Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap
IPCC. Summary for policymakers in Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 3–32 (Cambridge University Press, 2021).Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).ADS
Article
PubMed
PubMed Central
Google Scholar
Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).ADS
CAS
Article
Google Scholar
IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).United Nations. What is the United Nations Framework Convention on Climate Change? https://unfccc.int/process-and-meetings/the-convention/what-is-the-united-nations-framework-convention-on-climate-change (2021).United Nations. The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2022).United Nations. The Convention on Biological Diversity. https://www.cbd.int/convention/ (2021).UN environment programme. Aichi Target 11, Convention on Biological Diversity https://www.cbd.int/aichi-targets/target/11 (2021).Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).Article
Google Scholar
Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Morgan Siegers, S. The state of conservation in North America’s boreal forest: issues and opportunities. Front. For. Glob. Chang. 3, 90 (2020).Article
Google Scholar
Bradshaw, C. J. A. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).ADS
Article
Google Scholar
Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034. https://doi.org/10.1126/sciadv.abd6034 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Government of Canada. Species at Risk Act (S.C. 2002, c. 29) https://laws.justice.gc.ca/eng/acts/S-15.3/ (2021).SARA registry. Woodland caribou (Rangifer tarandus), boreal population: species summary. https://species-registry.canada.ca/index-en.html#/species/636-252 (2022).Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).Article
Google Scholar
Environment and Climate Change Canada. Boreal caribou ranges – Canada https://open.canada.ca/data/en/dataset/4eb3e825-5b0f-45a3-8b8b-355188d24b71 (2016).Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Cons. 206, 102–111 (2017).Article
Google Scholar
Hebblewhite, M. & Fortin, D. Canada fails to protect its caribou. Science 358, 730 (2017).ADS
CAS
Article
Google Scholar
Boan, J. J., Malcolm, J. R., Vanier, M. D., Euler, D. L. & Moola, F. M. From climate to caribou: how manufactured uncertainty is affecting wildlife management. Wildl. Soc. Bull. 42, 366–381 (2018).Article
Google Scholar
Government of Canada. Overview of the Pan-Canadian approach to transforming species at risk conservation in Canada https://www.canada.ca/en/services/environment/wildlife-plants-species/species-risk/pan-canadian-approach.html (2020).Environment and Climate Change Canada. Pan-Canadian approach to transforming species at risk conservation in Canada (Environment and Climate Change Canada, 2018).Assembly of First Nations & David Suzuki Foundation. Cultural and ecological value of Boreal Woodland Caribou habitat https://davidsuzuki.org/science-learning-centre-article/cultural-ecological-value-boreal-woodland-caribou-habitat/ (2013).Royal Canadian Mint. A familiar face – the 25-cent coin. https://www.mint.ca/en/discover/canadian-circulation/25-cents (2022).Drever, C. R. et al. Conservation through co-occurrence: woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252 (2019).Article
Google Scholar
Johnson, C. A., Drever, C. R., Kirby, P., Neave, E. & Martin, A. E. Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada. Sci. Rep. (in review).Government of Canada. Canadian Protected and Conserved Areas Database https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html (2022).Trudeau, J. Minister of Environment and Climate Change mandate letter https://pm.gc.ca/en/mandate-letters/2021/12/16/minister-environment-and-climate-change-mandate-letter (2021).Environment Canada. Scientific assessment to inform the identification of critical habitat for Woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada: 2011 update (Environment Canada, 2011).Environment and Climate Change Canada. Amended recovery strategy of the Woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at Risk Act Recovery Strategy Series (Environment and Climate Change Canada, 2020).Johnson, C. A. et al. Science to inform policy: linking population dynamics to habitat for a threatened species in Canada. J. Appl. Ecol. 57, 1314–1327 (2020).Article
Google Scholar
Mansuy, N. et al. Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environ. Res. Lett. 14, 064007. https://doi.org/10.1088/1748-9326/ab1bc5 (2019).ADS
Article
Google Scholar
Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).ADS
CAS
Article
Google Scholar
Kocsis, Á. T., Zhao, Q., Costello, M. J. & Kiessling, W. Not all biodiversity rich spots are climate refugia. Biogeosciences 18, 6567–6579 (2021).ADS
Article
Google Scholar
Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geogr. 65, 152–165 (2021).Article
Google Scholar
Groves, C. R. et al. Incorporating climate change into systematic conservation planning. Biodivers. Conserv. 21, 1651–1671 (2012).Article
Google Scholar
Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).Article
Google Scholar
Sothe, C. et al. Large soil carbon storage in terrestrial ecosystems of Canada. Global Biogeochem. Cycles 36, e2021GB007213. https://doi.org/10.1029/2021GB007213 (2022).ADS
CAS
Article
Google Scholar
Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).Article
Google Scholar
Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).Article
Google Scholar
Schuster, R., Hanson, J. O., Strimas-Mackey, M. & Bennett, J. R. Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ 8, e9258. https://doi.org/10.7717/peerj.9258 (2020).Article
PubMed
PubMed Central
Google Scholar
McIntosh, E. J. et al. Absence of evidence for the conservation outcomes of systematic conservation planning around the globe: a systematic map. Environ. Evid. 7, 22. https://doi.org/10.1186/s13750-018-0134-2 (2018).Article
Google Scholar
Díaz-Yáñez, O., Pukkala, T., Packalen, P., Lexer, M. J. & Peltola, H. Multi-objective forestry increases the production of ecosystem services. For. Int. J. For. Res. 94, 386–394 (2021).
Google Scholar
Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: a science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562 (2018).Article
Google Scholar
Carroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang. Biol. 27, 3395–3414 (2021).Article
Google Scholar
Indigenous Circle of Experts. We rise together: achieving Pathway to Canada Target 1 through the creation of Indigenous Protected and Conserved Areas in the spirit and practice of reconciliation. (2018).Zurba, M., Beazley, K. F., English, E. & Buchmann-Duck, J. Indigenous Protected and Conserved Areas (IPCAs), Aichi Target 11 and Canada’s Pathway to Target 1: focusing conservation on reconciliation. Land 8, 10. https://doi.org/10.3390/land8010010 (2019).Article
Google Scholar
Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).Article
Google Scholar
Lee, P. & Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manage. 78, 240–250 (2006).Article
Google Scholar
Ray, J. C. Defining habitat restoration for boreal caribou in the context of national recovery: a discussion paper (Wildlife Conservation Society Canada, 2014).Carwardine, J. et al. Avoiding costly conservation mistakes: the importance of defining actions and costs in spatial priority settings. PLoS ONE 3, e2586. https://doi.org/10.1371/journal.pone.0002586 (2008).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
DeCesare, N. J. et al. Estimating ungulate recruitment and growth rates using age ratios. J. Wildl. Manage. 76, 144–153 (2012).Article
Google Scholar
Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146. https://doi.org/10.1016/j.biocon.2021.109146 (2021).Article
Google Scholar
Olds, A. D., Connolly, R. M., Pitt, K. A. & Maxwell, P. S. Habitat connectivity improves reserve performance. Conserv. Lett. 5, 56–63 (2012).Article
Google Scholar
Gurd, D. B., Nudds, T. D. & Rivard, D. H. Conservation of mammals in eastern North American wildlife reserves: how small is too small? Conserv. Biol. 15, 1355–1363 (2001).Article
Google Scholar
Government of Canada. Canadian Protected and Conserved Areas Database, December 2019 CPCAD data https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html (2019).Environment Canada. Recovery strategy for the woodland caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at Risk Act Recovery Strategy Series (Environment Canada, 2012).R Core Team. R: A language and environment for statistical computing. Version 4.0.4 (The R Foundation, 2021).Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinf. 20, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).Article
Google Scholar
Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. jaccard: test similarity between binary data using Jaccard/Tanimoto coefficients. R package version 0.1.0. https://cran.r-project.org/package=jaccard (2018).Ralphs, T., Ladanyi, L., Guzelsoy, M. & Mahajan, A. Symphony. Zenodo https://doi.org/10.5281/zenodo.2576603/ (2019).Theußl, S., Schwendinger, F. & Hornik, K. ROI: an extensible R optimization infrastructure. J. Stat. Softw. 94, 1–64 (2020).Article
Google Scholar
Theussl, S. ROI.plugin.symphony: ‘SYMPHONY’ plug-in for the ‘R’ optimization interface. R package version 1.0–0 https://CRAN.R-project.org/package=ROI.plugin.symphony (2020).Environment and Climate Change Canada. 2015 – Anthropogenic disturbance footprint within boreal caribou ranges across Canada – as interpreted from 2015 Landsat satellite imagery https://open.canada.ca/data/en/dataset/a71ab99c-6756-4e56-9d2e-2a63246a5e94 (2019).Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo https://doi.org/10.5281/zenodo.2579337 (2019).Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748. https://doi.org/10.1371/journal.pone.0169748 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar More