm. Biol. 3, 1–7 (2020).Article 
    CAS 

    Google Scholar 
    Schmiege, P. F., D’Aloia, C. C. & Buston, P. M. Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones. Mar. Biol. 164, 24 (2017).Article 

    Google Scholar 
    Barbasch, T. A. & Buston, P. M. Plasticity and personality of parental care in the clown anemonefish. Anim. Behav. 136, 65–73 (2018).Article 

    Google Scholar 
    Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image PROcessing with ImageJ. Biophoto. Int. 11, 36–42 (2004).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).Goodrich, B., Gabry, J., Ali I. & Brilleman, S. Rstanarm: Bayesian applied regression modeling via Stan. R package version 2.21.1 https://mc-stan.org/rstanarm (2020).Weatherley, A. H. Approaches to understanding fish growth. Trans. Am. Fish. Soc. 119, 662–672 (1990).Article 

    Google Scholar 
    Gabry, J. Shinystan: interactive visual and numerical diagnostics and posterior analysis for Bayesian models. R package version 2.5.0. https://CRAN.R-project.org/package=shinystan (2018).Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 3, 307–309 (2018).MathSciNet 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: an R package for assessment, comparison and testing of statistical models. J. Open Sour. Softw. 6, 60 (2021).
    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Ser. A Stat. Soc. 182, 389–402 (2019).MathSciNet 
    Article 

    Google Scholar 
    Gabry, J. & Mahr, T. Bayesplot: plotting for bayesian models. R package version 1.8.0. https://mc-stan.org/bayesplot/ (2021).Elliott, J. K. & Mariscal, R. N. Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138, 23–36 (2001).Article 

    Google Scholar 
    Buston, P. M. Forcible eviction and prevention of recruitment in the clown anemonefish. Behav. Ecol. 14, 576–582 (2003).Article 

    Google Scholar 
    Fautin, D. G. & Allen, G. R. Anemone fishes and their host sea anemones: a guide for aquarists and divers. Sea Challengers (1997).Beldade, R., Blandin, A., O’Donnell, R. & Mills, S. C. Cascading effects of thermally-induced anemone bleaching on associated anemonefish hormonal stress response and reproduction. Nat. Commun. 8, 1–9 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Cortese, D. et al. Physiological and behavioural effects of anemone bleaching on symbiont anemonefish in the wild. Funct. Ecol. 35, 663–674 (2021).Article 

    Google Scholar 
    Scherbatskoy, E. C. et al. Characterization of a novel picornavirus isolated from moribund aquacultured clownfish. J. Gen. Virol. 101, 735–745 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saenz-Agudelo, P., Jones, G. P., Thorrold, S. R. & Planes, S. Mothers matter: contribution to local replenishment is linked to female size, mate replacement and fecundity in a fish metapopulation. Mar. Biol. 162, 3–14 (2014).Article 

    Google Scholar 
    Barbasch, T. A. et al. Substantial plasticity of reproduction and parental care in response to local resource availability in a wild clownfish population. Oikos 129, 1844–1855 (2020).Article 

    Google Scholar 
    Sebens, K. P. The ecology of indeterminate growth in animals. A. Rev. Ecol. Syst. 18, 371–407 (1987).Article 

    Google Scholar 
    Buston, P. M. & García, M. B. An extraordinary life span estimate for the clown anemonefish Amphiprion percula. J. Fish Biol. 70, 1710–1719 (2007).Article 

    Google Scholar 
    Chamberlain, S. A., Kilpatrick, J. R. & Holland, J. N. Do extrafloral nectar resources, species abundances, and body sizes contribute to the structure of ant–plant mutualistic networks?. Oecologia 164, 741–750 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Marting, P. R., Kallman, N. M., Wcislo, W. T. & Pratt, S. C. Ant-plant sociometry in the Azteca-Cecropia mutualism. Sci. Rep. 8, 1–15 (2018).Article 
    CAS 

    Google Scholar 
    Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).PubMed 
    Article 

    Google Scholar 
    West-Eberhard, M. J. Developmental plasticity and evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    West-Eberhard, M. J. Phenotypic accommodation: adaptive innovation due to developmental plasticity. J. Exp. Zool. B Mol. Develop. Evol. 304, 610–618 (2005).Article 

    Google Scholar 
    Moczek, A. P. et al. The role of developmental plasticity in evolutionary innovation. Proc. R. Soc. B Biol. Sci. 278, 2705–2713 (2011).Article 

    Google Scholar  More

  • in

    Timescale mediates the effects of environmental controls on water temperature in mid- to low-order streams

    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol 27, 249–268. https://doi.org/10.1016/S0306-4565(01)00094-8 (2002).Article 

    Google Scholar 
    Ebersole, J. L., Liss, W. J. & Frissell, C. A. Cold water patches in warm streams: physicochemical characteristics and the influence of shading. JAWRA J. Am. Water Resour. Assoc. 39, 355–368. https://doi.org/10.1111/j.1752-1688.2003.tb04390.x (2003).ADS 
    Article 

    Google Scholar 
    Comte, L. & Grenouillet, G. Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography 36, 1236–1246. https://doi.org/10.1111/j.1600-0587.2013.00282.x (2013).Article 

    Google Scholar 
    Kurylyk, B. L., MacQuarrie, K. T. B., Linnansaari, T., Cunjak, R. A. & Curry, R. A. Preserving, augmenting, and creating cold-water thermal refugia in rivers: Concepts derived from research on the Miramichi River, New Brunswick (Canada). Ecohydrology 8, 1095–1108. https://doi.org/10.1002/eco.1566 (2015).Article 

    Google Scholar 
    Ebersole, J. L., Quiñones, R. M., Clements, S. & Letcher, B. H. Managing climate refugia for freshwater fishes under an expanding human footprint. Front. Ecol. Environ. 18, 271–280. https://doi.org/10.1002/fee.2206 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caissie, D. The thermal regime of rivers: a review. Freshw. Biol. 51, 1389–1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x (2006).Article 

    Google Scholar 
    Dick, J. J., Tetzlaff, D. & Soulsby, C. Landscape influence on small-scale water temperature variations in a moorland catchment. Hydrol. Process. 29, 3098–3111. https://doi.org/10.1002/hyp.10423 (2015).ADS 
    Article 

    Google Scholar 
    Fullerton, A. H. et al. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrol. Process. 29, 4719–4737. https://doi.org/10.1002/hyp.10506 (2015).ADS 
    Article 

    Google Scholar 
    Fullerton, A. H. et al. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change. Aquatic Sci. 80, 3. https://doi.org/10.1007/s00027-017-0557-9 (2018).Article 

    Google Scholar 
    Segura, C., Caldwell, P., Sun, G., McNulty, S. & Zhang, Y. A model to predict stream water temperature across the conterminous USA. Hydrol. Process. 29, 2178–2195. https://doi.org/10.1002/hyp.10357 (2015).ADS 
    Article 

    Google Scholar 
    Jonkers, A. R. T. & Sharkey, K. J. The differential warming response of Britain’s rivers (1982–2011). PLOS One 11, e0166247. https://doi.org/10.1371/journal.pone.0166247 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, F. L., Hannah, D. M., Fryer, R. J., Millar, C. P. & Malcolm, I. A. Development of spatial regression models for predicting summer river temperatures from landscape characteristics: Implications for land and fisheries management. Hydrol. Process. 31, 1225–1238. https://doi.org/10.1002/hyp.11087 (2017).ADS 
    Article 

    Google Scholar 
    Maheu, A., Poff, N. L. & St-Hilaire, A. A classification of stream water temperature regimes in the conterminous USA. River Res. Appl. 32, 896–906. https://doi.org/10.1002/rra.2906 (2016).Article 

    Google Scholar 
    Steel, E. A., Sowder, C. & Peterson, E. E. Spatial and temporal variation of water temperature regimes on the Snoqualmie River network. J. Am. Water Resour. Assoc. 52, 769–787. https://doi.org/10.1111/1752-1688.12423 (2016).Article 

    Google Scholar 
    Kearney, M. R., Matzelle, A. & Helmuth, B. Biomechanics meets the ecological niche: The importance of temporal data resolution. J. Exp. Biol. 215, 922–933. https://doi.org/10.1242/jeb.059634 (2012).Article 
    PubMed 

    Google Scholar 
    Burgmer, T., Hillebrand, H. & Pfenninger, M. Effects of climate-driven temperature changes on the diversity of freshwater macroinvertebrates. Oecologia 151, 93–103. https://doi.org/10.1007/s00442-006-0542-9 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Isaak, D. J., Young, M. K., Nagel, D. E., Horan, D. L. & Groce, M. C. The cold-water climate shield: Delineating refugia for preserving salmonid fishes through the 21st century. Glob. Change Biol. 21, 2540–2553. https://doi.org/10.1111/gcb.12879 (2015).ADS 
    Article 

    Google Scholar 
    Steel, E. A., Beechie, T. J., Torgersen, C. E. & Fullerton, A. H. Envisioning, quantifying, and managing thermal regimes on river networks. Bioscience 67, 506–522. https://doi.org/10.1093/biosci/bix047 (2017).Article 

    Google Scholar 
    Budescu, D. V. Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 114, 542–551. https://doi.org/10.1037/0033-2909.114.3.542 (1993).Article 

    Google Scholar 
    Singhal, B. B. S. & Gupta, R. P. Applied Hydrogeology of Fractured Rocks. 2 edn, 408 (Springer, 2010).Shimizu, T. Relation between scanty runoff from mountainous watershed and geology, slope and vegetation (in Japanese with English summary). Bull. Forestry Forest Prod. Res. Inst. 310, 109–128 (1980).
    Google Scholar 
    Iwasaki, K., Nagasaka, Y. & Nagasaka, A. Geological effects on the scaling relationships of groundwater contributions in Forested Watersheds. Water Resour. Res. 57, e2021WR029641. https://doi.org/10.1029/2021WR029641 (2021).ADS 
    Article 

    Google Scholar 
    Ishiyama, N. et al. The role of geology in creating stream climate-change refugia along climate gradients. bioRxiv, 2022.2005.2002.490355, https://doi.org/10.1101/2022.05.02.490355 (2022).Kanno, Y., Vokoun, J. C. & Letcher, B. H. Paired stream-air temperature measurements reveal fine-scale thermal heterogeneity within headwater brook trout stream networks. River Res. Appl. 30, 745–755. https://doi.org/10.1002/rra.2677 (2014).Article 

    Google Scholar 
    Snyder, C. D., Hitt, N. P. & Young, J. A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 25, 1397–1419. https://doi.org/10.1890/14-1354.1 (2015).Article 
    PubMed 

    Google Scholar 
    Carslaw, D. C. & Ropkins, K. Openair—an R package for air quality data analysis. Environ. Model. Softw. 27–28, 52–61. https://doi.org/10.1016/j.envsoft.2011.09.008 (2012).Article 

    Google Scholar 
    Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-PLUS. (Springer, 2000).Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2006).Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794. https://doi.org/10.7717/peerj.4794 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clarke, P. When can group level clustering be ignored? Multilevel models versus single-level models with sparse data. J. Epidemiol. Commun. Health 62, 752. https://doi.org/10.1136/jech.2007.060798 (2008).CAS 
    Article 

    Google Scholar 
    Theall, K. P. et al. Impact of small group size on neighbourhood influences in multilevel models. J. Epidemiol. Commun. Health 65, 688–695. https://doi.org/10.1136/jech.2009.097956 (2011).Article 

    Google Scholar 
    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x (2013).Article 

    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. Royal Soc. Interface 14, 20170213. https://doi.org/10.1098/rsif.2017.0213 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139. https://doi.org/10.21105/joss.03139 (2021).ADS 
    Article 

    Google Scholar 
    Hair, J. F., Black, W. C., Babin, B. J. & Anderson, R. E. Multivariate Data Analysis: A Global Perspective. 7 edn, (Prentice Hall, 2009).Azen, R. & Budescu, D. V. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods 8, 129–148. https://doi.org/10.1037/1082-989x.8.2.129 (2003).Article 
    PubMed 

    Google Scholar 
    Grömping, U. Estimators of relative importance in linear regression based on variance decomposition. Am. Stat. 61, 139–147. https://doi.org/10.1198/000313007X188252 (2007).MathSciNet 
    Article 

    Google Scholar 
    Luo, W. & Azen, R. Determining predictor importance in hierarchical linear models using dominance analysis. J. Educ. Behav. Stat. 38, 3–31. https://doi.org/10.3102/1076998612458319 (2013).Article 

    Google Scholar 
    R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2020).Erickson, T. R. & Stefan, H. G. Linear air/water temperature correlations for streams during open water periods. J. Hydrol. Eng. 5, 317–321. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(317) (2000).Article 

    Google Scholar 
    Webb, B. W., Clack, P. D. & Walling, D. E. Water–air temperature relationships in a Devon river system and the role of flow. Hydrol. Process. 17, 3069–3084. https://doi.org/10.1002/hyp.1280 (2003).ADS 
    Article 

    Google Scholar 
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics.
    30, 2811–2812. https://doi.org/10.1093/bioinformatics/btu393 (2014).Sugimoto, S., Nakamura, F. & Ito, A. Heat budget and statistical analysis of the relationship between stream temperature and riparian forest in the Toikanbetsu River Basin, Northern Japan. J. For. Res. 2, 103–107. https://doi.org/10.1007/BF02348477 (1997).Article 

    Google Scholar 
    Dugdale, S. J., Malcolm, I. A., Kantola, K. & Hannah, D. M. Stream temperature under contrasting riparian forest cover: Understanding thermal dynamics and heat exchange processes. Sci. Total Environ. 610–611, 1375–1389. https://doi.org/10.1016/j.scitotenv.2017.08.198 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Timm, A., Ouellet, V. & Daniels, M. Riparian land cover, water temperature variability, and thermal stress for aquatic species in urban streams. Water 13, 2732. https://doi.org/10.3390/w13192732 (2021).Article 

    Google Scholar 
    Mitchell, S. A simple model for estimating mean monthly stream temperatures after riparian canopy removal. Environ. Manage. 24, 77–83. https://doi.org/10.1007/s002679900216 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Horne, J. P. & Hubbart, J. A. A spatially distributed investigation of stream water temperature in a contemporary mixed-land-use watershed. Water 12, 1756. https://doi.org/10.3390/w12061756 (2020).Article 

    Google Scholar 
    Graham, C. B., Barnard, H. R., Kavanagh, K. L. & McNamara, J. P. Catchment scale controls the temporal connection of transpiration and diel fluctuations in streamflow. Hydrol. Process. 27, 2541–2556. https://doi.org/10.1002/hyp.9334 (2013).ADS 
    Article 

    Google Scholar 
    Sun, H., Kasahara, T., Otsuki, K., Saito, T. & Onda, Y. Spatio-temporal streamflow generation in a small, steep headwater catchment in Western Japan. Hydrol. Sci. J. 62, 818–829. https://doi.org/10.1080/02626667.2016.1266635 (2017).Article 

    Google Scholar 
    Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 10, 52–67. https://doi.org/10.1007/s10040-001-0170-8 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Arnott, S., Hilton, J. & Webb, B. W. The impact of geological control on flow accretion in lowland permeable catchments. Hydrol. Res. 40, 533–543. https://doi.org/10.2166/nh.2009.017 (2009).Article 

    Google Scholar 
    Calvache, M. L., Duque, C., Fontalva, J. M. G. & Crespo, F. Processes affecting groundwater temperature patterns in a coastal aquifer. Int. J. Environ. Sci. Technol. 8, 223–236. https://doi.org/10.1007/BF03326211 (2011).Article 

    Google Scholar 
    Nejadhashemi, A. P., Wardynski, B. J. & Munoz, J. D. Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin. Hydrol. Earth Syst. Sci. 2011, 3421–3468, https://doi.org/10.5194/hessd-8-3421-2011 (2011).Macedo, M. N. et al. Land-use-driven stream warming in southeastern Amazonia. Philos. Trans. R Soc. Lond. B Biol. Sci. 368, 20120153–20120153. https://doi.org/10.1098/rstb.2012.0153 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlson, K. M. et al. Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. J. Geophys. Res. Biogeosci. 119, 1110–1128. https://doi.org/10.1002/2013JG002516 (2014).Article 

    Google Scholar 
    Wang, Y. I., He, B. I. N. & Takase, K. Effects of temporal resolution on hydrological model parameters and its impact on prediction of river discharge. Hydrol. Sci. J. 54, 886–898. https://doi.org/10.1623/hysj.54.5.886 (2009).Article 

    Google Scholar 
    Levin, S. A. The problem of pattern and scale in ecology: The Robert H MacArthur award lecture. Ecology 73, 1943–1967. https://doi.org/10.2307/1941447 (1992).Article 

    Google Scholar 
    García Molinos, J. & Donohue, I. Downscaling the non-stationary effect of climate forcing on local-scale dynamics: The importance of environmental filters. Clim. Change 124, 333–346. https://doi.org/10.1007/s10584-014-1077-4 (2014).ADS 
    Article 

    Google Scholar 
    Newman, E. A., Kennedy, M. C., Falk, D. A. & McKenzie, D. Scaling and complexity in landscape ecology. Front. Ecol. Evolution https://doi.org/10.3389/fevo.2019.00293 (2019).Article 

    Google Scholar 
    Atkinson, S. E., Woods, R. A. & Sivapalan, M. Climate and landscape controls on water balance model complexity over changing timescales. Water Resour. Res. 38, 50-51–50-17, https://doi.org/10.1029/2002WR001487 (2002).Engel, M. et al. Controls on spatial and temporal variability in streamflow and hydrochemistry in a glacierized catchment. Hydrol. Earth Syst. Sci. 23, 2041–2063. https://doi.org/10.5194/hess-23-2041-2019 (2019).ADS 
    Article 

    Google Scholar 
    Karlsen, R. H. et al. Landscape controls on spatiotemporal discharge variability in a boreal catchment. Water Resour. Res. 52, 6541–6556. https://doi.org/10.1002/2016WR019186 (2016).ADS 
    Article 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Weiskopf, S. R. et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total Environ. 733, 137782. https://doi.org/10.1016/j.scitotenv.2020.137782 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109. https://doi.org/10.1038/s41467-019-10924-4 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kingsford, R. T. Conservation management of rivers and wetlands under climate change—a synthesis. Mar. Freshw. Res. 62, 217–222. https://doi.org/10.1071/MF11029 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Length weight relationships of coleoid cephalopods from the eastern Mediterranean

    Nash, R. D. M., Valencia, A. H. & Geffen, A. J. The origin of Fulton’s condition factor—setting the record straight. Fisheries 31(5), 236–238 (2006).
    Google Scholar 
    Tarkan, A. S., Gaygusuz, Ö., Acıpınar, H., Gürsoy, Ç. & Özuluğ, M. Length–weight relationships of fishes from the Marmara region (NW-Turkey). J. Appl. Ichthyol. 22(4), 271–273 (2006).Article 

    Google Scholar 
    Al Nahdi, A., de Leaniz, C. G. & King, A. J. Spatio-temporal variation in length-weight relationships and condition of ribbonfish Trichiurus lepturus (Linnaeus, 1758): Implications for fisheries. PLoS One 11(8), e0161989 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Froese, R., Tsikliras, A. C. & Stergiou, K. I. Editorial note on weight–length relations of fishes. Acta Ichthyol. Piscat. 41(4), 261–263 (2011).Article 

    Google Scholar 
    Torres, M. A. et al. Length–weight relationships for 22 crustecans and cephalopods from the Gulf of Cadiz (SW Spain). Aquat. Liv. Resour. 30, 12 (2017).Article 

    Google Scholar 
    Rocha, F., Guerra, A. & Gonzalez, A. F. A review of reproductive strategies in cephalopods. Biol. Rev. 76, 291–304 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Laptikhovsky, V. & Salman, A. On reproductive strategies of the epipelagic octopods of the superfamily Argonautoidea (Cephalopoda: Octopoda). Mar. Biol. 142, 321–326 (2003).Article 

    Google Scholar 
    Forsythe, J. W. & van Heukelem, W. F. Growth. In Cephalopod Life Cycles (ed. Boyle, P. R.) 135–156 (Academic Press, 1987).
    Google Scholar 
    Jereb, P., et al. (eds) 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No. 325, p. 360.Salman, A. Cephalopod research in the eastern Mediterranean (East of 23°E): A review. Boll. Malacol. 45, 47–59 (2009).
    Google Scholar 
    Salman, A. & İzmirli, C. Ege Üniversitesi Su Ürünleri Fakültesi Müzesi (ESFM)’nin cephalopod envanteri. EgeJFAS 37(4), 357–361. https://doi.org/10.12714/egejfas.37.4.06) (2020) (in Turkish).Article 

    Google Scholar 
    Önsoy, B. & Salman, A. Reproductive biology of the common cuttlefish Sepia officinalis L. (Sepiida: Cephalpoda) in the Aegean Sea. Turk. J. Vet. Anim. Sci. 29, 613–619 (2005).
    Google Scholar 
    Salman, A. Reproductive biology of the elegant cuttlefish (Sepia elegans) in the Eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 15(2), 265–272 (2015).Article 

    Google Scholar 
    Dursun, D., Eronat, E. G. T., Akalın, M. & Salman, M. A. Reproductive biology of pink cuttlefish Sepia orbignyana in the Aegean Sea (eastern Mediterranean). Turk. J. Zool. 37, 576–581 (2013).Article 

    Google Scholar 
    Salman, A. Reproductive biology of Sepietta oweniana (Pfeffer, 1908) (Sepiolidae: Cephalopoda) in the Aegean Sea. Sci. Mar. 62(4), 379–383 (1998).Article 

    Google Scholar 
    Salman, A. & Önsoy, B. Reproductive biology of the bobtail squid Rossia macrosoma (Cephalopoda: Sepiolidea) from the eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 10, 81–86 (2010).Article 

    Google Scholar 
    Salman, A. Fecundity and spawning strategy of shortfin squid Illex coindetii (Oegopsida: Ommastrephidae), in the eastern Mediterranean. Turk. J. Fish. Aquat. Sci. 17, 841–849 (2017).
    Google Scholar 
    Mangold-Wirz, K. Biologie des céphalopodes benthiques et nectoniques de la Mer Catalane. Vie Millieu suppl. 13, 1–285 (1963).
    Google Scholar 
    Salman, A. Fecundity, spawning strategy and oocyte development of shortfin squid Alloteuthis media (Myopsida: Loliginidae) in the eastern Mediterranean. Cah. Biol. Mar. 55, 163–171 (2014).
    Google Scholar 
    Önsoy, B. & Salman, A. Reproduction patterns of the Mediterranean endemic, Eledone moschata (Lamarck, 1798) (Octopoda: Cephalopoda) in the eastern Mediterranean. (In Turkish) 1st National Malacology Congress, 1–3 September 2004, Izmir-Turkey (Bilal Öztürk & Alp Salman, eds). Turk. J. Aquat. Life 2(2), 55–60 (2004).
    Google Scholar 
    Tesch, F. W. Age and growth. In Methods for Assessment of Fish Production in Fresh Waters (ed. Ricker, W. E.) 99–130 (Blackwell Scientific Publications, 1971).
    Google Scholar 
    Merella, P., Quetglas, A., Alemany, F. & Carbonell, A. Length–weight relationship of fishes and cephalopods from the Balearic Islands (western Mediterranean). Naga ICLARM Q. 20(3–4), 66–68 (1997).
    Google Scholar 
    Manfrin Piccinetti, G. & Giovanardi, O. Données sur la biologie de Sepia officinalis L. dans l’Adriatique obtenues lors de expéditions pipeta. FAO Fish. Rep. 290, 135–138 (1984).
    Google Scholar 
    Bello, G. Length–weight relationship in males and females of Sepia orbignyana and Sepia elegans (Cephalopoda: Sepiidae). Rapp. Comm. Int. Mer. Médit. 31(2), 254 (1988).
    Google Scholar 
    Ragonese, S. & Jereb, P. Length-weight relationship and growth of the pink and elegant cuttlefish Sepia orbignyana and Sepia elegans in the Sicilian Channel. In Acta of the 1st International Symposium on the Cuttlefish (ed. Boucaud-Camou, E.) 31–47 (SEPIA. Centre de Publications de l’Universite de Caen, 1991).
    Google Scholar 
    Akyol, O. & Metin, G. An investigation on determination of some morphological characteristics of Cephalopods in Izmir Bay (Aegean Sea). EU J. Fish. Aquat. Sci. 18(3–4), 357–365 (2001).
    Google Scholar 
    Lefkaditou, E., Verriopoulos, G. & Valavanis, V. VII9. Research on Cephalopod resources in Hellas. In State of Hellenic Fisheries (eds Papaconstantinou, C. et al.) 440–451 (HCMR Publications, 2007).
    Google Scholar 
    Duysak, Ö., Sendão, J., Borges, T., Türeli, C. & Erdem, Ü. Cephalopod distribution in Iskenderun bay (eastern Mediterranean–Turkey). J. Fish. Sci. 2, 118–125 (2008).
    Google Scholar 
    Giordano, D. et al. Distribution and biology of Sepietta oweniana (Pfeffer, 1908) (Cephalopoda: Sepiolidae) in the southern Tyrrhenian Sea (central Mediterranean Sea). Cah. Biol. Mar. 50, 1–10 (2009).
    Google Scholar 
    Andriguetto, J. M. Jr. & Haimovici, M. Effects of fixation and preservation methods on the morphology of a Loliginid squid (Cephalopoda: Myopsida). Am. Malac Bull. 6(2), 213–217 (1988).
    Google Scholar 
    Sanchez, P. Donnés preliminaires sur la biologie de trois species de cephalopods de la Mer Catalan. Rapp. Comm. Int. Mer. Médit. 30(2), 247 (1986).
    Google Scholar 
    Belcari, P., Sartor, P., Nannini, N. & De Ranieri, S. Length-weight relationship of Toda- ropsis eblanae (Cephalopoda: Ommastrephidae) of the northern Tyrrhenian Sea in relation to sexual maturation. Biol. Mar. Mediter. 6, 524–528 (1999).
    Google Scholar 
    Belcari, P. Length–weight relationship in relation to sexual maturation of Illex coindetii (Cephalopoda: Ommastrephidae) in the northern Tyrrhenian Sea (western Mediterranean). Sci. Mar. 60, 379–384 (1996).
    Google Scholar 
    Petric, M., Ferri, J., Skeljo, F. & Krstulovic Sifner, S. Body and beak measures of Illex coindetii (Cephalopoda: Ommastrephidae) and their relation to growth and maturity. Cah. Biol. Mar. 51, 275–287 (2010).
    Google Scholar 
    Ceriola, L., Ungaro, N. & Toteda, F. Some information on the biology of Illex coindetii Verany, 1839 (Cephalopoda, Ommastrephidae) in the south-western Adriatic Sea (central Mediterranean). Fish. Res. 82, 41–49 (2006).Article 

    Google Scholar 
    Arvanitidis, C. et al. A comparison of the fishery biology of three Illex coindetii Verany, 1839 (Cephalopoda: Ommastrephidae) populations from the European Atlantic and Mediterranean Waters. Bull. Mar. Sci. 71, 129–146 (2002).
    Google Scholar 
    Quetglas, A., Alemany, F., Carbonell, A., Merella, P. & Sanchez, P. Some aspects of the biology of Todarodes sagittatus (Cephalopoda: Ommastrephidae) from the Balearic Sea (western Mediterranean). Sci. Mar. 62, 73–82 (1998).Article 

    Google Scholar 
    Krstulovic Sifner, S. K. & Vrgoc, N. Population structure, maturation and reproduction of the European squid, Loligo vulgaris, in the central Adriatic Sea. Fish. Res. 69, 239–249 (2004).Article 

    Google Scholar 
    Moreno, A. et al. Biological variation of Loligo vulgaris (Cephalopoda: Loliginidae) in the eastern Atlantic and Mediterranean. Bull. Mar. Sci. 71(1), 515–534 (2002).
    Google Scholar 
    Guerra, A. & Manriquez, M. Parametros biometricos de Octopus vulgaris. Invest. Pesq. 44, 177–198 (1980).
    Google Scholar 
    Quetglas, A., Alemany, F., Carbonell, A., Merella, P. & Sanchez, P. Biology and fishery of Octopus vulgaris Cuvier, 1797, caught by trawlers in Mallorca (Balearic Sea, western Mediterranean). Fish. Res. 36, 237–249 (1998).Article 

    Google Scholar 
    Sanchez, P., & Obarti, R. 1993. The biology and fishery of Octopus vulgaris caught with clay pots on the Spanish Mediterranean coast. In: Jereb, P., Allcock, A. L., Lefkaditou, E., Piatkowski, U., Hastie, L. C., Pierce, G. J. (Eds.) 2015. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No. 325, p 360.Gonzalez, M., Barcala, E., Perez-Gil, J. L., Carrasco, M. N. & Garcia-Martinez, M. C. Fisheries and reproductive biology of Octopus vulgaris (Mollusca: Cephalopoda) in the Gulf of Alicante (Northwestern Mediterranean). Medit. Mar. Sci. 12, 369–389 (2011).Article 

    Google Scholar 
    Jabeur, C., Nouira, T., Khoufi, W., Mosbahi, D. S. & Ezzedine-Najai, S. Age and growth of Octopus vulgaris Cuvier, 1797 along the east coast of Tunisia. J. Shellf. Res. 31, 119–124 (2012).Article 

    Google Scholar 
    Quetglas, A., Ordines, F., Gonzalez, M. & Franco, I. Life history of the bathyal octopus Pteroctopus tetracirrhus (Mollusca, Cephalopoda) in the Mediterranean Sea. Deep Sea Res. Part I 56, 1379–1390 (2009).Article 

    Google Scholar 
    Quetglas, A., Gonzalez, M. & Franco, I. Biology of the upper-slope cephalopod Octopus salutii from the western Mediterranean Sea. Mar. Biol. 146, 1131–1138 (2005).Article 

    Google Scholar 
    Moriyasu, M. Etude biometrique de la croissance d’E. cirrhosa [LAM. 1798 (Cephalopoda, Octopoda)] du Golfe du Lion. Oceanol. Acta 6, 35–41 (1983).
    Google Scholar 
    Massi, D. Effetti del congelamento sull’accuratezza delle misure in Eledone cirrhosa (Lamarck, 1798). Biol. Mar. Suppl. al Notiziario S.I.B.M. 1, 379–380 (1993).
    Google Scholar 
    Agnesi, S., Belluscio, A. & Ardizzone, G. D. Biologia e dinamica di populazione di Eledone cirrhosa (Cephalopoda: Octopoda) nel Tirreno Centrale. Biol. Mar. Mediterr. 5, 336–348 (1998).
    Google Scholar 
    Giordano, D. et al. Population dynamics and distribution of Eledone cirrhosa (Lamarck, 1798) in the Southern Tyrrhenian Sea (Central Mediterranean). Cah. Biol. Mar. 51, 213–227 (2010).
    Google Scholar 
    Krstulovic Sifner, S. K. & Vrgoc, N. Reproductive cycle and sexual maturation of the musky octopus Eledone moschata (Cephalopoda: Octopodidae) in the northern and central Adriatic Sea. Sci. Mar. 73, 439–447 (2009).Article 

    Google Scholar 
    Ikica, Z., Krstulovic Sifner, S. & Joksimovic, A. Some preliminary data on biological aspects of the musky octopus, Eledone moschata (Lamarck, 1798) (Cephalopoda: Octopodidae) in Montenegrin waters. Stud. Mar. 25, 21–36 (2011).
    Google Scholar 
    Akyol, O., Şen, H. & Kinacigil, H. T. Reproductive biology of Eledone moschata (Cephalopoda: Octopodidae) in the Aegean Sea (Izmir Bay, Turkey). J. Mar. Biol. Assoc. UK 87, 967–970 (2007).Article 

    Google Scholar 
    Quetglas, A., Gonzalez, M., Carbonell, A. & Sanchez, P. Biology of the deep-sea octopus Bathypolypus sponsalis (Cephalopoda: Octopodidae) from the western Mediterranean Sea. Mar. Biol. 138, 785–792 (2001).Article 

    Google Scholar  More

  • in

    Slow science: how I’m protecting sloth species

    It’s surprisingly hard to catch a sloth. Although they’re slow — very, very slow — if you climb a tree to catch one, it will move along to the next tree. Once you climb the new tree, it will move back again.My team does this regularly, as we conduct the Sloth Backpack Project, a data-logging initiative here in Costa Rica, where many sloths coexist with people. In 2017, I wanted to do more than research, so I started the Sloth Conservation Foundation.In this photograph, I’m fitting a backpack to a brown-throated three-fingered sloth (Bradypus variegatus) that we named Baguette, after a nearby bakery. The backpack will collect data on her location, movement and living patterns.We had found Baguette about 20 minutes earlier, balancing atop construction fencing as she attempted to escape two pit bulls. Baguette wasn’t all that grateful. She’s a feisty old girl. She’s old: she’s missing fingers, and she’s got scars on her face.I adore sloths, but I also envy them. They’re a powerful symbol of the slowness that our society needs more of. They don’t let anything stress them out unless it’s really important — they just get on with life.The backpack project will help us to understand sloth behaviour, so we can better protect them as the urban environment grows. This year, I received a €50,000 (US$52,220) Future For Nature award, which we will use to train a dog to detect sloth faeces. We can use faeces as a proxy for sloth numbers and locations in the region, and ultimately work out the boundaries of the species, how fast populations are declining and which conservation measures work.I’m happy I’ve moved away from academia — I can put all my energy into conservation as opposed to bashing out papers. That’s what I feel ecology should focus on — how we can use what we’re learning to give back to other species. More

  • in

    Effectiveness of management zones for recovering parrotfish species within the largest coastal marine protected area in Brazil

    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301(5635), 929–933 (2003).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. E. et al. Coral reefs under rapid climate change and ocean acidification. Science 318(5857), 1737–1742 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Soares, M. et al. The flourishing and vulnerabilities of zoantharians on Southwestern Atlantic reefs. Mar. Environ. Res. 173(3), 105535 (2021).Ban, N. C. et al. Designing, implementing and managing marine protected areas: Emerging trends and opportunities for coral reef nations. J. Exp. Mar. Biol. Ecol. 408(1–2), 21–31 (2011).Article 

    Google Scholar 
    Magris, R. A., Pressey, R. L., Mills, M., Vila-Nova, D. A. & Floeter, S. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob. Ecol. Conserv. 11, 53–68 (2017).Article 

    Google Scholar 
    Vercammen, A. et al. Evaluating the impact of accounting for coral cover in large-scale marine conservation prioritizations. Divers. Distrib. 25(10), 1564–1574 (2019).Article 

    Google Scholar 
    Giakoumi, S., Grantham, H. S., Kokkoris, G. D. & Possingham, H. P. Designing a network of marine reserves in the Mediterranean Sea with limited socio-economic data. Biol. Conserv. 144(2), 753–763 (2011).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543(7647), 665–669 (2017).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Magris, R. A. et al. A blueprint for securing Brazil’s marine biodiversity and supporting the achievement of global conservation goals. Divers. Distrib. 27(2), 198–215 (2021).Article 

    Google Scholar 
    Day, J. C. Zoning—lessons from the Great Barrier Reef marine park. Ocean Coast. Manag. 45(2–3), 139–156 (2002).Article 

    Google Scholar 
    Agardy, T. Ocean Zoning: Making Marine Management More Effective (Earthscan, 2010).Makino, A., Klein, C. J., Beger, M., Jupiter, S. D. & Possingham, H. P. Incorporating conservation zone effectiveness for protecting biodiversity in marine planning. PLoS ONE 8(11), e78986 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Villa, F., Tunesi, L. & Agardy, T. Zoning marine protected areas through spatial multiple-criteria analysis: The case of the Asinara Island National Marine Reserve of Italy. Conserv. Biol. 16(2), 515–526 (2002).Article 

    Google Scholar 
    Muhl, E. K., Esteves Dias, A. C. & Armitage, D. Experiences with governance in three marine conservation zoning initiatives: Parameters for assessment and pathways forward. Front. Mar. Sci. 7, 629 (2020).Article 

    Google Scholar 
    Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6(1), 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Ban, N. C. et al. A social–ecological approach to conservation planning: Embedding social considerations. Front. Ecol. Environ. 11(4), 194–202 (2013).Article 

    Google Scholar 
    Teh, L. C., Teh, L. S. & Jumin, R. Combining human preference and biodiversity priorities for marine protected area site selection in Sabah, Malaysia. Biol. Conserv. 167, 396–404 (2013).Article 

    Google Scholar 
    Sarker, S., Rahman, M. M., Yadav, A. K. & Islam, M. M. Zoning of marine protected areas for biodiversity conservation in Bangladesh through socio-spatial data. Ocean Coast. Manag. 173, 114–122 (2019).Article 

    Google Scholar 
    Day, J. C., Kenchington, R. A., Tanzer, J. M. & Cameron, D. S. Marine zoning revisited: How decades of zoning the Great Barrier Reef has evolved as an effective spatial planning approach for marine ecosystem-based management. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 9–32 (2019).Article 

    Google Scholar 
    Claudet, J. et al. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130(3), 349–369 (2006).Article 

    Google Scholar 
    Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef Marine Park. Curr. Biol. 25(8), 983–992 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClure, E. C. et al. Higher fish biomass inside than outside marine protected areas despite typhoon impacts in a complex reefscape. Biol. Cons. 241, 108354 (2020).Article 

    Google Scholar 
    Bender, M. G. et al. Local ecological knowledge and scientific data reveal overexploitation by multigear artisanal fisheries in the Southwestern Atlantic. PLoS ONE 9(10), e110332 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Hamilton, R. J. et al. Hyperstability masks declines in bumphead parrotfish (Bolbometopon muricatum) populations. Coral Reefs 35(3), 751–763 (2016).Article 
    ADS 

    Google Scholar 
    Pereira, P. H. C., Ternes, M. L. F., Nunes, J. A. C. & Giglio, V. J. Overexploitation and behavioral changes of the largest South Atlantic parrotfish (Scarus trispinosus): Evidence from fishers’ knowledge. Biol. Conserv. 254, 108940 (2021).Article 

    Google Scholar 
    Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311(5757), 98–101 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5(1), e8657 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12(4), e12638 (2019).Article 

    Google Scholar 
    Liu, C., White, M. & Newell, G. Measuring and comparing the accuracy of species distribution models with presence–absence data. Ecography 34(2), 232–243 (2011).CAS 
    Article 

    Google Scholar 
    Miranda, R. J. et al. Integrating long term ecological research (LTER) and marine protected area management: Challenges and solutions. Oecol. Aust. 24(2), 279–300 (2020).Article 

    Google Scholar 
    ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais. ICMBio/MMA (2021).Jones, K. R. et al. Area requirements to safeguard Earth’s marine species. One Earth 2(2), 188–196 (2020).Article 
    ADS 

    Google Scholar 
    Figueiredo, M. S. & Grelle, C. E. V. Predicting global abundance of a threatened species from its occurrence: Implications for conservation planning. Divers. Distrib. 15(1), 117–121 (2009).Article 

    Google Scholar 
    Pearce, J. & Ferrier, S. The practical value of modelling relative abundance of species for regional conservation planning: A case study. Biol. Conserv. 98(1), 33–43 (2001).Article 

    Google Scholar 
    Ferreira, H. M., Magris, R. A., Floeter, S. R. & Ferreira, C. E. Drivers of ecological effectiveness of marine protected areas: A meta-analytic approach from the Southwestern Atlantic Ocean (Brazil). J. Environ. Manag. 301, 113889 (2021).Article 

    Google Scholar 
    Mills, M. et al. Real-world progress in overcoming the challenges of adaptive spatial planning in marine protected areas. Biol. Conserv. 181, 54–63 (2015).Article 

    Google Scholar 
    Bennett, N. J. et al. Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness. Conserv. Lett. 12(4), e12640 (2019).Article 

    Google Scholar 
    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30(1), 133–141 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Emslie, M. J. et al. Decades of monitoring have informed the stewardship and ecological understanding of Australia’s Great Barrier Reef. Biol. Conserv. 252, 108854 (2020).Article 

    Google Scholar 
    Gerhardinger, L. C., Godoy, E. A., Jones, P. J., Sales, G. & Ferreira, B. P. Marine protected dramas: The flaws of the Brazilian national system of marine protected areas. Environ. Manag. 47(4), 630–643 (2011).Article 
    ADS 

    Google Scholar 
    Oliveira, E. A., Martelli, H., Silva, A. C. S. E., Martelli, D. R. B. & Oliveira, M. C. L. Science funding crisis in Brazil and COVID-19: Deleterious impact on scientific output. Anais Acad. Bras. Ciênc. 92, 1–2 (2020).
    Floeter, S. R., Halpern, B. S. & Ferreira, C. E. L. Effects of fishing and protection on Brazilian reef fishes. Biol. Conserv. 128(3), 391–402 (2006).Article 

    Google Scholar 
    Bender, M. G., Floeter, S. R. & Hanazaki, N. Do traditional fishers recognise reef fish species declines? Shifting environmental baselines in E astern B razil. Fish. Manag. Ecol. 20(1), 58–67 (2013).Article 

    Google Scholar 
    Hoey, A. S. & Bonaldo, R. M. (eds) Biology of Parrotfishes (CRC Press, Boca Raton, 2018).
    Google Scholar 
    Frédou, T. & Ferreira, B. P. Bathymetric trends of Northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48(5), 787–800 (2005).Article 

    Google Scholar 
    Guerra, A. S. Wolves of the Sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Hawkins, J. P. & Roberts, C. M. Effects of fishing on sex-changing Caribbean parrotfishes. Biol. Cons. 115(2), 213–226 (2004).Article 

    Google Scholar 
    Tuya, F. et al. Effect of fishing pressure on the spatio-temporal variability of the parrotfish, Sparisoma cretense (Pisces: Scaridae), across the Canarian Archipelago (eastern Atlantic). Fish. Res. 7(1), 24–33 (2006).Article 

    Google Scholar 
    Steneck, R. S., Arnold, S. N. & Mumby, P. J. Experiment mimics fishing on parrotfish: Insights on coral reef recovery and alternative attractors. Mar. Ecol. Prog. Ser. 506, 115–127 (2014).Article 
    ADS 

    Google Scholar 
    Taylor, B. M., Trip, E. D., & Choat, J. H. Dynamic demography: Investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes 69–98 (CRC Press, 2018).Moura, R. L. & Francini-Filho, R. B. Reef and Shore Fishes of the Abrolhos Region, Brazil Vol. 38, 40–55 (RAP Bulletin of Biological Assessment, Washington, 2005).
    Google Scholar 
    Francini-Filho, R. B., Moura, R. L., Ferreira, C. M. & Coni, E. O. Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop. Ichthyol. 6, 191–200 (2008).Article 

    Google Scholar 
    Freitas, M. O. et al. Age, growth, reproduction and management of Southwestern Atlantic’s largest and endangered herbivorous reef fish, Scarus trispinosus Valenciennes, 1840. PeerJ 7, e7459 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinheiro, H. T. et al. An inverted management strategy for the fishery of endangered marine species. Front. Mar. Sci. 8, 172 (2021).Article 

    Google Scholar 
    Correia, M. D. Scleractinian corals (Cnidaria: Anthozoa) from reef ecosystems on the Alagoas coast, Brazil. J. Mar. Biol. Assoc. U. K. 91, 659–668 (2011).CAS 
    Article 

    Google Scholar 
    Santos, D. K. F., Rufino, R. D., Luna, J. M., Santos, V. A. & Sarubbo, L. A. Biosurfactants: Multifunctional biomolecules of the 21st century. Int. J. Mol. Sci. 17(3), 401 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    de Oliveira, S. et al. Oil spill in South Atlantic (Brazil): Environmental and governmental disaster. Mar. Policy 115, 103879 (2020).Article 

    Google Scholar 
    Teixeira, L. M. P. & Creed, J. C. A decade on: An updated assessment of the status of marine non-indigenous species in Brazil. Aquat. Invasions 15(1), 30–43 (2020).Article 

    Google Scholar 
    Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luiz, O. J. et al. Multiple lionfish (Pterois spp.) new occurrences along the Brazilian coast confirm the invasion pathway into the Southwestern Atlantic. Biol. Invasions 23, 3013–3019 (2021).Article 

    Google Scholar 
    Maida, M., & Ferreira, B. P. Coral reefs of Brazil: An overview. In Proceedings of the 8th International Coral Reef Symposium, Vol. 1, 263–274 (Smithsonian Tropical Research Institute Panamá, 1997).Pereira, P. H. C., Macedo, C. H., Nunes, J. D. A. C., Marangoni, L. F. D. B. & Bianchini, A. Effects of depth on reef fish communities: Insights of a “deep refuge hypothesis” from Southwestern Atlantic reefs. PLoS ONE 13(9), e0203072 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    ICMBIO. Plano de Manejo da Área de Proteção Ambiental Costa dos Corais (ICMBio/MMA, 2013).Hill, J. & Wilkinson, C. E. Methods for Ecological Monitoring of Coral Reefs Vol. 117 (Australian Institute of Marine Science, Townsville, 2004).
    Google Scholar 
    Dalapicolla, J. Tutorial de modelos de distribuição de espécies: guia prático usando o MaxEnt e o ArcGIS 10. Laboratório de Mastozoologia e Biogeografia. Universidade Federal do Espírito Santo, Vitória. Retrieved, 6 (2016).Phillips, S. J., Dudík, M., & Schapire, R. E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine learning, Vol. 83 (2004).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Anderson, R. P. & Martınez-Meyer, E. Modeling species’ geographic distributions for preliminary conservation assessments: An implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol. Conserv. 116(2), 167–179 (2004).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: An open-source release of Maxent. Ecography 40(7), 887–893 (2017).Article 

    Google Scholar 
    Rodrigues, E. D. C., Rodrigues, F. A., Rocha, R. L. A. & Corrêa, P. L. P. An adaptive maximum entropy approach for modeling of species distribution. Mem. WTA 108–117 (2010).Rodrigues, E. S. D. C., Rodrigues, F. A., Ricardo, L. D. A., Corrêa, P. L. & Giannini, T. C. Evaluation of different aspects of maximum entropy for niche-based modeling. Procedia Environ. Sci. 2, 990–1001 (2010).Article 

    Google Scholar 
    Hattab, T. et al. The use of a predictive habitat model and a fuzzy logic approach for marine management and planning. PLoS ONE 8(10), e76430 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Galante, P. J. et al. The challenge of modeling niches and distributions for data-poor species: A comprehensive approach to model complexity. Ecography 41(5), 726–736 (2018).Article 

    Google Scholar 
    Silber, G. K. et al. Projecting marine mammal distribution in a changing climate. Front. Mar. Sci. 4, 413 (2017).Article 

    Google Scholar 
    Perkins-Taylor, I. E. & Frey, J. K. Predicting the distribution of a rare chipmunk (Neotamias quadrivittatus oscuraensis): Comparing MaxEnt and occupancy models. J. Mammal. 101(4), 1035–1048 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, C. M., Lee, D. S., Kwon, T. S., Athar, M. & Park, Y. S. Predicting the global distribution of Solenopsis geminata (Hymenoptera: Formicidae) under climate change using the MaxEnt model. Insects 12(3), 229 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Possingham, H., Ball, I. & Andelman, S. Mathematical methods for identifying representative reserve networks. In Quantitative methods for conservation biology 291–306 (Springer, New York, 2000).Terrell, G. R. & Scott, D. W. Variable kernel density estimation.  Ann. Stat. 20(3), 1236–1265 (1992).
    O’Brien, S. H., Webb, A., Brewer, M. J. & Reid, J. B. Use of kernel density estimation and maximum curvature to set Marine Protected Area boundaries: Identifying a Special Protection Area for wintering red-throated divers in the UK. Biol. Conserv. 156, 15–21 (2012).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar  More

  • in

    Community confounding in joint species distribution models

    Historically, species distributions have been modeled independently from each other due to unavailability of multispecies datasets and computational restraints. However, ecological datasets that provide insights about collections of organisms have become prevalent over the last decade thanks to efforts like Long Term Ecological Research Network (LTER), National Ecological Observatory Network (NEON), and citizen science surveys1. In addition, technology has improved our ability to fit modern statistical models to these datasets that account for both species environmental preferences and interspecies dependence. These advancements have allowed for the development of joint species distribution models (JSDM)2,3,4 that can model dependence among species simultaneously with environmental drivers of occurrence and/or abundance.Species distributions are shaped by both interspecies dynamics and environmental preferences5,6,7,8. JSDMs integrate both sources of variability and adjust uncertainty to reflect that multiple confounded factors can contribute to similar patterns in species distributions. Some have proposed that JSDMs not only account for biotic interactions but also correct estimates of association between species distributions and environmental drivers3,9, while others claim JSDMs cannot disentangle the roles of interspecies dependence and environmental drivers5. We address why JSDMs can provide inference distinct from their concomitant independent SDMs, how certain parameterizations of a JSDM induce confounding between the environmental and random species effects, and when deconfounding these effects may be appealing for computation and interpretation.Because of the prevalence of occupancy data for biomonitoring in ecology, we focus our discussion of community confounding in JSDMs on occupancy models, although we also consider a JSDM for species density data in the simulation study. The individual species occupancy model was first formulated by MacKenzie et al.10 and has several joint species extensions4,11,12,13,14,15,16. We chose to investigate the impacts of community confounding on the probit model since it has been widely used in the analysis of occupancy data4,13,17. We also developed a joint species extension to the Royle-Nichols model18 and consider community confounding in that model.We use the probit and Royle-Nichols occupancy models to improve our understanding of montaine mammal communities in what follows. We show that including unstructured random species effects in either occupancy model induces confounding between the fixed environmental and random species effects. We demonstrate how to orthogonalize these effects in the model and compare the resulting inference compared to models where species are treated independently.Unlike previous approaches that have applied restricted regression techniques similar to ours, we use it in the context of well-known ecological models for species occupancy and intensity. While such approaches have been discussed in spatial statistics and environmental science, they have not been adopted in settings involving the multivariate analysis of community data. We draw parallels between restricted spatial regression and restricted JSDMs but also highlight where the methods differ in goals and outcomes. We find that the computational benefits conferred by performing restricted spatial regression also hold for some joint species distribution models.Royle-Nichols joint species distribution modelWe present a JSDM extension to the Royle-Nichols model18. The Royle-Nichols model accounts for heterogeneity in detection induced by the species’ latent intensity, a surrogate related to true species abundance. Abundance, density, and occupancy estimation often requires an explicit spatial region that is closed to emmigration and immigration. In our model, the unobservable intensity variable helps us explain heterogeneity in the frequencies we observe a species at different sites without making assumptions about population closure. In the “Model” section, we further discuss the distinctions between abundance and intensity in the Royle-Nichols model.The Royle-Nichols model utilizes occupancy survey data but provides inference distinct from the basic occupancy model10. In the Royle-Nichols model, we estimate individual detection probability for homogeneous members of the population, whereas in an occupancy model, we estimate probability of observing at least one member of the population given that the site is occupied. Furthermore, the Royle-Nichols model allows us to relate environmental covariates to the latent intensity associated with a species at a site, while in an occupancy model, environmental covariates are associated with the species latent probability of occupancy at a site. Species intensity and occupancy may be governed by different mechanisms, and inference from an intensity model can be distinct from that provided by an occupancy model19,20,21. Cingolani et al.20 proposed that, in plant communities, certain environmental filters preclude species from occupying a site and an additional set of filters may regulate if a species can flourish. Hence, certain covariates that were unimportant in an occupancy model may improve predictive power in an intensity model.Community confoundingSpecies distributions are shaped by environment as well as competition and mutualism within the community8,22,23. Community confounding occurs when species distributions are explained by a convolution of environmental and interspecies effects and can lead to inferential differences between a joint and single species distribution model as well as create difficulties for fitting JSDMs. Former studies have incorporated interspecies dependence into an occupancy model4,11,12,13,14,15,16, and others have addressed spatial confounding1,17,24,25, but none of these explicitly addressed community confounding. However, all Bayesian joint occupancy models naturally attenuate the effects of community confounding due to the prior on the regression coefficients. The prior, assuming it is proper, induces regularization on the regression coefficients26 that can lessen the inferential and computational impacts of confounding27. Furthermore, latent factor models like that described by Tobler et al.4 restrict the dimensionality of the random species effect which should also reduce confounding with the environmental effects.We address community confounding by formulating a version of our model that orthogonalizes the environmental effects and random species effects. Orthogonalizing the fixed and random effects is common practice in spatial statistics and often referred to as restricted spatial regression27,28,29,30,31. Restricted regression has been applied to spatial generalized linear mixed models (SGLMM) for observations (varvec{y},) which can be expressed as$$begin{aligned} varvec{y}&sim [varvec{y}|varvec{mu }, varvec{psi }], end{aligned}$$
    (1)
    $$begin{aligned} g(varvec{mu })&= varvec{X}varvec{beta } + varvec{eta }, end{aligned}$$
    (2)
    $$begin{aligned} varvec{eta }&sim mathcal {N}(varvec{0}, varvec{Sigma }), end{aligned}$$
    (3)
    where (g(cdot )) is a link function, (varvec{psi }) are additional parameters for the data model, and (varvec{Sigma }) is the covariance matrix of the spatial random effect. In the SGLMM, prior information facilitates the estimation of (varvec{eta },) which would not be estimable otherwise due to its shared column space with (varvec{beta })30. This is analogous to applying a ridge penalty to (varvec{eta },) which stabilizes the likelihood. Another method for fitting the confounded SGLMM is to specify a restricted version:$$begin{aligned} varvec{y}&sim [varvec{y}|varvec{mu }, varvec{psi }], end{aligned}$$
    (4)
    $$begin{aligned} g(varvec{mu })&= varvec{X}varvec{delta } + (varvec{I}-varvec{P}_{varvec{X}})varvec{eta }, end{aligned}$$
    (5)
    $$begin{aligned} varvec{eta }&sim mathcal {N}(varvec{0}, varvec{Sigma }), end{aligned}$$
    (6)
    where (varvec{P}_{varvec{X}}=varvec{X}(varvec{X}varvec{X})^{-1}varvec{X}’) is the projection matrix onto the column space of (varvec{X}.) In the unrestricted SGLMM, the regression coefficients (varvec{beta }) and random effect (varvec{eta }) in (1) compete to explain variability in the latent mean (varvec{mu }) in the direction of (varvec{X})27. In the restricted model, however, all variability in the direction of (varvec{X}) is explained solely by the regression coefficients (varvec{delta }) in (4)31, and (varvec{eta }) explains residual variation that is orthogonal to (varvec{X}). We refer to (varvec{beta }) as the conditional effects because they depend on (varvec{eta }), and (varvec{delta }) as the unconditional effects.Restricted regression, as specified in (4), was proposed by Reich et al.28. Reich et al.28 described a disease-mapping example in which the inclusion of a spatial random effect rendered one covariate effect unimportant that was important in the non-spatial model. Spatial maps indicated an association between the covariate and response, making inference from the spatial model appear untenable. Reich et al.28 proposed restricted spatial regression as a method for recovering the posterior expectations of the non-spatial model and shrinking the posterior variances which tend to be inflated for the unrestricted SGLMM.Several modifications of restricted spatial regression have been proposed30,32,33,34,35. All restricted spatial regression methods seek to provide posterior means (text {E}left( delta _j|varvec{y}right)) and marginal posterior variances (text {Var}left( delta _j|varvec{y}right)), (j=1,…,p) that satisfy the following two conditions36:

    1.

    (text {E}left( varvec{delta }|varvec{y}right) = text {E}left( varvec{beta }_{text {NS}}|varvec{y}right)) and,

    2.

    (text {Var}left( beta _{text {NS,}j}|varvec{y}right) le text {Var}left( delta _{j}|varvec{y}right) le text {Var}left( beta _{text {Spatial,}j}|varvec{y}right)) for (j=1,…,p),

    where (varvec{beta }_{NS}) and (varvec{beta }_{Spatial}) are the regression coefficients corresponding to the non-spatial and unrestricted spatial models, respectively.The inferential impacts of spatial confounding on the regression coefficients has been debated. Hodges and Reich29 outlined five viewpoints on spatial confounding and restricted regression in the literature and refuted the two following views:

    1.

    Adding the random effect (varvec{eta }) corrects for bias in (varvec{beta }) resulting from missing covariates.

    2.

    Estimates of (varvec{beta }) in a SGLMM are shrunk by the random effect and hence conservative.

    The random effect (varvec{eta }) can increase or decrease the magnitude of (varvec{beta }), and the change may be galvanized by mechanisms not related to missing covariates. Therefore, we cannot assume the regression coefficients in the SGLMM will exceed those of the restricted model, nor should we regard the estimates in either model as biased due to misspecification. Confounding in the SGLMM causes (text {Var}left( beta _j|varvec{y}right) ge text {Var}left( delta _j|varvec{y}right)), (j=1,…,p), because of the shared column space of the fixed and random effects. Thus, we refer to the conditional coefficients as conservative with regard to their credible intervals, not their posterior expectations.Reich et al.28 argued that restricted spatial regression should always be applied because the spatial random effect is generally added to improve predictions and/or correct the fixed effect variance estimate. While it may be inappropriate to orthogonalize a set of fixed effects in an ordinary linear model, orthogonalizing the fixed and random effect in a spatial model is permissible because the random effect is generally not of inferential interest. Paciorek37 provided the alternative perspective that, if confounding exists, it is inappropriate to attribute all contested variability in (varvec{y}) to the fixed effects. Hanks et al.31 discussed factors for deciding between the unrestricted and restricted SGLMM on a continuous spatial support. The restricted SGLMM leads to improved computational stability, but the unconditional effects are less conservative under model misspecification and more prone to type-S errors: The Bayesian analogue of Type I error. Fitting the unrestricted SGLMM when the fixed and random effects are truly orthogonal does not introduce bias, but it will increase the fixed effect variance. Given these considerations, Hanks et al.31 suggested a hybrid approach where the conditional effects, (varvec{beta }), are extracted from the restricted SGLMM. This is possible because the restricted SGLMM is a reparameterization of the unrestricted SGLMM. This hybrid approach leads to improved computational stability but yields the more conservative parameter estimates. We describe how to implement this hybrid approach for joint species distribution models in the “Community confounding” section.Restricted regression has also been applied in time series applications. Dominici et al.38 debiased estimates of fixed effects confounded by time using restricted smoothing splines. Without the temporal random effect, Dominici et al.38 asserted all temporal variation in the response would be wrongly attributed to temporally correlated fixed effects. Houseman et al.39 used restricted regression to ensure identifiability of a nonparametric temporal effect and highlighted certain covariate effects that were more evident in the restricted model (i.e., the unconditional effects’ magnitude was greater). Furthermore, restricted regression is implicit in restricted maximum likelihood estimation (REML). REML is often employed for debiasing the estimate of the variance of (varvec{y}) in linear regression and fitting linear mixed models that are not estimable in their unrestricted format40. Because REML is generally applied in the context of variance and covariance estimation, considerations regarding the effects of REML on inference for the fixed effects are lacking in the literature.In ecological science, JSDMs often include an unstructured random effect like (varvec{eta }) in (1) to account for interspecies dependence, and hence can also experience community confounding between (varvec{X}) and (varvec{eta }) analogous to spatial confounding. Unlike a spatial or temporal random effect, we consider random species effects to be inferentially important, rather than a tool solely for improving predictions or catch-all for missing covariates. An orthogonalization approach in a JSDM attributes contested variation between the fixed effects (environmental information) and random effect (community information) to the fixed effect.We describe how to orthogonalize the fixed and random species effects in a suite of JSDMs and present a method for detecting community confounding. In the simulation study, we test the efficacy of our method for detecting confounding, show that community confounding can lead to computational difficulties similar to those caused by spatial confounding31, and highlight that, for some models, restricted regression can improve model fitting. We also investigate the inferential implications of community confouding and restricted regression in JSDMs by comparing outputs from the SDM, unrestricted JSDM, and restricted JSDM of the Royle-Nichols and probit occupancy models fit to mammalian camera trap data. Lastly, we discuss other inferential and computational methods for confounded models and consider their appropriateness for joint species distribution modeling. More

  • in

    Contrasting reproductive strategies of two Hawaiian Montipora corals

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742. https://doi.org/10.1126/science.1152509 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933. https://doi.org/10.1126/science.1085046 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne‘ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950. https://doi.org/10.7717/peerj.950 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montilla, L. M., Ascanio, A., Verde, A. & Croquer, A. Systematic review and meta-analysis of 50 years of coral disease research visualized through the scope of network theory. PeerJ 7, e7041. https://doi.org/10.7717/peerj.7041 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, S. D., Walter, C. S. & Muller, E. M. Fine Scale temporal and spatial dynamics of the stony coral tissue loss disease outbreak within the lower Florida keys. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.631776 (2021).Article 

    Google Scholar 
    Harrison, P. L. in Coral Reefs: An Ecosystem in Transition (eds Zvy Dubinsky & Noga Stambler) 59–85 (Springer Netherlands, 2011).Richmond, R. H. & Hunter, C. L. Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar. Ecol. Prog. Ser. 60, 185–203 (1990).ADS 
    Article 

    Google Scholar 
    Humphrey, C., Weber, M., Lott, C., Cooper, T. & Fabricius, K. Effects of suspended sediments, dissolved inorganic nutrients and salinity on fertilisation and embryo development in the coral Acropora millepora (Ehrenberg, 1834). Coral Reefs 27, 837–850. https://doi.org/10.1007/s00338-008-0408-1 (2008).ADS 
    Article 

    Google Scholar 
    Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146. https://doi.org/10.1016/j.marpolbul.2004.11.028 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ayalon, I. et al. Coral gametogenesis collapse under artificial light pollution. Curr. Biol. 31, 413-419.e413. https://doi.org/10.1016/j.cub.2020.10.039 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224. https://doi.org/10.1007/BF00265014 (1990).ADS 
    Article 

    Google Scholar 
    Fisch, J., Drury, C., Towle, E. K., Winter, R. N. & Miller, M. W. Physiological and reproductive repercussions of consecutive summer bleaching events of the threatened Caribbean coral Orbicella faveolata. Coral Reefs 38, 863–876. https://doi.org/10.1007/s00338-019-01817-5 (2019).ADS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390. https://doi.org/10.1038/s41586-019-1081-y (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barfield, S., Aglyamova, G. V. & Matz, M. V. Evolutionary origins of germline segregation in Metazoa: evidence for a germ stem cell lineage in the coral Orbicella faveolata (Cnidaria, Anthozoa). Proc. Biol. Sci. https://doi.org/10.1098/rspb.2015.2128 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Highsmith, R. C. Reproduction by fragmentation in corals. Mar. Ecol. Prog. Ser. 7, 207–226 (1982).ADS 
    Article 

    Google Scholar 
    Baums, I. B. A restoration genetics guide for coral reef conservation. Mol. Ecol. 17, 2796–2811. https://doi.org/10.1111/j.1365-294X.2008.03787.x (2008).Article 
    PubMed 

    Google Scholar 
    Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394. https://doi.org/10.1007/BF00428562 (1986).Article 

    Google Scholar 
    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571. https://doi.org/10.1146/annurev.ecolsys.110308.120220 (2009).Article 

    Google Scholar 
    Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trends Ecol. Evol. 10, 228–231. https://doi.org/10.1016/S0169-5347(00)89071-0 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13. https://doi.org/10.1016/S0169-5347(99)01744-9 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bouwmeester, J. et al. Multi-species spawning synchrony within scleractinian coral assemblages in the Red Sea. Coral Reefs 34, 65–77. https://doi.org/10.1007/s00338-014-1214-6 (2015).ADS 
    Article 

    Google Scholar 
    Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Reproductive seasonality in an equatorial assemblage of scleractinian corals. Coral Reefs 24, 112–116. https://doi.org/10.1007/s00338-004-0433-7 (2005).Article 

    Google Scholar 
    Chelliah, A. et al. First record of multi-species synchronous coral spawning from Malaysia. PeerJ 3, e777. https://doi.org/10.7717/peerj.777 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunter, C. L. in Proceedings of the 6th International Coral Reef Symposium Vol. 2, 727–732 (1988).Jokiel, P. L., Ito, R. Y. & Liu, P. M. Night irradiance and synchronization of lunar release of planula larvae in the reef coral Pocillopora damicornis. Mar. Biol. 88, 167–174. https://doi.org/10.1007/BF00397164 (1985).Article 

    Google Scholar 
    Willis, B. L., Babcock, R. C., Harrison, P. L., Oliver, J. K. & Wallace, C. C. in Proceedings of the 5th International Coral Reef Congress Vol. 4, 343–348 (1985).Brady, A. K., Hilton, J. D. & Vize, P. D. Coral spawn timing is a direct response to solar light cycles and is not an entrained circadian response. Coral Reefs 28, 677–680. https://doi.org/10.1007/s00338-009-0498-4 (2009).ADS 
    Article 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Timing of reproduction in Montastraea annularis: relationship to environmental variables. Mar. Ecol. Prog. Ser. 227, 241–251. https://doi.org/10.3354/meps227241 (2002).ADS 
    Article 

    Google Scholar 
    van Woesik, R. Calm before the spawn: global coral spawning patterns are explained by regional wind fields. Proc. Biol. Sci. 277, 715–722. https://doi.org/10.1098/rspb.2009.1524 (2010).Article 
    PubMed 

    Google Scholar 
    Twan, W.-H. et al. Hormones and reproduction in scleractinian corals. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 144, 247–253. https://doi.org/10.1016/j.cbpa.2006.01.011 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tan, E. S., Izumi, R., Takeuchi, Y., Isomura, N. & Takemura, A. Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Sci. Rep. 10, 9914. https://doi.org/10.1038/s41598-020-66020-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141. https://doi.org/10.3354/meps237133 (2002).ADS 
    Article 

    Google Scholar 
    Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10. https://doi.org/10.2307/24894795 (2014).ADS 
    Article 

    Google Scholar 
    Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. https://doi.org/10.1071/rd15526 (2016).Article 

    Google Scholar 
    Ward, S., Harrison, P. L. & Hoegh-Guldberg, O. in Proceedings of the Ninth International Coral Reef Symposium Vol. 2, 1123–1128 (2002).Lager, C. V. A., Hagedorn, M., Rodgers, K. S. & Jokiel, P. L. The impact of short-term exposure to near shore stressors on the early life stages of the reef building coral Montipora capitata. PeerJ 8, e9415. https://doi.org/10.7717/peerj.9415 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vermeij, M. J. A., Fogarty, N. D. & Miller, M. W. Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 310, 119–128. https://doi.org/10.3354/meps310119 (2006).ADS 
    Article 

    Google Scholar 
    Torres, J. L., Armstrong, R. A. & Weil, E. Enhanced ultraviolet radiation can terminate sexual reproduction in the broadcasting coral species Acropora cervicornis (Lamarck). J. Exp. Mar. Biol. Ecol. 358, 39–45. https://doi.org/10.1016/j.jembe.2008.01.022 (2008).Article 

    Google Scholar 
    Wellington, G. M. & Fitt, W. K. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192. https://doi.org/10.1007/s00227-003-1150-4 (2003).CAS 
    Article 

    Google Scholar 
    Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511–516. https://doi.org/10.1017/S0967199415000477 (2016).Article 
    PubMed 

    Google Scholar 
    Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: influence of temperature. Biol. Bull. 222, 192–202. https://doi.org/10.1086/BBLv222n3p192 (2012).Article 
    PubMed 

    Google Scholar 
    Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs https://doi.org/10.1007/s00338-021-02129-3 (2021).Article 

    Google Scholar 
    Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102. https://doi.org/10.3354/meps235093 (2002).ADS 
    Article 

    Google Scholar 
    Johnston, E. C., Counsell, C. W. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 00, 1–11. https://doi.org/10.1111/1365-2435.13653 (2020).Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338. https://doi.org/10.1038/s41598-018-25414-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de la Cruz, D. W. & Harrison, P. L. Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Sci. Rep. 7, 13985. https://doi.org/10.1038/s41598-017-14546-y (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Villanueva, R. D., Baria, M. V. B. & de la Cruz, D. W. Growth and survivorship of juvenile corals outplanted to degraded reef areas in Bolinao-Anda Reef Complex, Philippines. Mar. Biol. Res. 8, 877–884. https://doi.org/10.1080/17451000.2012.682582 (2012).Article 

    Google Scholar 
    Chamberland, V. F. et al. Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes. Global Ecol. Conserv. 4, 526–537. https://doi.org/10.1016/j.gecco.2015.10.005 (2015).Article 

    Google Scholar 
    Hunter, C. L. & Evans, C. W. Coral reefs in Kaneohe Bay, Hawaii: two centuries of western influence and two decades of data. Bull. Mar. Sci. 57, 501–515 (1995).
    Google Scholar 
    Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13. https://doi.org/10.2984/69.1.1 (2015).Article 

    Google Scholar 
    Maragos, J. E. et al. 2000–2002 rapid ecological assessment of corals (Anthozoa) on shallow reefs of the Northwestern Hawaiian Islands. Part 1: species and distribution. Pac. Sci. 58, 211–230. https://doi.org/10.1353/psc.2004.0020 (2004).Article 

    Google Scholar 
    Richards Donà, A. Investigation into the functional role of chromoproteins in the physiology and ecology of the Hawaiian stony coral Montipora flabellata in Kāne‘ohe Bay, O‘ahu, University of Hawaiʻi at Mānoa, (2019).Padilla-Gamiño, J. L. & Gates, R. D. Spawning dynamics in the Hawaiian reef-building coral Montipora capitata. Mar. Ecol. Prog. Ser. 449, 145–160. https://doi.org/10.3354/meps09530 (2012).ADS 
    Article 

    Google Scholar 
    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164. https://doi.org/10.1007/BF00336722 (1983).ADS 
    Article 

    Google Scholar 
    Kolinski, S. P. & Cox, E. F. An update on modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac. Sci. 57, 17–27. https://doi.org/10.1353/psc.2003.0005 (2003).Article 

    Google Scholar 
    Heyward, A. J. Sexual reproduction in five species of the coral Montipora. Coral Reef Popul. Biol. Hawaii Inst. Mar. Biol. Tech. Rep. 37, 170–178 (1985).
    Google Scholar 
    Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: causes and consequences. Ecology 69, 1552–1565. https://doi.org/10.2307/1941653 (1988).Article 

    Google Scholar 
    Padilla-Gamiño, J. L. et al. Sedimentation and the reproductive biology of the Hawaiian reef-building coral Montipora capitata. Biol. Bull. 226, 8–18. https://doi.org/10.1086/BBLv226n1p8 (2014).Article 
    PubMed 

    Google Scholar 
    Humason, G. L. Animal Tissue Techniques. 661 (W. H. Freeman & Co, 1979).Abramoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    Szmant-Froelich, A., Reutter, M. & Riggs, L. Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull. Mar. Sci. 37, 880–892 (1985).
    Google Scholar 
    Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122. https://doi.org/10.1007/s00338-005-0070-9 (2006).ADS 
    Article 

    Google Scholar 
    Baird, A. H., Blakeway, D. R., Hurley, T. J. & Stoddart, J. A. Seasonality of coral reproduction in the Dampier Archipelago, northern Western Australia. Mar. Biol. 158, 275–285. https://doi.org/10.1007/s00227-010-1557-7 (2011).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org, 2019).An {R} Companion to Applied Regression. Third Edition (Sage, Thousand Oaks (CA), 2019).Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. R package version 2.3.7. https://CRAN.R-project.org/package=rcompanion. (2019).Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay, Hawaiʻi. PeerJ 3, e1136. https://doi.org/10.7717/peerj.1136 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahr, K. D., Rodgers, K. S. & Jokiel, P. L. Impact of three bleaching events on the reef resiliency of Kāne‘ohe Bay, Hawai‘i. Front. Mar. Sci. 4, 398. https://doi.org/10.3389/fmars.2017.00398 (2017).Article 

    Google Scholar 
    Bachtiar, I. Reproduction of three scleractinian corals (Acropora cytherea, A. nobilis, Hydnophora rigida) in easter Lombok Strait, Indonesia. Indones. J. Mar. Sci. 6, 18–27 (2001).
    Google Scholar 
    Baird, A. H., Marshall, P. A. & Wolstenholme, J. in Proceedings of the 9th International Coral Reef Symposium Vol. 1, 385–389 (2002).Mangubhai, S. & Harrison, P. L. Asynchronous coral spawning patterns on equatorial reefs in Kenya. Mar. Ecol. Prog. Ser. 360, 85–96. https://doi.org/10.3354/meps07385 (2008).ADS 
    Article 

    Google Scholar 
    Prasetia, R., Sinniger, F. & Harii, S. Gametogenesis and fecundity of Acropora tenella (Brook 1892) in a mesophotic coral ecosystem in Okinawa, Japan. Coral Reefs 35, 53–62. https://doi.org/10.1007/s00338-015-1348-1 (2016).ADS 
    Article 

    Google Scholar 
    Parker, G. A. Why are there so many tiny sperm? Sperm competition and the maintenance of two sexes. J. Theor. Biol. 96, 281–294. https://doi.org/10.1016/0022-5193(82)90225-9 (1982).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hayward, A. & Gillooly, J. F. The cost of sex: quantifying energetic investment in gamete production by males and females. PLoS ONE 6, e16557. https://doi.org/10.1371/journal.pone.0016557 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fenner, D. P. Corals of Hawai’i. A field guide to the hard, black, and soft corals of Hawai’i and the northwest Hawaiian Islands, including Midway (Mutual Publishing Company, 2005).
    Google Scholar 
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386. https://doi.org/10.1111/j.1461-0248.2012.01861.x (2012).Article 
    PubMed 

    Google Scholar 
    Okubo, N., Motokawa, T. & Omori, M. When fragmented coral spawn? effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Mar. Biol. 151, 353–363. https://doi.org/10.1007/s00227-006-0490-2 (2006).Article 

    Google Scholar 
    Szmant-Froelich, A., Yevich, P. & Pilson, M. E. Q. Gametogenesis and early development of the temperate coral Astrangia danae (Anthozoa: Scleractinia). Biol. Bull. 158, 257–269. https://doi.org/10.2307/1540935 (1980).Article 

    Google Scholar 
    Kojis, B. L. Sexual reproduction in Acropora (Isopora) (Coelenterata: Scleractinia). Mar. Biol. 91, 311–318. https://doi.org/10.1007/BF00428624 (1986).Article 

    Google Scholar 
    Neves, E. & Pires, D. Sexual reproduction of Brazilian coral Mussismilia hispida (Verrill, 1902). Coral Reefs 21, 161–168. https://doi.org/10.1007/s00338-002-0217-x (2002).Article 

    Google Scholar 
    Pennington, J. T. The ecology of fertilization of Echinoid eggs: the consequences of sperm dilution, adult aggregation, and synchronous spawning. Biol. Bull. 169, 417–430. https://doi.org/10.2307/1541492 (1985).Article 
    PubMed 

    Google Scholar 
    Oliver, J. & Babcock, R. C. Aspects of the fertilization ecology of broadcast spawning corals: sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417. https://doi.org/10.2307/1542017 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lasker, H. R. et al. In situ rates of fertilization among broadcast spawning Gorgonian corals. Biol. Bull. 190, 45–55. https://doi.org/10.2307/1542674 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315. https://doi.org/10.4319/lo.2002.47.1.0309 (2002).ADS 
    Article 

    Google Scholar 
    van Woesik, R., Lacharmoise, F. & Köksal, S. Annual cycles of solar insolation predict spawning times of Caribbean corals. Ecol. Lett. 9, 390–398. https://doi.org/10.1111/j.1461-0248.2006.00886.x (2006).Article 
    PubMed 

    Google Scholar 
    Wolstenholme, J. K. Temporal reproductive isolation and gametic compatibility are evolutionary mechanisms in the Acropora humilis species group (Cnidaria; Scleractinia). Mar. Biol. 144, 567–582. https://doi.org/10.1007/s00227-003-1209-2 (2004).Article 

    Google Scholar 
    Colley, S. B., Feingold, J. S., Peña, J. & Glynn, P. W. in Proceedings of the 9th International Coral Reef Symposium Vol. 1, 23–27 (2000).Chaves-Fonnegra, A., Maldonado, M., Blackwelder, P. & Lopez, J. V. Asynchronous reproduction and multi-spawning in the coral-excavating sponge Cliona delitrix. J. Mar. Biol. Assoc. U.K. 96, 515–528. https://doi.org/10.1017/S0025315415000636 (2016).Article 

    Google Scholar 
    Chamberland, V. F., Snowden, S., Marhaver, K. L., Petersen, D. & Vermeij, M. J. A. The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae). Coral Reefs 36, 83–94. https://doi.org/10.1007/s00338-016-1504-2 (2017).ADS 
    Article 

    Google Scholar 
    Sherman, C. D. H. Mating system variation in the hermaphroditic brooding coral, Seriatopora hystrix. Heredity 100, 296–303. https://doi.org/10.1038/sj.hdy.6801076 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yeoh, S.-R. & Dai, C.-F. The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Mar. Biol. 157, 351–359. https://doi.org/10.1007/s00227-009-1322-y (2010).Article 

    Google Scholar 
    Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525. https://doi.org/10.1038/s41598-021-91030-8 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coma, R. & Lasker, H. R. Effects of spatial distribution and reproductive biology on in situ fertilization rates of a broadcast-spawning invertebrate. Biol. Bull. 193, 20–29. https://doi.org/10.2307/1542733 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Westneat, M. W. & Resing, J. M. Predation on coral spawn by planktivorous fish. Coral Reefs 7, 89–92. https://doi.org/10.1007/BF00301646 (1988).ADS 
    Article 

    Google Scholar 
    Fitzhugh, G. R., Shertzer, K. W., Kellison, G. T. & Wyanski, D. M. Review of size- and age-dependence in batch spawning: implications for stock assessment of fish species exhibiting indeterminate fecundity. Fish. Bull. 110, 413–425 (2012).
    Google Scholar 
    Alvarado, E. M., García, R. & Acosta, A. Sexual reproduction of the reef-building coral Diploria labyrinthiformis (Scleractinia:Faviidae), in the Colombian Caribbean. Rev. Biol. Trop. 52, 859–868 (2004).PubMed 

    Google Scholar 
    Maragos, J. E. A Study of the Ecology of Hawaiian Reef Corals, University of Hawaiʻi at Mānoa, (1972).Jokiel, P. L. & Brown, E. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641. https://doi.org/10.1111/j.1365-2486.2004.00836.x (2004).ADS 
    Article 

    Google Scholar 
    Courchamp, F., Clutton-Brock, T. & Grenfell, B. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410. https://doi.org/10.1016/S0169-5347(99)01683-3 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Berec, L., Angulo, E. & Courchamp, F. Multiple Allee effects and population management. Trends Ecol. Evol. 22, 185–191. https://doi.org/10.1016/j.tree.2006.12.002 (2007).Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More