Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology 2nd edn. (Pergamon Press, 1971).
Google Scholar
Crepet, W. L. The role of insect pollination in the evolution of the angiosperms. In Pollination Biology (ed. Real, L.) 29–50 (Academic Press, 1983).Chapter
Google Scholar
Dressler, R. L. Biology of the orchid bees (Euglossini). Annu. Rev. Ecol. Syst. 13, 373–394 (1982).Article
Google Scholar
Ollerton, J. et al. A global test of the pollination syndrome hypothesis. Ann. Bot. 103, 1471–1480 (2009).PubMed
PubMed Central
Article
Google Scholar
IPBES. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. (IPBES Secretariat, 2016).Kearns, C. A., Inouye, D. W. & Waser, N. M. Endangered mutualisms : The conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112 (1998).Article
Google Scholar
Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).Article
Google Scholar
Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: Ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292 (2010).Article
Google Scholar
Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: The ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).PubMed
Article
Google Scholar
McCall, A. C. & Irwin, R. E. Florivory: The intersection of pollination and herbivory. Ecol. Lett. 9, 1351–1365 (2006).PubMed
Article
Google Scholar
King, C., Ballantyne, G. & Willmer, P. G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811–818 (2013).Article
Google Scholar
Komamura, R., Koyama, K., Yamauchi, T., Konno, Y. & Gu, L. Pollination contribution differs among insects visiting cardiocrinum cordatum flowers. Forests 12, 452 (2021).Article
Google Scholar
Aizen, M. A. Flower sex ratio, pollinator abundance, and the seasonal pollination dynamics of a protandrous plant. Ecology 82, 127–144 (2001).Article
Google Scholar
Forrest, J. R. K., Ogilvie, J. E., Gorischek, A. M. & Thomson, J. D. Seasonal change in a pollinator community and the maintenance of style length variation in Mertensia fusiformis (Boraginaceae). Ann. Bot. 108, 1–12 (2011).PubMed
PubMed Central
Article
Google Scholar
Burrill, R. M. & Dietz, A. The response of honey bees to variations in solar radiation and temperature. Apidologie 12, 319–328 (1981).Article
Google Scholar
Corbet, S. A. et al. Temperature and the pollinating activity of social bees. Ecol. Entomol. 18, 17–30 (1993).Article
Google Scholar
Herrera, C. M. Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering Mediterranean shrub. Oikos 58, 277–288 (1990).Article
Google Scholar
Zoller, L., Bennett, J. M. & Knight, T. M. Diel-scale temporal dynamics in the abundance and composition of pollinators in the Arctic summer. Sci. Rep. 10, 21187 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Kirk, W. D. J., Ali, M. & Breadmore, K. N. The effects of pollen beetles on the foraging behaviour of honey bees. J. Apic. Res. 34, 15–22 (1995).Article
Google Scholar
Tan, K. et al. Fearful foragers: Honey bees tune colony and individual foraging to multi-predator presence and food quality. PLoS ONE 8, e75841 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Baldock, K. C. R., Memmott, J., Carlos Ruiz-Guajardo, J., Roze, D. & Stone, G. N. Daily temporal structure in African savanna flower visitation networks and consequences for network sampling. Ecology 92, 687–698 (2011).PubMed
Article
Google Scholar
Edwards, J., Smith, G. P. & McEntee, M. H. F. Long-term time-lapse video provides near complete records of floral visitation. J. Pollinat. Ecol. 16, 91–100 (2015).CAS
Article
Google Scholar
Knop, E. et al. Rush hours in flower visitors over a day–night cycle. Insect Conserv. Divers. 11, 267–275 (2018).Article
Google Scholar
Herrera, J. Pollination relationships in southern Spanish Mediterranean shrublands. J. Ecol. 76, 274–287 (1988).Article
Google Scholar
Eckhart, V. M. Spatio-temporal variation in abundance and variation in foraging behavior of the pollinators of gynodioecious Phacelia linearis (Hydrophyllaceae). Oikos 64, 573–586 (1992).Article
Google Scholar
Nakano, C. & Washitani, I. Variability and specialization of plant-pollinator systems in a northern maritime grassland. Ecol. Res. 18, 221–246 (2003).Article
Google Scholar
Moeller, D. A. Pollinator community structure and sources of spatial variation in plant-pollinator interactions in Clarkia xantiana ssp. xantiana. Oecologia 142, 28–37 (2005).ADS
PubMed
Article
Google Scholar
Lortie, C. J., Budden, A. E. & Reid, A. M. From birds to bees: Applying video observation techniques to invertebrate pollinators. J. Pollinat. Ecol. 6, 125–128 (2012).
Google Scholar
Pegoraro, L., Hidalgo, O., Leitch, I. J., Pellicer, J. & Barlow, S. E. Automated video monitoring of insect pollinators in the field. Emerg. Top. Life Sci. 4, 87–97 (2020).PubMed
Article
Google Scholar
Steen, R. & Aase, A. L. T. O. Portobale digital video surveillance system for monitoring flower-visiting bumblebees. J. Pollinat. Ecol. 5, 90–94 (2011).Article
Google Scholar
Sakamoto, R. L., Morinaga, S. I., Ito, M. & Kawakubo, N. Fine-scale flower-visiting behavior revealed by using a high-speed camera. Behav. Ecol. Sociobiol. 66, 669–674 (2012).Article
Google Scholar
Georgian, E., Fang, Z., Emshwiller, E. & Pidgeon, A. The pollination ecology of Rhododendron floccigerum Franchet (Ericaceae) in Weixi, Yunnan Province, China. J. Pollinat. Ecol. 16, 72–81 (2015).Article
Google Scholar
Suetsugu, K., Nakahama, N., Ito, A. & Isagi, Y. Time-lapse photography reveals the occurrence of unexpected bee-pollination in Calanthe izuinsularis, an endangered orchid endemic to the Izu archipelago. J. Nat. Hist. 51, 783–792 (2017).Article
Google Scholar
Steen, R. Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods Ecol. Evol. 8, 203–213 (2017).Article
Google Scholar
Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article
Google Scholar
Edwards, J., Griffin, A. J. & Knoedler, M. R. Simultaneous recordings of insect visitors to flowers show spatial and temporal heterogeneity. Ann. Entomol. Soc. Am. 112, 93–98 (2019).Article
Google Scholar
Droissart, V. et al. PICT: A low-cost, modular, open-source camera trap system to study plant–insect interactions. Methods Ecol. Evol. 12, 1389–1396 (2021).Article
Google Scholar
Li, Y. et al. Paleobiogeography of the lotus plant (Nelumbonaceae: Nelumbo) and its bearing on the paleoclimatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 284–293 (2014).Article
Google Scholar
Li, J. & Huang, S. Effective pollinators of Asian sacred lotus (Nelumbo nucifera): Contemporary pollinators may not reflect the historical pollination syndrome. Ann. Bot. 104, 845–851 (2009).PubMed
PubMed Central
Article
Google Scholar
Lee, T. D. Patterns of fruit and seed production. In Plant Reproductive Ecology: Patterns and Strategies (eds Doust, J. L. & Doust, L. L.) 179–202 (Oxford University Press, 1988).
Google Scholar
Moro, C. F., Yonekura, M., Kouzuma, Y., Agrawal, G. K. & Rakwal, R. Lotus—a source of food and medicine: Current status and future perspectives in context of the seed proteomics. Int. J. Life Sci. 7, 1–5 (2013).CAS
Article
Google Scholar
Zhu, M., Liu, T. & Guo, M. Current advances in the metabolomics study on lotus seeds. Front. Plant Sci. 7, 891 (2017).
Google Scholar
Guo, H. B. Cultivation of lotus (Nelumbo nucifera Gaertn. Ssp. nucifera) and its utilization in China. Genet. Resour. Crop Evol. 56, 323–330 (2009).Article
Google Scholar
Vogel, S. & Hadacek, F. Contributions to the functional anatomy and biology of Nelumbo nucifera (Nelumbonaceae) III. An ecological reappraisal of floral organs. Plant Syst. Evol. 249, 173–189 (2004).Article
Google Scholar
Seymour, R. S. & Schultze-Motel, P. Thermoregulating lotus flowers. Nature 383, 305 (1996).ADS
CAS
Article
Google Scholar
Dieringer, G., Leticia Cabrera, R. & Mottaleb, M. Ecological relationship between floral thermogenesis and pollination in Nelumbo lutea (Nelumbonaceae). Am. J. Bot. 101, 357–364 (2014).PubMed
Article
Google Scholar
Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed
Article
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).Inouye, D. W., Gill, D. E., Dudash, M. R. & Fenster, C. B. A model and lexicon for pollen fate. Am. J. Bot. 81, 1517–1530 (1994).Article
Google Scholar
Ne’Eman, G., Jürgens, A., Newstrom-Lloyd, L., Potts, S. G. & Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. 85, 435–451 (2010).PubMed
Google Scholar
Kearns, C. A. & Inouye, D. W. Techniques for Pollination Biologists (University Press of Colorado, 1993).
Google Scholar
Delaplane, K. S., Mayer, D. R. & Mayer, D. F. Crop Pollination by Bees (CABI Publishing, 2000).
Google Scholar
Oldroyd, B. P. & Nanork, P. Conservation of Asian honey bees. Apidologie 40, 296–312 (2009).Article
Google Scholar
Abou-Shaara, H. F. The foraging behaviour of honey bees Apis mellifera: A review. Vet. Med. (Praha) 59, 1–10 (2014).Article
Google Scholar
Reyes-Carrillo, J. L., Eischen, F. A., Cano-Rios, P., Rodríguez Martínez, R. & Nava Camberos, U. Pollen collection and honey bee forager distribution in cantaloupe. Acta Zool. Mex. 23, 29–36 (2007).
Google Scholar
Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: Circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160256 (2017).Article
CAS
Google Scholar
Lawson, D. A. & Rands, S. A. The effects of rainfall on plant–pollinator interactions. Arthropod. Plant. Interact. 13, 561–569 (2019).Article
Google Scholar
Antiqueira, P. A. P. et al. Precipitation and predation risk alter the diversity and behavior of pollinators and reduce plant fitness. Oecologia 192, 745–753 (2020).ADS
PubMed
Article
Google Scholar
Matsuura, M. Comparative biology of the five Japanese species of the genus Vespa (Hymenoptera, Vespidae). Bull. Fac. Agric. Mie Univ. 69, 1–131 (1984).
Google Scholar
Dukas, R. Effects of perceived danger on flower choice by bees. Ecol. Lett. 4, 327–333 (2001).Article
Google Scholar
Romero, G. Q., Antiqueira, P. A. P. & Koricheva, J. A meta-analysis of predation risk effects on pollinator behaviour. PLoS ONE 6, e20689 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Kluser, S. & Peduzzi, P. Global pollinator decline : A literature review. UNEP/GRID-Europe (2007).Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).Article
Google Scholar
Paudel, Y. P., Mackereth, R., Hanley, R. & Qin, W. Honey bees (Apis mellifera L.) and pollination issues: current status, impacts and potential drivers of decline. J. Agric. Sci. 7, 93–109 (2015).
Google Scholar
Theisen-Jones, H. & Bienefeld, K. The Asian honey bee (Apis cerana) is significantly in decline. Bee World 93, 90–97 (2016).Article
Google Scholar
Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. U.S.A. 108, 662–667 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Wood, T. J. et al. Managed honey bees as a radar for wild bee decline?. Apidologie 51, 1100–1116 (2020).Article
Google Scholar
Thapa, R. Honeybees and other insect pollinators of cultivated plants: A review. J. Inst. Agric. Anim. Sci. 27, 1–23 (2006).Article
Google Scholar
Nicholls, C. I. & Altieri, M. A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 33, 257–274 (2013).Article
Google Scholar
Rader, R., Howlett, B. G., Cunningham, S. A., Westcott, D. A. & Edwards, W. Spatial and temporal variation in pollinator effectiveness: Do unmanaged insects provide consistent pollination services to mass flowering crops?. J. Appl. Ecol. 49, 126–134 (2012).Article
Google Scholar
Nikkeshi, A., Inoue, H., Arai, T., Kishi, S. & Kamo, T. The bumblebee Bombus ardens ardens (Hymenoptera: Apidae) is the most important pollinator of Oriental persimmon, Diospyros kaki (Ericales: Ebenaceae), in Hiroshima, Japan. Appl. Entomol. Zool. 54, 409–419 (2019).Article
Google Scholar
Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4, 19–32 (2020).PubMed
PubMed Central
Article
Google Scholar
Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).ADS
CAS
PubMed
Article
Google Scholar
Gilpin, A. M., Denham, A. J. & Ayre, D. J. The use of digital video recorders in pollination biology. Ecol. Entomol. 42, 383–388 (2017).Article
Google Scholar
Barlow, S. E. & O’Neill, M. A. Technological advances in field studies of pollinator ecology and the future of e-ecology. Curr. Opin. Insect Sci. 38, 15–25 (2020).PubMed
Article
Google Scholar
Suzuki-Ohno, Y. et al. Deep learning increases the availability of organism photographs taken by citizens in citizen science programs. Sci. Rep. 12, 1–10 (2022).Article
CAS
Google Scholar
Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. U.S.A. 118, 1–10 (2021).
Google Scholar More