More stories

  • in

    Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort

    Sample collection and metagenomic sequencingWritten informed consent was obtained prior to participation in the project. The study protocol for the Japanese (Disease, Drug, Diet, Daily life) microbiome project was approved by the medical ethics committees of the Tokyo Medical University (Approval No: T2019-0119), National Center for Global Health and Medicine (Approval No: 1690), the University of Tokyo (Approval No: 2019185NI), Waseda University (Approval No: 2018-318), and the RIKEN Center for Integrative Medical Sciences (Approval No: H30-7). We conducted a prospective cross-sectional study of 4198 individuals participating in the Japanese 4D microbiome project, which commenced in January 2015 and is ongoing20.Participants registered in the project were those who visited hospitals in the area for disease diagnosis or a health checkup. Faecal samples are collected from both healthy and diseased participants. The eligibility criteria for participants are as follows: (1) born and raised in Japan; (2) age >15 years; (3) written informed consent provided; and (4) having an endoscopic diagnosis on colonoscopy; either having undergone a colonoscopy within the last 3 years or planning to undergo colonoscopy for colorectal cancer screening, surveillance, and diagnosis of various gastrointestinal symptoms. The exclusion criteria were as follows: (1) suspected acute infectious disease based on clinical findings (e.g., acute enterocolitis, pneumonia, tuberculosis etc.); (2) acute bleeding; (3) hearing loss; (4) unable to understand written documents; (5) unable to write and (6) limited ability to perform activities of daily living. No compensation was paid to participants.Participants collected faecal samples using a Cary–Blair medium-containing tube60 at home, and the samples were refrigerated for up to 2 days before the hospital visit. Immediately after participants arrived at the hospital, their faecal samples were frozen at −80 °C until DNA extraction. We avoided collecting samples within 1 month of administering bowel preparation for colonoscopy because it has a profound effect on the gut microbiome and metabolome61. Health professionals checked that the amount of stool was sufficient for analysis. Shotgun metagenomic sequencing was performed for 4241 faecal samples and quality controls were conducted20, from which 43 samples were excluded from further analyses due to the low number of high-quality reads (130 bp. Encoded genes in the contigs were predicted by MetaGeneMark (3.38)70. Assembled contigs were defined as phages if they passed all of the following six criteria.

    1.

    A genome size threshold was applied, and contigs less than 10 Kb were excluded, as typical dsDNA phages have genomes larger than >10 Kb71.

    2.

    Viral-specific k-mer patterns were checked by DeepVirFinder (v1.0)22. Contigs with p-values >0.05 were excluded from further analysis.

    3.

    To detect viral hallmark genes (VHGs) and plasmid hallmark genes, we performed a highly sensitive HMM-HMM search against the Pfam database72. First, the encoded genes were aligned to the viral protein database, collected from complete (circular) viral genomes (n = 13,628) in the IMG/VR v2 database30 using JackHMMER. The obtained HMM profiles were searched against the Pfam database using hhblits73 with a  >95% probability cut-off. These procedures were performed using the pipeline_for_high_sensitive_domain_search script (https://github.com/yosuken/pipeline_for_high_sensitive_domain_search)74,75. Contigs with plasmid hallmark genes or those without VHGs were excluded. The hallmark genes used in this analysis are summarised in Supplementary Data 3.

    4.

    The presence of housekeeping marker genes of prokaryotic species was checked by fetchMG (v1.0)76, and ribosomal RNA genes (5 S, 16 S and 23 S) were identified by barrnap (0.9) (https://github.com/tseemann/barrnap). Contigs with the marker genes and ribosomal RNA genes were excluded from further analysis.

    5.

    The encoded genes of each contig were aligned to the viral protein database and a plasmid protein database constructed from the reference plasmids in RefSeq (n = 16,136, in April 2020) using DIAMOND (v0.9.29.130)77 with the more-sensitive option. The number of genes aligned to each database was compared, and contigs with more genes aligned to the plasmid protein database were excluded from further analysis.

    6.

    The proportion of provirus regions was assessed by CheckV (v0.7)24, and contigs estimated with 70% and 10% contamination.To evaluate the performance of this custom pipeline, we applied the pipeline to reference phage genomes (n = 2609, as positive data) and plasmid sequences (n = 16,136, as negative data) in Refseq. The true positive rate was defined as the number of phages detected as phages by the pipeline divided by the number of reference phages. The false positive rate was defined as the number of plasmids detected as phages by the pipeline divided by the number of reference plasmids. DeepVirFinder22, VirSorter (v1.0.3)23 Virsorter2 (2.2.3)25, VIBRANT (v1.2.1)26, Seeker (v1.0.3)27 and ViralVerify (v1.1)28 were also applied to the same datasets with the default parameters, and the performance was compared among them.Analysis of phage genomesViral operational taxonomic units (vOTUs) were constructed by clustering phage genomes with a  > 95% identity29 using dRep (v2.2.3)78 with the default options. Representative sequences of each vOTU selected by dRep were further clustered with reference sequences in RefSeq, IMG/VR30, gut virome database (GVD)15, gut phage database (GPD)9, and metagenomic gut virus (MGV) database31 with >95% identity and >85% length coverage using aniclust.py script in the CheckV package to identify common sequences among the databases.To further construct broader viral clusters (VC), proportions of protein clusters shared between phages were assessed. First, to define protein clusters, similarity searches of all protein sequences from all the phages identified in this study were performed using DIAMOND with the more-sensitive option (e-value 20% of clusters were grouped as a VC, which corresponds approximately to family- or subfamily-level clusters7,37. Rarefaction curves of the vOTUs and VCs were estimated with the iNEXT function in the iNEXT package (v2.0.20)80. The similarity matrix of the phages based on the percentage of shared protein clusters was further projected by tSNE using the tsne function in the Rtsne package (v0.16).Taxonomy annotation of phages was performed with a voting approach described previously16 with minor modifications. First, the protein sequences of each phage were aligned to viral proteins detected from phage genomes in RefSeq (n = 2609, in April 2020) using DIAMOND with the more-sensitive option. Then, the best-hit taxonomy of each protein (family levels) was counted, and the most common taxonomy was assigned to the phage if >20% of proteins in the phage were aligned to the same taxonomy.Phage lifestyles (i.e. virulent or temperate) were predicted by BACPHLIP40 and alignments to reference bacterial genomes in the RefSeq. Phages were defined as temperate if the BACPHLIP score was >0.8 or the phage genome was aligned to any reference genomes with >1000 bp alignment length with >95% identity.Host predictionBacterial and archaeal genomes were downloaded from the RefSeq database (in April 2019). To reduce the redundancy of genomes from closely related strains in the same species (e.g. Escherichia coli), 10 genomes were selected randomly for species with more than 10 genomes, and other genomes were excluded from the dataset. The reference dataset consisted of 33,215 bacterial and 822 archaeal genomes.Host prediction of the identified phages was performed using CRISPR spacers81. CRISPR spacers were predicted from the reference microbial genomes and assembled contigs ( >10,000 bp) from the 4198 metagenomic datasets using PILER-CR (1.06)82. Short (100 bp) spacers were discarded. In total, 679,323 and 283,619 spacers were identified from the reference microbial genomes and assembled contigs, respectively. Taxonomy information was assigned to the assembled contigs if they were aligned to the microbial reference genomes with >90% identity and >70% length coverage thresholds using MiniMap283. The CRISPR spacers were mapped to the phage genomes using BLASTN with the option for short sequences: -a20 -m9 -e1 -G10 -E2 -q1 -W7 -F F81. CRISPR spacers, which were mapped with 100% identity or 1 mismatch/indel with >95% sequence alignment, were used for host assignment at the genus level. Assignments of host species were checked manually, and if any of the following non-human intestinal species were assigned, the host was excluded: Dickeya, Anaerobutyricum, Rubellimicrobium, Eisenbergiella, Harryflintia, Leucothrix, Photorhabdus, Spirosoma, Syntrophobotulus, Thermincola, Algoriphagus, Franconibacter, Kandleria, Lawsonibacter, Methylomonas, Provencibacterium, Pseudoruminoccoccus, Rhodanobacter, Romboutsia, Sharpea, Varibaculum and Thioalkalivibrio.Quantification of viral abundance and analysis of the virome profileTo quantify the viral abundances in each sample, metagenomic reads were mapped to the gene set of VHGs (Supplementary Data 3) of each representative vOTU using Bowtie2 with a  > 95% identity threshold, and reads per kilobase million (RPKM) were calculated for each vOTU. The reason for using only VHGs in the analysis was to avoid over-counting of viral reads, which could be caused by spurious mapping of reads from horizontally transferred genes of other phages or bacterial species. The α-diversity (Shannon diversity) of the vOTU-level viral profile was calculated using the diversity function in the vegan package. The β-diversity (Bray-Curtis distance) between individuals was assessed using the vegdist function, and the average distance against other individuals was calculated for each individual. The VC-level viral profile was obtained by summing all the RPKM of vOTUs for each VC.Phylogenetic analysis of novel VCsTo construct phylogenetic trees for the vOTUs and reference genomes, protein sequences of large terminases, portal proteins, and major capsid proteins (Supplementary Data 3), which are often used to construct phage phylogenetic trees7,9, were extracted from the vOTUs in the 10 most abundant VCs (VC_19, 1, 2, 24, 12, 15, 3, 44, 18, 6), and their homologues were searched for in the reference phage genomes in RefSeq using DIAMOND with the more-sensitive option (e-value 0.01% (n = 865) and genera with average relative abundance >0.5% (n = 32) were included in the analysis.Analysis of VLPs and whole metagenomes from 24 faecal samplesQuality filtering of sequenced reads from the 24 VLPs and whole metagenomes was performed using fastp (version 0.20.1)92 with the default parameters. Contamination with human (hg38) or phiX genomes was excluded by mapping the reads to the genomes using Bowtie2.To exclude bacterial DNA contamination in the VLP dataset, we performed further filtering. First, the VLP reads were assembled into contigs using MEGAHIT and the contigs were checked for virus or not. Contigs were defined as viral contigs if they were predicted as viruses by DeepVirFinder (P-value More

  • in

    Forest vulnerability to drought controlled by bedrock composition

    Moore, J., Pope, J., Woods, M. & Ellis, A. 2018 Aerial Survey Results: California (USDA, 2018).Stephens, S. L. et al. Drought, tree mortality, and wildfire in forests adapted to frequent fire. Bioscience 68, 77–88 (2018).Article 

    Google Scholar 
    Li, S. & Banerjee, T. Spatial and temporal pattern of wildfires in California from 2000 to 2019. Sci. Rep. 11, 8779 (2021).Article 

    Google Scholar 
    Wang, D. et al. Economic footprint of California wildfires in 2018. Nat. Sustain. 4, 252–260 (2020).Article 

    Google Scholar 
    Asner, G. P. et al. Progressive forest canopy water loss during the 2012–2015 California drought. Proc. Natl Acad. Sci. USA 113, E249–E255 (2016).
    Google Scholar 
    Brodrick, P. G., Anderegg, L. D. L. & Asner, G. P. Forest drought resistance at large geographic scales. Geophys. Res. Lett. 46, 2752–2760 (2019).Article 

    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).Article 

    Google Scholar 
    Goulden, M. L. & Bales, R. C. California forest die-off linked to multi-year deep soil drying in 2012–2015 drought. Nat. Geosci. 12, 632–637 (2019).Article 

    Google Scholar 
    Paz-Kagan, T. et al. What mediates tree mortality during drought in the southern Sierra Nevada? Ecol. Appl. 27, 2443–2457 (2017).Article 

    Google Scholar 
    Trugman, A. T., Anderegg, L. D. L., Anderegg, W. R. L., Das, A. J. & Stephenson, N. L. Why is Tree Drought Mortality so Hard to Predict? Trends Ecol. Evol. 36, 520–532.(2021).Goodfellow, B. W. et al. The chemical, mechanical, and hydrological evolution of weathering granitoid. J. Geophys. Res. Earth Surf. 121, 1410–1435 (2016).Article 

    Google Scholar 
    Shen, X., Arson, C., Ferrier, K. L., West, N. & Dai, S. Mineral weathering and bedrock weakening: modeling microscale bedrock damage under biotite weathering. J. Geophys. Res. Earth Surf. 124, 2623–2646 (2019).Article 

    Google Scholar 
    McLaughlin, B. C. et al. Weather underground: subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Glob. Change Biol. 26, 3091–3107 (2020).Article 

    Google Scholar 
    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).Article 

    Google Scholar 
    Zhang, Y., Keenan, T. F. & Zhou, S. Exacerbated drought impacts on global ecosystems due to structural overshoot. Nat. Ecol. Evol. 5, 1490–1498 (2021).Article 

    Google Scholar 
    Tague, C. & Peng, H. The sensitivity of forest water use to the timing of precipitation and snowmelt recharge in the California Sierra: implications for a warming climate. J. Geophys. Res. Biogeosci. 118, 875–887 (2013).Article 

    Google Scholar 
    Hahm, W. J., Riebe, C. S., Lukens, C. E. & Araki, S. Bedrock composition regulates mountain ecosystems and landscape evolution. Proc. Natl Acad. Sci. USA 111, 3338–3343 (2014).Article 

    Google Scholar 
    Uhlig, D., Schuessler, J. A., Bouchez, J., Dixon, J. L. & von Blanckenburg, F. Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes. Biogeosciences 14, 3111–3128 (2017).Article 

    Google Scholar 
    Stone, E. C. Dew as an ecological factor: II. The effect of artificial dew on the survival of Pinus ponderosa and associated species. Ecology 38, 414–422 (1957).Article 

    Google Scholar 
    Wald, J. A., Graham, R. C. & Schoeneberger, P. J. Distribution and properties of soft weathered bedrock at ≤1 m depth in the contiguous United States. Earth Surf. Process. Landf. 38, 614–626 (2013).Article 

    Google Scholar 
    Klos, P. Z. et al. Subsurface plant-accessible water in mountain ecosystems with a Mediterranean climate. WIREs Water 5, e1277 (2018).Article 

    Google Scholar 
    Dawson, T. E., Hahm, W. J. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. N. Phytol. 226, 666–671 (2020).Article 

    Google Scholar 
    Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).Article 

    Google Scholar 
    Holbrook, W. S. et al. Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone. Sci. Rep. 9, 4495 (2019).Article 

    Google Scholar 
    Krone, L. V. et al. Deep weathering in the semi-arid Coastal Cordillera, Chile. Sci. Rep. 11, 13057 (2021).Article 

    Google Scholar 
    Callahan, R. P. et al. Subsurface weathering revealed in hillslope‐integrated porosity distributions. Geophys. Res. Lett. 47, e2020GL088322 (2020).Holbrook, W. S. et al. Geophysical constraints on deep weathering and water storage potential in the Southern Sierra Critical Zone Observatory. Earth Surf. Process. Landf. 39, 366–380 (2014).Article 

    Google Scholar 
    Hayes, J. L., Riebe, C. S., Holbrook, W. S., Flinchum, B. A. & Hartsough, P. C. Porosity production in weathered rock: where volumetric strain dominates over chemical mass loss. Sci. Adv. 5, eaao0834 (2019).Article 

    Google Scholar 
    Riebe, C. S. et al. Anisovolumetric weathering in granitic saprolite controlled by climate and erosion rate. Geology 49, 551–555 (2021).Article 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 

    Google Scholar 
    Vitousek, P. M., Porder, S. & Houlton, B. Z. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).Article 

    Google Scholar 
    Bateman, P. C., Dodge, F. C. W. & Bruggman, P. E. Major Oxide Analyses, CPIW Norms, Modes, and Bulk Specific Gravities of Plutonic Rocks from the Mariposa 1° × 2° Sheet, Central Sierra Nevada, California Open-File Report 84–162 (USGS, 1984).Amundson, R., Richter, D. D., Humphreys, G. S., Jobbagy, E. G. & Gaillardet, J. Coupling between biota and earth materials in the critical zone. Elements 3, 327–332 (2007).Article 

    Google Scholar 
    Tune, A. K., Druhan, J. L., Wang, J., Bennett, P. C. & Rempe, D. M. Carbon dioxide production in bedrock beneath soils substantially contributes to forest carbon cycling. J. Geophys. Res. Biogeosci. 125, e2020JG005795 (2020).Gabet, E. J. & Mudd, S. M. Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. J. Geophys. Res. 115, F04005 (2010).Bateman, P. C. Plutonism in the Central Part of the Sierra Nevada Batholith, California (USGS, 1992); http://pubs.er.usgs.gov/publication/pp1483Callahan, R. P. et al. Arrested development: erosional equilibrium in the southern Sierra Nevada, California, maintained by feedbacks between channel incision and hillslope sediment production. GSA Bull. 131, 1179–1202 (2019).Article 

    Google Scholar 
    Flinchum, B. A. et al. Estimating the water holding capacity of the critical zone using near-surface geophysics. Hydrol. Process. 32, 3308–3326 (2018).Article 

    Google Scholar 
    St. Clair, J. Geophysical Investigations of Underplating at the Middle American Trench, Weathering in the Critical Zone, and Snow Water Equivalent in Seasonal Snow. PhD thesis, Univ. Wyoming (2015).Dvorkin, J. & Nur, A. Elasticity of high‐porosity sandstones: theory for two North Sea data sets. Geophysics 61, 1363–1370 (1996).Article 

    Google Scholar 
    Gu, X. et al. Seismic refraction tracks porosity generation and possible CO2 production at depth under a headwater catchment. Proc. Natl Acad. Sci. USA 117, 18991–18997 (2020).Article 

    Google Scholar 
    Pasquet, S., Holbrook, W. S., Carr, B. J. & Sims, K. W. W. Geophysical imaging of shallow degassing in a Yellowstone hydrothermal system. Geophys. Res. Lett. 43, 12,027–12,035 (2016).Article 

    Google Scholar 
    Dahlgren, R. A., Boettinger, J. L., Huntington, G. L. & Amundson, R. G. Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78, 207–236 (1997).Article 

    Google Scholar 
    Stone, E. L. & Kalisz, P. J. On the maximum extent of tree roots. For. Ecol. Manage. 46, 59–102 (1991).Article 

    Google Scholar 
    Carlson, T. N. & Ripley, D. A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62, 241–252 (1997).Article 

    Google Scholar 
    Goulden, M. L. et al. Evapotranspiration along an elevation gradient in California’s Sierra Nevada. J. Geophys. Res. 117, G03028 (2012).Ma, Q. et al. Wildfire controls on evapotranspiration in California’s Sierra Nevada. J. Hydrol. 590, 125364 (2020).Article 

    Google Scholar 
    Roche, J. W., Goulden, M. L. & Bales, R. C. Estimating evapotranspiration change due to forest treatment and fire at the basin scale in the Sierra Nevada, California. Ecohydrology 11, e1978 (2018).Bales, R. C. et al. Mechanisms controlling the impact of multi-year drought on mountain hydrology. Sci. Rep. 8, 690 (2018).Article 

    Google Scholar 
    Roy, D. P. et al. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 185, 57–70 (2016).Article 

    Google Scholar 
    Su, Y. et al. Emerging stress and relative resiliency of giant sequoia groves experiencing multiyear dry periods in a warming climate. J. Geophys. Res. Biogeosci. 122, 3063–3075 (2017).Article 

    Google Scholar 
    Moore, J., McAfee, L. & Iaccarino, J. 2016 Aerial Survey Results: California (USDA, 2017).Budyko, M. I., Miller, D. H. & Miller, D. H. Climate and Life (Academic Press, 1974).Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1, 96–99 (1985).Article 

    Google Scholar 
    PRISM Climate Group PRISM Climate Data (Oregon State Univ., 2019).Bales, R. et al. Spatially distributed water-balance and meteorological data from the rain–snow transition, southern Sierra Nevada, California. Earth Syst. Sci. Data 10, 1795–1805 (2018).Article 

    Google Scholar 
    Callahan, R. P. Supplement for “Forest vulnerability to drought controlled by bedrock composition”. Hydroshare https://doi.org/10.4211/hs.edbb6ebfbc744186b5800932cd00b507 (2022).Earth Resources Observation and Science (EROS) Center USGS EROS Archive—Aerial Phorography—National Agriculture Imagery Program (NAIP) (USGS, 2017); https://doi.org/10.5066/F7QN651G More

  • in

    The bedrock of forest drought

    Bedrock composition can play a critical role in determining the structure and water demand of forests, influencing their vulnerability to drought. The properties of bedrock can help explain within-region patterns of tree mortality in the 2011–2017 California drought.Montane forests are iconic natural resources that provide habitat, carbon sequestration, regulation of water, and, for many cultures, profound meaning. A warming climate and prolonged droughts threaten these forests, as shown by the 2011–2017 drought in California, USA, which killed over 140 million trees. However, the vulnerability of forests to climate-driven risks is not evenly distributed across these landscapes. In the 2011–2017 drought, some contiguous forested areas (or forest stands) suffered more than 70% mortality while forests in other locations experienced few or no losses1. Understanding these spatial patterns is critical for the projection of future risks and for targeted forest management. Writing in Nature Geoscience, Callahan and colleagues look beneath the surface at the composition of bedrock and find a link to these patterns of drought mortality in the California Sierra2. More

  • in

    The impact of protozoa addition on the survivability of Bacillus inoculants and soil microbiome dynamics

    Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to double global crop production by 2050. PLoS ONE. 2013;8:1–8.
    Google Scholar 
    United Nations Department of Economic and Social Affairs. World population prospects: the 2017 revision. 2017. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html.Pe’er G, Dicks LV, Visconti P, Arlettaz R, Báldi A, Benton TG, et al. EU agricultural reform fails on biodiversity. Science. 2014;344:1090–2.PubMed 

    Google Scholar 
    Jack CN, Petipas RH, Cheeke TE, Rowland JL, Friesen ML. Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol. 2020;29:299–308.PubMed 

    Google Scholar 
    Saad M, Eida A, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. J Exp Bot. 2020;71:3878–901.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, le Roux X, Salles JF. The legacy of microbial inoculants in agroecosystems and potential for tackling climate change challenges. iScience. 2022;25:103821.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bounaffaa M, Florio A, le Roux X, Jayet PA. Economic and environmental analysis of maize inoculation by plant growth promoting rhizobacteria in the French Rhône-Alpes region. Ecol Econ. 2018;146:334–46.
    Google Scholar 
    Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP. Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil. 2014;378:1–33.CAS 

    Google Scholar 
    Mallon C, van Elsas J, Salles J. Microbial invasions: the process, patterns, and mechanisms. Trends Microbiol. 2015;23:719–29.CAS 
    PubMed 

    Google Scholar 
    Mawarda PC, le Roux X, van Elsas JD, Salles JF. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol Biochem.2020;148:1–13.
    Google Scholar 
    Mallon C, Poly F, le Roux X, Marring I, van Elsas J, Salles J. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities. Ecology. 2015;96:915–26.PubMed 

    Google Scholar 
    Xing J, Jia X, Wang H, Ma B, Salles JF, Xu J. The legacy of bacterial invasions on soil native communities. Environ Microbiol. 2020;23:1–13.
    Google Scholar 
    Eisenhauer N, Schulz W, Scheu S, Jousset A. Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol. 2013;27:282–8.
    Google Scholar 
    Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, et al. Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev. 2018;43:293–323.
    Google Scholar 
    Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A. Protists: puppet masters of the rhizosphere microbiome. Trends Plant Sci. 2019;24:165–76.CAS 
    PubMed 

    Google Scholar 
    Sherr BF, Sherr EB, Berman T. Grazing, growth, and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria. Appl Environ Microbiol. 1983;45:1196–201.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koller R, Rodriguez A, Robin C, Scheu S, Bonkowski M. Protozoa enhance foraging efficiency of arbuscular mycorrhizal fungi for mineral nitrogen from organic matter in soil to the benefit of host plants. New Phytol. 2013;199:203–11.CAS 
    PubMed 

    Google Scholar 
    Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M. The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem. 2016;94:10–18.CAS 

    Google Scholar 
    Long JJ, Jahn CE, Sánchez-Hidalgo A, Wheat W, Jackson M, Gonzalez-Juarrero M, et al. Interactions of free-living amoebae with rice bacterial pathogens Xanthomonas oryzae pathovars oryzae and oryzicola. PLoS ONE. 2018;13:e0202941.PubMed 
    PubMed Central 

    Google Scholar 
    Iavicoli A, Boutet E, Buchala A, Métraux JP. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact. 2003;16:851–8.CAS 
    PubMed 

    Google Scholar 
    Jousset A, Rochat L, Scheu S, Bonkowski M, Keel C. Predator-prey chemical warfare determines the expression of biocontrol genes by rhizosphere-associated pseudomonas fluorescens. Appl Environ Microbiol. 2010;76:5263–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berney C, Romac S, Mahé F, Santini S, Siano R, Bass D. Vampires in the oceans: predatory cercozoan amoebae in marine habitats. ISME J. 2013;7:2387–99.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jousset A, Scheu S, Bonkowski M. Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol. 2008;22:714–9.
    Google Scholar 
    Jousset A, Lara E, Wall LG, Valverde C. Secondary metabolites help biocontrol strain Pseudomonas fluorescens CHA0 to escape protozoan grazing. Appl Environ Microbiol. 2006;72:7083–90.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mallon CA, le Roux X, van Doorn GS, Dini-Andreote F, Poly F, Salles JF. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 2018;12:728–41.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mawarda PC, Lakke SL, Dirk van Elsas J, Salles JF. Temporal dynamics of the soil bacterial community following Bacillus invasion. iScience. 2022;25:1–17.
    Google Scholar 
    Yi Y, de Jong A, Spoelder J, Theo J, van Elsas JD, Kuipers OP. Draft genome sequence of Bacillus mycoides M2E15, a strain isolated from the endosphere of potato. Genome Announc. 2016;4:e00031.PubMed 
    PubMed Central 

    Google Scholar 
    Loznik B, Oosterkamp PJ. Fertilizer comprising protozoa and bacteria. World Intelectual Property Organization; 2017. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2017105238.Guo S, Xiong W, Hang X, Gao Z, Jiao Z, Liu H, et al. Protists as main indicators and determinants of plant performance. Microbiome. 2021;9:1–11.
    Google Scholar 
    Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ. Characterisation of systemic resistance in sugar beet elicited by a non-pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol. 2002;61:289–98.CAS 

    Google Scholar 
    Neher OT, Johnston MR, Zidack NK, Jacobsen BJ. Evaluation of Bacillus mycoides isolate BmJ and B. mojavensis isolate 203-7 for the control of anthracnose of cucurbits caused by Glomerella cingulata var. orbiculare. Biol Control. 2009;48:140–6.
    Google Scholar 
    Gao Z. Soil protists: from traits to ecological functions. University of Utrecht; 2020. https://dspace.library.uu.nl/handle/1874/400054.Amacker N, Gao Z, Hu J, Jousset ALC, Kowalchuk GA, Geisen S. Protist feeding patterns and growth rate are related to their predatory impacts on soil bacterial communities. FEMS Microbiol Ecol. 2022;98:1–11.
    Google Scholar 
    Wright DA, Killham K, Glover LA, Prosser JI. Role of pore size location in determining bacterial activity during predation by protozoa in soil. Appl Environ Microbiol. 1995;61:3537–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright D, Killham K, Glover L, Biota JP-SS. The effect of location in soil on protozoal grazing of a genetically modified bacterial inoculum. In: Brussaard L, Kooistra MJ, editors. Soil structure/soil biota interrelationships. Amsterdam: Elsevier; 1993.p.633–40.
    Google Scholar 
    Thewes S, Soldati T, Eichinger L. Editorial: amoebae as host models to study the interaction with pathogens. Front Cell Infect Microbiol. 2019;9:47.PubMed 
    PubMed Central 

    Google Scholar 
    Kuppardt A, Fester T, Härtig C, Chatzinotas A. Rhizosphere protists change metabolite profiles in Zea mays. Front Microbiol. 2018;9:857.PubMed 
    PubMed Central 

    Google Scholar 
    Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, et al. Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies. Nat Biotechnol. 2016;34:942–9.CAS 
    PubMed 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 

    Google Scholar 
    Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol. 2005;71:8228–35.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritz K. The plate debate: cultivable communities have no utility in contemporary environmental microbial ecology. FEMS Microbiol Ecol. 2007;60:358–62.CAS 
    PubMed 

    Google Scholar 
    Amacker N, Gao Z, Agaras BC, Latz E, Kowalchuk GA, Valverde CF, et al. Biocontrol traits correlate with resistance to predation by protists in soil pseudomonads. Front Microbiol. 2020;11:3164.
    Google Scholar 
    Glücksman E, Bell T, Griffiths RI, Bass D. Closely related protist strains have different grazing impacts on natural bacterial communities. Environ Microbiol. 2010;12:3105–13.PubMed 

    Google Scholar 
    Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A. Predator richness increases the effect of prey diversity on prey yield. Nat Commun. 2012;3:1–7.
    Google Scholar 
    Hünninghaus M, Koller R, Kramer S, Marhan S, Kandeler E, Bonkowski M. Changes in bacterial community composition and soil respiration indicate rapid successions of protist grazers during mineralization of maize crop residues. Pedobiologia. 2017;62:1–8.
    Google Scholar 
    van Elsas J, Chiurazzi M, Mallon C, Elhottova D, Krištůfek V, Salles J. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 2012;109:1159–64.PubMed 
    PubMed Central 

    Google Scholar 
    Horňák K, Corno G. Every coin has a back side: invasion by limnohabitans planktonicus promotes the maintenance of species diversity in bacterial communities. PLoS ONE. 2012;7:e51576.PubMed 
    PubMed Central 

    Google Scholar 
    Gómez P, Paterson S, de Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:1–8.
    Google Scholar 
    Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19:726–39.CAS 
    PubMed 

    Google Scholar 
    Xiong W, Li R, Guo S, Karlsson I, Jiao Z, Xun W, et al. Microbial amendments alter protist communities within the soil microbiome. Soil Biol Biochem. 2019;135:379–82.CAS 

    Google Scholar 
    Schneider FD, Scheu S, Brose U. Body mass constraints on feeding rates determine the consequences of predator loss. Ecol Lett. 2012;15:436–43.PubMed 

    Google Scholar 
    Brose U, Archambault P, Barnes AD, Bersier L-F, Boy T, Canning-Clode J, et al. Predator traits determine food-web architecture across ecosystems. Nat Ecol Evol. 2019;3:919–27.PubMed 

    Google Scholar 
    van Elsas JD, Trevors JT, Jansson JK, Nannipieri P, editors. Modern soil microbiology. 3rd ed. Boca Raton: CRC Press; 2019.Berga M, Székely AJ, Langenheder S. Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS ONE. 2012;7:e365969.
    Google Scholar 
    Wang Z, Chen Z, Kowalchuk GA, Xu Z, Fu X, Kuramae EE. Succession of the resident soil microbial community in response to periodic inoculations. Appl Environ Microbiol. 2021;87:e00046.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Hinfluences severe disease-mediated population declines in two of the most common garden bird species in Great Britain

    Gregory, R. D. & van Strien, A. Wild bird indicators: Using composite population trends of birds as measures of environmental health. Ornithol. Sci. 9, 3–22 (2010).Article 

    Google Scholar 
    Cox, D. T. C. & Gaston, K. J. Urban bird feeding: Connecting people with nature. PLoS ONE 11, e0158717 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).Article 

    Google Scholar 
    Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Estrada-Peña, A., Ostfeld, R. S., Peterson, A. T., Poulin, R. & de la Fuente, J. Effects of environmental change on zoonotic disease risk: An ecological primer. Trends Parasitol. 30, 205–214 (2014).PubMed 
    Article 

    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452), 443–449 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Atkinson, C. T. & Samuel, M. D. Avian malaria Plasmodium relictum in native Hawaiian forest birds: Epizootiology and demographic impacts on àapapane Himatione sanguinea. J. Avian Biol. 41, 357–366 (2010).Article 

    Google Scholar 
    George, T. L. et al. Persistent impacts of West Nile virus on North American bird populations. Proc. Natl. Acad. Sci. USA. 112, 14290–14294 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dhondt, A. A., Tessaglia, D. L. & Slothower, R. L. Epidemic mycoplasmal conjunctivitis in house finches from Eastern North America. J. Wildl. Dis. 34, 265–280 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Monterroso, P. et al. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci. Rep. 6, 36072 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cheng, T. L. et al. The scope and severity of white-nose syndrome on hibernating bats in North America. Conserv. Biol. 35, 1586–1597 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushton, S. P. et al. Disease threats posed by alien species: The role of a poxvirus in the decline of the native red squirrel in Britain. Epidemiol. Infect. 134, 521–533 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363(6434), 1459–1463 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).Article 

    Google Scholar 
    Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shutt, J. D. & Lees, A. C. Killing with kindness: Does widespread generalised provisioning of wildlife help or hinder biodiversity conservation efforts? Biol. Conserv. 261, 109295 (2021).Article 

    Google Scholar 
    Van Doren, B. M. et al. Human activity shapes the wintering ecology of a migratory bird. Glob. Chang. Biol. 27, 2715–2727 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Plummer, K. E., Risely, K., Toms, M. P. & Siriwardena, G. M. The composition of British bird communities is associated with long-term garden bird feeding. Nat. Commun. 10, 2088 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lawson, B. et al. Health hazards to wild birds and risk factors associated with anthropogenic food provisioning. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170091 (2018).Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).Article 

    Google Scholar 
    Siriwardena, G. M. et al. The effect of supplementary winter seed food on breeding populations of farmland birds: Evidence from two large-scale experiments. J. Appl. Ecol. 44, 920–932 (2007).Article 

    Google Scholar 
    Kubasiewicz, L. M., Bunnefeld, N., Tulloch, A. I. T., Quine, C. P. & Park, K. J. Diversionary feeding: An effective management strategy for conservation conflict? Biodivers. Conserv. 25, 1–22 (2016).Article 

    Google Scholar 
    Lawson, B. et al. A clonal strain of Trichomonas gallinae is the aetiologic agent of an emerging avian epidemic disease. Infect. Genet. Evol. 11, 1638–1645 (2011).PubMed 
    Article 

    Google Scholar 
    Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5, e12215 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Forrester, D. J. & Foster, G. W. Trichomonosis. In: Parasitic Diseases of Wild Birds 120–153 (Wiley-Blackwell, 2008).Lawson, B. et al. Evidence of spread of the emerging infectious disease, finch trichomonosis, by migrating birds. EcoHealth 8, 143–153 (2011).PubMed 
    Article 

    Google Scholar 
    Lawson, B. et al. The emergence and spread of finch trichomonosis in the British Isles. Philos. Trans. R. Soc. B Biol. Sci. 367, 2852–2863 (2012).Article 

    Google Scholar 
    Woodward, I. D. et al. BirdTrends 2020: Trends in numbers, breeding success and survival for UK breeding birds. Research Report 732. BTO, Thetford. (2020).Enoksson, B. Age- and sex-related differences in dominance and foraging behaviour of nuthatches Sitta europaea. Anim. Behav. 36, 231–238 (1988).Article 

    Google Scholar 
    Tarvin, K. A. & Woolfenden, G. E. Patterns of dominance and aggressive behavior in blue jays at a feeder. Condor 99, 434–444 (1997).Article 

    Google Scholar 
    Brittingham, M. C. & Temple, S. A. Use of winter feeders by black-capped chickadees. Wildl. Soc. 56, 103–110 (1992).
    Google Scholar 
    Woodward, I. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 113, 69–104 (2020).
    Google Scholar 
    Musgrove, A. J. et al. Population estimates of birds in Great Britain and the United Kingdom. Br. Birds 106, 64–100 (2013).
    Google Scholar 
    Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland. (T & AD Poyser, 2002).Main, I. G. The partial migration of Fennoscandian Greenfinches Carduelis chloris. Ringing Migr. 20, 167–180 (2000).Article 

    Google Scholar 
    Lack, P. C. The Atlas of Wintering Birds in Britain and Ireland. (T. & A.D. Poyser, 1986).Robinson, R. A. BirdFacts: profiles of birds occurring in Britain & Ireland. BTO, Thetford (2005). Available at: http://www.bto.org/birdfacts. Accessed: 15 May 2022.Tratalos, J. et al. Bird densities are associated with household densities. Glob. Chang. Biol. 13, 1685–1695 (2007).ADS 
    Article 

    Google Scholar 
    Gregory, R. D. Broad-scale habitat use of sparrows, finches and buntings in Britain. Die Vogelwelt 120, 47–57 (1999).
    Google Scholar 
    Newton, I. Finches. New Naturalist Series, Volume: 55. (HarperCollins, 1972).Robinson, R. A., Baillie, S. R. & Crick, H. Q. P. Weather-dependent survival: Implications of climate change for passerine population processes. Ibis. 149, 357–364 (2007).Article 

    Google Scholar 
    Crick, H. Q. P. A bird-habitat coding system for use in Britain and Ireland incorporating aspects of land-management and human activity. Bird Study 39, 1–12 (1992).Article 

    Google Scholar 
    Davies, Z. G. et al. A national scale inventory of resource provision for biodiversity within domestic gardens. Biol. Conserv. 142, 761–771 (2009).Article 

    Google Scholar 
    Balmer, D. E. et al. Bird Atlas 2007–11: The breeding and wintering birds of Britain and Ireland. (BTO Books, 2013).Lawson, B. et al. Epidemiology of salmonellosis in garden birds in England and Wales, 1993 to 2003. EcoHealth 7, 294–306 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svensson, L. Identification guide to European passerines, 4th edition. (BTO, 1992).Jenni, L. & Winkler, R. Moult and ageing of European passerines, 2nd edition. (Helm, 2020).Baillie, S. R. The contribution of ringing to the conservation and management of bird populations: A review. Ardea 89, 167–184 (2001).
    Google Scholar 
    Kéry, M. & Schaub, M. Bayesian Population Analysis using WinBUGS: A hierarchical perspective (Academic Press, 2012).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2020).Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. in Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003) (eds. Hornik, K., Leisch, F. & Zeileis, A.) (2003).Su, Y.-S. & Yajima, M. R2jags: Using R to Run ‘JAGS’. R package version 0.6–1. (2020).Robinson, R. A., Morrison, C. A. & Baillie, S. R. Integrating demographic data: Towards a framework for monitoring wildlife populations at large spatial scales. Methods Ecol. Evol. 5, 1361–1372 (2014).Article 

    Google Scholar 
    Newson, S. E., Evans, K. L., Noble, D. G., Greenwood, J. J. D. & Gaston, K. J. Use of distance sampling to improve estimates of national population sizes for common and widespread breeding birds in the UK. J. Appl. Ecol. 45, 1330–1338 (2008).Article 

    Google Scholar 
    Newson, S. E., Massimino, D., Johnston, A., Baillie, S. R. & Pearce-Higgins, J. W. Should we account for detectability in population trends? Bird Study 60, 384–390 (2013).Article 

    Google Scholar 
    Crick, H. Q. P., Baillie, S. R. & Leech, D. I. The UK Nest Record Scheme: its value for science and conservation. Bird Study 50, 254–270 (2003).Article 

    Google Scholar 
    Abadi, F., Gimenez, O., Arlettaz, R. & Schaub, M. An assessment of integrated population models: Bias, accuracy, and violation of the assumption of independence. Ecology 91, 7–14 (2010).PubMed 
    Article 

    Google Scholar 
    Plard, F., Turek, D., Grüebler, M. U. & Schaub, M. IPM2: Toward better understanding and forecasting of population dynamics. Ecol. Monogr. 89, e01364 (2019).Article 

    Google Scholar 
    Weegman, M. D., Arnold, T. W., Clark, R. G. & Schaub, M. Partial and complete dependency among data sets has minimal consequence on estimates from integrated population models. Ecol. Appl. 31, e02258 (2021).Article 

    Google Scholar 
    Koons, D. N., Iles, D. T., Schaub, M. & Caswell, H. A life-history perspective on the demographic drivers of structured population dynamics in changing environments. Ecol. Lett. 19, 1023–1031 (2016).PubMed 
    Article 

    Google Scholar 
    Koons, D. N., Arnold, T. W. & Schaub, M. Understanding the demographic drivers of realized population growth rates. Ecol Appl. 27, 2102–2115 (2017).PubMed 
    Article 

    Google Scholar 
    Caswell, H. Matrix population models: Construction, analysis and interpretation. (Sinauer Associates, 2001).Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).Article 

    Google Scholar 
    Stanbury, A. et al. The status of our bird populations: The fifth Birds of Conservation Concern in the United Kingdom, Channel Islands and Isle of Man and second IUCN Red List assessment of extinction risk for Great Britain. Br. Birds 114, 723–747 (2021).
    Google Scholar 
    Lehikoinen, A., Lehikoinen, E., Valkama, J., Väisänen, R. A. & Isomursu, M. Impacts of trichomonosis epidemics on greenfinch Chloris chloris and chaffinch Fringilla coelebs populations in Finland. Ibis 155, 357–366 (2013).Article 

    Google Scholar 
    PECBMS. EBCC/BirdLife/RSPB/CSO’ Pan-European Common Bird Monitoring Scheme. (2021). Available at: https://pecbms.info/. (Accessed: 14th July 2022)Keller, V. et al. European Breeding Bird Atlas 2: Distribution, Abundance and Change. (European Bird Census Council and Lynx Edicions, 2020).Rijks, J. M. et al. Trichomonosis in greenfinches (Chloris chloris) in the Netherlands 2009–2017: A concealed threat. Front. Vet. Sci. 6, 425 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boele, A. et al. Broedvogels in Nederland in 2020. Sovonrapport 2022/05. (Sovon Vogelonderzoek Nederland, Nijmegen., 2022).Jones, D. The Birds at My Table: Why We Feed Wild Birds and Why It Matters. (Cornell University Press, 2018).Pennycott, T. W. et al. Causes of death of wild birds of the family fringillidae in Britain. Vet. Rec. 143, 155–158 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bouwman, K. M. & Hawley, D. M. Sickness behaviour acting as an evolutionary trap? Male house finches preferentially feed near diseased conspecifics. Biol. Lett. 6, 462–465 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson, B. et al. Acute necrotising pneumonitis associated with Suttonella ornithocola infection in tits (Paridae). Vet. J. 188, 96–100 (2011).PubMed 
    Article 

    Google Scholar 
    Clewley, G. D., Robinson, R. A. & Clark, J. A. Estimating mortality rates among passerines caught for ringing with mist nets using data from previously ringed birds. Ecol. Evol. 8, 5164–5172 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Francis, M. L. et al. Effects of supplementary feeding on interspecific dominance hierarchies in garden birds. PLoS ONE 13, e0202152 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wojczulanis-Jakubas, K., Kulpińska, M. & Minias, P. Who bullies whom at a garden feeder? Interspecific agonistic interactions of small passerines during a cold winter. J. Ethol. 33, 159–163 (2015).Article 

    Google Scholar 
    Cramp, S. Handbook of the Birds of Europe, the Middle East and North Africa. Volume VIII: Crows to Finches. (Oxford University Press, 1994).Brook, B. W. & Bradshaw, C. J. A. Strength of evidence for density dependence in abundance time series of 1198 species. Ecology 87, 1445–1451 (2006).PubMed 
    Article 

    Google Scholar 
    Hochachka, W. M. & Dhondt, A. A. Density-dependent decline of host abundance resulting from a new infectious disease. Proc. Natl. Acad. Sci. USA. 97, 5303–5306 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hochachka, W. M., Dobson, A. P., Hawley, D. M. & Dhondt, A. A. Host population dynamics in the face of an evolving pathogen. J. Anim. Ecol. 90, 1480–1491 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chi, J. F. et al. The finch epidemic strain of Trichomonas gallinae is predominant in British non-passerines. Parasitology 140, 1234–1245 (2013).PubMed 
    Article 

    Google Scholar 
    Orros, M. E. & Fellowes, M. D. E. Wild bird feeding in an urban area: Intensity, economics and numbers of individuals supported. Acta Ornithol. 50, 43–58 (2015).Article 

    Google Scholar 
    Dirren, S., Borel, S., Wolfrum, N. & Korner-Nievergelt, F. Trichomonas gallinae infections in the naïve host Montifringilla nivalis subsp nivalis. J. Ornithol. 163, 333–337 (2022).Article 

    Google Scholar 
    Tulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J. & Martin, T. G. Realising the full potential of citizen science monitoring programs. Biol. Conserv. 165, 128–138 (2013).Article 

    Google Scholar 
    Silvertown, J., Buesching, C., Jacobson, S. & Rebelo, T. Citizen science and nature conservation. in Key Topics in Conservation Biology 2 (eds. Macdonald, D. W. & Willis, K. J.) 127–142 (John Wiley & Sons, 2013).Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).Article 

    Google Scholar 
    Baillie, S. R., Wernham, C. V. & Clark, J. A. Development of the British and Irish ringing scheme and its role in conservation biology. Ringing Migr. 19, S5–S19 (1999).Article 

    Google Scholar 
    Greenwood, J. J. D. Citizens, science and bird conservation. J. Ornithol. 148, S77–S124 (2007).Article 

    Google Scholar 
    Horns, J. J., Adler, F. R. & Şekercioğlu, Ç. H. Using opportunistic citizen science data to estimate avian population trends. Biol. Conserv. 221, 151–159 (2018).Article 

    Google Scholar 
    Ryan, R. L., Kaplan, R. & Grese, R. E. Predicting volunteer commitment in environmental stewardship programmes. J. Environ. Plan. Manag. 44, 629–648 (2001).Article 

    Google Scholar 
    Maund, P. R. et al. What motivates the masses: Understanding why people contribute to conservation citizen science projects. Biol. Conserv. 246, 108587 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, V. Y. & Greig, E. I. Young adults’ motivations to feed wild birds and influences on their potential participation in citizen science: An exploratory study. Biol. Conserv. 235, 295–307 (2019).Article 

    Google Scholar 
    Cox, D. T. C. & Gaston, K. J. Human–nature interactions and the consequences and drivers of provisioning wildlife. Philos.Trans. R. Soc. B Biol. Sci. 373, 20170092 (2018).Article 

    Google Scholar 
    Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).Article 

    Google Scholar 
    Rocha, G. & Quillfeldt, P. Effect of supplementary food on age ratios of European turtle doves (Streptopelia turtur L.). Anim. Biodivers. Conserv. 38, 11–21 (2015).Article 

    Google Scholar  More

  • in

    Assessing mammal trapping standards in wild boar drop-net capture

    Dubois, S. et al. International consensus principles for ethical wildlife control. Conserv. Biol. 31(4), 753–760 (2017).PubMed 
    Article 

    Google Scholar 
    Frank, B. & Glikman, J. A. Human–wildlife conflicts and the need to include coexistence. In Human–Wildlife Interactions (eds Frank, B. et al.) 1–19 (Cambridge University Press, 2019).
    Google Scholar 
    Meng, X. J., Lindsay, D. S. & Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 364, 2697–2707 (2009).CAS 
    Article 

    Google Scholar 
    Massei, G., Roy, S. & Bunting, R. Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Hum. Wildl. Interact. 5, 79–99 (2011).
    Google Scholar 
    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: Contexts, causes, monitoring and management recommendations. Mamm. Rev. 51, 95–108 (2021).Article 

    Google Scholar 
    Stillfried, M. et al. Secrets of success in a landscape of fear: Urban wild boar adjust risk perception and tolerate disturbance. Front. Ecol. Evol. 5, 157 (2017).Article 

    Google Scholar 
    Castillo-Contreras, R. et al. Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci. Total Environ. 615, 282–288 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keuling, O., Strauß, E. & Siebert, U. Regulating wild boar populations is ‘somebody else’s problem’!—Human dimension in wild boar management. Sci. Total Environ. 554–555, 311–319 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Vajas, P. et al. Many, large and early: Hunting pressure on wild boar relates to simple metrics of hunting effort. Sci. Total Environ. 698, 134251. https://doi.org/10.1016/j.scitotenv.2019.134251 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Licoppe, A. et al. Wild boar/feral pig in (peri-)urban areas. Managing wild boar in human-dominated landscapes. in International Union of Game Biologists (IUGB)—Congress IUGB 2013, 1–31 (2013).Torres-Blas, I. et al. Assessing methods to live-capture wild boars (Sus scrofa) in urban and peri-urban environments. Vet. Rec. 187, e85. https://doi.org/10.1136/vr.105766 (2020).Article 
    PubMed 

    Google Scholar 
    Adams, C. E. Urban Wildlife Management (CRC Press, 2016).
    Google Scholar 
    Conejero, C. et al. Past experiences drive citizen perception of wild boar in urban areas. Mamm. Biol. 96, 68–72 (2019).Article 

    Google Scholar 
    Lewis, J. S., VerCauteren, K. C., Denkhaus, R. M. & Mayer, J. J. Wild pig populations along the urban gradient. In Invasive Wild Pigs in North America (eds VerCauteren, K. C. et al.) 439–463 (CRC Press, 2019).Chapter 

    Google Scholar 
    Massei, G. et al. Effect of the GnRH vaccine GonaCon on the fertility, physiology and behaviour of wild boar. Wildl. Res. 35, 540–547 (2008).CAS 
    Article 

    Google Scholar 
    Náhlik, A. et al. Wild boar management in Europe: Knowledge and practice. In Ecology, Conservation and Management of Wild Pigs and Peccaries (eds Melletti, M. & Meijaard, E.) 339–353 (Cambridge University Press, 2017).Chapter 

    Google Scholar 
    Croft, S., Franzetti, B., Gill, R. & Massei, G. Too many wild boar? Modelling fertility control and culling to reduce wild boar numbers in isolated populations. PLoS One 15, e0238429. https://doi.org/10.1371/journal.pone.0238429 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    González-Crespo, C. et al. Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS One 13, e0202289. https://doi.org/10.1371/journal.pone.0202289 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schemnitz, S. D., Batcheller, G. R., Lovallo, M. J., White, H. B. & Fall, M. W. Capturing and handling wild animals. In Research and Management Techniques for Wildlife and Habitats (ed. Silvy, N. J.) 232–269 (John Hopkins University Press, 2009).
    Google Scholar 
    ECGCGRF (European Community, Government of Canada, and Government of the Russian Federation). Agreement on international humane trapping standards. Off. J. Eur. Communities 42, 43–57 (1997).
    Google Scholar 
    Anonymous. International agreement in the form of an agreed minute between the European Community and the United States of America on humane trapping standards. Off. J. Eur. Communities L219, 26–37 (1998).
    Google Scholar 
    ISO 10990-4. Methods for testing killing trap systems used on land and underwater. in Animal (Mammal) Traps—Part 4 (International Organization for Standardization, 1999).ISO 10990-5. Methods for testing restraining traps. in Animal (Mammal) Traps—Part 5 (International Organization for Standardization, 1999).Proulx, G., Cattet, M., Serfass, T. L. & Baker, S. E. Updating the AIHTS trapping standards to improve animal welfare and capture efficiency and selectivity. Animals 10, 1–26 (2020).Article 

    Google Scholar 
    Proulx, G. Mammal Trapping—Wildlife Management, Animal Welfare and International Standards (Alpha Wildlife Publications, 2022).
    Google Scholar 
    Iossa, G., Soulsbury, C. & Harris, S. Mammal trapping: A review of animal welfare standards of killing and restraining traps. Anim. Welf. 16, 335–352 (2007).CAS 

    Google Scholar 
    Muñoz-Igualada, J., Shivik, J. A., Domínguez, F. G., Lara, J. & González, L. M. Evaluation of cage-traps and cable restraint devices to capture red foxes in Spain. J. Wildl. Manag. 72, 830–836 (2008).Article 

    Google Scholar 
    Trap Research and Development Committee. Best Trapping Practices (Fur Institute of Canada, 2018).
    Google Scholar 
    Virgós, E. et al. A poor international standard for trap selectivity threatens global carnivore and biodiversity conservation. Biodivers. Conserv. 25, 1409–1419 (2016).Article 

    Google Scholar 
    Barasona, J. A., López-Olvera, J. R., Beltrán-Beck, B., Gortázar, C. & Vicente, J. Trap-effectiveness and response to tiletamine-zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral traps. BMC Vet. Res. 9, 107 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shury, T. Physical capture and restraint. In Zoo Animal and Wildlife Immobilization and Anesthesia (eds West, G. et al.) 109–124 (Wiley Blackwell, 2015).
    Google Scholar 
    Webb, S. L., Lewis, J. S., Hewitt, D. G., Hellickson, M. W. & Bryant, F. C. Assessing the helicopter and net gun as a capture technique for white-tailed deer. J. Wildl. Manag. 72, 310–314 (2008).Article 

    Google Scholar 
    López-Olvera, J. R. et al. Comparative evaluation of effort, capture and handling effects of drive nets to capture roe deer (Capreolus capreolus), Southern chamois (Rupicapra pyrenaica) and Spanish ibex (Capra pyrenaica). Eur. J. Wildl. Res. 55, 193–202 (2009).Article 

    Google Scholar 
    Breed, D. et al. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. 7, 1–21 (2019).Article 
    CAS 

    Google Scholar 
    Mentaberre, G. et al. Azaperone and sudden death of drive net-captured southern chamois. Eur. J. Wildl. Res. 58, 489–493 (2012).Article 

    Google Scholar 
    Gaskamp, J. A., Gee, K. L., Campbell, T. A., Silvy, N. J. & Webb, S. L. Effectiveness and efficiency of corral traps, drop nets and suspended traps for capturing wild pigs (Sus scrofa). Animals 11, 1565 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, S. E., Macdonald, D. W. & Ellwood, S. A. Double standards in spring trap welfare. In Proceedings of the Ninth International Conference on Urban Pests (eds Daivies, C. & Pfeiffer, W. H.) 139–145 (Pureprint Group, 2017).
    Google Scholar 
    López-Olvera, J. R., Castillo-Contreras, R., González-Crespo, C., Conejero, C. & Mentaberre, G. Wild boar is not welcome in the city. Barcelona Metròpolis 103, 22–23 (2017).
    Google Scholar 
    Conejero, C. et al. Conflicto o habituación: las dos caras de la percepción social del jabalí urbano. in Proceedings of XIV Congreso de la Sociedad Española para la Conservación y Estudio de los Mamíferos (SECEM, 2019).Conferencia Sectorial de Medio Ambiente. Directrices Técnicas para la Captura de Especies Cinegéticas Predadoras: Homologación de Métodos y Acreditación de Usuarios (Ministerio para la Transición Ecológica y el Reto Demográfico de España, 2011).Generalitat de Catalunya—Government of Catalonia. Decret 56/2014 relatiu a l’homologació de mètodes de captura en viu d’espècies cinegètiques depredadores i d’espècies exòtiques invasores depredadores i l’acreditació de les persones que en són usuàries. Diari Oficial de la Generalitat de Catalunya 6609 (2014).Fahlman, Å. et al. Wild boar behaviour during live-trap capture in a corral-style trap: Implications for animal welfare. Acta Vet. Scand. 62, 1–11 (2020).Article 

    Google Scholar 
    Sharp, T. & Saunders, G. A Model for Assessing the Relative Humaneness of Pest Animal Control Methods (Australian Government—Department of Agriculture, Fisheries and Forestry [New Millennium Print], 2011).
    Google Scholar 
    Ziegler, L., Fischer, D., Nesseler, A. & Lierz, M. Validation of the live trap ‘Krefelder Fuchsfalle’ in combination with electronic trap sensors based on AIHTS standards. Eur. J. Wildl. Res. 64, 17 (2018).Article 

    Google Scholar 
    Marco, I. et al. Capture myopathy in little bustards after trapping and marking. J. Wildl. Dis. 42, 889–891 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rideout, C. B. Comparison of techniques for capturing mountain goats. J. Wildl. Manag. 38, 573 (1974).Article 

    Google Scholar 
    Jedrzejewski, W. & Kamler, J. F. Modified drop-net for capturing ungulates. Wildl. Soc. Bull. 32, 1305–1308 (2004).Article 

    Google Scholar 
    Gaskamp, J. A. Use of drop-nets for wild pig damage and disease abatement. Master’s thesis, available electronically from https://hdl.handle.net/1969.1/148198 (Texas A&M University, 2012).Lavelle, M. J. et al. When pigs fly: Reducing injury and flight response when capturing wild pigs. Appl. Anim. Behav. Sci. 215, 21–25 (2019).Article 

    Google Scholar 
    Masilkova, M. et al. Observation of rescue behaviour in wild boar (Sus scrofa). Sci. Rep. 11, 16217 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).Article 

    Google Scholar 
    Manfredo, M., Teel, T. & Bright, A. Why are public values toward wildlife changing?. Hum. Dimens. Wildl. 8, 287–306 (2003).Article 

    Google Scholar 
    Cahill, S., Llimona, F., Cabañeros, L. & Calomardo, F. Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Anim. Biodivers. Conserv. 35, 221–233 (2012).Article 

    Google Scholar  More

  • in

    Climate legacies of dryland forests

    Land use changes has led to the disappearance of trees from many dryland landscapes in recent centuries, like in western North American and northern China, often accompanied by desertification. Reforestation has the potential to restore these ecosystems and help keep more carbon in soils, especially when natural regeneration is being outpaced by human pressures.
    Your institute does not have access to this article More

  • in

    Ecological succession of the sponge cryptofauna in Hawaiian reefs add new insights to detritus production by pioneering species

    Rapacciuolo, G. & Blois, J. L. Understanding ecological change across large spatial, temporal and taxonomic scales: Integrating data and methods in light of theory. Ecography 42, 1247–1266 (2019).
    Google Scholar 
    Cowles, H. C. The ecological relations of the vegetation on the sand dunes of Lake Michigan. Part I. Geographical relations of the Dune Floras. Bot. Gaz. 27, 95–117 (1899).Article 

    Google Scholar 
    Gleason, H. A. The individualistic concept of the plant association. Bull. Torrey Bot. Club 53, 7–26 (1926).Article 

    Google Scholar 
    Denslow, J. S. Patterns of plant species diversity during succession under different disturbance regimes. Oecologia 46, 18–21 (1980).ADS 
    PubMed 
    Article 

    Google Scholar 
    Budowski, G. Studies on Forest Succession in Costa Rica und Panama. Ph.D. Thesis, Yale University, New Haven (1961).Opler, P. A., Baker, H. G. & Frankie, G. W. Plant reproductive characteristics during secondary succession in neotropical lowland forest ecosystems. Biotropica 12, 40–46 (1980).Article 

    Google Scholar 
    Clements, F. E. Plant Succession: An Analysis of Development in Vegetation (Carnegie Institute, Washington, 1916).Book 

    Google Scholar 
    Grigg, R. W. & Maragos, J. E. Recolonization of hermatypic corals on submerged lava flows in Hawaii. Ecology 55, 387–395 (1974).Article 

    Google Scholar 
    Tomascik, T., Van Woesik, R. & Mah, A. J. Rapid coral colonization of a recent lava flow following a volcanic eruption, Banda Islands, Indonesia. Coral Reefs 15, 169–175 (1996).ADS 
    Article 

    Google Scholar 
    McClanahan, T. R. Primary succession of coral-reef algae: Differing patterns on fished versus unfished reefs. J. Exp. Mar. Biol. Ecol. 218, 77–102 (1997).Article 

    Google Scholar 
    Reaka-Kudia, M. L. The global biodiversity of coral reefs: A comparison with rain forests. In Biodiversity II: Understanding and Proteting our Biological Resources (eds Reaka-Kudla, M. et al.) 83–108 (Joseph Henry Press, 1997).
    Google Scholar 
    Ginsburg, R. N. Geological and biological roles of cavities in coral reefs. In Perspectives on Coral Reefs (ed. Barnes, D. J.) 148–153 (Australian Institute of Marine Science, Manuka, A.C.T., Australia, 1983).Fautin, D. et al. An overview of marine biodiversity in United States waters. PLoS ONE 5, e11914 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pearman, J. K., Anlauf, H., Irigoien, X. & Carvalho, S. Please mind the gap—Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Mar. Environ. Res. 118, 20–30 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kobluk, D. R. & Van Soest, R. W. M. Cavity-dwelling sponges in a southern Caribbean coral reef and their paleontological implications. Bull. Mar. Sci. 44, 1207–1235 (1989).
    Google Scholar 
    Richter, C. & Wunsch, M. Cavity-dwelling suspension feeders in coral reefs – A new link in reef trophodynamics. Mar. Ecol. Prog. Ser. 188, 105–116 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Wunsch, M., Al-Moghrabi, S. M. & Kötter, I. Communities of coral reef Cavities in Jordan, Gulf of Aqaba (Red Sea). In Proceedings of 9th International Coral Reef Symposium, Vol. 1 (2000).Kornder, N. A. et al. Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs 40, 1137–1153 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Richter, C., Wunsch, M., Rasheed, M., Kötter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Goeij, J. M. & Van Duyl, F. C. Coral cavities are sinks of dissolved organic carbon (DOC). Limnol. Oceanogr. 52, 2608–2617 (2007).ADS 
    Article 

    Google Scholar 
    Slattery, M., Gochfeld, D. J., Easson, C. G. & O’Donahue, L. R. K. Facilitation of coral reef biodiversity and health by cave sponge communities. Mar. Ecol. Prog. Ser. 476, 71–86 (2013).ADS 
    Article 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Goeij, J. M., Van Den Berg, H., Van Oostveen, M. M., Epping, E. H. G. & Van Duyl, F. C. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar. Ecol. Prog. Ser. 357, 139–151 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science (80-) 342, 108–110 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Rix, L. et al. Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Mar. Ecol. Prog. Ser. 589, 85–96 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Goeij, J. M., Lesser, M. P. & Pawlik, J. R. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In Climate Change, Ocean Acidification and Sponges: Impacts Across Multiple Levels of Organization (Springer, 2017). https://doi.org/10.1007/978-3-319-59008-0_8.Choi, D. R. Ecological succession of reef cavity-dwellers (coelobites) in coral rubble. Bull. Mar. Sci. 35, 72–79 (1984).
    Google Scholar 
    Jackson, J. B. C. Competition on marine hard substrata: The adaptive significance of solitary and colonial strategies. Am. Nat. 111, 743–767 (1977).Article 

    Google Scholar 
    Kobluk, D. R. Cryptic faunas in reefs: Ecology and geologic importance. Palaios 3, 379–390 (1988).ADS 
    Article 

    Google Scholar 
    Hooper, J. N. A. & Van Soest, R. W. M. Class Demospongiae Sollas, 1885. In Systema Porifera (2002). https://doi.org/10.1007/978-1-4615-0747-5_3.Rützler, K. The role of sponges in the mesoamerican barrier-reef ecosystem, Belize. Adv. Mar. Biol. 61, 211–271 (2012).PubMed 
    Article 

    Google Scholar 
    Wulff, J. Ecological interactions and the distribution, abundance, and diversity of sponges. Adv. Mar. Biol. 61, 273–344 (2012).PubMed 
    Article 

    Google Scholar 
    Riesgo, A. et al. Inferring the ancestral sexuality and reproductive condition in sponges (Porifera). Zool. Scr. 43, 101–117 (2014).Article 

    Google Scholar 
    Pawlik, J. R., Chanas, B., Toonen, R. J. & Fenical, W. Defenses of Caribbean sponges against predatory reef fish. I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127, 183–194 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Leong, W. & Pawlik, J. R. Evidence of a resource trade-off between growth and chemical defenses among Caribbean coral reef sponges. Mar. Ecol. Prog. Ser. 406, 71–78 (2010).ADS 
    Article 

    Google Scholar 
    Maldonado, M. & Bergquist, P. R. Phylum porifera. In Atlas of Marine Invertebrates (ed. Young, C.) 21–50 (Academic, 2002).
    Google Scholar 
    Lanna, E. & Klautau, M. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. J. Mar. Biol. Assoc. U. K. 98, 505–514 (2018).Article 

    Google Scholar 
    Lanna, E., Monteiro, L. C. & Klautau, M. Life cycle of Paraleucilla magna Klautau, Monteiro and Borojevic, 2004 (Porifera, Calcarea). In Porifera Research: Biodiversity, Innovation and Sustainability 413–418 (2007).Calazans, V. P. S. B. & Lanna, E. Influence of endogenous and exogenous factors on the reproductive output of a cryptogenic calcareous sponge. Mar. Biodivers. 49, 2837–2850 (2019).Article 

    Google Scholar 
    Zimmerman, T. L. & Martin, J. W. Artificial reef matrix structures (ARMS): An inexpensive and effective method for collecting coral reef-associated invertebrates. Gulf Caribb. Res. 16, 59–64 (2004).Article 

    Google Scholar 
    Brainard, R. et al. Autonomous reef monitoring structures (ARMS): A tool for monitoring indices of biodiversity in the Pacific Islands. In 11th Pacific Science Inter-Congress, Papeete, Tahiti (2009).Knowlton, N. et al. Coral reef biodiversity. In Life in the World’s Oceans: Diversity, Distribution, and Abundance 65–74 (2010). https://doi.org/10.1002/9781444325508.ch4.Timmers, M. A., Vicente, J., Webb, M., Jury, C. P. & Toonen, R. J. Sponging up diversity: Evaluating metabarcoding performance for a taxonomically challenging phylum within a complex cryptobenthic community. Environ. DNA https://doi.org/10.1002/edn3.163 (2020).Article 

    Google Scholar 
    Vicente, J. et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs https://doi.org/10.1007/s00338-021-02109-7 (2021).Article 

    Google Scholar 
    Grottoli, A. G. et al. Increasing comparability among coral bleaching experiments. Ecol. Appl. 31, e02262 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodgers, K. S., Jokiel, P. L., Brown, E. K., Hau, S. & Sparks, R. Over a decade of change in spatial and temporal dynamics of Hawaiian coral reef communities. Pac. Sci. 69, 1–13 (2015).Article 

    Google Scholar 
    Franklin, E. C., Jokiel, P. L. & Donahue, M. J. Predictive modeling of coral distribution and abundance in the Hawaiian Islands. Mar. Ecol. Prog. Ser. 481, 121–132 (2013).ADS 
    Article 

    Google Scholar 
    Jury, C. et al. Experimental reef communities persist under future ocean acidification and warming. Res. Sq. (2021).Gorospe, K. D. et al. Local biomass baselines and the recovery potential for Hawaiian coral reef fish communities. Front. Mar. Sci. 5, 162 (2018).Article 

    Google Scholar 
    Timmers, M. A. et al. Biodiversity of coral reef cryptobiota shuffles but does not decline under the combined stressors of ocean warming and acidification. Proc. Natl. Acad. Sci. 118(39), e2103275118 (2021).
    Wörheide, G. & Erpenbeck, D. DNA taxonomy of sponges—Progress and perspectives. J. Mar. Biol. Assoc. U. K. 87, 1629–1633 (2007).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020). https://doi.org/10.1017/CBO9781107415324.004.Oksanen, J. et al. Package vegan. Community Ecology Packaging version 2, 1-295 (2013).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R. C. nlme: Linear and nonlinear mixed effects models (2020).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Lenth, R. V. Least-squares means: The R package. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Ribeiro, B., Padua, A., Paiva, P. C., Custódio, M. R. & Klautau, M. Exploitation of micro refuges and epibiosis: Survival strategies of a calcareous sponge. J. Mar. Biol. Assoc. U. K. 98, 495–503 (2018).Article 

    Google Scholar 
    Bahr, K. D., Jokiel, P. L. & Toonen, R. J. The unnatural history of Kāne’ohe bay: Coral reef resilience in the face of centuries of anthropogenic impacts. PeerJ 3, e950 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, M. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanogr. Mar. Biol. Annu. Rev. 49, 1–42 (2011).
    Google Scholar 
    Barnes, D. K. A., Ashton, G. V., Morley, S. A. & Peck, L. S. 1 °C warming increases spatial competition frequency and complexity in Antarctic marine macrofauna. Commun. Biol. 4, 1–7 (2021).Article 

    Google Scholar 
    Maldonado, M., Giraud, K. & Carmona, C. Effects of sediment on the survival of asexually produced sponge recruits. Mar. Biol. 154, 631–641 (2008).CAS 
    Article 

    Google Scholar 
    Eckman, J. E. Hydrodynamic processes affecting benthic recruitment. Limnol. Oceanogr. 28, 241–257 (1983).ADS 
    Article 

    Google Scholar 
    Palardy, J. E. & Witman, J. D. Water flow drives biodiversity by mediating rarity in marine benthic communities. Ecol. Lett. 14, 63–68 (2011).PubMed 
    Article 

    Google Scholar 
    Falter, J. L., Atkinson, M. J. & Merrifield, M. A. Mass-transfer limitation of nutrient uptake by a wave-dominated reef flat community. Limnol. Oceanogr. 49, 1820–1831 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Sale, P. F. Coexistence of coral reef fishes—A lottery for living space. Environ. Biol. Fish. 3, 85–102 (1978).Article 

    Google Scholar 
    Karlson, R. H. & Jackson, J. B. C. Competitive networks and community structure: A simulation study. Ecology 62, 670–678 (1981).Article 

    Google Scholar 
    Hixon, M. A. Predation as a process structuring coral reef fish communities. In The Ecology of Fishes on Coral Reefs (1991). https://doi.org/10.1016/b978-0-08-092551-6.50022-2.Hobson, E. S. Feeding patterns among tropical reef fishes. Am. Sci. 63, 382–392 (1975).ADS 

    Google Scholar 
    Bailey-Brock, J. H. Fouling community development on an artificial reef in Hawaiian waters. Bull. Mar. Sci. 44, 580–591 (1989).
    Google Scholar 
    Vicente, J., Toonen, R. J. & Bowen, B. W. Hawaiian green turtles graze on bioeroding sponges at Maunalua Bay, O‘ahu, Hawai‘i, Galaxea. J. Coral Reef Stud. 21, 3–4 (2019).Article 

    Google Scholar 
    Vicente, J., Osberg, A., Marty, M. J., Rice, K. & Toonen, R. J. Influence of sponge palatability on the feeding preferences of the endemic Hawaiian tiger cowrie for indigenous and introduced sponges. Mar. Ecol. Prog. Ser. 647, 109–122 (2020).ADS 
    Article 

    Google Scholar 
    Klumpp, D., McKinnon, A. & Mundy, C. Motile cryptofauna of a coral reef: Abundance, distribution and trophic potential. Mar. Ecol. Prog. Ser. 45, 95–108 (1988).ADS 
    Article 

    Google Scholar 
    Carpenter, R. C. Invertebrate predators and grazers. In Life and Death of Coral Reefs (1997). https://doi.org/10.1007/978-1-4615-5995-5_9.Glynn, P. W. & Enochs, I. C. Invertebrates and their roles in coral reef ecosystems. In Coral Reefs: An Ecosystem in Transition (2011). https://doi.org/10.1007/978-94-007-0114-4_18.Ďuriš, Z., Horká, I., Juračka, P. J., Petrusek, A. & Sandford, F. These squatters are not innocent: The evidence of parasitism in Sponge-Inhabiting shrimps. PLoS ONE 6, e21987 (2011).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pawlik, J. R. A sponge-eating worm from Bermuda: Branchiosyllis oculata (Polychaeta, Syllidae). Mar. Ecol. 4, 65–79 (1983).ADS 
    Article 

    Google Scholar 
    Degoeij, J. M. et al. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. J. Exp. Biol. 212, 3892–3900 (2009).CAS 
    Article 

    Google Scholar 
    Alexander, B. E. et al. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE 9, e109486 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bart, M. C., Hudspith, M., Rapp, H. T., Verdonschot, P. F. M. & de Goeij, J. M. A deep-sea sponge loop? Sponges transfer dissolved and particulate organic carbon and nitrogen to associated fauna. Front. Mar. Sci. 8, 604879 (2021).Article 

    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Annu. Rev. Mar. Sci. 12, 315–337 (2020).ADS 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science (80-). 364, 1189–1192 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Buss, L. W. & Jackson, J. B. C. Competitive networks: Nontransitive competitive relationships in cryptic coral reef environments. Am. Nat. 113, 223–234 (1979).Article 

    Google Scholar 
    Vicente, J., Ríos, J. A., Zea, S. & Toonen, R. J. Molecular and morphological congruence of three new cryptic Neopetrosia spp in the Caribbean. PeerJ 7, e6371–e6381 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More