More stories

  • in

    Seed choice in ground beetles is driven by surface-derived hydrocarbons

    Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40, 45–44 (2015).Article 

    Google Scholar 
    Zalucki, M., Furlong, M. J., Schellhorn, N. A., Macfadyen, S. & Davies, A. P. Assessing the impact of natural enemies in agroecosystems: toward “real” IPM or in quest of Holy Grail? Insect. Sci. 22, 1–5 (2015).PubMed 
    Article 

    Google Scholar 
    Van Lenteren, J. C., Bolckmans, K., Kohl, J., Ravensberg, W. J. & Urabaneja, A. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63, 39–59 (2018).Article 

    Google Scholar 
    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biological control agents. Annu. Rev. Entomol. 47, 561–594 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B. 273, 1715–1727 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Nouhuys, S., Niemikapee, S. & Hanski, I. Variation in a host-parasitoid interaction across independent populations. Insects 3, 1236–1256 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hedlund, K., Vet, L. E. M. & Dicke, M. Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos 77, 390–398 (1996).Article 

    Google Scholar 
    Evans, E. W., Stevenson, A. T. & Richards, D. R. Essential versus alternative foods of insect predators: benefits of a mixed diet. Oelcologia 121, 107–112 (1999).Article 

    Google Scholar 
    Lovei, G. L. & Sunderland, K. M. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41, 231–256 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kromp, B. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyt. Environ. 74, 187–228 (1999).Article 

    Google Scholar 
    Tuf, H., Dedek, P. & Vesley, M. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature, or habitat? Arch. Biol. Sci. 64, 721–732 (2012).Article 

    Google Scholar 
    Firlej, A., Doyon, J., Harwood, J. D. & Brodeur, J. A multi-approach study to delineate interaction between carabid beetles and soybean aphids. Environ. Entomol. 42, 89–96 (2013).PubMed 
    Article 

    Google Scholar 
    Clark, M. S., Luna, J. M., Stone, N. D. & Youngman, R. R. Generalist predator consumption of armyworm (Lepidoptera: Noctuidae) and effect of predator removal and damage in no-till corn. Environ. Entomol. 23, 617–622 (1994).Article 

    Google Scholar 
    Floate, K. D., Doane, J. F. & Gillot, C. Carabid predators of the wheat midge (Diptera: Cecidomyiidae) in Saskatchewan. Environ. Entomol. 19, 1503–1511 (1990).Article 

    Google Scholar 
    Barsics, F., Haubruge, E. & Verheggen, F. J. Wireworms’ management: an overview of the existing methods, with particular regards to Agriotis spp. (Coleoptera: Elateridae). Insects 4, 117–152 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oberholzer, F., Escher, N. & Frank, T. The potential of carabid beetles (Coleoptera) to reduce slug damage to oilseed rape in the laboratory. Eur. J. Entomol. 100, 81–85 (2003).Article 

    Google Scholar 
    Honek, A., Martinkova, Z. & Jarosik, V. Ground beetles Carabidae as seed predators. Eur. J. Entomol. 100, 531–544 (2003).Article 

    Google Scholar 
    Lundgren, J. G. Relationship of Natural Enemies and Non-prey Foods 1–460 (Springer, 2009).Carbonne, B. et al. The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey. Sci. Rep. 10, 1935 (2020).Article 
    CAS 

    Google Scholar 
    Wilder, S. M., Norris, M., Lee, R. W., Raubenheimer, D. & Simpson, S. J. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16, 895–902 (2013).PubMed 
    Article 

    Google Scholar 
    Denno, R. F. & Fagan, W. F. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84, 2522–2531 (2003).Article 

    Google Scholar 
    Saska, P. & Jarosik, V. Laboratory study of larval food requirements in nine species of Amara (Coleoptera: Carabidae). Plant Prot. 37, 103–110 (2001).
    Google Scholar 
    Saska, P., Van der Werf, W. & Westerman, P. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of weed seed predation. Bull. Entomological Res. 98, 169–181 (2008).CAS 
    Article 

    Google Scholar 
    Talarico, F., Giglio, A., Pizzolotto, R. & Brandmayr, P. P. A synthesis of the feeding habits and reproductive rhythms in Italian seed feeding ground beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 325–336 (2016).Article 

    Google Scholar 
    Fawki, S., Bak, S. S. & Toft, S. Food preference and food value for the carabid beetles Pterostichus melanarius, P. versicolor, and Carabus nemoralis. Eur. Carabidol. 114, 99–109 (2003).
    Google Scholar 
    Frei, B., Guenay, Y., Bohan, B. A., Traugett, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across central Europe. J. Plant Sci. 92, 935–942 (2019).
    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. Brassicaceous weed seed predation by ground beetles (Coleoptera: Carabidae). Weed. Sci. 64, 294–302 (2016).Article 

    Google Scholar 
    Saska, P., Honek, A., Foffova, H. & Martinkova, Z. Burial-induced changes in the seed preferences of carabid beetles (Coleoptera: Carabidae). Eur. J. Entomol. 116, 113–140 (2019).Article 

    Google Scholar 
    Saska, P., Honek, A. & Martinkova, Z. Preference of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 65, 57–76 (2019).Article 

    Google Scholar 
    Sih, A. & Christensen, B. Optimal diet theory: when does it work, and when and why does it fail? Anim. Behav. 61, 379–390 (2001).Article 

    Google Scholar 
    Barron, A. B., Gurney, K. N., Meah, L. F. S., Vasilaki, E. & Marshall, J. A. R. Decision-making and action selection in insects: inspiration from vertebrate-based theories. Front. Behav. Neurosci. 9, 216 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: a review. Weed. Sci. 63, 355–376 (2015).Article 

    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. Seed detection and discrimination by ground beetles (Coleoptera: Carabidae) are associated with olfactory cues. PLoS One 12, e0170593 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Law, J. J. & Gallagher, R. S. The role of imbibition on seed selection by Harpalus pensylvanicus. Appl. Soil. Ecol. 87, 118–124 (2015).Article 

    Google Scholar 
    Davis, A. S., Schutte, B. J., Iannuzzi, J. & Renner, K. A. Chemical and physical defenses of weed seeds in relation to soil seedbank persistence. Weed Sci. 56, 676–684 (2008).CAS 
    Article 

    Google Scholar 
    Ali, K. A. & Willneborg., C. J. C. J. The biology of seed discrimination and its role in shaping the foraging ecology of carabids: a review. Ecol. Evol. 11, 13702–13722 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wheater, C. P. Prey detection by some predatory Coleoptera (Carabidae and Staphylinidae). J. Zool. 215, 171–185 (1989).Article 

    Google Scholar 
    Mundy, C. A., Aleen-Williams, L. J., Underwood, N. & Warrington, S. Prey selection and foraging behavior by Pterostichus cupreus L. (Col., Carabidae) under laboratory conditions. J. Appl. Entomol. 124, 349–358 (2000).Article 

    Google Scholar 
    Kielty, J. P., Allen-Williams, L. J., Underwood, N. & Eastwood, E. A. Behavioral responses of three species of ground beetles (Carabidae: Coloeptera) to olfactory cues associated with prey and habitat. J. Insect. Behav. 9, 237–249 (1996).Article 

    Google Scholar 
    Tréfás, H., Canning, H., McKinlay, R. G., Armstrong, G. & Bujaki, G. Preliminary experiments on the olfactory responses of Pterostichus melanarius Illiger (Coleoptera:Carabidae) to intact plants. Agric. Entomol. 3, 71–76 (2001).Article 

    Google Scholar 
    McKemey, A. R., Symondson, W. O. C. & Glen, D. M. Predation and prey size choice by the carabid Pterostichus melanarius (Coleoptera: Carabidae): the dangers of extrapolating from laboratory to field. Bull. Entomol. Res. 93, 227–234 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas, R. S., Glen, D. M. & Symondson, W. O. C. Prey detection through olfaction by the soil-dwelling larvae of the carabid predator Pterostichus melanarius. Soil Biol. Biochem. 40, 207–216 (2008).CAS 
    Article 

    Google Scholar 
    Talarico, F. et al. Electrophysiological and behavioral analyses on prey selecting in the myrmecophagous carabid beetle Siagona europaea Dejean 1826 (Coleoptera: Carabidae). Etho. Ecol. Evol. 22, 375–384 (2010).Article 

    Google Scholar 
    Dessaint, F., Chadoeuf, R. & Barrales, G. Spatial pattern analysis of weed seeds in the cultivated soil seed bank. J. Appl. Ecol. 28, 721–730 (1991).Article 

    Google Scholar 
    Oster, M., Smith, L., Beck, J. J., Howard, A. & Field, C. B. Orientational behavior of predaceous ground beetle species in response to volatile emissions identified from yellow starthistle damaged by an invasive slug. Arthropod-Plant. Inte. 8, 429–437 (2014).Article 

    Google Scholar 
    Srinivasan, M. V., Poteser, M. & Karl, K. Motion detection in insect orientation and navigation. Vis. Res. 39, 2749–2766 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sato, K. & Touhara, K. Insect olfaction: receptors, signal transduction, and behavior. Cell 47, 121–138 (2009).CAS 

    Google Scholar 
    Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Ann. Rev. Entomol. 58, 373–391 (2013).CAS 
    Article 

    Google Scholar 
    Schmidt, H. R. & Benton, R. Molecular mechanisms of olfactory detection in insects: beyond receptors. Open Biol. 10, 200252 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prokopy, R. J. & Owens, E. D. Visual detection of plants by herbivorous insects. Ann. Rev. Entomol. 28, 337–364 (1983).Article 

    Google Scholar 
    Ploomi, A. et al. Antennal sensilla in ground beetles (Coleoptera: Carabidae). Agron. Res. 1, 221–228 (2003).
    Google Scholar 
    Merivee, E. et al. Electrophysiological responses from neurons of antennal taste sensilla in the polyphagous predatory ground beetle Pterostichus oblongopunctatus (Fabricius 1787) to plant sugars and amin acids. J. Insect. Physiol. 54, 1213–1219 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Merivee, E., Ploomi, A., Luik, A., Rahi, M. & Smmelselg, V. Antennal sensilla of the ground beetle Platynus dorsalis (Pontoppidan, 1763) (Coleoptera: Carabidae). Micros. Res. Tech. 55, 339–349 (2001).CAS 
    Article 

    Google Scholar 
    Merivee, E. et al. Antennal sensilla of the ground beetle Bembidion properans Steph. (Coleoptera: Carabidae). Micron 33, 429–440 (2002).PubMed 
    Article 

    Google Scholar 
    Giglio, A., Perotta, E., Talarico, F., Brandmayr, T. E. & Ferrera, E. A. Sensilla on the maxillary and labial palps in a helicophagous ground beetle larva (Coleoptera: Carabidae). Acta Zool. 200, 1463–6393 (2013).
    Google Scholar 
    Van Naters, W. V. D. G. & Carlson, J. R. J. R. Receptors and neurons for fly odors in Drosophila. Curr. Biol. 17, 606–612 (2007).Article 
    CAS 

    Google Scholar 
    Amrein, H. & Throne, N. Gustatory perception and behavior in Dropsophila melanogaster. Curr. Biol. 15, R673–R684 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Su, C. Y., Menuz, K. & Carlson, J. R. Olfactory perception: receptors, cells, and circuits. Cell 139, 45–59 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krieger, J. & Breer, H. Olfactory receptors in invertebrates. Science 286, 720–723 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapman, R. F. The Insects: Structure and Function 4th edn, 1–584 (Cambridge University Press, 1998).Bhandari, S. R., Jo, J. S. & Lee, J. G. Comparisons of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20, 15827–15841 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reifenrath, K., Riederer, M. & Muller, M. Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol. Exp. Appl. 115, 41–50 (2005).CAS 
    Article 

    Google Scholar 
    Stadler, E. & Reifenrath, K. Glucosinolates on the leaf surface perceived by insect herbivores: review of ambiguous results and new investigations. Phytoch. Rev. 8, 207–225 (2009).Article 
    CAS 

    Google Scholar 
    Sharma, A., Sandhi, R. K. & Reddy, G. V. P. A review of interactions between insect biological control agents and semiochemicals. Insects 10, 439 (2019).PubMed Central 
    Article 

    Google Scholar 
    Warwick, S. I., Francis, A. & Susko, D. J. The biology of Canadian weeds. 9. Thlaspi arvense L. (updated). Can. J. Plant. Sci. 82, 803–823 (2002).Article 

    Google Scholar 
    Moyna, P. & Garcia, M. Chemical composition of oat seed epicuticular lipids. J. Sci. Food Agric. 34, 209–211 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kunst, L. & Samuels, A. L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51–80 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eigenbrode, S. D. & Espelie, K. E. Effects of plants epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40, 171–194 (1995).Article 

    Google Scholar 
    Finch, S. Volatile plant chemicals and their effect on host plant by the cabbage root fly (Delia brassicae). Entomol. Exp. Appl. 24, 350–359 (1978).CAS 
    Article 

    Google Scholar 
    Udayagiri, S. & Mason, C. E. Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. J. Chem. Ecol. 23, 1675–1687 (1997).CAS 
    Article 

    Google Scholar 
    Adati, T. & Matsuda, K. The effect of leaf surface wax on feeding of the strawberry leaf beetle, Galerucella vittaticollis, with reference to host plant preference. Tohoku. J. Agric. Res. 50, 57–61 (2000).
    Google Scholar 
    Damon, S. J., Groves, R. L. & Harvey, M. J. Variation for epicuticular waxes on onion foliage and impacts on numbers of onion thrips. J. Am. Soc. Hortic. Sci. 139, 495–501 (2014).CAS 
    Article 

    Google Scholar 
    Braccini, C. L., Vega, A. S., Chludil, H. D., Leicach, S. R. & Fernandez, P. C. Host selection, oviposition behavior and leaf traits in a specialist willow sawfly on species of Salix (Salicaceae). Ecol. Entomol. 38, 617–626 (2013).Article 

    Google Scholar 
    Wojcicka, A. Effects of epicuticular waxes from triticale on the feeding behaviour and mortality of the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). J. Plant. Prot. Res. 56, 39–44 (2016).CAS 
    Article 

    Google Scholar 
    Medina, E. et al. Taxonomic significance of the epicuticular wax composition in species of genus Clusia from Panama. Biochem. Syst. Ecol. 34, 319–326 (2006).CAS 
    Article 

    Google Scholar 
    Schulz-Bohm, K., Martin-Sanchez, L. & Garbeva, P. Microbial volatiles: small molecules with an inter-kingdom interactions. Front. Microbiol. 8, 2484 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ali, K. A. Mechanisms of Seed Discrimination and Selective Seed Foraging in Carabid Weed Seed Predators. https://harvest.usask.ca/bitstream/handle/10388/13815/ALI-DISSERTATION-2022.pdf?sequence=1&isAllowed=y (2022).Webster, B., Qvarfordt, E., Olsson, U. & Glinwood, R. Different roles for innate and learnt behavioral responses to odors in insect host location. Behav. Ecol. 24, 366–372 (2013).Article 

    Google Scholar 
    Luff, M. L. Adult and larval feeding habits of Pterostichus madidus (F.) (Carabidae: Coleoptera). J. Nat. Hist. 8, 403–409 (1974).Article 

    Google Scholar 
    Blubaugh, C. K. & Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 64, 80–86 (2016).Article 

    Google Scholar 
    Blubaugh, C. K., Hagler, J. R., Machtley, S. A. & Kaplan, I. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric. Ecosyst. Environ. 231, 264–270 (2016).Article 

    Google Scholar 
    Foffova, H. et al. Which seed properties determine the preferences of carabid beetles seed predators? Insects 11, 757 (2020).Petit, S., Boursault, A. & Bohan, D. A. Weed seed choice by carabid beetles (Coleoptera: Carabidae): linking field measurements and laboratory diet assessments. Eur. J. Entomol. 111, 615–620 (2014).Article 

    Google Scholar 
    Carbonne, B. et al. Direct and indirect effects of landscape and field management intensity on carabids through trophic resources and weeds. J. Appl. Ecol. 59, 176–187 (2022).Article 

    Google Scholar 
    Foffova, H., Bohan, D. A. & Saska, P. Do properties and species of weed seeds affect their consumption by carabid beetles? Acta Zool. Acad. Sci. Hung. 66, 37–48 (2020b).Article 

    Google Scholar 
    De Heij, S. E. & Willenborg, C. J. Connected carabids: network interactions and their impact on biocontrol by carabid beetles. Bioscience 70, 90–500 (2020).Article 

    Google Scholar 
    Honek, A., Martinkova, Z., Saska, P. & Pekar, S. Size and taxonomic constraints determine seed preference of Carabidae (Coleoptera). Basic Appl. Ecol. 8, 343–353 (2007).Article 

    Google Scholar 
    Spence, J. R. & Niemela, J. K. Sampling carabid assemblages with pitfall traps: the madness and the method. Can. Entomol. 126, 881–884 (1994).Article 

    Google Scholar 
    Lindroth, C. H. The Ground Beetles (Carabidae, excluding Cicindelinae) of Canada and Alaska. Supplement 20, 24, 29, 33, 34, 35. Part I, pages I–XLVIII, 1969. Part II, pages 1–200, 1961. Part III, pages 201–408, 1963. Part IV, pages 409–648, 1966. Part V, pages 649–944, 1968. Part VI, pages 945–1192 (Opusca Entomology, 1961–1969).White, S. S., Renner, K. A., Menalled, F. D. & Landis, D. A. Feeding preferences of weed seed predators and effect on weed emergence. Weed. Sci. 55, 606–612 (2007).CAS 
    Article 

    Google Scholar 
    Glinwood, R., Ahmed, E., Ovarfordt, E. & Ninkovic, V. Olfactory learning of plant genotypes by a polyphagous predator. Oecologia 166, 637–647 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sablon, L., Dickens, J. C., Haubruge, E. H. & Verhggen., F. J. Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and potential for alternative control methods. Insects 4, 31–54 (2013).Article 

    Google Scholar 
    Zhang, L., Li, H. & Zhang, L. Two olfactory pathways to detect aldehydes on locust mouthpart. Int. J. Biol. Sci. 13, 759–771 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pekar, S. & Hruskova, M. M. How granivorous Coreus marginatus (Hemiptera: Cereidae) recognizes its food. Acta Ethol. 9, 26–30 (2006).Article 

    Google Scholar 
    Ardenghi, N., Mulch, A., Pross, J. & Niedermeyer, E. M. Leaf wax n-alkane extraction: an optimized procedure. Org. Geochem. 113, 283–292 (2017).CAS 
    Article 

    Google Scholar 
    Takahashi, S. & Gassa, A. Roles of cuticular hydrocarbons in intra- and interspecific recognition behavior of two Rhinotermitidae species. J. Chem. Ecol. 21, 1837–1845 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Nobre, J. S. & Singer, J. D. M. Residual analysis for linear mixed models. Biom. J. 49, 863–875 (2007).PubMed 
    Article 

    Google Scholar 
    Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).Article 

    Google Scholar  More

  • in

    Mapping peat thickness and carbon stocks of the central Congo Basin using field data

    Field-data collectionFieldwork was conducted in DRC between January 2018 and March 2020. Ten transects (4–11 km long) were installed, identical to the approach in ref. 9, in locations that were highly likely to be peatland. These were selected to help test hypotheses about the role of vegetation, surface wetness, nutrient status and topography in peat accumulation (Fig. 1a and Supplementary Table 1). A further eight transects (0.5–3 km long) were installed to assess our peat mapping capabilities (Fig. 1a and Supplementary Table 1).Every 250 m along each transect, land cover was classified as one of six classes: water, savannah, terra firme forest, non-peat-forming seasonally inundated forest, hardwood-dominated peat swamp forest or palm-dominated peat swamp forest. Peat swamp forest was classified as palm dominated when >50% of the canopy, estimated by eye, was palms (commonly Raphia laurentii or Raphia sese). In addition, several ground-truth points were collected at locations in the vicinity of each transect from the clearly identifiable land-cover classes water, savannah and terra firme forest.Peat presence/absence was recorded every 250 m along all transects, and peat thickness (if present) was measured by inserting metal poles into the ground until the poles were prevented from going any further by the underlying mineral layer, identical to the pole method of ref. 9. In addition, a core of the full peat profile was extracted every kilometre along the ten hypothesis-testing transects, if peat was present, with a Russian-type corer (52 mm stainless steel Eijkelkamp model); these 63 cores were sealed in plastic for laboratory analysis.Peat-thickness laboratory measurementsPeat was defined as having an organic matter (OM) content of ≥65% and a thickness of ≥0.3 m (sensu ref. 9). Therefore, down-core OM content of all 63 cores was analysed to measure peat thickness. The organic matter content of each 0.1-m-thick peat sample was estimated via loss on ignition (LOI), whereby samples were heated at 550 °C for 4 h. The mass fraction lost after heating was used as an estimate of total OM content (% of mass). Peat thickness was defined as the deepest 0.1 m with OM ≥ 65%, after which there is a transition to mineral soil. Samples below this depth were excluded from further analysis. Rare mineral intrusions into the peat layer above this depth, where OM 4× the mean Cook’s distance were excluded as influential outliers. Mean pole-method offset was significantly higher along the DRC transects (0.94 m) than along those in ROC (0.48 m; P  More

  • in

    Farm size affects the use of agroecological practices on organic farms in the United States

    Wanger, T. C. et al. Integrating agroecological production in a robust post-2020 Global Biodiversity Framework. Nat. Ecol. Evol. 4, 1150–1152 (2020).PubMed 
    Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amundson, R. et al. Soil and human security in the 21st century. Science 348, 1261071 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Robertson, G. P. & Vitousek, P. M. Nitrogen in agriculture: balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 34, 97–125 (2009).Article 

    Google Scholar 
    Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).Article 

    Google Scholar 
    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Krebs, A. V. The Corporate Reapers: The Book of Agribusiness (Essential Books, 1992).Mortensen, D. A. & Smith, R. G. Confronting barriers to cropping system diversification. Front. Sustain. Food Syst. 4, 564197 (2020).Article 

    Google Scholar 
    2017 Census of Agriculture – 2019 Organic Survey (USDA NASS, 2020); https://www.nass.usda.gov/Publications/AgCensus/2017/index.phpFarms and Land in Farms 2019 Summary (USDA NASS, 2020); https://usda.library.cornell.edu/concern/publications/5712m6524Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221 (2016).PubMed 
    Article 

    Google Scholar 
    Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1290 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—a meta-analysis and meta-regression. PLoS ONE 12, e0180442 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seufert, V. & Ramankutty, N. Many shades of gray—the context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    USDA AMS. National Organic Program; Final Rule, 7 CFR Part 205. Fed. Regist. 65, 80547–80684 (2000).
    Google Scholar 
    Wezel, A. et al. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 29, 503–515 (2009).Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34, 154–166 (2019).PubMed 
    Article 

    Google Scholar 
    Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed 
    Article 

    Google Scholar 
    Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012).
    Google Scholar 
    Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).Article 

    Google Scholar 
    Wood, S. A. et al. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol. Evol. 30, 531–539 (2015).PubMed 
    Article 

    Google Scholar 
    Faucon, M.-P., Houben, D. & Lambers, H. Plant functional traits: soil and ecosystem services. Trends Plant Sci. 22, 385–394 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Hose, T. et al. The positive relationship between soil quality and crop production: a case study on the effect of farm compost application. Appl. Soil Ecol. 75, 189–198 (2014).Article 

    Google Scholar 
    Fließbach, A., Oberholzer, H.-R., Gunst, L. & Mäder, P. Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric. Ecosyst. Environ. 118, 273–284 (2007).Article 

    Google Scholar 
    Francioli, D. et al. Mineral vs. organic amendments: microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies. Front. Microbiol. 7, 1446 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: a US meta-analysis. Geoderma 369, 114335 (2020).CAS 
    Article 

    Google Scholar 
    Blanco-Canqui, H. & Ruis, S. J. No-tillage and soil physical environment. Geoderma 326, 164–200 (2018).Article 

    Google Scholar 
    Willekens, K., Vandecasteele, B., Buchan, D. & De Neve, S. Soil quality is positively affected by reduced tillage and compost in an intensive vegetable cropping system. Appl. Soil Ecol. 82, 61–71 (2014).Article 

    Google Scholar 
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaplin-Kramer, R., de Valpine, P., Mills, N. J. & Kremen, C. Detecting pest control services across spatial and temporal scales. Agric. Ecosyst. Environ. 181, 206–212 (2013).Article 

    Google Scholar 
    Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 

    Google Scholar 
    Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X., Liu, X., Zhang, M., Dahlgren, R. A. & Eitzel, M. A review of vegetated buffers and a meta-analysis of their mitigation efficacy in reducing nonpoint source pollution. J. Environ. Qual. 39, 76–84 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eyhorn, F. et al. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253–255 (2019).Article 

    Google Scholar 
    Buck, D., Getz, C. & Guthman, J. From farm to table: the organic vegetable commodity chain of northern California. Sociol. Rural. 37, 3–20 (1997).Article 

    Google Scholar 
    Guthman, J. Raising organic: an agro-ecological assessment of grower practices in California. Agric. Hum. Values 17, 257–266 (2000).Article 

    Google Scholar 
    Guthman, J. The trouble with ‘organic lite’ in California: a rejoinder to the ‘conventionalisation’ debate. Sociol. Rural. 44, 301–316 (2004).Article 

    Google Scholar 
    Darnhofer, I., Lindenthal, T., Bartel-Kratochvil, R. & Zollitsch, W. Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review. Agron. Sustain. Dev. 30, 67–81 (2010).Article 

    Google Scholar 
    Constance, D. H., Choi, J. Y. & Lyke-Ho-Gland, H. Conventionalization, bifurcation, and quality of life: certified and non-certified organic farmers in Texas. J. Rural Soc. Sci. 23, 208–234 (2008).
    Google Scholar 
    2017 Census of Agriculture – United States Summary and State Data (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.php2017 Census of Agriculture: Characteristics of All Farms and Farms with Organic Sales (USDA NASS, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.phpPonisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wezel, A. et al. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 34, 1–20 (2014).Article 

    Google Scholar 
    Gomiero, T., Pimentel, D. & Paoletti, M. G. Environmental impact of different agricultural management practices: conventional vs. organic agriculture. Crit. Rev. Plant Sci. 30, 95–124 (2011).Article 

    Google Scholar 
    Tittonell, P. et al. Agroecology in large scale farming—a research agenda. Front. Sustain. Food Syst. 4, 584605 (2020).Article 

    Google Scholar 
    Haan, N. L., Zhang, Y. & Landis, D. A. Predicting landscape configuration effects on agricultural pest suppression. Trends Ecol. Evol. 35, 175–186 (2020).PubMed 
    Article 

    Google Scholar 
    Martin, E. A., Seo, B., Park, C.-R., Reineking, B. & Steffan-Dewenter, I. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields. Ecol. Appl. 26, 448–462 (2016).PubMed 
    Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 

    Google Scholar 
    Olimpi, E. M. et al. Evolving food safety pressures in California’s central coast region. Front. Sustain. Food Syst. 3, 102 (2019).Article 

    Google Scholar 
    Karp, D. S. et al. The unintended ecological and social impacts of food safety regulations in California’s central coast region. BioScience 65, 1173–1183 (2015).Article 

    Google Scholar 
    Bovay, J., Ferrier, P. & Zhen, C. Estimated Costs for Fruit and Vegetable Producers To Comply With the Food Safety Modernization Act’s Produce Rule, EIB-195 (U.S. Department of Agriculture, Economic Research Service, 2018).Coombes, B. & Campbell, H. Dependent reproduction of alternative modes of agriculture: organic farming in New Zealand. Sociol. Rural. 38, 127–145 (1998).Article 

    Google Scholar 
    Hughner, R. S., McDonagh, P., Prothero, A., Shultz, C. J. & Stanton, J. Who are organic food consumers? A compilation and review of why people purchase organic food. J. Consum. Behav. 6, 94–110 (2007).Article 

    Google Scholar 
    Smith, E. & Marsden, T. Exploring the ‘limits to growth’ in UK organics: beyond the statistical image. J. Rural Stud. 20, 345–357 (2004).Article 

    Google Scholar 
    Howard, P. H. Concentration and Power in the Food System: Who Controls What We Eat? (Bloomsbury, 2016).Arcuri, A. The transformation of organic regulation: the ambiguous effects of publicization. Regul. Gov. 9, 144–159 (2015).Article 

    Google Scholar 
    Seufert, V., Ramankutty, N. & Mayerhofer, T. What is this thing called organic? – How organic farming is codified in regulations. Food Policy 68, 10–20 (2017).Article 

    Google Scholar 
    Guthman, J. in Alternative Food Politics: From the Margins to the Mainstream (eds. Phillipov, M. & Kirkwood, K.) 23–36 (Routledge, 2019).Jaffee, D. & Howard, P. H. Corporate cooptation of organic and fair trade standards. Agric. Hum. Values 27, 387–399 (2010).Article 

    Google Scholar 
    Campbell, H. & Rosin, C. After the ‘organic industrial complex’: an ontological expedition through commercial organic agriculture in New Zealand. J. Rural Stud. 27, 350–361 (2011).Article 

    Google Scholar 
    Lockie, S. & Halpin, D. The ‘conventionalisation’ thesis reconsidered: structural and ideological transformation of Australian organic agriculture. Sociol. Rural. 45, 284–307 (2005).Article 

    Google Scholar 
    Prokopy, L. S. et al. Adoption of agricultural conservation practices in the United States: evidence from 35 years of quantitative literature. J. Soil Water Conserv. 74, 520–534 (2019).Article 

    Google Scholar 
    Pretty, J. et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441–446 (2018).Article 

    Google Scholar 
    Gliessman, S. Transforming food systems with agroecology. Agroecol. Sustain. Food Syst. 40, 187–189 (2016).Article 

    Google Scholar 
    Hill, S. B. Redesigning the food system for sustainability. Alternatives 12, 32–36 (1985).
    Google Scholar 
    Padel, S., Levidow, L. & Pearce, B. UK farmers’ transition pathways towards agroecological farm redesign: evaluating explanatory models. Agroecol. Sustain. Food Syst. 44, 139–163 (2020).Article 

    Google Scholar 
    Esquivel, K. E. et al. The ‘sweet spot’ in the middle: why do mid-scale farms adopt diversification practices at higher rates? Front. Sustain. Food Syst. 5, 734088 (2021).Article 

    Google Scholar 
    Brislen, L. Meeting in the middle: scaling-up and scaling-over in alternative food networks. Cult. Agric. Food Environ. 40, 105–113 (2018).Article 

    Google Scholar 
    De Master, K. New inquiries into the agri-cultures of the middle. Cult. Agric. Food Environ. 40, 130–135 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated marginal means, aka least-squares means. R package version 1.7.4-1 https://CRAN.R-project.org/package=emmeans (2021).Wasserstein, R. L. & Lazar, N. A. The ASA statement on p-values: context, process, and purpose. Am. Stat. 70, 129–133 (2016).Article 

    Google Scholar 
    Krueger, J. I. & Heck, P. R. Putting the P-value in its place. Am. Stat. 73, 122–128 (2019).Article 

    Google Scholar 
    Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond ‘p < 0.05’. Am. Stat. 73(Suppl. 1), 1–19 (2019).Article  Google Scholar  Agresti, A. Categorical Data Analysis (Wiley, 2013). More

  • in

    Net greenhouse gas balance with cover crops in semi-arid irrigated cropping systems

    United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2015). Accessed on 16 Dec 2021.Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21(7), 2655–2660 (2015).ADS 
    Article 

    Google Scholar 
    Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 15 °C target. Nat. Clim. Change 9(1), 66–72 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).CAS 
    Article 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tubiello, F. N. et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 16, 065007 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, P. et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) (Cambridge University Press, 2014).
    Google Scholar 
    Schlesinger, W. H. & Andrews, J. A. Soil respiration and the global carbon cycle. Biogeochemistry 78, 7–20 (2000).Article 

    Google Scholar 
    Smith, K. A. & Conen, F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage. 20, 245–253 (2004).
    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, S. K. et al. Nitrous oxide emissions from managed grassland: A comparison of eddy covariance and static chamber measurements. Atmos. Meas. Tech. 4, 2179–2194 (2011).CAS 
    Article 

    Google Scholar 
    Chapuis‐Lardy, L., Wrage, N., Metay, A., Chotte, J. L. & Bernoux, M. Soils, a sink for N2O? A review. Glob. Change Biol. 13, 1–17 (2007).ADS 
    Article 

    Google Scholar 
    Sanz-Cobena, A. et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 466, 164–174 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37(1), 1–17 (2017).Article 

    Google Scholar 
    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).CAS 
    Article 

    Google Scholar 
    Guardia, G. et al. Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. J Clean. Prod. 241, 118307 (2019).CAS 
    Article 

    Google Scholar 
    Osipitan, O. A., Dille, J. A., Assefa, Y. & Knezevic, S. Z. Cover crop for early season weed suppression in crops: Systematic review and meta-analysis. Agron. J. 110(6), 2211–2221 (2018).Article 

    Google Scholar 
    Thapa, R., Mirsky, S. B. & Tully, K. L. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. J. Environ. Qual. 47(6), 1400–1411 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Snapp, S. S. et al. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 97, 322–332 (2005).Article 

    Google Scholar 
    Reicks, G. W. et al. Winter cereal rye cover crop decreased nitrous oxide emissions during early spring. Agron. J. 113, 3900–3909 (2021).CAS 
    Article 

    Google Scholar 
    Behnke, G. D. & Villamil, M. B. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field Crops Res. 241, 107580 (2019).Article 

    Google Scholar 
    Blanco-Canqui, H., Holman, J. D., Schlegel, A. J., Tatarko, J. & Shaver, T. M. Replacing fallow with cover crops in a semi-arid soil: Effects on soil properties. Soil Sci. Soc. Am. J. 77, 1026–1034 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).Article 

    Google Scholar 
    Smith, P. et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 363, 789–813 (2008).CAS 
    Article 

    Google Scholar 
    Finney, D. M., White, C. M. & Kaye, J. P. Biomass production and carbon nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 108, 39–52 (2016).CAS 
    Article 

    Google Scholar 
    Drost, S. M., Rutgers, M., Wouterse, M., De Boer, W. & Bodelier, P. L. Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma 361, 114060 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Thapa, V. R., Ghimire, R., Acosta-Martínez, V., Marsalis, M. A. & Schipanski, M. E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semi-arid cropping systems. Appl. Soil Ecol. 157, 103735 (2021).Article 

    Google Scholar 
    Muhammad, I. et al. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil Till. Res. 192, 103–112 (2019).Article 

    Google Scholar 
    Sarkodie-Addo, J., Lee, H. C. & Baggs, E. M. Nitrous oxide emissions after application of inorganic fertilizer and incorporation of green manure residues. Soil Use Manage. 19, 331–339 (2006).Article 

    Google Scholar 
    Guardia, G. et al. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences 13, 5245–5257 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Mitchell, D. C., Castellano, M. J., Sawyer, J. E. & Pantoja, J. Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon. Soil Sci. Soc. Am. J. 77, 1765 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Bodner, G., Mentler, A., Klik, A., Kaul, H. P. & Zechmeister-Boltenstern, S. Do cover crops enhance soil greenhouse gas losses during high emission moments under temperate Central Europe conditions? Die Bodenkult J. Land Manage. Food Environ. 68, 171–187 (2018).Article 
    CAS 

    Google Scholar 
    Álvaro-Fuentes, J., Easter, M. & Paustian, K. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155, 87–94 (2012).Article 
    CAS 

    Google Scholar 
    Bronson, K. F. et al. Carbon and nitrogen pools of southern High Plains cropland and grassland soils. Soil Sci. Soc. Am. J. 68, 1695–1704 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhou, X., Talley, M. & Luo, Y. Biomass, litter and soil respiration along a precipitation gradient in Southern Great Plains, USA. Ecosystems 12, 1369–1380 (2009).CAS 
    Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).ADS 
    Article 

    Google Scholar 
    Antosh, E., Idowu, J., Schutte, B. & Lehnhoff, E. Winter cover crops effects on soil properties and sweet corn yield in semi-arid irrigated systems. Agron. J. 112, 92–106 (2020).Article 

    Google Scholar 
    Paye, W. S. et al. Cover crop water use and corn silage production in semi-arid irrigated conditions. Agric. Water Manage. 260, 107275 (2022).Article 

    Google Scholar 
    Paye, W. S., Acharya, P. & Ghimire, R. Water productivity of forage sorghum in response to winter cover crops in semi-arid irrigated conditions. Field Crops Res. 283, 108552 (2022).Article 

    Google Scholar 
    Garba, I. I., Bell, L. W. & Williams, A. Cover crop legacy impacts on soil water and nitrogen dynamics, and on subsequent crop yields in drylands: A meta-analysis. Agron. Sustain. Dev. 42(3), 1–21 (2022).Article 
    CAS 

    Google Scholar 
    Gabriel, J. L., Muñoz-Carpena, R. & Quemada, M. The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ. 155, 50–61 (2012).CAS 
    Article 

    Google Scholar 
    Trost, B. et al. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain Dev. 33, 733–749 (2013).CAS 
    Article 

    Google Scholar 
    Nilahyane, A., Ghimire, R., Thapa, V. R. & Sainju, U. M. Cover crop effects on soil carbon dioxide emissions in a semiarid cropping system. Agrosyst. Geosci. Environ. 3, e20012 (2020).
    Google Scholar 
    Thapa, V. R., Ghimire, R., Duval, B. D. & Marsalis, M. A. Conservation systems for positive net ecosystem carbon balance in semi-arid drylands. Agrosyst. Geosci. Environ. 2, 1–8 (2019).Article 

    Google Scholar 
    Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25(8), 2530–2543 (2019).ADS 
    Article 

    Google Scholar 
    Larionova, A. A., Sapronov, D. V., de Gerenyu, V. L., Kuznetsova, L. G. & Kudeyarov, V. N. Contribution of plant root respiration to the CO2 emission from soil. Eurasian Soil Sci. 39, 1127–1135 (2006).ADS 
    Article 

    Google Scholar 
    Hanson, P. J., Edwards, N. T., Garten, C. T. & Andrews, J. A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115–146 (2000).CAS 
    Article 

    Google Scholar 
    Rochette, P., Flanagan, L. B. & Gregorich, E. G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci. Soc. Am. J. 63, 1207–1213 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Sainju, U. M., Jabro, J. D. & Stevens, W. B. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. J. Environ. Qual. 37, 98–106 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mosier, A. R., Halvorson, A. D., Reule, C. A. & Liu, X. J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 35, 1584–1598 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, J. et al. Stover retention rather than no-till decreases the global warming potential of rainfed continuous maize cropland. Field Crops Res. 219, 14–23 (2018).Article 

    Google Scholar 
    USDA Soil Survey Staff. Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (2022). Accessed on 23 Jan 2022.Zibilske, L. M. Carbon mineralization. In Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties (eds Weaver, R. W. et al.). https://doi.org/10.2136/sssabookser5.2.c38 (Soil Science Society of America Journal, 1994).Chapter 

    Google Scholar 
    Sainju, U. M. Net global warming potential, and greenhouse gas intensity. Soil Sci. Soc. Am. J. 84, 1393–1404 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haile-Mariam, S., Collins, H. P. & Higgins, S. S. Greenhouse gas fluxes from an irrigated sweet corn (Zea mays L.)–potato (Solanum tuberosum L.) rotation. J. Environ. Qual. 37(3), 759–771 (2008).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Clearance and persistence of Escherichia coli in the freshwater mussel Unio mancus

    Galvani, A. P., Bauch, C. T., Anand, M., Singer, B. H. & Levin, S. A. Human–environment interactions in population and ecosystem health. Proc. Natl. Acad. Sci. U. S. A. 113, 14502–14506 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    WHO Director-General. Health, environment and climate change. Draft WHO global strategy on health, environment and climate change: The transformation needed to improve lives and well-being sustainably through healthy environments. vol. 18 https://apps.who.int/gb/ebwha/pdf_files/WHA72/A72_15-en.pdf?ua=1 (2019).Queenan, K., Häsler, B. & Rushton, J. A One Health approach to antimicrobial resistance surveillance: Is there a business case for it?. Int. J. Antimicrob. Agents 48, 422–427 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aslam, B. et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 11, 1645–1658 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh, T. R. A one-health approach to antimicrobial resistance. Nat. Microbiol. 3, 854–855 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 356, 983–989 (2001).CAS 
    Article 

    Google Scholar 
    Kruse, H., Kirkemo, A. M. & Handeland, K. Wildlife as source of zoonotic infections. Emerg. Infect. Dis. 10, 2067–2072 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, T. et al. Links between ecological integrity, emerging infectious diseases and other aspects of human health—An overview of the literature. https://wcs.org (2020).Rabinowitz, P. M., Cullen, M. R. & Lake, H. R. Wildlife as sentinels for human health hazards: A review of study designs. J. Environ. Med. 1, 217–223 (1999).Article 

    Google Scholar 
    Rabinowitz, P. M. et al. Animals as sentinels of human environmental health hazards: An evidence-based analysis. EcoHealth 2, 26–37 (2005).Article 

    Google Scholar 
    Fox, G. A. Wildlife as sentinels of human health effects in the Great Lakes-St. Lawrence basin. Environ. Health Perspect. 109, 853–861 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    Burket, S. R. et al. Corbicula fluminea rapidly accumulate pharmaceuticals from an effluent dependent urban stream. Chemosphere 224, 873–883 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ricciardi, A. & Rasmussen, J. B. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222 (1999).Article 

    Google Scholar 
    Ismail, N. S. et al. Improvement of urban lake water quality by removal of Escherichia coli through the action of the bivalve Anodonta californiensis. Environ. Sci. Technol. 49, 1664–1672 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ismail, N. S., Tommerdahl, J. P., Boehm, A. B. & Luthy, R. G. Escherichia coli reduction by bivalves in an impaired river impacted by agricultural land use. Environ. Sci. Technol. 50, 11025–11033 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burge, C. A. et al. The use of filter-feeders to manage disease in a changing world. Integr. Comp. Biol. 56, 573–587 (2016).PubMed 
    Article 

    Google Scholar 
    Aceves, A. K., Johnson, P., Bullard, S. A., Lafrentz, S. & Arias, C. R. Description and characterization of the digestive gland microbiome in the freshwater mussel Villosa nebulosa (Bivalvia: Unionidae). J. Molluscan Stud. 84, 240–246 (2018).Article 

    Google Scholar 
    Gu, J. D. & Mitchell, R. Indigenous microflora and opportunistic pathogens of the freshwater zebra mussel, Dreissena polymorpha. Hydrobiologia 474, 81–90 (2002).Article 

    Google Scholar 
    Gomes, J. F. et al. Biofiltration using C. fluminea for E. coli removal from water: Comparison with ozonation and photocatalytic oxidation. Chemosphere 208, 674–681 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burkhardt, W. & Calci, K. R. Selective accumulation may account for shellfish-associated viral illness. Appl. Environ. Microbiol. 66, 1375–1378 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huyvaert, K. P. et al. Freshwater clams as bioconcentrators of avian influenza virus in water. Vector-Borne Zoonotic Dis. 12, 904–906 (2012).PubMed 
    Article 

    Google Scholar 
    Le Guyader, F. S. et al. Norwalk virus-specific binding to oyster digestive tissues. Emerg. Infect. Dis. 12, 931–936 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palos Ladeiro, M., Aubert, D., Villena, I., Geffard, A. & Bigot, A. Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): Interest for water biomonitoring. Water Res. 48, 148–155 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palos Ladeiro, M., Bigot-Clivot, A., Aubert, D., Villena, I. & Geffard, A. Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: An organotropism study. Environ. Sci. Pollut. Res. 22, 13693–13701 (2015).CAS 
    Article 

    Google Scholar 
    Mezzanotte, V. et al. Removal of enteric viruses and Escherichia coli from municipal treated effluent by zebra mussels. Sci. Total Environ. 539, 395–400 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cope, W. G. et al. Differential exposure, duration, and sensitivity of unionoidean bivalve life stages to environmental contaminants. J. N. Am. Benthol. Soc. 27, 451–462 (2008).Article 

    Google Scholar 
    Diamond, J. M., Bressler, D. W. & Serveiss, V. B. Assessing relationships between human land uses and the decline of native mussels, fish, and macroinvertebrates in the Clinch and Powell river watershed, USA. Environ. Toxicol. Chem. 21, 1147–1155 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Augspurger, T., Dwyer, F. J., Ingersoll, C. G. & Kane, C. M. Advances and opportunities in assessing contaminant sensitivity of freshwater mussel (Unionidae) early life stages. Environ. Toxicol. Chem. 26, 2025–2028 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lopes-Lima, M. & Seddon, M. B. Unio mancus. The IUCN Red List of Threatened Species 2014: e. T22737A42466471 (2014). https://doi.org/10.2305/IUCN.UK.2014-3.RLTS.T22737A42466471.en.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 (2004).Article 

    Google Scholar 
    Strayer, D. L. et al. Changing perspectives on pearly Mussels, North America’s most imperiled. Animals 54, 429–439 (2004).
    Google Scholar 
    Araujo, R. et al. The naiads of the Iberian Peninsula. Iberus 27, 7–72 (2009).
    Google Scholar 
    Araujo, R. et al. Who wins in the weaning process? Juvenile feeding morphology of two freshwater mussel species. J. Morphol. 279, 4–16 (2018).PubMed 
    Article 

    Google Scholar 
    Hinzmann, M., Bessa, L. J., Teixeira, A., Da Costa, P. M. & Machado, J. Antimicrobial and antibiofilm activity of unionid mussels from the North of Portugal. J. Shellfish Res. 37, 121–129 (2018).Article 

    Google Scholar 
    Mo, C. & Neilson, B. Standardization of oyster soft tissue dry weight measurements. Water Res. 28, 243–246 (1994).CAS 
    Article 

    Google Scholar 
    Kryger, J. & Riisgård, H. U. Filtration rate capacities in 6 species of European freshwater bivalves. Oecologia 77, 34–38 (1988).ADS 
    PubMed 
    Article 

    Google Scholar 
    Ostrovsky, I., Gophen, M. & Kalikhman, I. Distribution, growth, production, and ecological significance of the clam Unio terminalis in Lake Kinneret, Israel. Hydrobiologia 271, 49–63 (1993).Article 

    Google Scholar 
    Møhlenberg, F. & Riisgård, H. U. Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17, 239–246 (1978).Article 

    Google Scholar 
    Møhlenberg, F. & Riisgård, H. U. Filtration rate, using a new indirect technique, in thirteen species of suspension-feeding bivalves. Mar. Biol. 54, 143–147 (1979).Article 

    Google Scholar 
    Riisgård, H. U. On measurement of filtration rates in bivalves—The stony road to reliable data: Review and interpretation. Mar. Ecol. Prog. Ser. 211, 275–291 (2001).ADS 
    Article 

    Google Scholar 
    Mills, S. C. & Reynolds, J. D. Mussel ventilation rates as a proximate cue for host selection by bitterling, Rhodeus sericeus. Oecologia 131, 473–478 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    Filgueira, R., Labarta, U. & Fernández-Reiriz, M. J. Effect of condition index on allometric relationships of clearance rate in Mytilus galloprovincialis Lamarck, 1819. Rev. Biol. Mar. Oceanogr. 43, 391–398 (2008).Article 

    Google Scholar 
    Silverman, H., Achberger, E. C., Lynn, J. W. & Dietz, T. H. Filtration and utilization of laboratory-cultured bacteria by Dreissena polymorpha, Corbicula fluminea, and Carunculina texasensis. Biol. Bull. 189, 308–319 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maki, J. S., Patel, G. & Mitchell, R. Experimental pathogenicity of Aeromonas spp. for the Zebra mussel, Dreissena polymorpha. Curr. Microbiol. 36, 19–23 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Love, D. C., Lovelace, G. L. & Sobsey, M. D. Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration. Int. J. Food Microbiol. 143, 211–217 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Mesquita, M. M. F., Evison, L. M. & West, P. A. Removal of faecal indicator bacteria and bacteriophages from the common mussel (Mytilus edulis) under artificial depuration conditions. J. Appl. Bacteriol. 70, 495–501 (1991).PubMed 
    Article 

    Google Scholar  More

  • in

    Assessment of Eurasian lynx reintroduction success and mortality risk in north-west Poland

    Sunquist, M. E. & Sunquist, F. C. Family Felidae. In Handbook of the Mammals of the World Vol. 1 (eds Wilson, D. E. & Mittermeier, R. A.) 54–170 (Lynx Editions, 2009).
    Google Scholar 
    Breitenmoser, U. et al. Action plan for the conservation of the Eurasian Lynx (Lynx lynx) in Europe. Nat. Environ. 112, 1–70 (2000).
    Google Scholar 
    Linnell, J. D. C., Breitenmoser, U., Breitenmoser-Würsten, C., Odden, J. & von Arx, M. Recovery of Eurasian lynx in Europe: What part has reintroduction played? In Reintroduction of Top-Order Predators (eds Hayward, M. W. & Somers, M. J.) 72–91 (Blackwell Publishing, 2009).Chapter 

    Google Scholar 
    Schmidt, K., Ratkiewicz, M. & Konopiński, M. K. The importance of genetic variability and population differentiation in the Eurasian lynx Lynx lynx for conservation, in the context of habitat and climate change. Mammal Rev. 41, 112–124 (2011).Article 

    Google Scholar 
    von Arx, M. et al. Status and conservation of the Eurasian lynx (Lynx lynx) in Europe in 2001. KORA Bericht 19, 1–330 (2004).
    Google Scholar 
    Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe. Part 1 – Europe summaries. Report: 1–72. A Large Carnivore Initiative for Europe Report prepared for the European Commission (2013).Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Franz, K. W. & Romanowski, J. Revisiting the reintroduced Eurasian lynx population in Kampinos National Park Poland. Eur. Zool. J. 88, 966–979. https://doi.org/10.1080/24750263.2021.1968046 (2021).Article 

    Google Scholar 
    Bieniek, M., Wolsan, M. & Okarma, H. Historical biogeography of the lynx in Poland. Acta Zool. Cracov. 41, 143–167 (1998).
    Google Scholar 
    Jędrzejewski, W., Nowak, S., Schmidt, K. & Jędrzejewska, B. Wilk i ryś w Polsce: Wyniki inwentaryzacji w 2001 roku. Kosmos 51, 491–499 (2002).
    Google Scholar 
    Mysłajek, R., Kwiatkowska, I., Diserens, T., Haidt, A. & Nowak, S. Occurrence of Eurasian lynx in western Poland after two decades of strict protection. CATnews 69, 12–13 (2019).
    Google Scholar 
    Schmidt, K. Program ochrony rysia Lynx lynx w Polsce – Project. Strategia ochrony Rysia Warunkująca Trwałość Populacji Gatunku w Polsce (Warsaw University of Life Sciences, 2011).
    Google Scholar 
    Kaczensky, P. et al. Status, management and distribution of large carnivores—Bear, lynx, wolf and wolverine in Europe. Part 2: Country Species Summaries. Report: 1–200. A Large Carnivore Initiative for Europe Report prepared for the European Commission (2013).Breitenmoser, U. et al. Lynx lynx (errata version published in 2017). The IUCN Red List of Threatened Species 2015: e.T12519A121707666. Accessed 30 Oct 2021 (2015).Vandel, J.-M., Stahl, P., Herrenschmidt, V. & Marboutin, E. Reintroduction of the lynx into the Vosges mountain massif: From animal survival and movements to population development. Biol. Conserv. 131, 370–385. https://doi.org/10.1016/j.biocon.2006.02.012 (2006).Article 

    Google Scholar 
    Zimmermann, F., Breitenmoser-Würsten, C. & Breitenmoser, U. Importance of dispersal for the expansion of a Eurasian lynx Lynx lynx population in a fragmented landscape. Oryx 41, 358–368. https://doi.org/10.1017/s0030605307000712 (2007).Article 

    Google Scholar 
    Schmidt, K., Kowalczyk, R., Ozolins, J., Mannil, P. & Fickel, J. Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic states. Conserv. Genet. 10, 497–501. https://doi.org/10.1007/s10592-008-9795-7 (2009).Article 

    Google Scholar 
    Ratkiewicz, M. et al. Long-range gene flow and the effects of climatic and ecological factors on genetic structuring in a large, solitary carnivore: The Eurasian Lynx. PLoS ONE 9, e115160. https://doi.org/10.1371/journal.pone.0115160 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Port, M. et al. Rise and fall of a Eurasian lynx (Lynx lynx) stepping-stone population in central Germany. Mammal Res. https://doi.org/10.1007/s13364-020-00527-6 (2020).Article 

    Google Scholar 
    Drouilly, M. & O’Riain, J. M. Rewilding the world’s large carnivores without neglecting the human dimension: A response to reintroducing the Eurasian lynx to southern Scotland, England and Wales. Biodivers. Conserv. 30, 917–923. https://doi.org/10.1007/s10531-021-02112-y (2021).Article 

    Google Scholar 
    Böer, M., Smielowski, J. & Tyrala, P. Reintroduction of the European lynx (Lynx lynx) to the Kampinoski National Park/Poland field experiment with zooborn individuals. Part I: Selection, adaptation and training. Der Zool. Garten 70, 304–312 (1994).
    Google Scholar 
    Jakimiuk, S. (ed.). Aktywna ochrona populacji nizinnej rysia w Polsce. 1–144 (WWF, Poland, 2015).Huck, M. et al. Habitat suitability, corridors and dispersal barriers for large carnivores in Poland. Acta Theriol. 55, 177–192 (2010).Article 

    Google Scholar 
    Niedziałkowska, M. et al. Environmental correlates of Eurasian lynx occurrence in Poland: Large scale census and GIS mapping. Biol. Conserv. 133, 63–69. https://doi.org/10.1016/j.biocon.2006.05.022 (2006).Article 

    Google Scholar 
    Schmidt, K., Kowalczyk, R., Ozolins, J., Männil, P. & Fickel, J. Genetic structure of the Eurasian lynx population in north-eastern Poland and the Baltic states. Conserv. Genet. 10, 497–501. https://doi.org/10.1007/s10592-008-9795-7 (2009).Article 

    Google Scholar 
    Tracz, M. et al. The return of lynx to northwestern Poland. CATnews 14, 43–44 (2021).
    Google Scholar 
    The Return of Lynx to north-west Poland. http://www.rysie.org/en/rysie-strona-glowna. Accessed on 31 Oct 2021.IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Version 1.0. 1–57 (IUCN Species Survival Commission, 2013).Rueda, C., Jiménez, J., Palacios, M. J. & Margalida, A. Exploratory and territorial behavior in a reintroduced population of Iberian lynx. Sci. Rep. 11, 14148. https://doi.org/10.1038/s41598-021-93673-z (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gusset, M. A framework for evaluating reintroduction success in carnivores: Lessons from African wild dogs. In Reintroduction of Top-Order Predators (eds Hayward, M. W. & Somers, M. J.) 307–320 (Blackwell Publishing, 2009).Chapter 

    Google Scholar 
    Breitenmoser, U. & Haller, H. Patterns of predation by reintroduced European Lynx in the Swiss Alps. J. Wildl. Manage. 57, 135–144 (1993).Article 

    Google Scholar 
    Drouilly, M. & O’Riain, M. J. Rewilding the world’s large carnivores without neglecting the human dimension. Biodivers. Conserv. 30, 917–923 (2021).Article 

    Google Scholar 
    Jędrzejewski, W. et al. Population dynamics (1869–1994), demography, and home ranges of the Lynx in Białowieza Primeval Forest (Poland and Belarus). Ecography 19, 122–138 (1996).Article 

    Google Scholar 
    Palmero, S. et al. Demography of a Eurasian lynx (Lynx lynx) population within a strictly protected area in Central Europe. Sci. Rep. 11, 19868. https://doi.org/10.1038/s41598-021-99337-2 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maran, T., Põdra, M., Põlma, M. & Macdonald, D. The survival of captive-born animals in restoration programmes: Case study of the endangered European mink Mustela lutreola. Biol. Conserv. 142, 1685–1692 (2009).Article 

    Google Scholar 
    Moehrenschlager, A. & Macdonald, D. W. Movement and survival parameters of translocated and resident swift foxes Vulpes velox. Anim. Conserv. 6, 199–206 (2003).Article 

    Google Scholar 
    Böer, M., Reklewski, J., Śmiełowski, J. & Tyrała, P. Reintroduction of the European Lynx to the Kampinoski Nationalpark/Poland: A field experiment with zooborn individuals. Part III: Demographic development of the population from December 1993 until January 2000. Der Zool. Garten 70, 304–312 (2000).
    Google Scholar 
    Jule, K. R., Leaver, L. A. & Lea, E. G. L. The effects of captive experience on reintroduction survival in carnivores: A review and analysis. Biol. Conserv. 141, 355–363 (2008).Article 

    Google Scholar 
    Hellstedt, P. & Kallio, E. R. Survival and behaviour of captive-born weasels (Mustela nivalis nivalis) released in nature. J. Zool. 266, 37–44 (2005).Article 

    Google Scholar 
    Devineau, O. et al. Evaluating the Canada lynx reintroduction programme in Colorado: Patterns in mortality. J. Appl. Ecol. 47, 524–531 (2010).Article 

    Google Scholar 
    Lengger, J., Breitenmoser, U. & Sliwa, A. EAZA breeding programmes as sources for lynx reintroductions. CATnews 14, 76–77 (2021).
    Google Scholar 
    Reading, P. R. & Clark, T. W. Carnivore introductions: An interdisciplinary Examination. In Carnivore Behavior, Ecology and Evolution (ed. Gittleman, J. L.) 296–336 (Cornell University Press, 1996).
    Google Scholar 
    McCarthy, M. A., Armstrong, D. P. & Runge, M. C. Adaptive management of reintroduction. In Reintroduction Biology: Integrating Science and Management (eds Ewen, J. G. et al.) 256–289 (Wiley-Blackwell, 2012).Chapter 

    Google Scholar 
    Bremner-Harrison, S., Prodohl, P. A. & Elwood, R. W. Behavioural trait assessment as a release criterion: Boldness predicts early death in a reintroduction programme of captive-bred swift fox (Vulpes velox). Anim. Conserv. 7, 313–320 (2004).Article 

    Google Scholar 
    Harrington, L., Põdra, M., Macdonald, D. & Maran, T. Post-release movements of captive-born European mink Mustela lutreola. Endanger. Species Res. 24, 137–148 (2014).Article 

    Google Scholar 
    Andrén, H. et al. Survival rates and causes of mortality in Eurasian lynx (Lynx lynx) in multi-use landscapes. Biol. Conserv. 131, 23–32 (2006).Article 

    Google Scholar 
    Heurich, M. et al. Illegal hunting as a major driver of the source-sink dynamics of a reintroduced lynx population in Central Europe. Biol. Conserv. 224, 355–365 (2018).Article 

    Google Scholar 
    Schmidt-Posthaus, H., Breitenmoser, Ch., Posthaus, H., Bacciarini, L. & Breitenmoser, U. Causes of mortality in reintroduced Eurasian lynx in Switzerland. J. Wildl. Dis. 38, 84–92 (2002).PubMed 
    Article 

    Google Scholar 
    Kołodziej-Sobocińska, M., Zalewski, A. & Kowalczyk, R. Sarcoptic mange vulnerability in carnivores of the Białowieża Primeval Forest, Poland: underlying determinant factors. Ecol. Res. 29, 237–244 (2014).Article 

    Google Scholar 
    Holt, G. & Berg, C. Sarcoptic mange in red fox and other wild carnivores in Norway. Nor Veterinaertidsskr 102, 427–432 (1990).
    Google Scholar 
    Mörner, T. Sarcoptic mange in Swedish wildlife. Rev. Sci. Tech. Off. Int. Epiz. 11, 1115–1121 (1992).Article 

    Google Scholar 
    Ryser-Degiorgis, M. P. et al. Notoedric and sarcoptic mange in free-ranging lynx from Switzerland. J. Wildl. Dis. 38, 228–232 (2002).PubMed 
    Article 

    Google Scholar 
    Soulsbury, C. D. et al. The impact of sarcoptic mange Sarcoptes scabiei on the British fox Vulpes vulpes population. Mam. Rev. 37, 278–296 (2007).
    Google Scholar 
    Garrote, G., Fernández-López, J., López, G., Ruiz, G. & Simón, M. A. Prediction of Iberian lynx road–mortality in southern Spain: A new approach using the MaxEnt algorithm. Anim. Biodivers. Conserv. 41, 217–225 (2018).Article 

    Google Scholar 
    Bencin, H., Prange, S., Rose, Ch. & Popescu, V. Roadkill and space use data predict vehicle-strike hotspots and mortality rates in a recovering bobcat (Lynx rufus) population. Sci. Rep. 9, 15391 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bouyer, Y. et al. Tolerance to anthropogenic disturbance by a large carnivore: The case of Eurasian lynx in south-eastern Norway. Anim. Conserv. https://doi.org/10.1111/acv.12168 (2014).Article 

    Google Scholar 
    López-Bao, J. V. et al. Eurasian lynx fitness shows little variation across Scandinavian human-dominated landscapes. Sci. Rep. 9, 8903 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617 (2021).Article 

    Google Scholar 
    Wegner, M. (ed.). Statistical Yearbook of Zachodniopomorskie Voivodship. 1–213 (Statistical Office in Szczecin, 2020).Górny, M., Schmidt, K. & Kowalczyk, R. Analiza przydatności środowiska dla reintrodukcji rysia w północno-zachodniej Polsce oraz prognoza i perspektywy funkcjonowania populacji. Expert study under the project POIS.02.04.00–0143/16 “Return of the lynx to northwestern Poland”. 1–25.Woodford, M. H., Keet, D. F. & Bengis, R. G. Post-mortem Procedures for Wildlife Veterinarians and Field Biologists. 1–55 (IUCN Species Survival Commission (SSC) & Veterinary Specialist Group, Care for the Wild International, World Organisation for Animal Health (OIE), 2000).Fain, A. Ѐtude de la variabilitѐ de Sarcoptes scabiei avec une rѐvision des Sarcoptidae. Acta Zool. Pathol. Antverp 47, 1–196 (1968).
    Google Scholar 
    Kaplan, E. L. & Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 53, 457–481 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Therneau, M., Lumley, T., Atkinson, E. & Crowson, C. Survival Analysis. R Package Version 3.2-13. http://CRAN.R-project.org/package=survival (2021).Kassambara, A., Kosinski, M., Biecek, P. & Scheipl, F. survminer. Drawing Survival Curves using ‘ggplot2’. R package version 0.4.9. http://CRAN.R-project.org/package=survminer (2021).Dardis, C. survMisc. Miscellaneous Functions for Survival Data. R package version 0.5.5. http://CRAN.R-project.org/package=survMisc (2018).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing). https://www.R-project.org (2021).Snedecor, G. W. & Cochran, W. G. Statistical Methods 7th edn. (Iowa State University Press, 1980).MATH 

    Google Scholar 
    Cox, D. R. Regression models and life tables (with discussion). J. R. Stat. Soc. B. 34, 187–220 (1972).MATH 

    Google Scholar 
    Bradburn, M. J., Clark, T. G., Love, S. B. & Altman, D. G. Survival Analysis Part II: Multivariate data analysis: An introduction to concepts and methods. Br. J. Cancer. 89, 431–436 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wald, A. Tests of statistical hypothesis concerning several parameters when the number of observations is large. Trans. Am. Math. Soc. 54, 426–482 (1943).MATH 
    Article 

    Google Scholar 
    Aitchison, J. & Silvey, S. D. Maximum likelihood estimation of parameters subject to restraints. Ann. Math. Stat. 29, 813–828 (1958).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Mantel, N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother. Rep. 50, 163–170 (1966).CAS 
    PubMed 

    Google Scholar  More

  • in

    Ancient Reef Traits, a database of trait information for reef-building organisms over the Phanerozoic

    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed 

    Google Scholar 
    Bridge, T. C. L. et al. Incongruence between life-history traits and conservation status in reef corals. Coral Reefs 39, 271–279 (2020).
    Google Scholar 
    Raja, N. B. et al. Morphological traits of reef corals predict extinction risk but not conservation status. Glob. Ecol. Biogeogr. 30, 1597–1608 (2021).
    Google Scholar 
    Orzechowski, E. A. et al. Marine extinction risk shaped by trait–environment interactions over 500 million years. Glob. Change Biol. 21, 3595–3607 (2015).ADS 

    Google Scholar 
    Pietsch, C., Mata, S. A. & Bottjer, D. J. High temperature and low oxygen perturbations drive contrasting benthic recovery dynamics following the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 98–113 (2014).
    Google Scholar 
    Wagner, P. J. & Estabrook, G. F. Trait-based diversification shifts reflect differential extinction among fossil taxa. Proc. Natl. Acad. Sci. 111, 16419–16424 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiessling, W. Geologic and Biologic Controls on the Evolution of Reefs. Annu. Rev. Ecol. Evol. Syst. 40, 173–192 (2009).
    Google Scholar 
    Kiessling, W. Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 11–19 (2010).
    Google Scholar 
    Foden, W. B. et al. Identifying the World’s Most Climate Change Vulnerable Species: A Systematic Trait-Based Assessment of all Birds, Amphibians and Corals. PLOS ONE 8, e65427 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, A. D. & Grottoli, A. G. Heterotrophic Compensation: A Possible Mechanism for Resilience of Coral Reefs to Global Warming or a Sign of Prolonged Stress? PLOS ONE 8, e81172 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, G. D. Jr & Helmle, K. P. Middle Triassic Coral Growth Bands and Their Implication for Photosymbiosis. PALAIOS 25, 754–763 (2010).ADS 

    Google Scholar 
    van Woesik, R. et al. Hosts of the Plio-Pleistocene past reflect modern-day coral vulnerability. Proc. R. Soc. B Biol. Sci. 279, 2448–2456 (2012).
    Google Scholar 
    Madin, J. S. et al. The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci. Data 3, 160017 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Madin, J. S. et al. A Trait-Based Approach to Advance Coral Reef Science. Trends Ecol. Evol. 31, 419–428 (2016).PubMed 

    Google Scholar 
    Riedel, P. Korallen in der Trias der Tethys:. Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstrends und Bedeutung als Rifforganismen. Mitteilungen Ges. Geol.- Bergbaustud. Österr. 37, 97–118 (1991).
    Google Scholar 
    Budd, A. F., Adrain, T. S., Park, J. W., Klaus, J. S. & Johnson, K. G. The Neogene Marine Biota of Tropical America (“NMITA”) Database: Integrating Data from the Dominican Republic Project. in Evolutionary Stasis and Change in the Dominican Republic Neogene (eds. Nehm, R. H. & Budd, A. F.) 301–310, https://doi.org/10.1007/978-1-4020-8215-3_13 (Springer Netherlands, 2008).Budd, A. F., Foster, C. T., Dawson, J. P. & Johnson, K. G. The Neogene Marine Biota of Tropical America (“NMITA”) database: Accounting for biodiversity in paleontology. J. Paleontol. 75, 743–751 (2001).
    Google Scholar 
    Scotese, C. R. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program. https://www.earthbyte.org/paleomap-paleoatlas-for-gplates/ (2016).Johnson, K. G., Budd, A. F. & Stemann, T. A. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology 21, 52–73 (1995).
    Google Scholar 
    Pinzón, J. H. et al. Blind to morphology: genetics identifies several widespread ecologically common species and few endemics among Indo-Pacific cauliflower corals (Pocillopora, Scleractinia). J. Biogeogr. 40, 1595–1608 (2013).
    Google Scholar 
    Lathuilière, B. Coraux constructeurs du Bajocien inférieur de France: 2ème partie. Geobios 33, 153–181 (2000).
    Google Scholar 
    Kiessling, W. & Kocsis, Á. T. Biodiversity dynamics and environmental occupancy of fossil azooxanthellate and zooxanthellate scleractinian corals. Paleobiology 41, 402–414 (2015).
    Google Scholar 
    Raja, N. B., Dimitrijević, D., Krause, M. C. & Kiessling, W. Ancient Reef Traits Database. Zenodo https://doi.org/10.5281/zenodo.5717611 (2022).Mannani, M. Late Triassic scleractinian corals from Nayband Formation, southwest Ardestan, Central Iran. Bol. Soc. Geológica Mex. 72, A090619 (2020).
    Google Scholar 
    Löser, H., Stemann, T. A. & Mitchell, S. Oldest scleractinian fauna from Jamaica (Hauterivian, Benbow Inlier). J. Paleontol. 83, 333–349 (2009).
    Google Scholar 
    Löser, H. Morphology, Taxonomy and Distribution of the Cretaceous coral genus Aulastraeopora (Late Barremian-Early Cenomanian; Scleractinia). Riv. Ital. Paleontol. E Stratigr. 114, (2008).Löser, H. Revision of Actinastrea, the most common Cretaceous coral genus. Paläontol. Z. 86, 15–22 (2012).
    Google Scholar 
    Löser, H., Werner, W. & Darga, R. A Middle Cenomanian coral fauna from the Northern Calcareous Alps (Bavaria, Southern Germany) – new insights into the evolution of Mid-Cretaceous corals. Zitteliana 53, 37–76 (2013).
    Google Scholar 
    Löser, H. & Bilotte, M. Taxonomy of a platy coral association from the Late Cenomanian of the southern Corbières (Aude, France). Ann. Paléontol. 103, 3–17 (2017).
    Google Scholar 
    Löser, H., Steuber, T. & Löser, C. Early Cenomanian coral faunas from Nea Nikopoli (Kozani, Greece; Cretaceous). Carnets Géologie Noteb. Geol. 18, 23–121 (2018).
    Google Scholar 
    Löser, H. Early evolution of the family Siderastraeidae (Scleractinia; Cretaceous-extant). Paläontol. Z. 90, 1–17 (2016).
    Google Scholar 
    Kiessling, W. et al. Massive corals in Paleocene siliciclastic sediments of Chubut (Argentina). Facies 51, 233–241 (2005).
    Google Scholar 
    Stolarski, J. & Vertino, A. First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies 53, 67–78 (2007).
    Google Scholar 
    Yabe, H. & Sugiyama, T. 5. Younger Cenozoic Reef-corals from the Nabire Beds of Nabire, Dutch New Guinea. Proc. Imp. Acad. 18, 16–23 (1942).
    Google Scholar 
    Wilson, M. A., Vinn, O. & Palmer, T. J. Bivalve borings, bioclaustrations and symbiosis in corals from the Upper Cretaceous (Cenomanian) of southern Israel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 243–245 (2014).
    Google Scholar 
    Tomás, S., Löser, H. & Salas, R. Low-light and nutrient-rich coral assemblages in an Upper Aptian carbonate platform of the southern Maestrat Basin (Iberian Chain, eastern Spain). Cretac. Res. 29, 509–534 (2008).
    Google Scholar 
    Baron-Szabo, R. C. Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages. Zootaxa 4383, 1 (2018).Kiessling, W., Roniewicz, E., Villier, L., Leonide, P. & Struck, U. An early Hettangian coral reef in southern France: Implications for the end-Triassic reef crisis. PALAIOS 24, 657–671 (2009).ADS 

    Google Scholar 
    Stanley, G. D. & Beauvais, L. Middle Jurassic corals from the Wallowa terrane, west-central Idaho. J. Paleontol. 64, 352–362 (1990).
    Google Scholar 
    Gretz, M., Lathuilière, B., Martini, R. & Bartolini, A. The Hettangian corals of the Isle of Skye (Scotland): An opportunity to better understand the palaeoenvironmental conditions during the aftermath of the Triassic–Jurassic boundary crisis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 376, 132–148 (2013).
    Google Scholar 
    Reolid, M., Molina, J. M., Löser, H., Navarro, V. & Ruiz-Ortiz, P. A. Coral biostromes of the Middle Jurassic from the Subbetic (Betic Cordillera, southern Spain): facies, coral taxonomy, taphonomy, and palaeoecology. Facies 55, 575–593 (2009).
    Google Scholar 
    Pandey, D. K., Lathuilière, B., Fürsich, F. T. & Kuldeep, S. The oldest Jurassic cyathophorid coral (Scleractinia) from siliciclastic environments of the Kachchh Basin, western India. Paläontol. Z. 76, 347–356 (2002).
    Google Scholar 
    Löser, H. & Heinrich, M. New coral genera and species from the Rußbach and Gosau area (Upper Cretaceous; Austria). Palaeodiversity 11, 127–149 (2018).
    Google Scholar 
    Stanley, G. D. & Whalen, M. T. Triassic corals and spongiomorphs from Hells Canyon, Wallowa terrane, Oregon. J. Paleontol. 63, 800–819 (1989).
    Google Scholar 
    Gill, G. A., Santantonio, M. & Lathuilière, B. The depth of pelagic deposits in the Tethyan Jurassic and the use of corals: an example from the Apennines. Sediment. Geol. 166, 311–334 (2004).ADS 

    Google Scholar 
    Baron-Szabo, R. C., Hamedani, A. & Senowbari-Daryan, B. Scleractinian corals from lower cretaceous deposits north of Esfahan (central Iran). Facies 48, 199–215 (2003).
    Google Scholar 
    Lathuilière, B., Baron-Szabo, R. C., Charbonnier, S. & Pacaud, J.-M. The Mesozoic scleractinian genus Adelocoenia (Stylinidae) and its Jurassic species. Carnets Géologie Noteb. Geol. 20, 367–406 (2020).
    Google Scholar 
    Roniewicz, E. & Stanley, G. D. Middle Triassic cnidarians from the New Pass Range, Central Nevada. J. Paleontol. 72, 246–256 (1998).
    Google Scholar 
    Shepherd, H. M. E., Stanley, G. D. & Amirhassankhani, F. Norian to Rhaetian scleractinian corals in the Ferdows Patch Reef (Nayband Formation, east central Iran). J. Paleontol. 86, 801–812 (2012).
    Google Scholar 
    Budd, A. F. & Wallace, C. C. First record of the Indo-Pacific reef coral genus Isopora in the Caribbean Region: two new species from the Neogene of Curaçao, Netherlands Antilles. Palaeontology 51, 1387–1401 (2008).
    Google Scholar 
    Pandolfi, J. M. A new, extinct pleistocene reef coral from the Montastraea “annularis” species complex. J. Paleontol. 81, 472–482 (2007).
    Google Scholar 
    El-Asa’ad, G. M. A. Oxfordian hermatypic corals from Central Saudi Arabia. Geobios 24, 267–287 (1991).
    Google Scholar 
    Masse, J.-P., Morycowa, E. & Fenerci-Masse, M. Valanginian-Hauterivian scleractinian coral communities from the Marseille region (SE France). Cretac. Res. 30, 178–192 (2009).
    Google Scholar 
    El-Sorogy, A. S. & Al-Kahtany, K. M. Contribution to the scleractinian corals of Hanifa Formation, Upper Jurassic, Jabal Al-Abakkayn, central Saudi Arabia. Hist. Biol. 27, 90–102 (2015).
    Google Scholar 
    Beauvais, L. & Stump, T. E. Corals, molluscs, and paleogeography of late Jurassic strata of the Cerro Pozo Serna, Sonora, Mexico. Palaeogeogr. Palaeoclimatol. Palaeoecol. 19, 275–301 (1976).
    Google Scholar 
    Roniewicz, E., Stanley, G. D., da Costa Monteiro, F. & Grant-Mackie, J. A. Late Triassic (Carnian) corals from Timor-Leste (East Timor): their identity, setting, and biogeography. Alcheringa Australas. J. Palaeontol. 29, 287–303 (2005).
    Google Scholar 
    Stanley, G. D. & Onoue, T. Upper Triassic reef corals from the Sambosan Accretionary Complex, Kyushu, Japan. Facies 61, 1 (2015).
    Google Scholar 
    Melnikova, G. K. & Roniewicz, E. Early Jurassic corals with dominating solitary growth forms from the Kasamurg Mountains, Central Asia. Palaeoworld 26, 124–148 (2017).
    Google Scholar 
    Stanley, G. D. & Beauvais, L. Corals from an Early Jurassic coral reef in British Columbia: refuge on an oceanic island reef. Lethaia 27, 35–47 (1994).
    Google Scholar 
    Caruthers, A. H. & Stanley, G. D. Systematic analysis of Upper Triassic silicified scleractinian corals from Wrangellia and the Alexander Terrane, Alaska and British Columbia. J. Paleontol. 82, 470–491 (2008).
    Google Scholar 
    Roniewicz, E. & Stanley, G. D. Upper Triassic corals from Nevada, western North America, and the implications for paleoecology and paleogeography. J. Paleontol. 87, 934–964 (2013).
    Google Scholar 
    Lathuilière, B. Coraux constructeurs du Bajocien inférieur de France. 1ere partie. Geobios 33, 51–72 (2000).
    Google Scholar 
    Morycowa, E. Supplemental data on Triassic (Anisian) corals from Upper Silesia (Poland). Ann. Soc. Geol. Pol. https://doi.org/10.14241/asgp.2018.001 (2018).Budd, A. F. & Bosellini, F. R. Revision of Oligocene Mediterranean meandroid corals in the scleractinian families Mussidae, Merulinidae and Lobophylliidae. J. Syst. Palaeontol. 14, 771–798 (2016).
    Google Scholar 
    Roniewicz, E. Early Norian (Triassic) Corals from the Northern Calcareous Alps, Austria, and the Intra-Norian Faunal Turnover. Acta Palaeontol. Pol. 56, 401–428 (2011).
    Google Scholar 
    Budd, A. F., Adrain, T. S., Park, J. W., Klaus, J. S. & Johnson, K. G. The Neogene Marine Biota of Tropical America (“NMITA”) Database: Integrating Data from the Dominican Republic Project. in Evolutionary Stasis and Change in the Dominican Republic Neogene (eds. Nehm, R. H. & Budd, A. F.) vol. 30 301–310 (Springer Netherlands, 2008).Mielnikova, G. Monstroseris, a new Upper Triassic scleractinian coral from Iran. Acta Palaeontol. Pol. 34, 71–74 (1989).
    Google Scholar 
    Löser, H. Taxonomy, stratigraphic distribution and palaeobiogeography of the Early Cretaceous coral genus Holocystis. Rev. Mex. Cienc. Geológicas 23, 288–301 (2006).
    Google Scholar 
    Löser, H. Corals from the Maastrichtian Ocozocoautla Formation (Chiapas, Mexico)-a closer look. Rev. Mex. Cienc. Geológicas 29, 534–550 (2012).
    Google Scholar 
    Löser, H. The Barremian coral fauna of the Serre de Bleyton mountain range (Drôme, SE France). Ann. Naturhistorischen Mus. Wien Ser. Für Mineral. Petrogr. Geol. Paläontol. Anthropol. Prähistorie 112, 575–612 (2010).
    Google Scholar 
    Löser, H., García-Barrera, P., Mendoza-Rosales, C. C. & Ortega-Hernández, J. Corals from the Early Cretaceous (Barremian – Early Albian) of Puebla (Mexico) – Introduction and Family Stylinidae. Rev. Mex. Cienc. Geológicas 30, 385–403 (2013).
    Google Scholar 
    Morycowa, E., Masse, J.-P., Arias, C. & Minondo, L. V. Montlivaltia multiformis Toula (Scleractinia) from the Aptian of the Prebetic domain (SE Spain). Span. J. Palaeontol. 16, 131–144 (2001).
    Google Scholar 
    Morycowa, E. & Masse, J.-P. Actinaraeopsis ventosiana, a new scleractinian species from the Lower Cretaceous of Provence (SE France). Ann. Soc. Geol. Pol. 77, 141–145 (2007).
    Google Scholar 
    Stolarski, J. & Taviani, M. Oligocene scleractinian corals from CRP- 3 drillhole, McMurdo Sound (Victoria Land Basin, Antarctica). Terra Antarct. 8, 1–4 (2001).
    Google Scholar 
    Morycowa, E. & Marcopoulou-Diacantoni, A. Albian corals from the Subpelagonian zone of Central Greece (Agrostylia, Parnassos region). Ann. Soc. Geol. Pol. 72, 1–65 (2002).
    Google Scholar 
    Morycowa, E. & Roniewicz, E. Revision of the genus Cladophyllia and description of Apocladophyllia gen. n.(Cladophylliidae fam. n., Scleractinia). Acta Palaeontol. Pol. 35, 165–190 (1990).
    Google Scholar 
    Morycowa, E. & Masse, J.-P. Lower Cretaceous Microsolenina (Scleractinia) from Provence (southern France). Ann. Soc. Geol. Pol. 79, 97–140 (2009).
    Google Scholar 
    Squires, R. L. & Demetrion, R. A. Paleontology of the Eocene Bateque Formation, Baja California Sur, Mexico. Contrib. Sci. 434, 1–55 (1992).
    Google Scholar 
    Wells, J. W. Cretaceous, Tertiary, and Recent Corals, a Sponge, and an Alga from Venezuela. J. Paleontol. 18, 429–447 (1944).
    Google Scholar 
    Morycowa, E. & Decrouez, D. Early Aptian scleractinian corals from the Upper Schrattenkalk of Hergiswil (Lucerne region, Helvetic Zone of central Switzerland). Rev. Paléobiol. 25, 791 (2006).
    Google Scholar 
    Stolarski, J. Paleogene corals from Seymour Island, Antarctic Peninsula. Palaeontol. Pol. 55, 1–63 (1996).
    Google Scholar 
    Vaughan, T. W. New Corals: One Recent, Alaska; Three Eocene, Alabama and Louisiana. J. Paleontol. 15, 280–284 (1941).
    Google Scholar 
    Stolarski, J. & Russo, A. Microstructural diversity of the stylophyllid [Scleractinia] skeleton. Acta Palaeontol. Pol. 47, (2002).Roniewicz, E. Jurassic scleractinian coral Thamnoseris Etallon, 1864 (Scleractinia), and its homeomorphs. Acta Palaeontol. Pol. 24, 51–70 (1979).
    Google Scholar 
    Lathuilière, B., Charbonnier, S. & Pacaud, J.-M. Nomenclatural and taxonomic acts and remarks for the revision of Jurassic corals. Zitteliana 89, 133–150 (2017).
    Google Scholar 
    Roniewicz, E. Upper Kimmeridgian Scleractinia of Pomerania (Poland). Ann. Soc. Geol. Pol. 47, 613–622 (1977).
    Google Scholar 
    Roniewicz, E. Scleractinia from the Upper Portlandian of Tisbury, Wiltshire, England. Acta Palaeontol. Pol. 15, 519–541 (1970).
    Google Scholar 
    Roniewicz, E. Kimmeridgian-Valanginian reef corals from the Moesian platform from Bulgaria. Ann. Soc. Geol. Pol. 78, 91–134 (2008).
    Google Scholar 
    Ricci, C., Lathuiliere, B. & Rusciadelli, G. Coral communities, zonation and paleoecology of an Upper Jurassic reef complex (Ellipsactinia Limestones, Central Apennines, Italy). Riv. Ital. Paleontol. E Stratigr. 124, 433–508 (2018).
    Google Scholar 
    Pandey, D. K. et al. Jurassic corals from southern Tunisia. Zitteliana A45, 3–34 (2005).
    Google Scholar 
    Pandey, D. K. et al. Jurassic corals from the Shemshak Formation of the Alborz Mountains, Iran. Zitteliana A46, 41–74 (2006).
    Google Scholar 
    Pandey, D. K. & Fürsich, F. T. Contributions to the Jurassic of Kachchh, Western India I. The coral fauna. Beringeria 8, 3–69.Morycowa, E. & Mišík, M. Upper Jurassic shallow-water scleractinian corals from the Pieniny Klippen Belt (Western Carpathians, Slovakia). Geol. Carpathica 56, (2005).Pandey, D. K. et al. Lower Cretaceous corals from the Koppeh Dagh, NE-Iran. Zitteliana A47, 3–52 (2007).
    Google Scholar 
    Morycowa, E. Corals from the Tithonian carbonate complex in the Dąbrowa Tarnowska–Szczucin area (Polish Carpathian Foreland). Ann. Soc. Geol. Pol. 82, 1–38 (2012).
    Google Scholar 
    Baron-Szabo, R. Corals of the Theresienstein reef (Upper Turonian-Coniacian, Salzburg, Austria). Proc. Biol. Soc. Wash. 10, 257–268 (2001).
    Google Scholar 
    Morycova, E. Middle Triassic Scleractinia from the Cracow-Silesia region, Poland. Acta Palaeontol. Pol. 33, 91–121 (1988).
    Google Scholar 
    El-Asa’ad, G. M. A. Callovian colonial corals from the Tuwaiq Mountain Limestone of Saudi Arabia. Paleontology 32, 675–684 (1989).
    Google Scholar 
    Roniewicz, E. & Michalik, J. Rhaetian scleractinian corals in the Western Carpathians. Geol. Carpathica 49, 391–399 (1998).
    Google Scholar 
    Roniewicz, E. & Michalik, J. Carnian corals from the Male Karpaty Mountains, Western Carpathians, Slovakia. Geol. Carpathica 53, 149–157 (2002).
    Google Scholar 
    Roniewicz, E. Rhaetian corals of the Tatra Mts. Acta Geol. Pol. 24, 97–116 (1974).
    Google Scholar 
    Turnšek, D. et al. Contributions to the fauna (corals, brachiopods) and stable isotopes of the Late Triassic Steinplatte reef/basin-complex, Northern Calcareous Alps, Austria. Abh. Geol. Bundensanstalt 56, 121–142 (1999).
    Google Scholar 
    Roniewicz, E. Upper Triassic Solitary Corals from the Gosaukamm and other North Alpine Regions. Sitzungsberichte Biol. Wiss. Erdwissenschaften 3–41 (1995).Wells, J. W. & Jenks, W. F. Mesozoic invertebrate faunas of Peru. Part 3, Lower Jurassic corals from the Arequipa region. Am. Mus. Novit. 1631 (1953).Turnšek, D. & Senowbari-Daryan, B. Upper Triassic (Carnian-Lowermost Norian) Corals from the Pantokrator Limestone of Hydra (Greece). AbhGeolB-A 50, (1994).Wells, J. W. Jurassic Corals from the Smackover Limestone, Arkansas. J. Paleontol. 16, 126–129 (1942).
    Google Scholar 
    Turnšek, D., Buser, S. & Debeljak, I. Liassic coral patch reef above the” Lithiotid limestone” on Trnovski gozd plateau, west Slovenia: Liasni koralni kopasti greben na” litiotidnem apnencu” v Trnovskem gozdu, zahodna Slovenija. Razpr. IV Razreda SAZU XLIV–1, 285–331 (2003).
    Google Scholar 
    Turnšek, D. & Košir, A. Early Jurassic corals from Krim Mountain, Slovenia. Razpr. IV Razreda SAZU XLI–1, 81–113 (2000).
    Google Scholar 
    Roniewicz, E. Triassic scleractinian corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Denkschr Osterr Akad Wiss Math Nat K1 126, 1–152 (1989).
    Google Scholar 
    Roniewicz, E. Les scléractiniaires du Jurassique supérieur de la Dobrogea centrale, Roumanie. Palaeontol. Pol. 34, 17–121 (1976).
    Google Scholar 
    Kiessling, W., Kumar Pandey, D., Schemm-Gregory, M., Mewis, H. & Aberhan, M. Marine benthic invertebrates from the Upper Jurassic of northern Ethiopia and their biogeographic affinities. J. Afr. Earth Sci. 59, 195–214 (2011).ADS 

    Google Scholar 
    Lathuilière, B. Coraux constructeurs du Bajocien inférieur de France: 2ème partie. Geobios 33, 153–181 (2000).
    Google Scholar 
    Baron‐Szabo, R. C. Corals of the K/T‐boundary: Scleractinian corals of the suborders Astrocoeniina, Faviina, Rhipidogyrina and Amphiastraeina. J. Syst. Palaeontol. 4, 1–108 (2006).
    Google Scholar 
    Filkorn, H. F. & Pantoja-Alor, J. NOMENCLATURAL NOTES Mexican Cretaceous coral species (Cnidaria, Anthozoa, Scleractinia) described as new by Filkorn & Pantoja-Alor (2009), but deemed ‘unpublished’ under the International Code of Zoological Nomenclature: republication of data necessary for nomenclatural availability. Bull. Zool. Nomencl. 72, 93–101 (2015).
    Google Scholar 
    Olden, J. D., Poff, N. L. & Bestgen, K. R. Trait Synergisms and the Rarity, Extirpation, and Extinction Risk of Desert Fishes. Ecology 89, 847–856 (2008).PubMed 

    Google Scholar 
    Schleuning, M. et al. Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends Ecol. Evol. 35, 319–328 (2020).PubMed 

    Google Scholar 
    Solan, M., Aspden, R. J. & Paterson, D. M. Marine Biodiversity and Ecosystem Functioning: Frameworks, Methodologies, and Integration. (OUP Oxford, 2012).Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).ADS 

    Google Scholar 
    Finnegan, S. et al. Paleontological baselines for evaluating extinction risk in the modern oceans. Science https://doi.org/10.1126/science.aaa6635 (2015).Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science https://doi.org/10.1126/science.abn2384 (2022).Cooley, S. et al. Ocean and coastal ecosystems and their services. in Climate change 2022: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC) (eds. Pörtner, H.-O. et al.) (Cambridge University Press, 2022). More

  • in

    Drivers and trends of global soil microbial carbon over two decades

    Predictors of microbial carbon stocksWe used a machine learning modeling approach to predict soil microbial carbon from a set of environmental covariates. To account for stochastic variability, we ran a set of models to assess the importance of environmental factors, which showed that the contribution of each variable to the model fit differed between runs, with some overlap between a number of them (Fig. 2b). Mean annual temperature was always the most important variable, with soil organic carbon and soil pH following. Clay content, precipitation, land-cover type, nitrogen content, and sand content contributed roughly equally to explaining variations in microbial carbon. Finally, NDVI and elevation had the lowest variable importance. Coniferous forests had the highest and most variable predicted values of microbial carbon (Supplementary Figs. 1, 2), which can be explained by high soil organic matter and a thick litter layer26. Tropical forests also had fairly high values of microbial carbon, while shrublands and croplands had the lowest values26. We used partial prediction response curves to evaluate the direction and range of effect of the predictor variables (Supplementary Figs. 1, 2). In agreement with the variable importance measure, variables that scored high often showed strong effects on the predicted microbial carbon values, while variables with a low variable importance score (e.g., elevation, NDVI, and sand content) only showed smaller responses. The only exception was for precipitation, which had a relatively high variable importance, although the response curves only showed a weak effect of precipitation for forests and grasslands, with limited effect on other land-cover types (Supplementary Fig. 2). The importance of precipitation might also indicate that this relationship involves interactions with other variables7,28. Overall, the differences in microbial carbon between land-cover types showed mostly similar patterns across the range of variables. Soil organic carbon and nitrogen content had a positive and mostly linear effect on microbial carbon (Supplementary Fig. 1). In contrast, clay content, soil pH, and mean temperature had non-linear relationships, with high microbial carbon in the low range of these variables and a rapid decrease that reached an asymptote at low microbial carbon values for the higher portion of the range. Soil pH patterns showed a decrease in microbial carbon for values between 4.1 and 5.8, and a constant pattern between 5.8 and 8.6. Contrary to our expectations, we did not find a parabolic effect of soil pH on microbial carbon26. Instead, our model predicted higher values in very acidic soils with a pH below 5.2, which are rare globally and almost only found in central Amazonia. Similarly, locations with a clay content lower than 16.9% had higher values in microbial carbon, and then stabilized until 51.0%.Fig. 2: Microbial carbon stock spatial predictions and temporal trends.a Microbial carbon stock predictions for 2013. b Variable importance from 100 random forest model runs, calculated by the mean decrease in accuracy after variable permutation. Variables were ordered by the median variable importance. SOC soil organic carbon, NDVI normalized difference vegetation index. Center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; points, outliers. c Relative microbial carbon stocks rate of change in percentage per year.Full size imageMean temperature showed an interesting shift with much higher microbial carbon values with a mean annual temperature below zero, but had otherwise a limited effect on microbial carbon values in the rest of the range above zero up to 28.9 °C. Based on partial predictions (Supplementary Figs. 1–2), microbial carbon decreased monotonically with an increase in temperature (with all other variables fixed to their median), with the relationship being mostly stable for parts of the range. We observed an especially sharp decrease at around 0°C, which is in agreement with the patterns observed in the data. The reason for sites with a mean annual temperature below the freezing point to have higher microbial carbon stocks is not fully understood. This could be due to a regime shift in which microbial communities are in a semi-dormant state for a major part of the year35. Moreover, it could also be in part explained by the soil organic carbon content that follows a similar trend and accumulates in higher latitude soils9, thus promoting higher microbial carbon stocks. Within these cold, high organic carbon soils, large microbial populations can be maintained, due to the low temperature that reduces metabolic requirements35. In contrast, at higher temperatures, metabolic activity increases and requires more resources and nutrients to maintain microorganisms alive. Experimental evidence is divided about the effects of warming on microbial carbon18,36, highlighting the strong context-dependency of this relationship, although global observations show a clear pattern, where low-temperature sites have higher soil microbial carbon stocks. Despite this uncertainty, there is a strong indication that a warming soil would tend to lose organic carbon17,37, and subsequent patterns in microbial carbon can also be expected, because of the dependency on organic substrate9,26,38. These dynamics were observed in Melillo et al.39, where the warming of sites in a mid-latitude forest ecosystem led to a decrease in soil carbon, followed by a decrease in microbial carbon12.Even with predictions being made for each grid location separately, microbial carbon values showed distinctive patterns and transitions over the globe (Fig. 2a). While temporal changes took place, broad spatial patterns were relatively constant over the range of years studied (Supplementary Movie 1). The highest microbial carbon stock values ranging from 1.50 to 7.00 t ha−1 were found at high latitudes in the Northern Hemisphere in areas of coniferous forest. Tropical humid regions also showed high microbial carbon values between 0.50 and 1.50 t ha−1 in the Amazon Rainforest and Central Africa. The main regions with low microbial carbon below 0.30 t ha−1 were in Eastern South America, areas directly south of the Sahara Desert, East Africa, and most of Australia, all of which mostly correspond to shrublands. Cropland areas as seen in India were also predicted with low microbial carbon values ranging from 0.06 to 0.38 t ha−1. A strong latitudinal gradient was visible for North America and Eurasia, with the highest microbial carbon stocks at high latitude, medium values in temperate ecosystems, and decreasing values towards the Equator. Positive coastal effects can also be observed, mostly on the Eastern South American and Australian coasts. In total, we estimated that there is 4.34 Gt of microbial carbon in the 5 to 15 cm layer for the predicted areas. Using the coefficient of variation calculated from the variability assessment set of models, we found that predictions made for the Amazon Basin, Northern Canada, and South-East Russia were more variable than for other regions (Supplementary Fig. 3a). Especially Western Europe, Central North America, and South-East Asia, however, showed high stability in the predictions between model runs.Drivers of changeThe analysis of the rate of change of microbial carbon stocks over time revealed that large regions of the globe experienced important changes in soil microbial carbon stocks between 1992 and 2013, with contrasting patterns across areas, and overall larger regions showed a decrease rather than an increase in microbial carbon stocks (Fig. 2c and Supplementary Fig. 3b). To account for spatial differences in microbial carbon stocks, we calculated the relative rate of change in percentage for each location (Fig. 2c). When considering all predictable regions together, microbial carbon stocks in the 5–15 cm layer showed a decrease of 7.09 Mt per year, summing to 148.80 Mt between 1992 and 2013, or 3.4% of the global microbial carbon pool predicted (Supplementary Fig. 4a; p = 0.038). The main regions with a microbial carbon loss higher than 0.7 kg ha−1 y−1 were in Northern Canada and a large continuous region in North-Eastern Europe. These northern regions accounted for an important part of the global loss in microbial carbon stocks, with large areas that had both a high soil microbial carbon stock and a fast decrease (Figs. 3 and 4). Other areas of high loss were in the Amazon basin, Western Argentina, the USA East Coast, Southern South Africa, and South-East Russia. The main continuous region of microbial carbon increase above 0.7 kg ha−1 y−1 was in central Russia, with smaller regions present in India, Europe, Central North America, and parts of Africa. Besides these general patterns, predictions vary at the local scale, and they consider the effects of parameters including soil properties, elevation, and land-cover type, which change between neighbor locations and affect the observed patterns. This is especially visible in the Americas, where both increases and decreases happen side-by-side.Fig. 3: Status of microbial carbon stocks between 1992 and 2013.Bivariate plot comparing the relative microbial carbon stock rate of change (% per year) with the amount of microbial carbon stock. The status groups were allocated using quantile distributions.Full size imageFig. 4: Distribution and classification of point values from the locations in Fig. 3.The assignment of points into the 9 groups was performed using quantile distributions. Areas in dark red are especially vulnerable to climate and land-cover change.Full size imagePatterns in the relative rate of change have a lot in common with that of absolute change, with a few notable differences (Fig. 2c and Supplementary Fig. 3b). Both positive and negative stock changes in tropical and subtropical regions are more prominent in relative terms, as these regions typically have low microbial carbon stocks. Similarly, regions in Central Russia with high microbial carbon stocks show less decrease in relative terms. To assess how stable these trends are over time, we show the p values of the rate of change for the 22 years (Supplementary Fig. 3c). The largest region with low p values is associated with more significant trends in Western Russia, and corresponds to an area with a fast loss of microbial carbon. India and Central Russia show high p values, and are informative of high variability compared to the strength of the signal. Considering that only up to 22 data points are available for each grid location and that especially climatic conditions vary considerably from year to year, p values are only provided as a complementary assessment. We can summarize the global situation by combining the two maps of microbial carbon stocks and relative rate of change to categorize and define vulnerable locations that experienced a high loss of microbial carbon (Figs. 3 and 4), and where the provision of soil functions is potentially at risk.It is informative to look at regional trends, by grouping grid locations using the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) sub-regions, and assessing regional-scale changes in microbial carbon stocks (Fig. 5, Supplementary Table 1). The main regions that contributed to microbial carbon loss were North America with a decrease of 62.49 Mt of microbial carbon and Eastern Europe with 60.88 Mt over the studied period, although both trends had high yearly variability and were non-significant. The region with the highest increase was North-East Asia with a gain of 4.49 Mt, but this change was also non-significant. The Caribbean was the only region to show a significant increase in soil microbial carbon stocks over time (+2.1% over 22 y, p = 0.017), while significant decreases in stocks were found in North Africa (−4.1%, p  More