More stories

  • in

    Glimmers of hope in large carnivore recoveries

    Possingham, H. P. et al. Limits to the use of threatened species lists. Trends Ecol. Evol. 17, 503–507 (2002).Article 

    Google Scholar 
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Knowlton, N. Ocean optimism: Moving beyond the obituaries in marine conservation. Annu. Rev. Mar. Sci. 13, 13 (2021).Article 

    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the anthropocene. Trends Ecol. Evol. 34(4), 369–383 (2019).PubMed 
    Article 

    Google Scholar 
    Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27, 265–271 (2012).PubMed 
    Article 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article 

    Google Scholar 
    Marshall, K. N., Stier, A. C., Samhouri, J. F., Kelly, R. P. & Ward, E. J. Conservation challenges of predator recovery. Conserv. Lett. 9, 70–78 (2016).Article 

    Google Scholar 
    Gregr, E. J. et al. Cascading social-ecological costs and benefits triggered by a recovering keystone predator. Science 368, 1243–1247 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, K. R. et al. The location and protection status of earth’s diminishing marine wilderness. Curr. Biol. 28, 2506-2512.e3 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Nielsen, M. R., Meilby, H., Smith-Hall, C., Pouliot, M. & Treue, T. The importance of wild meat in the global south. Ecol. Econ. 146, 696–705 (2018).Article 

    Google Scholar 
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv. Lett. 12, e12627 (2019).Article 

    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Carrizo, S. F. et al. Freshwater megafauna: Flagships for freshwater biodiversity under threat. Bioscience 67, 919–927 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1783 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Desforges, J.-P. et al. Predicting global killer whale population collapse from PCB pollution. Science 361, 1373–1376 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alava, J. J., Cheung, W. W. L., Ross, P. S. & Sumaila, U. R. Climate change–contaminant interactions in marine food webs: Toward a conceptual framework. Glob. Change Biol. 23, 3984–4001 (2017).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    House, P. H., Clark, B. L. & Allen, L. G. The return of the king of the kelp forest: Distribution, abundance, and biomass of Giant sea bass (Stereolepis gigas) off Santa Catalina Island, California, 2014–2015. Bull. South. Calif. Acad. Sci. 115, 1–14 (2016).
    Google Scholar 
    Waterhouse, L. et al. Recovery of critically endangered Nassau grouper (Epinephelus striatus) in the Cayman Islands following targeted conservation actions. Proc. Natl. Acad. Sci. 117, 1587–1595 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balmford, A. & Knowlton, N. Why Earth Optimism? (American Association for the Advancement of Science, 2017).Book 

    Google Scholar 
    Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).PubMed 
    Article 

    Google Scholar 
    Adams, W. M. & Sandbrook, C. Conservation, evidence and policy. Oryx 47, 329–335 (2013).Article 

    Google Scholar 
    Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl. Acad. Sci. 106, 20641–20645 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1107409108 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).Article 

    Google Scholar 
    Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011).PubMed 
    Article 

    Google Scholar 
    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature https://doi.org/10.1038/s41586-019-1444-4 (2019).Article 
    PubMed 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the anthropocene. Sci. Adv. 6, 7650 (2020).ADS 
    Article 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tom Gelatt (National Marine Mammal Laboratory, A. F. S. C. & Sweeney, K. IUCN red list of threatened species: Eumetopias jubatus. IUCN Red List of Threatened Species. https://www.iucnredlist.org/en (2016).Taylor, M. F. J., Suckling, K. F. & Rachlinski, J. J. The effectiveness of the endangered species act: A quantitative analysis. Bioscience 55, 360–367 (2005).Article 

    Google Scholar 
    Hejny, J. The Trump administration and environmental policy: Reagan redux?. J. Environ. Stud. Sci. 8, 197–211 (2018).Article 

    Google Scholar 
    Sanderson, F. J. et al. Assessing the performance of EU nature legislation in protecting target bird species in an era of climate change. Conserv. Lett. 9, 172–180 (2016).Article 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cuthbert, R. J. et al. Continuing mortality of vultures in India associated with illegal veterinary use of diclofenac and a potential threat from nimesulide. Oryx 50, 104–112 (2016).Article 

    Google Scholar 
    Margalida, A. & Oliva-Vidal, P. The shadow of diclofenac hangs over European vultures. Nat. Ecol. Evol. 1, 1050 (2017).PubMed 
    Article 

    Google Scholar 
    Williams, D. R., Balmford, A. & Wilcove, D. S. The past and future role of conservation science in saving biodiversity. Conserv. Lett. 13, e12720 (2020).Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).Article 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Juffe-Bignoli, D. et al. Protected Planet Report 2014: Tracking Progress Towards Global Targets for Protected Areas (Springer, 2014).
    Google Scholar 
    Turnbull, J. W., Johnston, E. L. & Clark, G. F. Evaluating the social and ecological effectiveness of partially protected marine areas. Conserv. Biol. 35, 921–932 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Redpath, S. M. et al. Don’t forget to look down: Collaborative approaches to predator conservation. Biol. Rev. 92, 2157–2163 (2017).PubMed 
    Article 

    Google Scholar 
    Hazzah, L. et al. Efficacy of two lion conservation programs in Maasailand, Kenya. Conserv. Biol. 28, 851–860 (2014).PubMed 
    Article 

    Google Scholar 
    Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arthington, A. H., Dulvy, N. K., Gladstone, W. & Winfield, I. J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 838–857 (2016).Article 

    Google Scholar 
    Castello, L. & Macedo, M. N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Change Biol. 22, 990–1007 (2016).ADS 
    Article 

    Google Scholar 
    Safford, R. et al. Vulture conservation: The case for urgent action. Bird Conserv. Int. 29, 1–9 (2019).Article 

    Google Scholar 
    Ogada, D. et al. Another continental vulture crisis: Africa’s vultures collapsing toward extinction. Conserv. Lett. 9, 89–97 (2016).ADS 
    Article 

    Google Scholar 
    Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).Article 

    Google Scholar 
    Hammerschlag, N. & Gallagher, A. J. Extinction risk and conservation of the earth’s national animal symbols. Bioscience 67, 744–749 (2017).Article 

    Google Scholar 
    Sutherland, W. J., Dicks, L. V., Ockendon, N. & Smith, R. K. What Works in Conservation 2015 (Open Book Publishers, 2015).Book 

    Google Scholar 
    Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finucci, B., Duffy, C. A. J., Francis, M. P., Gibson, C. & Kyne, P. M. The extinction risk of New Zealand chondrichthyans. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 783–797 (2019).Article 

    Google Scholar 
    Creel, S. et al. Questionable policy for large carnivore hunting. Science 350, 1473–1475 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    González, L. M. et al. Causes and spatio-temporal variations of non-natural mortality in the Vulnerable Spanish imperial eagle Aquila adalberti during a recovery period. Oryx 41, 495–502 (2007).Article 

    Google Scholar 
    Morandini, V., de Benito, E., Newton, I. & Ferrer, M. Natural expansion versus translocation in a previously human-persecuted bird of prey. Ecol. Evol. 7, 3682–3688 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goodrich, J. M. et al. Panthera tigris, Tiger. IUCN Red List Threat. Species (2015).Wikramanayake, E. et al. A landscape-based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).Article 

    Google Scholar 
    Bhattarai, B. R., Wright, W., Morgan, D., Cook, S. & Baral, H. S. Managing human-tiger conflict: Lessons from Bardia and Chitwan National Parks, Nepal. Eur. J. Wildl. Res. 65, 34 (2019).Article 

    Google Scholar 
    Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Courchamp, F. et al. The paradoxical extinction of the most charismatic animals. PLoS Biol. 16, e2003997 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).Article 

    Google Scholar 
    Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–578 (2016).PubMed 
    Article 

    Google Scholar 
    Guerra, A. S. Wolves of the sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Das, C. S. Pattern and characterisation of human casualties in Sundarban by tiger attacks, India. Sustain. For. 1, 1–10 (2018).
    Google Scholar 
    Packer, C. et al. Conserving large carnivores: Dollars and fence. Ecol. Lett. 16, 635–641 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dudley, S. F. J. A comparison of the shark control programs of New South Wales and Queensland (Australia) and KwaZulu-Natal (South Africa). Ocean Coast. Manag. 34, 1–27 (1997).Article 

    Google Scholar 
    O’Connell, C. P., Andreotti, S., Rutzen, M., Meӱer, M. & Matthee, C. A. Testing the exclusion capabilities and durability of the Sharksafe Barrier to determine its viability as an eco-friendly alternative to current shark culling methodologies. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 252–258 (2018).Article 

    Google Scholar 
    Gailey, G. et al. Effects of sea ice on growth rates of an endangered population of gray whales. Sci. Rep. 10, 1553 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, 3001 (2018).ADS 
    Article 

    Google Scholar 
    Ingeman, K. E., Samhouri, J. F. & Stier, A. C. Ocean recoveries for tomorrow’s Earth: Hitting a moving target. Science 363, 6425 (2019).Article 

    Google Scholar 
    Sánchez-Hernández, J. & Amundsen, P.-A. Ecosystem type shapes trophic position and omnivory in fishes. Fish Fish. 19, 1003–1015 (2018).Article 

    Google Scholar 
    Gainsbury, A. M., Tallowin, O. J. S. & Meiri, S. An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation. Mammal Rev. 48, 160–167 (2018).Article 

    Google Scholar 
    Faurby, S. et al. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).PubMed 
    Article 

    Google Scholar 
    Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN red list for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 
    Article 

    Google Scholar  More

  • in

    Bushmeat in Brazil

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Competition for pollinators destabilizes plant coexistence

    Potts, S. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article 

    Google Scholar 
    Thomann, M., Imbert, E., Devaux, C. & Cheptou, P.-O. Flowering plants under global pollinator decline. Trends Plant Sci. 18, 353–359 (2013).CAS 
    Article 

    Google Scholar 
    Pauw, A. Can pollination niches facilitate plant coexistence? Trends Ecol. Evol. 28, 30–37 (2013).Article 

    Google Scholar 
    Johnson, C. A. How mutualisms influence the coexistence of competing species. Ecology 102, e03346 (2021).PubMed 

    Google Scholar 
    Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).Tilman, D. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58, 3–15 (1990).Article 

    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–358 (2000).Article 

    Google Scholar 
    Mitchell, R. J., Flanagan, R. J., Brown, B. J., Waser, N. M. & Karron, J. D. New frontiers in competition for pollination. Ann. Bot. 103, 1403–1413 (2009).Article 

    Google Scholar 
    Morales, C. L. & Traveset, A. A meta-analysis of impacts of alien vs. native plants on pollinator visitation and reproductive success of co-flowering native plants. Ecol. Lett. 12, 716–728 (2009).Article 

    Google Scholar 
    Jones, E. I., Bronstein, J. L. & Ferrière, R. The fundamental role of competition in the ecology and evolution of mutualisms. Ann. N. Y. Acad. Sci. 1256, 66–88 (2012).ADS 
    Article 

    Google Scholar 
    Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).Article 

    Google Scholar 
    Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton University Press, 2013).Bascompte, J. Mutualism and biodiversity. Curr. Biol. 29, R467–R470 (2019).CAS 
    Article 

    Google Scholar 
    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).Article 

    Google Scholar 
    Levin, D. A. & Anderson, W. W. Competition for pollinators between simultaneously flowering species. Am. Nat. 104, 455–467 (1970).Article 

    Google Scholar 
    Kunin, W. & Iwasa, Y. Pollinator foraging strategies in mixed floral arrays: density effects and floral constancy. Theor. Popul. Biol. 49, 232–263 (1996).CAS 
    Article 

    Google Scholar 
    Lanuza, J. B., Bartomeus, I. & Godoy, O. Opposing effects of floral visitors and soil conditions on the determinants of competitive outcomes maintain species diversity in heterogeneous landscapes. Ecol. Lett. 21, 865–874 (2018).Article 

    Google Scholar 
    Thomson, J. Spatial and temporal components of resource assessment by flower-feeding insects. J. Anim. Ecol. 50, 49–59 (1981).Article 

    Google Scholar 
    Knight, T. M. et al. Reflections on, and visions for, the changing field of pollination ecology. Ecol. Lett. 21, 1282–1295 (2018).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Biella, P. et al. Experimental loss of generalist plants reveals alterations in plant-pollinator interactions and a constrained flexibility of foraging. Sci. Rep. 9, 7376 (2019).ADS 
    Article 

    Google Scholar 
    Brosi, B. & Briggs, H. M. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proc. Natl Acad. Sci. USA 110, 13044–13048 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Addicott, J. F. in The Biology of Mutualism (ed. Boucher, D. H.) 217–247 (Croom Helm, 1985).Knight, T. M. et al. Pollen limitation of plant reproduction: pattern and process. Annu. Rev. Ecol. Evol. Syst. 36, 467–497 (2005).Article 

    Google Scholar 
    Bartomeus, I., Saavedra, S., Rohr, R. P. & Godoy, O. Experimental evidence of the importance of multitrophic structure for species persistence. Proc. Natl Acad. Sci. USA 118, e2023872118 (2021).CAS 
    Article 

    Google Scholar 
    Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).Article 

    Google Scholar 
    Rinella, M. J., Strong, D. J. & Vermeire, L. T. Omitted variable bias in studies of plant interactions. Ecology 101, e03020 (2020).Article 

    Google Scholar  More

  • in

    Comparison of entomological impacts of two methods of intervention designed to control Anopheles gambiae s.l. via swarm killing in Western Burkina Faso

    Study sites and swarm characterizationThe survey was conducted in 10 villages in south-western Burkina Faso especially around the district of Bobo-Dioulasso, Santitougou (N11° 17′ 16″, W4° 13′ 04″), Kimidougou (N11° 17′ 53″; W4° 14′ 11″), Nastenga (N10.96871; W003.23477), Zeyama (N10.87638; W 003.26145), Mogobasso (N11° 25′ 31″, W4° 06′ 08″), Synbekuy (N11° 53′ 28″, W3° 44′ 02″), Ramatoulaye (N11° 33′ 39″, W3° 57′ 05″) Syndombokuy (N11° 53′ 06″, W3° 43′ 19″), Lampa (N11.16464; W 003.6374) et Syndounkuy (N11.14541; W 003.05141) (Fig. 1). All villages are located north of Bobo-Dioulasso, on the national road 10 (N10), ranged from 20 and 90 km. The region is characterised by wooded savannah located in south-western Burkina Faso, and the mean annual rainfall is about 1200 mm. The rainy season extends from May to October and the dry season from November to April. Malaria transmission in the area extends from June to November. However, residual transmission may occur beyond this period in specific locations. An. gambiae is the major malaria vector following by An. coluzzii and An. Arabiensis. Villages were chosen to represent similar ecological and entomological settings, they are middle sized and relatively isolated from one another.Figure 1Localization of the study sites in south-western Burkina Faso. This map was created under QGIS version 2.18 Las Palmas. link: https://changelog.qgis.org/en/qgis/version/2.18.0/Full size imageSpray Application Against Mosquito Swarms (SAMS) consisted of spraying diluted insecticide (Actellic 50: tap water with 1:20 concentration) at dusk by trained volunteer teams. They used the innovative technology of targeted swarm spraying with handheld sprayers and conventional broadcast space spray with backpack sprayers to achieve maximum effect. The spraying activities were conducted in eight of the ten villages. The target swarm spray was used in the four villages Kimidougou, Nastenga, Ramatoulaye and Syndombokuy. The broadcast space spray was applied in four other villages, Zeyama, Mogobasso, Lampa and Syndounkuy. The two remaining villages, Santidougou and Synbekuy were chosen as controls (Fig. 1). In each village, the potential swarm markers and the positive swarm sites were identified and geo-referenced using GPS. All concessions also were geo-referenced and labelled using paint.Procedure of the interventionTargeted swam spraying using handheld sprayersTargeted swarm spraying was carried out in four villages. Members of each team and volunteers from the selected villages were trained to target the swarms and apply an appropriate amount of spray each time. After the pre-intervention phase, all swarm sites scattered through the villages were repaired and swarm characteristics recorded. At 30 min before dusk (the estimated swarming time), a volunteer was placed in each compound with a sprayer. The objective of each volunteer was to destroy any swarm in the compound by applying insecticide with the handheld sprayer (Fig. 2A,B). Screening of the compound was continued for about 30 min until it was dark and no mosquitoes were visible. A single operator was able to effectively target 5 to 10 swarms per spray evening, depending on the distribution of swarms across the village. Spraying was carried out for 10 successive days throughout each village. The period of spraying approximately covered the period of pre-imaginal mosquito stages and was renewed after 45 days. The quantity of insecticide used was measured daily, in order to determine with precision the total quantity of insecticide used during targeted spraying.Figure 2Volunteer spraying swarms using handheld sprayers (A,B). Backpack spraying activities (C,D).Full size imageConventional broadcast spraying using Backpack sprayersThe broadcast spraying was also carried out in 4 villages but, unlike the targeted spraying, there was no direct targeting of swarms. At swarming time (estimated around 30 min at dusk) two volunteers with backpack sprayers ran through the entire village along paths between the compounds while spraying insecticide (Fig. 2C,D). As with the targeted spraying procedure, the broadcast spraying was carried out for 10 successive days in all 4 villages simultaneously, and spraying recommenced after 45 days. The quantity of insecticide used was measured daily, in order to determine with precision the total quantity of insecticide used during targeted spraying.Evaluation of the interventionA year prior to the intervention, baseline entomological data was collected in both villages to estimate mosquito density, human biting rate, female insemination rate, age structure of females and entomological inoculation rate29. The same parameters were evaluated immediately before and after intervention. The pre- and post-intervention evaluation of the abovementioned parameters were carried in both control and intervention villages at the same time. In both pre-intervention and post-intervention phases, two methods of mosquito collection were performed in each village, the human landing catch (HLC), indoor and outdoor in 4 houses for 4 successive nights, the pyrethroid spray catch (PSC) in the same10 houses and 10 randomly selected houses. To identify these, all houses in each village were coded and these codes were used to randomly select those to be sampled. All sampled sites were mapped using a global positioning system (GPS). Collected anopheline mosquitoes were sorted by taxonomic status, physiological status, and sex. Approximately, the ovaries of 200 females/month/village (100 females indoor and 100 females outdoor) were dissected to determine the physiological age, and parous females were subsequently subjected to ELISA assays to determine Plasmodium sporozoite rates. Data produced from indoor and outdoor mosquito collections were then used to estimate mosquito densities, their spatial distribution, produce a map identifying hotspots where the highest mosquito densities and biting occurred within the village, female age structure and quantify the intensity of malaria transmission. The impact of the spray was measured to see how it affected each of these parameters in the intervention villages compared to the controls.Statistical analysisThe resting mosquito abundance was assessed as the number of mosquitoes per house, the human biting rate assessed as the number of bites per person per night, the parity rate assessed as the percentage of parous females, and the insemination rate assessed as the percentage of the inseminated females. The list above defined the key entomological parameters to determine the dynamic of An. gambie s.l. populations and malaria transmission. The generalized estimating equation (GEE) method was used to estimate population averaged effect of intervention on various outcome measurements. As the GEE models do not require distributional assumptions but only specification of the mean and variance structure, they are more robust against misspecification of higher-order features of the data, and are useful when the main interest is in population averaged effects of an intervention or treatment. However, because they do not use a full likelihood model, they cannot be used for individual-specific inference30,31. Despite this shortcoming, their robustness to different types of correlation structures in the data (due to temporal ordering of measurements, or other hierarchical structure in data) makes them attractive for analyses of this type. GEE models were run in R version 3.6.232, using the package “geepack”33 for three datasets on insemination and parity rate, number of bites per person per night (NBPN), and density of adult male and female mosquitoes. To clean and plot the data the “tidyverse” family of R packages34 were used.Ethical considerationsThis study did not involve human patients. The full protocol of the study was submitted to the Institutional Ethics Committee of the “Institut de Recherche en Sciences de la Sante” for review and approval (A17-2016/CEIRES). In accordance with the approval, presentations of the project were given to the study site villagers and requests for their participation were made. During these visits the objectives, protocol and expected results were explained and discussed, as well as the implications for the households willing to take part in this study. A written consent form was signed or marked with fingerprint by the head of the households before any activity could take place in his compound. Insecticides used in this study are approved for use by the Burkina Faso insecticide regulation authority. More

  • in

    A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms

    Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. 104, 18866–18870 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beer, C. et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834–838 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global. Change. Biol. 25, 2382–2395 (2019).ADS 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 5391 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farquhar, G. D., Von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 
    PubMed 

    Google Scholar 
    Chen, J. M. et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Global. Biogeochem. Cy 26, GB1019 (2012).ADS 

    Google Scholar 
    De Pury, D. G. G. & Farquhar, G. D. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 20, 537–557 (1997).
    Google Scholar 
    Zhang, Y. et al. Development of a coupled carbon and water model for estimating global gross primary productivity and evapotranspiration based on eddy flux and remote sensing data. Agr. Forest. Meteorol. 223, 116–131 (2016).ADS 

    Google Scholar 
    Monteith, J. L. Climate and the efficiency of crop production in Britain. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 281, 277–294 (1977).ADS 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience. 54, 547–560 (2004).
    Google Scholar 
    Yuan, W. et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 114, 1416–1431 (2010).ADS 

    Google Scholar 
    Ruimy, A., Dedieu, G. & Saugier, B. TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Global. Biogeochem. Cy 10, 269–285 (1996).ADS 
    CAS 

    Google Scholar 
    Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 190076 (2019).
    Google Scholar 
    Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D. & Reichstein, M. Upscaled diurnal cycles of land–atmosphere fluxes: a new global half-hourly data product. Earth Syst. Sci. Data 10, 1327–1365 (2018).ADS 

    Google Scholar 
    Joiner, J. et al. Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data. Remote Sens. 10, 1346 (2018).ADS 

    Google Scholar 
    Xiao, J. et al. Data-driven diagnostics of terrestrial carbon dynamics over North America. Agr. Forest. Meteorol. 197, 142–157 (2014).ADS 

    Google Scholar 
    Ichii, K. et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys. Res. Biogeosci. 122, 767–795 (2017).CAS 

    Google Scholar 
    Cai, W. et al. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation. J. Geophys. Res. Biogeosci. 119, 110–123 (2014).
    Google Scholar 
    Ma, J., Yan, X., Dong, W. & Chou, J. Gross primary production of global forest ecosystems has been overestimated. Sci. Rep. 5, 10820 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai, W. et al. Large Differences in Terrestrial Vegetation Production Derived from Satellite-Based Light Use Efficiency Models. Remote Sens. 6, 8945–8965 (2014).ADS 

    Google Scholar 
    Jung, M. et al. Uncertainties of modeling gross primary productivity over Europe: A systematic study on the effects of using different drivers and terrestrial biosphere models. Global. Biogeochem. Cy 21, GB4021 (2007).ADS 

    Google Scholar 
    Yuan, W. et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agr. Forest. Meteorol. 192-193, 108–120 (2014).ADS 

    Google Scholar 
    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).ADS 

    Google Scholar 
    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos Meas Tech 6, 2803–2823 (2013).
    Google Scholar 
    Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12 (2014).ADS 

    Google Scholar 
    Joiner, J. et al. Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT. Atmos Meas Tech 5, 809–829 (2012).CAS 

    Google Scholar 
    Köhler, P. et al. Global Retrievals of Solar‐Induced Chlorophyll Fluorescence With TROPOMI: First Results and Intersensor Comparison to OCO‐2. Geophys. Res. Lett. 45, 10,456–410,463 (2018).
    Google Scholar 
    Joiner, J. et al. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).ADS 
    CAS 

    Google Scholar 
    Guanter, L. et al. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sens. Environ. 121, 236–251 (2012).ADS 

    Google Scholar 
    Du, S. et al. Retrieval of global terrestrial solar-induced chlorophyll fluorescence from TanSat satellite. Sci. Bull. 63, 1502–1512 (2018).
    Google Scholar 
    Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).CAS 
    PubMed 

    Google Scholar 
    Drusch, M. et al. The FLuorescence EXplorer Mission Concept—ESA’s Earth Explorer 8. Ieee. T. Geosci. Remote 55, 1273–1284 (2017).ADS 

    Google Scholar 
    Guanter, L. et al. The TROPOSIF global sun-induced fluorescence dataset from the Sentinel-5P TROPOMI mission. Earth Syst. Sci. Data, 13, 5423–5440 (2021).Roesch, A. Use of Moderate-Resolution Imaging Spectroradiometer bidirectional reflectance distribution function products to enhance simulated surface albedos. J. Geophys. Res. 109 (2004).Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 140, 36–45 (2014).ADS 

    Google Scholar 
    Sulla-Menashe, D., Gray, J. M., Abercrombie, S. P. & Friedl, M. A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 222, 183–194 (2019).ADS 

    Google Scholar 
    Su, W., Charlock, T. P., Rose, F. G. & Rutan, D. Photosynthetically active radiation from Clouds and the Earth’s Radiant Energy System (CERES) products. J. Geophys. Res. 112 (2007).Still, C. J., Berry, J. A., Collatz, G. J. & Defries, R. S. Global distribution of C3and C4vegetation: Carbon cycle implications. Global. Biogeochem. Cy 17, 6-1-6-14 (2003).Zhang, Y. et al. Spatio‐temporal convergence of maximum daily light‐use efficiency based on radiation absorption by canopy chlorophyll. Geophys. Res. Lett. 45, 3508–3519 (2018).ADS 

    Google Scholar 
    Zhang, Z. et al. The potential of satellite FPAR product for GPP estimation: An indirect evaluation using solar-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111686 (2020).ADS 

    Google Scholar 
    Baker, N. R. Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annu. Rev. Plant. Biol. 59, 89–113 (2008).CAS 
    PubMed 

    Google Scholar 
    Du, S., Liu, L., Liu, X. & Hu, J. Response of canopy solar-induced chlorophyll fluorescence to the absorbed photosynthetically active radiation absorbed by chlorophyll. Remote Sens. 9, 911 (2017).ADS 

    Google Scholar 
    Rossini, M. et al. Analysis of Red and Far-Red Sun-Induced Chlorophyll Fluorescence and Their Ratio in Different Canopies Based on Observed and Modeled Data. Remote Sens. 8, 412 (2016).ADS 

    Google Scholar 
    Verrelst, J. et al. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 166, 8–21 (2015).ADS 

    Google Scholar 
    Zhang, Q. et al. Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sens. Environ. 99, 357–371 (2005).ADS 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).ADS 
    CAS 

    Google Scholar 
    Li, X. & Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 11, 517 (2019).ADS 

    Google Scholar 
    Yu, L., Wen, J., Chang, C. Y., Frankenberg, C. & Sun, Y. High‐Resolution Global Contiguous SIF of OCO‐2. Geophys. Res. Lett. 46, 1449–1458 (2019).ADS 

    Google Scholar 
    Ma, Y., Liu, L., Chen, R., Du, S. & Liu, X. Generation of a Global Spatially Continuous TanSat Solar-Induced Chlorophyll Fluorescence Product by Considering the Impact of the Solar Radiation Intensity. Remote Sens. 12, 2167 (2020).ADS 

    Google Scholar 
    Gentine, P. & Alemohammad, S. H. Reconstructed Solar‐Induced Fluorescence: A Machine Learning Vegetation Product Based on MODIS Surface Reflectance to Reproduce GOME‐2 Solar‐Induced Fluorescence. Geophys. Res. Lett. 45, 3136–3146 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wen, J. et al. A framework for harmonizing multiple satellite instruments to generate a long-term global high spatial-resolution solar-induced chlorophyll fluorescence (SIF). Remote Sens. Environ. 239, 111644 (2020).ADS 

    Google Scholar 
    Yang, X. et al. Solar‐induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 42, 2977–2987 (2015).ADS 
    CAS 

    Google Scholar 
    Hain, C. R., Crow, W. T., Mecikalski, J. R., Anderson, M. C. & Holmes, T. An intercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res. 116, D15107 (2011).ADS 

    Google Scholar 
    Anderson, M. C., Norman, J. M., Mecikalski, J. R., Otkin, J. A. & Kustas, W. P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res. 112, D11112 (2007).ADS 

    Google Scholar 
    Scherrer, D., Bader, M. K.-F. & Körner, C. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agr. Forest. Meteorol. 151, 1632–1640 (2011).ADS 

    Google Scholar 
    Duveiller, G. et al. A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 12, 1101–1116 (2020).ADS 

    Google Scholar 
    Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000–2016. Sci. Data 4, 170165 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, T. & Guestrin, C. in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785-794 (Association for Computing Machinery).Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE 12, e0169748 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y., Li, M., Li, C. & Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning algorithms. Sci. Rep. 10, 9952 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tan, W., Wei, C., Lu, Y. & Xue, D. Reconstruction of All-Weather Daytime and Nighttime MODIS Aqua-Terra Land Surface Temperature Products Using an XGBoost Approach. Remote Sens. 13, 4723 (2021).ADS 

    Google Scholar 
    Adnan, M., Alarood, A. A. S., Uddin, M. I. & Ur Rehman, I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput. Sci. 8, e803 (2022).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, X. A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms. figshare https://doi.org/10.6084/m9.figshare.19336346.v2 (2022).Guanter, L. et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Proc. Natl. Acad. Sci. 111, E1327–E1333 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pierrat, Z. et al. Diurnal and seasonal dynamics of solar‐induced chlorophyll fluorescence, vegetation indices, and gross primary productivity in the boreal forest. J. Geophys. Res. Biogeosci., e2021JG006588 (2022).Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. 116, 11640–11645 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossmann, K. et al. PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar-Induced Chlorophyll Fluorescence. Remote Sens. Environ. 216, 311–327 (2018).ADS 

    Google Scholar 
    Li, Z. et al. Solar-induced chlorophyll fluorescence and its link to canopy photosynthesis in maize from continuous ground measurements. Remote Sens. Environ. 236, 111420 (2020).ADS 

    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. 201900278 (2019).Wei, X., Wang, X., Wei, W. & Wan, W. Use of Sun-Induced Chlorophyll Fluorescence Obtained by OCO-2 and GOME-2 for GPP Estimates of the Heihe River Basin, China. Remote Sens. 10, 2039 (2018).ADS 

    Google Scholar 
    Walther, S. et al. Satellite chlorophyll fluorescence measurements reveal large‐scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Global. Change. Biol. 22, 2979–2996 (2016).ADS 

    Google Scholar 
    Köhler, P., Guanter, L. & Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 2589–2608 (2015).
    Google Scholar 
    Parazoo, N. C. et al. Towards a Harmonized Long‐Term Spaceborne Record of Far‐Red Solar‐Induced Fluorescence. J. Geophys. Res. Biogeosci. 124, 2518–2539 (2019).
    Google Scholar 
    Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7 (2020).Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global. Change. Biol. 11, 1424–1439 (2005).ADS 

    Google Scholar 
    Lasslop, G. et al. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Global. Change. Biol. 16, 187–208 (2010).ADS 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Tong, X. et al. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nat. Sustain. 1, 44–50 (2018).
    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Global. Change. Biol. 17, 2261–2270 (2011).ADS 

    Google Scholar 
    De, S. V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).ADS 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).ADS 

    Google Scholar 
    Still, C. J., Berry, J. A., Collatz, G. J. & Defries, R. S. ISLSCP II C4 Vegetation Percentage, ORNL Distributed Active Archive Center, https://doi.org/10.3334/ORNLDAAC/932 (2009).Pierrat, Z. & Stutz, J. Tower-based solar-induced fluorescence and vegetation index data for Southern Old Black Spruce forest, Zenodo, https://doi.org/10.5281/ZENODO.5884643 (2022).Magney, T. et al. Canopy and needle scale fluorescence data from Niwot Ridge, Colorado 2017-2018, CaltechDATA, https://doi.org/10.22002/D1.1231 (2019).Wan, Z., Hook, S. & Hulley, G. MOD11C1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MOD11C1.006 (2015).Friedl, M. & Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD12C1.006 (2015).Schaaf, C. & Wang, Z. MCD43C4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF-Adjusted Ref Daily L3 Global 0.05Deg CMG V006, NASA EOSDIS Land Processes DAAC, https://doi.org/10.5067/MODIS/MCD43C4.006 (2015).Doelling, D. CERES Level 3 SYN1DEG-DAYTerra+Aqua HDF4 file – Edition 4A, NASA Langley Atmospheric Science Data Center DAAC, https://doi.org/10.5067/TERRA+AQUA/CERES/SYN1DEGDAY_L3.004A (2017). More

  • in

    Repatriation of a historical North Atlantic right whale habitat during an era of rapid climate change

    Descamps, S. et al. Diverging phenological responses of Arctic seabirds to an earlier spring. Glob. Change Biol. 25, 4081–4091 (2019).ADS 
    Article 

    Google Scholar 
    Ramp, C., Delarue, J., Palsbøll, P. J., Sears, R. & Hammond, P. S. Adapting to a warmer ocean—seasonal shift of baleen whale movements over three decades. PLoS ONE 10, e0121374 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Insley, S. J., Halliday, W. D., Mouy, X. & Diogou, N. Bowhead whales overwinter in the Amundsen Gulf and Eastern Beaufort Sea. R. Soc. Open Sci. 8, 1 (2021).Article 

    Google Scholar 
    Heide-Jørgensen, M. P., Laidre, K. L., Quakenbush, L. T. & Citta, J. J. The Northwest Passage opens for bowhead whales. Biol. Lett. 8, 270–273 (2012).PubMed 
    Article 

    Google Scholar 
    Durant, J., Hjermann, D., Ottersen, G. & Stenseth, N. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).Article 

    Google Scholar 
    Staudinger, M. D. et al. It’s about time: A synthesis of changing phenology in the Gulf of Maine ecosystem. Fish. Oceanogr. 28, 532–566 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller-Rushing, A. J., Høye, T. T., Inouye, D. W. & Post, E. The effects of phenological mismatches on demography. Philos. Trans. R. Soc. B Biol. Sci. 365, 3177–3186 (2010).Article 

    Google Scholar 
    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Record, N. et al. Rapid climate-driven circulation changes threaten conservation of endangered North Atlantic right whales. Oceanography 32, 1 (2019).Article 

    Google Scholar 
    MacLeod, C. Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endanger. Species Res. 7, 125–136 (2009).Article 

    Google Scholar 
    Learmonth, J. A. et al. Potential effects of climate change on marine mammals. Oceanogr. Mar. Biol. Annu. Rev. 44, 431–464 (2006).
    Google Scholar 
    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 350, 809–812 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gulf of Maine Research Institute. Gulf of Maine Warming Update: 2021 the Hottest Year on Record. (2022).Saba, V. S. et al. Enhanced warming of the Northwest Atlantic Ocean under climate change. J. Geophys. Res. Oceans 121, 118–132 (2016).ADS 
    Article 

    Google Scholar 
    Friedland, K. D. et al. Trends and change points in surface and bottom thermal environments of the US Northeast Continental Shelf Ecosystem. Fish. Oceanogr. 29, 396–414 (2020).Article 

    Google Scholar 
    Nye, J., Link, J., Hare, J. & Overholtz, W. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).ADS 
    Article 

    Google Scholar 
    Kress, S. W., Shannon, P. & O’Neal, C. Recent changes in the diet and survival of Atlantic puffin chicks in the face of climate change and commercial fishing in midcoast Maine, USA. FACETS 1, 27–43 (2017).Article 

    Google Scholar 
    Davis, G. E. et al. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Glob. Change Biol. 26, 4812–4840 (2020).ADS 
    Article 

    Google Scholar 
    Pace, R. M., Corkeron, P. J. & Kraus, S. D. State-space mark-recapture estimates reveal a recent decline in abundance of North Atlantic right whales. Ecol. Evol. 7, 8730–8741 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyer-Gutbrod, E. L. & Greene, C. H. Uncertain recovery of the North Atlantic right whale in a changing ocean. Glob. Change Biol. 24, 455–464 (2018).ADS 
    Article 

    Google Scholar 
    Sorochan, K. A. et al. North Atlantic right whale (Eubalaena glacialis) and its food: (II) interannual variations in biomass of Calanus spp. on western North Atlantic shelves. J. Plankton Res. 41, 687–708 (2019).Article 

    Google Scholar 
    Friedland, K. D. et al. Spring bloom dynamics and zooplankton biomass response on the US Northeast Continental Shelf. Cont. Shelf Res. 102, 47–61 (2015).ADS 
    Article 

    Google Scholar 
    Meyer-Gutbrod, E., Greene, C., Davies, K. & Johns, D. Ocean regime shift is driving collapse of the North Atlantic right whale population. Oceanography 34, 22–31 (2021).Article 

    Google Scholar 
    Knowlton, A., Hamilton, P., Marx, M., Pettis, H. & Kraus, S. Monitoring North Atlantic right whale Eubalaena glacialis entanglement rates: A 30 yr retrospective. Mar. Ecol. Prog. Ser. 466, 293–302 (2012).ADS 
    Article 

    Google Scholar 
    Davies, K. T. A. & Brillant, S. W. Mass human-caused mortality spurs federal action to protect endangered North Atlantic right whales in Canada. Mar. Policy 104, 157–162 (2019).Article 

    Google Scholar 
    Kraus, S. D. & Rolland, R. M. Right whales in the urban ocean. in The urban whale: North Atlantic right whales at the crossroads 1–38 (Harvard University Press, 2010). https://doi.org/10.2307/j.ctv1pnc1q9.Winn, H. E., Price, C. A. & Sorensen, P. W. The distributional biology of the right whale (Eubalaena glacialis) in the western North Atlantic. Rep. Int. Whal. Comm. Spec. 10, 129–138 (1986).
    Google Scholar 
    Mayo, C. A. & Marx, M. K. Surface foraging behaviour of the North Atlantic right whale, Eubalaena glacialis, and associated zooplankton characteristics. Can. J. Zool. 68, 2214–2220 (1990).Article 

    Google Scholar 
    Mayo, C. A. et al. Distribution, demography, and behavior of North Atlantic right whales (Eubalaena glacialis) in Cape Cod Bay, Massachusetts, 1998–2013. Mar. Mammal Sci. 34, 979–996 (2018).Article 

    Google Scholar 
    Pendleton, D. E. et al. Regional-scale mean copepod concentration indicates relative abundance of North Atlantic right whales. Mar. Ecol. Prog. Ser. 378, 211–225 (2009).ADS 
    Article 

    Google Scholar 
    Kenney, R. D., Winn, H. E. & Macaulay, M. C. Cetaceans in the Great South Channel, 1979–1989: right whale (Eubalaena glacialis). Cont. Shelf Res. 15, 385–414 (1995).ADS 
    Article 

    Google Scholar 
    Brown, M. W. et al. Recovery strategy for the North Atlantic right whale (Eubalaena glacialis) in Atlantic Canadian waters. in Species at risk act recovery strategy series (Fisheries and Oceans Canada, 2009).Weinrich, M. T., Kenney, R. D. & Hamilton, P. K. Right whales (Eubalaena glacialis) on Jeffreys Ledge: a habitat of unrecognized importance?. Mar. Mammal Sci. 16, 326–337 (2000).Article 

    Google Scholar 
    Cole, T. et al. Evidence of a North Atlantic right whale Eubalaena glacialis mating ground. Endanger. Species Res. 21, 55–64 (2013).Article 

    Google Scholar 
    Ganley, L., Brault, S. & Mayo, C. What we see is not what there is: estimating North Atlantic right whale Eubalaena glacialis local abundance. Endanger. Species Res. 38, 101–113 (2019).Article 

    Google Scholar 
    Simard, Y., Roy, N., Giard, S. & Aulanier, F. North Atlantic right whale shift to the Gulf of St. Lawrence in 2015, revealed by long-term passive acoustics. Endanger. Species Res. 40, 271–284 (2019).Article 

    Google Scholar 
    Leiter, S. et al. North Atlantic right whale Eubalaena glacialis occurrence in offshore wind energy areas near Massachusetts and Rhode Island, USA. Endanger. Species Res. 34, 45–59 (2017).Article 

    Google Scholar 
    Stone, K. M. et al. Distribution and abundance of cetaceans in a wind energy development area offshore of Massachusetts and Rhode Island. J. Coast. Conserv. 21, 527–543 (2017).Article 

    Google Scholar 
    Vanderlaan, A., Taggart, C., Serdynska, A., Kenney, R. & Brown, M. Reducing the risk of lethal encounters: Vessels and right whales in the Bay of Fundy and on the Scotian Shelf. Endanger. Species Res. 4, 283–297 (2008).Article 

    Google Scholar 
    National Marine Fisheries Service. Endangered and threatened species; critical habitat for endangered North Atlantic right whale. Fed. Regist. 80, 9314–9345 (2015).
    Google Scholar 
    National Marine Fisheries Service. Taking of marine mammals incidental to commercial fishing operations; Atlantic large whale take reduction plan regulations; Atlantic coastal fisheries cooperative management act provisions; American lobster fishery. Fed. Regist. 85, 86878–86900 (2020).
    Google Scholar 
    Reeves, R. R., Breiwick, J. M. & Mitchell, E. D. History of whaling and estimated kill of right whales, Balaena glacialis, in the Northeastern United States, 1620–1924. Mar. Fish. Rev. 36, 1 (1999).
    Google Scholar 
    Allen, G. M. The whalebone whales of New England. Mem. Boston Soc. Nat. Hist. 8, 107–322 (1915).ADS 

    Google Scholar 
    CETAP (Cetacean and Turtle Assessment Program). A characterization of marine mammals and turtles in the mid- and North- Atlantic areas of the U.S. Outer Continental Shelf, final report. (1982).Kenney, R. D. & Vigness-Raposa, K. J. Marine mammals and sea turtles of Narragansett Bay, Block Island Sound, Rhode Island Sound, and nearby waters: An analysis of existing data for the Rhode Island Ocean Special Area Management Plan. in Rhode Island Ocean Special Area Management Plan; Volume 2 Appendix A: Technical Reports for the Rhode Island Ocean Special Area Management Plan. 701–1037 (Rhode Island Coastal Resources Management Council, Wakefield, RI, 2010).Pendleton, D. et al. Weekly predictions of North Atlantic right whale Eubalaena glacialis habitat reveal influence of prey abundance and seasonality of habitat preferences. Endanger. Species Res. 18, 147–161 (2012).MathSciNet 
    Article 

    Google Scholar 
    Kraus, S. D., Kenney, R. D. & Thomas, L. A framework for studying the effects of offshore wind development on marine mammals and turtles. (2019). Report prepared for the Massachusetts Clean Energy Center, Boston, MA, and the Bureau of Ocean Energy Management, Office of Renewable Energy Programs, Sterling, VA. Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA. 48 pp.Quintana-Rizzo, E. et al. Residency, demographics, and movement patterns of North Atlantic right whales Eubalaena glacialis in an offshore wind energy development area in southern New England, USA. Endanger. Species Res. 45, 251–268 (2021).Article 

    Google Scholar 
    Taylor, J. K. D., Kenney, R. D., LeRoi, D. J. & Kraus, S. D. Automated vertical photography for detecting pelagic species in multitaxon aerial surveys. Mar. Technol. Soc. J. 48, 36–48 (2014).Article 

    Google Scholar 
    Hamilton, P. K., Knowlton, A. R. & Marx, M. K. Right whales tell their own stories: the photo-identification catalog. in The urban whale: North Atlantic right whales at the crossroads 75–104 (Harvard University Press, 2010).Buckland, S. T., Anderson, D. R., Burnham, K. P. & Laake, J. L. Distance sampling: Estimating abundance of biological populations Vol. 50 (Chapman and Hall, 1993).MATH 
    Book 

    Google Scholar 
    R: The R Project for Statistical Computing. https://www.r-project.org/.Miller, D. L., Rexstad, E., Thomas, L., Marshall, L. & Laake, J. L. Distance Sampling in R. J. Stat. Softw. 89, 1–28 (2019).Article 

    Google Scholar 
    Eberhardt, L. L., Chapman, D. G. & Gilbert, J. R. A review of marine mammal census methods. Wildl. Monogr. 1, 3–46 (1979).
    Google Scholar 
    Durant, S. M. et al. Long-term trends in carnivore abundance using distance sampling in Serengeti National Park, Tanzania: Serengeti carnivore trends. J. Appl. Ecol. 48, 1490–1500 (2011).Article 

    Google Scholar 
    Reeves, R. R. & Mitchell, E. The Long Island, New York, right whale fishery: 1650–1924. Rep. Int. Whal. Comm. 10, 201–220 (1986).
    Google Scholar 
    Davis, G. E. et al. Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014. Sci. Rep. 7, 13460 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jackson, J. et al. Have whales returned to a historical hotspot of industrial whaling? The pattern of southern right whale Eubalaena australis recovery at South Georgia. Endanger. Species Res. 43, 323–339 (2020).Article 

    Google Scholar 
    Carroll, E. L. et al. Reestablishment of former wintering grounds by New Zealand southern right whales. Mar. Mammal Sci. 30, 206–220 (2014).Article 

    Google Scholar 
    Charlton, C. et al. Southern right whales (Eubalaena australis) return to a former wintering calving ground: Fowlers Bay, South Australia. Mar. Mammal Sci. 35, 1438–1462 (2019).Article 

    Google Scholar 
    Garrigue, C. et al. Searching for humpback whales in a historical whaling hotspot of the Coral Sea, South Pacific. Endanger. Species Res. 42, 67–82 (2020).Article 

    Google Scholar 
    Clapham, P. J., Aguilar, A. & Hatch, L. T. Determining spatial and temporal scales for management: lessons from whaling. Mar. Mammal Sci. 24, 183–201 (2008).Article 

    Google Scholar 
    Watkins, W. A. & Schevill, W. E. Right whale feeding and baleen rattle. J. Mammal. 57, 58–66 (1976).Article 

    Google Scholar 
    Beardsley, R. C. et al. Spatial variability in zooplankton abundance near feeding right whales in the Great South Channel.. Deep Sea Res Part II Top. Stud. Oceanogr. 43, 1601–1625 (1996).ADS 
    Article 

    Google Scholar 
    Wishner, K. F. et al. Copepod patches and right whales in the Great South Channel off New England. Bull. Mar. Sci. 43, 825–844 (1988).ADS 

    Google Scholar 
    Baumgartner, M., Cole, T., Clapham, P. & Mate, B. North Atlantic right whale habitat in the lower Bay of Fundy and on the SW Scotian Shelf during 1999–2001. Mar. Ecol. Prog. Ser. 264, 137–154 (2003).ADS 
    Article 

    Google Scholar 
    Moore, M. J. & van der Hoop, J. M. The painful side of trap and fixed net fisheries: Chronic entanglement of large whales. J. Mar. Biol. 2012, 1–4 (2012).Article 

    Google Scholar  More

  • in

    Net greenhouse gas balance with cover crops in semi-arid irrigated cropping systems

    United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2015). Accessed on 16 Dec 2021.Tubiello, F. N. et al. The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob. Change Biol. 21(7), 2655–2660 (2015).ADS 
    Article 

    Google Scholar 
    Frank, S. et al. Agricultural non-CO2 emission reduction potential in the context of the 15 °C target. Nat. Clim. Change 9(1), 66–72 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).CAS 
    Article 

    Google Scholar 
    Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589, 554–561 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tubiello, F. N. et al. Greenhouse gas emissions from food systems: Building the evidence base. Environ. Res. Lett. 16, 065007 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Smith, P. et al. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) (Cambridge University Press, 2014).
    Google Scholar 
    Schlesinger, W. H. & Andrews, J. A. Soil respiration and the global carbon cycle. Biogeochemistry 78, 7–20 (2000).Article 

    Google Scholar 
    Smith, K. A. & Conen, F. Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage. 20, 245–253 (2004).
    Google Scholar 
    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, S. K. et al. Nitrous oxide emissions from managed grassland: A comparison of eddy covariance and static chamber measurements. Atmos. Meas. Tech. 4, 2179–2194 (2011).CAS 
    Article 

    Google Scholar 
    Chapuis‐Lardy, L., Wrage, N., Metay, A., Chotte, J. L. & Bernoux, M. Soils, a sink for N2O? A review. Glob. Change Biol. 13, 1–17 (2007).ADS 
    Article 

    Google Scholar 
    Sanz-Cobena, A. et al. Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci. Total Environ. 466, 164–174 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Kaye, J. P. & Quemada, M. Using cover crops to mitigate and adapt to climate change. A review. Agron. Sustain. Dev. 37(1), 1–17 (2017).Article 

    Google Scholar 
    Poeplau, C. & Don, A. Carbon sequestration in agricultural soils via cultivation of cover crops—A meta-analysis. Agric. Ecosyst. Environ. 200, 33–41 (2015).CAS 
    Article 

    Google Scholar 
    Guardia, G. et al. Effective climate change mitigation through cover cropping and integrated fertilization: A global warming potential assessment from a 10-year field experiment. J Clean. Prod. 241, 118307 (2019).CAS 
    Article 

    Google Scholar 
    Osipitan, O. A., Dille, J. A., Assefa, Y. & Knezevic, S. Z. Cover crop for early season weed suppression in crops: Systematic review and meta-analysis. Agron. J. 110(6), 2211–2221 (2018).Article 

    Google Scholar 
    Thapa, R., Mirsky, S. B. & Tully, K. L. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. J. Environ. Qual. 47(6), 1400–1411 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Snapp, S. S. et al. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 97, 322–332 (2005).Article 

    Google Scholar 
    Reicks, G. W. et al. Winter cereal rye cover crop decreased nitrous oxide emissions during early spring. Agron. J. 113, 3900–3909 (2021).CAS 
    Article 

    Google Scholar 
    Behnke, G. D. & Villamil, M. B. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field Crops Res. 241, 107580 (2019).Article 

    Google Scholar 
    Blanco-Canqui, H., Holman, J. D., Schlegel, A. J., Tatarko, J. & Shaver, T. M. Replacing fallow with cover crops in a semi-arid soil: Effects on soil properties. Soil Sci. Soc. Am. J. 77, 1026–1034 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Basche, A. D., Miguez, F. E., Kaspar, T. C. & Castellano, M. J. Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J. Soil Water Conserv. 69, 471–482 (2014).Article 

    Google Scholar 
    Smith, P. et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 363, 789–813 (2008).CAS 
    Article 

    Google Scholar 
    Finney, D. M., White, C. M. & Kaye, J. P. Biomass production and carbon nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 108, 39–52 (2016).CAS 
    Article 

    Google Scholar 
    Drost, S. M., Rutgers, M., Wouterse, M., De Boer, W. & Bodelier, P. L. Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma 361, 114060 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Thapa, V. R., Ghimire, R., Acosta-Martínez, V., Marsalis, M. A. & Schipanski, M. E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semi-arid cropping systems. Appl. Soil Ecol. 157, 103735 (2021).Article 

    Google Scholar 
    Muhammad, I. et al. Regulation of soil CO2 and N2O emissions by cover crops: A meta-analysis. Soil Till. Res. 192, 103–112 (2019).Article 

    Google Scholar 
    Sarkodie-Addo, J., Lee, H. C. & Baggs, E. M. Nitrous oxide emissions after application of inorganic fertilizer and incorporation of green manure residues. Soil Use Manage. 19, 331–339 (2006).Article 

    Google Scholar 
    Guardia, G. et al. Effect of cover crops on greenhouse gas emissions in an irrigated field under integrated soil fertility management. Biogeosciences 13, 5245–5257 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Mitchell, D. C., Castellano, M. J., Sawyer, J. E. & Pantoja, J. Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon. Soil Sci. Soc. Am. J. 77, 1765 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Bodner, G., Mentler, A., Klik, A., Kaul, H. P. & Zechmeister-Boltenstern, S. Do cover crops enhance soil greenhouse gas losses during high emission moments under temperate Central Europe conditions? Die Bodenkult J. Land Manage. Food Environ. 68, 171–187 (2018).Article 
    CAS 

    Google Scholar 
    Álvaro-Fuentes, J., Easter, M. & Paustian, K. Climate change effects on organic carbon storage in agricultural soils of northeastern Spain. Agric. Ecosyst. Environ. 155, 87–94 (2012).Article 
    CAS 

    Google Scholar 
    Bronson, K. F. et al. Carbon and nitrogen pools of southern High Plains cropland and grassland soils. Soil Sci. Soc. Am. J. 68, 1695–1704 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhou, X., Talley, M. & Luo, Y. Biomass, litter and soil respiration along a precipitation gradient in Southern Great Plains, USA. Ecosystems 12, 1369–1380 (2009).CAS 
    Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).ADS 
    Article 

    Google Scholar 
    Antosh, E., Idowu, J., Schutte, B. & Lehnhoff, E. Winter cover crops effects on soil properties and sweet corn yield in semi-arid irrigated systems. Agron. J. 112, 92–106 (2020).Article 

    Google Scholar 
    Paye, W. S. et al. Cover crop water use and corn silage production in semi-arid irrigated conditions. Agric. Water Manage. 260, 107275 (2022).Article 

    Google Scholar 
    Paye, W. S., Acharya, P. & Ghimire, R. Water productivity of forage sorghum in response to winter cover crops in semi-arid irrigated conditions. Field Crops Res. 283, 108552 (2022).Article 

    Google Scholar 
    Garba, I. I., Bell, L. W. & Williams, A. Cover crop legacy impacts on soil water and nitrogen dynamics, and on subsequent crop yields in drylands: A meta-analysis. Agron. Sustain. Dev. 42(3), 1–21 (2022).Article 
    CAS 

    Google Scholar 
    Gabriel, J. L., Muñoz-Carpena, R. & Quemada, M. The role of cover crops in irrigated systems: Water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric. Ecosyst. Environ. 155, 50–61 (2012).CAS 
    Article 

    Google Scholar 
    Trost, B. et al. Irrigation, soil organic carbon and N2O emissions. A review. Agron. Sustain Dev. 33, 733–749 (2013).CAS 
    Article 

    Google Scholar 
    Nilahyane, A., Ghimire, R., Thapa, V. R. & Sainju, U. M. Cover crop effects on soil carbon dioxide emissions in a semiarid cropping system. Agrosyst. Geosci. Environ. 3, e20012 (2020).
    Google Scholar 
    Thapa, V. R., Ghimire, R., Duval, B. D. & Marsalis, M. A. Conservation systems for positive net ecosystem carbon balance in semi-arid drylands. Agrosyst. Geosci. Environ. 2, 1–8 (2019).Article 

    Google Scholar 
    Abdalla, M. et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 25(8), 2530–2543 (2019).ADS 
    Article 

    Google Scholar 
    Larionova, A. A., Sapronov, D. V., de Gerenyu, V. L., Kuznetsova, L. G. & Kudeyarov, V. N. Contribution of plant root respiration to the CO2 emission from soil. Eurasian Soil Sci. 39, 1127–1135 (2006).ADS 
    Article 

    Google Scholar 
    Hanson, P. J., Edwards, N. T., Garten, C. T. & Andrews, J. A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48, 115–146 (2000).CAS 
    Article 

    Google Scholar 
    Rochette, P., Flanagan, L. B. & Gregorich, E. G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon-13. Soil Sci. Soc. Am. J. 63, 1207–1213 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Sainju, U. M., Jabro, J. D. & Stevens, W. B. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization. J. Environ. Qual. 37, 98–106 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mosier, A. R., Halvorson, A. D., Reule, C. A. & Liu, X. J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 35, 1584–1598 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, J. et al. Stover retention rather than no-till decreases the global warming potential of rainfed continuous maize cropland. Field Crops Res. 219, 14–23 (2018).Article 

    Google Scholar 
    USDA Soil Survey Staff. Web Soil Survey. http://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx (2022). Accessed on 23 Jan 2022.Zibilske, L. M. Carbon mineralization. In Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties (eds Weaver, R. W. et al.). https://doi.org/10.2136/sssabookser5.2.c38 (Soil Science Society of America Journal, 1994).Chapter 

    Google Scholar 
    Sainju, U. M. Net global warming potential, and greenhouse gas intensity. Soil Sci. Soc. Am. J. 84, 1393–1404 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Lal, R. Carbon emission from farm operations. Environ. Int. 30, 981–990 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haile-Mariam, S., Collins, H. P. & Higgins, S. S. Greenhouse gas fluxes from an irrigated sweet corn (Zea mays L.)–potato (Solanum tuberosum L.) rotation. J. Environ. Qual. 37(3), 759–771 (2008).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Clearance and persistence of Escherichia coli in the freshwater mussel Unio mancus

    Galvani, A. P., Bauch, C. T., Anand, M., Singer, B. H. & Levin, S. A. Human–environment interactions in population and ecosystem health. Proc. Natl. Acad. Sci. U. S. A. 113, 14502–14506 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    WHO Director-General. Health, environment and climate change. Draft WHO global strategy on health, environment and climate change: The transformation needed to improve lives and well-being sustainably through healthy environments. vol. 18 https://apps.who.int/gb/ebwha/pdf_files/WHA72/A72_15-en.pdf?ua=1 (2019).Queenan, K., Häsler, B. & Rushton, J. A One Health approach to antimicrobial resistance surveillance: Is there a business case for it?. Int. J. Antimicrob. Agents 48, 422–427 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aslam, B. et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 11, 1645–1658 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walsh, T. R. A one-health approach to antimicrobial resistance. Nat. Microbiol. 3, 854–855 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor, L. H., Latham, S. M. & Woolhouse, M. E. J. Risk factors for human disease emergence. Philos. Trans. R. Soc. B Biol. Sci. 356, 983–989 (2001).CAS 
    Article 

    Google Scholar 
    Kruse, H., Kirkemo, A. M. & Handeland, K. Wildlife as source of zoonotic infections. Emerg. Infect. Dis. 10, 2067–2072 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Evans, T. et al. Links between ecological integrity, emerging infectious diseases and other aspects of human health—An overview of the literature. https://wcs.org (2020).Rabinowitz, P. M., Cullen, M. R. & Lake, H. R. Wildlife as sentinels for human health hazards: A review of study designs. J. Environ. Med. 1, 217–223 (1999).Article 

    Google Scholar 
    Rabinowitz, P. M. et al. Animals as sentinels of human environmental health hazards: An evidence-based analysis. EcoHealth 2, 26–37 (2005).Article 

    Google Scholar 
    Fox, G. A. Wildlife as sentinels of human health effects in the Great Lakes-St. Lawrence basin. Environ. Health Perspect. 109, 853–861 (2001).PubMed 
    PubMed Central 

    Google Scholar 
    Burket, S. R. et al. Corbicula fluminea rapidly accumulate pharmaceuticals from an effluent dependent urban stream. Chemosphere 224, 873–883 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ricciardi, A. & Rasmussen, J. B. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222 (1999).Article 

    Google Scholar 
    Ismail, N. S. et al. Improvement of urban lake water quality by removal of Escherichia coli through the action of the bivalve Anodonta californiensis. Environ. Sci. Technol. 49, 1664–1672 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ismail, N. S., Tommerdahl, J. P., Boehm, A. B. & Luthy, R. G. Escherichia coli reduction by bivalves in an impaired river impacted by agricultural land use. Environ. Sci. Technol. 50, 11025–11033 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burge, C. A. et al. The use of filter-feeders to manage disease in a changing world. Integr. Comp. Biol. 56, 573–587 (2016).PubMed 
    Article 

    Google Scholar 
    Aceves, A. K., Johnson, P., Bullard, S. A., Lafrentz, S. & Arias, C. R. Description and characterization of the digestive gland microbiome in the freshwater mussel Villosa nebulosa (Bivalvia: Unionidae). J. Molluscan Stud. 84, 240–246 (2018).Article 

    Google Scholar 
    Gu, J. D. & Mitchell, R. Indigenous microflora and opportunistic pathogens of the freshwater zebra mussel, Dreissena polymorpha. Hydrobiologia 474, 81–90 (2002).Article 

    Google Scholar 
    Gomes, J. F. et al. Biofiltration using C. fluminea for E. coli removal from water: Comparison with ozonation and photocatalytic oxidation. Chemosphere 208, 674–681 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burkhardt, W. & Calci, K. R. Selective accumulation may account for shellfish-associated viral illness. Appl. Environ. Microbiol. 66, 1375–1378 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huyvaert, K. P. et al. Freshwater clams as bioconcentrators of avian influenza virus in water. Vector-Borne Zoonotic Dis. 12, 904–906 (2012).PubMed 
    Article 

    Google Scholar 
    Le Guyader, F. S. et al. Norwalk virus-specific binding to oyster digestive tissues. Emerg. Infect. Dis. 12, 931–936 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palos Ladeiro, M., Aubert, D., Villena, I., Geffard, A. & Bigot, A. Bioaccumulation of human waterborne protozoa by zebra mussel (Dreissena polymorpha): Interest for water biomonitoring. Water Res. 48, 148–155 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Palos Ladeiro, M., Bigot-Clivot, A., Aubert, D., Villena, I. & Geffard, A. Assessment of Toxoplasma gondii levels in zebra mussel (Dreissena polymorpha) by real-time PCR: An organotropism study. Environ. Sci. Pollut. Res. 22, 13693–13701 (2015).CAS 
    Article 

    Google Scholar 
    Mezzanotte, V. et al. Removal of enteric viruses and Escherichia coli from municipal treated effluent by zebra mussels. Sci. Total Environ. 539, 395–400 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cope, W. G. et al. Differential exposure, duration, and sensitivity of unionoidean bivalve life stages to environmental contaminants. J. N. Am. Benthol. Soc. 27, 451–462 (2008).Article 

    Google Scholar 
    Diamond, J. M., Bressler, D. W. & Serveiss, V. B. Assessing relationships between human land uses and the decline of native mussels, fish, and macroinvertebrates in the Clinch and Powell river watershed, USA. Environ. Toxicol. Chem. 21, 1147–1155 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Augspurger, T., Dwyer, F. J., Ingersoll, C. G. & Kane, C. M. Advances and opportunities in assessing contaminant sensitivity of freshwater mussel (Unionidae) early life stages. Environ. Toxicol. Chem. 26, 2025–2028 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lopes-Lima, M. & Seddon, M. B. Unio mancus. The IUCN Red List of Threatened Species 2014: e. T22737A42466471 (2014). https://doi.org/10.2305/IUCN.UK.2014-3.RLTS.T22737A42466471.en.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 (2004).Article 

    Google Scholar 
    Strayer, D. L. et al. Changing perspectives on pearly Mussels, North America’s most imperiled. Animals 54, 429–439 (2004).
    Google Scholar 
    Araujo, R. et al. The naiads of the Iberian Peninsula. Iberus 27, 7–72 (2009).
    Google Scholar 
    Araujo, R. et al. Who wins in the weaning process? Juvenile feeding morphology of two freshwater mussel species. J. Morphol. 279, 4–16 (2018).PubMed 
    Article 

    Google Scholar 
    Hinzmann, M., Bessa, L. J., Teixeira, A., Da Costa, P. M. & Machado, J. Antimicrobial and antibiofilm activity of unionid mussels from the North of Portugal. J. Shellfish Res. 37, 121–129 (2018).Article 

    Google Scholar 
    Mo, C. & Neilson, B. Standardization of oyster soft tissue dry weight measurements. Water Res. 28, 243–246 (1994).CAS 
    Article 

    Google Scholar 
    Kryger, J. & Riisgård, H. U. Filtration rate capacities in 6 species of European freshwater bivalves. Oecologia 77, 34–38 (1988).ADS 
    PubMed 
    Article 

    Google Scholar 
    Ostrovsky, I., Gophen, M. & Kalikhman, I. Distribution, growth, production, and ecological significance of the clam Unio terminalis in Lake Kinneret, Israel. Hydrobiologia 271, 49–63 (1993).Article 

    Google Scholar 
    Møhlenberg, F. & Riisgård, H. U. Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17, 239–246 (1978).Article 

    Google Scholar 
    Møhlenberg, F. & Riisgård, H. U. Filtration rate, using a new indirect technique, in thirteen species of suspension-feeding bivalves. Mar. Biol. 54, 143–147 (1979).Article 

    Google Scholar 
    Riisgård, H. U. On measurement of filtration rates in bivalves—The stony road to reliable data: Review and interpretation. Mar. Ecol. Prog. Ser. 211, 275–291 (2001).ADS 
    Article 

    Google Scholar 
    Mills, S. C. & Reynolds, J. D. Mussel ventilation rates as a proximate cue for host selection by bitterling, Rhodeus sericeus. Oecologia 131, 473–478 (2002).ADS 
    PubMed 
    Article 

    Google Scholar 
    Filgueira, R., Labarta, U. & Fernández-Reiriz, M. J. Effect of condition index on allometric relationships of clearance rate in Mytilus galloprovincialis Lamarck, 1819. Rev. Biol. Mar. Oceanogr. 43, 391–398 (2008).Article 

    Google Scholar 
    Silverman, H., Achberger, E. C., Lynn, J. W. & Dietz, T. H. Filtration and utilization of laboratory-cultured bacteria by Dreissena polymorpha, Corbicula fluminea, and Carunculina texasensis. Biol. Bull. 189, 308–319 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maki, J. S., Patel, G. & Mitchell, R. Experimental pathogenicity of Aeromonas spp. for the Zebra mussel, Dreissena polymorpha. Curr. Microbiol. 36, 19–23 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Love, D. C., Lovelace, G. L. & Sobsey, M. D. Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration. Int. J. Food Microbiol. 143, 211–217 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Mesquita, M. M. F., Evison, L. M. & West, P. A. Removal of faecal indicator bacteria and bacteriophages from the common mussel (Mytilus edulis) under artificial depuration conditions. J. Appl. Bacteriol. 70, 495–501 (1991).PubMed 
    Article 

    Google Scholar  More