More stories

  • in

    A complex story of groundwater abstraction and ecological threats to the Doñana National Park World Heritage Site

    To the Editor — It is widely appreciated that the world’s wetlands provide important ecosystem services including critical biodiversity, stores of carbon and strong cultural links to people. Yet wetlands are disappearing at an alarming rate due to diversion and abstraction of water, to conversion to agricultural land and to pollution. In response, there has been a major commitment to conserve and restore wetlands worldwide, including more than 2,400 sites on the territories of 172 Contracting Parties of the Convention on Wetlands (Ramsar Sites), covering more than 2.5 million square kilometres. Some wetlands, such as Doñana in southern Spain, are also World Heritage sites to protect their natural and cultural values. The Ramsar Convention and UNESCO World Heritage Convention strongly support the rights of non-governmental organizations to appraise the status and management of designated sites and welcome reports of threats to site integrity. However, such claims should be substantiated by all the available scientific evidence. More

  • in

    Phycobilisome light-harvesting efficiency in natural populations of the marine cyanobacteria Synechococcus increases with depth

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goericke, R. & Welschmeyer, N. A. The marine prochlorophyte Prochlorococcus contributes significantly to phytoplankton biomass and primary production in the Sargasso Sea. Deep Res. 40, 2283–2294 (1993).Article 

    Google Scholar 
    Liu, H., Nolla, H. A. & Campbell, L. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12, 39–47 (1997).Article 

    Google Scholar 
    Huang, S. et al. Novel lineages of prochlorococcus and synechococcus in the global oceans. ISME J. 6, 285–297 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ting, C. S., Rocap, G., King, J. & Chisholm, S. W. Cyanobacterial photosynthesis in the oceans: the origins and significance of divergent light-harvesting strategies. Trends Microbiol. 10, 134–142 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barlow, A. Photosynthetic characteristics of phycoerythrin-containing marine Synechococcus spp. Arctic 22, 63–74 (1985).
    Google Scholar 
    Yeh, S. W. et al. Role of phycoerythrin in marine picoplankton synechococcus spp. Science 234, 1422–1424 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    Giovannoni, S. J. & Vergin, K. L. Seasonality in ocean microbial communities. Science 335, 671–676 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, D. F., Fredj, E. & Gildor, H. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep Res. Part I Oceanogr. Res. Pap. 84, 1–17 (2014).Article 

    Google Scholar 
    Larkum, A. W. D. & Barrett, J. Light-harvesting processes in algae. Adv. Bot. Res. 10, 1–219 (1983).CAS 
    Article 

    Google Scholar 
    Bibby, T. S., Mary, I., Nield, J., Partensky, F. & Barber, J. Low-light-adapted Prochlorococcus species possess specific antennae for each photosystem. Nature 424, 1051–1054 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bibby, T. S., Nield, J., Chen, M., Larkum, A. W. D. & Barber, J. Structure of a photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc. Natl Acad. Sci. USA 100, 9050–9054 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Palenik, B. Chromatic adaptation in marine Synechococcus strains. Appl. Environ. Microbiol. 67, 991–994 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kana, T. M. & Glibert, P. M. Effect of irradiances up to 2000 μE m-2 s-1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. Deep Sea Res. Part A Oceanogr. Res. Pap. 34, 479–495 (1987).CAS 
    Article 

    Google Scholar 
    Six, C., Ratin, M., Marie, D. & Corre, E. Marine Synechococcus picocyanobacteria: light utilization across latitudes. Proc. Natl Acad. Sci. USA 118, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    Perry, M. J., Talbot, M. C. & Alberte, R. S. Photoadaption in marine phytoplankton: response of the photosynthetic unit. Mar. Biol. 62, 91–101 (1981).Mauzerall, D. & Greenbaum, N. L. The absolute size of a photosynthetic unit. BBA Bioenerg. 974, 119–140 (1989).CAS 
    Article 

    Google Scholar 
    Sanfilippo, J. E., Garczarek, L., Partensky, F. & Kehoe, D. M. Chromatic acclimation in cyanobacteria: a diverse and widespread process for optimizing photosynthesis. Annu. Rev. Microbiol. 73, 407–433 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keren, N. & Paltiel, Y. Photosynthetic energy transfer at the quantum/classical border. Trends Plant Sci. 23, 497–506 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolodny, Y. et al. Marine cyanobacteria tune energy transfer efficiency in their light‐harvesting antennae by modifying pigment coupling. FEBS J. https://doi.org/10.1111/febs.15371 (2020).Wientjes, E., Van Amerongen, H. & Croce, R. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation the migration of LHCII from PSII to PSI has. J. Phys. Chem. B 117, 51 (2013).Article 
    CAS 

    Google Scholar 
    Chenu, A. et al. Light adaptation in phycobilisome antennas: influence on the rod length and structural arrangement. J. Phys. Chem. B 121, 9196–9202 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Falkowski, P. G., Lin, H. & Gorbunov, M. Y. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans. Philos. Trans. R. Soc. B Biol. Sci. 372, 2–8 (2017).Article 
    CAS 

    Google Scholar 
    Gorbunov, M. Y. & Falkowski, P. G. Using chlorophyll fluorescence to determine the fate of photons absorbed by phytoplankton in the world’s oceans. Ann. Rev. Mar. Sci. 14, 367–393 (2021).
    Google Scholar 
    Govindjee, Hammond, J. H. & Merkelo, H. Primary events, energy transfer, and reactions in photosynthetic events: lifetime of the excited state in vivo: II. Bacteriochlorophyll in photosynthetic bacteria at room temperature. Biophys. J. 12, 809 (1972).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Biggins, J. & Bruce, D. Regulation of excitation energy transfer in organisms containing phycobilins. Photosynth. Res. 20, 1–34 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roach, T. & Krieger-Liszkay, A. Regulation of photosynthetic electron transport and photoinhibition. Curr. Protein Pept. Sci. 15, 351–362 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Govindjee, U. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae, and Cyanobacteria (Springer Netherlands, 2014).
    Google Scholar 
    Kirilovsky, D. Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth. Res. 93, 7–16 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, H. et al. The fate of photons absorbed by phytoplankton in the global ocean. Science 351, 264–267 (2016).Croce, R. & Van Amerongen, H. Light-harvesting and structural organization of photosystem II: from individual complexes to thylakoid membrane. J. Photochem. Photobiol. B Biol. 104, 142–153 (2011).CAS 
    Article 

    Google Scholar 
    Rahav, E. et al. Heterotrophic and autotrophic contribution to dinitrogen fixation in the Gulf of Aqaba. Mar. Ecol. Prog. Ser. 522, 67–77 (2015).CAS 
    Article 

    Google Scholar 
    Reiss, Z. & Hottinger, L. The Gulf of Aqaba (Springer-Verlag, 1984).Genin, A., Lazar, B. & Brenner, S. Vertical mixing and coral death in the red sea following the eruption of Mount Pinatubo. Nature 377, 507–510 (1995).CAS 
    Article 

    Google Scholar 
    Labiosa, R. G., Arrigo, K. R., Genin, A., Monismith, S. G. & Van Dijken, G. The interplay between upwelling and deep convective mixing in determining the seasonal phytoplankton dynamics in the Gulf of Aqaba: evidence from SeaWiFS and MODIS. Limnol. Oceanogr. 48, 2355–2368 (2003).Article 

    Google Scholar 
    Zarubin, M., Lindemann, Y. & Genin, A. The dispersion-confinement mechanism: phytoplankton dynamics and the spring bloom in a deeply-mixing subtropical sea. Prog. Oceanogr. 155, 13–27 (2017).Article 

    Google Scholar 
    Lindell, D. & Post, A. F. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40, 1130–1141 (1995).Article 

    Google Scholar 
    Suggett, D. J. et al. Nitrogen and phosphorus limitation of oceanic microbial growth during spring in the Gulf of Aqaba. Aquat. Microb. Ecol. 56, 227–239 (2009).Article 

    Google Scholar 
    Post, A. F. et al. Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front. Microbiol. 2, 131 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sherman, J., Gorbunov, M. Y., Schofield, O. & Falkowski, P. G. Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. Limnol. Oceanogr. 65, 2912–2925 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoo, Y. D. et al. Mixotrophy in the marine red-tide cryptophyte Teleaulax amphioxeia and ingestion and grazing impact of cryptophytes on natural populations of bacteria in Korean coastal waters. Harmful Algae 68, 105–117 (2017).PubMed 
    Article 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brody, S. S. & Rabinowitch, E. Excitation lifetime of photosynthetic pigments in vitro and in vivo. Science 125, 555 (1979).Article 

    Google Scholar 
    Six, C., Thomas, J. C., Brahamsha, B., Lemoine, Y. & Partensky, F. Photophysiology of the marine cyanobacterium Synechococcus sp. WH8102, a new model organism. Aquat. Microb. Ecol. 35, 17–29 (2004).Article 

    Google Scholar 
    Krumova, S. B. et al. Monitoring photosynthesis in individual cells of Synechocystis sp. PCC 6803 on a picosecond timescale. Biophys. J. 99, 2006–2015 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tian, L. et al. Picosecond kinetics of light harvesting and photoprotective quenching in wild-type and mutant phycobilisomes isolated from the cyanobacterium Synechocystis PCC 6803. Biophys. J. 102, 1692–1700 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bhatti, A. F., Kirilovsky, D., van Amerongen, H. & Wientjes, E. State transitions and photosystems spatially resolved in individual cells of the cyanobacterium Synechococcus elongatus. Plant Physiol. 186, 569–580 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adir, N., Bar-Zvi, S. & Harris, D. The amazing phycobilisome. Biochim. Biophys. Acta Bioenerg. 1861, 148047 (2020).Anderson, J. M. & Andersson, B. The dynamic photosynthetic membrane and regulation of solar energy conversion. Trends Biochem. Sci. 13, 351–355 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackey, K. R. M., Post, A. F., McIlvin, M. R. & Saito, M. A. Physiological and proteomic characterization of light adaptations in marine Synechococcus. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13744 (2017).Article 
    PubMed 

    Google Scholar 
    Mendoza-Arenas, J. J. et al. Transport enhancement from incoherent coupling between one-dimensional quantum conductors. New J. Phys. 16, 053016 (2014).Campbell, D., Hurry, V., Clarke, A. K., Gustafsson, P. & Quist, G. O. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol. Mol. Biol. Rev. 62, 667–683 (1998).Ogawa, T., Misumi, M. & Sonoike, K. Estimation of photosynthesis in cyanobacteria by pulse-amplitude modulation chlorophyll fluorescence: problems and solutions. Photosynth. Res. 133, 63–73 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolber, Z. S., Prášil, O. & Falkowski, P. G. Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochim. Biophys. Acta Bioenerg. 1367, 88–106 (1998).CAS 
    Article 

    Google Scholar 
    Kolber, Z. & Falkowski, P. G. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol. Oceanogr. 38, 1646–1665 (1993).CAS 
    Article 

    Google Scholar 
    Siegel, D. A. et al. Regional to global assessments of phytoplankton dynamics from the SeaWiFS mission. Remote Sens. Environ. 135, 77–91 (2013).Article 

    Google Scholar 
    Gregg, W. W. & Rousseaux, C. S. Global ocean primary production trends in the modern ocean color satellite record (1998-2015). Environ. Res. Lett. 14, 124011 (2019).Kulk, G. et al. Primary production, an index of climate change in the ocean: satellite-based estimates over two decades. Remote Sens. 12, 826 (2020).Van De Poll, W. H. et al. Phytoplankton chlorophyll a biomass, composition, and productivity along a temperature and stratification gradient in the northeast Atlantic Ocean. Biogeosciences 10, 4227–4240 (2013).Article 
    CAS 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 1–16 (2019).Article 

    Google Scholar 
    Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Ocean. 117, 1–23 (2012).Article 

    Google Scholar 
    Li, G. et al. Increasing ocean stratification over the past half-century. Nat. Clim. Chang. 10, 1116–1123 (2020).Article 

    Google Scholar 
    Kolodny, Y. et al. Tuning quantum dots coupling using organic linkers with different vibrational modes. J. Phys. Chem. C 124, 16159–16165 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Root exudate composition reflects drought severity gradient in blue grama (Bouteloua gracilis)

    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC, 2018. Summary for Policymakers. in Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds. Masson-Delmotte, V. et al.) 32 (World Meteorological Organization, 2018).Kozlowski, T. Carbohydrate sources and sinks in woody plants. Bot. Rev. 58, 107–222 (1992).Article 

    Google Scholar 
    Hartmann, H., Bahn, M., Carbone, M. & Richardson, A. D. Plant carbon allocation in a changing world–challenges and progress: Introduction to a Virtual Issue on carbon allocation. New Phytol. 227, 981–988 (2020).PubMed 
    Article 

    Google Scholar 
    Shahzad, T. et al. Contribution of exudates, arbuscular mycorrhizal fungi and litter depositions to the rhizosphere priming effect induced by grassland species. Soil Biol. Biochem. 80, 146–155 (2015).CAS 
    Article 

    Google Scholar 
    Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).PubMed 
    Article 

    Google Scholar 
    Dijkstra, F. A., Zhu, B. & Cheng, W. Root effects on soil organic carbon: a double-edged sword. New Phytol. 230, 60–65 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakker, P. A. H. M., Pieterse, C. M. J., de Jonge, R. & Berendsen, R. L. The soil-borne legacy. Cell 172, 1178–1180 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendes, R., Garbeva, P. & Raaijmakers, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37, 634–663 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberson, E. B. & Firestone, M. K. Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl. Environ. Microbiol. 58, 1284–1291 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C. & Peñuelas, J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil 409, 1–17 (2016).CAS 
    Article 

    Google Scholar 
    Ulrich, D. E. M. et al. Plant-microbe interactions before drought influence plant physiological responses to subsequent severe drought. Sci. Rep. 9, 249 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oleghe, E., Naveed, M., Baggs, E. M. & Hallett, P. D. Plant exudates improve the mechanical conditions for root penetration through compacted soils. Plant Soil 421, 19–30 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clarholm, M., Skyllberg, U. & Rosling, A. Organic acid induced release of nutrients from metal-stabilized soil organic matter—The unbutton model. Soil Biol. Biochem. 84, 168–176 (2015).CAS 
    Article 

    Google Scholar 
    Liu, W., Xu, G., Bai, J. & Duan, B. Effects of warming and oxalic acid addition on plant–microbial competition in Picea brachytyla. Can. J. For. Res. https://doi.org/10.1139/cjfr-2020-0019 (2021).Article 

    Google Scholar 
    Keiluweit, M. et al. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 5, 588–595 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 1, 470–480 (2018).Article 
    CAS 

    Google Scholar 
    Canarini, A., Kaiser, C., Merchant, A., Richter, A. & Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10, 157 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Worchel, E. R., Giauque, H. E. & Kivlin, S. N. Fungal symbionts alter plant drought response. Microb. Ecol. 65, 671–678 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sasse, J., Martinoia, E. & Northen, T. Feed your friends: Do plant exudates shape the root microbiome?. Trends Plant Sci. 23, 25–41 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).PubMed 
    Article 

    Google Scholar 
    Zhu, B. et al. Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biol. Biochem. 76, 183–192 (2014).CAS 
    Article 

    Google Scholar 
    Wang, X., Tang, C., Severi, J., Butterly, C. R. & Baldock, J. A. Rhizosphere priming effect on soil organic carbon decomposition under plant species differing in soil acidification and root exudation. New Phytol. 211, 864–873 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henry, A., Doucette, W., Norton, J. & Bugbee, B. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J. Environ. Qual. 36, 904–912 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, O. C. et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob. Change Biol. 23, 1292–1304 (2017).ADS 
    Article 

    Google Scholar 
    Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. & Vivanco, J. M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57, 233–266 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Naylor, D. & Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 8, 2223 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karst, J., Gaster, J., Wiley, E. & Landhäusser, S. M. Stress differentially causes roots of tree seedlings to exude carbon. Tree Physiol. 37, 154–164 (2017).CAS 
    PubMed 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol. 38, 690–695 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Muller, B. et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166 (2014).Article 

    Google Scholar 
    Sevanto, S. & Dickman, L. T. Where does the carbon go?—Plant carbon allocation under climate change. Tree Physiol. 35, 581–584 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article 

    Google Scholar 
    Ruehr, N. K., Grote, R., Mayr, S. & Arneth, A. Beyond the extreme: Recovery of carbon and water relations in woody plants following heat and drought stress. Tree Physiol. 39, 1285–1299 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farrar, J. & Jones, D. The control of carbon acquisition by roots. New Phytol. 147, 43–53 (2000).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. et al. Surplus carbon drives allocation and plant-soil interactions. Trends Ecol. Evol. 35, 1110–1118 (2020).PubMed 
    Article 

    Google Scholar 
    Costello, D. Important species of the major forage types in Colorado and Wyoming. Ecol. Monogr. 14, 107–134 (1944).Article 

    Google Scholar 
    Hunt, H. W. et al. Simulation model for the effects of climate change on temperate grassland ecosystems. Ecol. Model. 53, 205–246 (1991).Article 

    Google Scholar 
    Follett, R. F., Stewart, C. E., Pruessner, E. G. & Kimble, J. M. Effects of climate change on soil carbon and nitrogen storage in the US Great Plains. J. Soil Water Conserv. 67, 331–342 (2012).Article 

    Google Scholar 
    Belovsky, G. E. & Slade, J. B. Climate change and primary production: Forty years in a bunchgrass prairie. PLoS ONE 15, e0243496 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuzyakov, Y. & Domanski, G. Carbon input by plants into the soil. Review. J. Plant Nutr. Soil Sci. 163, 421–431 (2000).CAS 
    Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Peng, J., Dong, W., Yuan, W. & Zhang, Y. Responses of grassland and forest to temperature and precipitation changes in Northeast China. Adv. Atmos. Sci. 29, 1063–1077 (2012).Article 

    Google Scholar 
    Porras-Alfaro, A., Herrera, J., Natvig, D. O. & Sinsabaugh, R. L. Effect of long-term nitrogen fertilization on mycorrhizal fungi associated with a dominant grass in a semiarid grassland. Plant Soil 296, 65–75 (2007).CAS 
    Article 

    Google Scholar 
    Bokhari, U. G., Coleman, D. C. & Rubink, A. Chemistry of root exudates and rhizosphere soils of prairie plants. Can. J. Bot. 57, 1473–1477 (1979).CAS 
    Article 

    Google Scholar 
    Dormaar, J. F., Tovell, B. C. & Willms, W. D. Fingerprint composition of seedling root exudates of selected grasses. Rangel. Ecol. Manag. J. Range Manag. Arch. 55, 420–423 (2002).
    Google Scholar 
    Harris, S. A. Grasses (Reaktion Books, 2014).
    Google Scholar 
    Hoffman, A. M., Bushey, J. A., Ocheltree, T. W. & Smith, M. D. Genetic and functional variation across regional and local scales is associated with climate in a foundational prairie grass. New Phytol. 227, 352–364 (2020).PubMed 
    Article 

    Google Scholar 
    Gould, F. W. Grasses of the southwestern United States. (1951).Smith, S. E., Haferkamp, M. R. & Voigt, P. W. Gramas. in Warm-Season (C4) Grasses 975–1002 (Wiley, 2004). https://doi.org/10.2134/agronmonogr45.c30.Jackson, R. D., Paine, L. K. & Woodis, J. E. Persistence of native C4 grasses under high-intensity, short-duration summer bison grazing in the eastern tallgrass prairie. Restor. Ecol. 18, 65–73 (2010).Article 

    Google Scholar 
    Kim, S., Williams, A., Kiniry, J. R. & Hawkes, C. V. Simulating diverse native C4 perennial grasses with varying rainfall. J. Arid Environ. 134, 97–103 (2016).ADS 
    Article 

    Google Scholar 
    Sala, A., Fouts, W. & Hoch, G. Carbon storage in trees: Does relative carbon supply decrease with tree size? In Size-and age-related changes in tree structure and function 287–306 (Springer, 2011).Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yin, H. et al. Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Glob. Change Biol. 19, 2158–2167 (2013).ADS 
    Article 

    Google Scholar 
    Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl. Acad. Sci. 107, 10938–10942 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eisenhauer, N. et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 7, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zwetsloot, M. J., Kessler, A. & Bauerle, T. L. Phenolic root exudate and tissue compounds vary widely among temperate forest tree species and have contrasting effects on soil microbial respiration. New Phytol. 218, 530–541 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhen, W. & Schellenberg, M. P. Drought and N addition in the greenhouse experiment: blue grama and western wheatgrass. J. Agric. Sci. Technol. B 2, 29–37 (2012).
    Google Scholar 
    Bahn, M. et al. Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol. 198, 116–126 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, M. F., Smith, W. K., Moore, T. S. & Christensen, M. Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal bouteloua gracilis hbk lag ex steud. New Phytol. 88, 683–693 (1981).Article 

    Google Scholar 
    Weaver, J. E. Summary and interpretation of underground development in natural grassland communities. Ecol. Monogr. 28, 55–78 (1958).Article 

    Google Scholar 
    Carvalhais, L. C. et al. Linking plant nutritional status to plant-microbe interactions. PLoS ONE 8, e68555 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dignac, M.-F. & Rumpel, C. Organic matter stabilization and ecosystem functions: proceedings of the fourth conference on the mechanisms of organic matter stabilization and destabilization (SOM-2010, Presqu’île de Giens, France). Biogeochemistry 112, 1–6 (2013).Article 

    Google Scholar 
    Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433–447 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khaleghi, A. et al. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 9, 19250 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Werra, P., Péchy-Tarr, M., Keel, C. & Maurhofer, M. Role of gluconic acid production in the regulation of biocontrol traits of pseudomonas fluorescens CHA0. Appl. Environ. Microbiol. 75, 4162–4174 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vyas, P. & Gulati, A. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol. 9, 174 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pang, Z. et al. Differential response to warming of the uptake of nitrogen by plant species in non-degraded and degraded alpine grasslands. J. Soils Sediments 19, 2212–2221 (2019).CAS 
    Article 

    Google Scholar 
    Blum, A. & Ebercon, A. Genotypic responses in sorghum to drought stress. III. Free proline accumulation and drought resistance1. Crop Sci. 16, 428–431 (1976).CAS 
    Article 

    Google Scholar 
    Verbruggen, N. & Hermans, C. Proline accumulation in plants: a review. Amino Acids 35, 753–759 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun, S. C., Paramasivan, M. & Chandrasekaran, M. Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Front. Microbiol. 9, 2525 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fu, Y., Ma, H., Chen, S., Gu, T. & Gong, J. Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J. Exp. Bot. 69, 579–588 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dien, D. C., Mochizuki, T. & Yamakawa, T. Effect of various drought stresses and subsequent recovery on proline, total soluble sugar and starch metabolisms in Rice (Oryza sativa L.) varieties. Plant Prod. Sci. 22, 530–545 (2019).CAS 
    Article 

    Google Scholar 
    Traoré, O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A. & Boeuf-Tremblay, V. Effect of root mucilage and modelled root exudates on soil structure. Eur. J. Soil Sci. 51, 575–581 (2000).
    Google Scholar 
    Harun, S., Abdullah-Zawawi, M.-R., A-Rahman, M. R. A., Muhammad, N. A. N. & Mohamed-Hussein, Z.-A. SuCComBase: A manually curated repository of plant sulfur-containing compounds. Database J. Biol. Databases Curation 219, 21 (2019).
    Google Scholar 
    Steinauer, K., Chatzinotas, A. & Eisenhauer, N. Root exudate cocktails: the link between plant diversity and soil microorganisms?. Ecol. Evol. 6, 7387–7396 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kraus, T. E. C., Dahlgren, R. A. & Zasoski, R. J. Tannins in nutrient dynamics of forest ecosystems—A review. Plant Soil 256, 41–66 (2003).CAS 
    Article 

    Google Scholar 
    Madritch, M., Cavender-Bares, J., Hobbie, S. E. & Townsend, P. A. Linking foliar traits to belowground processes. In Remote Sensing of Plant Biodiversity (eds Cavender-Bares, J. et al.) 173–197 (Springer, 2020). https://doi.org/10.1007/978-3-030-33157-3_8.Chapter 

    Google Scholar 
    Shaw, L. J., Morris, P. & Hooker, J. E. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ. Microbiol. 8, 1867–1880 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ray, S. et al. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway. Microbiol. Res. 207, 100–107 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walker, T. S., Bais, H. P., Grotewold, E. & Vivanco, J. M. Root exudation and rhizosphere biology. Plant Physiol. 132, 44–51 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Popa, V. I., Dumitru, M., Volf, I. & Anghel, N. Lignin and polyphenols as allelochemicals. Ind. Crops Prod. 27, 144–149 (2008).CAS 
    Article 

    Google Scholar 
    Badri, D. V., Chaparro, J. M., Zhang, R., Shen, Q. & Vivanco, J. M. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. J. Biol. Chem. 288, 4502–4512 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    el Haichar, F. Z., Santaella, C., Heulin, T. & Achouak, W. Root exudates mediated interactions belowground. Soil Biol. Biochem. 77, 69–80 (2014).CAS 
    Article 

    Google Scholar 
    Northup, R. R., Yu, Z., Dahlgren, R. A. & Vogt, K. A. Polyphenol control of nitrogen release from pine litter. Nature 377, 227 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Schmidt-Rohr, K., Mao, J.-D. & Olk, D. Nitrogen-bonded aromatics in soil organic matter and their implications for a yield decline in intensive rice cropping. Proc. Natl. Acad. Sci. 101, 6351–6354 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salminen, J. & Karonen, M. Chemical ecology of tannins and other phenolics: We need a change in approach. Funct. Ecol. 25, 325–338 (2011).Article 

    Google Scholar 
    Ghanbary, E. et al. Drought and pathogen effects on survival, leaf physiology, oxidative damage, and defense in two middle eastern oak species. Forests 12, 247 (2021).Article 

    Google Scholar 
    Baetz, U. & Martinoia, E. Root exudates: the hidden part of plant defense. Trends Plant Sci. 19, 90–98 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fan, T.W.-M., Lane, A. N., Pedler, J., Crowley, D. & Higashi, R. M. Comprehensive analysis of organic ligands in whole root exudates using nuclear magnetic resonance and gas chromatography–mass spectrometry. Anal. Biochem. 251, 57–68 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Qiao, M. et al. Analysis of the phenolic compounds in root exudates produced by a subalpine coniferous species as responses to experimental warming and nitrogen fertilisation. Chem. Ecol. 30, 555–565 (2014).Article 
    CAS 

    Google Scholar 
    Hussein, R. A. & El-Anssary, A. A. Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants. Herbal Medicine (IntechOpen, 2018). https://doi.org/10.5772/intechopen.76139.Oburger, E. & Jones, D. L. Sampling root exudates–mission impossible?. Rhizosphere 6, 116–133 (2018).Article 

    Google Scholar 
    Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A. & Pérez-Clemente, R. M. Root exudates: From plant to rhizosphere and beyond. Plant Cell Rep. 39, 3–17 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaparro, J. M., Badri, D. V. & Vivanco, J. M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8, 790–803 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mönchgesang, S. et al. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Sci. Rep. 6, 1–1 (2016).Article 
    CAS 

    Google Scholar 
    Sandnes, A., Eldhuset, T. D. & Wollebæk, G. Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol. Biochem. 37, 259–269 (2005).CAS 
    Article 

    Google Scholar 
    Prescott, C. E. & Grayston, S. J. Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. For. Ecol. Manag. 309, 19–27 (2013).Article 

    Google Scholar 
    Miao, Y., Lv, J., Huang, H., Cao, D. & Zhang, S. Molecular characterization of root exudates using Fourier transform ion cyclotron resonance mass spectrometry. J. Environ. Sci. 98, 22–30 (2020).Article 

    Google Scholar 
    Grayston, S. J., Vaughan, D. & Jones, D. Rhizosphere carbon flow in trees, in comparison with annual plants: The importance of root exudation and its impact on microbial activity and nutrient availability. Appl. Soil Ecol. 5, 29–56 (1997).Article 

    Google Scholar 
    Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999 (2008).Article 

    Google Scholar 
    Ulrich, D. E. M., Sevanto, S., Peterson, S., Ryan, M. & Dunbar, J. Effects of soil microbes on functional traits of loblolly pine (Pinus taeda) seedling families from contrasting climates. Front. Plant Sci. 10, 1643 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Preece, C., Farré-Armengol, G., Llusià, J. & Peñuelas, J. Thirsty tree roots exude more carbon. Tree Physiol https://doi.org/10.1093/treephys/tpx163 (2018).Article 
    PubMed 

    Google Scholar 
    Nguyen, C. Rhizodeposition of organic C by plants: Mechanisms and controls. Agronomie 23, 375–396 (2003).CAS 
    Article 

    Google Scholar 
    Viant, M. R. & Sommer, U. Mass spectrometry based environmental metabolomics: A primer and review. Metabolomics 9, 144–158 (2013).CAS 
    Article 

    Google Scholar 
    Fiehn, O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 114, 30.4.1-30.4.32 (2016).Article 

    Google Scholar 
    Hiller, K. et al. MetaboliteDetector: comprehensive analysis tool for targeted and nontargeted GC/MS based metabolome analysis. Anal. Chem. 81, 3429–3439 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kind, T. et al. FiehnLib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 81, 10038–10048 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Delaglio, F. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ulrich, E. L. et al. BioMagResBank. Nucleic Acids Res. 36, D402–D408 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dittmar, T., Koch, B., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).CAS 
    Article 

    Google Scholar 
    Tfaily, M. M., Hodgkins, S., Podgorski, D. C., Chanton, J. P. & Cooper, W. T. Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 404, 447–457 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tolić, N. et al. Formularity: Software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra. Anal. Chem. 89, 12659–12665 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tfaily, M. M. et al. Vertical stratification of peat pore water dissolved organic matter composition in a peat bog in Northern Minnesota. J. Geophys. Res. Biogeosci. 123, 479–494 (2018).CAS 
    Article 

    Google Scholar 
    Van Krevelen, D. Graphical-statistical method for the study of structure and reaction processes of coal. Fuel 29, 269–284 (1950).
    Google Scholar 
    Pett-Ridge, J. et al. Rhizosphere carbon turnover from cradle to grave: The role of microbe–plant interactions. in Rhizosphere Biology: Interactions Between Microbes and Plants 51–73 (Springer, 2021).Kuo, Y.-H., Lambein, F., Ikegami, F. & Parijs, R. V. Isoxazolin-5-ones and amino acids in root exudates of pea and sweet pea seedlings. Plant Physiol. 70, 1283–1289 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon, M.-Y. et al. Antifungal activity of benzoic acid from bacillus subtilis GDYA-1 against fungal phytopathogens. Res. Plant Dis. 18, 109–116 (2012).CAS 
    Article 

    Google Scholar 
    Neumann, G. et al. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils. Front. Microbiol. 5, 2 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Servillo, L. et al. Betaines and related ammonium compounds in chestnut (Castanea sativa Mill.). Food Chem. 196, 1301–1309 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, J. The influence of tall fescue cultivar and endophyte status on root exudate chemistry and rhizosphere processes. (2014).Loewus, F. A. & Murthy, P. P. N. myo-Inositol metabolism in plants. Plant Sci. 150, 1–19 (2000).CAS 
    Article 

    Google Scholar 
    Valluru, R. & Van den Ende, W. Myo-inositol and beyond—Emerging networks under stress. Plant Sci. 181, 387–400 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allard-Massicotte, R. et al. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. MBio 7, e01664-16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muthuramalingam, P. et al. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 8, 9270 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chahed, A. et al. The rare sugar tagatose differentially inhibits the growth of Phytophthora infestans and Phytophthora cinnamomi by interfering with mitochondrial processes. Front. Microbiol. 11, 128 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mochizuki, S. et al. The rare sugar d-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun. Biol. 3, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Chapin III, F. S. The cost of tundra plant structures: evaluation of concepts and currencies. The American Naturalist, 133(1), 1–19 (1989). More

  • in

    Glimmers of hope in large carnivore recoveries

    Possingham, H. P. et al. Limits to the use of threatened species lists. Trends Ecol. Evol. 17, 503–507 (2002).Article 

    Google Scholar 
    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Knowlton, N. Ocean optimism: Moving beyond the obituaries in marine conservation. Annu. Rev. Mar. Sci. 13, 13 (2021).Article 

    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammerschlag, N. et al. Ecosystem function and services of aquatic predators in the anthropocene. Trends Ecol. Evol. 34(4), 369–383 (2019).PubMed 
    Article 

    Google Scholar 
    Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27, 265–271 (2012).PubMed 
    Article 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article 

    Google Scholar 
    Marshall, K. N., Stier, A. C., Samhouri, J. F., Kelly, R. P. & Ward, E. J. Conservation challenges of predator recovery. Conserv. Lett. 9, 70–78 (2016).Article 

    Google Scholar 
    Gregr, E. J. et al. Cascading social-ecological costs and benefits triggered by a recovering keystone predator. Science 368, 1243–1247 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, K. R. et al. The location and protection status of earth’s diminishing marine wilderness. Curr. Biol. 28, 2506-2512.e3 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Nielsen, M. R., Meilby, H., Smith-Hall, C., Pouliot, M. & Treue, T. The importance of wild meat in the global south. Ecol. Econ. 146, 696–705 (2018).Article 

    Google Scholar 
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction?. Conserv. Lett. 12, e12627 (2019).Article 

    Google Scholar 
    Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Carrizo, S. F. et al. Freshwater megafauna: Flagships for freshwater biodiversity under threat. Bioscience 67, 919–927 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luskin, M. S., Albert, W. R. & Tobler, M. W. Sumatran tiger survival threatened by deforestation despite increasing densities in parks. Nat. Commun. 8, 1783 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Desforges, J.-P. et al. Predicting global killer whale population collapse from PCB pollution. Science 361, 1373–1376 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alava, J. J., Cheung, W. W. L., Ross, P. S. & Sumaila, U. R. Climate change–contaminant interactions in marine food webs: Toward a conceptual framework. Glob. Change Biol. 23, 3984–4001 (2017).Article 

    Google Scholar 
    Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346, 1517–1519 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    House, P. H., Clark, B. L. & Allen, L. G. The return of the king of the kelp forest: Distribution, abundance, and biomass of Giant sea bass (Stereolepis gigas) off Santa Catalina Island, California, 2014–2015. Bull. South. Calif. Acad. Sci. 115, 1–14 (2016).
    Google Scholar 
    Waterhouse, L. et al. Recovery of critically endangered Nassau grouper (Epinephelus striatus) in the Cayman Islands following targeted conservation actions. Proc. Natl. Acad. Sci. 117, 1587–1595 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Balmford, A. & Knowlton, N. Why Earth Optimism? (American Association for the Advancement of Science, 2017).Book 

    Google Scholar 
    Sutherland, W. J., Pullin, A. S., Dolman, P. M. & Knight, T. M. The need for evidence-based conservation. Trends Ecol. Evol. 19, 305–308 (2004).PubMed 
    Article 

    Google Scholar 
    Adams, W. M. & Sandbrook, C. Conservation, evidence and policy. Oryx 47, 329–335 (2013).Article 

    Google Scholar 
    Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl. Acad. Sci. 106, 20641–20645 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davis, S. J., Peters, G. P. & Caldeira, K. The supply chain of CO2 emissions. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1107409108 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).Article 

    Google Scholar 
    Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011).PubMed 
    Article 

    Google Scholar 
    Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature https://doi.org/10.1038/s41586-019-1444-4 (2019).Article 
    PubMed 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the anthropocene. Sci. Adv. 6, 7650 (2020).ADS 
    Article 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tom Gelatt (National Marine Mammal Laboratory, A. F. S. C. & Sweeney, K. IUCN red list of threatened species: Eumetopias jubatus. IUCN Red List of Threatened Species. https://www.iucnredlist.org/en (2016).Taylor, M. F. J., Suckling, K. F. & Rachlinski, J. J. The effectiveness of the endangered species act: A quantitative analysis. Bioscience 55, 360–367 (2005).Article 

    Google Scholar 
    Hejny, J. The Trump administration and environmental policy: Reagan redux?. J. Environ. Stud. Sci. 8, 197–211 (2018).Article 

    Google Scholar 
    Sanderson, F. J. et al. Assessing the performance of EU nature legislation in protecting target bird species in an era of climate change. Conserv. Lett. 9, 172–180 (2016).Article 

    Google Scholar 
    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cuthbert, R. J. et al. Continuing mortality of vultures in India associated with illegal veterinary use of diclofenac and a potential threat from nimesulide. Oryx 50, 104–112 (2016).Article 

    Google Scholar 
    Margalida, A. & Oliva-Vidal, P. The shadow of diclofenac hangs over European vultures. Nat. Ecol. Evol. 1, 1050 (2017).PubMed 
    Article 

    Google Scholar 
    Williams, D. R., Balmford, A. & Wilcove, D. S. The past and future role of conservation science in saving biodiversity. Conserv. Lett. 13, e12720 (2020).Article 

    Google Scholar 
    Barnes, M. D. et al. Wildlife population trends in protected areas predicted by national socio-economic metrics and body size. Nat. Commun. 7, 12747 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).Article 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Juffe-Bignoli, D. et al. Protected Planet Report 2014: Tracking Progress Towards Global Targets for Protected Areas (Springer, 2014).
    Google Scholar 
    Turnbull, J. W., Johnston, E. L. & Clark, G. F. Evaluating the social and ecological effectiveness of partially protected marine areas. Conserv. Biol. 35, 921–932 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, 1–10 (2017).Article 
    CAS 

    Google Scholar 
    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).Article 

    Google Scholar 
    Geldmann, J. et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 161, 230–238 (2013).Article 

    Google Scholar 
    Daskin, J. H. & Pringle, R. M. Warfare and wildlife declines in Africa’s protected areas. Nature 553, 328–332 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Redpath, S. M. et al. Don’t forget to look down: Collaborative approaches to predator conservation. Biol. Rev. 92, 2157–2163 (2017).PubMed 
    Article 

    Google Scholar 
    Hazzah, L. et al. Efficacy of two lion conservation programs in Maasailand, Kenya. Conserv. Biol. 28, 851–860 (2014).PubMed 
    Article 

    Google Scholar 
    Zarfl, C. et al. Future large hydropower dams impact global freshwater megafauna. Sci. Rep. 9, 18531 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arthington, A. H., Dulvy, N. K., Gladstone, W. & Winfield, I. J. Fish conservation in freshwater and marine realms: Status, threats and management. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 838–857 (2016).Article 

    Google Scholar 
    Castello, L. & Macedo, M. N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Change Biol. 22, 990–1007 (2016).ADS 
    Article 

    Google Scholar 
    Safford, R. et al. Vulture conservation: The case for urgent action. Bird Conserv. Int. 29, 1–9 (2019).Article 

    Google Scholar 
    Ogada, D. et al. Another continental vulture crisis: Africa’s vultures collapsing toward extinction. Conserv. Lett. 9, 89–97 (2016).ADS 
    Article 

    Google Scholar 
    Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).Article 

    Google Scholar 
    Hammerschlag, N. & Gallagher, A. J. Extinction risk and conservation of the earth’s national animal symbols. Bioscience 67, 744–749 (2017).Article 

    Google Scholar 
    Sutherland, W. J., Dicks, L. V., Ockendon, N. & Smith, R. K. What Works in Conservation 2015 (Open Book Publishers, 2015).Book 

    Google Scholar 
    Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, R565–R572 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finucci, B., Duffy, C. A. J., Francis, M. P., Gibson, C. & Kyne, P. M. The extinction risk of New Zealand chondrichthyans. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 783–797 (2019).Article 

    Google Scholar 
    Creel, S. et al. Questionable policy for large carnivore hunting. Science 350, 1473–1475 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    González, L. M. et al. Causes and spatio-temporal variations of non-natural mortality in the Vulnerable Spanish imperial eagle Aquila adalberti during a recovery period. Oryx 41, 495–502 (2007).Article 

    Google Scholar 
    Morandini, V., de Benito, E., Newton, I. & Ferrer, M. Natural expansion versus translocation in a previously human-persecuted bird of prey. Ecol. Evol. 7, 3682–3688 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goodrich, J. M. et al. Panthera tigris, Tiger. IUCN Red List Threat. Species (2015).Wikramanayake, E. et al. A landscape-based conservation strategy to double the wild tiger population. Conserv. Lett. 4, 219–227 (2011).Article 

    Google Scholar 
    Bhattarai, B. R., Wright, W., Morgan, D., Cook, S. & Baral, H. S. Managing human-tiger conflict: Lessons from Bardia and Chitwan National Parks, Nepal. Eur. J. Wildl. Res. 65, 34 (2019).Article 

    Google Scholar 
    Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Courchamp, F. et al. The paradoxical extinction of the most charismatic animals. PLoS Biol. 16, e2003997 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).Article 

    Google Scholar 
    Carter, N. H. & Linnell, J. D. C. Co-adaptation is key to coexisting with large carnivores. Trends Ecol. Evol. 31, 575–578 (2016).PubMed 
    Article 

    Google Scholar 
    Guerra, A. S. Wolves of the sea: Managing human-wildlife conflict in an increasingly tense ocean. Mar. Policy 99, 369–373 (2019).Article 

    Google Scholar 
    Das, C. S. Pattern and characterisation of human casualties in Sundarban by tiger attacks, India. Sustain. For. 1, 1–10 (2018).
    Google Scholar 
    Packer, C. et al. Conserving large carnivores: Dollars and fence. Ecol. Lett. 16, 635–641 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dudley, S. F. J. A comparison of the shark control programs of New South Wales and Queensland (Australia) and KwaZulu-Natal (South Africa). Ocean Coast. Manag. 34, 1–27 (1997).Article 

    Google Scholar 
    O’Connell, C. P., Andreotti, S., Rutzen, M., Meӱer, M. & Matthee, C. A. Testing the exclusion capabilities and durability of the Sharksafe Barrier to determine its viability as an eco-friendly alternative to current shark culling methodologies. Aquat. Conserv. Mar. Freshw. Ecosyst. 28, 252–258 (2018).Article 

    Google Scholar 
    Gailey, G. et al. Effects of sea ice on growth rates of an endangered population of gray whales. Sci. Rep. 10, 1553 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hazen, E. L. et al. A dynamic ocean management tool to reduce bycatch and support sustainable fisheries. Sci. Adv. 4, 3001 (2018).ADS 
    Article 

    Google Scholar 
    Ingeman, K. E., Samhouri, J. F. & Stier, A. C. Ocean recoveries for tomorrow’s Earth: Hitting a moving target. Science 363, 6425 (2019).Article 

    Google Scholar 
    Sánchez-Hernández, J. & Amundsen, P.-A. Ecosystem type shapes trophic position and omnivory in fishes. Fish Fish. 19, 1003–1015 (2018).Article 

    Google Scholar 
    Gainsbury, A. M., Tallowin, O. J. S. & Meiri, S. An updated global data set for diet preferences in terrestrial mammals: testing the validity of extrapolation. Mammal Rev. 48, 160–167 (2018).Article 

    Google Scholar 
    Faurby, S. et al. PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology 99, 2626–2626 (2018).PubMed 
    Article 

    Google Scholar 
    Costello, M. J. et al. Marine biogeographic realms and species endemicity. Nat. Commun. 8, 1057 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Rodrigues, A. S. L., Pilgrim, J. D., Lamoreux, J. F., Hoffmann, M. & Brooks, T. M. The value of the IUCN red list for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 
    Article 

    Google Scholar  More

  • in

    Bushmeat in Brazil

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Quantifying research waste in ecology

    Ioannidis, J. P. A., Fanelli, D., Dunne, D. D. & Goodman, S. N. Meta-research: evaluation and improvement of research methods and practices. PLoS Biol. 13, e1002264 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hampton, S. E. et al. The Tao of open science for ecology. Ecosphere 6, art120 (2015).Article 

    Google Scholar 
    Rothstein, H. R., Sutton, A. J. & Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments (John Wiley & Sons, 2005).Sutton, A. J. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H. et al.) 435–452 (Russell Sage Foundation, 2009).Nakagawa, S., Koricheva, J., Macleod, M. & Viechtbauer, W. Introducing our series: research synthesis and meta-research in biology. BMC Biol. 18, 20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nakagawa, S. et al. A new ecosystem for evidence synthesis. Nat. Ecol. Evol. 4, 498–501 (2020).PubMed 
    Article 

    Google Scholar 
    Coolidge, H. J. & Lord, R. H. in Archibald Cary Coolidge: Life and Letters 308 (Houghton Mifflin Harcourt, 1932).Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).Article 

    Google Scholar 
    Touchon, J. C. & McCoy, M. W. The mismatch between current statistical practice and doctoral training in ecology. Ecosphere 7, e01394 (2016).Article 

    Google Scholar 
    Begley, C. G. & Ellis, L. M. Raise standards for preclinical cancer research. Nature 483, 531–533 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aarts, A. A. et al. Estimating the reproducibility of psychological science. Science 349, aac4716 (2015).Article 
    CAS 

    Google Scholar 
    Camerer, C. F. et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat. Hum. Behav. 2, 637–644 (2018).PubMed 
    Article 

    Google Scholar 
    Fraser, H., Parker, T., Nakagawa, S., Barnett, A. & Fidler, F. Questionable research practices in ecology and evolution. PLoS ONE 13, e0200303 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Culina, A., van den Berg, I., Evans, S. & Sánchez-Tójar, A. Low availability of code in ecology: a call for urgent action. PLoS Biol. 18, e3000763 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. Publication bias in ecology and evolution: an empirical assessment using the ‘trim and fill’ method. Biol. Rev. Camb. Philos. Soc. 77, 211–222 (2002).PubMed 
    Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behavior. Behav. Ecol. 14, 438–445 (2003).Article 

    Google Scholar 
    Cassey, P., Ewen, J. G., Blackburn, T. M. & Møller, A. P. A survey of publication bias within evolutionary ecology. Proc. Biol. Sci. 271, S451–S454 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kardish, M. R. et al. Blind trust in unblinded observation in ecology, evolution, and behavior. Front. Ecol. Evol. 3, 51 (2015).Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. Relationships fade with time: a meta-analysis of temporal trends in publication in ecology and evolution. Proc. Biol. Sci. 269, 43–48 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, M. 1,500 scientists lift the lid on reproducibility. Nature 533, 452–454 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chalmers, I. & Glasziou, P. Avoidable waste in the production and reporting of research evidence. Lancet 374, 86–89 (2009).PubMed 
    Article 

    Google Scholar 
    Altman, D. G. The scandal of poor medical research. BMJ 308, 283–284 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glasziou, P. & Chalmers, I. Is 85% of health research really ‘wasted’? BMJ Opinion (14 January 2016).Glasziou, P. & Chalmers, I. Research waste is still a scandal. BMJ 363, k4645 (2018).Article 

    Google Scholar 
    Chalmers, I. et al. How to increase value and reduce waste when research priorities are set. Lancet 383, 156–165 (2014).PubMed 
    Article 

    Google Scholar 
    Kunin, W. E. Robust evidence of declines in insect abundance and biodiversity. Nature 574, 641–642 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Christie, A. P. et al. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences. Nat. Commun. 11, 6377 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell, H. A. et al. Finding our way: on the sharing and reuse of animal telemetry data in Australasia. Sci. Total Environ. 534, 79–84 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koricheva, J. Non-significant results in ecology: a burden or a blessing in disguise? Oikos 102, 397–401 (2003).Article 

    Google Scholar 
    Bennett, L. T. & Adams, M. A. Assessment of ecological effects due to forest harvesting: approaches and statistical issues. J. Appl. Ecol. 41, 585–598 (2004).Article 

    Google Scholar 
    Duval, S. & Tweedie, R. A nonparametric ‘trim and fill’ method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 95, 89–98 (2012).
    Google Scholar 
    Brlík, V. et al. Weak effects of geolocators on small birds: a meta-analysis controlled for phylogeny and publication bias. J. Anim. Ecol. 89, 207–220 (2020).PubMed 
    Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Jennions, M. D. & Møller, A. P. A survey of the statistical power of research in behavioral ecology and animal behaviour. Behav. Ecol. 14, 438–445 (2003).Article 

    Google Scholar 
    Culina, A., Purgar, M. & Klanjscek, T. Datasets and codes for Purgar et al. 2022: quantifying research waste in ecology. Zenodo https://zenodo.org/record/6566100#.YrLWB-zMIqs (2022).Ferguson, C. et al. Europe PMC in 2020. Nucleic Acids Res. 49, D1507–D1514 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, C.-K. et al. Meta-Research: Evaluating the impact of open access policies on research institutions. eLife 9, e57067 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ross-Hellauer, T. Open science, done wrong, will compound inequities. Nature 603, 363 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, A. C. et al. Assessing the effect of article processing charges on the geographic diversity of authors using Elsevier’s ‘Mirror journal’ system. Quant. Sci. Stud. 2, 1123–1143 (2021).Article 

    Google Scholar 
    Christie, A. P. et al. Reducing publication delay to improve the efficiency and impact of conservation science. PeerJ 9, e12245 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Desjardins-Proulx, P. et al. The case for open preprints in biology. PLoS Biol. 11, e1001563 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav. 1, 0021 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Dea, R. E. et al. Towards open, reliable, and transparent ecology and evolutionary biology. BMC Biol. 19, 68 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Culina, A. et al. Navigating the unfolding open data landscape in ecology and evolution. Nat. Ecol. Evol. 2, 420–426 (2018).PubMed 
    Article 

    Google Scholar 
    Culina, A., Crowther, T. W., Ramakers, J. J. C., Gienapp, P. & Visser, M. E. How to do meta-analysis of open datasets. Nat. Ecol. Evol. 2, 1053–1056 (2018).PubMed 
    Article 

    Google Scholar 
    Roche, D. G., Kruuk, L. E. B., Lanfear, R. & Binning, S. A. Public data archiving in ecology and evolution: how well are we doing? PLoS Biol. 13, e1002295 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Grainger, M. J., Bolam, F. C., Stewart, G. B. & Nilsen, E. B. Evidence synthesis for tackling research waste. Nat. Ecol. Evol. 4, 495–497 (2020).PubMed 
    Article 

    Google Scholar 
    Nørgaard, B. et al. Systematic reviews are rarely used to inform study design—a systematic review and meta-analysis. J. Clin. Epidemiol. 145, 1–13 (2022).PubMed 
    Article 

    Google Scholar 
    Webb, J. A. et al. Weaving common threads in environmental causal assessment methods: toward an ideal method for rapid evidence synthesis. Freshw. Sci. 36, 250–256 (2017).Article 

    Google Scholar 
    Collins, A., Coughlin, D., Miller, J. & Kirk, S. The Production of Quick Scoping Reviews and Rapid Evidence Assessments: A How to Guide (Joint Water Evidence Group, 2015).Carrick, J. et al. Is planting trees the solution to reducing flood risks? J. Flood Risk Manag. 12, e12484 (2019).Article 

    Google Scholar 
    Nuñez, M. A. & Amano, T. Monolingual searches can limit and bias results in global literature reviews. Nat. Ecol. Evol. 5, 264 (2021).PubMed 
    Article 

    Google Scholar 
    Morrison, A. et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int. J. Technol. Assess. Health Care 28, 138–144 (2012).PubMed 
    Article 

    Google Scholar 
    Wu, T., Li, Y., Bian, Z., Liu, G. & Moher, D. Randomized trials published in some Chinese journals: how many are randomized? Trials 10, 46 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vorobeichik, E. L. & Kozlov, M. V. Impact of point polluters on terrestrial ecosystems: methodology of research, experimental design, and typical errors. Russ. J. Ecol. 43, 89–96 (2012).Article 

    Google Scholar 
    Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).PubMed 
    Article 

    Google Scholar 
    Transforming Our World: the 2030 Agenda for Sustainable Development (United Nations, 2015).MacCoun, R. & Perlmutter, S. Blind analysis: hide results to seek the truth. Nature 526, 187–189 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Parker, T. H. et al. Transparency in ecology and evolution: real problems, real solutions. Trends Ecol. Evol. 31, 711–719 (2016).PubMed 
    Article 

    Google Scholar 
    Announcement: reducing our irreproducibility. Nature 496, 398 (2013).Moher, D. et al. Increasing value and reducing waste in biomedical research: who’s listening? Lancet 387, 1573–1586 (2016).PubMed 
    Article 

    Google Scholar 
    Smaldino, P. E. & McElreath, R. The natural selection of bad science. R. Soc. Open Sci. 3, 160384 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vrieze, J. Landmark research integrity survey finds questionable practices are surprisingly common. ScienceInsider https://www.sciencemag.org/news/2021/07/landmark-research-integrity-survey-finds-questionable-practices-are-surprisingly-common (2021).Woolston, C. Impact factor abandoned by Dutch university in hiring and promotion decisions. Nature 595, 462 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Directorate-General for Research and Innovation (European Commission). Towards a Reform of the Research Assessment System. Scoping Report (Publications Office, 2021).Athena Research & Innovation Center, Directorate-General for Research and Innovation (European Commission), PPMI, UNU-MERIT. Monitoring the Open Access Policy of Horizon 2020. Final report (European Commission, 2021).Kwon, D. University of California and Elsevier forge open-access deal. TheScientist https://www.the-scientist.com/news-opinion/university-of-california-and-elsevier-forge-open-access-deal–68557 (2021).Vines, T. H. et al. Mandated data archiving greatly improves access to research data. FASEB J. 27, 1304–1308 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    NPQIP Collaborative Group. Did a change in Nature journals’ editorial policy for life sciences research improve reporting? BMJ Open Sci. 3, e000035 (2019).Article 

    Google Scholar 
    Glasziou, P. et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet 383, 267–276 (2014).PubMed 
    Article 

    Google Scholar 
    Fecher, B. & Friesike, S. in Opening Science: the Evolving Guide on How the Internet is Changing Research, Collaboration and Scholarly Publishing (eds Bartling, S. & Friesike, S.) 17–47 (Springer International Publishing, 2014).Hardwicke, T. E. et al. Calibrating the scientific ecosystem through meta-research. Annu. Rev. Stat. Appl. 7, 11–37 (2020).Article 

    Google Scholar 
    McKiernan, E. C. et al. How open science helps researchers succeed. eLife 5, e16800 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fidler, F. et al. Metaresearch for evaluating reproducibility in ecology and evolution. Bioscience 67, 282–289 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2016).Article 

    Google Scholar 
    Fidler, F., Burgman, M. A., Cumming, G., Buttrose, R. & Thomason, N. Impact of criticism of null-hypothesis significance testing on statistical reporting practices in conservation biology. Conserv. Biol. 20, 1539–1544 (2006).PubMed 
    Article 

    Google Scholar 
    Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).PubMed 
    Article 

    Google Scholar 
    Gillespie, B. R., Desmet, S., Kay, P., Tillotson, M. R. & Brown, L. E. A critical analysis of regulated river ecosystem responses to managed environmental flows from reservoirs. Freshw. Biol. 60, 410–425 (2015).Article 

    Google Scholar 
    Haddaway, N. R., Styles, D. & Pullin, A. S. Evidence on the environmental impacts of farm land abandonment in high altitude/mountain regions: a systematic map. Environ. Evid. 3, 17 (2014).Article 

    Google Scholar 
    Heffner, R. A., Butler, M. J. & Reilly, C. K. Pseudoreplication revisited. Ecology 77, 2558–2562 (1996).Article 

    Google Scholar 
    Holman, L., Head, M. L., Lanfear, R. & Jennions, M. D. Evidence of experimental bias in the life sciences: why we need blind data recording. PLoS Biol. 13, e1002190 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hurlbert, S. H. & White, M. D. Experiments with freshwater invertebrate zooplanktivores: quality of statistical analyses. Bull. Mar. Sci. 53, 128–153 (1993).
    Google Scholar 
    Johnson, W. T.3rd & Freeberg, T. M. Pseudoreplication in use of predator stimuli in experiments on antipredator responses. Anim. Behav. 119, 161–164 (2016).Article 

    Google Scholar 
    Kozlov, M. V. Pseudoreplication in ecological research: the problem overlooked by Russian scientists. Zh. Obshch. Biol. 64, 292–307 (2003).CAS 
    PubMed 

    Google Scholar 
    Kozlov, M. V. Plant studies on fluctuating asymmetry in Russia: mythology and methodology. Russ. J. Ecol. 48, 1–9 (2017).Article 

    Google Scholar 
    McDonald, S., Cresswell, T., Hassell, K. & Keough, M. Experimental design and statistical analysis in aquatic live animal radiotracing studies: a systematic review. Crit. Rev. Environ. Sci. Technol. 52, 2772–2801 (2021).Article 

    Google Scholar 
    Møller, A. P., Thornhill, R. & Gangestad, S. W. Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim. Behav. 70, 497–506 (2005).Article 

    Google Scholar 
    Mrosovsky, N. & Godfrey, M. H. The path from grey literature to Red Lists. Endang. Species Res. 6, 185–191 (2008).
    Google Scholar 
    O’Brien, C., van Riper, C.3rd & Myers, D. E. Making reliable decisions in the study of wildlife diseases: using hypothesis tests, statistical power, and observed effects. J. Wildl. Dis. 45, 700–712 (2009).PubMed 
    Article 

    Google Scholar 
    Parker, T. H. What do we really know about the signalling role of plumage colour in blue tits? A case study of impediments to progress in evolutionary biology. Biol. Rev. Camb. Philos. Soc. 88, 511–536 (2013).PubMed 
    Article 

    Google Scholar 
    Ramage, B. S. et al. Pseudoreplication in tropical forests and the resulting effects on biodiversity conservation. Conserv. Biol. 27, 364–372 (2013).PubMed 
    Article 

    Google Scholar 
    Sallabanks, R., Arnett, E. B. & Marzluff, J. M. An evaluation of research on the effects of timber harvest on bird populations. Wildl. Soc. Bull. 28, 1144–1155 (2000).
    Google Scholar 
    Sánchez-Tójar, A. et al. Meta-analysis challenges a textbook example of status signalling and demonstrates publication bias. eLife 7, e37385 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waller, B., Warmelink, L., Liebal, K., Micheletta, J. & Slocombe, K. Pseudoreplication: a widespread problem in primate communication research. Anim. Behav. 86, 483–488 (2013).Article 

    Google Scholar 
    Van Wilgenburg, E. & Elgar, M. A. Confirmation bias in studies of nestmate recognition: a cautionary note for research into the behaviour of animals. PLoS ONE 8, e53548 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoccoz, N. G. Use, overuse, and misuse of significance tests in evolutionary biology and ecology. Bull. Ecol. Soc. Am. 72, 106–111 (1991).
    Google Scholar 
    Zaitsev, A. S., Gongalsky, K. B., Malmström, A., Persson, T. & Bengtsson, J. Why are forest fires generally neglected in soil fauna research? A mini-review. Appl. Soil Ecol. 98, 261–271 (2016).Article 

    Google Scholar 
    Zvereva, E. L. & Kozlov, M. V. Biases in studies of spatial patterns in insect herbivory. Ecol. Monogr. 89, e01361 (2019).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R (RStudio, 2020).Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).Article 

    Google Scholar  More

  • in

    Harnessing the microbiome to prevent global biodiversity loss

    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 461, 472–475 (2009).Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sweet, M., Burian, A. & Bulling, M. Corals as canaries in the coalmine: towards the incorporation of marine ecosystems into the ‘One Health’ concept. J. Invertebr. Pathol. 186, 107538 (2021).PubMed 
    Article 

    Google Scholar 
    Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).PubMed 
    Article 

    Google Scholar 
    Doering, T. et al. Towards enhancing coral heat tolerance: a ‘microbiome transplantation’ treatment using inoculations of homogenized coral tissues. Microbiome 9, 102 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosado, P. M. et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J. 13, 921–936 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Santos, H. F. et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci. Rep. 5, 18268 (2015).Article 
    CAS 

    Google Scholar 
    Santoro, E. P. et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci. Adv. 7, eabg3088 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Silva, D. P. et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome 9, 118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoyt, J. R. et al. Field trial of a probiotic bacteria to protect bats from white-nose syndrome. Sci. Rep. 9, 9158 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).PubMed 
    Article 

    Google Scholar 
    Daisley, B. A. et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun. Biol. 3, 534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Powell, J. E., Carver, Z., Leonard, S. P. & Moran, N. A. Field-realistic tylosin exposure impacts honey bee microbiota and pathogen susceptibility, which is ameliorated by native gut probiotics. Microbiol. Spectr. 9, e0010321 (2021).PubMed 
    Article 

    Google Scholar 
    Borges, D., Guzman-Novoa, E. & Goodwin, P. H. Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms 9, 481 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daisley, B. A. et al. Novel probiotic approach to counter Paenibacillus larvae infection in honey bees. ISME J. 14, 476–491 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trinder, M. et al. Probiotic Lactobacillus rhamnosus reduces organophosphate pesticide absorption and toxicity to Drosophila melanogaster. Appl. Environ. Microbiol. 82, 6204–6213 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knowlton, N. et al. Rebuilding Coral Reefs: A Decadal Grand Challenge. (International Coral Reef Society, Future Earth Coasts, 2021).Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jaspers, C. et al. Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology 133, 81–87 (2019).PubMed 
    Article 

    Google Scholar 
    Bosch, T. C. G. & McFall-Ngai, M. J. Metaorganisms as the new frontier. Zoology 114, 185–190 (2011).PubMed 
    Article 

    Google Scholar 
    Wilkins, L. G. E. et al. Host-associated microbiomes and their roles in marine ecosystem functions. PLoS Biol. 17, e3000533 (2019).Humphreys, C. P. et al. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat. Commun. 1, 103 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Koskella, B. & Bergelson, J. The study of host-microbiome (co)evolution across levels of selection. Phil. Trans. R. Soc. Lond. B 375, 20190604 (2020).Article 

    Google Scholar 
    Keller-Costa, T. et al. Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. Microbiome 9, 72 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Global projections of the soil microbiome in the Anthropocene. Glob. Ecol. Biogeogr. 30, 987–999 (2021).PubMed 
    Article 

    Google Scholar 
    Weinbauer, M. G. & Rassoulzadegan, F. Extinction of microbes: evidence and potential consequences. Endanger. Species Res. 3, 205–215 (2007).Article 

    Google Scholar 
    Petersen, C. & Round, J. L. Defining dysbiosis and its influence on host immunity and disease. Cell. Microbiol. 16, 1024–1033 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl Acad. Sci. USA 109, 8334–8339 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blaser, M. J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 17, 461–463 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Balbín-Suárez, A. et al. Root exposure to apple replant disease soil triggers local defense response and rhizoplane microbiome dysbiosis. FEMS Microbiol. Ecol. 97, fiab031 (2021).Erlacher, A., Cardinale, M., Grosch, R., Grube, M. & Berg, G. The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front. Microbiol. 5, 175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shahi, F., Redeker, K. & Chong, J. Rethinking antimicrobial stewardship paradigms in the context of the gut microbiome. JAC Antimicrob. Resist. 1, dlz015 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voolstra, C. R. & Ziegler, M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays 42, e2000004 (2020).PubMed 
    Article 

    Google Scholar 
    McBurney, M. I. et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr. 149, 1882–1895 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voolstra, C. R. et al. Extending the natural adaptive capacity of coral holobionts. Nat. Rev. Earth Environ. 2, 747–762 (2021).Article 

    Google Scholar 
    Woodhams, D. C. et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb. Ecol. 75, 1049–1062 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Voyles, J. et al. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science 359, 1517–1519 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harris, R. N. et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J. 3, 818–824 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peixoto, R. S., Harkins, D. M. & Nelson, K. E. Advances in microbiome research for animal health. Annu. Rev. Anim. Biosci. 9, 289–311 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blanck, H. & Wängberg, S.-Å. Induced community tolerance in marine periphyton established under arsenate stress. Can. J. Fish. Aquat. Sci. 45, 1816–1819 (1988).Article 

    Google Scholar 
    French, E., Kaplan, I., Iyer-Pascuzzi, A., Nakatsu, C. H. & Enders, L. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).PubMed 
    Article 

    Google Scholar 
    Borges, N. et al. Bacteriome structure, function, and probiotics in fish larviculture: the good, the bad, and the gaps. Annu. Rev. Anim. Biosci. 9, 423–452 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    De Schryver, P. & Vadstein, O. Ecological theory as a foundation to control pathogenic invasion in aquaculture. ISME J. 8, 2360–2368 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sonnenschein, E. C., Jimenez, G., Castex, M. & Gram, L. The Roseobacter-group bacterium Phaeobacter as a safe probiotic solution for aquaculture. Appl. Environ. Microbiol. 87, e0258120 (2021).PubMed 
    Article 

    Google Scholar 
    Berg, G. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peixoto, R. S., Sweet, M. & Bourne, D. G. Customized medicine for corals. Front. Mar. Sci. 6, 686 (2019).Quraishi, M. N. et al. Systematic review with meta-analysis: the efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 46, 479–493 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henrick, B. M. et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 184, 3884–3898.e11 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freedman, S. B. et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N. Engl. J. Med. 379, 2015–2026 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cabana, M. D. et al. Early probiotic supplementation for eczema and asthma prevention: a randomized controlled trial. Pediatrics 140, e20163000 (2017).Matsumoto, H. et al. Bacterial seed endophyte shapes disease resistance in rice. Nat. Plants 7, 60–72 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    D’Alvise, P. W. et al. Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae. PLoS ONE 7, e43996 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dittmann, K. K. et al. Changes in the microbiome of mariculture feed organisms after treatment with a potentially probiotic strain of Phaeobacter inhibens. Appl. Environ. Microbiol. 86, e00499-20 (2020).Metchnikoff, E. The Prolongation of Life: Optimistic Studies (Heinemann, 1907).Khanna, S., Jones, C., Jones, L., Bushman, F. & Bailey, A. Increased microbial diversity found in successful versus unsuccessful recipients of a next-generation FMT for recurrent Clostridium difficile infection. Open Forum Infect. Dis 5, 304–309(2015).Kachrimanidou, M. & Tsintarakis, E. Insights into the role of human gut microbiota in Clostridioides difficile infection. Microorganisms 8, 200 (2020).Aggarwala, V. et al. Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nat. Microbiol. 6, 1309–1318 (2021).Zachow, C., Müller, H., Tilcher, R., Donat, C. & Berg, G. Catch the best: novel screening strategy to select stress protecting agents for crop plants. Agronomy 3, 794–815 (2013).Article 
    CAS 

    Google Scholar 
    Berg, G., Kusstatscher, P., Abdelfattah, A., Cernava, T. & Smalla, K. Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Front. Microbiol. 12, 650610 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ehlers, R.-U. in Regulation of Biological Control Agents (ed. Ehlers, R.-U.) 3–23 (Springer Netherlands, 2011).CDC. V-Safe After Vaccination Health Checker https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/vsafe.html (2022).Bok, K., Sitar, S., Graham, B. S. & Mascola, J. R. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity 54, 1636–1651 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vestal, R. Fecal microbiota transplant. Hosp. Med. Clin. 5, 58–70 (2016).Article 

    Google Scholar 
    Jansen, J. W. Fecal microbiota transplant vs oral vancomycin taper: important undiscussed limitations. Clin. Infect. Dis. 64, 1292–1293 (2017).PubMed 
    Article 

    Google Scholar 
    Basson, A. R., Zhou, Y., Seo, B., Rodriguez-Palacios, A. & Cominelli, F. Autologous fecal microbiota transplantation for the treatment of inflammatory bowel disease. Transl. Res. 226, 1–11 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).PubMed 
    Article 

    Google Scholar 
    Slatko, B. E., Luck, A. N., Dobson, S. L. & Foster, J. M. Wolbachia endosymbionts and human disease control. Mol. Biochem. Parasitol. 195, 88–95 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahantarig, A. & Kittayapong, P. Endosymbiotic Wolbachia bacteria as biological control tools of disease vectors and pests. J. Appl. Entomol. 135, 479–486 (2011).Article 

    Google Scholar 
    Turner, J. et al. Extreme temperatures in the Antarctic. J. Clim. 34, 2653–2668 (2021).Article 

    Google Scholar 
    Schoennagel, T. et al. Adapt to more wildfire in western North American forests as climate changes. Proc. Natl Acad. Sci. USA 114, 4582–4590 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Di Virgilio, G. et al. Climate change increases the potential for extreme wildfires. Geophys. Res. Lett. 46, 8517–8526 (2019).Article 

    Google Scholar 
    Liu, Y., Stanturf, J. & Goodrick, S. Trends in global wildfire potential in a changing climate. Ecol. Manage. 259, 685–697 (2010).Article 

    Google Scholar 
    Zhou, J. et al. Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc. Natl Acad. Sci. USA 111, E836–E845 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wittebole, X., De Roock, S. & Opal, S. M. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 5, 226–235 (2014).PubMed 
    Article 

    Google Scholar 
    Sieiro, C. et al. A hundred years of bacteriophages: can phages replace antibiotics in agriculture and aquaculture? Antibiotics 9, 493 (2020).Rulkens, W. Increasing the environmental sustainability of sewage treatment by mitigating pollutant pathways. Environ. Eng. Sci. 23, 650–665 (2006).Obotey Ezugbe, E. & Rathilal, S. Membrane technologies in wastewater treatment: a review. Membranes 10, 89 (2020).Lee, C. S., Robinson, J. & Chong, M. F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 92, 489–508 (2014).Guo, W.-Q., Yang, S.-S., Xiang, W.-S., Wang, X.-J. & Ren, N.-Q. Minimization of excess sludge production by in-situ activated sludge treatment processes–a comprehensive review. Biotechnol. Adv. 31, 1386–1396 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meiling, S. S. et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front. Mar. Sci. 8, 670829 (2021).Hunt, P. R. The C. elegans model in toxicity testing. J. Appl. Toxicol. 37, 50–59 (2017).Tkaczyk, A., Bownik, A., Dudka, J., Kowal, K. & Ślaska, B. Daphnia magna model in the toxicity assessment of pharmaceuticals: a review. Sci. Total Environ. 763, 143038 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Microbiota Vault. A Vault for Humanity https://www.microbiotavault.org/ (2021).Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria (FAO, WHO, 2001).Sanders, M. E., Merenstein, D. J., Reid, G., Gibson, G. R. & Rastall, R. A. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 16, 605–616 (2019).PubMed 
    Article 

    Google Scholar 
    Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).PubMed 
    Article 

    Google Scholar 
    Salminen, S. et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18, 649–667 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, A. et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol. Spectr. 9, e0085921 (2021).PubMed 
    Article 

    Google Scholar 
    Bagga, D. et al. Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes 9, 486–496 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patel, R. M. & Underwood, M. A. Probiotics and necrotizing enterocolitis. Semin. Pediatr. Surg. 27, 39–46 (2018).PubMed 
    Article 

    Google Scholar 
    Tobias, J. et al. Bifidobacterium longum subsp. infantis EVC001 administration is associated with a significant reduction in the incidence of necrotizing enterocolitis in very low birth weight infants. J. Pediatr. https://doi.org/10.1016/j.jpeds.2021.12.070 (2022).Koziol, L. et al. The plant microbiome and native plant restoration: the example of native mycorrhizal fungi. Bioscience 68, 996–1006 (2018).Article 

    Google Scholar 
    Cabello, F. C. et al. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 15, 1917–1942 (2013).PubMed 
    Article 

    Google Scholar 
    Evensen, Ø. & Leong, J.-A. C. DNA vaccines against viral diseases of farmed fish. Fish. Shellfish Immunol. 35, 1751–1758 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Burridge, L., Weis, J. S., Cabello, F., Pizarro, J. & Bostick, K. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306, 7–23 (2010).CAS 
    Article 

    Google Scholar 
    Kesarcodi-Watson, A., Kaspar, H., Lategan, M. J. & Gibson, L. Probiotics in aquaculture: the need, principles and mechanisms of action and screening processes. Aquaculture 274, 1–14 (2008).Article 

    Google Scholar 
    Irianto, A. & Austin, B. Probiotics in aquaculture. J. Fish. Dis. 25, 633–642 (2002).Article 

    Google Scholar 
    Assefa, A. & Abunna, F. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet. Med. Int. 2018, 5432497 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hoseinifar, S. H., Sun, Y.-Z., Wang, A. & Zhou, Z. Probiotics as means of diseases control in aquaculture, a review of current knowledge and future perspectives. Front. Microbiol. 9, 2429 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Castex, M., Leclercq, E., Lemaire, P. & Chim, L. Dietary probiotic Pediococcus acidilactici MA18/5M improves the growth, feed performance and antioxidant status of penaeid shrimp Litopenaeus stylirostris: a growth-ration-size approach. Animals 11, 3451 (2021).Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).Daisley, B. A., Chmiel, J. A., Pitek, A. P., Thompson, G. J. & Reid, G. Missing microbes in bees: how systematic depletion of key symbionts erodes immunity. Trends Microbiol. 28, 1010–1021 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chmiel, J. A., Daisley, B. A., Burton, J. P. & Reid, G. Deleterious effects of neonicotinoid pesticides on Drosophila melanogaster immune pathways. Mbio 10, e01395-19 (2019).Daisley, B. A. et al. Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a Drosophila melanogaster insect model. Appl. Environ. Microbiol. 84, e02820-17 (2018).Duarte, G. A. S. et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front. Mar. Sci. 7, 179 (2020).Hughes, T. P. et al. Global warming impairs stock-recruitment dynamics of corals. Nature 568, 387–390 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barno, A. R., Villela, H. D. M., Aranda, M., Thomas, T. & Peixoto, R. S. Host under epigenetic control: a novel perspective on the interaction between microorganisms and corals. Bioessays 43, e2100068 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Welsh, R. M. et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ 5, e3315 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Peixoto, R. S. et al. Coral probiotics: premise, promise, prospects. Annu. Rev. Anim. Biosci. 9, 265–288 (2021).PubMed 
    Article 

    Google Scholar 
    Peixoto, R. S. et al. Beneficial Microorganisms for Corals (BMC): proposed mechanisms for coral health and resilience. Front. Microbiol. 8, 341 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morgans, C. A., Hung, J. Y. & Bourne, D. G. Symbiodiniaceae probiotics for use in bleaching recovery. Restoration 28, 282–288 (2020).Zhang, Y. et al. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol. 21, 130 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Assis, J. M. et al. Delivering beneficial microorganisms for corals: rotifers as carriers of probiotic bacteria. Front. Microbiol. 11, 608506 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, G. et al. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification. Sci. Rep. 6, 35971 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    VanCompernolle, S. E. et al. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J. Virol. 79, 11598–11606 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harris, R. N., Lauer, A., Simon, M. A., Banning, J. L. & Alford, R. A. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis. Aquat. Organ. 83, 11–16 (2009).PubMed 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front. Microbiol. 5, 441 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muletz-Wolz, C. R. et al. Inhibition of fungal pathogens across genotypes and temperatures by amphibian skin bacteria. Front. Microbiol. 8, 1551 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jin Song, S. et al. Engineering the microbiome for animal health and conservation. Exp. Biol. Med. 244, 494–504 (2019).CAS 
    Article 

    Google Scholar 
    Küng, D. et al. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS ONE 9, e87101 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Micalizzi, E. W. & Smith, M. L. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can. J. Microbiol. 66, 593–599 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gabriel, K. T., Joseph Sexton, D. & Cornelison, C. T. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens. J. Appl. Microbiol. 124, 1024–1031 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Woodhams, D. C., Bletz, M., Kueneman, J. & McKenzie, V. Managing amphibian disease with skin microbiota. Trends Microbiol. 24, 161–164 (2016).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Seed choice in ground beetles is driven by surface-derived hydrocarbons

    Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40, 45–44 (2015).Article 

    Google Scholar 
    Zalucki, M., Furlong, M. J., Schellhorn, N. A., Macfadyen, S. & Davies, A. P. Assessing the impact of natural enemies in agroecosystems: toward “real” IPM or in quest of Holy Grail? Insect. Sci. 22, 1–5 (2015).PubMed 
    Article 

    Google Scholar 
    Van Lenteren, J. C., Bolckmans, K., Kohl, J., Ravensberg, W. J. & Urabaneja, A. Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63, 39–59 (2018).Article 

    Google Scholar 
    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biological control agents. Annu. Rev. Entomol. 47, 561–594 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bianchi, F. J. J. A., Booij, C. J. H. & Tscharntke, T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc. R. Soc. B. 273, 1715–1727 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Nouhuys, S., Niemikapee, S. & Hanski, I. Variation in a host-parasitoid interaction across independent populations. Insects 3, 1236–1256 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hedlund, K., Vet, L. E. M. & Dicke, M. Generalist and specialist parasitoid strategies of using odours of adult drosophilid flies when searching for larval hosts. Oikos 77, 390–398 (1996).Article 

    Google Scholar 
    Evans, E. W., Stevenson, A. T. & Richards, D. R. Essential versus alternative foods of insect predators: benefits of a mixed diet. Oelcologia 121, 107–112 (1999).Article 

    Google Scholar 
    Lovei, G. L. & Sunderland, K. M. Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annu. Rev. Entomol. 41, 231–256 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kromp, B. Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agric. Ecosyt. Environ. 74, 187–228 (1999).Article 

    Google Scholar 
    Tuf, H., Dedek, P. & Vesley, M. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature, or habitat? Arch. Biol. Sci. 64, 721–732 (2012).Article 

    Google Scholar 
    Firlej, A., Doyon, J., Harwood, J. D. & Brodeur, J. A multi-approach study to delineate interaction between carabid beetles and soybean aphids. Environ. Entomol. 42, 89–96 (2013).PubMed 
    Article 

    Google Scholar 
    Clark, M. S., Luna, J. M., Stone, N. D. & Youngman, R. R. Generalist predator consumption of armyworm (Lepidoptera: Noctuidae) and effect of predator removal and damage in no-till corn. Environ. Entomol. 23, 617–622 (1994).Article 

    Google Scholar 
    Floate, K. D., Doane, J. F. & Gillot, C. Carabid predators of the wheat midge (Diptera: Cecidomyiidae) in Saskatchewan. Environ. Entomol. 19, 1503–1511 (1990).Article 

    Google Scholar 
    Barsics, F., Haubruge, E. & Verheggen, F. J. Wireworms’ management: an overview of the existing methods, with particular regards to Agriotis spp. (Coleoptera: Elateridae). Insects 4, 117–152 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oberholzer, F., Escher, N. & Frank, T. The potential of carabid beetles (Coleoptera) to reduce slug damage to oilseed rape in the laboratory. Eur. J. Entomol. 100, 81–85 (2003).Article 

    Google Scholar 
    Honek, A., Martinkova, Z. & Jarosik, V. Ground beetles Carabidae as seed predators. Eur. J. Entomol. 100, 531–544 (2003).Article 

    Google Scholar 
    Lundgren, J. G. Relationship of Natural Enemies and Non-prey Foods 1–460 (Springer, 2009).Carbonne, B. et al. The resilience of weed seedbank regulation by carabid beetles, at continental scales, to alternative prey. Sci. Rep. 10, 1935 (2020).Article 
    CAS 

    Google Scholar 
    Wilder, S. M., Norris, M., Lee, R. W., Raubenheimer, D. & Simpson, S. J. Arthropod food webs become increasingly lipid-limited at higher trophic levels. Ecol. Lett. 16, 895–902 (2013).PubMed 
    Article 

    Google Scholar 
    Denno, R. F. & Fagan, W. F. Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84, 2522–2531 (2003).Article 

    Google Scholar 
    Saska, P. & Jarosik, V. Laboratory study of larval food requirements in nine species of Amara (Coleoptera: Carabidae). Plant Prot. 37, 103–110 (2001).
    Google Scholar 
    Saska, P., Van der Werf, W. & Westerman, P. Spatial and temporal patterns of carabid activity-density in cereals do not explain levels of weed seed predation. Bull. Entomological Res. 98, 169–181 (2008).CAS 
    Article 

    Google Scholar 
    Talarico, F., Giglio, A., Pizzolotto, R. & Brandmayr, P. P. A synthesis of the feeding habits and reproductive rhythms in Italian seed feeding ground beetles (Coleoptera: Carabidae). Eur. J. Entomol. 113, 325–336 (2016).Article 

    Google Scholar 
    Fawki, S., Bak, S. S. & Toft, S. Food preference and food value for the carabid beetles Pterostichus melanarius, P. versicolor, and Carabus nemoralis. Eur. Carabidol. 114, 99–109 (2003).
    Google Scholar 
    Frei, B., Guenay, Y., Bohan, B. A., Traugett, M. & Wallinger, C. Molecular analysis indicates high levels of carabid weed seed consumption in cereal fields across central Europe. J. Plant Sci. 92, 935–942 (2019).
    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. Brassicaceous weed seed predation by ground beetles (Coleoptera: Carabidae). Weed. Sci. 64, 294–302 (2016).Article 

    Google Scholar 
    Saska, P., Honek, A., Foffova, H. & Martinkova, Z. Burial-induced changes in the seed preferences of carabid beetles (Coleoptera: Carabidae). Eur. J. Entomol. 116, 113–140 (2019).Article 

    Google Scholar 
    Saska, P., Honek, A. & Martinkova, Z. Preference of carabid beetles (Coleoptera: Carabidae) for herbaceous seeds. Acta Zool. Acad. Sci. Hung. 65, 57–76 (2019).Article 

    Google Scholar 
    Sih, A. & Christensen, B. Optimal diet theory: when does it work, and when and why does it fail? Anim. Behav. 61, 379–390 (2001).Article 

    Google Scholar 
    Barron, A. B., Gurney, K. N., Meah, L. F. S., Vasilaki, E. & Marshall, J. A. R. Decision-making and action selection in insects: inspiration from vertebrate-based theories. Front. Behav. Neurosci. 9, 216 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. C. J. The role of ground beetles (Coleoptera: Carabidae) in weed seed consumption: a review. Weed. Sci. 63, 355–376 (2015).Article 

    Google Scholar 
    Kulkarni, S. S., Dosdall, L. M., Spence, J. R. & Willenborg, C. J. Seed detection and discrimination by ground beetles (Coleoptera: Carabidae) are associated with olfactory cues. PLoS One 12, e0170593 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Law, J. J. & Gallagher, R. S. The role of imbibition on seed selection by Harpalus pensylvanicus. Appl. Soil. Ecol. 87, 118–124 (2015).Article 

    Google Scholar 
    Davis, A. S., Schutte, B. J., Iannuzzi, J. & Renner, K. A. Chemical and physical defenses of weed seeds in relation to soil seedbank persistence. Weed Sci. 56, 676–684 (2008).CAS 
    Article 

    Google Scholar 
    Ali, K. A. & Willneborg., C. J. C. J. The biology of seed discrimination and its role in shaping the foraging ecology of carabids: a review. Ecol. Evol. 11, 13702–13722 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wheater, C. P. Prey detection by some predatory Coleoptera (Carabidae and Staphylinidae). J. Zool. 215, 171–185 (1989).Article 

    Google Scholar 
    Mundy, C. A., Aleen-Williams, L. J., Underwood, N. & Warrington, S. Prey selection and foraging behavior by Pterostichus cupreus L. (Col., Carabidae) under laboratory conditions. J. Appl. Entomol. 124, 349–358 (2000).Article 

    Google Scholar 
    Kielty, J. P., Allen-Williams, L. J., Underwood, N. & Eastwood, E. A. Behavioral responses of three species of ground beetles (Carabidae: Coloeptera) to olfactory cues associated with prey and habitat. J. Insect. Behav. 9, 237–249 (1996).Article 

    Google Scholar 
    Tréfás, H., Canning, H., McKinlay, R. G., Armstrong, G. & Bujaki, G. Preliminary experiments on the olfactory responses of Pterostichus melanarius Illiger (Coleoptera:Carabidae) to intact plants. Agric. Entomol. 3, 71–76 (2001).Article 

    Google Scholar 
    McKemey, A. R., Symondson, W. O. C. & Glen, D. M. Predation and prey size choice by the carabid Pterostichus melanarius (Coleoptera: Carabidae): the dangers of extrapolating from laboratory to field. Bull. Entomol. Res. 93, 227–234 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas, R. S., Glen, D. M. & Symondson, W. O. C. Prey detection through olfaction by the soil-dwelling larvae of the carabid predator Pterostichus melanarius. Soil Biol. Biochem. 40, 207–216 (2008).CAS 
    Article 

    Google Scholar 
    Talarico, F. et al. Electrophysiological and behavioral analyses on prey selecting in the myrmecophagous carabid beetle Siagona europaea Dejean 1826 (Coleoptera: Carabidae). Etho. Ecol. Evol. 22, 375–384 (2010).Article 

    Google Scholar 
    Dessaint, F., Chadoeuf, R. & Barrales, G. Spatial pattern analysis of weed seeds in the cultivated soil seed bank. J. Appl. Ecol. 28, 721–730 (1991).Article 

    Google Scholar 
    Oster, M., Smith, L., Beck, J. J., Howard, A. & Field, C. B. Orientational behavior of predaceous ground beetle species in response to volatile emissions identified from yellow starthistle damaged by an invasive slug. Arthropod-Plant. Inte. 8, 429–437 (2014).Article 

    Google Scholar 
    Srinivasan, M. V., Poteser, M. & Karl, K. Motion detection in insect orientation and navigation. Vis. Res. 39, 2749–2766 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sato, K. & Touhara, K. Insect olfaction: receptors, signal transduction, and behavior. Cell 47, 121–138 (2009).CAS 

    Google Scholar 
    Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Ann. Rev. Entomol. 58, 373–391 (2013).CAS 
    Article 

    Google Scholar 
    Schmidt, H. R. & Benton, R. Molecular mechanisms of olfactory detection in insects: beyond receptors. Open Biol. 10, 200252 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prokopy, R. J. & Owens, E. D. Visual detection of plants by herbivorous insects. Ann. Rev. Entomol. 28, 337–364 (1983).Article 

    Google Scholar 
    Ploomi, A. et al. Antennal sensilla in ground beetles (Coleoptera: Carabidae). Agron. Res. 1, 221–228 (2003).
    Google Scholar 
    Merivee, E. et al. Electrophysiological responses from neurons of antennal taste sensilla in the polyphagous predatory ground beetle Pterostichus oblongopunctatus (Fabricius 1787) to plant sugars and amin acids. J. Insect. Physiol. 54, 1213–1219 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Merivee, E., Ploomi, A., Luik, A., Rahi, M. & Smmelselg, V. Antennal sensilla of the ground beetle Platynus dorsalis (Pontoppidan, 1763) (Coleoptera: Carabidae). Micros. Res. Tech. 55, 339–349 (2001).CAS 
    Article 

    Google Scholar 
    Merivee, E. et al. Antennal sensilla of the ground beetle Bembidion properans Steph. (Coleoptera: Carabidae). Micron 33, 429–440 (2002).PubMed 
    Article 

    Google Scholar 
    Giglio, A., Perotta, E., Talarico, F., Brandmayr, T. E. & Ferrera, E. A. Sensilla on the maxillary and labial palps in a helicophagous ground beetle larva (Coleoptera: Carabidae). Acta Zool. 200, 1463–6393 (2013).
    Google Scholar 
    Van Naters, W. V. D. G. & Carlson, J. R. J. R. Receptors and neurons for fly odors in Drosophila. Curr. Biol. 17, 606–612 (2007).Article 
    CAS 

    Google Scholar 
    Amrein, H. & Throne, N. Gustatory perception and behavior in Dropsophila melanogaster. Curr. Biol. 15, R673–R684 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Su, C. Y., Menuz, K. & Carlson, J. R. Olfactory perception: receptors, cells, and circuits. Cell 139, 45–59 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krieger, J. & Breer, H. Olfactory receptors in invertebrates. Science 286, 720–723 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapman, R. F. The Insects: Structure and Function 4th edn, 1–584 (Cambridge University Press, 1998).Bhandari, S. R., Jo, J. S. & Lee, J. G. Comparisons of glucosinolate profiles in different tissues of nine Brassica crops. Molecules 20, 15827–15841 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reifenrath, K., Riederer, M. & Muller, M. Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol. Exp. Appl. 115, 41–50 (2005).CAS 
    Article 

    Google Scholar 
    Stadler, E. & Reifenrath, K. Glucosinolates on the leaf surface perceived by insect herbivores: review of ambiguous results and new investigations. Phytoch. Rev. 8, 207–225 (2009).Article 
    CAS 

    Google Scholar 
    Sharma, A., Sandhi, R. K. & Reddy, G. V. P. A review of interactions between insect biological control agents and semiochemicals. Insects 10, 439 (2019).PubMed Central 
    Article 

    Google Scholar 
    Warwick, S. I., Francis, A. & Susko, D. J. The biology of Canadian weeds. 9. Thlaspi arvense L. (updated). Can. J. Plant. Sci. 82, 803–823 (2002).Article 

    Google Scholar 
    Moyna, P. & Garcia, M. Chemical composition of oat seed epicuticular lipids. J. Sci. Food Agric. 34, 209–211 (1983).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kunst, L. & Samuels, A. L. Biosynthesis and secretion of plant cuticular wax. Prog. Lipid Res. 42, 51–80 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eigenbrode, S. D. & Espelie, K. E. Effects of plants epicuticular lipids on insect herbivores. Annu. Rev. Entomol. 40, 171–194 (1995).Article 

    Google Scholar 
    Finch, S. Volatile plant chemicals and their effect on host plant by the cabbage root fly (Delia brassicae). Entomol. Exp. Appl. 24, 350–359 (1978).CAS 
    Article 

    Google Scholar 
    Udayagiri, S. & Mason, C. E. Epicuticular wax chemicals in Zea mays influence oviposition in Ostrinia nubilalis. J. Chem. Ecol. 23, 1675–1687 (1997).CAS 
    Article 

    Google Scholar 
    Adati, T. & Matsuda, K. The effect of leaf surface wax on feeding of the strawberry leaf beetle, Galerucella vittaticollis, with reference to host plant preference. Tohoku. J. Agric. Res. 50, 57–61 (2000).
    Google Scholar 
    Damon, S. J., Groves, R. L. & Harvey, M. J. Variation for epicuticular waxes on onion foliage and impacts on numbers of onion thrips. J. Am. Soc. Hortic. Sci. 139, 495–501 (2014).CAS 
    Article 

    Google Scholar 
    Braccini, C. L., Vega, A. S., Chludil, H. D., Leicach, S. R. & Fernandez, P. C. Host selection, oviposition behavior and leaf traits in a specialist willow sawfly on species of Salix (Salicaceae). Ecol. Entomol. 38, 617–626 (2013).Article 

    Google Scholar 
    Wojcicka, A. Effects of epicuticular waxes from triticale on the feeding behaviour and mortality of the grain aphid, Sitobion avenae (Fabricius) (Hemiptera: Aphididae). J. Plant. Prot. Res. 56, 39–44 (2016).CAS 
    Article 

    Google Scholar 
    Medina, E. et al. Taxonomic significance of the epicuticular wax composition in species of genus Clusia from Panama. Biochem. Syst. Ecol. 34, 319–326 (2006).CAS 
    Article 

    Google Scholar 
    Schulz-Bohm, K., Martin-Sanchez, L. & Garbeva, P. Microbial volatiles: small molecules with an inter-kingdom interactions. Front. Microbiol. 8, 2484 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ali, K. A. Mechanisms of Seed Discrimination and Selective Seed Foraging in Carabid Weed Seed Predators. https://harvest.usask.ca/bitstream/handle/10388/13815/ALI-DISSERTATION-2022.pdf?sequence=1&isAllowed=y (2022).Webster, B., Qvarfordt, E., Olsson, U. & Glinwood, R. Different roles for innate and learnt behavioral responses to odors in insect host location. Behav. Ecol. 24, 366–372 (2013).Article 

    Google Scholar 
    Luff, M. L. Adult and larval feeding habits of Pterostichus madidus (F.) (Carabidae: Coleoptera). J. Nat. Hist. 8, 403–409 (1974).Article 

    Google Scholar 
    Blubaugh, C. K. & Kaplan, I. Invertebrate seed predators reduce weed emergence following seed rain. Weed Sci. 64, 80–86 (2016).Article 

    Google Scholar 
    Blubaugh, C. K., Hagler, J. R., Machtley, S. A. & Kaplan, I. Cover crops increase foraging activity of omnivorous predators in seed patches and facilitate weed biological control. Agric. Ecosyst. Environ. 231, 264–270 (2016).Article 

    Google Scholar 
    Foffova, H. et al. Which seed properties determine the preferences of carabid beetles seed predators? Insects 11, 757 (2020).Petit, S., Boursault, A. & Bohan, D. A. Weed seed choice by carabid beetles (Coleoptera: Carabidae): linking field measurements and laboratory diet assessments. Eur. J. Entomol. 111, 615–620 (2014).Article 

    Google Scholar 
    Carbonne, B. et al. Direct and indirect effects of landscape and field management intensity on carabids through trophic resources and weeds. J. Appl. Ecol. 59, 176–187 (2022).Article 

    Google Scholar 
    Foffova, H., Bohan, D. A. & Saska, P. Do properties and species of weed seeds affect their consumption by carabid beetles? Acta Zool. Acad. Sci. Hung. 66, 37–48 (2020b).Article 

    Google Scholar 
    De Heij, S. E. & Willenborg, C. J. Connected carabids: network interactions and their impact on biocontrol by carabid beetles. Bioscience 70, 90–500 (2020).Article 

    Google Scholar 
    Honek, A., Martinkova, Z., Saska, P. & Pekar, S. Size and taxonomic constraints determine seed preference of Carabidae (Coleoptera). Basic Appl. Ecol. 8, 343–353 (2007).Article 

    Google Scholar 
    Spence, J. R. & Niemela, J. K. Sampling carabid assemblages with pitfall traps: the madness and the method. Can. Entomol. 126, 881–884 (1994).Article 

    Google Scholar 
    Lindroth, C. H. The Ground Beetles (Carabidae, excluding Cicindelinae) of Canada and Alaska. Supplement 20, 24, 29, 33, 34, 35. Part I, pages I–XLVIII, 1969. Part II, pages 1–200, 1961. Part III, pages 201–408, 1963. Part IV, pages 409–648, 1966. Part V, pages 649–944, 1968. Part VI, pages 945–1192 (Opusca Entomology, 1961–1969).White, S. S., Renner, K. A., Menalled, F. D. & Landis, D. A. Feeding preferences of weed seed predators and effect on weed emergence. Weed. Sci. 55, 606–612 (2007).CAS 
    Article 

    Google Scholar 
    Glinwood, R., Ahmed, E., Ovarfordt, E. & Ninkovic, V. Olfactory learning of plant genotypes by a polyphagous predator. Oecologia 166, 637–647 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sablon, L., Dickens, J. C., Haubruge, E. H. & Verhggen., F. J. Chemical ecology of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), and potential for alternative control methods. Insects 4, 31–54 (2013).Article 

    Google Scholar 
    Zhang, L., Li, H. & Zhang, L. Two olfactory pathways to detect aldehydes on locust mouthpart. Int. J. Biol. Sci. 13, 759–771 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pekar, S. & Hruskova, M. M. How granivorous Coreus marginatus (Hemiptera: Cereidae) recognizes its food. Acta Ethol. 9, 26–30 (2006).Article 

    Google Scholar 
    Ardenghi, N., Mulch, A., Pross, J. & Niedermeyer, E. M. Leaf wax n-alkane extraction: an optimized procedure. Org. Geochem. 113, 283–292 (2017).CAS 
    Article 

    Google Scholar 
    Takahashi, S. & Gassa, A. Roles of cuticular hydrocarbons in intra- and interspecific recognition behavior of two Rhinotermitidae species. J. Chem. Ecol. 21, 1837–1845 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 
    CAS 

    Google Scholar 
    Nobre, J. S. & Singer, J. D. M. Residual analysis for linear mixed models. Biom. J. 49, 863–875 (2007).PubMed 
    Article 

    Google Scholar 
    Schielzeth, H. et al. Robustness of linear mixed-effects models to violations of distributional assumptions. Methods Ecol. Evol. 11, 1141–1152 (2020).Article 

    Google Scholar  More