More stories

  • in

    The Campsis-Icterus association as a model system for avian nectar-robbery studies

    Darwin, C. On the various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the good effects of Intercrossing. (John Murray, 1862).Darwin, C. The various Contrivances by which Orchids are Fertilised by Insects. Second edition, revised., (D. Appleton and Company, 1877).Sprengel, C. K. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. (Vieweg, 1793).Müller, H. Befruchtung der Blumen durch Insekten (Verlag Von Wilhelm Englemann, 1873).Book 

    Google Scholar 
    Riley, C. V. The yucca moth and yucca pollination. Rep. Missouri Botan. Garden 3, 99–159 (1892).Article 

    Google Scholar 
    Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology 3rd edn. (Pergamon, Berlin, 1979).
    Google Scholar 
    Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R. & Thomson, J. D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375–403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347 (2004).Article 

    Google Scholar 
    Inouye, D. W. In The Biology of Nectaries (eds Elias, T. S. & Bentley, B. L.) 153–173 (Columbia University Press, 1983).
    Google Scholar 
    Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292. https://doi.org/10.1146/annurev.ecolsys.110308.120330 (2010).Article 

    Google Scholar 
    Irwin, R. E. & Maloof, J. E. Variation in nectar robbing over time, space, and species. Oecologia 133, 525–533. https://doi.org/10.1007/s00442-002-1060-z (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Maloof, J. E. & Inouye, D. W. Are nectar robbers cheaters or mutualists?. Ecology 81, 2651–2661. https://doi.org/10.1890/0012-9658(2000)081[2651:ANRCOM]2.0.CO;2 (2000).Article 

    Google Scholar 
    Inouye, D. W. The terminology of floral larceny. Ecology 61, 1251–1253. https://doi.org/10.2307/1936841 (1980).Article 

    Google Scholar 
    Lyon, D. L. & Chadek, C. Exploitation of nectar resources by hummingbirds, bees (Bombus), and Diglossa baritula and Its role in the evolution of Penstemon kunthii. Condor 73, 246–248. https://doi.org/10.2307/1365847 (1971).Article 

    Google Scholar 
    Colwell, R. K., Betts, B. J., Bunnell, P., Carpenter, F. L. & Feinsinger, P. Competition for the nectar of Centropogon valerii by the hummingbird Colibri thalassinus and the flower-piercer Diglossa plumbea, and Its evolutionary implications. Condor 76, 447–452. https://doi.org/10.2307/1365817 (1974).Article 

    Google Scholar 
    Arizmendi, M. C., Dominguez, C. A. & Dirzo, R. The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Funct. Ecol. 10, 119–127. https://doi.org/10.2307/2390270 (1996).Article 

    Google Scholar 
    Arizmendi, M. C. Multiple ecological interactions: Nectar robbers and hummingbirds in a highland forest in Mexico. Can. J. Zool. 79, 997–1006. https://doi.org/10.1139/z01-066 (2001).Article 

    Google Scholar 
    Navarro, L. Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae)1. Biotropica 31, 618–625. https://doi.org/10.1111/j.1744-7429.1999.tb00410.x (1999).Article 

    Google Scholar 
    Traveset, A., Willson, M. F. & Sabag, C. Effect of nectar-robbing birds on fruit set of Fuchsia magellanica in Tierra Del Fuego: A disrupted mutualism. Funct. Ecol. 12, 459–464. https://doi.org/10.1046/j.1365-2435.1998.00212.x (1998).Article 

    Google Scholar 
    Skutch, A. F. Life histories of Central American birds. Families Fringillidae, Thraupidae Parulidae and Coerebidae. Pacific Coast Avifauna 31, 1–448 (1954).
    Google Scholar 
    Vuilleumier, F. Systematics and evolution in Diglossa (Aves, Coerebidae). Am. Mus. Novit. 2381, 1–44 (1969).
    Google Scholar 
    Graves, G. R. Pollination of a Tristerix mistletoe (Loranthaceae) by Diglossa (Aves: Thraupidae). Biotropica 14, 315–317. https://doi.org/10.2307/2388094 (1982).Article 

    Google Scholar 
    Hernández, H. M. & Toledo, V. M. The role of nectar robbers and pollinators in the reproduction of Erythrina leptorhiza. Ann. Mo. Bot. Gard. 66, 512–520. https://doi.org/10.2307/2398843 (1979).Article 

    Google Scholar 
    Neill, D. A. Trapliners in the trees: Hummingbird pollination of Erythrina Sect Erythrina (Leguminosae: Papilionoideae). Ann. Missouri Botan. Garden 74, 27–41. https://doi.org/10.2307/2399259 (1987).Article 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Nectar robbing impacts pollinator behavior but not plant reproduction. Oikos 125, 1668–1676. https://doi.org/10.1111/oik.03195 (2016).CAS 
    Article 

    Google Scholar 
    Cuta-Pineda, J. A., Arias-Sosa, L. A. & Pelayo, R. C. The flowerpiercers interactions with a community of high Andean plants. Avian Res. 12, 22. https://doi.org/10.1186/s40657-021-00256-7 (2021).Article 

    Google Scholar 
    Askins, R. A., Karen, M. E. & Jeffrey, D. W. Flower destruction and nectar depletion by avian nectar robbers on a tropical tree, Cordia sebestena. J. Field Ornithol. 58, 345–349 (1987).
    Google Scholar 
    McDade, L. A. & Kinsman, S. The impact of floral parasitism in two Neotropical hummingbird-pollinated plant species. Evolution 34, 944–958. https://doi.org/10.2307/2408000 (1980).Article 
    PubMed 

    Google Scholar 
    Ingels, J. Observations of the hummingbirds Orthorhynchus cristatus and Eulampis jugularis of Martinique (West Indies). Gerfaut 66, 129–132 (1976).
    Google Scholar 
    Feinsinger, P., Beach, J. H., Linhart, Y. B., Busby, W. H. & Murray, K. G. Disturbance, pollinator predictability, and pollination success among Costa Rican cloud forest plants. Ecology 68, 1294–1305. https://doi.org/10.2307/1939214 (1987).Article 

    Google Scholar 
    Kodric-Brown, A., Brown, J. H., Byers, G. S. & Gori, D. F. Organization of a tropical island community of hummingbirds and flowers. Ecology 65, 1358–1368. https://doi.org/10.2307/1939116 (1984).Article 

    Google Scholar 
    Lara, C. & Ornelas, J. F. Preferential nectar robbing of flowers with long corollas: Experimental studies of two hummingbird species visiting three plant species. Oecologia 128, 263–273. https://doi.org/10.1007/s004420100640 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Impacts of nectar robbing on the foraging ecology of a territorial hummingbird. Behav. Proc. 149, 27–34. https://doi.org/10.1016/j.beproc.2018.01.001 (2018).Article 

    Google Scholar 
    Boehm, M. A. Biting the hand that feeds you: Wedge-billed hummingbird is a nectar robber of a sicklebill-adapted Andean bellflower. Acta Amazon. 48, 146–150. https://doi.org/10.1590/1809-4392201703932 (2018).Article 

    Google Scholar 
    Igić, B., Nguyen, I. & Fenberg, P. B. Nectar robbing in the trainbearers (Lesbia, Trochilidae). PeerJ 8, e9561. https://doi.org/10.7717/peerj.9561 (2020).Article 

    Google Scholar 
    Lunardi, V. D. O., Silva, É. E., Silva, S. T. A. & Lunardi, D. G. Handroanthus impetiginosus (Bignoniaceae) as an important floral resource for synanthropic birds in the Brazilian semiarid. Oecol. Austr. https://doi.org/10.4257/oeco.2019.2301.12 (2019).Article 

    Google Scholar 
    Almeida, J. M., Missagia, C. C. C. & Alves, M. A. S. Effects of the availability of floral resources and neighboring plants on nectar robbery in a specialized pollination system. Curr. Zool. https://doi.org/10.1093/cz/zoab083 (2021).Article 

    Google Scholar 
    Rodríguez-Rodríguez, M. C. & Valido, A. Opportunistic nectar-feeding birds are effective pollinators of bird-flowers from Canary Islands: experimental evidence from Isoplexis canariensis (Scrophulariaceae). Am. J. Bot. 95, 1408–1415. https://doi.org/10.3732/ajb.0800055 (2008).Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). Am. J. Bot. 93, 304–318. https://doi.org/10.3732/ajb.93.2.304 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olmstead, R. G., Zjhra, M. L., Lohmann, L. G., Grose, S. O. & Eckert, A. J. A molecular phylogeny and classification of Bignoniaceae. Am. J. Bot. 96, 1731–1743. https://doi.org/10.3732/ajb.0900004 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. & Taylor, C. M. A new generic classification of tribe Bignonieae (Bignoniaceae). Ann. Mo. Bot. Gard. 99, 348–489. https://doi.org/10.3417/2003187 (2014).Article 

    Google Scholar 
    Gentry, A. H. Coevolutionary patterns in Central American bignoniaceae. Ann. Mo. Bot. Gard. 61, 728–759. https://doi.org/10.2307/2395026 (1974).Article 

    Google Scholar 
    Bertin, R. I. Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am. J. Bot. 69, 122–134. https://doi.org/10.2307/2442837 (1982).Article 

    Google Scholar 
    Bertin, R. I. Paternity and fruit production in trumpet creeper (Campsis radicans). Am. Nat. 119, 694–709. https://doi.org/10.1086/283943 (1982).Article 

    Google Scholar 
    Bertin, R. I. & Sullivan, M. Pollen interference and cryptic self-fertility in Campsis radicans. Am. J. Bot. 75, 1140–1147. https://doi.org/10.1002/j.1537-2197.1988.tb08827.x (1988).Article 

    Google Scholar 
    Bertin, R. I. Paternal success following mixed pollinations of Campsis radicans. Am. Midl. Nat. 124, 153–163. https://doi.org/10.2307/2426088 (1990).Article 

    Google Scholar 
    Bertin, R. I. Effects of pollination intensity in Campsis radicans. Am. J. Bot. 77, 178–187. https://doi.org/10.1002/j.1537-2197.1990.tb13544.x (1990).Article 
    PubMed 

    Google Scholar 
    Bertin, R. I. & Peters, P. J. Paternal effects on offspring quality in Campsis radicans. Am. Nat. 140, 166–178. https://doi.org/10.1086/285408 (1992).Article 

    Google Scholar 
    Kartesz, J. T. Campsis radicans. Floristic Synthesis of North America, Version 1.0. Biota of North America Program (BONAP) http://bonap.net/MapGallery/County/Campsis%20radicans.png. (2015).Kolodziejska-Degorska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans [L.] Seem in Poland. Acta Soc. Botanicorum Poloniae 75, 79–85 (2006).Article 

    Google Scholar 
    Catesby, M. The Natural History of Carolina, Florida and the Bahama islands. Volume 1. (Published by the author, 1731).Audubon, J. J. Ornithological Biography Vol. 3, 638 (Adam and Charles Black, 1835).
    Google Scholar 
    Audubon, J. J. Ruby-throated Hummingbird, plate CCLIII, The Birds of America Vol. 3 (Havell, 1835).
    Google Scholar 
    Nuttall, T. Manual of the Ornithology of the United States and of Canada. The Land Birds (Hilliard and Brown, 1832).
    Google Scholar 
    Stiles, F. G. & Freeman, C. E. Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25, 191–205. https://doi.org/10.2307/2389183 (1993).Article 

    Google Scholar 
    Stiles, F. G. Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56, 285–301. https://doi.org/10.2307/1934961 (1975).Article 

    Google Scholar 
    McDade, L. A. & Weeks, J. A. Nectar in hummingbird-pollinated Neotropical plants I: Patterns of production and variability in 12 species. Biotropica 36, 196–215. https://doi.org/10.1111/j.1744-7429.2004.tb00312.x (2004).Article 

    Google Scholar 
    Wunderle, J. M. Jr. Nectar robbing by Orchard Orioles. Chat 44, 107–108 (1980).
    Google Scholar 
    Tyler, W. M. in Life histories of North American blackbirds, orioles, tanagers, and allies. Order Passeriformes: Families Ploceidae, Icteridae, and Thraupidae. United States National Museum Bulletin 211 (ed Arthur Cleveland Bent) 247–270 (United States Government Printing Office, 1958).George, F. W. Baltimore Orioles destroying trumpet vine blossoms. Wilson Bull. 46, 64 (1934).
    Google Scholar 
    Ridgway, R. The birds of North and Middle America, Part 2. Bull. U.S. Natl. Mus. 50, 1–834 (1902).
    Google Scholar 
    Scharf, W. C. & Kren, J. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    Morton, E. S. Effective pollination of Erythrina fusca by the Orchard Oriole (Icterus spurius): Coevolved behavioral manipulation?. Ann. Mo. Bot. Gard. 66, 482–489. https://doi.org/10.2307/2398840 (1979).Article 

    Google Scholar 
    Dickey, D. R. & van Rossem, A. J. The birds of El Salvador. Field Mus. Publ. Zool. 23, 1–609 (1938).
    Google Scholar 
    Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E. & Vanden Berge, J. C. (eds). Handbook of Avian Anatomy: Nomina Anatomica Avium, Second Edition. Publications of the Nuttall Ornithological Club no. 23 (Nuttall Ornithological Club, 1993).Beecher, W. J. Adaptations for food-getting in the American blackbirds. Auk 68, 411–440. https://doi.org/10.2307/4080840 (1951).Article 

    Google Scholar 
    Zusi, R. The role of the depressor mandibulae muscle in kinesis of the avian skull. Proc. U.S. Natl. Mus. 123, 1–28 (1967).Article 

    Google Scholar 
    Remsen, J. V. Jr. & Robinson, S. K. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
    Google Scholar 
    Skutch, A. F. Orioles, Blackbirds, and Their Kin (University of Arizona Press, 1996).
    Google Scholar 
    Hansell, M. P. Bird nests and Construction Behaviour 294 (Cambridge University Press, 2000).Book 

    Google Scholar 
    Bent, A. C. Life histories of North American blackbirds, orioles, tanagers, and allies. Bull. U.S. Natl. Museum 211, 1–531 (1958).
    Google Scholar 
    Dennis, J. V. Observations on the orchard oriole in lower Mississippi Delta. Bird-Banding 19, 12–21. https://doi.org/10.2307/4509997 (1948).Article 

    Google Scholar 
    Wunderle, J. M. & Lodge, D. J. The effect of age and visual cues on floral patch use by bananaquits (Aves: Emberizidae). Anim. Behav. 36, 44–54. https://doi.org/10.1016/S0003-3472(88)80248-3 (1988).Article 

    Google Scholar 
    Edge, A. A. Characteristics of nectar production and standing crop in Campsis radicans (Bignoniaceae). MSc thesis. (East Tennessee State University, 2010).Galetto, L. Nectary structure and nectar characteristics in some Bignoniaceae. Plant Syst. Evol. 196, 99–121. https://doi.org/10.1007/BF00985338 (1995).Article 

    Google Scholar 
    Elias, T. S. & Gelband, H. Nectar: Its production and functions in trumpet creeper. Science 189, 289–291. https://doi.org/10.1126/science.189.4199.289 (1975).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, T. S. & Gelband, H. Morphology and anatomy of floral and extrafloral nectaries in Campsis (Bignoniaceae). Am. J. Bot. 63, 1349–1353. https://doi.org/10.1002/j.1537-2197.1976.tb13220.x (1976).Article 

    Google Scholar 
    Hermans, M. & Rasson, J. P. A new Sobolev test for uniformity on the circle. Biometrika 72, 698–702. https://doi.org/10.2307/2336748 (1985).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Landler, L., Ruxton, G. D. & Malkemper, E. P. The Hermans-Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology. BMC Ecol. 19, 30. https://doi.org/10.1186/s12898-019-0246-8 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. PBC, Boston, MA http://www.rstudio.com/. (RStudio 2020).Beecher, W. J. Convergent evolution in the American orioles. Wilson Bulletin 62, 50–86 (1950).
    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Stiles, F. G. Energetics of foraging: Rate and efficiency of nectar extraction by hummingbirds. Science 176, 1351–1352. https://doi.org/10.1126/science.176.4041.1351 (1972).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Gill, F. B. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128. https://doi.org/10.2307/1935304 (1975).Article 

    Google Scholar 
    Alcantara, S. & Lohmann, L. G. Evolution of floral morphology and pollination system in Bignonieae (Bignoniaceae). Am. J. Bot. 97, 782–796. https://doi.org/10.3732/ajb.0900182 (2010).Article 
    PubMed 

    Google Scholar 
    Gentry, A. H. Bignoniaceae: Part II (Tribe Tecomeae). Flora Neotrop. 25, 1–370 (1992).
    Google Scholar 
    Grant, V. Historical development of ornithophily in the western North American flora. Proc. Natl. Acad. Sci. 91, 10407–10411. https://doi.org/10.1073/pnas.91.22.10407 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    James, R. L. Some hummingbird flowers east of the Mississippi. Castanea 13, 97–109 (1948).
    Google Scholar 
    Van Nest, B. N., Edge, A. A., Feathers, M. V., Worley, A. C. & Moore, D. Bees provide pollination service to Campsis radicans (Bignoniaceae), a primarily ornithophilous trumpet flowering vine. Ecol. Entomol. 46, 117–127. https://doi.org/10.1111/een.12947 (2021).Article 

    Google Scholar 
    Patuxent Wildlife Research Center. Orchard oriole Icterus spurius. BBS summer distribution map, 2011–2015 (relative abundance map). https://www.mbr-pwrc.usgs.gov/bbs/ra2015/ra2015_red_v3.shtml (accessed 7 March 2021) (2021). More

  • in

    More than dollars: mega-review finds 50 ways to value nature

    Relatively few studies try to understand the value of cultural heritage sites such as Nachi Falls, which is also a pilgrimage route in Japan’s Kii mountain range.Credit: James Fichera/Getty

    There are more than 50 ways to value the environment, but most research and policymaking focuses on just a handful of methods. These include counting species and evaluating the cost of replacing a service provided by nature. Yet assessing nature in purely monetary terms can also be harmful to people and the environment, according to the world’s largest assessment of environmental valuation.“Policymaking largely disregards the multiple ways in which nature matters to people,” especially Indigenous people and low-income communities, says the report from the Intergovernmental Science-Policy Panel on Biodiversity and Ecosystem Services (IPBES).For example, in proposals for hydroelectric dams, the needs of affected communities are often seen as secondary to those of urban consumers — especially if communities are required to be displaced, resulting in people losing livelihoods and being compelled to change their way of life, the report finds.The world’s failure to properly value biodiversity has caused a long-term decline in a variety of services that the environment provides, said Anne Larigauderie, an ecologist who leads the IPBES secretariat, at the report’s launch on 11 July. “The capacity to pollinate crops, or regulate water, has been in decline for 50 years,” she said.There is strong evidence that valuing nature on the basis of market prices is contributing to the present biodiversity crisis, said Unai Pascual, an economist at the Basque Centre for Climate Change in Leioa, Spain, at the launch in Bonn, Germany. “Many other values are ignored in favour of short-term profit and economic growth,” added Pascual, who co-chaired the assessment.A summary for policymakers was approved by 139 governments on 8 July. The full assessment report is expected to be released ahead of the Conference of the Parties to the UN Convention on Biological Diversity, which takes place in Montreal in December. This meeting is expected to agree a new set of targets and indicators for biodiversity conservation.Studies of natureEighty-two researchers from around the world, with areas of expertise spanning the sciences, social sciences and humanities, identified 79,000 studies in environmental valuation, and found that their number has been increasing by 10% a year for four decades. But these studies also rarely lead to policy changes. The researchers selected 1,163 of the studies for in-depth review, and found that only for 5% of these cases were recommendations adopted by decision makers.Half of the studies selected for in-depth review used biophysical indicators, such as numbers of species, or quantity of forest biomass. Another 26% used monetary indicators, such as how much it would cost if pollination needed to be carried out by humans, or the amounts that governments pay farmers to conserve biodiversity on agricultural land.Only one-fifth of the studies valued biodiversity according to sociocultural criteria. Those that did included studies on the importance to people of a sacred site; and research on the value that someone attaches to the place where they grew up. Sociocultural values do not necessarily have a numerical quantity, or price tag. The value of sacred sites does not need to be turned into dollars, or euros, Sander Jacobs, one of the IPBES authors and an ecologist at the Research Institute of Nature and Forests in Brussels, said at the report’s launch.The report’s authors found that most studies do not consider multiple values, even when the evidence shows that doing so leads to better outcomes for the environment. The team found that few scientists consult or involve the people who live and work in regions of high biodiversity. Only 2% of the studies reviewed in depth reported having done so. And just 1% involved people in all the steps from designing a study to publishing it.“We need to build coalitions of scientists from different disciplines. But science needs allies too,” Pascual says. “Scientists need to be humble and invite those who represent other ways of knowing. Such a coalition could provide a solutions-oriented approach to the biodiversity and climate crises.” More

  • in

    Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots

    Palaeogeographical modelWe use palaeogeographical reconstructions describing Earth’s palaeotopography and palaeobathymetry for a series of time slices from 541 Ma to the present day. The reconstructions merge existing models from two published global reconstruction datasets—those of ref. 32 and ref. 33 (https://doi.org/10.5281/zenodo.5348492), which themselves are syntheses of a wealth of previous work.For continental regions, estimates of palaeoelevation and continental flooding rely on a diverse range of geological evidence, such as sedimentary depositional environments and the spatiotemporal distribution of volcanic activity. For a full description, see a recent review34. Together, these data can be used to define the past locations of mountain ranges and palaeoshorelines34. For this part of our reconstruction, we used the compilation of ref. 33 with updated palaeoshorelines based on depositional environment information in current fossil databases35. This compilation comprises 82 palaeotopography maps covering the entire Phanerozoic. Note that each palaeogeographical map is a time slice representing the concatenation of geological data over several million years36.We quantified the impact of using the original compilation of ref. 33 on our model results and found only small changes with respect to using the reconstructions with updated palaeoshorelines (Extended Data Fig. 3a–c). Similarly, eustatic sea level is thought to have varied by around 100 m at timescales much shorter than the duration of the time-slices throughout the Phanerozoic37, such that the extent of continental flooding could have varied within each time slice by an amount significant for our analysis. For this reason, and to assess the uncertainty of our results to continental palaeogeography in general, we computed additional maps of continental flooding in which the sea level is raised or lowered by 100 m compared with the original palaeo–digital elevation model grids of ref. 33 (Extended Data Fig. 3d–f).For deep-ocean regions, the primary control on seafloor depth is the age of the seafloor, so reconstructing palaeobathymetry relies on constructing maps of seafloor age back in time38. As a consequence, we rely on reconstruction models that incorporate a continuous network of plate boundaries. For this part, we used the reconstruction of ref. 32 and derived maps of seafloor age from the plate tectonic model using the method of ref. 39 for which source code is available at GitHub (https://github.com/siwill22/agegrid-0.1). Palaeobathymetry is derived from the seafloor age maps following the steps outlined in ref. 38. It is important to note that seafloor age maps for most of the Phanerozoic (that is, pre-Pangaea times) are not directly constrained by data due to recycling of oceanic crust at subduction zones. Rather, they are model predictions generated by constructing plate motions and plate boundary configurations from the geological and palaeomagnetic record of the continents. Nonetheless, the first-order trends in ocean-basin volume and mean seafloor age are consistent with independent estimates for at least the last 410 million years (Myr)39.The reconstructions of refs. 32,33 differ in the precise locations of the continents through time. To resolve this discrepancy, we reverse reconstructed the continental palaeoelevation model of ref. 33 to present-day coordinates using their rotation parameters, then reconstructed them back in time using the rotations of ref. 32. Owing to the differences in how the continents are divided into different tectonic units, this process leads to some gaps and overlaps in the results40, which we resolved primarily through a combination of data interpolation and averaging. Manual adjustments were made to ensure that the flooding history remained consistent with the original palaeotopography in areas in which interpolation gives a noticeably different history of seafloor ages. The resulting palaeotopography maps are therefore defined in palaeomagnetic reference frame32 appropriate for use in Earth system models.For the biodiversity modelling, we generate estimates of the age of the seafloor for discrete points within the oceans and flooded continents, and track these ages through the lifetime of each point (Supplementary Video 5). For the oceans, this is achieved using the method described in ref. 39 in which the seafloor is represented by points that are incrementally generated at the mid-ocean ridges for a series of time steps 1 Myr apart, with each point tracked through subsequent time steps based on Euler poles of rotation until either the present-day is reached, or they arrive at a subduction zone and are considered to be destroyed.For the continents, tracking the location of discrete points is generally simpler as most crust is conserved throughout the timespan of the reconstruction. In contrast to the deep oceans (where we assume that crust is at all times submerged), we model the ‘age’ of the seafloor from the history of continental flooding and emergence within the palaeogeographical interpretation33. The continents are seeded with uniformly distributed points at the oldest timeslice (541 Ma) at which they are assigned an age of zero. These points are tracked to subsequent time slices of which the palaeogeography is used to determine whether the point lies within a flooded or emergent region. Points within flooded regions of continents are considered to be seafloor, and the age of this seafloor is accumulated across consecutive time slices where a given point lies within a flooded region. When a point is within an emergent region, the seafloor age is reset to zero. Following this approach, individual points within stable continents may undergo several cycles of seafloor age increasing from zero before being reset. At the continental margins formed during the Pangaea breakup, the age of the seafloor continuously grows from the onset of rifting. Intraoceanic island arcs represent an additional case, which can appear as new tectonic units with the reconstructions at various times. In these cases, we assume that the seafloor has a zero-age at the time at which the intraoceanic arc first develops, then remains predominantly underwater for the rest of its lifetime.Thus, for each of the 82 palaeogeographical reconstructions, we annotate 0.5° by 0.5° grids as continental, flooded continental shelf or oceanic for later use in model coupling and production of regional diversity maps.Palaeoenvironmental conditions under the cGENIE Earth system modelWe use cGENIE41, an Earth system model of intermediate complexity, to simulate palaeoenvironmental conditions of seawater temperature and organic carbon export production (as a surrogate for food supply) throughout the Phanerozoic (from 541 Ma to the present day).cGENIE is based on a three-dimensional (3D) ocean circulation model coupled to a 2D energy–moisture balance atmospheric component and a sea-ice module. We configured the model on a 36 × 36 (latitude, longitude) equal area grid with 17 unevenly spaced vertical levels in depth, down to a maximum ocean depth of 5,900 m. The cycling of carbon and associated tracers in the ocean is based on a size-structured plankton ecosystem model with a single (phosphate) nutrient42,43, and adopts an Arrhenius-type temperature-dependent scheme for the remineralization of organic matter exported to the ocean interior44.cGENIE provides a spatially resolved representation of ocean physics and biogeochemistry, which is a prerequisite for the present study to be able to reconstruct the spatial patterns of biodiversity in deep time. However, owing to the computational impracticality of generating a single transient simulation of physics (that is, temperature) and biogeochemistry (that is, export production) over the entire Phanerozoic, we therefore generate 30 model equilibria at regular time intervals throughout the Phanerozoic that are subsequently used as inputs for the regional diversification model (see the ‘Model coupling’ section).We used 30 Phanerozoic palaeogeographical reconstructions through time (~20 Myr evenly spaced time intervals) to represent key time periods. For each continental configuration corresponding to a given age in Earth history, we generate idealized 2D (but zonally averaged) wind speed and wind stress, and 1D zonally averaged albedo forcing fields45 required by the cGENIE model using the ‘muffingen’ open-source software (see the ‘Code availability’ section). For each palaeogeographical reconstruction, the climatic forcing (that is, solar irradiance and carbon dioxide concentration) is adapted to match the corresponding geological time interval. The partial pressure of CO2 is taken from the recent update of the GEOCARB model46. Solar luminosity is calculated using the model of stellar physics of ref. 47. We impose modern-day orbital parameters (obliquity, eccentricity and precession). The simulations are initialized with a sea-ice-free ocean, homogeneous oceanic temperature (5 °C) and salinity (34.9‰). As variations in the oceanic concentration of bio-available phosphate remain challenging to reconstruct in the geological past48,49, we impose a present-day mean ocean phosphate concentration (2.159 μmol kg−1) in our baseline simulations. We quantify the impact of this uncertainty on our model results by conducting additional simulations using half and twice the present-day ocean phosphate concentration (Extended Data Fig. 3g–i). For each ocean phosphate scenario (that is, 0.5×, 1× and 2× the present-day value), each of the 30 model simulations is then run for 20,000 years, a duration ensuring that deep-ocean temperature and geochemistry reach equilibrium. For each model simulation, the results of the mean annual values of the last simulated year are used for the analysis. Note that, although cGENIE makes projections of the distribution of dissolved oxygen ([O2]) in the ocean, our diversification model does not currently consider oxygenation to be a limit on diversity. Thus, we assumed a modern atmospheric partial pressure of O2 in all 30 palaeo simulations and did not use the resulting projected [O2] fields.Regional diversification modelWe tested two models of diversification—the logistic model and the exponential model—describing the dynamics of regional diversity over time. In both models, the net diversification rate (ρ), with units of inverse time (Myr−1), varies within a pre-fixed range of values as a function of seawater temperature and food availability. The net diversification rate is then calculated for a given location and time according to the following equation:$$rho ={rho }_{max }-({rho }_{max }-{rho }_{min })(1-{Q}_{{rm{temp}}}{Q}_{{rm{food}}})$$
    (1)
    where ρmin and ρmax set the lower and upper net diversification rate limits within which ρ is allowed to vary, and Qtemp and Qfood are non-dimensional limitation terms with values between 0 and 1 that define the dependence of ρ on temperature and food, respectively (Extended Data Table 1).The model considers a direct relationship between seawater temperature, food supply and the rate of net diversification on the basis of the theoretical control that temperature and food supply exert on the rates of origination and extinction (Supplementary Fig. 1). Temperature rise is expected to accelerate the biochemical kinetics of metabolism50 and shorten the development times of individuals51, leading to higher rates of mutation and origination. Greater food availability increases population sizes, which increases the rates of mutation and reduces the probability of extinction52. Furthermore, a large body of observations shows the existence of a positive relationship between resource availability (that is, food supply) and the standing stock of species in marine and terrestrial communities53,54. A larger food supply would support a greater number of individuals. A greater diversity of food resources could also lead to a finer partitioning of available resources55.The temperature dependence of ρ is calculated using the following equation:$${Q}_{{rm{temp}}}=frac{{Q}_{10}^{frac{T-Tmin }{10}}}{{Q}_{10}^{frac{Tmax -Tmin }{10}}}$$
    (2)
    where the Q10 coefficient measures the temperature sensitivity of the origination rate. In equation (2) above, T is the seawater temperature (in °C) at a given location and time, and Tmin and Tmax are the 0.01 percentile and the 0.99 percentile, respectively, of the temperature frequency distribution in each time interval. In the model, the values of Tmin and Tmax used to calculate Qtemp are therefore recomputed for every time interval (~5 Myr) according to the temperature frequency distribution of the corresponding time interval. This enables us to use updated Tmin and Tmax values in each Phanerozoic time interval and to account for the thermal adaptation of organisms to ever changing climate conditions.The food limitation term is parameterized using a Michaelis–Menten formulation as follows:$${Q}_{{rm{food}}}=frac{text{POC flux}}{left({K}_{{rm{food}}},+,text{POC flux}right)}$$
    (3)
    where POC flux (mol m−2 yr−1) is the particulate organic carbon export flux, which is used as a surrogate for food availability, at a given location and time of the simulated seafloor. The parameter Kfood (mol m−2 yr−1) in equation (3) is the half-saturation constant, that is, the POC flux at which the diversification rate is half its maximum value, provided that other factors were not limiting. These temperature and food supply limitation terms vary in space and time as a result of changes in seawater temperature and particulate organic carbon export rate, respectively, thereby controlling the spatial and temporal variability of ρ (Supplementary Video 6).The net diversification rate becomes negative (1) in the event of mass extinctions or (2) in response to regional-scale processes, such as sea-level fall and/or seafloor deformation along convergent plate boundaries. Mass extinction events are imposed as external perturbations to the diversification model by imputing negative net diversification rates to all active seafloor points (ocean points and flooded continental points) and assuming non-selective extinction. The percentage of diversity loss as well as the starting time and duration of mass extinctions are extracted from three fossil diversity curves of reference20,21,22 (Source Data for Fig. 1). Each of these fossil diversity curves provides different insights into the Phanerozoic history of marine animal diversity based on uncorrected range-through genus richness estimates20,22 and sampling standardized estimates21. Regional-scale processes—such as sea level fall during marine regressions and/or seafloor destruction at plate boundaries, either by subduction or uplift—are simulated by the combined plate tectonic–palaeoelevation model, and constrain the time that seafloor habitats have to accumulate diversity.The model assumes non-selective extinction during mass extinction events (that is, the field of bullets model of extinction; everything is equally likely to die, no matter the age of the clade and regardless of adaptation)56. However, there is much fossil evidence supporting extinction selectivity57,58. It could be argued that higher extinction rates at diversity hotspots would have delayed their subsequent recovery, flattening global diversity trends. This argument is difficult to reconcile with Sepkoski’s genus-level global diversity curve but could be consistent with the standardized diversity curve of ref. 21. Similarly, the model is also not suitable for reproducing the explosive radiations of certain taxonomic groups after mass extinctions, which could explain the offset between the model and fossil observations in the early Mesozoic (Fig. 1).Letting D represent regional diversity (number of genera within a given seafloor point) and t represent time, the logistic model is formalized by the following differential equation:$$frac{partial Dleft(tright)}{partial t}=rho Dleft[1-frac{D}{{K}_{{rm{eff}}}}right]$$
    (4)
    where D(t) is the number of genera at time t and Keff is the effective carrying capacity or maximum number of genera that a given seafloor point (that is, grid cell area after gridding) can carry at that time, t. In our logistic model, Keff is allowed to vary within a fixed range of values (from Kmin to Kmax) as a positive linear function of the POC flux at a given location and time as follows:$${K}_{{rm{eff}}}={K}_{max }-left({K}_{max }-{K}_{min }right)frac{{text{POC flux}}_{max }-text{POC flux}}{{text{POC flux}}_{max }-{text{POC flux}}_{min }}$$
    (5)
    where POC fluxmin and POC fluxmax correspond to the 0.01 and 0.99 quantiles of the POC flux range in the whole Phanerozoic dataset.In the logistic model, the net diversification rate decreases as regional diversity approaches its Keff. The exponential model is a particular case of the logistic model when Keff approaches infinity and, therefore, neither the origination rate nor the extinction rate depend on the standing diversities. In this scenario, diversity grows in an unlimited manner over time only truncated by the effect of mass extinctions and/or by the dynamics of the seafloor (creation versus destruction). Thus, the exponential model is as follows:$$frac{partial Dleft(tright)}{partial t}=rho D$$
    (6)
    where the rate of change of diversity (the time derivative) is proportional to the standing diversity D such that the regional diversity will follow an exponential increase in time at a speed controlled by the temperature- and food-dependent net diversification rate. Even if analytical solutions exist for the steady-state equilibrium of the logistic and exponential functions, we solved the ordinary differential equations (4) and (6) using numerical methods with a time lag of 1 Myr to account for the spatially and temporally varying environmental constraints, seafloor dynamics and mass extinction events.As the analysis of global fossil diversity curves is unable to discern the causes of diversity loss during mass extinctions, our imputation of negative diversification rates could have overestimated the loss of diversity in those cases in which sea level fall, a factor already accounted for by our model, contributed to mass extinction. This effect was particularly recognizable across the Permian–Triassic mass extinction (Extended Data Fig. 6d–f), and supports previous claims that the decline in the global area of the shallow water shelf exacerbated the severity of the end-Permian mass extinction34.Model couplingAs stated above, the coupled plate tectonic–palaeoelevation (palaeogeographical) model corresponds to a tracer-based model (a Lagrangian-based approach) that simulates and tracks the spatiotemporal dynamics of ocean and flooded continental points. The diversification models start at time 541 Ma with all active points having a D0 = 1 (one single genus everywhere) and we let points accumulate diversity heterogeneously with time according to seafloor age distributions (for ocean points) and the time that continents have been underwater (for flooded continental points). The ocean points are created at mid-ocean ridges and disappear primarily at subduction zones. Between their origin and demise, the points move following plate tectonic motions and we trace their positions while accumulating diversity. The flooded continental points begin to accumulate diversity from the moment that they are submerged, starting with a D value equal to the nearest neighbour flooded continental point with D  > 1, thereby simulating a process of coastal recolonization (or immigration). The diversification process remains active while the seafloor points remain underwater, but it is interrupted, and D set to 0, in those continental points that emerge above sea level. Similarly, seafloor points corresponding to ocean domains disappear in subduction zones, and their diversity is lost. We track the geographical position of the ocean and flooded continental points approximately every 5 Myr, from 541 Ma to the present. Each and every one of the tracked points accumulates diversity over time at a different rate, which is modulated by the environmental history (seawater temperature and food availability) of each point, as described in equations (1)–(3). When a point arrives in an environment with a carrying capacity lower than the diversity it has accumulated through time, we reset the diversity of the point to the value of the carrying capacity, thereby simulating local extinction.Seawater temperature (T) and food availability (POC flux) are provided by the cGENIE model, which has a spatial and temporal resolution coarser than the palaeogeographical model. The cGENIE model provides average seawater T and POC flux values in a 36 × 36 equal area grid (grid cell area equivalent to 2° latitude by 10° longitude at the equator) and 30 time slices or snapshots (from 541 Ma to the present: each ~20 Myr time intervals). To have environmental inputs for the 82 time slices of the plate tectonic–palaeoelevation model, we first interpolate the cGENIE original model output data on a 0.5° by 0.5° grid to match the annotated grids provided by the plate tectonic–palaeoelevation model. As the relatively coarse spatial resolution of the cGENIE model prevents rendering the coast–ocean gradients, we assign surface T and POC flux at the base of the euphotic zone to the flooded continental shelf grid cells, and deep ocean T and POC flux at the bottom of the ocean to the ocean grid cells. As there are time slices without input data of seawater T and POC flux, we interpolate/extrapolate seawater T and POC flux values into the 0.5° by 0.5° flooded continental shelf and ocean grids independently. Finally, we interpolate values from these 0.5° by 0.5° flooded continental shelf and ocean grids into the exact point locations in each time frame. Thus, each active point is tracked with its associated time-varying T and POC flux values throughout its lifetime. On average, 6,000 flooded continental points and 44,000 oceanic points were actively accumulating diversity in each time frame. The model cannot simulate the singularities of relatively small enclosed seas for which the spatial resolution of the palaeogeographical and Earth system models is insufficient to capture relevant features (such as palaeobathymetry, seawater temperature) in detail. The method is also likely to underestimate the diversity of epeiric (inland) seas due to the difficulty of simulating immigration, a process that is strongly influenced by the effect of surface ocean currents and is not considered here. However, as stated above, the model considers recolonization of recently submerged areas by marine biota from nearby coastal environments, which partially explains coastal immigration.Estimation of global diversity from regional diversityOur regional diversity maps are generated by separately interpolating ocean point diversity and flooded continental point diversity into the 0.5° by 0.5° annotated grids provided by the palaeogeographical model. We calculate global diversity at each time step from each of the regional diversity maps following a series of steps to integrate diversity along line transects from diversity peaks (maxima) to diversity troughs (minima) (Extended Data Fig. 1). To select the transects, first, we identify on each of the regional diversity maps the geographical position of the diversity peaks. We identify local maxima (that is, grid cells with diversity greater than their neighbour cells), and define the peaks as those local maxima with diversity greater than the 0.75 quantile of diversity values in all local maxima in the map. In the case of grid cells with equal neighbour diversity, the peak is assigned to the grid cell in the middle. We subsequently identify the geographical position of the diversity troughs, which are defined as newly formed ocean grid cells (age = 0 Myr) and, therefore, with diversities equal to one. The troughs are mostly located at mid-ocean ridges.On each of the 82 spatial diversity maps, we trace a line transect from each diversity peak to its closest trough, provided that the transect does not cross land in more than 20% of the grid cells along the linear path (Supplementary Video 7). On average, for each spatial diversity map, we trace 400 (σ = ±75) linear transects. This sampling design gives rise to transects of different lengths, which may bias the estimates of global diversity. To minimize this bias, we cut the tail of the transects to have a length of 555 km equivalent to 5° at the equator. We tested an alternative cut-off threshold, 1,110 km, and the results do not alter the study’s conclusions.We apply Bresenham’s line algorithm59 to detect the grid cells crossed by the transects and annotate their diversity. To integrate regional diversity along the transects, we developed a method to simplify the scenario of peaks and troughs heterogeneously distributed on the 2D diversity maps. The method requires (1) a vector (the transect) of genus richness (αn) at n different locations (grids) arranged in a line (1D) of L grids, and (2) a coefficient of similarity (Vn,n + 1) between each two neighbouring locations, n and n + 1. Vn,n + 1, the coefficient of similarity, follows a decreasing exponential function with distance between locations. The number of shared genera between n and n + 1 is Vn,n + 1 × min(αn; αn + 1). We integrate diversity from peaks to troughs and assume that, along the transect, αn + 1 is lower than αn. We further assume that the genera present in n and n + 2 cannot be absent from n + 1. Using this method, we integrate the transect’s diversity (γi) using the following equation:$${gamma }_{i}={ {mathbf{upalpha}}}_{1}+{sum }_{n=1}^{L-1}left(1-{V}_{n,n+1}right){ {mathbf{upalpha}}}_{n+1}$$
    (7)
    To integrate the diversity of all transects (γi) on each 2D diversity map (or time slice), we apply the same procedure as described above (Extended Data Fig. 1). We first sort the transects in descending order from the highest to the lowest diversity. We then assume that the number of shared genera between transect i and the rest of the transects with greater diversity {1, 2, …, i − 1} is given by the distance of its peak to the nearest neighbour peak (NN(i)) of those already integrated {1, 2, …, i − 1}. Thus, we perform a zigzag integration of transects’ diversities down gradient, from the greatest to the poorest, weighted by the nearest neighbour distance among the peaks already integrated. As a result, the contribution of each transect to global diversity will depend on its diversity and its distance to the closest transect out of all those transects already integrated. Using this method, we linearize the problem to simplify the cumbersome procedure of passing from a 2D regional diversity map to a global diversity estimate without knowing the identity (taxonomic affiliation) of the genera. If γtotal is the global diversity at time t:$${gamma }_{{rm{total}}}={gamma }_{1}+{sum }_{i=2}^{j}left(1-{V}_{{rm{NN}}left(iright),i}right){gamma }_{i}$$
    (8)
    Finally, the resulting global estimates are plotted against the midpoint value of the corresponding time interval to generate a synthetic global diversity curve. To compare the global diversity curves produced by the diversification models with those composed from the fossil record, Lin’s CCC60 is applied to the data normalized to the min–max values of each time series (that is, rescaled within the range 0–1). Lin’s CCC combines measures of both precision and accuracy to determine how far the observed data deviate from the line of perfect concordance (that is, the 1:1 line). Lin’s CCC increases in value as a function of the nearness of the data’s reduced major axis to the line of perfect concordance (the accuracy of the data) and of the tightness of the data around its reduced major axis (the precision of the data).The time series of global diversity generated from the fossil record and from the diversification model exhibit serial correlation and the resulting CCCs are therefore inflated. The use of methods for analysing non-zero autocorrelation time series data, such as first differencing or generalised least squares regression, enables high-frequency variations along the time series to be taken into account. However, the relative simplicity of our model, which was designed to reproduce the main Phanerozoic trends in global diversity, coupled with the fact that biases in the fossil data would introduce uncertainty into the analysis, leads us to focus our analysis on the long-term trends, obviating the effect of autocorrelation.Model parameterization and calibrationThe diversification models are parameterized assuming a range of values that constrain the lower and upper limits of the genus-level net diversification rate (ρmin and ρmax, respectively) (Extended Data Table 1) according to previously reported estimates from fossil records (figures 8 and 11 of ref. 5). A range of realistic values is assigned for the parameters Q10 and Kfood, determining, respectively, the thermal sensitivity and food dependence of the net diversification rate. We test a total of 40 different parameter combinations (Extended Data Table 2). The resulting estimates of diversity are then compared against the fossil diversity curves of ref. 20, ref. 21 or ref. 22, and the 15 parameter combinations providing the highest CCCs are selected.The results of the logistic diversification model rely on the values of the minimum and maximum carrying capacities (Kmin and Kmax, respectively) within which the spatially resolved effective carrying capacities (Keff) are allowed to vary. The values of Kmin and Kmax are therefore calibrated by running 28 simulations of pair-wise Kmin and Kmax combinations increasing in a geometric sequence of base 2, from 2 to 256 genera (Extended Data Fig. 4). We perform these simulations independently for each of the 15 parameter settings selected previously (Extended Data Fig. 4 and Extended Data Table 2). Each combination of Kmin and Kmax produces a global diversity curve, which is evaluated as described above using Lin’s CCC.Calculating estimates of global diversity from regional diversity maps in the absence of information on genus-level taxonomic identities requires that we assume a spatial turnover of taxa with geographical distance (Extended Data Fig. 1). Distance-decay curves are routinely fitted by calculating the ecological similarity (for example, the Jaccard similarity index) between each pair of sampling sites, and fitting an exponential decay function to the points on a scatter plot of similarity (y axis) versus distance (x axis). Following this method, we fit an exponential decay function to the distance–decay curves reported in ref. 61, depicting the decrease in the Jaccard similarity index (J) of fossil genera with geographical distance (great circle distance) at different Phanerozoic time intervals:$$J={J}_{{rm{o}}{rm{f}}{rm{f}}}+(,{J}_{max}text{-}{J}_{{rm{o}}{rm{f}}{rm{f}}}){{rm{e}}}^{-lambda times {rm{d}}{rm{i}}{rm{s}}{rm{t}}{rm{a}}{rm{n}}{rm{c}}{rm{e}}}$$
    (9)
    where Joff = 0.06 (n.d.) is a small offset, Jmax = 1.0 (n.d.) is the maximum value of the genus-based Jaccard similarity index and λ = 0.0024 (km−1) is the distance-decay rate.The Jaccard similarity index (J) between consecutive points n and n + 1 is bounded between 0 and min(αn; αn + 1)/max(αn; αn + 1). A larger value for J would mean that there are more shared genera between the two communities than there are genera within the least diverse community, which is ecologically absurd. However, using a single similarity decay function can lead the computed value of J to be locally larger than min(αn; αn + 1)/max(αn; αn + 1). To prevent this artefact, we use the Simpson similarity index or ‘overlap coefficient’ (V) instead of J. V corresponds to the percentage of shared genera with respect to the least diverse community (min(αn ; αn + 1)). V is bounded between 0 and 1, whatever the ratio of diversities. As the pre-existing estimates of similarity are expressed using J (ref. 61), we perform the conversion from J to V using the algebraic expression V = (1 + R) × J/(1 + J) where R = max(αn; αn + 1)/min(αn; αn + 1) (Supplementary Note 1). In the cases in which J exceeds the min(αn; αn + 1)/max(αn; αn + 1), V becomes >1 and, in those cases, we force V to be More

  • in

    European primary datasets of alien bacteria and viruses

    Brandes, N. & Linial, M. Giant viruses—big surprises. Viruses 11, 404 (2019).CAS 
    Article 

    Google Scholar 
    Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).CAS 
    Article 

    Google Scholar 
    Madsen, E. L. Microorganisms and their roles in fundamental biogeochemical cycles. Curr. opinion biotechnology 22, 456–464 (2011).CAS 
    Article 

    Google Scholar 
    Gummow, B. Challenges posed by new and re-emerging infectious diseases in livestock production, wildlife and humans. Livest. Sci. 130, 41–46 (2010).CAS 
    Article 

    Google Scholar 
    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. letters 18, 483–495 (2015).Article 

    Google Scholar 
    Woolhouse, M. E. & Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. infectious diseases 11, 1842 (2005).Article 

    Google Scholar 
    Foster, R. et al. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NeoBiota 69, 79–102 (2021).Article 

    Google Scholar 
    Brasier, C. The biosecurity threat to the uk and global environment from international trade in plants. Plant Pathol. 57, 792–808 (2008).Article 

    Google Scholar 
    Ruiz, G. M. et al. Global spread of microorganisms by ships. Nature 408, 49–50 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Essl, F. et al. Which taxa are alien? criteria, applications, and uncertainties. BioScience 68, 496–509 (2018).Article 

    Google Scholar 
    Blackburn, T. M., Bellard, C. & Ricciardi, A. Alien versus native species as drivers of recent extinctions. Front. Ecol. Environ. 17, 203–207 (2019).Article 

    Google Scholar 
    Hawkins, C. L. et al. Framework and guidelines for implementing the proposed iucn environmental impact classification for alien taxa (eicat). Divers. Distributions 21, 1360–1363 (2015).Article 

    Google Scholar 
    Corrales, X. et al. Advances and challenges in modelling the impacts of invasive alien species on aquatic ecosystems. Biol. Invasions 22, 907–934 (2020).Article 

    Google Scholar 
    Regulation, E. Regulation (eu) no 1143/2014 of the European Parliament and of the Council of 22 October 2014 on the prevention and management of the introduction and spread of invasive alien species. Off. J. Eur. Union 57, 35–55 (2014).
    Google Scholar 
    EU. Regulation (eu) 2016/2031 of the European Parliament of the Council of 26 October 2016 on protective measures against pests of plants, amending regulations (eu) 228/2013,(eu) 652/2014 and (eu) 1143/2014 and repealing council directives 69/464/eec, 74/647/eec, 93/85/eec, 98/57/ec, 2000/29/ec, 2006/91/ec and 2007/33/ec. Off. J. 317, 4–104 (2016).
    Google Scholar 
    Murtaugh, M. P. et al. The science behind one health: at the interface of humans, animals, and the environment. Tech. Rep. (2017).Ogden, N. H. et al. Emerging infectious diseases and biological invasions: a call for a one health collaboration in science and management. Royal Soc. open science 6, 181577 (2019).ADS 
    Article 

    Google Scholar 
    Roy, H. E. et al. Alien pathogens on the horizon: Opportunities for predicting their threat to wildlife. Conserv. Lett. 10, 477–484 (2017).Article 

    Google Scholar 
    Ikner, L. A., Gerba, C. P. & Bright, K. R. Concentration and recovery of viruses from water: a comprehensive review. Food Environ. Virol. 4, 41–67 (2012).
    Google Scholar 
    Taylor, M. W. Introduction: A short history of virology. In Viruses and Man: A History of Interactions, 1–22 (Springer, 2014).Thakur, M. P., Van der Putten, W. H., Cobben, M. M., van Kleunen, M. & Geisen, S. Microbial invasions in terrestrial ecosystems. Nat. Rev. Microbiol. 17, 621–631 (2019).CAS 
    Article 

    Google Scholar 
    Desprez-Loustau, M.-L. et al. The fungal dimension of biological invasions. Trends ecology & evolution 22, 472–480 (2007).Article 

    Google Scholar 
    Rivett, D. W. et al. Elevated success of multispecies bacterial invasions impacts community composition during ecological succession. Ecol. Lett. 21, 516–524 (2018).Article 

    Google Scholar 
    Dunn, A. M. & Hatcher, M. J. Parasites and biological invasions: parallels, interactions, and control. TRENDS Parasitol. 31, 189–199 (2015).Article 

    Google Scholar 
    Pyšek, P. et al. Macroecological framework for invasive aliens (mafia): disentangling large-scale context dependence in biological invasions. (2020).Hulme, P. E. et al. Blurring alien introduction pathways risks losing the focus on invasive species policy. Conserv. Lett. 10, 265–266 (2017).Article 

    Google Scholar 
    Gilroy, J. J., Avery, J. D. & Lockwood, J. L. Seeking international agreement on what it means to be “native”. Conserv. Lett. 10, 238–247 (2017).Article 

    Google Scholar 
    Webber, B. L. & Scott, J. K. Rapid global change: implications for defining natives and aliens. Glob. Ecol. Biogeogr. 21, 305–311 (2012).Article 

    Google Scholar 
    CBD Secretariat. Decision VI/23: Alien species that threaten ecosystems, habitats and species. Document UNEP/CBD/COP/6/23 (2002).World Health Organization. A brief guide to emerging infectious diseases and zoonoses. Tech. Rep. https://apps.who.int/iris/handle/10665/204722 (2014).Firrao, G. et al. Candidatus phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int. J. Syst. Evol. Microbiol. 54, 1243–1255 (2004).CAS 
    Article 

    Google Scholar 
    CBD. Pathways of introduction of invasive species, their prioritization and management (Secretariat of the Convention on Biological Diversity Montreal, 2014).OIE. Terrestrial Animal Health Code 2021 (OIE, 2021).Magliozzi, C. et al. bacteria and viruses traits and species-related factors. figshare https://doi.org/10.6084/m9.figshare.18550907.v2 (2022).Katsanevakis, S. et al. Implementing the European policies for alien species: networking, science, and partnership in a complex environment. Manag. Biol. Invasions 4, 3–6 (2013).Article 

    Google Scholar 
    Tsiamis, K. et al. The EASIN Editorial Board: quality assurance, exchange and sharing of alien species information in europe. Manag. Biol. invasions 7, 321–328 (2016).Article 

    Google Scholar 
    Wieczorek, J. et al. Darwin core: an evolving community-developed biodiversity data standard. PloS one 7, e29715 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Darwin Core. Darwin Core quick reference guide. https://dwc.tdwg.org/terms/ (2018).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis, https://ggplot2.tidyverse.org (Springer-Verlag New York, 2016).Schwarzl, T. ggBubbles: Mini Bubble Plots for Comparison of Discrete Data with ‘ggplot2’ R package version 0.1.4 (2019).Moon, K. R statistics and graphs for medical papers (Hannarae Seoul, 2015).Current, C. Invasive species compendium. Wallingford, UK: CAB Int. Available online: www.cabi.org/isc (accessed on 19 August 2020) (2011).Adams, M. J. & Antoniw, J. F. Dpvweb: An open access internet resource on plant viruses and virus diseases. Outlooks on Pest Manag. 16, 268 (2005).Article 

    Google Scholar 
    Adams, M. J. & Antoniw, J. F. Dpvweb: a comprehensive database of plant and fungal virus genes and genomes. Nucleic acids research 34, D382–D385 (2006).CAS 
    Article 

    Google Scholar 
    Benson, D. A. et al. Genbank. Nucleic acids research 41, D36–D42 (2012).Article 

    Google Scholar  More

  • in

    Phase synchronization of chlorophyll and total phosphorus oscillations as an indicator of the transformation of a lake ecosystem

    Sakamoto, M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv für Hydrobilogie. 62, 1–28 (1966).
    Google Scholar 
    Vollenweider, R. A. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication (Organisation for Economic Co-operation and Development, 1968).
    Google Scholar 
    Edmondson, W. T. Phosphorus, nitrogen, and algae in Lake Washington after diversion of sewage. Science 169, 690–691 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    Dillon, P. J. & Rigler, F. H. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19, 767–773 (1974).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, J. R. & Bachmann, R. W. Prediction of phosphorus and chlorophyll levels in lakes. J. Water Pollut. Control Feder. 48, 2176–2182 (1976).CAS 

    Google Scholar 
    Schindler, D. W. Evolution of phosphorus limitation in lakes. Science 195, 260–262 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Filstrup, C. T. & Downing, J. A. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters. 7, 385–400 (2017).CAS 
    Article 

    Google Scholar 
    Schindler, D. W. Recent advances in the understanding and management of eutrophication. Limnol. Oceanogr. 51, 356–363 (2006).ADS 
    Article 

    Google Scholar 
    Quinlan, R. et al. Relationships of total phosphorus and chlorophyll in lakes worldwide. Limnol. Oceanogr. 66, 392–404 (2020).ADS 
    Article 

    Google Scholar 
    Yuan, L. L. & Jones, J. R. Rethinking phosphorus–chlorophyll relationships in lakes. Limnol. Oceanogr. 65, 1847–1857 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Carlson, R. E. A trophic state index for lakes. Limnol. Oceanogr. 11, 361–369 (1977).ADS 
    Article 

    Google Scholar 
    Neveux, J. et al. Comparison of chlorophyll and phaeopigment determinations by spectrophotometric, fluorometric, spectrofluorometric and HPLC methods. Mar. Microb. Food Webs 4, 217–238 (1990).
    Google Scholar 
    Lampert, W. & Sommer, U. Limnoecology (Oxford University, 2007).
    Google Scholar 
    Kovalevskaya, R. Z., Zhukava, H. A. & Adamovich, B. V. Modification of the method of spectrophotometric determination of chlorophyll a in the suspended matter of water bodies. J. Appl. Spectrosc. 87, 72–78 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Søndergaard, M., Lauridsen, T. L., Johansson, L. S. & Jeppesen, E. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795, 35–48 (2017).Article 

    Google Scholar 
    Søndergaard, M., Jensen, J. P., Jeppesen, E. & Møller. P. H. Seasonal dynamics in the concentrations and retention of phosphorus in shallow Danish lakes after reduced loading. Aquat. Ecosyst. Health Manag. 5(1), 19–29 (2002).Magumba, D., Atsushi, M., Michiko, T., Akira, K. & Masao, K. Relationships between Chlorophyll-a, phosphorus and nitrogen as fundamentals for controlling phytoplankton biomass in lakes. Environ. Control. Biol. 51(4), 179–185 (2013).CAS 
    Article 

    Google Scholar 
    Smith, V. H. & Shapiro, J. Chlorophyll-phosphorus relations in individual lakes. Their importance to lake restoration strategies. Environ. Sci. Technol. 15(4), 444–451 (1981).Pothoven, S. A. & Vanderploeg, H. A. Seasonal patterns for Secchi depth, chlorophyll a, total phosphorus, and nutrient limitation differ between nearshore and offshore in Lake Michigan. J. Great Lakes Res. 46, 519–527 (2020).CAS 
    Article 

    Google Scholar 
    Søndergaard, M. & Jeppesen, E. Lake Søbygaard, Denmark: phosphorus dynamics during the first 35 years after an external loading reduction. In: Internal Phosphorus Loading: Causes, Case Studies, and Management (ed. Steinman, A.D. & Spears, B. M.) 285–299 (J. Ross, Plantation, 2020).Guildford, S. J. & Hecky, R. E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship?. Limnol. Oceanogr. 45, 1213–1223 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Jones, J.R. et al. Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes. An analysis of regional limnology. Lake Reser. Manag. 24, 155–180 (2008).Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization. A universal concept in nonlinear sciences (Cambridge University, 2001).Book 

    Google Scholar 
    Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence (Springer, 1984).Book 

    Google Scholar 
    Sazonov, A. V. et al. An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG. Biol. Cybern. 100, 129–146 (2009).Article 

    Google Scholar 
    Medvinsky, A. B. et al. Temperature as a factor affecting fluctuations and predictability of the abundance of lake bacterioplankton. Ecol. Complex. 32, 90–98 (2017).Article 

    Google Scholar 
    Zhukova, T. V. & Ostapenya, A. P. Estimation of efficiency of nature protection measures in water catchment area of the Naroch lakes. Natural Resources. 3, 68–73 (2000) ((in Russian)).
    Google Scholar 
    Burlakova, L. E., Karatayev, A. Y. & Padilla, D. K. Changes in the distribution and abundance of Dreissena polymorpha within lakes through time. Hydrobiologia 571, 133–146 (2006).Article 

    Google Scholar 
    Ostapenia, A. P. et al. Bentification of lake ecosystem: causes, mechanisms, possible consequences, prospect for future research. Trudy BGU. 7, 135–148 (2012) ((in Russian)).
    Google Scholar 
    Karatayev, A.Y., Burlakova, L.E. & Padilla, D.K. Impacts of Zebra Mussels on aquatic communities and their role as ecosystem engineers. In: Leppäkoski, E., Gollasch, S., Olenin, S. (eds) Invasive Aquatic Species of Europe. Distribution, Impacts and Management (Springer, Dordrecht, 2002).Adamovich, B. V. et al. The divergence of chlorophyll dynamics in the Naroch Lakes. Biophysics 60, 632–638 (2015).CAS 
    Article 

    Google Scholar 
    Zhukova, T. V. et al. Long-term dynamics of suspended matter in Naroch Lakes: Trend or intervation. Inland Water Biol. 10, 250–257 (2017).Article 

    Google Scholar 
    Adamovich, B. V. et al. Eutrophication, oligotrophication, and benthiphication in Naroch Lakes: 40 years of monitoring. J. Siber. Federal Univ. Biol. 10, 379–394 (2017).Article 

    Google Scholar 
    Ostapenya A.P. et al. Ecological passport of Lake Myastro (EcoMir, Minsk, 1994) (in Russian).Kantz, H. & Schreiber, T. Nonlinear time series analysis (Cambridge University, 1997).MATH 

    Google Scholar 
    Kot, M. Elements of mathematical ecology (Cambridge University, 2001).Book 

    Google Scholar 
    Turchin, P. Complex population dynamics. A Theoretical/Empirical Synthesis (Princeton University, Princeton, 2003).MATH 

    Google Scholar 
    Cazelles, B. & Stone, L. Detection of imperfect population synchrony in an uncertain world. J. Anim. Ecol. 72, 953–968 (2003).Article 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. & Padilla, D. K. The effects of Dreissena polymorpha (Pallas) invasion on aquatic communities in Eastern Europe. J. Shellfish Res. 16, 187–203 (1997).
    Google Scholar 
    Lia, J. et al. Benthic invaders control the phosphorus cycle in the world’s largest freshwater ecosystem. PNAS 118(6), e2008223118. https://doi.org/10.1073/pnas.2008223118 (2021).CAS 
    Article 

    Google Scholar 
    Mikheyeva, T. M. et al. The dynamics of freshwater phytoplankton stability in the Naroch Lakes (Belarus). Ecol. Ind. 81, 481–490 (2017).Article 

    Google Scholar 
    Harris, P. H. Phytoplankton ecology. Structure, functioning and flucttuation (Chapman & Hall, London, New York, 1986).Jeppesen, E., Jensen, J. P., Søndergaard, M. & Lauridsen, T. L. Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshw. Biol. 50, 1616–1627 (2005).CAS 
    Article 

    Google Scholar 
    Nezlin, N.P. & Li, B-L. Time-series analysis of remote-sensed chlorophyll and environmental factors in the Santa Monica–San Pedro Basin off Southern California. J. Mar. Syst. 39, 185–202 (2003).French, T. D. & Petticrew, E. L. Chlorophyll a seasonality in four shallow eutrophic lakes (northern British Columbia, Canada) and the critical roles of internal phosphorus loading and temperature. Hydrobiologia 575, 285–299 (2007).CAS 
    Article 

    Google Scholar 
    SCOR-UNESCO Working Group no. 17. Determination of photosynthetic pigments in sea-water. Monographs on Oceanologic Methodology 9–18 (UNESSCO, Paris, 1966).Semenov, A. D. Guide on the chemical analysis of continental surface waters (Gidrometeoizdat, 1977) ((in Russian)).
    Google Scholar 
    Wetzel, R. G. & Likens, G. E. Limnological analysis (Springer, 2000).Book 

    Google Scholar 
    Steffen, M. & Bartz-Beielstein, T. imputeTS: time series missing value imputation in R. R J. 9(1), 207–218 (2017).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2020). More

  • in

    Introduction of high-value Crocus sativus (saffron) cultivation in non-traditional regions of India through ecological modelling

    Giorgi, A., Pentimalli, D., Giupponi, L. & Panseri, S. Quality traits of saffron (Crocus sativus L.) produced in the Italian Alps. Open Agric. 2(1), 52–57 (2017).Article 

    Google Scholar 
    Winterhalter, P. & Straubinger, M. Saffron—Renewed interest in an ancient spice. Food Rev. Intl. 16(1), 39–59 (2000).CAS 
    Article 

    Google Scholar 
    Schmidt, M., Betti, G. & Hensel, A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien Med. Wochenschr. 157, 315–319 (2007).PubMed 
    Article 

    Google Scholar 
    Siddique, H. R., Fatma, H. & Khan, M. A. Medicinal properties of saffron with special reference to cancer—A review of preclinical studies. in Saffron: The Age-Old Panacea in a New Light (ed. Sarwat,
    M. & Sumaiya, S.) 233–244 (Academic Press, 2020).Chapter 

    Google Scholar 
    Abdullaev, F. I. Cancer chemopreventive and tumoricidal properties of saffron (Crocus sativus L.). Exp. Biol. Med. 227(1), 20–25 (2002).CAS 
    Article 

    Google Scholar 
    Kafi, M., Koocheki, A. & Rashed, M. H. Saffron (Crocus sativus): Production and Processing (Science Publishers, 2006).Book 

    Google Scholar 
    Mir, G.M. Saffron Agronomy in Kashmir (1992).Melnyk, J. P., Wang, S. & Marcone, M. F. Chemical and biological properties of the world’s most expensive spice: Saffron. Food Res. Int. 43(8), 1981–1989 (2010).CAS 
    Article 

    Google Scholar 
    Menia, M. et al. Production technology of saffron for enhancing productivity. J. Pharmacognosy Phytochem. 7(1), 1033–1039 (2018).
    Google Scholar 
    Tanra, M. A., Dar, B. A. & Sing, S. Economic analysis of Production and Marketing of saffron in Jammu and Kashmir. J. Social Relevance Concern 5(10), 12–19 (2017).
    Google Scholar 
    Husaini, A. M., Hassan, B., Ghani, M. Y., Teixeira da Silva, J. A. & Kirmani, N. A. saffron (Crocus sativus Kashmirianus) cultivation in Kashmir: Practices and problems. Functional Plant Sci. Biotechnol. 4(2), 108–115 (2010).
    Google Scholar 
    Amirnia, R., Bayat, M. & Tajbakhsh, M. Effects of nano fertilizer application and maternal corm weight on flowering at some saffron (Crocus sativus L.) ecotypes. Turkish J. Field Crops. 19(2), 158–168 (2014).Article 

    Google Scholar 
    Kumar, R. et al. State of art of saffron (Crocus sativus L.) agronomy: A comprehensive review. Food Rev. Int. 25(1), 44–85 (2009).Article 

    Google Scholar 
    Dhar, A. K. Saffron breeding and agrotechnology. Status Rep. PAFAI J. 12, 18–22 (1990).
    Google Scholar 
    Ehsanzadeh, P., Yadollahi, A. A. & Maibodi, A. M. Productivity, growth and quality attributes of 10 Iranian saffron accessions under climatic conditions of Chahar-Mahal Bakhtiari, Central Iran. Int. Symp. Saffron Biol. Biotechnol. 650, 183–188 (2003).
    Google Scholar 
    Duke, J. A. Ecosystematic data on economic plants. Quart. J. Crude Drug Res. 17(3–4), 91–109 (1979).Article 

    Google Scholar 
    Kanth, R.H., Khanday, B.A. & Tabassum, S. Crop weather relationship for saffron production. Saffron Production in Jammu and Kashmir, Directorate of Extension Education. SKUAST-K, India 170–188 (2008).Shinde, D. A., Talib, A. R. & Gorantiwar, S. M. Composition and classification of some typical soils of saffron growing areas of Jammu and Kashmir. J. Indian Soc. Soil Sci. 32(3), 473–477 (1984).CAS 

    Google Scholar 
    Nazir, N. A., Khitrov, N. B. & Chizhikova, N. P. Statistical evaluation of soil properties which influence saffron growth in Kashmir. Eurasian Soil Sci. 28(4), 120–138 (1996).
    Google Scholar 
    Ganai, M. R., Wani, M. A. & Zargar, G. H. Characterization of saffron growing soils of Kashmir. Appl. Biol. Res. 2(1/2), 27–30 (2000).
    Google Scholar 
    Ganai, M.R.D. Nutrient status of saffron soils and their management. in Proceedings of Seminar-cum-Workshop on saffron (Crocus sativus) 51–54 (2001).Molina, R. V., Valero, M., Navarro, Y., Guardiola, J. L. & Garcia-Luis, A. Temperature effects on flower formation in saffron (Crocus sativus L.). ScientiaHorticulturae 103(3), 361–379 (2005).
    Google Scholar 
    Galavi, M., Soloki, M., Mousavi, S. R. & Ziyaie, M. Effect of planting depth and soil summer temperature control on growth and yield of saffron (Crocus sativus L.). Asian J. Plant Sci. 7(8), 747 (2008).Article 

    Google Scholar 
    Kamyabi, S., Habibi Nokhandan, M. & Rouhi, A. Effect of climatic factors affecting saffron using analytic hierarchy process (AHP); Case Study Roshtkhar Region, Iran. (2014).Gupta, R. K. Saffron status and cultivation in northwestern Himalayas. Vegetos 20(1), 1–7 (2007).
    Google Scholar 
    Qin, A. et al. Maxent modelling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 10, 139–146 (2017).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24(1), 38–49 (1997).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240(4857), 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evaluat. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Hao, T., Elith, J., Arroita, G. G. & Monfort, J. J. L. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers. Distrib. 25(5), 839–852 (2019).Article 

    Google Scholar 
    Thuiller, W. BIOMOD—Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).ADS 
    Article 

    Google Scholar 
    Mykhailenko, O., Desenko, V., Ivanauskas, L. & Georgiyants, V. Standard operating procedure of Ukrainian saffron cultivation according to with good agricultural and collection practices to assure quality and traceability. Ind. Crops Prod. 151, 112376. https://doi.org/10.1016/j.indcrop.2020.112376 (2020).CAS 
    Article 

    Google Scholar 
    Kothari, D., Thakur, M., Joshi, R., Kumar, A. & Kumar, R. Agro-climatic suitability evaluation for saffron production in areas of western Himalaya. Front. Plant Sci. 12, 657819. https://doi.org/10.3389/fpls.2021.657819 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mir, J. I., Ahmed, N., Wafai, A. H. & Qadri, R. A. Variability in stigma length and apocarotenoid content in Crocus sativus L. selections of Kashmir. J. Spices Aromatic Crops. 21(2), 169–171 (2012).
    Google Scholar 
    Nehvi, F. A. et al. New emerging trends on production technology of saffron. II Int. Symp. Saffron Biol. Technol. 739, 375–381 (2006).
    Google Scholar 
    Golmohammadi, F. Sustainable agriculture and rural development in Iran, Some modern issues in sustainable agriculture and rural development in Iran Germany, LAP LAMBERT Academic Publishing GmbH & Co. LAP Lambert Academic Publishing. Germany. ISBN-13, 978-3 (2012).Golmohammadi, F. Saffron and its importance, medical uses and economical export situation in Iran. in Oral Article Presented in: International Conference on Advances in Plant Sciences 14–18 (2012).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modelling of species geographic distributions. Ecol. Model. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species distributions from occurrence data. Ecography 29(2), 129–151 (2006).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Article 

    Google Scholar 
    Wisz, M. S. et al. NCEAS Predicting species distributions working group. Effects of sample size on the performance of species distribution models. Diversity Distributions. 14(5), 763–773 (2008).Article 

    Google Scholar 
    Rebelo, H. & Jones, G. Ground validation of presence only modelling with rare species: A case study on Barbastella barbastellus (Chiroptera: Vespertilionidae). J. Appl. Ecol. 47(2), 410–420 (2010).Article 

    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Palomera, S. et al. Mapping from heterogeneous biodiversity monitoring data sources. Biodiversity Conservation 21(11), 2927–2948 (2012).Article 

    Google Scholar 
    Garcia, K., Lasco, R., Ines, A., Lyon, B. & Pulhin, F. Predicting geographic distribution and habitat suitability due to climate change of selected threatened forest tree species in the Philippines. Appl. Geogr. 44, 12–22 (2013).Article 

    Google Scholar 
    Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X. & Pino, J. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol. Cons. 166, 221–230 (2013).Article 

    Google Scholar 
    Phillips, S.J., Dudík, M. & Schapire, R.E. A maximum entropy approach to species distribution modelling. in Proceedings of the Twenty-First International Conference on Machine Learning 83 (2004).Baldwin, R. A. Use of maximum entropy modelling in wildlife research. Entropy 11(4), 854–866 (2009).ADS 
    Article 

    Google Scholar 
    Izadpanah, F., Kalantari, S., Hassani, M. E., Naghavi, M. R. & Shokrpour, M. Variation in Saffron (Crocus sativus L.) accessions and Crocus wild species by RAPD analysis. Plant Syst. Evolut. 300, 1941–1944 (2014).Article 

    Google Scholar 
    Nemati, Z., Harpke, D., Gemicioglu, A., Kerndorff, H. & Blattner, F. R. Saffron (Crocus sativus) is an autotriploid that evolved in Attica (Greece) from wild Crocus cartwrightianus. Mol. Phylogenet. Evol. 136, 14–20 (2019).PubMed 
    Article 

    Google Scholar 
    Proosdij, A. S. J. V., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar  More

  • in

    Using PVA and captive breeding to balance trade-offs in the rescue of the island dibbler onto a new island ark

    Burbidge, A. A. & Abbott, I. Mammals on Western Australian islands: occurrence and preliminary analysis. Aust. J. Zool. 65, 183–195. https://doi.org/10.1071/zo17046 (2017).Article 

    Google Scholar 
    Fischer, J. & Lindenmayer, D. B. An assessment of the published results of animal relocations. Biol. Conserv. 96, 1–11. https://doi.org/10.1016/S0006-3207(00)00048-3 (2000).Article 

    Google Scholar 
    Legge, S. et al. Havens for threatened Australian mammals: the contributions of fenced areas and offshore islands to the protection of mammal species susceptible to introduced predators. Wildl. Res. 45, 627–644. https://doi.org/10.1071/wr17172 (2018).Article 

    Google Scholar 
    Morris, K. et al. Forty years of fauna translocations in Western Australia: lessons learned. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).
    Google Scholar 
    Seddon, P. J., Moro, D., Mitchell, N. J., Chauvenet, A. & Mawson, P. Proactive conservation or planned
    invasion? Past, current and future use of
    assisted colonisation. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).
    Google Scholar 
    Weeks, A. R. et al. Conserving and enhancing genetic
    diversity in translocation programmes. In Advances in Reintroduction Biology of Australian and New Zealand Fauna (eds Armstrong, D. P. et al.) (CSIRO Publishing, 2015).
    Google Scholar 
    IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. Report No. 1.0, viiii + 57 (Gland, Switzerland, 2013).Allendorf, F. W. & Ryman, N. The role of genetics in population viability analysis. In Population Viability Analysis (eds Beissinger, S. R. & McCullough, D. R.) 50–85 (University of Chicago Press, 2002).
    Google Scholar 
    Gilpin, M. E. & Soule, M. E. Minimum viable populations: process of species extinctions. In Conservation Biology: The Science of Scarcity and Diversity (ed Soule, M. E.) 19–34 (Sinauer, 1986).
    Google Scholar 
    Frankham, R. et al. Predicting the probability of outbreeding depression. Conserv. Biol. 25, 465–475. https://doi.org/10.1111/j.1523-1739.2011.01662.x (2011).Article 
    PubMed 

    Google Scholar 
    IUCN. IUCN Red List Categories and Criteria: Version 3.1. iv + 32 (Gland, Switzerland Cambridge, UK, 2012).Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503. https://doi.org/10.1016/j.biocon.2015.07.025 (2015).Article 

    Google Scholar 
    Allendorf, F. W. Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 5, 181–190. https://doi.org/10.1002/zoo.1430050212 (1986).Article 

    Google Scholar 
    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140. https://doi.org/10.1016/j.biocon.2005.05.002 (2005).Article 

    Google Scholar 
    Easton, L. J., Bishop, P. J. & Whigham, P. A. Balancing act: modelling sustainable release numbers for translocations. Anim. Conserv. https://doi.org/10.1111/acv.12558 (2019).Article 

    Google Scholar 
    Allendorf, F. W., England, P. R., Luikart, G., Ritchie, P. A. & Ryman, N. Genetic effects of harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337. https://doi.org/10.1016/j.tree.2008.02.008 (2008).Article 
    PubMed 

    Google Scholar 
    Snyder, N. F. R. & Snyder, H. The California Condor: A Saga of Natural History and Conservation 1st edn. (Princeton University Press, 2000).
    Google Scholar 
    Kuchling, G., Burbridge, A. A., Page, M. & Olejnik, C. Western Swamp Tortoise Pseudemydura umbrina: slow and steady wins the race. In Recovering Australian Threatened Species: A Book of Hope (eds Garnett, S. et al.) 217–226 (CSIRO, 2018).
    Google Scholar 
    Hogg, C. J. Preserving Australian native fauna: zoo-based breeding programs as part of a more unified strategic approach. Aust. J. Zool. 61, 101–108. https://doi.org/10.1071/zo13014 (2013).Article 

    Google Scholar 
    Snyder, N. F. R. et al. Limitations of captive breeding in endangered species recovery. Conserv. Biol. 10, 338–348. https://doi.org/10.1046/j.1523-1739.1996.10020338.x (1996).Article 

    Google Scholar 
    Frankham, R. Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618. https://doi.org/10.1111/mec.13139 (2015).Article 
    PubMed 

    Google Scholar 
    Weeks, A. R. et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 4, 709–725. https://doi.org/10.1111/j.1752-4571.2011.00192.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coyne, J. A. & Orr, H. A. Speciation (Sinauer, 2004).
    Google Scholar 
    Edmands, S. Between a rock and a hard place: Evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol. Ecol. 16, 463–475. https://doi.org/10.1111/j.1365-294X.2006.03148.x (2007).Article 
    PubMed 

    Google Scholar 
    Armbruster, P., Bradshaw, W. E., Steiner, A. L. & Holzapfel, C. M. Evolutionary responses to environmental stress by the pitcher-plant mosquito, Wyeomyia smithii. Heredity 83, 509–519. https://doi.org/10.1038/sj.hdy.6886040 (1999).Article 
    PubMed 

    Google Scholar 
    Edmands, S. Heterosis and outbreeding depression in interpopulation crosses spanning a wide range of divergence. Evolution 53, 1757–1768. https://doi.org/10.2307/2640438 (1999).Article 
    PubMed 

    Google Scholar 
    Marr, A. B., Keller, L. F. & Arcese, P. Heterosis and outbreeding depression in descendants of natural immigrants to an inbred population of song sparrows (Melospiza melodia). Evolution 56, 131–142 (2002).Article 

    Google Scholar 
    Tymchuk, W. E., Sundstrom, L. F. & Devlin, R. H. Growth and survival trade-offs and outbreeding depression in rainbow trout (Oncorhynchus mykiss). Evolution 61, 1225–1237. https://doi.org/10.1111/j.1558-5646.2007.00102.x (2007).Article 
    PubMed 

    Google Scholar 
    Friend, J. A. Dibbler (Parantechinus apicalis) Recovery Plan July 2003-June 2013 (Department of Conserv. and Land Management, 2003).
    Google Scholar 
    Miller, S., Bencini, R., Mills, H. & Moro, D. Food availability for the dibbler (Parantechinus apicalis) on Boullanger and Whitlock Islands, Western Australia. Wildl. Res. 30, 649–654. https://doi.org/10.1071/wr01082 (2003).Article 

    Google Scholar 
    Mills, H. R. & Bencini, R. New evidence for facultative male die-off in island populations of dibblers, Parantechinus apicalis. Aust. J. Zool. 48, 501–510. https://doi.org/10.1071/zo00025 (2000).Article 

    Google Scholar 
    Mills, H. R., Moro, D. & Spencer, P. B. S. Conservation significance of island versus mainland populations: A case study of dibblers (Parantechinus apicalis) in Western Australia. Anim. Conserv. 7, 387–395. https://doi.org/10.1017/s1367943004001568 (2004).Article 

    Google Scholar 
    Woolley, P. A. Reproductive pattern of captive Boullanger Island dibblers, Parantechinus apicalis (Marsupialia, Dasyuridae). Wildl. Res. 18, 157–163. https://doi.org/10.1071/wr9910157 (1991).Article 

    Google Scholar 
    Burbridge, A. A. & Woinarski, J. C. Z. Parantechinus apicalis. The IUCN Red List of Threatened Species 2016: e.T16138A21944584. https://www.iucnredlist.org/species/16138/21944584 (2016).Friend, J. A. Island home: A new start for dibblers. Landscope 33, 39–42 (2017).
    Google Scholar 
    Moro, D. Translocation of captive-bred dibblers Parantechinus apicalis (Marsupialia: Dasyuridae) to Escape Island, Western Australia. Biol. Conserv. 111, 305–315. https://doi.org/10.1016/s0006-3207(02)00296-3 (2003).Article 

    Google Scholar 
    Thavornkanlapachai, R., Mills, H. R., Ottewell, K., Friend, J. A. & Kennington, W. J. Temporal variation in the genetic composition of an endangered marsupial reflects reintroduction history. Diversity https://doi.org/10.3390/d13060257 (2021).Article 

    Google Scholar 
    Morris, K., Page, M., Thomas, N. & Ottewell, K. A Strategic Framework for the Reconstruction and Conservation of the Vertebrate Fauna of Dirk Hartog Island 2016–2030. 26 (Department of Parks and Wildlife, 2017).
    Google Scholar 
    Thavornkanlapachai, R. Genetic Consequences of Genetic Mixing in Mammal Translocations in Western Australia Using Case Studies of Burrowing Bettongs and Dibblers. Doctor of Philosophy thesis, University of Western Australia (2016).Akcakaya, H. R. & Sjogren-Gulve, P. Population viability analyses in Conserv. planning: an overview. Ecol. Bull. 48, 9–21 (2000).
    Google Scholar 
    Beissinger, S. R. & McCullough, D. R. Population Viability Analysis (The University of Chicago Press, 2002).
    Google Scholar 
    Lindenmayer, D. B., Clark, T. W., Lacy, R. C. & Thomas, V. C. Population viability analysis as a tool in wildlife conservation policy—With reference to Australia. Environ. Manag. 17, 745–758. https://doi.org/10.1007/bf02393895 (1993).ADS 
    Article 

    Google Scholar 
    Pacioni, C., Wayne, A. F. & Page, M. Guidelines for genetic management in mammal translocation programs. Biol. Conserv. 237, 105–113. https://doi.org/10.1016/j.biocon.2019.06.019 (2019).Article 

    Google Scholar 
    White, D. J. et al. Genetic consequences of multiple translocations of the banded hare-wallaby in Western Australia. Diversity https://doi.org/10.3390/d12120448 (2020).Article 

    Google Scholar 
    Dickman, C. R. & Braithwaite, R. W. Postmating mortality of males in the Dasyurid marsupials, Dasyurus and Parantechinus. J. Mammal. 73, 143–147. https://doi.org/10.2307/1381875 (1992).Article 

    Google Scholar 
    Lambert, C. & Mills, H. Husbandry and breeding of the dibbler Parantechinus apicalis at Perth Zoo. Int. Zoo Yearb. 40, 290–301 (2006).Article 

    Google Scholar 
    Mills, H. R., Bradshaw, F. J., Lambert, C., Bradshaw, S. D. & Bencini, R. Reproduction in the marsupial dibbler, Parantechinus apicalis; differences between island and mainland populations. Gen. Comp. Endocrinol. 178, 347–354. https://doi.org/10.1016/j.ygcen.2012.06.013 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fisher, D. O., Dickman, C. R., Jones, M. E. & Blomberg, S. P. Sperm competition drives the evolution of suicidal reproduction in mammals. Proc. Natl. Acad. Sci. USA 110, 17910–17914. https://doi.org/10.1073/pnas.1310691110 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, A. Dibblers on the Jurien Islands: The Influence of Burrowing Seabirds and the Potential for Competition from Other Species. PhD thesis, University of Western Australia (2006).Sunnucks, P. & Hales, D. F. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol. Biol. Evol. 13, 510–524. https://doi.org/10.1093/oxfordJ.s.molbev.a025612 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Heredity 86, 485–486. https://doi.org/10.1093/oxfordJ.s.jhered.a111627 (1995).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537–2239. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2018).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    Article 

    Google Scholar 
    Earl, D. A. & Vonholdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Do, C. et al. NEESTIMATOR v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214. https://doi.org/10.1111/1755-0998.12157 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv. Genet. 7, 167–184. https://doi.org/10.1007/s10592-005-9100-y (2006).Article 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).CAS 
    Article 

    Google Scholar 
    Piry, S., Luikart, G. & Cornuet, J. M. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Heredity 90, 502–503. https://doi.org/10.1093/jhered/90.4.502 (1999).Article 

    Google Scholar 
    Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275. https://doi.org/10.2307/2409206 (1989).Article 
    PubMed 

    Google Scholar 
    Lacy, R. C. & Pollak, J. P. VORTEX: A Stochastic Simulation of the Extinction Process. Version 10.0 (Brookfield, Illinois, USA, 2014).Lacy, R. C. VORTEX—A computer simulation model for population viability analysis. Wildl. Res. 20, 45–65. https://doi.org/10.1071/wr9930045 (1993).Article 

    Google Scholar 
    Parrott, M. L., Ward, S. J., Temple-Smith, P. D. & Selwood, L. Effects of drought on weight, survival and breeding success of agile antechinus (Antechinus agilis), dusky antechinus (A. swainsonii) and bush rats (Rattus fuscipes). Wildl. Res. 34, 437–442. https://doi.org/10.1071/wr07071 (2007).Article 

    Google Scholar 
    Rhind, S. G. & Bradley, J. S. The effect of drought on body size, growth and abundance of wild brush-tailed phascogales (Phascogale tapoatafa) in south-western Australia. Wildl. Res. 29, 235–245. https://doi.org/10.1071/wr01014 (2002).Article 

    Google Scholar 
    Bureau of Meteorology. Monthly rainfall Jurien Bay. Australian Government. http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_startYear=&p_c=&p_stn_num=009131 (2020).McCarthy, M. A., Burgman, M. A. & Ferson, S. Sensitivity analysis for models of population viability. Biol. Conserv. 73, 93–100. https://doi.org/10.1016/0006-3207(95)00046-7 (1995).Article 

    Google Scholar 
    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262. https://doi.org/10.1111/j.1752-4571.2009.00104.x (2010).Article 
    PubMed 

    Google Scholar 
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unraveling of a continental fauna: Decline and extinction of Australian mammals since European settlement. Proc. Natl. Acad. Sci. USA 112, 4531–4540. https://doi.org/10.1073/pnas.1417301112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eldridge, M. D. B. et al. Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv. Biol. 13, 531–541. https://doi.org/10.1046/j.1523-1739.1999.98115.x (1999).Article 

    Google Scholar 
    Frankham, R. Do island populations have less genetic variation than mainland populations?. Heredity 78, 311–327. https://doi.org/10.1038/hdy.1997.46 (1997).Article 
    PubMed 

    Google Scholar 
    Wright, S. Evoluation in Mendelian populations. Genetics 16, 0097–0159 (1931).CAS 
    Article 

    Google Scholar 
    Wang, J. L. Estimation of effective population sizes from data on genetic markers. Philos. Trans. R. Soc. B. Sci. 360, 1395–1409. https://doi.org/10.1098/rstb.2005.1682 (2005).CAS 
    Article 

    Google Scholar 
    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 170, 56–63. https://doi.org/10.1016/j.biocon.2013.12.036 (2014).Article 

    Google Scholar 
    Kennington, W. J., Hevroy, T. H. & Johnson, M. S. Long-term genetic monitoring reveals contrasting changes in the genetic composition of newly established populations of the intertidal snail Bembicium vittatum. Mol. Ecol. 21, 3489–3500. https://doi.org/10.1111/j.1365-294X.2012.05636.x (2012).Article 

    Google Scholar 
    Olson, Z. H., Whittaker, D. G. & Rhodes, O. E. Translocation history and genetic diversity in reintroduced bighorn sheep. J. Wildl. Manag. 77, 1553–1563. https://doi.org/10.1002/jwmg.624 (2013).Article 

    Google Scholar 
    White, L. C., Moseby, K. E., Thomson, V. A., Donnellan, S. C. & Austin, J. J. Long-term genetic consequences of mammal reintroductions into an Australian conservation reserve. Biol. Conserv. 219, 1–11. https://doi.org/10.1016/j.biocon.2017.12.038 (2018).Article 

    Google Scholar 
    Di Fonzo, M. M. I., Pelletier, F., Clutton-Brock, T. H., Pemberton, J. M. & Coulson, T. The population growth consequences of variation in individual heterozygosity. PLoS ONE 6, e19667. https://doi.org/10.1371/J.pone.0019667 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foerster, K., Delhey, K., Johnsen, A., Lifjeld, J. T. & Kempenaers, B. Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425, 714–717. https://doi.org/10.1038/nature01969 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pujolar, J. M., Maes, G. E., Vancoillie, C. & Volckaert, F. A. M. Growth rate correlates to individual heterozygosity in the european eel, Anguilla anguilla L.. Evolution 59, 189–199 (2005).CAS 
    PubMed 

    Google Scholar 
    Wolfe, K. M., Robertson, H. & Bencini, R. The mating behaviour of the dibbler, Parantechinus apicalis, in captivity. Aust. J. Zool. 48, 541–550. https://doi.org/10.1071/zo00030 (2000).Article 

    Google Scholar 
    Hedrick, P. W., Robinson, J. A., Peterson, R. O. & Vucetich, J. A. Genetics and extinction and the example of Isle Royale wolves. Anim. Conserv. 22, 302–309. https://doi.org/10.1111/acv.12479 (2019).Article 

    Google Scholar 
    Huisman, J., Kruuk, L. E. B., Ellis, P. A., Clutton-Brock, T. & Pemberton, J. M. Inbreeding depression across the lifespan in a wild mammal population. Proc. Natl. Acad. Sci. USA 113, 3585–3590. https://doi.org/10.1073/pnas.1518046113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nunziata, S. O. & Weisrock, D. W. Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120, 196–207. https://doi.org/10.1038/s41437-017-0037-y (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Popa-Baez, A. D. et al. Genome-wide patterns of differentiation over space and time in the Queensland fruit fly. Sci. Rep. 10, 13. https://doi.org/10.1038/s41598-020-67397-5 (2020).CAS 
    Article 

    Google Scholar 
    Lacy, R. C. Importance of genetic variation to the viability of mammalian populations. J. Mammal. 78, 320–335. https://doi.org/10.2307/1382885 (1997).Article 

    Google Scholar 
    Lavery, T. H., Fisher, D. O., Flannery, T. F. & Leung, L. K. P. Higher extinction rates of dasyurids on Australo-Papuan continental shelf islands and the zoogeography of New Guinea mammals. J. Biogeogr. 40, 747–758. https://doi.org/10.1111/jbi.12072 (2013).Article 

    Google Scholar 
    Sigg, D. P. Reduced genetic diversity and significant genetic differentiation after translocation: Comparison of the remnant and translocated populations of bridled nailtail wallabies (Onychogalea fraenata). Conserv. Genet. 7, 577–589. https://doi.org/10.1007/s10592-005-9096-3 (2006).Article 

    Google Scholar 
    Burgman, M. A., Akcakaya, H. R. & Loew, S. S. The use of extinction models for species conservation. Biol. Conserv. 43, 9–25. https://doi.org/10.1016/0006-3207(88)90075-4 (1988).Article 

    Google Scholar 
    Frankham, R. Inbreeding and extinction: Island populations. Conserv. Biol. 12, 665–675. https://doi.org/10.1046/j.1523-1739.1998.96456.x (1998).Article 

    Google Scholar 
    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young—A comparative-analysis of life-history variation among mammals. J. Zool. 220, 417–437. https://doi.org/10.1111/j.1469-7998.1990.tb04316.x (1990).Article 

    Google Scholar 
    CSIRO. State of the Climate 2018 https://www.csiro.au/en/Showcase/state-of-the-climate/ (2018).Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587. https://doi.org/10.1038/s41558-018-0187-9 (2018).ADS 
    Article 

    Google Scholar 
    Morita, K. & Yokota, A. Population viability of stream-resident salmonids after habitat fragmentation: A case study with white-spotted charr (Salvelinus leucomaenis) by an individual based model. Ecol. Model. 155, 85–94. https://doi.org/10.1016/s0304-3800(02)00128-x (2002).Article 

    Google Scholar 
    Ottewell, K. et al. Evaluating success of translocations in maintaining genetic diversity in a threatened mammal. Biol. Conserv. 171, 209–219. https://doi.org/10.1016/j.biocon.2014.01.012 (2014).Article 

    Google Scholar 
    Zeoli, L. F., Sayler, R. D. & Wielgus, R. Population viability analysis for captive breeding and reintroduction of the endangered Columbia basin pygmy rabbit. Anim. Conserv. 11, 504–512. https://doi.org/10.1111/j.1469-1795.2008.00208.x (2008).Article 

    Google Scholar 
    Mella, V. S. A., McArthur, C., Krockenberger, M. B., Frend, R. & Crowther, M. S. Needing a drink: Rainfall and temperature drive the use of free water by a threatened arboreal folivore. PLoS ONE 14, e0216964. https://doi.org/10.1371/journal.pone.0216964 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, A. G. et al. Out on a limb: Habitat use of a specialist folivore, the koala, at the edge of its range in a modified semi-arid landscape. Landsc. Ecol. 28, 415–426. https://doi.org/10.1007/s10980-013-9846-4 (2013).Article 

    Google Scholar 
    Akesson, M. et al. Genetic rescue in a severely inbred wolf population. Mol. Ecol. 25, 4745–4756. https://doi.org/10.1111/mec.13797 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heber, S. et al. The genetic rescue of two bottlenecked South Island robin populations using translocations of inbred donors. Proc. R. Soc. B. Sci. 280, 20122228. https://doi.org/10.1098/rspb.2012.2228 (2013).CAS 
    Article 

    Google Scholar 
    Hedrick, P. W. & Fredrickson, R. Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conserv. Genet. 11, 615–626. https://doi.org/10.1007/s10592-009-9999-5 (2010).Article 

    Google Scholar 
    Weeks, A. R. et al. Genetic rescue increases fitness and aids rapid recovery of an endangered marsupial population. Nat. Commun. 8, 1071. https://doi.org/10.1038/s41467-017-01182-3 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bell, D. A. et al. The exciting potential and remaining uncertainties of genetic rescue. Trends Ecol. Evol. 34, 1070–1079. https://doi.org/10.1016/j.tree.2019.06.006 (2019).Article 
    PubMed 

    Google Scholar 
    Ralls, K., Sunnucks, P., Lacy, R. C. & Frankham, R. Genetic rescue: A critique of the evidence supports maximizing genetic diversity rather than minimizing the introduction of putatively harmful genetic variation. Biol. Conserv. 251, 8. https://doi.org/10.1016/j.biocon.2020.108784 (2020).Article 

    Google Scholar 
    Ramsey, J., Bradshaw, H. D. & Schemske, D. W. Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution 57, 1520–1534 (2003).Article 

    Google Scholar 
    Skoracka, A. Reproductive barriers between populations of the cereal rust mite Abacarus hystrix confirm their host specialization. Evol. Ecol. 22, 607–616. https://doi.org/10.1007/s10682-007-9185-5 (2008).Article 

    Google Scholar 
    Vines, T. H. & Schluter, D. Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proc. R. Soc. B. Sci. 273, 911–916. https://doi.org/10.1098/rspb.2005.3387 (2006).Article 

    Google Scholar 
    Keighery, G. J., Alford, J. J. & Longman, V. A vegetation survey of the islands of the Turquoise Coast from Dongara to Lancelin, south-western Australia. Conserv. Sci. West. Aust. 4, 13–62 (2002).
    Google Scholar  More

  • in

    Pathogenic fungus uses volatiles to entice male flies into fatal matings with infected female cadavers

    Ryan MJ, Rand AS. Species recognition and sexual selection as a unitary problem in animal communication. Evolution. 1993;47:647–57.PubMed 
    Article 

    Google Scholar 
    Trivers RL. Parental Investment and Sexual Selection. In: Campbell BG, (ed). Sexual Selection and the Descent of Man. Aldine Publishing Company; 1972. p. 136–79.
    Google Scholar 
    Andersson M. Sexual selection. Sexual Selection. Princeton: Princeton University Press; 1994.Chapter 

    Google Scholar 
    Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, et al. Sex pheromone mimicry in the early spider orchid (Ophrys sphegodes): Patters of hydrocarbons as the key mechanism for pollination by sexual deception. J Comp Physiol – A Sens, Neural, Behav Physiol. 2000;186:567–74.CAS 
    Article 

    Google Scholar 
    Cohen C, Liltved WR, Colville JF, Bytebier B, Johnson SD. Sexual deception of a beetle pollinator through floral mimicry. Curr Biol. 2021;31:1962–1969. e6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hayashi T, Bohman B, Scaffidi A, Peakall R, Flematti GR. An unusual tricosatriene is crucial for male fungus gnat attraction and exploitation by sexually deceptive Pterostylis orchids. Curr Biol. 2021;31:1954–1961. e7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen AN, De Fine Licht HH. Logistic growth of the host-specific obligate insect pathogenic fungus Entomophthora muscae in house flies (Musca domestica). J Appl Entomol. 2017;141:583–6.CAS 
    Article 

    Google Scholar 
    Schmid-Hempel P Evolutionary parasitology. 2011. Oxford University Press.Helluy S, Thomas F. Effects of Microphallus papillorobustus (Platyhelminthes: Trematoda) on serotonergic immunoreactivity and neuronal architecture in the brain of Gammarus insensibilis (Crustacea: Amphipoda). Proc R Soc B: Biol Sci. 2003;270:563–8.CAS 
    Article 

    Google Scholar 
    Hoover K, Grove M, Gardner M. A gene for an extended phenotype. Science. 2011;333:1401. others.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adamo SA. Parasites: evolution’s neurobiologists. J Exp Biol. 2013;216:3–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Bekker C, Ohm RA, Loreto RG. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genomics. 2015;16:620. others.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ros VID, Van Houte S, Hemerik L, Van Oers MM. Baculovirus-induced tree-top disease: How extended is the role of egt as a gene for the extended phenotype? Mol Ecol. 2015;24:249–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    Botnevik CF, Malagocka J, Jensen AB, Fredensborg BL. Relative effects of temperature, light, and humidity on clinging behavior of metacercariae-infected ants. J Parasitol. 2016;102:495–500.CAS 
    PubMed 
    Article 

    Google Scholar 
    Małagocka J, Jensen AB, Eilenberg J. Pandora formicae, a specialist ant pathogenic fungus: New insights into biology and taxonomy. J Invertebr Pathol. 2017;143:108–14.PubMed 
    Article 
    CAS 

    Google Scholar 
    Hughes DP, Libersat F. Neuroparasitology of parasite-insect associations. Annu Rev Entomol. 2018;63:471–87.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hojo MK, Pierce NE, Tsuji K. Lycaenid caterpillar secretions manipulate attendant ant behavior. Curr Biol. 2015;25:2260–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gal R, Libersat F. A wasp manipulates neuronal activity in the sub-esophageal ganglion to decrease the drive for walking in its cockroach prey. PLoS ONE. 2010;5:e10019.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Keesey IW, Koerte S, Khallaf MA, Retzke T, Guillou A, Grosse-Wilde E, et al. Pathogenic bacteria enhance dispersal through alteration of Drosophila social communication. Nat Commun. 2017;8:265.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang X, Machado RAR, Van Doan C, Arce CCM, Hu L, Robert CAM. Entomopathogenic nematodes increase predation success by inducing cadaver volatiles that attract healthy herbivores. eLife. 2019;8:e46668.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George J, Jenkins NE, Blanford S, Thomas MB, Baker TC. Malaria mosquitoes attracted by fatal fungus. PLoS ONE. 2013;8:e62632.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Trandem N, Bhattarai UR, Westrum K, Knudsen GK, Klingen I. Fatal attraction: male spider mites prefer females killed by the mite-pathogenic fungus Neozygites floridana. J Invertebr Pathol. 2015;128:6–13.PubMed 
    Article 

    Google Scholar 
    Evans WS, Wong A, Hardy M, Currie RW, Vanderwel D. Evidence that the factor used by the tapeworm, Hymenolepis diminuta, to direct the foraging of its intermediate host, Tribolium confusum, is a volatile attractant. J Parasitol. 1998;84:1098–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shostak AW, Smyth KA. Activity of flour beetles (Tribolium confusum) in the presence of feces from rats infected with rat tapeworm (Hymenolepis diminuta). Can J Zool. 1998;76:1472–9.Article 

    Google Scholar 
    Shea JF. Lack of preference for infective faeces in Hymenolepis diminuta-infected beetles (Tenebrio molitor). J Helminthol. 2007;81:293–9.PubMed 
    Article 

    Google Scholar 
    Mauck KE, De Moraes CM, Mescher MC. Deceptive chemical signals induced by a plant virus attract insect vectors to inferior hosts. Proc Natl Acad Sci USA. 2010;107:3600–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dawkins R. The extended phenotype. Oxford: Oxdord University Press; 1982.
    Google Scholar 
    Van Houte S, Ros VID, Van Oers MM. Walking with insects: Molecular mechanisms behind parasitic manipulation of host behaviour. Mol Ecol. 2013;22:3458–75.PubMed 
    Article 

    Google Scholar 
    de Bekker C, Beckerson WC, Elya C. Mechanisms behind the madness: how do zombie-making fungal entomopathogens affect host behavior to increase transmission? mBio. 2021;12:e01872–21.PubMed Central 
    Article 

    Google Scholar 
    Lefévre T, Lebarbenchon C, Gauthier-Clerc M, Missé D, Poulin R, Thomas F, et al. The ecological significance of manipulative parasites. Trends Ecol Evolution. 2009;24:41–48.Article 

    Google Scholar 
    Kalsbeek V, Pell JK, Steenberg T. Sporulation by Entomophthora schizophorae (Zygomycetes: Entomophthorales) from housefly cadavers and the persistence of primary conidia at constant temperatures and relative humidities. J Invertebr Pathol. 2001;77:149–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Ruiter J, Arnbjerg-Nielsen SF, Herren P, Høier F, De Fine Licht HH, Jensen KH. Fungal artillery of zombie flies: infectious spore dispersal using a soft water cannon. J R Soc Interface. 2019;16:20190448.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lovett B, Macias A, Stajich JE, Cooley J, Eilenberg J, de Fine Licht HH, et al. Behavioral betrayal: how select fungal parasites enlist living insects to do their bidding. PLoS Pathog. 2020;16:e1008598.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moller AP. A fungus infecting domestic flies manipulates sexual behaviour of its host. Behav Ecol Sociobiol. 1993;33:403–7.
    Google Scholar 
    Murvosh CM, Fye RL, LaBrecque GC. Studies on the mating behavior of the house fly, Musca Domestica L. Ohio J Sci. 1964;64:264–71.
    Google Scholar 
    Tobin EN, Stoffolano JG. The courtship of Musca species found in North America. II. The face fly, Musca autumnalis, and a comparison. Ann Entomological Soc Am. 1973;66:1329–34.Article 

    Google Scholar 
    Goulson D, Bristow L, Elderfield E, Brinklow K, Parry-Jones B, Chapman JW. Size, Symmetry, and sexual selection in the housefly, Musca domestica. Evolution. 1999;53:527–34.PubMed 
    Article 

    Google Scholar 
    Zurek L, Wes Watson D, Krasnoff SB, Schal C. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly, Musca domestica. J Invertebr Pathol. 2002;80:171–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rogoff WM, Beltz AD, Johnsen JO, Plapp FW. A sex pheromone in the housefly, Musca domestica L. J Insect Physiol. 1964;10:239–46.CAS 
    Article 

    Google Scholar 
    Adams TS, Holt GG. Effect of pheromone components when applied to different models on male sexual behaviour in the housefly, Musca domestica. J Insect Physiol. 1987;33:9–18.CAS 
    Article 

    Google Scholar 
    Carlson DA, Mayer MS, Silhacek DL, James JD, Beroza M, Bierl BA, et al. Sex attractant pheromone of the house fly: Isolation, identification and synthesis. Science. 1971;174:76–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams TS, Nelson DR, Fatland CL. Effect of methylalkanes on male house fly, Musca domestica, sexual behavior. J Insect Physiol. 1995;41:443–9.CAS 
    Article 

    Google Scholar 
    Noorman N, Otter CJ. The effects of laboratory culturing on (Z)-9-tricosene (muscalure) quantities on female houseflies. Entomologia Experimentalis et Applicata. 2001;101:69–80.CAS 
    Article 

    Google Scholar 
    Uebel EC, Schwarz M, Lusby WR, Miller RW, Sonnet PE. Cuticular nonhydrocarbons of the female house fly and their evaluation as mating stimulants. Lloydia. 1978;41:63–67.CAS 

    Google Scholar 
    Blomquist GJ, Ginzel MD. Chemical ecology, biochemistry, and molecular biology of insect hydrocarbons. Annu Rev Entomol. 2021;66:45–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lebreton S, Borrero-Echeverry F, Gonzalez F, Solum M, Wallin EA, Hedenström E, et al. A Drosophila female pheromone elicits species-specific long-range attraction via an olfactory channel with dual specificity for sex and food. BMC Biol. 2017;15:88.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krasnoff SB, Watson DW, Gibson DM, Kwan EC. Behavioral effects of the entomopathogenic fungus, Entomophthora muscae on its host Musca domestica: Postural changes in dying hosts and gated pattern of mortality. J Insect Physiol. 1995;41:895–903.CAS 
    Article 

    Google Scholar 
    Friard O, Gamba M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evolution. 2016;7:1325–30.Article 

    Google Scholar 
    Quan AS, Eisen MB. The ecology of the Drosophila-yeast mutualism in wineries. PLOS ONE. 2018;13:e0196440.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Den Dool H, Dec, Kratz P. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr A. 1963;11:463–71.Article 

    Google Scholar 
    Nelson DR, Dillwith JW, Blomquist GJ. Cuticular hydrocarbons of the house fly, Musca domestica. Insect Biochem. 1981;11:187–97.CAS 
    Article 

    Google Scholar 
    Bagnères AG, Morgan ED. A simple method for analysis of insect cuticular hydrocarbons. J Chem Ecol. 1990;16:3263–76.PubMed 
    Article 

    Google Scholar 
    Stránský K, Jursík T, Vítek A, Skořepa J. An improved method of characterizing fatty acids by equivalent chain length values. J High Resolut Chromatogr. 1992;15:730–40.Article 

    Google Scholar 
    Stránský K, Zarevúcka M, Valterová I, Wimmer Z. Gas chromatographic retention data of wax esters. J Chromatogr A. 2006;1128:208–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Carlson DA, Bernier UR, Sutton BD. Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol. 1998;24:1845–65.CAS 
    Article 

    Google Scholar 
    Mpuru S, Blomquist GJ, Schal C, Roux M, Kuenzli M, Dusticier G, et al. Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochem Mol Biol. 2001;31:139–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gulias Gomes CC, Trigo JR, Eiras ÁE. Sex pheromone of the American warble fly, Dermatobia hominis: The role of cuticular hydrocarbons. J Chem Ecol. 2008;34:636–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang LX, Yun YF, Liang YZ, Cao DS. Discovery of mass spectral characteristics and automatic identification of wax esters from gas chromatography mass spectrometry data. J Chromatogr A. 2010;1217:3695–701.CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.Article 
    CAS 

    Google Scholar 
    Becher PG, Verschut V, Bibb MJ, Bush MJ, Molnár BP, Barane E, et al. Developmentally regulated volatiles geosmin and 2-methylisoborneol attract a soil arthropod to Streptomyces bacteria promoting spore dispersal. Nat Microbiol. 2020;5:821–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J Stat Softw. 2008;25:1–18.Article 

    Google Scholar 
    Darbro JM, Millar JG, McElfresh JS, Mullens BA. Survey of muscalure [(Z)-9-tricosene] on house flies (Diptera: Muscidae) from field populations in California. Environ Entomol. 2005;34:1418–25.CAS 
    Article 

    Google Scholar 
    Butler SM, Moon RD, Hinkle NC, Millar JG, Mcelfresh JS, Mullens BA. Characterization of age and cuticular hydrocarbon variation in mating pairs of house fly, Musca domestica, collected in the field. Med Vet Entomol. 2009;23:426–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Eder M, Sanchez I, Brice C, Camarasa C, Legras JL, Dequin S. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. BMC Genomics. 2018;19:166.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol. 2013;64:665–700.PubMed 
    Article 
    CAS 

    Google Scholar 
    Saerens SMG, Verstrepen KJ, Van Laere SDM, Voet ARD, Van Dijck P, Delvaux FR, et al. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem. 2006;281:4446–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    Saerens SMG, Delvaux F, Verstrepen KJ, Van Dijck P, Thevelein JM, Delvaux FR. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol. 2008;74:454–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooley JR, Marshall DC, Hill KBR. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci Rep. 2018;8:1432.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang X-M. Floral volatile sesquiterpenes of Elsholtzia rugulosa (Lamiaceae) selectively attract Asian honey bees. J Appl Entomol. 2018;142:359–62.CAS 
    Article 

    Google Scholar 
    Haber AI, Sims JW, Mescher MC, De Moraes CM, Carr DE. A key floral scent component (β-trans-bergamotene) drives pollinator preferences independently of pollen rewards in seep monkeyflower. Funct Ecol. 2019;33:218–28.Article 

    Google Scholar 
    Mithöfer A, Boland W. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 2012;63:431–50.PubMed 
    Article 
    CAS 

    Google Scholar 
    Stanjek V, Herhaus C, Ritgen U, Boland W, Städler E. Changes in the leaf surface chemistry of Apium graveolens (apiaceae) stimulated by jasmonic acid and perceived by a specialist insect. Helvetica Chim Acta. 1997;80:1408–20.CAS 
    Article 

    Google Scholar 
    Ding Y, Huffaker A, Köllner TG, Weckwerth P, Robert CAM, Spencer JL, et al. Selinene volatiles are essential precursors for maize defense promoting fungal pathogen resistance. Plant Physiol. 2017;175:1455–68.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Könen PP, Wüst M. Analysis of sesquiterpene hydrocarbons in grape berry exocarp (Vitis vinifera L.) using in vivo-labeling and comprehensive two-dimensional gas chromatography–mass spectrometry (GC×GC–MS). Beilstein J Org Chem. 2019;15:1945–61.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lam K, Tsang M, Labrie A, Gries R, Gries G. Semiochemical-mediated oviposition avoidance by female house flies, Musca domestica, on animal feces colonized with harmful fungi. J Chem Ecol. 2010;36:141–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Phillips RD, Bohman B, Peakall R. Pollination by nectar‐foraging pompilid wasps: a new specialized pollination strategy for the Australian flora. Plant Biology 2021;23:702–10.Spieth HT. Courtship behavior in Drosophila. Annu Rev Entomol. 1974;19:385–405.CAS 
    PubMed 
    Article 

    Google Scholar 
    Grosjean Y, Rytz R, Farine JP, Abuin L, Cortot J, Jefferis GSXE, et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature. 2011;478:236–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mullens BA, Rodrigues JL, Meyer JA. An epizootiological study of Entomophthora muscae in muscoid fly populations on southern california poultry facilities, with emphasis on Musca domestica. Hilgardia. 1987;55:1–41.Article 

    Google Scholar 
    Watson DW, Petersen JJ. Sexual activity of male Musca domestica (Diptera: Muscidae) infected with Entomophthora muscae (Entomophthoraceae: Entomophthorales). Biol Control. 1993;3:22–26.Article 

    Google Scholar 
    van Huis A, Oonincx DGAB, Rojo S, Tomberlin JK. Insects as feed: house fly or black soldier fly? J Insects Food Feed. 2020;6:221–9.Article 

    Google Scholar 
    Khamesipour F, Lankarani KB, Honarvar B, Kwenti TE. A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health. 2018;18:1049.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biedermann PHW, De Fine Licht HH, Rohlfs M. Evolutionary chemo-ecology of insect-fungus interactions: still in its infancy but advancing. Fungal Ecol. 2019;38:1–6.Article 

    Google Scholar  More