More stories

  • in

    Plant rarity in fire-prone dry sclerophyll communities

    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R Soc. B 283, 20160084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enquist, B. J. et al. The commonness of rarity: Global and future distribution of rarity across land plants. Sci. Adv. 5, eaaz0414 (2019).Bevill, R. L. & Louda, S. M. Comparisons of related rare and common species in the study of plant rarity. Conserv. Biol. 13, 493–498 (1999).Article 

    Google Scholar 
    Murray, B. R., Thrall, P. H., Gill, A. M. & Nicotra, A. B. How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310 (2002).Article 

    Google Scholar 
    Gaston, K. J. Common ecology. Bioscience 61, 354–362 (2011).Article 

    Google Scholar 
    Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    Gaston, K. J. What is rarity? in Rarity 1–21 (Springer, 1994).Rabinowitz, D. Seven forms of rarity. in The biological aspects of rare plant conservation (ed. Synge, H.) 205–217 (John Wiley and Sons: Chichester, UK, 1981).Sykes, L., Santini, L., Etard, A. & Newbold, T. Effects of rarity form on species’ responses to land use. Conserv. Biol. 34, 688–696 (2019).PubMed 
    Article 

    Google Scholar 
    Patykowski, J. et al. The effect of prescribed burning on plant rarity in a temperate forest. Ecol. Evol. 8, 1714–1725 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ames, G. M., Wall, W. A., Hohmann, M. G. & Wright, J. P. Trait space of rare plants in a fire-dependent ecosystem. Conserv. Biol. 31, 903–911 (2017).PubMed 
    Article 

    Google Scholar 
    Foster, C. N. et al. Effects of fire regime on plant species richness and composition differ among forest, woodland and heath vegetation. Appl. Veg. Sci. 21, 132–143 (2018).Article 

    Google Scholar 
    Fernández-García, V. et al. Fire regimes shape diversity and traits of vegetation under different climatic conditions. Sci. Total Environ. 716, 137137 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Bassett, M., Leonard, S. W. J., Chia, E. K., Clarke, M. F. & Bennett, A. F. Interacting effects of fire severity, time since fire and topography on vegetation structure after wildfire. For. Ecol. Manag. 396, 26–34 (2017).Article 

    Google Scholar 
    Miller, B. P., Symons, D. R. & Barrett, M. D. Persistence of rare species depends on rare events: Demography, fire response and phenology of two plant species endemic to a semiarid Banded Iron Formation range. Aust. J. Bot. 67, 268–280 (2019).Article 

    Google Scholar 
    Etchells, H., O’Donnell, A. J., Lachlan McCaw, W. & Grierson, P. F. Fire severity impacts on tree mortality and post-fire recruitment in tall eucalypt forests of southwest Australia. For. Ecol. Manag. 459, 117850 (2020).Article 

    Google Scholar 
    Bradstock, R. A., Tozer, M. G. & Keith, D. A. Effects of high frequency fire on floristic composition and abundance in a fire-prone heathland near Sydney. Aust. J. Bot. 45, 641–655 (1997).Article 

    Google Scholar 
    Penman, T. D., Binns, D. L., Brassil, T. E., Shiels, R. J. & Allen, R. M. Long-term changes in understorey vegetation in the absence of wildfire in south-east dry sclerophyll forests. Aust. J. Bot. 57, 533–540 (2010).Article 

    Google Scholar 
    Ooi, M. K. The importance of fire season when managing threatened plant species: A long-term case-study of a rare Leucopogon species (Ericaceae). J. Environ. Manage. 236, 17–24 (2019).PubMed 
    Article 

    Google Scholar 
    Pausas, J. G., Bradstock, R. A., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).Article 

    Google Scholar 
    Australian Bureau of Meteorology. Climate Data Online. www.bom.gov.au (2019).Abell, R. S. Geoscience map of Jervis Bay Territory and Beecroft peninsula (1:25000 scale). Australian Geological Survey Organisation (1992).Taws, N. Vegetation survey and mapping of Jervis Bay Territory. (Taws Botanical Research, 1997).Taylor, G., Abell, R. & Paterson, I. Geology, geomorphology, soils and earth resources. in Jervis Bay (eds. Cho Arthur, G., Georges, Stoutjesdikj Richard, R., & Longmore) .-. (Australian Nature Conservation Agency, 1995).Keith, D. A. Ocean shores to desert dunes: the native vegetation of NSW and the ACT (Selected Extracts). (Department of Environment and Conservation (NSW), 2004).Keith, D. A. & Tozer, M. G. Vegetation dynamics in coastal heathlands of the Sydney basin. in Proceedings of the Linnean Society of New South Wales vol. 134 (2012).Lindenmayer, D. B. et al. Contrasting mammal responses to vegetation type and fire. Wildl. Res. 35, 395–408 (2008).Article 

    Google Scholar 
    Bradstock, R. A. & Kenny, B. J. An application of plant functional types to fire management in a conservation reserve in southeastern Australia. J. Veg. Sci. 14, 345–354 (2003).Article 

    Google Scholar 
    Bowd, E. J., Banks, S. C., Bissett, A., May, T. W. & Lindenmayer, D. B. Direct and indirect disturbance impacts in forests. Ecol. Lett. https://doi.org/10.1111/ele.13741 (2021).Article 
    PubMed 

    Google Scholar 
    Thompson, C. G., Kim, R. S., Aloe, A. M. & Becker, B. J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl. Soc. Psychol. 39, 81–90 (2017).Article 

    Google Scholar 
    Fox, J. & Weisberg (Sage, 2019).
    Google Scholar 
    Venables, W. N. R., B. D. Modern Applied Statistics with S. Fourth Edition. (Springer, 2002).Morrison, D. A. et al. Effects of fire frequency on plant species composition of sandstone communities in the Sydney region: Inter-fire interval and time-since-fire. Aust. J. Ecol. 20, 239–247 (1995).ADS 
    Article 

    Google Scholar 
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-Level / mixed) regression models. (2020).Falster, D. et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data 8, 254 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tozer, M. G. & Bradstock, R. A. Fire-mediated effects of overstorey on plant species diversity and abundance in an eastern Australian heath. Plant Ecol. 164, 213–223 (2003).Article 

    Google Scholar 
    Gosper, C. R., Yates, C. J., Prober, S. M. & Parsons, B. C. Contrasting changes in vegetation structure and diversity with time since fire in two Australian Mediterranean-climate plant communities. Austral Ecol. 37, 164–174 (2012).Article 

    Google Scholar 
    Foster, C., Barton, P., Robinson, N., MacGregor, C. & Lindenmayer, D. B. Effects of a large wildfire on vegetation structure in a variable fire mosaic. Ecol. Appl. 27, 2369–2381 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Preston, F. W. The commonness, and rarity, of species. Ecology 29, 254–283 (1948).Article 

    Google Scholar 
    McGill, B. J. A renaissance in the study of abundance. Science 314, 770–772 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).Article 

    Google Scholar 
    Lyons, K. G. & Schwartz, M. W. Rare species loss alters ecosystem function—invasion resistance. Ecol. Lett. 4, 358–365 (2001).Article 

    Google Scholar 
    Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758 (2019).PubMed 
    Article 

    Google Scholar 
    Smith, M. D. & Knapp, A. K. Dominant species maintain ecosystem function with non-random species loss. Ecol. Lett. 6, 509–517 (2003).Article 

    Google Scholar 
    Lennon, J. J., Koleff, P., Greenwood, J. J. & Gaston, K. J. Contribution of rarity and commonness to patterns of species richness. Ecol. Lett. 7, 81–87 (2004).Article 

    Google Scholar 
    Foster, C. N. et al. Herbivory and fire interact to affect forest understory habitat, but not its use by small vertebrates. Anim. Conserv. 19, 15–25 (2016).Article 

    Google Scholar 
    Lamont, B. B., Enright, N. J. & He, T. Fitness and evolution of resprouters in relation to fire. Plant Ecol. 212, 1945–1957 (2011).Article 

    Google Scholar 
    Tolhurst, K. G. & Turvey, N. D. Effects of bracken (Pteridium esculentum (forst. f.) cockayne) on eucalypt regeneration in west-central Victoria. For. Ecol. Manag. 54, 45–67 (1992).Candeias, M. & Warren, R. J. Rareness starts early for disturbance-dependent grassland plant species. Biodivers. Conserv. 25, 2771–2785 (2016).Article 

    Google Scholar 
    Beadle, N. Soil phosphate and the delimitation of plant communities in eastern Australia. Ecology 35, 370–375 (1954).CAS 
    Article 

    Google Scholar 
    Orians, G. H. & Milewski, A. V. Ecology of Australia: The effects of nutrient-poor soils and intense fires. Biol. Rev. 82, 393–423 (2007).PubMed 
    Article 

    Google Scholar 
    Vesk, P. A. & Westoby, M. Funding the bud bank: A review of the costs of buds. Oikos 106, 200–208 (2004).Article 

    Google Scholar 
    Wilfahrt, P. et al. Temporal rarity is a better predictor of local extinction risk than spatial rarity. Ecology https://doi.org/10.1002/ecy.3504 (2021).Article 
    PubMed 

    Google Scholar 
    Miller, B. P. et al. Persistence of rare species depends on rare events: Demography, fire response and phenology of two plant species endemic to a semiarid Banded Iron Formation range. Aust. J. Bot. 67, 268–280 (2019).Article 

    Google Scholar 
    Gillespie, I. G. & Allen, E. B. Fire and competition in a southern California grassland: Impacts on the rare forb Erodium macrophyllum. J. Appl. Ecol. 41, 643–652 (2004).Article 

    Google Scholar 
    Maire, V. et al. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196, 497–509 (2012).PubMed 
    Article 

    Google Scholar 
    Yenni, G., Adler, P. B. & Ernest, S. M. Do persistent rare species experience stronger negative frequency dependence than common species?. Glob. Ecol. Biogeogr. 26, 513–523 (2017).Article 

    Google Scholar 
    Mayberry, R. J. & Elle, E. Conservation of a rare plant requires different methods in different habitats: Demographic lessons from Actaea elata. Oecologia 164, 1121–1130 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rabinowitz, D. & Rapp, J. K. Dispersal abilities of seven sparse and common grasses froma Missouri prairie. Am. J. Bot. 68, 616–624 (1981).Article 

    Google Scholar 
    McIntyre, S. Comparison of a common, rare and declining plant species in the Asteraceae: Possible causes of rarity. Pac. Conserv. Biol. 2, 177–190 (1995).Article 

    Google Scholar 
    Hopfensperger, K. N. A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116, 1438–1448 (2007).Article 

    Google Scholar 
    Cross, A. T. et al. Defining the role of fire in alleviating seed dormancy in a rare Mediterranean endemic subshrub. AoB Plants 9, (2017). More

  • in

    Comparative efficacy of phosphorous supplements with phosphate solubilizing bacteria for optimizing wheat yield in calcareous soils

    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2015).
    Google Scholar 
    Salimpour, S., Khavazi, K., Nadian, H., Besharati, H. & Miransari, M. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Plant Biol. 6, 629–642 (2010).
    Google Scholar 
    Ezawa, T., Smith, S. E. & Smith, F. A. P metabolism and transport in AM fungi. Plant Soil 244, 221–230 (2002).CAS 
    Article 

    Google Scholar 
    Halajnia, A., Haghnia, G. H., Fotovat, A. & Khorasani, R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma 150, 209–213 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Adnan, M. et al. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9, 900 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Khan, A. A., Jilani, G., Akhtar, M. S., Naqvi, S. M. S. & Rasheed, M. Phosphorus solubilizing bacteria, occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 1, 48–58 (2009).
    Google Scholar 
    Torrent, J., Barron, V. & Schwertmann, U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54, 1007–1012 (1990).ADS 
    Article 

    Google Scholar 
    Rehim, A. Band-application of phosphorus with farm manure improves phosphorus use efficiency, productivity, and net returns of wheat on sandy clay loam soil. Turk. J. Agric. For. 40, 319–326 (2016).CAS 
    Article 

    Google Scholar 
    Bieleski, R. L. Phosphate pools, phosphate transport and phosphate availability. Annu. Rev. Plant Physiol. 24, 225–252 (1973).CAS 
    Article 

    Google Scholar 
    Goldstein, A. H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol. Agric. Hortic. 12, 185–193 (1995).Article 

    Google Scholar 
    Lopez-Bucio, J., Vega, O. M., Guevara-Garcıa, A. & Herrera-Estrella, L. Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nat. Biotechnol. 18, 450–453 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sato, S., Solomon, D., Hyl, C., Ketterings, Q. M. & Lehmann, J. Phosphorus speciation in manure and manure-amended soils using XANES spectroscopy. Environ. Sci. Technol. 39, 7485–74919 (2000).ADS 
    Article 
    CAS 

    Google Scholar 
    Brady, N. C., Weil, R. R. & Weil, R. R. The Nature and Properties of Soils Vol. 13, 662–710 (Prentice Hall, 2008).
    Google Scholar 
    Adnan, M. et al. Coupling phosphate solubilizing bacteria with Phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 9, 900 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Caravaca, F., Alguacil, M. M., Azcon, R., Diaz, G. & Roldan, A. Comparing the effectiveness of mycorrhizal inoculum and amendment with sugar beet, rock phosphate and Aspergillus niger to enhance field performance of the leguminous shrub Dorycnium pentaphyllum L.. Appl. Soil Ecol. 25, 169–180 (2004).Article 

    Google Scholar 
    Zaidi, A., Khan, M., Ahemad, M. S., Oves, M. & Wani, P. A. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In Microbial Strategies for Crop Improvement (eds Khan, M. S. et al.) 23–50 (Springer, 2009).Chapter 

    Google Scholar 
    Illmer, P., Barbato, A. & Schinner, F. Solubilization of hardly-soluble AlPO4 with P-solubilizing microorganism. Soil Biol. Biochem. 27, 265–270 (1995).CAS 
    Article 

    Google Scholar 
    Ryan, P. R., Delhaize, E. & Jones, D. L. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biol. 52, 527–560 (2001).CAS 
    Article 

    Google Scholar 
    Chen, Y. P. et al. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 34, 33–41 (2006).Article 

    Google Scholar 
    Adnan, M. et al. Integration of poultry manure and phosphate solubilizing bacteria improved availability of Ca bound P in calcareous soils. 3 Biotech 9, 368 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, Z. & Zhu, J. Microbial utilization and transformation of phosphate adsorbed by variable charged minerals. Soil Biol. Biochem. 30, 917–923 (1988).Article 

    Google Scholar 
    Kucey, R. M. N. Effect of Penicillium bilajion the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68, 261–270 (1988).CAS 
    Article 

    Google Scholar 
    Bünemann, E. K., Bossio, D. A., Smithson, P. C., Frossard, E. & Oberson, A. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol. Biochem. 36, 889–901 (2004).Article 
    CAS 

    Google Scholar 
    McGill, W. B. & Cole, C. V. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26, 267–268 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Chaiharn, M. & Lumyong, S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 62, 173–181 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kucey, R. M. N., Janzen, H. H. & Legett, M. E. Microbially mediated increases in plant-available phosphorus. Adv. Agron. 42, 198–228 (1989).
    Google Scholar 
    Rodriguez, H. & Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xiao, Y., Wang, X., Chen, W. & Huang, Q. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 34, 873–880 (2017).CAS 
    Article 

    Google Scholar 
    Sugihara, S., Funakawa, S., Kilasara, M. & Kosaki, T. Dynamics of microbial biomass nitrogen in relation to plant nitrogen uptake during the crop growth period in a dry tropical cropland in Tanzania. Soil Sci. Plant Nutr. 56, 105–114 (2010).CAS 
    Article 

    Google Scholar 
    Jalili, F. et al. Isolation and characterization of ACC deaminase producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J. Plant Physiol. 166, 667–674 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tiwari, V. N., Lehri, L. K. & Pathak, A. N. Effect of inoculating crops with phospho-microbes. Exp. Agric. 25, 47–50 (1989).Article 

    Google Scholar 
    Pal, S. S. Interaction of an acid tolerant strain of phosphate solubilizing bacteria with a few acid tolerant crops. Plant Soil 213, 221–230 (1999).MathSciNet 
    Article 

    Google Scholar 
    Afzal, A., Ashraf, M., Asad, S. A. & Faroog, M. Effect of phosphate solubilizing microorganism on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int. J. Agric. Biol. 7, 207–209 (2005).
    Google Scholar 
    Bolan, N. S., Naidu, R., Mahimairajaand, S. & Baskaran, S. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biol. Fertil. Soils 18, 311–319 (1994).CAS 
    Article 

    Google Scholar 
    Mihoub, A., Amin, A. E. E. A. Z., Motaghian, H. R., Saeed, M. F. & Naeem, A. Citric acid (CA)–modified biochar improved available phosphorus concentration and its half-life in a P-fertilized calcareous sandy soil. J. Soil Sci. Plant Nutr. 22(1), 465–474 (2022).CAS 
    Article 

    Google Scholar 
    Adnan, M., Shah, Z., Sharif, M. & Rahman, H. Liming induces carbon dioxide (CO2) emission in PSB inoculated alkaline soil supplemented with different phosphorus sources. Environ. Sci. Pollut. Res. 25(10), 9501–9509 (2018).CAS 
    Article 

    Google Scholar 
    Amin, A. E. E. A. Z. & Mihoub, A. Effect of sulfur-enriched biochar in combination with sulfur-oxidizing bacterium (Thiobacillus spp.) on release and distribution of phosphorus in high calcareous p-fixing soils. J. Soil Sci. Plant Nutr. 21(3), 2041–2047 (2021).CAS 
    Article 

    Google Scholar 
    Tawaraya, K., Hirose, R. & Wagatsuma, T. Inoculation of arbuscularmycorrhizal fungi can substantially reduce phosphate fertilizer application to Alliumfis-tulosum L. and achieve marketable yield underfield condition. Biol. Fertil. Soils 48, 839–843 (2012).Article 

    Google Scholar 
    Islam, M. T. & Hossain, M. M. Plant probiotics in phosphorus nutrition in crops, with special reference to rice. In Bacteria in Agrobiology, Plant Probiotics (ed. Maheshwari, D. K.) 325–363 (Springer, 2012).Chapter 

    Google Scholar 
    Amruthesh, K. N., Raj, S. N., Kiran, B., Shetty, H. S. & Reddy, M. S. Growth promotion by plant growth-promoting rhizobacteria in some economically important crop plants. In Sixth International PGPR Workshop, 5–10 October, Calicut, India, 97–103 (2003).Kumar, S. et al. Impacts of nitrogen rate and landscape position on soils and switchgrass root growth parameters. Agron. J. 111, 1046–1059 (2019).CAS 
    Article 

    Google Scholar 
    Mihoub, A. & Boukhalfa-Deraoui, N. Performance of different phosphorus fertilizer types on wheat grown in calcareous sandy soil of El-Menia, Southern Algeria. Asian J. Crop Sci. 6, 383–391 (2014).Article 

    Google Scholar 
    Piccini, D. & Azcon, R. Effect of phosphate solubilizing bacteria and vesicular-arbuscular mycorrhizal fungi on the utilization of Bayovar rock phosphate by alfalfa plants using a sand-vermiculite medium. Plant Soil 50, 45–50 (1987).Article 

    Google Scholar 
    Dwivedi, B. S., Singh, V. K. & Dwivedi, V. Application of phosphate rock, with or without Aspergillus awamori inoculation, to meet phosphorus demands of rice–wheat systems in the Indo Gangetic plains of India. Aus. J. Exp. Agric. 44, 1041–1050 (2004).CAS 
    Article 

    Google Scholar 
    Saad, O. A. O. & Hammad, A. M. M. Fertilizing wheat plants with rock phosphate combined with phosphate dissolving bacteria and V.A mycorrhiza as alternate for ca–superphosphate. Ann. Agric. Sci. Cairo 43, 445–460 (1998).
    Google Scholar 
    Chabot, R. & Antoun, H. Growth promotion of maize and lettuce by phosphate solubilizing Rhizobium leguminosarum. Plant Soil. 184, 311–321 (1996).CAS 
    Article 

    Google Scholar 
    Kundu, B. S. & Gaur, A. C. Rice response to inoculation with N2 fixing and P solubilizing microorganisms. Plant Soil. 79, 227–234 (1984).CAS 
    Article 

    Google Scholar 
    Sharma, G. D., Thakur, R., Raj, S., Kauraw, D. L. & Kulhare, P. S. Impact of integrated nutrient management on yield, nutrient uptake, protein content of wheat (Triticum aestivum) and soil fertility in a typic Haplustert. Bioscan 8, 1159–1164 (2013).CAS 

    Google Scholar 
    Afzal, A. & Asghari, B. Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int. J. Agric. Biol. 10, 85–88 (2008).CAS 

    Google Scholar 
    Jalili, G. et al. Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere micro flora through organic and bio fertilizers. Ann. Microbiol. 57(2), 177–183 (2007).Article 

    Google Scholar 
    Sharma, S. N. & Prasad, R. Yield and P uptake by rice and wheat grown in a sequence as influenced by phosphate fertilization with diammonium phosphate and Mussoorie rock phosphate with or without crop residues and phosphate solubilizing bacteria. J. Agric. Sci. 141, 359–369 (2003).CAS 
    Article 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mukherjee, P. K. & Rai, R. K. Sensitivity of P uptake to change in root growth and soil volume as influenced by VAM, PSB and P levels in wheat and chickpeas. Ann. Agric. Res. 20, 528–530 (1999).
    Google Scholar 
    Egamberdiyeva, D. Proc. Inst. Microbiol. Tashkent, Uzekistan (2004).Mihoub, A., Daddi Bouhoun, M., Naeem, A. & Saker, M. L. Low-molecular weight organic acids improve plant availability of phosphorus in different textured calcareous soils. Arch. Agron. Soil Sci. 63, 1023–1034 (2017).CAS 
    Article 

    Google Scholar 
    Thakuria, D. et al. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr. Sci. 86, 978–985 (2004).
    Google Scholar 
    Mamta, P. et al. Stimulatory effect of phosphate solubilizing bacteria on plant growth, stevioside and rebaudioside-A content of Stevia rebaudiana Bertoni. Appl. Soil Ecol. 46, 222–229 (2010).Article 

    Google Scholar 
    Banik, S. B. K. Solubilization of inorganic phosphate and production of organic acids by micro-organisms isolated in sucrose tricalcium phosphate agar plate. Zentralblat. Bakterol. Parasilenkl. Infektionskr. Hyg. 136, 478–486 (1981).CAS 

    Google Scholar 
    Stevenson, F. J. Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micro-nutrients (Wiley, 2005).
    Google Scholar 
    Ekin, Z. Performance of phosphorus solubilizing bacteria for improving growth and yield of sun flower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr. J. Biotechnol. 9, 3794–3800 (2010).CAS 

    Google Scholar 
    Zabihi, H. R., Savaghebi, G. R., Khavazi, K., Ganjali, A. & Miransari, M. Pseudomonas bacteria and phosphorus fertilization, affecting wheat (Triticum aestivum L.) yield and P uptake under green house and field conditions. Acta Physiol. Plant 33, 145–152 (2010).Article 

    Google Scholar 
    Gulati, A., Rahi, P. & Vyas, P. Characterization of phosphate-solubilizing fluorescent Pseudomonas from the rhizosphere of seabuckthorn growing in the cold deserts of Himalayas. Curr. Microbiol. 56, 73–79 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kloepper, J. W., Lifshitz, R. & Zablotowicz, R. M. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7, 39–44 (1989).Article 

    Google Scholar 
    Satchell, J. E. Ecology and environment in the United Arab Emirates. J. Arid. Environ. 1, 201–226 (1978).ADS 
    Article 

    Google Scholar 
    Biswas, D. R. Nutrient recycling potential of rock phosphate and waste mica enriched compost on crop productivity and changes in soil fertility under potato–soybean cropping sequence in an Inceptisol of Indo-Gangetic Plains of India. Nutr. Cycl. Agroecosyst. 89, 15–30 (2011).Article 

    Google Scholar 
    Mitra, S. et al. Effect of integrated nutrient management on fiber yield, nutrient uptake and soil fertility in jute (Corchorus olitorius). Indian J. Anim. Sci. 80(9), 801–804 (2010).
    Google Scholar 
    Laxminarayana, K. Effect of integrated use of inorganic and organic manures on soil properties, yield and nutrient uptake of rice in Ultisols of Mizoram. J. Indian Soc. Soil Sci. 54, 120–123 (2006).
    Google Scholar 
    Sanyal, S. K. & De Datta, S. K. Chemistry of phosphorus transformations in soil. Adv. Soil Sci. 16, 1–120 (1991).CAS 

    Google Scholar 
    Briedis, C. et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system. Geoderma 170, 80–88 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Krieg, N. R. & Holt, J. G. Bergey’s Manual of Systemetic Bacteriology Vol. 1, 984 (Williams & Wilkin, 1984).
    Google Scholar 
    Holt, J. G. et al. (eds) Bergey’s Manual of Determinative Bacteriology 9th edn, 787 (The Williams & Wilkin, 1994).
    Google Scholar 
    Gordon, R. E., Haynes, W. C. & Pang, C. N. The Genus Bacillus. Agricultural Handbook. No. 427 283 (Department of Agriculture, 1973).
    Google Scholar 
    Nautiyal, C. S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170(1), 265–270 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 2nd edn, Vol. 14 (ed. Page, A. L.) 961–1010 (Wiley, 1996).
    Google Scholar 
    Eivazi, F. & Tabatabai, M. Phosphatases in soils. Soil Biol. Biochem. 9, 167–172 (1977).CAS 
    Article 

    Google Scholar 
    Alexander, D. B. & Zuberer, D. A. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils 12, 39–45 (1991).CAS 
    Article 

    Google Scholar 
    Vincet, J. M. A. Manual for the Practical Study of the Root-Nodule Bacteria; IBPH and Book No. 15 (Blackwell Scientific Publication, 1970).
    Google Scholar 
    Alagawadi, A. R. & Gaur, A. C. Associative effect of Rhizobium and phosphate solubilizing bacteria on the yield and nutrient uptake of chickpea. Plant Soil. 105, 241–246 (1988).Article 

    Google Scholar 
    Satyaprakash, M., Nikitha, T., Reddi, E. U. B., Sadhana, B. & Vani, S. S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Int. J. Curr. Microbiol. Appl. Sci. 6, 2133–2144 (2017).CAS 
    Article 

    Google Scholar 
    Wu, S. C., Cao, Z. H., Li, Z. G., Cheung, K. C. & Wong, M. H. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma 125, 155–166 (2005).ADS 
    Article 

    Google Scholar 
    Thomas, G. W. Soil pH and soil acidity. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 5 (eds Sparks, D. L. et al.) 475–490 (Wiley, 1996).
    Google Scholar 
    Rhoades, J. D. Salinity, electrical conductivity and total dissolved solids. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 5 (eds Sparks, D. L. et al.) 417–435 (Soil Science Society of America, 1996).
    Google Scholar 
    Bremner, J. M. & Breitenbeck, G. A. A simple method for determination of ammonium in semi-micro Kjeldahl analysis of soil and plant material using a block digestor. Commun. Soil Sci. Plant Anal. 14, 905–913 (1983).CAS 
    Article 

    Google Scholar 
    Ryan, J., Estefan, G. & Rashid, A. Soil and Plant Analysis Laboratory Manual 2nd edn, 172 (The National Agricultural Research Center (NARC), 2001).
    Google Scholar 
    Olsen, S. R., Cole, C. V., Watanabe, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate (No. 939) (Department of Agriculture Circular, 1954).
    Google Scholar 
    Loeppert, R. H. & Suarez, D. L. Carbonate and gypsum. In Methods of Soil Analysis, Part 3, Chemical Methods Vol. 9 (eds Sparks, D. L. et al.) 181–197 (Soil Science Society of America, 1996).
    Google Scholar 
    Bahadur, L., Tiwari, D. D., Mishra, J. & Gupta, B. R. Effect of integrated nutrient management on yield, microbial population and changes in soil properties under rice-wheat cropping system in sodic soil. J. Indian Soc. Soil Sci. 60(4), 326–329 (2012).CAS 

    Google Scholar 
    Nelson, D. W. & Sommers, L. E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 2 2nd edn, Vol. 9 (eds Sparks, D. L. et al.) 961–1010 (Soil Science Society of America, 1996).
    Google Scholar 
    Richards, L. A. Diagnosis and improvement of saline and alkali soils. LWW 78(2), 154 (1954).
    Google Scholar 
    Steel, R. G. D. & Torrie, J. H. Principles and Procedures of Statistics, a Biometrical Approach 195–233 (McGraw Hill, 1996).MATH 

    Google Scholar  More

  • in

    Nitrogen balance and efficiency as indicators for monitoring the proper use of fertilizers in agricultural and livestock systems

    Site descriptionThe experiment was conducted at the Beef Cattle Research Center of the Institute of Animal Science/APTA/SAA, Sertãozinho, São Paulo, Brazil (21°08′16″ S e 47°59′25″ W, average altitude 548 m), during two consecutive years. The climate in this region is Aw according to the Köppen’s classification, characterized as humid tropical, with a rainy season during summer and drought during winter. The meteorological data is reported in Fig. 1. The soil in the experimental area is classified as an Oxisol42. Before the experiment, soil samples were collected for chemical characterization (Table 4), which was performed following the methodology described in Van Raij et al.43. Samples were collected in 18 experimental paddocks, at the depths of 0- to 10- and 10- to 20-cm layers, from 10 distinct sampling points in each paddock, in order to create one composite sample per unit, totaling 36 samples analyzed.Figure 1Meteorological data during the study period, obtained from the meteorological station located at Centro de Pesquisa de Bovinos de Corte, Instituto de Zootecnia/Agência Paulista de Tecnologia dos Agronegócios (APTA)/Secretaria de Agricultura e Abastecimento de São Paulo (SAA), Sertãozinho, São Paulo, Brazil.Full size imageTable 4 Chemical attributes of the soil in the experimental area, before installing the experiment (November 2015).Full size tableThe nitrogen total (Nt) content was determined by the micro-Kjeldahl method44, and the soil nitrogen stocks (SN) were calculated using the following equation below, according to Veldkamp et al.45.$${text{SN }}left[ {{text{Mg ha}}^{ – 1} {text{ at a given depth}}} right], = ,({text{concentration }} times {text{ BD}}, times ,{1}/{1}0),$$ where concentration refers to the Nt concentration at a given depth (g kg−1), BD is the bulk density at a certain depth (average 1.24 kg dm−3), and 1 is the layer thickness (cm).Description of treatments and managementsThe experiment was carried out in a 16-ha area, divided into 18 paddocks of 0.89 ha each (Fig. 2), organized in a randomized blocks design with three replicates and six treatments, namely conventional crop system with grain maize production (CROP), conventional livestock system with beef cattle production in pasture using Marandu grass (LS), and four ICLS for the production of intercropped maize grain with beef cattle pasture. All production systems were sowed in December 2015, under a no-tillage system. The fertilization recommendations in the systems were based on the recommendation presented in the Boletim 10046.Figure 2Localization and representation of the area of the experiment carried out in the study. Google Earth version Pro was used to construct the map (http://www.google.com/earth/index.html).Full size imageIn the CROP system, the maize Pioneer P2830H was cultivated, sowed in a spacing of 75 cm and sowing density of 70 thousand plants. Applications of 32 kg ha−1 of nitrogen (urea), 112 kg ha−1 of P2O5 (single superphosphate) and 64 kg ha−1 of KCl (potassium chloride) were performed. Complementarily, a topdressing fertilization was made using 80 kg ha−1 of nitrogen (urea) and 80 kg ha−1 of KCl. Sowing was carried out for two consecutive years (December 2015 and 2016), providing two harvests of maize grains (May 2016 and 2017), and between one harvest and the other, the soil remained in fallow without any cover crop. The total amount of fertilizer applied in two years was 224 kg ha−1 of nitrogen (urea), 224 kg ha−1 of P2O5 (single superphosphate) and 288 kg ha−1 of KCl (potassium chloride).For the LS treatment, Urochloa brizantha (Hoechst. ex A. Rich) R.D. Webster cv. Marandu (syn. Brachiaria brizantha cv. Marandu) was sowed in a spacing of 37.5 cm, with a density of 5 kg ha−1 of seeds (76% of crop value) for the pasture assemblage. Marandu grass seeds were mixed with the planting fertilizer, applying 32 kg ha−1 of nitrogen (urea), 112 kg ha−1 of P2O5 (as single superphosphate) and 64 kg ha−1 of KCl. Applications of 40 kg ha−1 of nitrogen, 10 kg ha−1 of P2O5 and 40 kg ha−1 of KCl were also performed as topdressing fertilization in October 2016 and March 2017. 90 days after sowing, the pasture was ready to be grazed (March 2016). Three grazing periods were carried out in continuous stocking systems, with the first period between March and April 2016, the second period between August and October 2016 and the third between November 2016 and December 2017. The total amount for 2 years was 112 kg ha−1 of nitrogen (urea), 132 kg ha−1 of P2O5 (single superphosphate) and 144 kg ha−1 of KCl (potassium chloride).The same cultivar, spacing, sowing density and fertilization rates described in the CROP treatment were used in all ICLS, as well as the same density of Marandu grass seeds and topdressing fertilization adopted in the pasture of the LS treatment. The total amount for two years was 192 kg ha−1 of nitrogen (urea), 132 kg ha−1 of P2O5 (single superphosphate) and 224 kg ha−1 of KCl (potassium chloride). In ICLS-1, Marandu grass was sowed in lines simultaneously with maize, while in ICLS-2, the sowing was also simultaneous, but the application of an under-dose of 200 mL of the herbicide Nicosulfuron was used, 20 days after seedlings emergence. In the ICLS-3, Marandu grass seeds were sown the time of topdressing fertilization of maize, thus the grass seeds were mixed with the fertilizer, and sowing was carried out in the interlines of maize, using a minimum cultivator. In ICLS-4, the sowing of Marandu grass was performed simultaneously with maize, but the grass seeds were sowed in both rows and inter-rows of maize, resulting in a spacing of 37.5 cm. In this treatment, the application of 200 mL of the herbicide Nicosulfuron was adopted, 20 days after seedlings emergence.In all ICLS treatments, maize harvest was carried out in May 2016. Ninety days after harvesting the plants, the pastures were ready to be grazed. Therefore, two grazing periods were made in continuous stocking, being the first period between August and October 2016 and the second period between November 2016 and December 2017. The method for animal stocking in treatments LS and ICLS was continuous with a stocking rate (put and take) being defined according to Mott47. Caracu beef cattle with 14 months of age were used at the beginning of the experiment, with an average body weight of 335 ± 30 kg.Estimations of the nutrient balance (NB) and nutrient use efficiency (NUE)In this study, the inputs and outputs of N were assessed at the farm level48,49. The NB was calculated by the equation below19,45,50.$${text{NB}}_{{text{N}}} = {text{ Input}}_{{text{N}}} {-}{text{ Output}}_{{text{N}}}$$As for the NUE, this parameter was evaluated as defined by the EU Nitrogen Expert Panel51, being calculated as the ratio between outputs and inputs of nitrogen.$${text{NUE}}_{{text{N}}} = , left[ {{text{Output}}_{{text{N}}} /{text{ Input}}_{{text{N}}} } right]$$where NB is the nutrient balance, N is nitrogen, Input is the N concentration in the mineral fertilizer (urea), Output is the nitrogen concentration in export (maize grain and animal tissue), and NUE is the use efficiency of the nutrient.The amount of N exported in maize grains, the grain production results (Table 2) were multiplied by the mean value of N, consulted in Crampton and Harris52.In order to estimate the amounts of nutrient exported by the animals in their tissues, the values of live weight gain were considered [kg ha-1 of live weight (PV)] (Table 2), as well as the nitrogen values of the tissue, according to the methodology proposed by Rasmussen et al.21. Those authors reported that for animals weighting less than 452 kg/PV, it represents 2.7%, while heavier animals have a 2.4% nitrogen content representation of their body weight.The inputs and outputs of N in each production system are represented in Figs. 3, 4 and 5. Biological N fixation, atmospheric deposition, denitrification, leaching, rainfall, and volatilization and absorption of ammonia were not considered in the calculation of NB.Figure 3Representation of inputs and outputs of nitrogen and organic residues generated in the crop system.Full size imageFigure 4Representation of inputs and outputs of nitrogen and organic residues generated in the livestock system.Full size imageFigure 5Representation of inputs and outputs of nitrogen and organic residues generated in the integrated systems.Full size imageData for animal tissue, animal excreta, and N concentration in grains were obtained from key manuscripts from the scientific literature in order to estimate the N balance.Calculation of nitrogen quantity and valuation of organic residuesThe amount of N in the organic residues was determined as a function of the system (Figs. 3, 4, 5). The residue considered in the CROP was the straw derived from maize, while for LS it was the litter deposited (LD) in the grass Marandu, and animal manure (feces and urine). The ICLS were considered as the straw, LD, and animal manure.The N concentration in straw and LD was determined following the methods of AOAC (1990). Straw was sampled immediately after maize grain harvest, using a 1-m2 frame in the field. The material was collected in two spots of the plot that were chosen randomly. All straw deposited on the soil was sampled, weighted and dried in an oven with air circulation (60 °C) until constant weight, for the determination of dry matter in kg of straw per hectare (Table 2). The LD in the pasture system (Table 2) was analyzed according to Rezende et al.53.In order to estimate the daily amount of excreta, we considered the stocking rate adopted in the experiment (Table 2) and the values proposed by Haynes and Williams54. According to those authors, adult beef cattle can defecate on average 13 times a day and urinate 10 times a day, totaling a daily amount of 28.35 kg of feces and 19 L of urine.The valuation was calculated based on the mean value of urea for the last 10 years in the fertilizer market55,56,57, namely $0.28 kg−1 ha−1 of urea, and considering the loss of nitrogen by volatilization, which according to Freney et al.58 and Subair et al.59 can reach up to 28%.Statistical analysisThe experiment was assembled in a randomized blocks design. The model adopted for the analysis of all response variables included the block’s and treatments fixed effects (3 blocks and 6 treatments), in addition to the random error. Statistical analysis were carried out by the function “dbc()” of the package “ExpDes.pt” of the software R Development Core Team60, and the mean values were compared by the Tukey’s test at a 5% probability level. More

  • in

    Biodegradable sensors are ready to transform autonomous ecological monitoring

    Rundel, P. W., Graham, E. A., Allen, M. F., Fisher, J. C. & Harmon, T. C. New Phytol. 182, 589–607 (2009).Article 

    Google Scholar 
    Gibb, R., Browning, E., Glover‐Kapfer, P. & Jones, K. E. Methods Ecol. Evol. 10, 169–185 (2019).Article 

    Google Scholar 
    O’Connell, A. F. (ed) Camera Traps in Animal Ecology: Methods and Analyses. Vol. 271 (Springer, 2011).Hale, R. C., Seeley, M. E., Guardia, M. J. L., Mai, L. & Zeng, E. Y. J. Geophys. Res. Oceans 125, e2018JC014719 (2020).Article 

    Google Scholar 
    Widmer, R., Oswald-Krapf, H., Sinha-Khetriwal, D., Schnellmann, M. & Böni, H. Environ. Impact Assess. Rev. 25, 436–458 (2005).Article 

    Google Scholar 
    Hwang, S.-W. et al. Science 337, 1640–1644 (2012).CAS 
    Article 

    Google Scholar 
    Ashammakhi, N. et al. Adv. Funct. Mater. 31, 2104149 (2021).Boutry, C. M. et al. Nat. Biomed. Eng. 3, 47–57 (2019).CAS 
    Article 

    Google Scholar 
    Boutry, C. M. et al. Nat. Electron. 1, 314–321 (2018).Article 

    Google Scholar 
    Hori, K., Inami, A., Kan, T. & Onoe, H. In Proc. 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) 863–866 (IEEE, Orlando, 2021).Dincer, C. et al. Adv. Mater. 31, 1806739 (2019).Article 

    Google Scholar 
    Kocer, B. B. et al. In Proc. Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO) 1–8 (IEEE, Biograd na Moru, 2021).Pandolfi, C. & Izzo, D. Bioinspir. Biomim. 8, 025003 (2013).Article 

    Google Scholar 
    Wiesemüller, F., Miriyev, A. & Kovac, M. In Proc. Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO) 1–6 (IEEE, Biograd na Moru, 2021).Boutry, C. M. et al. Sens. Actuators A Phys. 189, 344–355 (2013).CAS 
    Article 

    Google Scholar 
    Tsang, M., Armutlulu, A., Martinez, A. W., Allen, S. A. B. & Allen, M. G. Microsyst. Nanoeng. 1, 15024 (2015).CAS 
    Article 

    Google Scholar 
    Lee, G. et al. Adv. Energy Mater. 7, 1700157 (2017).Article 

    Google Scholar 
    Dagdeviren, C. et al. Small 9, 3398–3404 (2013).CAS 
    Article 

    Google Scholar 
    Sadasivuni, K. K. et al. J. Mater. Sci. Mater. Electron. 30, 951–974 (2019).CAS 
    Article 

    Google Scholar 
    Luvisi, A., Panattoni, A. & Materazzi, A. Comput. Electron. Agric. 123, 135–141 (2016).Article 

    Google Scholar 
    Yin, L. et al. Adv. Mater. 26, 3879–3884 (2014).CAS 
    Article 

    Google Scholar 
    Demetillo, A. T., Japitana, M. V. & Taboada, E. B. Sustain. Environ. Res. 29, 12 (2019).CAS 
    Article 

    Google Scholar 
    Salvatore, G. A. et al. Adv. Funct. Mater. 27, 1702390 (2017).Article 

    Google Scholar 
    Farinha, A., Zufferey, R., Zheng, P., Armanini, S. F. & Kovac, M. IEEE Robot. Autom. Lett. 5, 6623–6630 (2020).Article 

    Google Scholar 
    Miriyev, A. & Kovač, M. Nat. Mach. Intell. 2, 658–660 (2020).Article 

    Google Scholar 
    Kang, S.-K., Koo, J., Lee, Y. K. & Rogers, J. A. Acc. Chem. Res. 51, 988–998 (2018).CAS 
    Article 

    Google Scholar 
    Goel, V., Luthra, P., Kapur, G. S. & Ramakumar, S. S. V. J. Polym. Environ. 29, 3079–3104 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Struggling to keep pace

    Brondizio, E. S., Settele, J., Díaz, S. & Ngo, H. T. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. (IPBES, 2019).Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Proc. Natl Acad. Sci. USA 106(Suppl 2), 19637–19643 (2009).CAS 
    Article 

    Google Scholar 
    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).CAS 
    Article 

    Google Scholar 
    Senior, R. A., Hill, J. K. & Edwards, D. P. Nat. Clim. Chang. 9, 623–626 (2019).Article 

    Google Scholar 
    Viana, D. S. & Chase, J. M. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01814-y (2022).Article 

    Google Scholar 
    Sauer, J. R. et al. Condor 119, 576–593 (2017).Article 

    Google Scholar 
    Nowak, L., Schleuning, M., Bender, I. M. A., Kissling, W. D. & Fritz, S. A. Divers. Distrib. https://doi.org/10.1111/ddi.13518 (2022).Article 

    Google Scholar 
    Allen, C. D. et al. For. Ecol. Manage. 259, 660–684 (2010).Article 

    Google Scholar 
    Janis, C. M., Damuth, J. & Theodor, J. M. Proc. Natl Acad. Sci. USA 97, 7899–7904 (2000).CAS 
    Article 

    Google Scholar 
    Stuart-Smith, R. D., Mellin, C., Bates, A. E. & Edgar, G. J. Nat. Ecol. Evol. 5, 656–662 (2021).Article 

    Google Scholar 
    Watanabe, Y. Y. Ecol. Lett. 19, 907–914 (2016).Article 

    Google Scholar 
    Bladon, A. J. et al. J. Anim. Ecol. 89, 2440–2450 (2020).Article 

    Google Scholar 
    Claramunt, S., Hong, M. & Bravo, A. Biotropica https://doi.org/10.1111/btp.13109 (2022).Article 

    Google Scholar 
    Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. J. Biogeogr. 45, 1459–1468 (2018).Article 

    Google Scholar 
    Bowler, D. E., Heldbjerg, H., Fox, A. D., O’Hara, R. B. & Böhning-Gaese, K. J. Anim. Ecol. 87, 1034–1045 (2018).Article 

    Google Scholar 
    Warren, D. L., Cardillo, M., Rosauer, D. F. & Bolnick, D. I. Trends Ecol. Evol. 29, 572–580 (2014).Article 

    Google Scholar 
    Gómez, C., Tenorio, E. A., Montoya, P. & Cadena, C. D. Proc. R. Soc. Lond. B. Biol. Sci. 283, 20152458 (2016).
    Google Scholar 
    Amano, T., Lamming, J. D. L. & Sutherland, W. J. Bioscience 66, 393–400 (2016).Article 

    Google Scholar 
    Rosenberg, K. V. et al. Science 366, 120–124 (2019).CAS 
    Article 

    Google Scholar 
    Howard, C. et al. Divers. Distrib. 26, 1442–1455 (2020).Article 

    Google Scholar  More

  • in

    Guiding large-scale management of invasive species using network metrics

    Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).
    Google Scholar 
    Epanchin-Niell, R. et al. Controlling invasive species in complex social landscapes. Front. Ecol. Environ. 8, 210–216 (2009).
    Google Scholar 
    Charles, H. & Dukes, J. S. in Biological Invasions (ed. Nentwig, W.) 217–237 (Springer, 2007). https://doi.org/10.1007/978-3-540-36920-2_13Gallardo, B., Clavero, M., Sánchez, M. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).
    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571–576 (2021).CAS 

    Google Scholar 
    Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2, 274–282 (2019).
    Google Scholar 
    Epanchin-Niell, R. S. & Hastings, A. Controlling established invaders: integrating economics and spread dynamics to determine optimal management. Ecol. Lett. 13, 528–541 (2010).
    Google Scholar 
    Chades, I. et al. General rules for managing and surveying networks of pests, diseases, and endangered species. Proc. Natl. Acad. Sci. USA 108, 8323–8328 (2011).CAS 

    Google Scholar 
    Epanchin-Niell, R. S. & Wilen, J. E. Optimal spatial control of biological invasions. J. Environ. Econ. Manag. 63, 260–270 (2012).
    Google Scholar 
    Epanchin-Niell, R. S. & Wilen, J. E. Individual and cooperative management of invasive species in human-mediated landscapes. Am. J. Agric. Econ. 97, 180–198 (2015).
    Google Scholar 
    Aadland, D., Sims, C. & Finnoff, D. Spatial dynamics of optimal management in bioeconomic systems. Comput. Econ. 45, 545–577 (2015).
    Google Scholar 
    Baker, C. M. Target the source: optimal spatiotemporal resource allocation for invasive species control. Conserv. Lett. 10, 41–48 (2017).
    Google Scholar 
    Bushaj, S., Büyüktahtakın, İ. E., Yemshanov, D. & Haight, R. G. Optimizing surveillance and management of emerald ash borer in urban environments. Nat. Res. Model. 34, e12267 (2021).
    Google Scholar 
    Fischer, S. M., Beck, M., Herborg, L.-M. & Lewis, M. A. Managing aquatic invasions: optimal locations and operating times for watercraft inspection stations. J. Environ. Manag. 283, 111923 (2021).
    Google Scholar 
    Büyüktahtakın, İ. E. & Haight, R. G. A review of operations research models in invasive species management: state of the art, challenges, and future directions. Ann. Oper. Res. 271, 357–403 (2018).
    Google Scholar 
    Epanchin-Niell, R. S. Economics of invasive species policy and management. Biol. Invasions 19, 3333–3354 (2017).
    Google Scholar 
    Bodin, Ö. et al. Improving network approaches to the study of complex social–ecological interdependencies. Nat. Sustain. 2, 551–559 (2019).CAS 

    Google Scholar 
    Nowzari, C., Precaido, V. M. & Pappas, G. J. Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Control Syst. 36, 26–46 (2016).
    Google Scholar 
    Newman, M. E. J. Spread of epidemic disease on networks. Phys. Rev. E 66, 016128 (2002).CAS 

    Google Scholar 
    Kempe, D., Kleinberg, J. & Tardos, E. Maximizing the spread of influence through a social network. In Proc. 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 137–146 (ACM Press, 2003).Pastor-Satorras, R. & Vespignani, A. Immunization of complex networks. Phys. Rev. E 65, 036104 (2002).
    Google Scholar 
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P. & Vespignani, A. Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979 (2015).
    Google Scholar 
    Holme, P., Kim, B. J., Yoon, C. N. & Han, S. K. Attack vulnerability of complex networks. Phys. Rev. E 65, 056109 (2002).
    Google Scholar 
    Muirhead, J. R. & Macisaac, H. J. Development of inland lakes as hubs in an invasion network. J. Appl. Ecol. 42, 80–90 (2005).
    Google Scholar 
    de la Fuente, B., Saura, S. & Beck, P. S. Predicting the spread of an invasive tree pest: the pine wood nematode in southern europe. J. Appl. Ecol. 55, 2374–2385 (2018).
    Google Scholar 
    Minor, E. S. & Urban, D. L. A graph-theory framework for evaluating landscape connectivity and conservation planning. Conserv. Biol. 22, 297–307 (2008).
    Google Scholar 
    Morel-Journel, T., Assa, C. R., Mailleret, L. & Vercken, E. Its all about connections: hubs and invasion in habitat networks. Ecol. Lett. 22, 313–321 (2019).
    Google Scholar 
    Perry, G. L. W., Moloney, K. A. & Etherington, T. R. Using network connectivity to prioritise sites for the control of invasive species. J. Appl. Ecol. 54, 1238–1250 (2017).
    Google Scholar 
    Kvistad, J. T., Chadderton, W. L. & Bossenbroek, J. M. Network centrality as a potential method for prioritizing ports for aquatic invasive species surveillance and response in the Laurentian Great Lakes. Manag. Biol. Invasions 10, 403 (2019).
    Google Scholar 
    Haight, R. G., Kinsley, A. C., Kao, S.-Y., Yemshanov, D. & Phelps, N. B. Optimizing the location of watercraft inspection stations to slow the spread of aquatic invasive species. Biol. Invasions 23, 3907–3919 (2021).
    Google Scholar 
    McEachran, M. C. et al. Stable isotopes indicate that zebra mussels (Dreissena polymorpha) increase dependence of lake food webs on littoral energy sources. Freshw, Biol. 64, 183–196 (2019).CAS 

    Google Scholar 
    Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. in Invasive Aquatic Species of Europe. Distribution, Impacts and Management (eds Leppäkoski, E. et al.) 433–446 (Springer, 2002).Prescott, T. H., Claudi, R. & Prescott, K. L. Impact of Dreissenid mussels on the infrastructure of dams and hydroelectric power plants. In Quagga and Zebra Mussels (eds Nalepa, T. F. & Schloesser, D. W.) 243–258 (CRC Press, 2013).Invasive Species of Aquatic Plants and Wild Animals in Minnesota: Annual Report for 2020 (Minnesota Department of Natural Resources, 2020).Kanankege, K. S., Alkhamis, M. A., Phelps, N. B. & Perez, A. M. A probability co-kriging model to account for reporting bias and recognize areas at high risk for zebra mussels and eurasian watermilfoil invasions in Minnesota. Front. Vet. Sci. 4, 231 (2018).
    Google Scholar 
    Mallez, S. & McCartney, M. Dispersal mechanisms for zebra mussels: population genetics supports clustered invasions over spread from hub lakes in Minnesota. Biol. Invasions 20, 2461–2484 (2018).
    Google Scholar 
    Kao, S.-Y. Z. et al. Network connectivity of Minnesota waterbodies and implications for aquatic invasive species prevention. Biol. Invasions 23, 3231–3242 (2021).
    Google Scholar 
    Kleinberg, J. M. Authoritative sources in a hyperlinked environment. In Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms 668–677 (1998).McDonald-Madden, E. et al. Using food-web theory to conserve ecosystems. Nat. Commun. 7, 10245 (2016).CAS 

    Google Scholar 
    Bossenbroek, J. M., Kraft, C. E. & Nekola, J. C. Prediction of long-distance dispersal using gravity models: zebra mussel invasion of inland lakes. Ecol. Appl. 11, 1778–1788 (2001).
    Google Scholar 
    Leung, B., Bossenbroek, J. M. & Lodge, D. M. Boats, pathways, and aquatic biological invasions: estimating dispersal potential with gravity models. Biol. Invasions 8, 241–254 (2006).
    Google Scholar 
    Beger, M. et al. Integrating regional conservation priorities for multiple objectives into national policy. Nat. Commun. 6, 8208 (2015).Runting, R. K. et al. Larger gains from improved management over sparing–sharing for tropical forests. Nat. Sustain. 2, 53–61 (2019).
    Google Scholar 
    Kinsley, A. C. et al. AIS Explorer: prioritization for watercraft inspections. A decision-support tool for aquatic invasive species management. J. Environ. Manage. 314, 115037 (2022).
    Google Scholar 
    Vander Zanden, M. J. & Olden, J. D. A management framework for preventing the secondary spread of aquatic invasive species. Can. J. Fish. Aquat. Sci. 65, 1512–1522 (2008).
    Google Scholar 
    Kanankege, K. S. et al. Lessons learned from the stakeholder engagement in research: application of spatial analytical tools in one health problems. Front. Vet. Sci. 7, 254 (2020).
    Google Scholar 
    Kroetz, K. & Sanchirico, J. The bioeconomics of spatial-dynamic systems in natural resource management. Annu. Rev. Resour. Econ. 7, 189–207 (2015).
    Google Scholar 
    Cade, B. S. & Noon, B. R. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1, 412–420 (2003).
    Google Scholar 
    Koenker, R. in Asymptotic Statistics (eds Mandl, P. & Hušková, M.) 349–359 (Springer, 1994).Ashander, J. Analysis code and data for ‘Guiding large-scale management of invasive species using network metrics’. figshare https://doi.org/10.6084/m9.figshare.14402447 (2021). More

  • in

    Small-scale spontaneous dynamics in temperate beech stands as an importance driver for beetle species richness

    Lindenmayer, D. B., Cunningham, R. B., Donnelly, C. F. & Lesslie, R. On the use of landscape surrogates as ecological indicators in fragmented forests. For. Ecol. Manag. 159(3), 203–216. https://doi.org/10.1016/S0378-1127(01)00433-9 (2002).Article 

    Google Scholar 
    Hannah, L., Carr, J. L. & Lankerani, A. Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers. Conserv. 4(2), 128–155. https://doi.org/10.1007/BF00137781 (1995).Article 

    Google Scholar 
    Sabatini, F. M. et al. Where are europe’s last primary forests?. Divers. Distrib. 24(10), 1426–1439. https://doi.org/10.1111/ddi.12778 (2018).Article 

    Google Scholar 
    Mikoláš, M. et al. Primary forest distribution and representation in a central european landscape: results of a large-scale field-based census. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2019.117466 (2019).Article 

    Google Scholar 
    Hilmers, T. et al. Biodiversity along temperate forest succession. J. Appl. Ecol. 55(6), 2756–2766. https://doi.org/10.1111/1365-2664.13238 (2018).Article 

    Google Scholar 
    Nagel, T. A., Svoboda, M. & Diaci, J. Regeneration patterns after intermediate wind disturbance in an old-growth fagus-abies forest in southeastern Slovenia. For. Ecol. Manag. 226(1–3), 268–278. https://doi.org/10.1016/j.foreco.2006.01.039 (2006).Article 

    Google Scholar 
    Thorn, S. et al. Estimating retention benchmarks for salvage logging to protect biodiversity. Nat. Commun. 11, 4762. https://doi.org/10.1038/s41467-020-18612-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Seibold, S. et al. Experimental studies of dead-wood biodiversity — a review identifying global gaps in knowledge. Biol. Conserv. 191, 139–149. https://doi.org/10.1016/j.biocon.2015.06.006 (2015).Article 

    Google Scholar 
    Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24(1), 101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x (2010).Article 
    PubMed 

    Google Scholar 
    Cálix, M., Alexander, K. N. A., Nieto, A., Dodelin, B. et al. European Red List of Saproxylic Beetles (IUCN. 19 s, Brussels, Belgium, 2018). Available at: http://www.iucnredlist.org/initiatives/europe/publicationsSchiegg, K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience 7(3), 290–298. https://doi.org/10.1080/11956860.2000.11682598 (2016).Article 

    Google Scholar 
    Müller, J. et al. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of european beech forests. Insect Conserv. Divers. 6(2), 162–169. https://doi.org/10.1111/j.1752-4598.2012.00200.x (2013).Article 

    Google Scholar 
    Schneider, A. et al. Animal diversity in beech forests – an analysis of 30 years of intense faunistic research in hessian strict forest reserves. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119564 (2021).Article 

    Google Scholar 
    Brunet, J., Fritz, Ö. & Richnau, G. Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol. Bull. 53, 77–94 (2010).
    Google Scholar 
    Bilek, L., Remes, J. & Zahradnik, D. Managed vs. unmanaged. Structure of beech forest stands (Fagus sylvatica L.) after 50 years of development central Bohemia. For. Syst. 20(1), 122–138. https://doi.org/10.5424/fs/2011201-10243 (2011).Article 

    Google Scholar 
    Müller, J., Bußler, H. & Kneib, T. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. J. Insect Conserv. 12(2), 107–124. https://doi.org/10.1007/s10841-006-9065-2 (2008).Article 

    Google Scholar 
    Doerfler, I., Müller, J., Gossner, M. M., Hofner, B. & Weisser, W. W. Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. For. Ecol. Manag. 400, 607–620. https://doi.org/10.1016/j.foreco.2017.06.013 (2017).Article 

    Google Scholar 
    Doerfler, I., Gossner, M. M., Müller, J., Seibold, S. & Weisser, W. W. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 228, 70–78. https://doi.org/10.1016/j.biocon.2018.10.013 (2018).Article 

    Google Scholar 
    Doerfler, I. et al. Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms. J. Appl. Ecol. 57(12), 2429–2440. https://doi.org/10.1111/1365-2664.13741 (2020).Article 

    Google Scholar 
    Zumr, V., Remeš, J. & Pulkrab, K. How to increase biodiversity of saproxylic beetles in commercial stands through integrated forest management in central Europe. Forests https://doi.org/10.3390/f12060814 (2021).Article 

    Google Scholar 
    Svoboda, M., Fraver, S., Janda, P., Bače, R. & Zenáhlíková, J. Natural development and regeneration of a central european montane spruce forest. For. Ecol. Manag. 260(5), 707–714. https://doi.org/10.1016/j.foreco.2010.05.027 (2010).Article 

    Google Scholar 
    Šebková, B. et al. Spatial and volume patterns of an unmanaged submontane mixed forest in central Europe: 160 years of spontaneous dynamics. For. Ecol. Manag. 262(5), 873–885. https://doi.org/10.1016/j.foreco.2011.05.028 (2011).Article 

    Google Scholar 
    Bílek, L. et al. Gap regeneration in near-natural european beech forest stands in central bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology https://doi.org/10.12657/denbio.071.006 (2013).Article 

    Google Scholar 
    Čada, V. et al. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For. Ecol. Manag. 363, 169–178. https://doi.org/10.1016/j.foreco.2015.12.023 (2016).Article 

    Google Scholar 
    Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55(1), 279–289. https://doi.org/10.1111/1365-2664.12945 (2018).Article 
    PubMed 

    Google Scholar 
    Schelhaas, M.-J., Nabuurs, G.-J. & Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 9(11), 1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x (2003).ADS 
    Article 

    Google Scholar 
    Vera, F. W. M. (ed.) Grazing Ecology and Forest History (CABI, 2000). https://doi.org/10.1079/9780851994420.0000.Book 

    Google Scholar 
    Vera, F. W. M. The dynamic European forest. Arboric. J. 26(3), 179–211. https://doi.org/10.1080/03071375.2002.9747335 (2012).Article 

    Google Scholar 
    Swanson, M. E. et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 9(2), 117–125. https://doi.org/10.1890/090157 (2011).Article 

    Google Scholar 
    Lachat, T. et al. Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv. Divers. 9(6), 559–573. https://doi.org/10.1111/icad.12188 (2016).Article 

    Google Scholar 
    Gossner, M. M. et al. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 27(3), 605–614. https://doi.org/10.1111/cobi.12023 (2013).Article 
    PubMed 

    Google Scholar 
    Procházka, J. & Schlaghamerský, J. Does dead wood volume affect saproxylic beetles in montane beech-fir forests of central Europe?. J. Insect Conserv. 23(1), 157–173. https://doi.org/10.1007/s10841-019-00130-4 (2019).Article 

    Google Scholar 
    Winter, S. & Möller, G. C. Microhabitats in lowland beech forests as monitoring tool for nature conservation. For. Ecol. Manag. 255(3–4), 1251–1261. https://doi.org/10.1016/j.foreco.2007.10.029 (2008).Article 

    Google Scholar 
    Bouget, C., Larrieu, L. & Brin, A. Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecol. Ind. 36, 656–664. https://doi.org/10.1016/j.ecolind.2013.09.031 (2014).Article 

    Google Scholar 
    Sebek, P. et al. Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. For. Ecol. Manag. 380, 172–181. https://doi.org/10.1016/j.foreco.2016.08.052 (2016).Article 

    Google Scholar 
    Kozel, P. et al. Connectivity and succession of open structures as a key to sustaining light-demanding biodiversity in deciduous forests. J. Appl. Ecol. 58(12), 2951–2961. https://doi.org/10.1111/1365-2664.14019 (2021).Article 

    Google Scholar 
    Nagel, T. A., Svoboda, M. & Kobal, M. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe. Ecol. Appl. 24(4), 663–679. https://doi.org/10.1890/13-0632.1 (2014).Article 
    PubMed 

    Google Scholar 
    Christensen, M. et al. The forest cycle of Suserup Skov – revisited and revised. Ecol. Bull. 52, 33–42 (2007).
    Google Scholar 
    Trotsiuk, V., Hobi, M. L. & Commarmot, B. Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians). For. Ecol. Manag. 265, 181–190. https://doi.org/10.1016/j.foreco.2011.10.042 (2012).Article 

    Google Scholar 
    Wermelinger, B., Duelli, P. & Obrist, M. K. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. Res. 77, 133–148 (2002).
    Google Scholar 
    Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 391, 9–18. https://doi.org/10.1016/j.foreco.2017.01.033 (2017).Article 

    Google Scholar 
    Meyer, P., Schmidt, M., Feldmann, E., Willig, J. & Larkin, R. Long-term development of species richness in a central European beech (Fagus Sylvatica) forest affected by windthrow—support for the intermediate disturbance hypothesis?. Ecol. Evol. 11(18), 12801–12815. https://doi.org/10.1002/ece3.8028 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korpeľ, S. Die Urwälder der Westkarpaten (Gustav Fischer, Stuttgart, 1995) (in German).
    Google Scholar 
    Emborg, J., Christensen, M. & Heilmann-Clausen, J. The structural dynamics of Suserup Skov, a near natural temperate deciduous forest in Denmark. For. Ecol. Manag. 126, 173–189 (2000).Article 

    Google Scholar 
    Peňa, J., Remeš, J. & Bílek, L. Dynamics of natural regeneration of even-aged beech (Fagus sylvatica L.) stands at different shelterwood densities. J. For. Sci. 56(12), 580–588 (2010).Article 

    Google Scholar 
    Bílek, L., Peňa, J. F. B., Remeš, J. (2013b). National Nature Reserve Voděradské Bučiny 30 Years of Forestry Research Folia Forestalia Bohemica edn, Vol. 86 (Lesnická práce, 2013).Ruchin, A. B. & Egorov, L. V. Vertical stratification of beetles in deciduous forest communities in the centre of European Russia. Diversity 13, 508. https://doi.org/10.3390/d13110508 (2021).Article 

    Google Scholar 
    Parmain, G. et al. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?. Bull. Entomol. Res. 105(1), 101–109. https://doi.org/10.1017/S0007485314000741 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmidl, J. & Bußler, H. Ökologische gilden xylobionter Käfer Deutschlands. Nat. Landsch. 36, 202–218 (2004).
    Google Scholar 
    Seibold, S. et al. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv. Biol. 29(2), 382–390. https://doi.org/10.1111/cobi.12427 (2015).Article 
    PubMed 

    Google Scholar 
    Hejda, R., Farkač, J. & Chobot, K. Red List of Threatened Species of the Czech Republic Vol. 36, 1–612 (Agentura ochrany přírody a krajiny České republiky, Praha, 2017).
    Google Scholar 
    Lepš, J., Šmilauer, P. Biostatistika (Nakladatelství Jihočeské univerzity v Českých Budějovicích, 2016)Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Colwell, R. K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates (2013).Seibold, S. et al. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manag. 409, 564–570. https://doi.org/10.1016/j.foreco.2017.11.052 (2018).Article 

    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article 

    Google Scholar 
    Chao, A., Ma, K. H., Hsieh, T. C. iNEXT (iNterpolation and EXTrapolation)Online: Software for Interpolation and Extrapolation of Species Diversity. ProgramandUser’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016).Schenker, N. & Gentleman, J. F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 55, 182–186 (2001).MathSciNet 
    Article 

    Google Scholar 
    Horak, J. et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manag. 315, 80–85. https://doi.org/10.1016/j.foreco.2013.12.018 (2014).Article 

    Google Scholar 
    Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using Canoco (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511615146.Book 
    MATH 

    Google Scholar 
    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 2nd edn. (New York, 2014).Book 

    Google Scholar 
    Parisi, F. et al. Spatial patterns of saproxylic beetles in a relic silver fir forest (Central Italy), relationships with forest structure and biodiversity indicators. For. Ecol. Manag. 381, 217–234. https://doi.org/10.1016/j.foreco.2016.09.041 (2016).Article 

    Google Scholar 
    Siitonen, J. Decaying wood and saproxylic coleoptera in two old spruce forests: a comparison based on two sampling methods. Ann. Zool. Fenn. 31, 89–95 (1994).
    Google Scholar 
    Alinvi, O., Ball, J. P., Danell, K., Hjältén, J. & Pettersson, R. B. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 11(2), 99–112. https://doi.org/10.1007/s10841-006-9012-2 (2007).Article 

    Google Scholar 
    Økland, B. A comparison of three methods of trapping saproxylic beetles. Eur. J. Entomol. 93, 195–209 (1996).
    Google Scholar 
    Quinto, J., Marcos-García, M. D. L. Á., Brustel, H., Galante, E. & Micó, E. Effectiveness of three sampling methods to survey saproxylic beetle assemblages in mediterranean Woodland. J. Insect Conserv. 17(4), 765–776. https://doi.org/10.1007/s10841-013-9559-7 (2013).Article 

    Google Scholar 
    Müller, J. et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography 38(5), 499–509. https://doi.org/10.1111/ecog.00908 (2015).Article 

    Google Scholar 
    Schiegg, K. Are there saproxylic beetle species characteristic of high dead wood connectivity?. Ecography 23, 579–587 (2000).Article 

    Google Scholar 
    Bouget, C., Larrieu, L., Nusillard, B. & Parmain, G. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers. Conserv. 22(9), 2111–2130. https://doi.org/10.1007/s10531-013-0531-3 (2013).Article 

    Google Scholar 
    Brunet, J. & Isacsson, G. Restoration of beech forest for saproxylic beetles—effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers. Conserv. 18(9), 2387–2404. https://doi.org/10.1007/s10531-009-9595-5 (2009).Article 

    Google Scholar 
    Eckelt, A. et al. “Primeval forest relict beetles” of central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 22(1), 15–28. https://doi.org/10.1007/s10841-017-0028-6 (2018).Article 

    Google Scholar 
    Speight, M. C. D. (1989). Saproxylic Invertebrates and Their Conservation. Saproxylic Invertebrates and Their Conservation, Vol. 42, Nature and Environmental Series, Strasbourg, 81.Gustafsson, L. et al. Research on retention forestry in northern Europe. Ecol. Process. https://doi.org/10.1186/s13717-019-0208-2 (2020).Article 

    Google Scholar 
    Zumr, V. & Remeš, J. Saproxylic beetles as an indicator of forest biodiversity and the influence of forest management on their crucial life attributes: review. Rep. For. Res. 65, 242–257 (2020).
    Google Scholar 
    Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Cons. 118(3), 281–299. https://doi.org/10.1016/j.biocon.2003.09.009 (2004).Article 

    Google Scholar 
    Gran, O. & Götmark, F. Long-term experimental management in Swedish mixed oak-rich forests has a positive effect on saproxylic beetles after 10 years. Biodivers. Conserv. 28, 1451–1472. https://doi.org/10.1007/s10531-019-01736-5 (2019).Article 

    Google Scholar 
    Fahrig, L. & Storch, D. Why do several small patches hold more species than few large patches?. Glob. Ecol. Biogeogr. 29(4), 615–628. https://doi.org/10.1111/geb.13059 (2020).Article 

    Google Scholar 
    Müller, J., Engel, H. & Blaschke, M. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. For. Res. 126(4), 513–527. https://doi.org/10.1007/s10342-007-0173-7 (2007).Article 

    Google Scholar 
    Friess, N. et al. Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Divers. Distrib. 25(5), 783–796. https://doi.org/10.1111/ddi.12882 (2019).Article 

    Google Scholar 
    Brin, A., Brustel, H. & Jactel, H. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in maritime pine plantations. Ann. For. Sci. https://doi.org/10.1051/forest/2009009 (2009).Article 

    Google Scholar 
    Müller, J. & Bütler, R. A review of habitat thresholds for dead wood: a baseline for management recommendations in european forests. Eur. J. For. Res. 129(6), 981–992. https://doi.org/10.1007/s10342-010-0400-5 (2010).Article 

    Google Scholar 
    Alencar, J. B. R., Fonseca, C. R. V., Marra, D. M. & Baccaro, F. B. Windthrows promote higher diversity of saproxylic beetles (Coleoptera: Passalidae) in a central Amazon forest. Insect Conserv. Divers. https://doi.org/10.1111/icad.12523 (2021).Article 

    Google Scholar 
    Audisio, P. et al. Preliminary re-examination of genus-level taxonomy of the pollen beetle subfamily Meligethinae (Coleoptera: Nitidulidae). Acta Entomol. Musei Natl. Pragae 49(2), 341–504 (2009).
    Google Scholar 
    Burakowski, B., Mroczkowski, M., Stefańska, J. Chrząszcze – Coleoptera. Ryjkowce – Curculionidae, Część 1. Katalog Fauny Polski Vol. XXIII, no, 19 Warszawa.Laibner, S. Elateridae of the Czech and Slovak Republics (Kabourek, Zlín, 2000).
    Google Scholar 
    Frank, T. & Reichhart, B. Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bull. Entomol. Res. 94(3), 209–217. https://doi.org/10.1079/BER2004301 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrmann, S., Kahl, T. & Bauhus, J. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. https://doi.org/10.1186/s40663-015-0052-5 (2015).Article 

    Google Scholar 
    Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in swiss forests. For. Ecosyst. https://doi.org/10.1186/s40663-020-00248-x (2020).Article 

    Google Scholar 
    Jonsell, M., Weslien, J. & Ehnström, B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers. Conserv. 7(6), 749–764. https://doi.org/10.1023/A:1008888319031 (1998).Article 

    Google Scholar 
    Bobiec, A. (ed.) The After Life of a Tree 252 (Warsawa, WWF Poland, 2005).
    Google Scholar 
    Gossner, M. M. et al. Deadwood enrichment in European forests – which tree species should be used to promote saproxylic beetle diversity?. Biol. Cons. 201, 92–102. https://doi.org/10.1016/j.biocon.2016.06.032 (2016).Article 

    Google Scholar 
    Vogel, S. et al. Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: an experimental approach. J. Appl. Ecol. 57(10), 2075–2085. https://doi.org/10.1111/1365-2664.13648 (2020).Article 

    Google Scholar 
    Gough, L. A. et al. Specialists in ancient trees are more affected by climate than generalists. Ecol. Evol. 5(23), 5632–5641. https://doi.org/10.1002/ece3.1799 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koch Widerberg, M., Ranius, T., Drobyshev, I., Nilsson, U. & Lindbladh, M. Increased openness around retained oaks increases species richness of saproxylic beetles. Biodivers. Conserv. 21(12), 3035–3059. https://doi.org/10.1007/s10531-012-0353-8 (2012).Article 

    Google Scholar 
    Horák, J., Pavlíček, J., Kout, J. & Halda, J. P. Winners and losers in the wilderness: response of biodiversity to the abandonment of ancient forest pastures. Biodivers. Conserv. 27(11), 3019–3029. https://doi.org/10.1007/s10531-018-1585-z (2018).Article 

    Google Scholar 
    Vandekerkhove, K. et al. Saproxylic beetles in non-intervention and coppice-with-standards restoration management in meerdaal forest (Belgium): an exploratory analysis. IFor. Biogeosci. For. 9(4), 536–545. https://doi.org/10.3832/ifor1841-009 (2016).Article 

    Google Scholar 
    Lachat, T. et al. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol. Ind. 23, 323–331. https://doi.org/10.1016/j.ecolind.2012.04.013 (2012).Article 

    Google Scholar 
    Müller, J. et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos 129(10), 1579–1588. https://doi.org/10.1111/oik.07335 (2020).Article 

    Google Scholar 
    Černecká, Ľ, Mihál, I., Gajdoš, P. & Jarčuška, B. The effect of canopy openness of European beech (Fagus Sylvatica) forests on ground-dwelling spider communities. Insect Conserv. Divers. 13(3), 250–261. https://doi.org/10.1111/icad.12380 (2020).Article 

    Google Scholar 
    Spitzer, L. et al. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Cons. 141(3), 827–837. https://doi.org/10.1016/j.biocon.2008.01.005 (2008).Article 

    Google Scholar 
    Podrázský, V., Remeš, J. & Farkač, J. Složení společenstev střevlíkovitých brouků (Coleoptera: Carabidae) v lesních porostech s různou druhovou strukturou a systémem hospodaření. Zpr. Lesn. Výzk. 55, 10–15 (2010).
    Google Scholar 
    Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a german malaise trap network. Insect Conserv. Divers. https://doi.org/10.1111/icad.12555 (2021).Article 

    Google Scholar 
    Brang, P. et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87(4), 492–503. https://doi.org/10.1093/forestry/cpu018 (2014).Article 

    Google Scholar 
    Schall, P. et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 55(1), 267–278. https://doi.org/10.1111/1365-2664.12950 (2018).Article 

    Google Scholar 
    Leidinger, J. et al. Shifting tree species composition affects biodiversity of multiple taxa in central European forests. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119552 (2021).Article 

    Google Scholar 
    Christensen, M. et al. Dead wood in European beech (Fagus Sylvatica) forest reserves. For. Ecol. Manag. 210(1–3), 267–282. https://doi.org/10.1016/j.foreco.2005.02.032 (2005).Article 

    Google Scholar 
    Plieninger, T. et al. Wood-pastures of Europe: geographic coverage, social-ecological values, conservation management, and policy implications. Biol. Cons. 190, 70–79. https://doi.org/10.1016/j.biocon.2015.05.014 (2015).Article 

    Google Scholar 
    Weiss, M. et al. The effect of coppicing on insect biodiversity. Small-scale mosaics of successional stages drive community turnover. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2020.118774 (2021).Article 

    Google Scholar  More

  • in

    Myctobase, a circumpolar database of mesopelagic fishes for new insights into deep pelagic prey fields

    Webb, T. J., vanden Berghe, E. & O’Dor, R. Biodiversity’s big wet secret: The global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, https://doi.org/10.1371/journal.pone.0010223 (2010).Drazen, J. C. & Sutton, T. T. Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes. Annual Review of Marine Science 9, 337–366, https://doi.org/10.1146/annurev-marine-010816-060543 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Current Biology 24, R1074–R1076, https://doi.org/10.1016/j.cub.2014.08.054 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications 5, 10, https://doi.org/10.1038/ncomms4271 (2014).CAS 
    Article 

    Google Scholar 
    Anderson, T. R. et al. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES Journal of Marine Science 76, 690–701, https://doi.org/10.1093/icesjms/fsx234 (2018).Article 

    Google Scholar 
    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnology and Oceanography 66, 1639–1664, https://doi.org/10.1002/lno.11709 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Koslow, J. A., Kloser, R. J. & Williams, A. Pelagic biomass and community structure over the mid-continental slope off southeastern Australia based upon acoustic and midwater trawl sampling. Marine Ecology Progress Series 146, 21–35, https://doi.org/10.3354/meps146021 (1997).ADS 
    Article 

    Google Scholar 
    Kaartvedt, S., Staby, A. & Aksnes, D. L. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Marine Ecology Progress Series 456, 1–6, https://doi.org/10.3354/meps09785 (2012).ADS 
    Article 

    Google Scholar 
    Lehodey, P., Murtugudde, R. & Senina, I. Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Progress in Oceanography 84, 69–84, https://doi.org/10.1016/j.pocean.2009.09.008 (2010).ADS 
    Article 

    Google Scholar 
    Van de Putte, A., Flores, H., Volckaert, F. & van Franeker, J. A. Energy content of Antarctic mesopelagic fishes: Implications for the marine food web. Polar Biology 29, 1045–1051, https://doi.org/10.1007/s00300-006-0148-z (2006).Article 

    Google Scholar 
    Stowasser, G. et al. Food web dynamics in the Scotia Sea in summer: A stable isotope study. Deep-Sea Research Part II-Topical Studies in Oceanography 59, 208–221, https://doi.org/10.1016/j.dsr2.2011.08.004 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    McCormack, S. A. et al. Decades of dietary data demonstrate regional food web structures in the Southern Ocean. Ecology and Evolution 11, 227–241, https://doi.org/10.1002/ece3.7017 (2021).Article 
    PubMed 

    Google Scholar 
    Griffiths, S. P., Olson, R. J. & Watters, G. M. Complex wasp-waist regulation of pelagic ecosystems in the Pacific Ocean. Reviews in Fish Biology and Fisheries 23, 459–475, https://doi.org/10.1007/s11160-012-9301-7 (2013).Article 

    Google Scholar 
    Saunders, R. A., Hill, S. L., Tarling, G. A. & Murphy, E. J. Myctophid Fish (Family Myctophidae) Are Central Consumers in the Food Web of the Scotia Sea (Southern Ocean). Frontiers in Marine Science 6, https://doi.org/10.3389/fmars.2019.00530 (2019).Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proceedings of the Royal Society B-Biological Sciences 286, 8, https://doi.org/10.1098/rspb.2019.0353 (2019).Article 

    Google Scholar 
    Freer, J. J., Tarling, G. A., Collins, M. A., Partridge, J. C. & Genner, M. J. Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. Diversity and Distributions 25, 1259–1272, https://doi.org/10.1111/ddi.12934 (2019).Article 

    Google Scholar 
    Hidalgo, M. & Browman, H. I. Developing the knowledge base needed to sustainably manage mesopelagic resources Introduction. ICES Journal of Marine Science 76, 609–615, https://doi.org/10.1093/icesjms/fsz067 (2019).Article 

    Google Scholar 
    Proud, R. et al. From siphonophores to deep scattering layers: Uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES Journal of Marine Science 76, 718–733, https://doi.org/10.1093/icesjms/fsy037 (2019).Article 

    Google Scholar 
    Caccavo, J. A. et al. Productivity and Change in Fish and Squid in the Southern Ocean. Frontiers in Ecology and Evolution 9, https://doi.org/10.3389/fevo.2021.624918 (2021).Davison, P., Lara-Lopez, A. & Anthony Koslow, J. Mesopelagic fish biomass in the southern California current ecosystem. Deep-Sea Research Part II: Topical Studies in Oceanography 112, 129–142, https://doi.org/10.1016/j.dsr2.2014.10.007 (2015).ADS 
    Article 

    Google Scholar 
    Pakhomov, E. & Yamamura, O. Report of the Advisory Panel on Micronekton Sampling Inter-calibration Experiment. Tech. Rep., PICES (2010).Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10, 235–251, https://doi.org/10.1111/j.1467-2979.2008.00315.x (2009).Article 

    Google Scholar 
    Saunders, R. A. & Tarling, G. A. Southern Ocean Mesopelagic Fish Comply with Bergmann’s Rule. American Naturalist 191, 343–351, https://doi.org/10.1086/695767 (2018).Article 

    Google Scholar 
    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the Global Ocean’s Mesopelagic Zone. Current Biology 27, 113–119, https://doi.org/10.1016/j.cub.2016.11.003 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Robison, B. H. Conservation of Deep Pelagic Biodiversity. Conservation Biology 23, 847–858, https://doi.org/10.1111/j.1523-1739.2009.01219.x (2009).Article 
    PubMed 

    Google Scholar 
    Constable, A. J. et al. Developing priority variables (“ecosystem Essential Ocean Variables” – eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems 161, 26–41, https://doi.org/10.1016/j.jmarsys.2016.05.003 (2016).ADS 
    Article 

    Google Scholar 
    St John, M. A. et al. A Dark Hole in Our Understanding of Marine Ecosystems and Their Services: Perspectives from the Mesopelagic Community. Frontiers in Marine Science 3, 6, https://doi.org/10.3389/fmars.2016.00031 (2016).Article 

    Google Scholar 
    Newman, L. et al. Delivering Sustained, Coordinated, and Integrated Observations of the Southern Ocean for Global Impact. Frontiers in Marine Science 6, https://doi.org/10.3389/fmars.2019.00433 (2019).Costello, M. J. & Vanden Berghe, E. ‘Ocean biodiversity informatics’: a new era in marine biology research and management. Marine Ecology Progress Series 316, 203–214, https://doi.org/10.3354/meps316203 (2006).ADS 
    Article 

    Google Scholar 
    Van de Putte, A. et al. From data to marine ecosystem assessments of the Southern Ocean, achievements, challenges, and lessons for the future. Frontiers in Marine Science 8, https://doi.org/10.3389/fmars.2021.637063 (2021).Duhamel, G. et al. Biogeographic Patterns of Fish. In Biogeographic Atlas of the Southern Ocean, 328–362 (Scientific Committee of Antarctic Research, Cambridge, UK, 2014).Piatkowski, U., Rodhouse, P. G., White, M. G., Bone, D. G. & Symon, C. Nekton community of the Scotia Sea as sampled by the RMT-25 during the austral summer. Marine Ecology Progress Series 112, 13–28, https://doi.org/10.3354/meps112013 (1994).ADS 
    Article 

    Google Scholar 
    Collins, M. A. et al. Patterns in the distribution of myctophid fish in the northern Scotia Sea ecosystem. Polar Biology 31, 837–851, https://doi.org/10.1007/s00300-008-0423-2 (2008).Article 

    Google Scholar 
    Collins, M. A. et al. Latitudinal and bathymetric patterns in the distribution and abundance of mesopelagic fish in the Scotia Sea. Deep-Sea Research Part II-Topical Studies in Oceanography 59, 189–198, https://doi.org/10.1016/j.dsr2.2011.07.003 (2012).ADS 
    Article 

    Google Scholar 
    Loeb, V. J., Hofmann, E. E., Klinck, J. M., Holm-Hansen, O. & White, W. B. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarctic Science 21, 135–148, https://doi.org/10.1017/s0954102008001636 (2009).ADS 
    Article 

    Google Scholar 
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Marine Ecology Progress Series 568, 1–16, https://doi.org/10.3354/meps12099 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Flores, H. et al. Distribution, abundance and ecological relevance of pelagic fishes in the Lazarev Sea, Southern Ocean. Marine Ecology Progress Series 367, 271–282, https://doi.org/10.3354/meps07530 (2008).ADS 
    Article 

    Google Scholar 
    Flores, H. et al. Seasonal changes in the vertical distribution and community structure of Antarctic macrozooplankton and micronekton. Deep-Sea Research Part I-Oceanographic Research Papers 84, 127–141, https://doi.org/10.1016/j.dsr.2013.11.001 (2014).ADS 
    Article 

    Google Scholar 
    Duhamel, G. The Pelagic Fish Community of the Polar Frontal Zone off the Kerguelen Islands. In Fishes of Antarctica, 63–74, https://doi.org/10.1007/978-88-470-2157-0_5 (Springer, Milano, 1998).Duhamel, G., Koubbi, P. & Ravier, C. Day and night mesopelagic fish assemblages off the Kerguelen Islands (Southern Ocean). Polar Biology 23, 106–112, https://doi.org/10.1007/s003000050015 (2000).Article 

    Google Scholar 
    Duhamel, G., Gasco, N. & Davaine, P. Poissons des îles Kerguelen et Crozet: Guide régional de l’océan Austral (Muséum national d’Histoire naturelle, Paris, 2005).Trebilco, R. et al. Mesopelagic community struture on the southern Kerguelen Axis. In The Kerguelen Plateau: Marine Ecosystem and Fisheries, 49–54 (Australian Antarctic Division, Kingston, Tasmania, 2019).Constable, A. J. & Swadling, K. M. Ecosystem drivers of food webs on the Kerguelen Axis of the Southern Ocean. Deep-Sea Research Part II-Topical Studies in Oceanography 174, 6, https://doi.org/10.1016/j.dsr2.2020.104790 (2020).Article 

    Google Scholar 
    Van de Putte, A. P., Jackson, G. D., Pakhomov, E., Flores, H. & Volckaert, F. A. M. Distribution of squid and fish in the pelagic zone of the Cosmonaut Sea and Prydz Bay region during the BROKE-West campaign. Deep-Sea Research Part II-Topical Studies in Oceanography 57, 956–967, https://doi.org/10.1016/j.dsr2.2008.02.015 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Flynn, A. J. & Williams, A. Lanternfish (Pisces: Myctophidae) biomass distribution and oceanographic-topographic associations at Macquarie Island, Southern Ocean. Marine and Freshwater Research 63, 251–263, https://doi.org/10.1071/mf11163 (2012).Article 

    Google Scholar 
    Sutton, C. A., Kloser, R. J. & Gershwin, L. A. Micronekton in southeastern Australian and the Southern Ocean; A collation of the biomass, abundance, biodiversity and distribution data from CSIRO’s historical mesopelagic depth stratified new samples. CSIRO, Aust. http://hdl.handle.net/102.100.100/365479?index=1 (2018).Gon, O. & Heemstra, P. C. Fishes of the Southern Ocean (J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa, 1990).Darwin Core Maintenance Group. List of Darwin Core terms (2021).R Core Team. R: A language and environment for statistical computing (2021).Holstein, J. worms: Retrieving Aphia Information from World Register of Marine Species (2018).Bivand, R. et al. maptools: Tools for handling spatial objects. R package version 1.1-1 (2021).Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research Part I-Oceanographic Research Papers 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-w (1995).ADS 
    Article 

    Google Scholar 
    Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology 20, 3004–3025, https://doi.org/10.1111/gcb.12623 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Woods, B. et al. Myctobase. Zenodo https://doi.org/10.5281/zenodo.5590999 (2021).Saunders, R. A., Collins, M. A., Stowasser, G. & Tarling, G. A. Southern Ocean mesopelagic fish communities in the Scotia Sea are sustained by mass immigration. Marine Ecology Progress Series 569, 173–185, https://doi.org/10.3354/meps12093 (2017).ADS 
    Article 

    Google Scholar 
    Provoost, P. & Bosch, S. obistools: Tools for data enhancement and quality control (2021).Murphy, E. J. et al. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change, https://doi.org/10.1098/rspb.2016.1646 (2016).McCormack, S. A., Melbourne-Thomas, J., Trebilco, R., Blanchard, J. L. & Constable, A. Alternative energy pathways in Southern Ocean food webs: Insights from a balanced model of Prydz Bay, Antarctica. Deep-Sea Research Part II-Topical Studies in Oceanography 174, https://doi.org/10.1016/j.dsr2.2019.07.001 (2020).Rodhouse, P. G. K. Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change. Deep-Sea Research Part II-Topical Studies in Oceanography 95, 129–138, https://doi.org/10.1016/j.dsr2.2012.07.001 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    The MathWorks Inc., V.. MATLAB (2019).Potter, D. C., Lough, R. G., Perry, R. I. & Neilson, J. D. Comparison of the mocness and iygpt pelagic samplers for the capture of 0-group cod (gadus morhua) on georges bank. ICES Journal of Marine Science 46, https://doi.org/10.1093/icesjms/46.2.121 (1990).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. Journal of Animal Ecology 77, 802–813, https://doi.org/10.1111/j.1365-2656.2008.01390.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Oppel, S. et al. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biological Conservation 156, https://doi.org/10.1016/j.biocon.2011.11.013 (2012).McClatchie, S., Thorne, R. E., Grimes, P. & Hanchet, S. Ground truth and target identification for fisheries acoustics. Fisheries Research 47, 173–191, https://doi.org/10.1016/s0165-7836(00)00168-5 (2000).Article 

    Google Scholar 
    Collins, M., Piatkowski, U. & Saunders, R. A. Distribution of mesopelagic fish in the Scotia Sea from RMT25 and pelagic trawls deployed from RRS James Clark Ross and RRS John Biscoe, UK Polar Data Centre https://doi.org/10.5285/f4dfc0ee-4f61-47c5-a5a8-238e02ff2fdd (2021).Hoddell, R. J., Crossley, C., Hosie, G. & Williams, D. Fish and zooplankton from RMT-8 net hauls on the BROKE voyage. Australian Antarctic Data Centre https://doi.org/10.4225/15/57BA97EA8A22D (2016).Constable, A., Williams, D. & Lamb, T. Heard Island and McDonald Islands (HIMI) Marine Ecosystem. Australian Antarctic Data Centre https://doi.org/10.4225/15/5b31be45e8977 (2018).Van de Putte, A. Fish catches from Rectangular Midwater Trawl – data collected from the BROKE-West voyage of the Aurora Australis, 2006. Australian Antarctic Data Centre https://doi.org/10.4225/15/598d453109182 (2010).Flynn, A. J., Kloser, R. J. & Sutton, C. Micronekton assemblages and bioregional setting of the Great Australian Bight: A temperate northern boundary current system. Deep-Sea Research Part II: Topical Studies in Oceanography 157–158, https://doi.org/10.1016/j.dsr2.2018.08.006 (2018).Oozeki, Y., Hu, F., Tomatsu, C. & Kubota, H. Development of a new multiple sampling trawl with autonomous opening/closing net control system for sampling juvenile pelagic fish. Deep-Sea Research Part I-Oceanographic Research Papers 61, https://doi.org/10.1016/j.dsr.2011.12.001 (2012). More