More stories

  • in

    Best practices for instrumenting honey bees

    Experiment 1To study the acceptance and tag retention rates of honey bees under different introduction conditions, we set up three two-frame observation hives with (sim 1500) adult bees and a queen. Observation hives were set up in a shed, with an entrance tube that connected to the outside 4 ft above the ground so bees could freely forage in the surrounding fields (Fig. 1A). We put emerging brood from healthy source colonies in an incubator ((33.5^{circ }) C, (ge 55)% RH) and tagged individuals that emerged overnight. Each hive had two vent holes (1” Dia.) through which we could introduce bees (Fig. 1A).Figure 1(A) Observation hive with introduction holes (red), through which bees were introduced via funnel or introduction cage. (B) Plastic tags, silicon tags, and sucrose spray. (C) Photograph of a tagged bee foraging (Photo by Greg Yauney).Full size imageIn our initial experiment, there were seven treatment groups with 20 bees each per colony (n = 420 bees total). The seven treatments were: Control (C), No Sucrose (NS), Plastic (P), Wood Glue (WG), Not Incubated (NI), No Cage (NC), and Day (D). The Control treatment was designed to be a positive control, where we applied all the techniques we thought might increase acceptance of bees into a colony and tag retention rates. All other treatments had a single difference in the tag, tagging process, or introduction process to distinguish it from the control group, as detailed in Table 1. We glued a tag to the thorax of each bee (Fig. 1B) and marked the abdomen with a paint pen (Posca) to distinguish among treatment groups. In order to glue tags on, we picked each bee up, placed a small amount of glue on the thorax, and placed a tag on top of the glue with a pair of forceps (see Video 1 which details the tagging process). All bees except those in the Plastic group were tagged with 1.7 mm(^2) silicon tags (3.4 mm area). Silicon was chosen because it is a material representative of ASICs, which you would expect in a custom chip designed to track bee foraging flights. Plastic tags were 3 mm Dia. plastic discs (7.07 mm area), which are the commercially available bee tags commonly used in honey bee tracking and behavior experiments (Betterbee). All tags were glued on with shellac glue, the glue that comes with commerical honey bee marking kits (Betterbee), except for in the wood glue group, where they were glued on with wood glue (Titebond III). Next, bees were placed in a container with a bit of honey and stored until they were ready to be introduced. All bees except those in the Not Incubated group were placed in the incubator ((33.5^{circ }) C, (ge 55)% RH). The Not Incubated group was stored in a room environment, with variation between 21–27(^{circ }) C and 35–42% RH until introduction. Bees in the Day treatment spent 5 h in the incubator and then were sprayed with a light sucrose syrup (1 sucrose: 1 water (v/v)) and introduced at 4pm while the hives were still actively foraging. The rest of the bees spent between 5 and 8 h in the incubator or room environment before being introduced at 10:30 pm, after foraging had concluded. All except the No Sucrose group were sprayed with a light sucrose syrup before being introduced. The No Cage bees were rapidly introduced through one of the vent holes on the top of the hive using a funnel. The rest of the bees were placed in a cage together, which we connected to the introduction holes at the top of the colony, allowing them to move freely between the cage and the hive.Table 1 Experimental design used for preparation and introduction of treatment groups.Full size tableBeginning on day 2 (07/09/2020), we observed each hive in the morning on days 2-4 and 6-9 to see how many bees per group were present, hereinafter referred to as presence, and how many bees per group were present with tags, hereinafter referred to as success. We selected a random order in which to observe the three hives and a random order in which to observe the treatment groups for each hive. Each side of each hive had a grid drawn on it that divided it into nine squares. We scanned each side of each colony by eye for each treatment, starting with the lower left square of the grid on the first side, moving across the row, and then moving up to the next row, counting presence and success, using a tally counter when needed. We then moved rapidly to the other side and started at the top left of the grid, scanning row by row until we had observed each square in the grid. After an initial scan for each treatment, we placed the covers on the hives and shook for 10s to encourage bees to move around in the hive, and then waited for at least 15 minutes before a second observation. The maximum presence and success from the two daily observations were used for each treatment group and hive for analysis. Since we collected data by scanning each colony, we sometimes found more bees from a group in an observation hive than we had found in the same hive on previous day(s), even though more time had passed. Over the course of the experiment, our hives grew in size, and we believed we were seeing less tagged bees in part because they made up a smaller proportion of the hive population, and so decided to do a destructive sampling before the tagged bees reached foraging age. After dark on day 14 (7/21/2020), we made sure no tagged bees were dead on the bottom of the hives. We blocked the entrances, vacuumed all bees at the entrances into containers, and froze vacuumed bees and the three colonies, so that we could do a destructive sampling of all 3 colonies. This allowed us to get a final count of the presence and success for each of the seven treatment groups. We dissected each frozen colony, removing and inspecting each dead bee, and recorded the presence and success of each treatment group.Experiments 2 and 3We set up three two-frame observation hives in the same shed used for experiment 1 to conduct follow-up experiments in August 2020. The goal of experiment 2 was to compare Gorillaglue gel, an easily accessible Superglue (SG), to Titebond III, a readily accessible Wood Glue (WG2) used in experiment 1. We placed frames of capped brood in an incubator overnight to produce one day old nurse bees. We picked up each bee, placed a small dot of either superglue or wood glue on the thorax, and then placed 1.7 mm(^2) silicon tags on top of the glue. Bees were stored in the incubator with honey for 5–6 h until after dark. Then, we sprayed the bees with a light sucrose syrup and connected their cages to the vent holes at the top of the observation hives, allowing the bees to freely move between their cage and the hives. These details are summarized in Table 1.Some honey bee tagging projects may benefit from tagging foragers as opposed to nurse bees, because nurse bees are the youngest workers and if you tag them you must wait for them to reach foraging age, during which time they may lose their tags. Specifically, tagging foragers as opposed to nurses will be advantageous when the tag price is extremely high or the project is very time constrained, and knowing the exact age of tagged bees is not important for the project goals. Since foragers are older workers that have already acquired the colony scent and learned to navigate the area surrounding their hive, the optimal methods for introducing nurses and foragers may differ. It is not easy to use bees from a source colony, because if they are within foraging range of their maternal colony, they will attempt to fly back home. The goal of experiment 3 was to apply a treatment that had high success with nurse bees (Experiment 1: WG) to foragers, and compare with releasing foragers near their colony and allowing them to return freely. We call these treatments Hive Introduced (HI) and Natural Release (NR), respectively. All foragers for this experiment were collected from the observation hives and were introduced back to the same observation hive after tagging, either through the vent holes at the top of the hive or by releasing the bees near the entrance of the hive. We collected foragers from each colony entrance into a cage with an insect vacuum (Hand-Held DC Vac/Aspirator, Bioquip), specifically aspirating bees that were arriving from foraging trips or had nectar loads, and placed them in the fridge to anesthetize them. We then selected those with intact wings, placed a dot of wood glue on their thoraxes, and placed silicon tags on top of the glue. Both treatment groups were stored in the incubator ((33.5^{circ }) C, (ge 55)% RH) and given honey to feed on. After 2 h in the incubator, the containers with NR bees were sprayed with a light sucrose syrup and placed on the ground 5 ft in front of their respective hive entrances and opened, allowing the bees to fly back to their hives unaided. At 10PM, when it was dark and foraging had concluded, the HI bees were sprayed with a light sucrose syrup. Their cages were then connected to the vent holes at the top of the observation hives, allowing them to freely move between their cage and the hives.Experiments 2 and 3 were conducted in the same hives simultaneously, but were considered separate experiments because experiment 2 was conducted with nurses of known age and experiment 3 was conducted with foragers of unknown age. Nurses and foragers typically have an age difference and experience different levels of risk due to the behaviors they engage in, and so we analyzed these data separately in order to not confound our results. Beginning on day two (08/26/2020), we observed each hive on days 2–11 and 15–21 to determine introduction presence and success for experiment 2 and experiment 3. Forager observations (experiment 3) were always done early in the morning, before foraging activity commenced. As in experiment 1, we randomized observation order, scanned colonies for each treatment group before and after shaking, and used the maximum presence and success from the two observations for analysis. Since we collected data on multiple days by scanning each colony, we occasionally found more bees in a group than we had found on previous day(s), even though more time had passed.Statistical methodsStatistical analyses were performed in R 4.0.520. To determine which preparation and introduction techniques were associated with the highest presence and success, we built generalized linear mixed-effects models (glmms)21 for the proportion of present and success bees to introduced bees respectively, with treatment and sampling day as fixed effects, and colony as a random effect. For experiment 1, treatment was a categorical variable, where the Control bees were the reference group. We assessed the significance of the full models using Wald likelihood ratio chi-square tests on each glmm (‘Anova’ function in the ‘car’ package with test set to ‘Chisq’)22. In all statistical tests, (alpha) was set to 0.05. The destructive data from experiment 1 were analyzed separately from hive observation data. We ran a correlation test to determine the relationship between hive observation data from the final observation day, day 9, and the destructive sampling on day 14 using the ggpubr package23. More

  • in

    Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems

    Brierley AS, Kingsford MJ. Impacts of climate change on marine organisms and ecosystems. Curr Biol. 2009;19:R602–R614.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci Total Environ. 2021;755:142564.CAS 
    PubMed 
    Article 

    Google Scholar 
    Carella F, Antuofermo E, Farina S, Salati F, Mandas D, Prado P, et al. In the wake of the ongoing mass mortality events: co-occurrence of Mycobacterium, Haplosporidium and other pathogens in Pinna nobilis collected in Italy and Spain (Mediterranean Sea). Front Mar Sci. 2020;7:48.Article 

    Google Scholar 
    Seuront L, Nicastro KR, Zardi GI, Goberville E. Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis. Sci Rep. 2019;9:17498.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fey SB, Siepielski AM, Nussle S, Cervantes-Yoshida K, Hwan JL, Huber ER, et al. Recent shifts in the occurrence, cause, and magnitude of animal mass mortality events. Proc Natl Acad Sci USA. 2015;112:1083–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scarpa F, Sanna D, Azzena I, Mugetti D, Cerruti F, Hosseini S, et al. Multiple non-species-specific pathogens possibly triggered the mass mortality in Pinna nobilis. Life. 2020;10:238.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley M, Kutz SJ, Jenkins E, O’Hara TM. The potential impact of climate change on infectious diseases of Arctic fauna. Int J Circumpolar Health. 2005;64:468–77.PubMed 
    Article 

    Google Scholar 
    Beyer J, Green NW, Brooks S, Allan IJ, Ruus A, Gomes T, et al. Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: a review. Mar Environ Res. 2017;130:338–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14:531–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wan JCM, Massie C, Garcia-Corbacho J, Mouliere F, Brenton JD, Caldas C, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17:223–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mandel P, Metais P. Nuclear acids in human blood plasma. Comptes Rendus Séances Soc Biol Filiales. 1948;142:241–3.CAS 

    Google Scholar 
    Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019;17:100087.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ignatiadis M, Sledge GW, Jeffrey SS. Liquid biopsy enters the clinic – implementation issues and future challenges. Nat Rev Clin Oncol. 2021;18:297–312.PubMed 
    Article 

    Google Scholar 
    Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moufarrej MN, Wong RJ, Shaw GM, Stevenson DK, Quake SR. Investigating pregnancy and its complications using circulating cell-free RNA in women’s blood during gestation. Front Pediatr. 2020;8:605219.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oellerich M, Sherwood K, Keown P, Schutz E, Beck J, Stegbauer J, et al. Liquid biopsies: donor-derived cell-free DNA for the detection of kidney allograft injury. Nat Rev Nephrol. 2021;17:591–603.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wong FC, Lo YM. Prenatal diagnosis innovation: genome sequencing of maternal plasma. Annu Rev Med. 2016;67:419–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gu W, Deng X, Lee M, Sucu YD, Arevalo S, Stryke D, et al. Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids. Nat Med. 2021;27:115–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang YF, Chen YJ, Fan TC, Chang NC, Chen YJ, Midha MK, et al. Analysis of microbial sequences in plasma cell-free DNA for early-onset breast cancer patients and healthy females. BMC Med Genom. 2018;11:16.Article 
    CAS 

    Google Scholar 
    Goggs R, Jeffery U, LeVine DN, Li RHL. Neutrophil-extracellular traps, cell-free DNA, and immunothrombosis in companion animals: a review. Vet Pathol. 2020;57:6–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kowarsky M, De Vlaminck I, Okamoto J, Neff NF, LeBreton M, Nwobegabay J, et al. Cell-free DNA reveals potential zoonotic reservoirs in non-human primates. BioRxiv. 2018;481093.Caza F, Bernet E, Veyrier FJ, Betoulle S, St-Pierre Y. Hemocytes released in seawater act as Trojan horses for spreading of bacterial infections in mussels. Sci Rep. 2020;10:19696.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrew S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. Comput Biol. 2006;13:1028–40.CAS 
    Article 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cuccuru G, Orsini M, Pinna A, Sbardellati A, Soranzo N, Travaglione A, et al. Orione, a web-based framework for NGS analysis in microbiology. Bioinformatics. 2014;30:1928–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 2011;12:385.Article 

    Google Scholar 
    Lüskow F, Riisgård H. In situ filtration rates of blue mussels (Mytilus edulis) measured by an open-top chamber method. OJMS. 2018;8:395–406.Article 

    Google Scholar 
    Szpechcinski A, Struniawska R, Zaleska J, Chabowski M, Orlowski T, Roszkowski K, et al. Evaluation of fluorescence-based methods for total vs. amplifiable DNA quantification in plasma of lung cancer patients. J Physiol Pharmacol. 2008;59:675–81.PubMed 

    Google Scholar 
    Tissot C, Toffart AC, Villar S, Souquet PJ, Merle P, Moro-Sibilot D, et al. Circulating free DNA concentration is an independent prognostic biomarker in lung cancer. Eur Respir J. 2015;46:1773–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kustanovich A, Schwartz R, Peretz T, Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biol Ther. 2019;20:1057–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prouteau A, Denis JA, De Fornel P, Cadieu E, Derrien T, Kergal C, et al. Circulating tumor DNA is detectable in canine histiocytic sarcoma, oral malignant melanoma, and multicentric lymphoma. Sci Rep. 2021;11:877.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vandewoestyne M, Van Hoofstat D, Franssen A, Van Nieuwerburgh F, Deforce D. Presence and potential of cell free DNA in different types of forensic samples. For Sci Int Genet. 2013;7:316–20.CAS 
    Article 

    Google Scholar 
    Kowarsky M, Camunas-Soler J, Kertesz M, De Vlaminck I, Koh W, Pan W, et al. Numerous uncharacterized and highly divergent microbes which colonize humans are revealed by circulating cell-free DNA. Proc Natl Acad Sci USA. 2017;114:9623–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meddeb R, Dache ZAA, Thezenas S, Otandault A, Tanos R, Pastor B, et al. Quantifying circulating cell-free DNA in humans. Sci Rep. 2019;9:5220.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li YF, Yang N, Liang X, Yoshida A, Osatomi K, Power D, et al. Elevated seawater temperatures decrease microbial diversity in the gut of Mytilus coruscus. Front Physiol. 2018;9:839.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Musella M, Wathsala R, Tavella T, Rampelli S, Barone M, Palladino G, et al. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. Sci Total Environ. 2020;717:137209.CAS 
    PubMed 
    Article 

    Google Scholar 
    Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF. Diversity and dynamics of a north atlantic coastal Vibrio community. Appl Environ Microbiol. 2004;70:4103–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pfister CA, Meyer F, Antonopoulos DA. Metagenomic profiling of a microbial assemblage associated with the California mussel: a node in networks of carbon and nitrogen cycling. PLoS One. 2010;5:e10518.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 2009;3:860–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Korzhenkov AA, Toshchakov SV, Bargiela R, Gibbard H, Ferrer M, Teplyuk AV, et al. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome. 2019;7:11.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Spain EA, Johnson SC, Hutton B, Whittaker JM, Lucieer V, Watson SJ, et al. Shallow seafloor gas emissions near Heard and McDonald Islands on the Kerguelen Plateau, southern Indian Ocean. Earth Space Sci. 2020;7:e2019EA000695.Article 

    Google Scholar 
    Farías L, Florez-Leiva L, Besoain V, Sarthou G, Fernández C. Dissolved greenhouse gases (nitrous oxide and methane) associated with the naturally iron-fertilized Kerguelen region (KEOPS 2 cruise) in the Southern Ocean. Biogeosciences. 2015;12:1925–40.Article 

    Google Scholar 
    Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, et al. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci USA. 2014;111:4274–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Levasseur A, Andreani J, Delerce J, Bou Khalil J, Robert C, La Scola B, et al. Comparison of a modern and fossil pithovirus reveals its genetic conservation and evolution. Genome Biol Evol. 2016;8:2333–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kelley JL, Brown AP, Therkildsen NO, Foote AD. The life aquatic: advances in marine vertebrate genomics. Nat Rev Genet. 2016;17:523–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Colmer SF, Luethy D, Abraham M, Stefanovski D, Hurcombe SD. Utility of cell-free DNA concentrations and illness severity scores to predict survival in critically ill neonatal foals. PLoS One. 2021;16:e0242635.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushton JG, Ertl R, Klein D, Tichy A, Nell B. Circulating cell-free DNA does not harbour a diagnostic benefit in cats with feline diffuse iris melanomas. J Feline Med Surg. 2019;21:124–32.PubMed 
    Article 

    Google Scholar 
    Tagawa M, Shimbo G, Inokuma H, Miyahara K. Quantification of plasma cell-free DNA levels in dogs with various tumors. J Vet Diagn Investig. 2019;31:836–43.CAS 
    Article 

    Google Scholar 
    Shi J, Zhang R, Li J, Zhang R. Size profile of cell-free DNA: a beacon guiding the practice and innovation of clinical testing. Theranostics. 2020;10:4737–48.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fernando MR, Jiang C, Krzyzanowski GD, Ryan WL. Analysis of human blood plasma cell-free DNA fragment size distribution using EvaGreen chemistry based droplet digital PCR assays. Clin Chim Acta. 2018;483:39–47.CAS 
    PubMed 
    Article 

    Google Scholar 
    Findlay AJ. Microbial impact on polysulfide dynamics in the environment. FEMS Microbiol Lett. 2016;363:fnw103.PubMed 
    Article 
    CAS 

    Google Scholar 
    Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Teske A, Brinkhoff T, Muyzer G, Moser DP, Rethmeier J, Jannasch HW. Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl Environ Microbiol. 2000;66:3125–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang X, Du Z, Zheng R, Luan Z, Qi F, Cheng K, et al. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. Deep Sea Res Part I Oceanogr Res Pap. 2017;123:1–12.Article 
    CAS 

    Google Scholar 
    Egger M, Riedinger N, Mogollón JM, Jørgensen BB. Global diffusive fluxes of methane in marine sediments. Nat Geosci. 2018;11:421–5.CAS 
    Article 

    Google Scholar 
    Ansorge R, Romano S, Sayavedra L, Kupczok A, Tegetmeyer HE, Dubilier N, et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat Microbiol. 2019;4:2487–97.PubMed 
    Article 
    CAS 

    Google Scholar 
    Russell SL, Pepper-Tunick E, Svedberg J, Byrne A, Ruelas Castillo J, Vollmers C, et al. Horizontal transmission and recombination maintain forever young bacterial symbiont genomes. PLoS Genet. 2020;16:e1008935.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, et al. The marine viromes of four oceanic regions. PLoS Biol. 2006;4:e368.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li Z, Pan D, Wei G, Pi W, Zhang C, Wang JH, et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 2021;15:2366–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thongsripong P, Chandler JA, Kittayapong P, Wilcox BA, Kapan DD, Bennett SN. Metagenomic shotgun sequencing reveals host species as an important driver of virome composition in mosquitoes. Sci Rep. 2021;11:8448.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koonin EV, Krupovic M, Agol VI. The Baltimore classification of viruses 50 years later: how does it stand in the light of virus evolution? Microbiol Mol Biol Rev. 2021;85:e0005321.PubMed 
    Article 

    Google Scholar 
    Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, et al. Global organization and proposed megataxonomy of the virus world. Microbiol Mol Biol Rev. 2020;84:e00061–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42:565–86.PubMed 
    Article 

    Google Scholar 
    Preissner KT, Herwald H. Extracellular nucleic acids in immunity and cardiovascular responses: between alert and disease. Thromb Haemost. 2017;117:1272–82.PubMed 
    Article 

    Google Scholar 
    Schwarzenbach H. Circulating nucleic acids as biomarkers in breast cancer. Breast Cancer Res. 2013;15:211.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Murphy DJ. Freezing resistance in intertidal invertebrates. Annu Rev Physiol. 1983;45:289–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Robledo JAF, Yadavalli R, Allam B, Espinosa EP, Gerdol M, Greco S, et al. From the raw bar to the bench: bivalves as models for human health. Dev Comp Immunol. 2019;92:260–82.Article 

    Google Scholar 
    Cowart DA, Murphy KR, Cheng CC. Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic Peninsula. Mar Genom. 2018;37:148–60.Article 

    Google Scholar 
    Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, et al. Ancient plant DNA in lake sediments. New Phytol. 2017;214:924–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mariani S, Baillie C, Giuliano C, Riesgo A. Sponges as natural environmental DNA samplers. Curr Biol. 2019;29:R401–R402.CAS 
    PubMed 
    Article 

    Google Scholar 
    Weber S, Brink L, Wörner M, Künzel S, Veith M, Teubner D, et al. Molecular diet analysis in zebra and quagga mussels (Dreissena spp.) and an assessment of the utility of aquatic filter feeders as biological eDNA filters. BioRxiv. 2021; 432951.Caza F, Joly de Boissel PG, Villemur R, Betoulle S, St-Pierre Y. Liquid biopsies for omics-based analysis in sentinel mussels. Plos One. 2019;14:e0223525.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hunter ME, Ferrante JA, Meigs-Friend G, Ulmer A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci Rep. 2019;9:5259.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Burkhardt W III, Calci KR. Selective accumulation may account for shellfish-associated viral illness. Appl Environ Microbiol. 2000;66:1375–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Di Girolamo R, Liston J, Matches J. Ionic bonding, the mechanism of viral uptake by shellfish mucus. Appl Environ Microbiol. 1977;33:19–25.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metzger MJ, Reinisch C, Sherry J, Goff SP. Horizontal transmission of clonal cancer cells causes leukemia in soft-shell clams. Cell. 2015;161:255–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Metzger MJ, Villalba A, Carballal MJ, Iglesias D, Sherry J, Reinisch C, et al. Widespread transmission of independent cancer lineages within multiple bivalve species. Nature. 2016;534:705–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canesi L, Gallo G, Gavioli M, Pruzzo C. Bacteria–hemocyte interactions and phagocytosis in marine bivalves. Microsc Res Tech. 2002;57:469–76.PubMed 
    Article 

    Google Scholar 
    Andruszkiewicz EA, Koseff JR, Fringer OB, Ouellette NT, Lowe AB, Edwards CA, et al. Modeling environmental DNA transport in the coastal ocean using Lagrangian particle tracking. Front Mar Sci. 2019;6:477.Article 

    Google Scholar 
    Wood ZT, Lacoursière-Roussel A, LeBlanc F, Trudel M, Kinnison MT, Garry McBrine C, et al. Spatial heterogeneity of eDNA transport improves stream assessment of threatened salmon presence, abundance, and location. Front Ecol Evol. 2021;9:650717.Article 

    Google Scholar 
    Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods. 2017;14:411–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14:407–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571:489–99.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K). Gigascience. 2020;9:giaa080.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Disentangling structural and functional responses of native versus alien communities by canonical ordination analyses and variation partitioning with multiple matrices

    Time dynamics of the mollusk communitiesIn this section, the presence-absence of the species recorded in the three periods (T1, T2, T3) are analyzed in relation to time, habitat, and human impact. The list of the 28 species of freshwater mollusks (17 gastropods and 11 bivalves) in T1–T3, their codes, and origins are given in Table 1.The number of mollusk species has increased in time as the river has shifted from lotic to a mixture of flowing and stagnant sectors due to the building of reservoirs. T1 was characterized mainly by rheophilic elements and prosobranchs. Some species became extinct during the hydro-technical works (before or during T2) and are unlikely to recover, such as the rheophilic Theodoxus transversalis and Lithoglyphus naticoides. Other rheophilic species disappeared between T1 and T2 but managed to survive in tributaries and repopulated some sectors during the last years. The most remarkable recovery is that of the thick-shelled river mussel Unio crassus, a species protected by EU legislation. T2 was characterized by some extinctions but also colonization by lentiphilic pulmonates and tolerant, resistant species such as some clams. A few lotic species also survived in the river sectors between the dams. In T3, we encountered a rich and diverse community, including some newly established populations of AIS and the discontinuous presence of both lentic and lotic communities. Overall, the present-day fauna is richer than in former periods, consisting of 15 species of gastropods and 8 bivalves. The AIS included the gastropods Physa acuta and Ferrissia californica, which arrived in the area most likely during the XXth century, Viviparus acerosus, which is native to the Danube, but unknown until after 2000 in the upper-middle Olt River basin, the bivalves Dreissena polymorpha, also native in the Danube but an invader in the middle Olt since 2008–2010, Sinanodonta woodiana, first found in 2015, and Corbicula fluminea, which was first discovered in the Olt (and also in Transylvania) during our survey in February 2020. The mean number of native species per river’s sector increases almost linearly (2.8 species per sector in T1, 3.3 in T2, and 4.6 in T3), while the corresponding values for AIS increase non-linearly (no AIS in T1, 0.6 species per sector in T2 and 3.2 in T3).In the CCA of freshwater mollusk community changes through time (Period as predictor), the adjusted explained variation was 23.6% (test on all axes, pseudo-F = 5.9, p = 0.001). The polygons delimiting the positions of the sites during the three periods of time show no overlap, and they were distinct and separated in the ordination space (Fig. 1a). T2 (the period with maximum human impact) is distinctly placed and separated from the period without impact (T1) along both ordination axes. Meantime, T3 is closer to T1, having an intermediate position between the other two periods, showing a trend of recovery, such as the return of some species. In the CCA of T1–T3 species presence-absence predicted by the selected environmental descriptors (Period, Habitat, and Impact) (Fig. 1b), the adjusted explained variation was 28.36% (test on all axes, pseudo-F = 4.2, p = 0.001). FD(Rao) computed on all FT was plotted as isolines by GAM on the ordination space (model AIC = -17.19, model test F = 5.1, p = 0.003; tests of non-linearity in predictor effects: F = 3.9, p = 0.03). The functional diversity decreased from T1 to T2, then increased sharply to T3; it also decreased from rivers (R) to lakes (L) and along the human impact gradient (Impact).Figure 1Canonical correspondence analysis (CCA) of mollusk communities: (a) classification diagram of sampling sites based on period (as predictors): T1—XIXth century, T2—1995–2000, T3—2020 (adjusted explained variation 23.6%; first axis accounts for 17.6% the second for 6.0%, both axes are significant, p = 0.001); (b) CCA diagram of species occurrence constrained by environmental predictors (period, habitat: L—lakes, lentic sector in reservoirs, R—river, lotic sectors, and Impact—human impact) with functional diversity expressed as Rao quadratic entropy index (FD (Rao)) isolines plotted by generalized additive models (GAM) on the ordination space (adjusted explained variation 28.36%; first axis accounts for 16.3%, the second for 6.0%, both axes are significant, p = 0.001) .Full size imageIn the dc-CA with the selected predictors on T1–T3 presence-absence data, the first two axes separate the communities by period, each positioned in a distinct quadrant (Fig. 2). After a decrease in diversity from T1 to T2, in T3, there were more species and higher functional diversity. In time, there was a reduction in body size, a switch from species with separate sexes to hermaphrodites, a transition of oviposition towards ovo-viviparity (in snails), and external fecundation (in bivalves), and a switch of the feeding type. The dc-CA adjusted explained variation was 16.47%; tests based on sectors and species showed significant relationships (combined test for all axes, pseudo-F = 2.6, p = 0.006), the dimensionality test based on case scores was significant for the first axis (pseudo-F = 4.2, p = 0.001) and marginally significant for the second one (pseudo-F = 1.1, p = 0.053). In contrast, the dimensionality test based on species scores was significant only for the first axis (pseudo-F = 1.6, p = 0.004). The adjusted variation explained by environmental predictors (Hab, Impact, and Period) was 28.36%, and by the selected functional traits (Sexes, FeedT, SizeM, and Ovipos) was 14.64%.Figure 2Double-constrained correspondence analysis (dc-CA) with selected predictors on presence-absence data in T1–T3. The selected functional traits (in blue) are Sexes (circles: H—hermaphrodite, S—separate sexes), Feeding type (squares: SCR—scraper, SS—scraper and sediment, SF—scraper and filter, F—filter, SEDF—suspension and deposit feeder), Oviposition (diamonds: OV—ovo-viviparity, CAP—capsule/eggmass, BE—parental care, juveniles in brood pouches of demibranchs, No—no oviposition, external fecundation), and mean body size (SizeM); the selected environmental predictors (in red) are time (Period, with levels T1—XIXth century, T2—1995–2000, T3—2020), habitat (R—river, lotic sector; L—lake, a lentic sector in reservoirs) and human impact (Impact). Species are coded by the first three letters of the genus and species names. The adjusted explained variation was 16.47%, the first axis accounts for 12.7% and the second for 2.2%. Native species have black labels, while aliens (AIS) are written in green.Full size imageWe have split the binary data describing communities into two parts: natives and AIS, using the latter as predictors. We partitioned the variation in native species composition explained by the three predictor groups (Period, Environment, and AIS) (Fig. 3), subjecting the explanatory variables to an interactive forward selection procedure. We used RDA with centered response variables (CCA can not be used because the empty rows in some tables hinder the use of a proper hierarchical permutation scheme). The adjusted explained variation was 39.6% (the simple effects: time accounted for 22.33%, habitat and impact 24.73%, and the selected AIS 20.82%). All simple and unique effects were significant (p  More

  • in

    Ecological niche models for the assessment of site suitability of sea cucumbers and sea urchins in China

    FAO (Food and Agriculture Organization of the United Nations, Fisheries and Aquaculture Department). The State of World Fisheries and Aquaculture 2020 (Food and Agriculture Organization of the United Nations, 2020).Costello, C. et al. The future of food from the sea. Nature 588(7836), 1–6 (2020).
    Google Scholar 
    Sarah, A. B. et al. Trends in the detection of aquatic non-indigenous species across global marine, estuarine and freshwater ecosystems: A 50-year perspective. Divers. Distrib. 26(12), 1780–1797 (2020).
    Google Scholar 
    FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Academic Journal Electronic Publishing House, 1949–1975). https://www.cafs.ac.cn/kxyj/qgyytjnj.htm. (in Chinese).FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Agriculture Press, 2021). (in Chinese).Shelton, W. L. & Rothbard, S. Exotic species in global aquaculture—a review. Isr. J. Aquac. 58(1), 3–28 (2006).
    Google Scholar 
    Ju, R. et al. Emerging risks of non-native species escapes from aquaculture: Call for policy improvements in China and other developing countries. J. Appl. Ecol. 57, 86–90 (2020).
    Google Scholar 
    Zhu, C. & Dong S. Aquaculture site selection and carrying capacity management in the People’s Republic of China. In Site Selection and Carrying Capacities for Inland and Coastal Aquaculture (eds Ross, L. G., Telfer, T. C., Falconer, L., Soto, D. & Aguilar Manjarrez, J.) 219–230 (FAO/Institute of Aquaculture, Expert Workshop, 6–8 December 2010, University of Stirling, UK, FAO, Rome, 2013).Falconer, L., Telfer, T. C. & Ross, L. G. Investigation of a novel approach for aquaculture site selection. J. Environ. Manag. 181, 791–804 (2016).
    Google Scholar 
    Liu, Y. et al. Spatiotemporal variations in suitable areas for Japanese scallop aquaculture in the Dalian coastal area from 2003 to 2012. Aquaculture 422, 172–183 (2014).
    Google Scholar 
    Reverter, M. et al. Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat. Commun. 11, 1870 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eve, G., Marc, B. & Montserrat, R. Immune response of the sea cucumber Parastichopus regalis to different temperatures: Implications for aquaculture purposes. Aquaculture 497, 357–363 (2018).
    Google Scholar 
    Gentry, R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1(9), 1317 (2017).PubMed 

    Google Scholar 
    Kim, B. et al. Impact of seawater temperature on Korean aquaculture under representative concentration pathways (RCP) scenarios. Aquaculture 542(3), 736893 (2021).
    Google Scholar 
    Wentz, F. J. et al. Satellite measurements of sea surface temperature through clouds. Science 288(5467), 847–850 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mediodia, H. Effects of sea surface temperature on tuna catch: Evidence from countries in the Eastern Pacific Ocean. Ocean. Coast. Manag. 209, 105657 (2021).
    Google Scholar 
    Liu, S., Zhang, Z., Wu, J. & Yu W. Spatial and temporal variations of potential habitats of jumbo flying squid Dosidicus gigas off Peru under increasing sea surface Temperature. Fish. Sci. (2020). (in Chinese with an English Abstract).Nian, R. et al. The identification and prediction in abundance variation of Atlantic cod via long short-term memory with periodicity, time–frequency co-movement, and lead-lag effect across sea surface temperature, sea surface salinity, catches, and prey biomass from 1919 to 2016. Front. Mar. Sci. 8, 665716 (2021).
    Google Scholar 
    Radiarta, I. & Saitoh, S. Biophysical models for Japanese scallop, Mizuhopecten yessoensis, aquaculture site selection in Funka Bay, Hokkaido, Japan, using remotely sensed data and geographic information system. Aquacult. Int. 17(5), 403 (2009).
    Google Scholar 
    Laama, C. & Bachar, N. Evaluation of site suitability for the expansion of mussel farming in the Bay of Souahlia (Algeria) using empirical models. J. Appl. Aquac. 31(4), 337–355 (2019).
    Google Scholar 
    Liu, Y. et al. Impact of iceanographic environmental shifts and atmospheric events on the sustainable development of coastal aquaculture: A case study of kelp and scallops in southern Hokkaido, Japan. Sustainability 7(2), 1263–1279 (2015).
    Google Scholar 
    Foo, S. & Gregory, P. Sea surface temperature in coral reef restoration outcomes. Environ. Res. Lett. 15(7), 074045 (2020).ADS 

    Google Scholar 
    Warren, D. & Seifert, S. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21(2), 335–342 (2011).PubMed 

    Google Scholar 
    Warren, D., Glor, R. & Turelli, M. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33(3), 607–611 (2010).
    Google Scholar 
    Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 222(8), 1343–1346 (2011).
    Google Scholar 
    Bo, Z., Xin-Jun, C. & Gang, L. Relationship between the resource and fishing ground of mackerel and environmental factors based on GAM and GLM models in the East China Sea and Yellow Sea. Shuichan Xuebao 32(3), 379–386 (2008) (in Chinese with an English abstract).
    Google Scholar 
    Chen, P. & Chen, X. Analysis of habitat distribution of Argentine shortfin squid (Illex argentinus) in the southwest Atlantic Ocean using maximum entropy model. Shuichan Xuebao 40(6), 893–902 (2016) (in Chinese with an English abstract).
    Google Scholar 
    Zhang, S., Shi, Y., Li, F., Zhu, M. & Wei, Z. Prediction of potential fishing ground for Pacific saury (Cololabis saira) based on MAXENT model. J. Ocean. Univ. China 29(2), 280–286 (2020) (in Chinese with an English abstract).
    Google Scholar 
    Phillips, S. & Elith, J. On estimating probability of presence from use–availability or presence–background data. Ecology 94(6), 1409–1419 (2013).PubMed 

    Google Scholar 
    Yang, H. et al. Current advances and technological prospects of the sea cucumber seed industry in China. Mar. Sci. 7, 2–9 (2020) (in Chinese with an English abstract).CAS 

    Google Scholar 
    Chang, Y., Ding, J., Song, J. & Yang, W. Biology and Aquaculture of Sea Cucumbers and Sea Urchins (Ocean Press, Beijing, 2004) (in Chinese).
    Google Scholar 
    Li, C. & Hu, W. Status, trend and countermeasure in development of sea cucumber Apostichopus Japonicus Selenka industry in China. Mar. Econ. China. 1, 3–20 (2017) (in Chinese with an English abstract).
    Google Scholar 
    FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook. China Agriculture Press; 2003. (in Chinese).FAMA (Fisheries Administration of the Ministry of Agriculture of the PRC). China Fishery Statistical Yearbook (China Agriculture Press, 2012). (in Chinese).He, C. & Huang, G. On Apostichopus japonicus culture in China and major culture provinces. Fish. Inf. St. (2014). (in Chinese with an English abstract).Su, L., Zhou, C., Hu, L. & Xu, J. Development status and sustainable development of Apostichopus japonicus industry in south China. Fish. Sci. Technol. Inf. 2, 57–60 (2014) (in Chinese).
    Google Scholar 
    Guo, F. Research and analysis report on sea cucumber Apostichopus japonicus aquaculture industry in typical regions of North and South China: A case study of Wafangdian city and Xiapu county. Masteral dissertation, Dalian Ocean University. (2021). (in Chinese with an English abstract).Agatsuma, Y. Strongylocentrotus intermedius. In Sea Urchins: Biology and Ecology 4th edn (ed. Lawrence, J. M.) 609–621 (Elsevier, Amsterdam, 2020).
    Google Scholar 
    Wang, Z. & Chang, Y. Studies on hatching of Japanese sea urchin Strongylocentrotus intermedius. J. Fish. Sci. C 4(1), 60–67 (1997) (in Chinese with an English abstract).
    Google Scholar 
    Liao, Y. Fauna of China: Echinodermata: Holothuroidea (Science Press, 1997) (in Chinese).Merckx, B. et al. Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. Ecol. Model. 222(3), 588–597 (2011).CAS 

    Google Scholar 
    Matthew, A. A method for implementing a statistically significant number of data classes in the Jenks algorithm. In Proceedings of the Sixth International Conference on Fuzzy Systems and Knowledge Discovery 35–38 (Tianjin, China. 2009).Zhao, G. Water environment analysis of two typical breeding patterns. Masteral dissertation, Hebei Agricultural University. (2019). (in Chinese with an English abstract).Liu, C. & Lan, Y. Situation and countermeasure of sea cucumber culturing industry in Fujian Province. J. Fujian Fish. (2013). (in Chinese with an English abstract).Fei, G. et al. Effect of water temperature on digestive enzyme activity and gut mass in sea cucumber Apostichopus japonicus (Selenka), with special reference to aestivation. J. Oceanol. Limnol. 27(4), 714–722 (2009).
    Google Scholar 
    Han, C., Lin, P., et al. A study on key technique of Stichopus japonicus Selenka farming in southern sea area. Mod. Fish. Inf. (2011). (in Chinese with an English abstract).Chang, Y., Wang, Z. & Wang, G. Effect of temperature and algae on feeding and growth in sea urchin, Strongylocentrotus intermedius. J. Fish. China. (1997). (in Chinese with an English abstract).Lawrence, J. et al. Temperature effect of feed consumption, absorption, and assimilation efficiencies and production of the sea urchin Strongylocentrotus intermedius. J. Shellfish Res. 28, 389–395 (2009).
    Google Scholar 
    Zhao, C. et al. Effects of temperature and feeding regime on food consumption, growth, gonad production and quality of the sea urchin Strongylocentrotus intermedius. J. Mar. Biolog. Assoc. 96(1), 185–195 (2015).
    Google Scholar 
    Lawrence, J., Zhao, C. & Chang, Y. Large-scale production of sea urchin (Strongylocentrotus intermedius) seed in a hatchery in China. Aquac. Int. 27(1), 1–7 (2019).CAS 

    Google Scholar 
    Chang, Y. et al. Aquaculture of Strongylocentrotus intermedius in Fujian coastal areas. South China Fish. Sci. 16(3), 1–9 (2020).
    Google Scholar 
    Yu, Z. Raft culture technique of sea urchin in south China. China Fish. 376(003), 57–57 (2007) (in Chinese).
    Google Scholar  More

  • in

    A high spatial resolution land surface phenology dataset for AmeriFlux and NEON sites

    Site selectionWe selected 104 sites covering a range of ecological, land cover, and climate conditions across North America (Table 1). These sites were selected because they are part of either the National Ecological Observatory Network (NEON) or AmeriFlux network, all have PhenoCams, and each has at least one year of available flux data between 2017 and 2021. Among the included sites, 44 are part of the NEON.Table 1 List of AmeriFlux and NEON sites included in the dataset. .Full size tablePlanetScope image database compilationThe LSP metrics included in the dataset are derived from a database of daily 3 m PlanetScope imagery. To compile this database, a Python script was created to search, request, and download imagery using Planet’s RESTful API interface (https://developers.planet.com/docs/apis/data/). For each site, the area of interest (AOI) was defined using a GeoJSON file that prescribed a 10 by 10 km box centered over the flux tower at each site. Each GeoJSON was then used to submit search requests to the API. As part of the search process, the following filters were applied to ensure that good quality images with adequate clear sky views and high-accuracy geolocation were downloaded: (1) quality category identified as ‘standard’; (2) cloud cover less than or equal to 50%; and (3) ground control is ‘true’. Filtering was performed using all available PlanetScope ‘PSScene4Band’ imagery from 2016 to 2022. Once the API completed the search, the Python script read the search results, submitted orders, and the selected imagery was downloaded from Planet’s cloud-based system to local storage. During execution of the Python script, a log file was created to keep track of successful and failed orders. If an order failed, the script was run again targeting the specific order that failed. The resulting dataset included over 1.8 million unique files with, on average, 3,885 scene images for each site (i.e., the number of images, on average, that overlap part of each 10 by 10 km site), and had a total volume of 62.2 TB.Image processingTo ensure that high-quality image time series were used to generate LSP metrics, we used PlanetScope per-pixel quality assurance information to exclude pixels that had low quality in all 4 bands (i.e., blue, green, red, and near-infrared). Specifically, we excluded pixels where the Unusable Data Mask (layer ‘umd’) was not 0 (i.e., we retained pixels that were not cloud contaminated or located in non-image areas) and pixels where the Usable Data Mask (layer ‘umd2’) is 0 (i.e., we retained pixels that were not contaminated by snow, shadow, haze, or clouds). We then cropped all the images to exclude pixels outside of the 10 by 10 km window centered over each tower. We selected this window size based on published results showing that 80% of the average monthly footprint at eddy covariance towers ranges from 103 to 107 square meters22. Note that the swath for PlanetScope imagery often did not cover entire sites and some sites (e.g., the tall tower at US-Pfa) have larger footprints than other sites. Similarly, most sites had multiple PlanetScope image acquisitions on the same day. To create image time series, we mosaiced all available imagery at each site on each date, and, under the assumption that geolocation error was non-systematic and modest, we created a single image for each date using the mean surface reflectance for pixels with multiple values on the same day. The resulting database of daily surface reflectance images were sorted in chronological order, sub-divided into 200 sub-areas at each site (i.e., 0.5 km2 each), and then stored as image stacks to facilitate parallel processing to estimate LSP metrics, where each image stack included all images from July 1, 2016 through January 31, 2022.Creation of daily EVI2 time seriesTo estimate LSP metrics we adapted the algorithm described by Bolton et al.19, which was originally implemented to estimate LSP metrics from harmonized Landsat and Sentinel-2 (HLS) imagery, for use with PlanetScope imagery. Prior to LSP estimation, daily images of the two-band Enhanced Vegetation Index30 (EVI2) data were generated from PlanetScope imagery and then interpolated to create smooth time series of daily EVI2 values at each pixel in three main steps. First, sources of variation related to clouds, atmospheric aerosols, and snow were detected and removed from the EVI2 time series at each pixel based on data masks provided with PlanetScope imagery (described above) and outlier detection criteria (i.e., de-spiking and removing negative EVI2 values). Second, we identified the ‘background’ EVI2 value (the minimum EVI2 value outside of the growing season) based on the 10th percentile of snow-free EVI2 values at each pixel. Any dates with EVI2 values below the background value were replaced with the background EVI2. Third, penalized cubic smoothing splines were used to gap-fill and smooth the data to create daily EVI2 time series across all years of available data. Complete details on these steps are given in Bolton et al.19. This approach has been tested and shown to yield PlanetScope EVI2 time series that are consistent with both EVI2 time series from HLS imagery and time series of the Green Chromatic Coordinate (GCC) from PhenoCam imagery26. We used the EVI2 instead of other vegetation indices such as the Enhanced Vegetation Index (EVI) or the Normalized Difference Vegetation Index (NDVI) because EVI2 is less sensitive to noise from atmospheric effects relative to EVI and is less prone to saturation over dense canopies and noise from variation in soil background reflectance over sparse canopies relative to the NDVI30,32. Thus, phenological metrics from EVI2 time series tend to have better agreement with PhenoCam observations than corresponding metrics from NDVI33.Identifying phenological cyclesPrior to estimating LSP metrics, we first identity unique growth cycles by searching the period before and after each local peak in the daily PlanetScope EVI2 time series. To be considered a valid growth cycle, the difference in EVI2 between the local minimum and maximum was required to be at least 0.1 and greater than 35% of the total range in EVI2 over the 24-month period centered on the target year ± 6 months. The start of each growth cycle is restricted to occur within 185 days before the peak of the cycle and at least 30 days after the previous peak. The same procedure was applied in reverse at the end of the cycle to constrain the range of end dates for each growth cycle. This procedure is applied recursively over the time series until each local peak has been assessed and all growth cycles (with associated green-up period, peak greenness, and green-down period) are identified in the time series at each pixel. As part of this process, the algorithm provides the number of growth cycles identified for each year in the time series.Retrieving LSP metricsLSP metrics are estimated for each pixel in up to two growth cycles in each year. If no growth cycles are detected, the algorithm returns fill values for all timing metrics, but does report values for the four annual metrics: EVImax, EVIamp, EVIarea, and numObs (see below). If more than two growth cycles are detected, which is rare but does occur (e.g., alfalfa, which is harvested and regrows multiple times in a year), the algorithm records 7 LSP metrics for each of the two growth cycles with the largest EVI2 amplitudes. The resulting dataset includes seven ‘timing’ metrics that identify the timing of greenup onset, mid-greenup, maturity, peak EVI2, greendown onset, mid-greendown, and dormancy. These metrics record the day of year (DOY) when the EVI2 time series exceeds 15%, 50%, and 90% of EVI2 amplitude during the greenup phase, reaches its maximum, and goes below 90%, 50%, and 15% of EVI2 amplitude during the greendown phase. In addition, the algorithm records three complementary metrics that characterize the magnitude of seasonality and total ‘greenness’ at each pixel in each growth cycle: the EVI2 amplitude, the maximum EVI2, and the growing season integral of EVI2, which is calculated as the sum of daily EVI2 values between the growth cycle start- and end-dates (i.e., from greenup onset to dormancy).Quality assurance flagsQuality Assurance (QA) values are estimated at each pixel based on the density of observations and the quality of spline fits during each phenophase of the growing season. A QA value of 1 (high quality) is assigned if the correlation between observed versus fitted daily EVI2 values is greater than 0.75 and the maximum gap during each phase is less than 30 days. A QA value of 2 (moderate quality) is assigned if the correlation coefficient is less than 0.75 or the length of the maximum gap over the segment is greater than 30 days. A QA value of 3 (low quality) is assigned if the correlation coefficient is less than 0.75 and the length of the maximum gap over the segment is greater than 30 days. A QA value of 4 is assigned if no growth cycles were detected or insufficient data were available to run the algorithm. More

  • in

    Stable isotopes unveil one millennium of domestic cat paleoecology in Europe

    Turner, D. & Bateson, P. (eds) The Domestic Cat: The Biology of Its Behaviour (Cambridge Univ. Press, 2000).
    Google Scholar 
    Bradshaw, J. W. S., Goodwin, D., Legrand-Defrétin, V. & Nott, H. M. R. Food selection by the domestic cat, an obligate carnivore. Comp. Biochem. Physiol. A Physiol. 114, 205–209 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trouwborst, A., McCormack, P. C. & Martínez Camacho, E. Domestic cats and their impacts on biodiversity: A blind spot in the application of nature conservation law. People Nat. 2, 235–250 (2020).Article 

    Google Scholar 
    Crowley, S. L., Cecchetti, M. & McDonald, R. A. Our wild companions: Domestic cats in the anthropocene. Trends Ecol. Evol. 35, 477–483 (2020).PubMed 
    Article 

    Google Scholar 
    Driscoll, C. A. et al. The Near Eastern origin of cat domestication. Science 317, 519–523 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Neer, W., Linseele, V., Friedman, R. & De Cupere, B. More evidence for cat taming at the Predynastic elite cemetery of Hierakonpolis (Upper Egypt). J. Archaeol. Sci. 45, 103–111 (2014).Article 

    Google Scholar 
    Ottoni, C. et al. The palaeogenetics of cat dispersal in the ancient world. Nat. Ecol. Evol. 1, 0139 (2017).Article 

    Google Scholar 
    Baca, M. et al. Human-mediated dispersal of cats in the Neolithic Central Europe. Heredity 121, 557–563 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vigne, J. The beginning of cat domestication in East and West Asia. Doc. Archaeobiol. 15, 343–354 (2019).
    Google Scholar 
    Krajcarz, M. et al. Ancestors of domestic cats in Neolithic Central Europe: Isotopic evidence of a synanthropic diet. Proc. Natl. Acad. Sci. USA 117, 17710–17719 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piontek, A. M. et al. Analysis of cat diet across an urbanisation gradient. Urban Ecosyst. 24, 59–69 (2021).Article 

    Google Scholar 
    Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Chang. Biol. 17, 3503–3510 (2011).ADS 
    Article 

    Google Scholar 
    Moseby, K. E., Peacock, D. E. & Read, J. L. Catastrophic cat predation: A call for predator profiling in wildlife protection programs. Biol. Conserv. 191, 331–340 (2015).Article 

    Google Scholar 
    Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife of the United States. Nat. Commun. 4, 1396 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Beaumont, M. et al. Genetic diversity and introgression in the Scottish wildcat. Mol. Ecol. 10, 319–336 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beugin, M. P. et al. Hybridization between Felis silvestris silvestris and Felis silvestris catus in two contrasted environments in France. Ecol. Evol. 10, 263–276 (2020).PubMed 
    Article 

    Google Scholar 
    Biró, Z., Lanszki, J., Szemethy, L., Heltai, M. & Randi, E. Feeding habits of feral domestic cats (Felis catus), wild cats (Felis silvestris) and their hybrids: Trophic niche overlap among cat groups in Hungary. J. Zool. 266, 187–196 (2005).Article 

    Google Scholar 
    Széles, G. L., Purger, J. J., Molnár, T. & Lanszki, J. Comparative analysis of the diet of feral and house cats and wildcat in Europe. Mammal. Res. 63, 43–53 (2018).Article 

    Google Scholar 
    Ottoni, C. & Van Neer, W. The dispersal of the domestic cat paleogenetic and zooarcheological evidence. Near East. Archaeol. 83, 38–45 (2020).Article 

    Google Scholar 
    Bitz-Thorsen, J. & Gotfredsen, A. B. Domestic cats (Felis catus) in Denmark have increased significantly in size since the Viking Age. Danish J. Archaeol. 7, 241–254 (2018).Article 

    Google Scholar 
    Faure, E. & Kitchener, A. C. An archaeological and historical review of the relationships between felids and people. Anthrozoos 22, 221–238 (2009).Article 

    Google Scholar 
    von den Driesch, A. Kulturgeschichte der Hauskatze. In Krankheiten der Katze, Bd. 1 (eds Schmidt, V. & Horzinek, M. C.) 17–40 (Fischer, 1992).
    Google Scholar 
    Głażewska, I. & Kijewski, T. A new view on the European feline population from mtDNA analysis in Polish domestic cats. Forensic Sci. Int. Genet. 27, 116–122 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cucchi, T. et al. Tracking the Near Eastern origins and European dispersal of the western house mouse. Sci. Rep. 10, 8276 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Klinken, G. J., Richards, M. P. & Hedges, B. E. M. An overview of causes for stable isotopic variations in past European human populations: environmental, ecophysiological, and cultural effects. In Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. & Katzenberg, M.) 39–63 (Kluwer Academic Publishers, 2002). https://doi.org/10.1007/0-306-47194-9_3.Chapter 

    Google Scholar 
    Drucker, D. G., Bridault, A., Hobson, K. A., Szuma, E. & Bocherens, H. Can carbon-13 in large herbivores reflect the canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 69–82 (2008).Article 

    Google Scholar 
    Koch, P. L. Isotopic study of the biology of modern and fossil vertebrates. In Stable Isotopes in Ecology and Environmental Science (eds Michener, R. & Lajtha, K.) 99–154 (Blackwell Publishing Ltd, 2007). https://doi.org/10.1002/9780470691854.ch5.Chapter 

    Google Scholar 
    Hofman-Kamińska, E. et al. Foraging habitats and niche partitioning of European large herbivores during the holocene—Insights from 3D dental microwear texture analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 183–195 (2018).Article 

    Google Scholar 
    Bocherens, H., Hofman-Kamińska, E., Drucker, D. G., Schmölcke, U. & Kowalczyk, R. European bison as a refugee species? Evidence from isotopic data on Early Holocene bison and other large herbivores in northern Europe. PLoS ONE 10, 1–19 (2015).Article 
    CAS 

    Google Scholar 
    Hu, Y. et al. Earliest evidence for commensal processes of cat domestication. Proc. Natl. Acad. Sci. USA. 111, 116–120 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haruda, A. F. et al. The earliest domestic cat on the Silk Road. Sci. Rep. 10, 11241 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meckstroth, A. M., Miles, A. K. & Chandra, S. Diets of introduced predators using stable isotopes and stomach contents. J. Wildl. Manag. 71, 2387–2392 (2007).Article 

    Google Scholar 
    McDonald, B. W. et al. High variability within pet foods prevents the identification of native species in pet cats’ diets using isotopic evaluation. PeerJ 8, e8337 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maeda, T., Nakashita, R., Shionosaki, K., Yamada, F. & Watari, Y. Predation on endangered species by human-subsidized domestic cats on Tokunoshima Island. Sci. Rep. 9, 16200 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stewart, G. R., Aidar, M. P. M., Joly, C. A. & Schmidt, S. Impact of point source pollution on nitrogen isotope signatures (δ15N) of vegetation in SE Brazil. Oecologia 131, 468–472 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    Graven, H., Keeling, R. F. & Rogelj, J. Changes to carbon isotopes in atmospheric CO2 over the industrial era and into the future. Glob. Biogeochem. Cycles 34, 1–21 (2020).Article 
    CAS 

    Google Scholar 
    DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Linderholm, A. & Kjellström, A. Stable isotope analysis of a medieval skeletal sample indicative of systemic disease from Sigtuna Sweden. J. Archaeol. Sci. 38, 925–933 (2011).Article 

    Google Scholar 
    Webb, E. C. et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. Archaeol. Anthropol. Sci. 10, 1–18 (2018).Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Stable isotope evidence for 1500 years of human diet at the city of York, UK. Am. J. Phys. Anthropol. 133, 682–697 (2007).PubMed 
    Article 

    Google Scholar 
    Müldner, G. & Richards, M. P. Fast or feast: Reconstructing diet in later medieval England by stable isotope analysis. J. Archaeol. Sci. 32, 39–48 (2005).Article 

    Google Scholar 
    van der Sluis, L. G., Hollund, H. I., Kars, H., Sandvik, P. U. & Denham, S. D. A palaeodietary investigation of a multi-period churchyard in Stavanger, Norway, using stable isotope analysis (C, N, H, S) on bone collagen. J. Archaeol. Sci. Rep. 9, 120–133 (2016).
    Google Scholar 
    Polet, C. & Katzenberg, M. A. Reconstruction of the diet in a mediaeval monastic community from the coast of Belgium. J. Archaeol. Sci. 30, 525–533 (2003).Article 

    Google Scholar 
    Kosiba, S. B., Tykot, R. H. & Carlsson, D. Stable isotopes as indicators of change in the food procurement and food preference of Viking Age and Early Christian populations on Gotland (Sweden). J. Anthropol. Archaeol. 26, 394–411 (2007).Article 

    Google Scholar 
    Olsen, K. C. et al. Isotopic anthropology of rural German medieval diet: Intra- and inter-population variability. Archaeol. Anthropol. Sci. 10, 1053–1065 (2018).Article 

    Google Scholar 
    Benevolo, L. The European City (Blackwell Publishers, 1993).
    Google Scholar 
    Barrett, J. et al. Detecting the medieval cod trade: A new method and first results. J. Archaeol. Sci. 35, 850–861 (2008).Article 

    Google Scholar 
    Barrett, J. H. et al. Interpreting the expansion of sea fishing in medieval Europe using stable isotope analysis of archaeological cod bones. J. Archaeol. Sci. 38, 1516–1524 (2011).Article 

    Google Scholar 
    Bogaard, A., Heaton, T. H. E., Poulton, P. & Merbach, I. The impact of manuring on nitrogen isotope ratios in cereals: Archaeological implications for reconstruction of diet and crop management practices. J. Archaeol. Sci. 34, 335–343 (2007).Article 

    Google Scholar 
    Heaton, T. H. E. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for palaeodiet studies. J. Archaeol. Sci. 26, 637–649 (1999).Article 

    Google Scholar 
    Bogaard, A. et al. Crop manuring and intensive land management by Europe’s first farmers. Proc. Natl. Acad. Sci. USA. 110, 12589–12594 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Styring, A. K. et al. Refining human palaeodietary reconstruction using amino acid δ15N values of plants, animals and humans. J. Archaeol. Sci. 53, 504–515 (2015).CAS 
    Article 

    Google Scholar 
    Guiry, E. Complexities of stable carbon and nitrogen isotope biogeochemistry in ancient freshwater ecosystems: Implications for the study of past subsistence and environmental change. Front. Ecol. Evol. 7, 313 (2019).Article 

    Google Scholar 
    Fuller, B. T., Müldner, G., Van Neer, W., Ervynck, A. & Richards, M. P. Carbon and nitrogen stable isotope ratio analysis of freshwater, brackish and marine fish from Belgian archaeological sites (1st and 2nd millennium AD). J. Anal. At. Spectrom. 27, 807–820 (2012).CAS 
    Article 

    Google Scholar 
    Robson, H. K. et al. Carbon and nitrogen stable isotope values in freshwater, brackish and marine fish bone collagen from Mesolithic and Neolithic sites in central and northern Europe. Environ. Archaeol. 21, 105–118 (2016).Article 

    Google Scholar 
    Hobson, K. A., Piatt, J. F. & Pitocchelli, J. Using stable isotopes to determine seabird trophic relationships. J. Anim. Ecol. 63, 786–798 (1994).Article 

    Google Scholar 
    Guiry, E. & Buckley, M. Urban rats have less variable, higher protein diets. Proc. R. Soc. B Biol. Sci. 285, 20181441 (2018).Article 
    CAS 

    Google Scholar 
    Bicknell, A. W. J. et al. Stable isotopes reveal the importance of seabirds and marine foods in the diet of St Kilda field mice. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Hoffmann, R. C. Medieval fishing. In Working with Water in Medieval Europe. Technology and Resource-Use (ed. Squatriti, P.) 331–393 (Brill, 2000).
    Google Scholar 
    Gillies, C. & Clout, M. The prey of domestic cats (Felis catus) in two suburbs of Auckland City, New Zealand. J. Zool. 259, 309–315 (2003).Article 

    Google Scholar 
    Brickner-Braun, I., Geffen, E. & Yom-Tov, Y. The domestic cat as a predator of Israeli wildlife. Isr. J. Ecol. Evol. 53, 129–142 (2007).Article 

    Google Scholar 
    Flockhart, D. T. T., Norris, D. R. & Coe, J. B. Predicting free-roaming cat population densities in urban areas. Anim. Conserv. 19, 472–483 (2016).Article 

    Google Scholar 
    Castañeda, I., Zarzoso-Lacoste, D. & Bonnaud, E. Feeding behaviour of red fox and domestic cat populations in suburban areas in the south of Paris. Urban Ecosyst. 23, 731–743 (2020).Article 

    Google Scholar 
    Zhu, Y., Siegwolf, R. T. W., Durka, W. & Körner, C. Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162, 853–863 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Männel, T. T., Auerswald, K. & Schnyder, H. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob. Ecol. Biogeogr. 16, 583–592 (2007).Article 

    Google Scholar 
    Pińska, K. & Badura, M. Warunki przyrodnicze i dieta roślinna mieszkańców Pucka w późnym średniowieczu. In Puck – kultura materialna małego miasta w późnym średniowieczu (ed. Starski, M.) 517 (Uniwersytet Warszawski, 2017).
    Google Scholar 
    Lefebvre, A. et al. Morphology of estuarine bedforms, Weser Estuary, Germany. Earth Surf. Process. Landforms 47, 242–256 (2022).ADS 
    Article 

    Google Scholar 
    Bischop, D. & Von der Küchelmann, H. C. Küche in den Graben – Bremens Stadtgraben und die Essgewohnheiten seiner Anwohner an der Wende zur Frühen Neuzeit. In Lebensmittel im Mittelalter und in der frühen Neuzeit. Erzeugung, Verarbeitung, Versorgung. Beiträge des 16. Kolloquiums des Arbeitskreises zur archäologischen Erforschung des mittelalterlichen Handwerks, Soester Beiträge zur Archäologie 15 (ed. Melzer, W.) 137–151 (Mocker und Jahn, 2018).
    Google Scholar 
    Elmshäuser, K. & Pordzik, V. V. Lachsgarnen, Tomen und Kumpanen – Die älteste Bremer Fischeramtsrolle. Bremisches Jahrb. 98, 13–72 (2019).
    Google Scholar 
    Küchelmann, H. C. Viel Butter bei wenig Fisch. Zwei Fischknochenkomplexe des 12.–13. Jahrhunderts aus der Bremer Altstadt. In Grenzen überwinden. Archäologie zwischen Disziplin und Disziplinen. Festschrift für Uta Halle zum 65. Geburtstag, Internationale Archäologie Studia Honoraria 40 (eds Kahlow, S. et al.) 413–426 (Verlag Marie Leidorf GmbH, 2021).
    Google Scholar 
    Schwarcz, H. P. & Schoeninger, M. J. Stable isotope analyses in human nutritional ecology. Am. J. Phys. Anthropol. 34, 283–321 (1991).Article 

    Google Scholar 
    Wallace, M. et al. Stable carbon isotope analysis as a direct means of inferring crop water status and water management practices. World Archaeol. 45, 388–409 (2013).Article 

    Google Scholar 
    van der Merwe, N. J. & Medina, E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 18, 249–259 (1991).Article 

    Google Scholar 
    Ervynck, A. Orant, pugnant, laborant. The diet of the three orders in the feudal society of medieval north-western Europe. In Behaviour Behind Bones. The Zooarchaeology of Ritual, Religion, Status and Identity (eds O’Day, S. J. et al.) 215–223 (Oxbow Books, 2004).
    Google Scholar 
    von den Driesch, A. A guide to the measurement of animal bones from archaeological sites. Peabody Museum Bull. 1, 1–137 (1976).
    Google Scholar 
    O’Connor, T. P. Wild or domestic? Biometric variation in the cat Felis silvestris Schreber. Int. J. Osteoarchaeol. 17, 581–595 (2007).Article 

    Google Scholar 
    Kratochvíl, Z. Schadelkriterien der Wild- und Hauskatze (Felis silvestris silvestris Schreber 1777 und Felis s. f. catus L. 1758). Acta Sci. Nat. Brno 7, 1–50 (1973).
    Google Scholar 
    Kratochvíl, Z. Das Postkranialskelett der Wild- und Hauskatze (Felis silvestris und F. lybica f. catus). Acta Sci. Nat. Brno 10, 1–43 (1976).
    Google Scholar 
    Dyce, K. M., Sack, W. O. & Wensing, C. J. G. Textbook of Veterinary Anatomy (Saunders/Elsevier, 2010).
    Google Scholar 
    Krajcarz, M. et al. On the trail of the oldest domestic cat in Poland. An insight from morphometry, ancient DNA and radiocarbon dating. Int. J. Osteoarchaeol. 26, 912–919 (2016).Article 

    Google Scholar 
    Bronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37, 425–430 (1995).CAS 
    Article 

    Google Scholar 
    Bronk Ramsey, C., Dee, M., Lee, S., Nakagawa, T. & Staff, R. Developments in the calibration and modeling of radiocarbon dates. Radiocarbon 52, 953–961 (2010).Article 

    Google Scholar 
    Ferreira, J. P., Leitão, I., Santos-Reis, M. & Revilla, E. Human-related factors regulate the spatial ecology of domestic cats in sensitive areas for conservation. PLoS ONE 6, e25970 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pirie, T. J., Thomas, R. L. & Fellowes, M. D. E. Pet cats (Felis catus) from urban boundaries use different habitats, have larger home ranges and kill more prey than cats from the suburbs. Landsc. Urban Plan. 220, 104338 (2022).Article 

    Google Scholar 
    Bocherens, H. et al. Paleobiological implications of the isotopic signatures (13C, 15N) of fossil mammal collagen in Scladina cave (Sclayn, Belgium). Quat. Res. 48, 370–380 (1997).Article 

    Google Scholar 
    Longin, R. New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Boudin, M., Boeckx, P., Vandenabeele, P. & Van Strydonck, M. Improved radiocarbon dating of contaminated protein-containing archaeological samples via cross-flow nanofiltrated amino acids. Rapid Commun. Mass Spectrom. 27, 2039–2050 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wojcieszak, M., Van Den Brande, T., Ligovich, G. & Boudin, M. Pretreatment protocols performed at the Royal Institute for Cultural Heritage (RICH) prior to AMS 14C measurements. Radiocarbon 62, e14–e24 (2020).Article 

    Google Scholar 
    Hammer, Ø. PAST. PAleontological Statistics. Version 4.05 Reference manual (Natural History Museum University of Oslo, 2021).
    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Plant phenology changes and drivers on the Qinghai–Tibetan Plateau

    Lieth, H. Phenology and Seasonality Modeling Vol. 8 (Springer, 2013).Piao, S. et al. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).Article 

    Google Scholar 
    Shen, M. et al. Can changes in autumn phenology facilitate earlier green-up date of northern vegetation? Agric. For. Meteorol. 291, 108077 (2020).Article 

    Google Scholar 
    Menzel, A. et al. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599–2612 (2020).Article 

    Google Scholar 
    Shen, X. et al. Asymmetric effects of daytime and nighttime warming on spring phenology in the temperate grasslands of China. Agric. For. Meteorol. 259, 240–249 (2018).Article 

    Google Scholar 
    Rudolf, V. H. W. The role of seasonal timing and phenological shifts for species coexistence. Ecol. Lett. 22, 1324–1338 (2019).
    Google Scholar 
    Zhu, J., Zhang, Y. & Wang, W. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol. Lett. 12, 20150749 (2016).Article 

    Google Scholar 
    Chen, J. et al. Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. Sci. Total Environ. 728, 138891 (2020).Article 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Wolkovich, E. M. & Donahue, M. J. How phenological tracking shapes species and communities in non-stationary environments. Biol. Rev. Camb. Philos. Soc. 96, 2810–2827 (2021).Article 

    Google Scholar 
    Xu, X., Riley, W. J., Koven, C. D., Jia, G. & Zhang, X. Earlier leaf-out warms air in the north. Nat. Clim. Chang. 10, 370–375 (2020).Article 

    Google Scholar 
    D’Amato, G. et al. The effects of climate change on respiratory allergy and asthma induced by pollen and mold allergens. Allergy 75, 2219–2228 (2020).Article 

    Google Scholar 
    Garcia-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: a review. Allergy 72, 1849–1858 (2017).Article 

    Google Scholar 
    Ge, Q., Dai, J., Liu, J., Zhong, S. & Liu, H. The effect of climate change on the fall foliage vacation in China. Tour. Manag. 38, 80–84 (2013).Article 

    Google Scholar 
    Liu, J., Cheng, H., Jiang, D. & Huang, L. Impact of climate-related changes to the timing of autumn foliage colouration on tourism in Japan. Tour. Manag. 70, 262–272 (2019).Article 

    Google Scholar 
    Fan, B. et al. Earlier vegetation green-up has reduced spring dust storms. Sci. Rep. 4, 6749 (2014).Article 

    Google Scholar 
    Minoli, S. et al. Global response patterns of major rainfed crops to adaptation by maintaining current growing periods and irrigation. Earths Future 7, 1464–1480 (2019).Article 

    Google Scholar 
    Shen, M. et al. Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. Natl Sci. Rev. 22, 454–467 (2015).Article 

    Google Scholar 
    You, Q., Wang, D., Jiang, Z. & Kang, S. Diurnal temperature range in CMIP5 models and observations on the Tibetan Plateau. Q. J. R. Meteorol. Soc. 143, 1978–1989 (2017).Article 

    Google Scholar 
    You, Q. et al. Temperature dataset of CMIP6 models over China: evaluation, trend and uncertainty. Clim. Dyn. 57, 17–35 (2021).Article 

    Google Scholar 
    Zhu, Y.-Y. & Yang, S. Evaluation of CMIP6 for historical temperature and precipitation over the Tibetan Plateau and its comparison with CMIP5. Adv. Clim. Change Res. 11, 239–251 (2020).Article 

    Google Scholar 
    Lun, Y. et al. Assessment of GCMs simulation performance for precipitation and temperature from CMIP5 to CMIP6 over the Tibetan Plateau. Int. J. Climatol. 41, 3994–4018 (2021).Article 

    Google Scholar 
    Song, L., Zhuang, Q., Yin, Y., Wu, S. & Zhu, X. Intercomparison of model-estimated potential evapotranspiration on the Tibetan Plateau during 1981–2010. Earth Interact. 21, 1–22 (2017).Article 

    Google Scholar 
    You, Q., Min, J. & Kang, S. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 36, 2660–2670 (2016).Article 

    Google Scholar 
    He, J.-S. et al. Above-belowground interactions in alpine ecosystems on the roof of the world. Plant Soil 458, 1–6 (2020).Article 

    Google Scholar 
    Kuang, X. & Jiao, J. J. Review on climate change on the Tibetan Plateau during the last half century. J. Geophys. Res. Atmos. 121, 3979–4007 (2016).Article 

    Google Scholar 
    Shen, M., Piao, S., Cong, N., Zhang, G. & Jassens, I. A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).Article 

    Google Scholar 
    Shen, M., Tang, Y., Chen, J., Zhu, X. & Zheng, Y. Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric. For. Meteorol. 151, 1711–1722 (2011).Article 

    Google Scholar 
    Ganjurjav, H. et al. Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agric. For. Meteorol. 287, 107943 (2020).Article 

    Google Scholar 
    Peng, J., Wu, C., Wang, X. & Lu, L. Spring phenology outweighed climate change in determining autumn phenology on the Tibetan Plateau. Int. J. Climatol. 41, 3725–3742 (2021).Article 

    Google Scholar 
    Chen, X., An, S., Inouye, D. W. & Schwartz, M. D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Change Biol. 21, 3635–3646 (2015).Article 

    Google Scholar 
    Zheng, Z. et al. Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 223, 194–202 (2016).Article 

    Google Scholar 
    Zhu, W. et al. Divergent shifts and responses of plant autumn phenology to climate change on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 239, 166–175 (2017).Article 

    Google Scholar 
    Sun, Q., Li, B., Jiang, Y., Chen, X. & Zhou, G. Declined trend in herbaceous plant green-up dates on the Qinghai–Tibetan Plateau caused by spring warming slowdown. Sci. Total Environ. 772, 145039 (2021).Article 

    Google Scholar 
    Sun, Q., Li, B., Zhou, G., Jiang, Y. & Yuan, Y. Delayed autumn leaf senescence date prolongs the growing season length of herbaceous plants on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 284, 107896 (2020).Article 

    Google Scholar 
    Jiang, Y. et al. Divergent shifts in flowering phenology of herbaceous plants on the warming Qinghai–Tibetan plateau. Agric. For. Meteorol. 307, 108502 (2021).Article 

    Google Scholar 
    Cong, N., Shen, M. & Piao, S. Spatial variations in responses of vegetation autumn phenology to climate change on the Tibetan Plateau. J. Plant Ecol. 10, 744–752 (2016).
    Google Scholar 
    Shi, C. et al. Effects of warming on chlorophyll degradation and carbohydrate accumulation of Alpine herbaceous species during plant senescence on the Tibetan Plateau. PLoS ONE 9, e107874 (2014).Article 

    Google Scholar 
    Morisette, J. T. et al. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 7, 253–260 (2009).Article 

    Google Scholar 
    Kharouba, H. M. et al. Global shifts in the phenological synchrony of species interactions over recent decades. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).Article 

    Google Scholar 
    Vitasse, Y. et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. Camb. Philos. Soc. 96, 1816–1835 (2021).Article 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).Article 

    Google Scholar 
    Estiarte, M. & Penuelas, J. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Glob. Change Biol. 21, 1005–1017 (2015).Article 

    Google Scholar 
    Penuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).Article 

    Google Scholar 
    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 7, 359–363 (2017).Article 

    Google Scholar 
    Ran, Y., Li, X. & Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai–Tibet Plateau. Cryosphere 12, 595–608 (2018).Article 

    Google Scholar 
    Gao, T. et al. Accelerating permafrost collapse on the eastern Tibetan Plateau. Environ. Res. Lett. 16, 054023 (2021).Article 

    Google Scholar 
    Sun, R. et al. Interannual variability of the North Pacific mixed layer associated with the spring Tibetan Plateau thermal forcing. J. Clim. 32, 3109–3130 (2019).Article 

    Google Scholar 
    Zhang, J., Wu, L., Huang, G., Zhu, W. & Zhang, Y. The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction. J. Geophys. Res. Atmos. 116, D05106 (2011).Article 

    Google Scholar 
    Wu, G. et al. Tibetan Plateau climate dynamics: recent research progress and outlook. Natl Sci. Rev. 2, 100–116 (2015).Article 

    Google Scholar 
    Wang, Y., Zhao, P., Yu, R. & Rasul, G. Inter-decadal variability of Tibetan spring vegetation and its associations with eastern China spring rainfall. Int. J. Climatol. 30, 856–865 (2010).Article 

    Google Scholar 
    Yu, H., Luedeling, E. & Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 107, 22151–22156 (2010).Article 

    Google Scholar 
    Shen, M. et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan Plateau. Agric. For. Meteorol. 189-190, 71–80 (2014).Article 

    Google Scholar 
    Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).Article 

    Google Scholar 
    Wang, C. et al. Assessing phenological change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS time series. Int. J. Biometeorol. 59, 11–23 (2015).Article 

    Google Scholar 
    Wang, K. et al. Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. Int. J. Digit. Earth 8, 58–75 (2013).Article 

    Google Scholar 
    Meng, F., Huang, L., Chen, A., Zhang, Y. & Piao, S. Spring and autumn phenology across the Tibetan Plateau inferred from normalized difference vegetation index and solar-induced chlorophyll fluorescence. Big Earth Data 5, 182–200 (2021).Article 

    Google Scholar 
    Wang, X., Wu, C., Peng, D., Gonsamo, A. & Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 256–257, 61–74 (2018).Article 

    Google Scholar 
    Li, P. et al. Change in autumn vegetation phenology and the climate controls from 1982 to 2012 on the Qinghai–Tibet Plateau. Front. Plant Sci. 10, 1677 (2019).Article 

    Google Scholar 
    Zhu, W., Zheng, Z., Jiang, N. & Zhang, D. A comparative analysis of the spatio-temporal variation in the phenologies of two herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agric. For. Meteorol. 248, 177–184 (2018).Article 

    Google Scholar 
    Xia, J. et al. Interannual variation in the start of vegetation growing season and its response to climate change in the Qinghai–Tibet Plateau derived from MODIS data during 2001 to 2016. J. Appl. Remote Sens. 13, 048506 (2019).Article 

    Google Scholar 
    Huang, K. et al. Impacts of snow cover duration on vegetation spring phenology over the Tibetan Plateau. J. Plant Ecol. 12, 583–592 (2019).Article 

    Google Scholar 
    Li, P. et al. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 637-638, 855–864 (2018).Article 

    Google Scholar 
    Liu, X. et al. Driving forces of the changes in vegetation phenology in the Qinghai–Tibet Plateau. Remote Sens. 13, 4952 (2021).Article 

    Google Scholar 
    Piao, S. et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai–Xizang Plateau. Agric. For. Meteorol. 151, 1599–1608 (2011).Article 

    Google Scholar 
    Wang, Z. et al. Causes for the unimodal pattern of biomass and productivity in alpine grasslands along a large altitudinal gradient in semi-arid regions. J. Veg. Sci. 24, 189–201 (2013).Article 

    Google Scholar 
    Du, M. et al. in Proc. MODSIM 2007 Int. Congr. Model. Simul. (eds Oxley, L. & Kulasiri, D.) 2146–2152 (Modelling and Simulation Society of Australia and New Zealand, 2007).Wang, S. P. et al. Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology 95, 3387–3398 (2014).Article 

    Google Scholar 
    Che, M. et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 189–190, 81–90 (2014).Article 

    Google Scholar 
    Zhang, G., Zhang, Y., Dong, J. & Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl Acad. Sci. USA 110, 4309–4314 (2013).Article 

    Google Scholar 
    Maisongrande, P., Duchemin, B. & Dedieu, G. VEGETATION/SPOT: an operational mission for the Earth monitoring; presentation of new standard products. Int. J. Remote Sens. 25, 9–14 (2010).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS vegetation index user’s guide (MOD13 series) version 3.00, June 2015 (collection 6) (Univ. Arizona, 2015).Beck, H. E. et al. Global evaluation of four AVHRR–NDVI data sets: intercomparison and assessment against Landsat imagery. Remote Sens. Environ. 115, 2547–2563 (2011).Article 

    Google Scholar 
    Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens. Environ. 191, 145–155 (2017).Article 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).Article 

    Google Scholar 
    Ding, M. et al. Temperature dependence of variations in the end of the growing season from 1982 to 2012 on the Qinghai–Tibetan Plateau. GISci. Remote Sens. 53, 147–163 (2015).Article 

    Google Scholar 
    Cheng, M., Jin, J. & Jiang, H. Strong impacts of autumn phenology on grassland ecosystem water use efficiency on the Tibetan Plateau. Ecol. Indic. 126, 107682 (2021).Article 

    Google Scholar 
    Pedelty, J. et al. in Proc. 2007 IEEE Int. Geosci. Remote Sensing Symp. 1021–1025 (IEEE, 2007).Pinzon, J. & Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. Biogeosci. 117, G04003 (2012).Article 

    Google Scholar 
    Yang, B. et al. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proc. Natl Acad. Sci. USA 114, 6966–6971 (2017).Article 

    Google Scholar 
    Shishov, V. V. et al. VS-oscilloscope: a new tool to parameterize tree radial growth based on climate conditions. Dendrochronologia 39, 42–50 (2016).Article 

    Google Scholar 
    Zhao, Y., Zhou, T., Zhang, W. & Li, J. Change in precipitation over the Tibetan Plateau projected by weighted CMIP6 models. Adv. Atmos. Sci. 39, 1133–1150 (2022).Article 

    Google Scholar 
    Lalande, M., Ménégoz, M., Krinner, G., Naegeli, K. & Wunderle, S. Climate change in the High Mountain Asia in CMIP6. Earth Syst. Dyn. 12, 1061–1098 (2021).Article 

    Google Scholar 
    Jin, Z. et al. Temporal variability in the thermal requirements for vegetation phenology on the Tibetan plateau and its implications for carbon dynamics. Clim. Change 138, 617–632 (2016).Article 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).Article 

    Google Scholar 
    Cao, R., Shen, M., Zhou, J. & Chen, J. Modeling vegetation green-up dates across the Tibetan Plateau by including both seasonal and daily temperature and precipitation. Agric. For. Meteorol. 249, 176–186 (2018).Article 

    Google Scholar 
    Li, P. et al. Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agric. For. Meteorol. 308–309, 108571 (2021).Article 

    Google Scholar 
    Lang, W., Chen, X., Qian, S., Liu, G. & Piao, S. A new process-based model for predicting autumn phenology: how is leaf senescence controlled by photoperiod and temperature coupling? Agric. For. Meteorol. 268, 124–135 (2019).Article 

    Google Scholar 
    Yang, Z. et al. Phylogenetic conservatism in heat requirement of leaf-out phenology, rather than temperature sensitivity, in Tibetan Plateau. Agric. For. Meteorol. 304-305, 108413 (2021).Article 

    Google Scholar 
    Gao, B., Li, J. & Wang, X. Impact of frozen soil changes on vegetation phenology in the source region of the Yellow River from 2003 to 2015. Theor. Appl. Climatol. 141, 1219–1234 (2020).Article 

    Google Scholar 
    Jiang, H. et al. The impacts of soil freeze/thaw dynamics on soil water transfer and spring phenology in the Tibetan Plateau. Arct. Antarct. Alp. Res. 50, e1439155 (2018).Article 

    Google Scholar 
    Li, G., Jiang, C., Cheng, T. & Bai, J. Grazing alters the phenology of alpine steppe by changing the surface physical environment on the northeast Qinghai-Tibet Plateau, China. J. Environ. Manage. 248, 109257 (2019).Article 

    Google Scholar 
    Du, J. et al. Interacting effects of temperature and precipitation on climatic sensitivity of spring vegetation green-up in arid mountains of China. Agric. For. Meteorol. 269–270, 71–77 (2019).Article 

    Google Scholar 
    Liu, L. et al. Effects of elevation on spring phenological sensitivity to temperature in Tibetan Plateau grasslands. Chin. Sci. Bull. 59, 4856–4863 (2014).Article 

    Google Scholar 
    Cong, N. et al. Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998–2012. Agric. For. Meteorol. 232, 650–658 (2017).Article 

    Google Scholar 
    Shen, M. et al. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Glob. Change Biol. 22, 3057–3066 (2016).Article 

    Google Scholar 
    Du, J. et al. Daily minimum temperature and precipitation control on spring phenology in arid-mountain ecosystems in China. Int. J. Climatol. 40, 2568–2579 (2020).Article 

    Google Scholar 
    Shen, M. Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 108, E91–E92 (2011).Article 

    Google Scholar 
    An, S. et al. Precipitation and minimum temperature are primary climatic controls of alpine grassland autumn phenology on the Qinghai-Tibet Plateau. Remote Sens. 12, 431 (2020).Article 

    Google Scholar 
    Zu, J. et al. Biological and climate factors co-regulated spatial-temporal dynamics of vegetation autumn phenology on the Tibetan Plateau. Int. J. Appl. Earth Obs. Geoinf. 69, 198–205 (2018).
    Google Scholar 
    Qiao, C. et al. Vegetation phenology in the Qilian mountains and its response to temperature from 1982 to 2014. Remote Sens. 13, 286 (2021).Article 

    Google Scholar 
    Yang, Z. et al. Asymmetric responses of the end of growing season to daily maximum and minimum temperatures on the Tibetan Plateau. J. Geophys. Res. Atmos. 122, 13,78–13,287 (2017).
    Google Scholar 
    Dorji, T. et al. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Glob. Change Biol. 19, 459–472 (2013).Article 

    Google Scholar 
    Li, X., Zhang, L. & Luo, T. Rainy season onset mainly drives the spatiotemporal variability of spring vegetation green-up across alpine dry ecosystems on the Tibetan Plateau. Sci. Rep. 10, 18797 (2020).Article 

    Google Scholar 
    Zhang, X. et al. Effects of climate change on the growing season of alpine grassland in Northern Tibet, China. Glob. Ecol. Conserv. 23, e01126 (2020).Article 

    Google Scholar 
    Sun, Q. et al. A prognostic phenology model for alpine meadows on the Qinghai–Tibetan Plateau. Ecol. Indic. 93, 1089–1100 (2018).Article 

    Google Scholar 
    Zhu, J., Zhang, Y. & Jiang, L. Experimental warming drives a seasonal shift of ecosystem carbon exchange in Tibetan alpine meadow. Agric. For. Meteorol. 233, 242–249 (2017).Article 

    Google Scholar 
    Shen, M. et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc. Natl Acad. Sci. USA 110, E2329 (2013).
    Google Scholar 
    Fu, Y. S. et al. Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc. Natl Acad. Sci. USA 111, 7355–7360 (2014).Article 

    Google Scholar 
    Delpierre, N. et al. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric. For. Meteorol. 149, 938–948 (2009).Article 

    Google Scholar 
    Keenan, T. F. & Richardson, A. D. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob. Change Biol. 21, 2634–2641 (2015).Article 

    Google Scholar 
    Meng, F. D. et al. Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology 98, 734–740 (2017).Article 

    Google Scholar 
    Wang, S. et al. Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan plateau. Agric. For. Meteorol. 189–190, 220–228 (2014).Article 

    Google Scholar 
    Jiang, L. L. et al. Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology 97, 1961–1969 (2016).Article 

    Google Scholar 
    Li, X. et al. Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nat. Commun. 7, 12489 (2016).Article 

    Google Scholar 
    Meng, F. et al. Nonlinear responses of temperature sensitivities of community phenophases to warming and cooling events are mirroring plant functional diversity. Agric. For. Meteorol. 253–254, 31–37 (2018).Article 

    Google Scholar 
    Meng, F. et al. Divergent responses of community reproductive and vegetative phenology to warming and cooling: asymmetry versus symmetry. Front. Plant Sci. 10, 1310 (2019).Article 

    Google Scholar 
    Zhang, Z., Niu, K., Liu, X., Jia, P. & Du, G. Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow. J. Plant Ecol. 7, 231–239 (2013).Article 

    Google Scholar 
    Xi, Y. et al. Nitrogen addition alters the phenology of a dominant alpine plant in Northern Tibet. Arct. Antarct. Alp. Res. 47, 511–518 (2018).Article 

    Google Scholar 
    Yin, T.-F., Zheng, L.-L., Cao, G.-M., Song, M.-H. & Yu, F.-H. Species-specific phenological responses to long-term nitrogen fertilization in an alpine meadow. J. Plant Ecol. 10, 301–309 (2016).
    Google Scholar 
    Liu, L. et al. Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow. Agric. For. Meteorol. 236, 36–47 (2017).Article 

    Google Scholar 
    Liu, Y. et al. Effects of nitrogen addition and mowing on reproductive phenology of three early-flowering forb species in a Tibetan alpine meadow. Ecol. Eng. 99, 119–125 (2017).Article 

    Google Scholar 
    Zhu, J., Zhang, Y. & Liu, Y. Effects of short-term grazing exclusion on plant phenology and reproductive succession in a Tibetan alpine meadow. Sci. Rep. 6, 27781 (2016).Article 

    Google Scholar 
    Li, Y. et al. The effects of grazing regimes on phenological stages, intervals and divergences of alpine plants on the Qinghai–Tibetan Plateau. J. Veg. Sci. 30, 134–145 (2019).Article 

    Google Scholar 
    Dorji, T. et al. Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agric. Ecosyst. Environ. 291, 106795 (2020).Article 

    Google Scholar 
    Meng, F. et al. Opposite effects of winter day and night temperature changes on early phenophases. Ecology 100, e02775 (2019).Article 

    Google Scholar 
    Meng, F. et al. Temperature sensitivity thresholds to warming and cooling in phenophases of alpine plants. Clim. Change 139, 579–590 (2016).Article 

    Google Scholar 
    Suonan, J., Classen, A. T., Sanders, N. J. & He, J. S. Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere 10, e02543 (2019).Article 

    Google Scholar 
    Ganjurjav, H. et al. Phenological changes offset the warming effects on biomass production in an alpine meadow on the Qinghai–Tibetan Plateau. J. Ecol. 109, 1014–1025 (2020).Article 

    Google Scholar 
    Jiang, Z. et al. Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim. Change 110, 385–401 (2011).Article 

    Google Scholar 
    Huang, X. et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 10, 2453–2463 (2016).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2019).Article 

    Google Scholar 
    Wang, C. & Tang, Y. Responses of plant phenology to nitrogen addition: a meta-analysis. Oikos 128, 1243–1253 (2019).Article 

    Google Scholar 
    Chen, H., Zhu, Q., Wu, N., Wang, Y. & Peng, C. H. Delayed spring phenology on the Tibetan Plateau may also be attributable to other factors than winter and spring warming. Proc. Natl Acad. Sci. USA 108, E93 (2011).
    Google Scholar 
    Zhang, L. et al. Effect of warming and degradation on phenophases of Kobresia pygmaea and Potentilla multifida on the Tibetan Plateau. Agric. Ecosyst. Environ. 300, 106998 (2020).Article 

    Google Scholar 
    Lin, X. et al. Fluxes of CO2, CH4, and N2O in an alpine meadow affected by yak excreta on the Qinghai-Tibetan plateau during summer grazing periods. Soil Biol. Biochem. 41, 718–725 (2009).Article 

    Google Scholar 
    Sa, C. et al. Spatiotemporal variation in snow cover and its effects on grassland phenology on the Mongolian Plateau. J. Arid Land 13, 332–349 (2021).Article 

    Google Scholar 
    Zheng, J., Xu, X., Jia, G. & Wu, W. Understanding the spring phenology of Arctic tundra using multiple satellite data products and ground observations. Sci. China Earth Sci. 63, 1599–1612 (2020).Article 

    Google Scholar 
    Wu, W., Sun, Y., Xiao, K. & Xin, Q. Development of a global annual land surface phenology dataset for 1982–2018 from the AVHRR data by implementing multiple phenology retrieving methods. Int. J. Appl. Earth Obs. Geoinf. 103, 102487 (2021).
    Google Scholar 
    Karkauskaite, P., Tagesson, T. & Fensholt, R. Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone. Remote Sens. 9, 485 (2017).Article 

    Google Scholar 
    Yang, Y., Guan, H., Shen, M., Liang, W. & Jiang, L. Changes in autumn vegetation dormancy onset date and the climate controls across temperate ecosystems in China from 1982 to 2010. Glob. Change Biol. 21, 652–665 (2015).Article 

    Google Scholar 
    Zhang, J. et al. Comparison of land surface phenology in the Northern Hemisphere based on AVHRR GIMMS3g and MODIS datasets. ISPRS J. Photogramm. Remote Sens. 169, 1–16 (2020).Article 

    Google Scholar 
    Shen, M. et al. Earlier-season vegetation has greater temperature sensitivity of spring phenology in northern hemisphere. PLoS ONE 9, e88178 (2014).Article 

    Google Scholar 
    Zhang, H., Yuan, W., Liu, S., Dong, W. & Fu, Y. Sensitivity of flowering phenology to changing temperature in China. J. Geophys. Res. Biogeosci. 120, 1658–1665 (2015).Article 

    Google Scholar 
    Cook, B. I. et al. Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15, 1283–1294 (2012).Article 

    Google Scholar 
    Wang, C., Cao, R., Chen, J., Rao, Y. & Tang, Y. Temperature sensitivity of spring vegetation phenology correlates to within-spring warming speed over the Northern Hemisphere. Ecol. Indic. 50, 62–68 (2015).Article 

    Google Scholar 
    Gao, M. et al. Three-dimensional change in temperature sensitivity of northern vegetation phenology. Glob. Change Biol. 26, 5189–5201 (2020).Article 

    Google Scholar 
    Zohner, C. M., Benito, B. M., Fridley, J. D., Svenning, J. C. & Renner, S. S. Spring predictability explains different leaf-out strategies in the woody floras of North America, Europe and East Asia. Ecol. Lett. 20, 452–460 (2017).Article 

    Google Scholar 
    Fu, Y. H. et al. Daylength helps temperate deciduous trees to leaf-out at the optimal time. Glob. Change Biol. 25, 2410–2418 (2019).Article 

    Google Scholar 
    Huang, J. G. et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl Acad. Sci. USA 117, 20645–20652 (2020).Article 

    Google Scholar 
    Iler, A. M., CaraDonna, P. J., Forrest, J. R. K. & Post, E. Demographic consequences of phenological shifts in response to climate change. Annu. Rev. Ecol. Evol. Syst. 52, 221–245 (2021).Article 

    Google Scholar 
    Chen, S., Huang, Y., Gao, S. & Wang, G. Impact of physiological and phenological change on carbon uptake on the Tibetan Plateau revealed through GPP estimation based on spaceborne solar-induced fluorescence. Sci. Total Environ. 663, 45–59 (2019).Article 

    Google Scholar 
    Jin, J. et al. Grassland production in response to changes in biological metrics over the Tibetan Plateau. Sci. Total Environ. 666, 641–651 (2019).Article 

    Google Scholar 
    Kang, X. et al. Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sens. 8, 391 (2016).Article 

    Google Scholar 
    Zheng, Z., Zhu, W. & Zhang, Y. Direct and lagged effects of spring phenology on net primary productivity in the alpine grasslands on the Tibetan Plateau. Remote Sens. 12, 1223 (2020).Article 

    Google Scholar 
    Wang, S. et al. Responses of net primary productivity to phenological dynamics in the Tibetan Plateau, China. Agric. For. Meteorol. 232, 235–246 (2017).Article 

    Google Scholar 
    Li, S., Zhang, H., Zhou, X., Yu, H. & Li, W. Enhancing protected areas for biodiversity and ecosystem services in the Qinghai–Tibet Plateau. Ecosyst. Serv. 43, 101090 (2020).Article 

    Google Scholar 
    Meng, F. et al. Enhanced spring temperature sensitivity of carbon emission links to earlier phenology. Sci. Total Environ. 745, 140999 (2020).Article 

    Google Scholar 
    Hu, G. et al. The divergent impact of phenology change on the productivity of alpine grassland due to different timing of drought on the Tibetan Plateau. Land Degrad. Dev. 32, 4033–4041 (2021).Article 

    Google Scholar 
    Li, P., Zhu, W. & Xie, Z. Diverse and divergent influences of phenology on herbaceous aboveground biomass across the Tibetan Plateau alpine grasslands. Ecol. Indic. 121, 107036 (2021).Article 

    Google Scholar 
    He, M. et al. Relationships between wood formation and cambium phenology on the Tibetan Plateau during 1960–2014. Forests 9, 86 (2018).Article 

    Google Scholar 
    Wang, J., Li, M., Yu, C. & Fu, G. The change in environmental variables linked to climate change has a stronger effect on aboveground net primary productivity than does phenological change in alpine grasslands. Front. Plant Sci. 12, 798633 (2022).Article 

    Google Scholar 
    Shen, W., Zhang, L. & Luo, T. Causes for the increase of early-season freezing events under a warmer climate at alpine treelines in southeast Tibet. Agric. For. Meteorol. 316, 108863 (2022).Article 

    Google Scholar 
    Ye, D.-Z. & Wu, G.-X. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol. Atmos. Phys. 67, 181–198 (1998).Article 

    Google Scholar 
    Cao, R., Feng, Y., Liu, X., Shen, M. & Zhou, J. Uncertainty of vegetation green-up date estimated from vegetation indices due to snowmelt at northern middle and high latitudes. Remote Sens. 12, 190 (2020).Article 

    Google Scholar 
    Zeng, L., Wardlow, B. D., Xiang, D., Hu, S. & Li, D. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 237, 111511 (2020).Article 

    Google Scholar 
    Cao, R. et al. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 217, 244–257 (2018).Article 

    Google Scholar 
    Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).Article 

    Google Scholar 
    Wang, C. et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 196, 1–12 (2017).Article 

    Google Scholar 
    Yang, W. et al. A semi-analytical snow-free vegetation index for improving estimation of plant phenology in tundra and grassland ecosystems. Remote Sens. Environ. 228, 31–44 (2019).Article 

    Google Scholar 
    Wang, C., Chen, J., Tang, Y., Black, T. A. & Zhu, K. A novel method for removing snow melting-induced fluctuation in GIMMS NDVI3g data for vegetation phenology monitoring: a case study in deciduous forests of North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11, 800–807 (2018).Article 

    Google Scholar 
    Helman, D. Land surface phenology: What do we really ‘see’ from space? Sci. Total Environ. 618, 665–673 (2018).Article 

    Google Scholar 
    Steltzer, H. & Post, E. Ecology. Seasons and life cycles. Science 324, 886–887 (2009).Article 

    Google Scholar 
    Liang, L., Schwartz, M. D. & Fei, S. Validating satellite phenology through intensive ground observation and landscape scaling in a mixed seasonal forest. Remote Sens. Environ. 115, 143–157 (2011).Article 

    Google Scholar 
    Li, R. et al. Leaf unfolding of Tibetan alpine meadows captures the arrival of monsoon rainfall. Sci. Rep. 6, 20985 (2016).Article 

    Google Scholar 
    Tang, J. et al. Emerging opportunities and challenges in phenology: a review. Ecosphere 7, e01436 (2016).Article 

    Google Scholar 
    Van Nuland, M. E. et al. Natural soil microbiome variation affects spring foliar phenology with consequences for plant productivity and climate-driven range shifts. New Phytol. 232, 762–775 (2021).Article 

    Google Scholar 
    Mutz, J., McClory, R., van Dijk, L. J. A., Ehrlen, J. & Tack, A. J. M. Pathogen infection influences the relationship between spring and autumn phenology at the seedling and leaf level. Oecologia 197, 447–457 (2021).Article 

    Google Scholar 
    Radville, L., McCormack, M. L., Post, E. & Eissenstat, D. M. Root phenology in a changing climate. J. Exp. Bot. 67, 3617–3628 (2016).Article 

    Google Scholar 
    Gao, M. et al. Divergent changes in the elevational gradient of vegetation activities over the last 30 years. Nat. Commun. 10, 2970 (2019).Article 

    Google Scholar  More

  • in

    Win-win opportunities combining high yields with high multi-taxa biodiversity in tropical agroforestry

    Ethical statementEthics approval was obtained for this study from the ethics committee of the University of Goettingen (Chair: Prof. Dr. Peter-Tobias Stoll) under the reference number 17./04.22Wurz.Study areaAll plots were situated in northeastern Madagascar in the SAVA region (Supplementary Fig. 1). The natural vegetation is tropical lowland rainforest, but deforestation rates are high30,67.The region is globally and nationally one of the most biodiverse places with high levels of endemism17,68. Forest loss is mainly driven by slash-and-burn shifting hill rice cultivation58. The region is characterized by a warm and humid climate with an annual rainfall of 2255 mm and a mean annual temperature of 23,9 °C (mean value of 60 plots extracted from CHELSA climatology69). Vanilla is the main cash crop in the SAVA region, making Madagascar the main vanilla producer globally21,22. Vanilla prices have shown strong fluctuations over the past years, with a price boom between 2014 and 2019 triggering an expansion of vanilla agroforestry in the region22,23.Study designWe selected 10 villages based on the 60 villages selected within the Diversity Turn in Land Use Science project22 (Supplementary Fig. 1). We selected the villages based on the list of villages for our study region from official election lists which listed all villages within a fokontany individually22. Village boundaries, demographics, infrastructure were defined based on a rapid survey with the village chief. Among the 60 villages, we considered all villages without coconut plantations, with less than 40% water (river, sea, and lakes) to avoid a strong influence of water elements and with forest fragments and shifting cultivation present within a 2 km radius around the village. Two of these 17 villages overlapped within a 2 km radius of the villages, thus we randomly selected one of them, resulting in 14 villages. We visited these 14 villages in a randomized order and stopped after we found 10 villages which fulfilled the necessary criteria (all land-use types present, willing to participate). In each of the 10 villages, we selected three vanilla agroforests, one forest fragment, and two fallows. Overall, we studied 60 plots across 10 villages and 10 plots in one protected old-growth forest (Marojejy National Park). All plots had a minimum distance of 260 m and a mean minimum distance of 794 m (SD = 468 m) to each other. Plot elevation ranged between 10 and 819 m.a.s.l. (mean  = 205 m, SD = 213 m; Supplementary Table 20).Plot selectionIn each of the 10 villages, we selected three vanilla agroforests with low, medium, and high canopy closure, respectively, covering a within village canopy cover gradient. To refine our vanilla agroforest classification, we used interviews with the plot owners to categorize all vanilla agroforests based on land-use history into fallow- and forest-derived agroforests15. Forest-derived vanilla agroforests are established within forest fragments, which have been manually thinned of dense understory vegetation. Fallow-derived vanilla agroforests are established on formerly slashed and burned plots, where vegetation has been cleared for hill rice production (shifting cultivation system locally called tavy). Out of our 30 vanilla agroforests, 20 vanilla agroforests were fallow-derived and 10 vanilla agroforests were forest-derived, roughly matching the proportion of fallow- and forest-derived vanilla agroforests across the study region (70% are fallow-derived vanilla agroforests, 27% are forest-derived vanilla agroforests and 3% of unknown origin22.In addition to vanilla agroforests, we selected one forest fragment in each village. Forest fragments were located inside the agricultural landscape and were remnants of the once continuous forest; these fragments are frequently used for natural product extraction. Forest fragments have not been burned or clear cut in living memory, yet the ongoing resource extraction results in a much simplified stand structure and fewer large trees compared to old-growth forest12. Furthermore, we chose one herbaceous and one woody fallow in each of the 10 study villages. Both fallow types form part of the shifting hill rice production cycle and represent the fallow period at different stages after the crop production. Herbaceous fallows have been slashed and burned multiple times with the last cultivation cycle at the end of 2016, one year prior to the first species data collection in 2017, and thereafter left fallow11. The continuous succession of herbaceous fallows turns them into woody fallows with the domination of woody plants including shrubs, trees, and sometimes bamboo. Our 10 woody fallows have last burned 4–16 years before data collection. In this study, we combine both herbaceous and woody fallows into the category “fallow”. Generally, fallows occur in different forms in the study region. The characteristics of fallows depend on the frequency of past fires and the length of fallow periods in between crop cultivation11. Frequent burning results in a loss of native and woody species and a dominance of exotic species and grasses11. In later fallow cycles, fern species increasingly appear11.Due to the commonly repeated slashing and burning, secondary forests are very rare in the study region. Shifting cultivation prevails in Madagascar70, because it is an important option for people to grow food because means for agricultural intensification are scarce. According to our baseline survey (performed in 60 villages in our study region), 90% of the interviewed farmers grow rice for subsistence in addition to growing vanilla22. Out of this sample, 64% of farmers grow rice in irrigated paddies and 26% of farmers use shifting cultivation.We also studied 10 plots at two sites in Marojejy National Park, the only remaining, continuous old-growth forest at a low altitude in our study area71. We chose accessible old-growth forest plots with a minimum distance of 250 m from the forest edge. Five of the 10 old-growth forest plots were located in Manantenina Valley, the other five old-growth forest plots were situated in the eastern part of Marojejy National Park, called Bangoabe area. Illegal selective logging has occurred in some parts of the park. During our plot selection, we avoided sites with traces of selective logging.Land-use history classificationTo collect information on the land-use history or farm history, interviews with farmers are common72,73. We did interviews with the plot owner. Questions on land-use history were binary (forest-derived or fallow-derived) and did not include information on the detailed land-use history (e.g. frequency of burning, past crop systems). Thus, we consider this selfreported data very reliable. The land-use categorization derived by farmers was confirmed by our visual plot inspections (forest-derived vanilla agroforests do have a quite distinctive vegetation structure compared to fallow-derived vanilla agroforests). Additionally, data on tree species composition and soil characteristics show evident differences between the categories and back up the binary land-use history categorization. Analysis of tree species composition showed that fallow- and forest-derived vanilla agroforests differ significantly in tree species composition12. Soil analysis (see Fig. S9) showed that our fallow-derived vanilla agroforests are associated with fertility-related variables such as an increase in calcium, pH, nitrogen, and phosphorus, which is common after slas-and-burn agriculture74,75.Plot designWe collected species data on plots with a radius of 25 m (1964 m2, 0.1964 ha). We established our circular plots in a homogeneous area of the land-use type or forest. Adjacent land uses were usually different because farmers generally own small-scale land with a mean size of 0.66 ha (mean size of agroforests). We assessed vanilla plant data (yield, vine length, vine age, planting density) on 36 vanilla pieds on each of 30 circular vanilla plots (Supplementary Fig. 8). We defined one vanilla pied (foot in French) as the combination of a vanilla vine and a minimum of one support tree. The 36 vanilla pieds were evenly selected in each of the circular plots based on a sampling protocol to ensure comprehensive and unbiased sampling. We chose vanilla pieds independent of age, length or health condition. We marked the 36 selected vanilla pieds per plot with a unique barcode to assess vanilla yield (April 2018) and other plant health variables on the same plant (not used in this study). However, for 37 vanilla pieds (out of a total of 1080 marked vanilla pieds), the barcodes were lost or unreadable and we selected a new plant closest to the original position (independent of age, length, or condition) and marked it with a new unique barcode. We measured the size of the vanilla agroforest by walking with the agroforest owner and a hand-held GPS device at the perimeter of the plot.Vanilla planting densityWe counted each vanilla pied on each 25 m circular plot by dividing the plot in four-quarter segments. We calculated the area of each 25 m radius plot including slope correction and calculated vanilla planting density (vanilla pieds per hectare) by dividing the number of vanilla pieds by the slope-corrected plot area.Vanilla yieldWe measured yield on 30 vanilla plantations (10 forest-derived vanilla plantations and 20 fallow-derived vanilla plantations); three in each of our 10 study villages. We measured vanilla yield on a total of 36 vanilla pieds between March and April 2018. We assessed the vanilla yield before harvest to ensure an accurate yield assessment due to two reasons. Firstly, vanilla pods are commonly harvested successively due to their differing pollination date and maturity requiring multiple visits over several weeks. Secondly, theft of vanilla pods is commonplace around harvest time. We, therefore, estimated the weight of the on-plant-hanging vanilla pods by measuring pod volume and relating this to a prior established volume–weight correlation. This is possible because vanilla pods only grow in length and width in the first 8 weeks of their development76. Our yield assessment consisted of one interview part with the plot owner and one measurement part. The interview part included questions about the occurrence of theft and early harvest on the plantation. During the measurement part, we assessed the number, diameter, and length of all vanilla pods. We measured vanilla pod length with a ruler starting at the junction of stem and pod until the tip of the pod without considering the bending of the pod. We measured the diameter at the widest part of the pod using a caliper. We firstly calculated pod volume based on the standard volume cylinder formula using the measured diameter (cm) and length (cm): V = πr2h.Secondly, we calculated the weight (g) of each pod by using the linear regression equation (y = bx + a) of a weight–volume correlation of 114 vanilla pods from 114 different agroforests (weight, length, and diameter of these 114 green vanilla was assessed post-harvest in 2017). We calculated the weight of all measured pods of the harvest in 2018 based on the formula:$${{{{{rm{volume}}}}}}={{{{{rm{pi }}}}}}({{{{{rm{diameter}}}}}}({{{{{rm{mm}}}}}})/20)^wedge 2ast {{{{{rm{length}}}}}}({{{{{rm{cm}}}}}})$$Here, we divided the pod diameter (mm) by 20 to obtain the radius and to transform millimeters to centimeters. Weight was defined as volume*0.5662 + 0.9699. No vanilla pods were stolen or already harvested on our 36 vanilla pieds and hence we did not need to account for it in our vanilla yield calculation.Vanilla vine lengthWe assessed vanilla vine length for all 36 vanilla pieds (same vanilla pieds as used for the yield assessment) on each plot by measuring the total length of the vine from the lowest to the highest part with a measuring stick. If the vanilla vine was looped on the support tree (= vanilla vine is hanging in multiple loops on the support tree), we measured from the top height of the looping of the vanilla vine until the lowest height of the vine. At the medium height of the vanilla vine, we counted the number of times the vanilla vine passed through. We calculated the total length of the liana by multiplying the maximum height of the vanilla vine by the number of times the vine passed through the middle. In some cases, the vanilla vine looped at two different heights, we thus considered the middle between the two looping heights as the top height. If vanilla vines grew on two different support trees, we considered them as one vanilla pieds if support trees were More