More stories

  • in

    Small-scale spontaneous dynamics in temperate beech stands as an importance driver for beetle species richness

    Lindenmayer, D. B., Cunningham, R. B., Donnelly, C. F. & Lesslie, R. On the use of landscape surrogates as ecological indicators in fragmented forests. For. Ecol. Manag. 159(3), 203–216. https://doi.org/10.1016/S0378-1127(01)00433-9 (2002).Article 

    Google Scholar 
    Hannah, L., Carr, J. L. & Lankerani, A. Human disturbance and natural habitat: a biome level analysis of a global data set. Biodivers. Conserv. 4(2), 128–155. https://doi.org/10.1007/BF00137781 (1995).Article 

    Google Scholar 
    Sabatini, F. M. et al. Where are europe’s last primary forests?. Divers. Distrib. 24(10), 1426–1439. https://doi.org/10.1111/ddi.12778 (2018).Article 

    Google Scholar 
    Mikoláš, M. et al. Primary forest distribution and representation in a central european landscape: results of a large-scale field-based census. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2019.117466 (2019).Article 

    Google Scholar 
    Hilmers, T. et al. Biodiversity along temperate forest succession. J. Appl. Ecol. 55(6), 2756–2766. https://doi.org/10.1111/1365-2664.13238 (2018).Article 

    Google Scholar 
    Nagel, T. A., Svoboda, M. & Diaci, J. Regeneration patterns after intermediate wind disturbance in an old-growth fagus-abies forest in southeastern Slovenia. For. Ecol. Manag. 226(1–3), 268–278. https://doi.org/10.1016/j.foreco.2006.01.039 (2006).Article 

    Google Scholar 
    Thorn, S. et al. Estimating retention benchmarks for salvage logging to protect biodiversity. Nat. Commun. 11, 4762. https://doi.org/10.1038/s41467-020-18612-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Seibold, S. et al. Experimental studies of dead-wood biodiversity — a review identifying global gaps in knowledge. Biol. Conserv. 191, 139–149. https://doi.org/10.1016/j.biocon.2015.06.006 (2015).Article 

    Google Scholar 
    Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe. Conserv. Biol. 24(1), 101–112. https://doi.org/10.1111/j.1523-1739.2009.01399.x (2010).Article 
    PubMed 

    Google Scholar 
    Cálix, M., Alexander, K. N. A., Nieto, A., Dodelin, B. et al. European Red List of Saproxylic Beetles (IUCN. 19 s, Brussels, Belgium, 2018). Available at: http://www.iucnredlist.org/initiatives/europe/publicationsSchiegg, K. Effects of dead wood volume and connectivity on saproxylic insect species diversity. Écoscience 7(3), 290–298. https://doi.org/10.1080/11956860.2000.11682598 (2016).Article 

    Google Scholar 
    Müller, J. et al. Implications from large-scale spatial diversity patterns of saproxylic beetles for the conservation of european beech forests. Insect Conserv. Divers. 6(2), 162–169. https://doi.org/10.1111/j.1752-4598.2012.00200.x (2013).Article 

    Google Scholar 
    Schneider, A. et al. Animal diversity in beech forests – an analysis of 30 years of intense faunistic research in hessian strict forest reserves. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119564 (2021).Article 

    Google Scholar 
    Brunet, J., Fritz, Ö. & Richnau, G. Biodiversity in European beech forests—a review with recommendations for sustainable forest management. Ecol. Bull. 53, 77–94 (2010).
    Google Scholar 
    Bilek, L., Remes, J. & Zahradnik, D. Managed vs. unmanaged. Structure of beech forest stands (Fagus sylvatica L.) after 50 years of development central Bohemia. For. Syst. 20(1), 122–138. https://doi.org/10.5424/fs/2011201-10243 (2011).Article 

    Google Scholar 
    Müller, J., Bußler, H. & Kneib, T. Saproxylic beetle assemblages related to silvicultural management intensity and stand structures in a beech forest in southern Germany. J. Insect Conserv. 12(2), 107–124. https://doi.org/10.1007/s10841-006-9065-2 (2008).Article 

    Google Scholar 
    Doerfler, I., Müller, J., Gossner, M. M., Hofner, B. & Weisser, W. W. Success of a deadwood enrichment strategy in production forests depends on stand type and management intensity. For. Ecol. Manag. 400, 607–620. https://doi.org/10.1016/j.foreco.2017.06.013 (2017).Article 

    Google Scholar 
    Doerfler, I., Gossner, M. M., Müller, J., Seibold, S. & Weisser, W. W. Deadwood enrichment combining integrative and segregative conservation elements enhances biodiversity of multiple taxa in managed forests. Biol. Conserv. 228, 70–78. https://doi.org/10.1016/j.biocon.2018.10.013 (2018).Article 

    Google Scholar 
    Doerfler, I. et al. Restoration-oriented forest management affects community assembly patterns of deadwood-dependent organisms. J. Appl. Ecol. 57(12), 2429–2440. https://doi.org/10.1111/1365-2664.13741 (2020).Article 

    Google Scholar 
    Zumr, V., Remeš, J. & Pulkrab, K. How to increase biodiversity of saproxylic beetles in commercial stands through integrated forest management in central Europe. Forests https://doi.org/10.3390/f12060814 (2021).Article 

    Google Scholar 
    Svoboda, M., Fraver, S., Janda, P., Bače, R. & Zenáhlíková, J. Natural development and regeneration of a central european montane spruce forest. For. Ecol. Manag. 260(5), 707–714. https://doi.org/10.1016/j.foreco.2010.05.027 (2010).Article 

    Google Scholar 
    Šebková, B. et al. Spatial and volume patterns of an unmanaged submontane mixed forest in central Europe: 160 years of spontaneous dynamics. For. Ecol. Manag. 262(5), 873–885. https://doi.org/10.1016/j.foreco.2011.05.028 (2011).Article 

    Google Scholar 
    Bílek, L. et al. Gap regeneration in near-natural european beech forest stands in central bohemia – the role of heterogeneity and micro-habitat factors. Dendrobiology https://doi.org/10.12657/denbio.071.006 (2013).Article 

    Google Scholar 
    Čada, V. et al. Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For. Ecol. Manag. 363, 169–178. https://doi.org/10.1016/j.foreco.2015.12.023 (2016).Article 

    Google Scholar 
    Thorn, S. et al. Impacts of salvage logging on biodiversity: a meta-analysis. J. Appl. Ecol. 55(1), 279–289. https://doi.org/10.1111/1365-2664.12945 (2018).Article 
    PubMed 

    Google Scholar 
    Schelhaas, M.-J., Nabuurs, G.-J. & Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Change Biol. 9(11), 1620–1633. https://doi.org/10.1046/j.1365-2486.2003.00684.x (2003).ADS 
    Article 

    Google Scholar 
    Vera, F. W. M. (ed.) Grazing Ecology and Forest History (CABI, 2000). https://doi.org/10.1079/9780851994420.0000.Book 

    Google Scholar 
    Vera, F. W. M. The dynamic European forest. Arboric. J. 26(3), 179–211. https://doi.org/10.1080/03071375.2002.9747335 (2012).Article 

    Google Scholar 
    Swanson, M. E. et al. The forgotten stage of forest succession: early-successional ecosystems on forest sites. Front. Ecol. Environ. 9(2), 117–125. https://doi.org/10.1890/090157 (2011).Article 

    Google Scholar 
    Lachat, T. et al. Influence of canopy gaps on saproxylic beetles in primeval beech forests: a case study from the Uholka-Shyrokyi Luh forest, Ukraine. Insect Conserv. Divers. 9(6), 559–573. https://doi.org/10.1111/icad.12188 (2016).Article 

    Google Scholar 
    Gossner, M. M. et al. Current near-to-nature forest management effects on functional trait composition of saproxylic beetles in beech forests. Conserv. Biol. 27(3), 605–614. https://doi.org/10.1111/cobi.12023 (2013).Article 
    PubMed 

    Google Scholar 
    Procházka, J. & Schlaghamerský, J. Does dead wood volume affect saproxylic beetles in montane beech-fir forests of central Europe?. J. Insect Conserv. 23(1), 157–173. https://doi.org/10.1007/s10841-019-00130-4 (2019).Article 

    Google Scholar 
    Winter, S. & Möller, G. C. Microhabitats in lowland beech forests as monitoring tool for nature conservation. For. Ecol. Manag. 255(3–4), 1251–1261. https://doi.org/10.1016/j.foreco.2007.10.029 (2008).Article 

    Google Scholar 
    Bouget, C., Larrieu, L. & Brin, A. Key features for saproxylic beetle diversity derived from rapid habitat assessment in temperate forests. Ecol. Ind. 36, 656–664. https://doi.org/10.1016/j.ecolind.2013.09.031 (2014).Article 

    Google Scholar 
    Sebek, P. et al. Open-grown trees as key habitats for arthropods in temperate woodlands: the diversity, composition, and conservation value of associated communities. For. Ecol. Manag. 380, 172–181. https://doi.org/10.1016/j.foreco.2016.08.052 (2016).Article 

    Google Scholar 
    Kozel, P. et al. Connectivity and succession of open structures as a key to sustaining light-demanding biodiversity in deciduous forests. J. Appl. Ecol. 58(12), 2951–2961. https://doi.org/10.1111/1365-2664.14019 (2021).Article 

    Google Scholar 
    Nagel, T. A., Svoboda, M. & Kobal, M. Disturbance, life history traits, and dynamics in an old-growth forest landscape of southeastern Europe. Ecol. Appl. 24(4), 663–679. https://doi.org/10.1890/13-0632.1 (2014).Article 
    PubMed 

    Google Scholar 
    Christensen, M. et al. The forest cycle of Suserup Skov – revisited and revised. Ecol. Bull. 52, 33–42 (2007).
    Google Scholar 
    Trotsiuk, V., Hobi, M. L. & Commarmot, B. Age structure and disturbance dynamics of the relic virgin beech forest Uholka (Ukrainian Carpathians). For. Ecol. Manag. 265, 181–190. https://doi.org/10.1016/j.foreco.2011.10.042 (2012).Article 

    Google Scholar 
    Wermelinger, B., Duelli, P. & Obrist, M. K. Dynamics of saproxylic beetles (Coleoptera) in windthrow areas in alpine spruce forests. For. Snow Landsc. Res. 77, 133–148 (2002).
    Google Scholar 
    Wermelinger, B. et al. Impact of windthrow and salvage-logging on taxonomic and functional diversity of forest arthropods. For. Ecol. Manag. 391, 9–18. https://doi.org/10.1016/j.foreco.2017.01.033 (2017).Article 

    Google Scholar 
    Meyer, P., Schmidt, M., Feldmann, E., Willig, J. & Larkin, R. Long-term development of species richness in a central European beech (Fagus Sylvatica) forest affected by windthrow—support for the intermediate disturbance hypothesis?. Ecol. Evol. 11(18), 12801–12815. https://doi.org/10.1002/ece3.8028 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korpeľ, S. Die Urwälder der Westkarpaten (Gustav Fischer, Stuttgart, 1995) (in German).
    Google Scholar 
    Emborg, J., Christensen, M. & Heilmann-Clausen, J. The structural dynamics of Suserup Skov, a near natural temperate deciduous forest in Denmark. For. Ecol. Manag. 126, 173–189 (2000).Article 

    Google Scholar 
    Peňa, J., Remeš, J. & Bílek, L. Dynamics of natural regeneration of even-aged beech (Fagus sylvatica L.) stands at different shelterwood densities. J. For. Sci. 56(12), 580–588 (2010).Article 

    Google Scholar 
    Bílek, L., Peňa, J. F. B., Remeš, J. (2013b). National Nature Reserve Voděradské Bučiny 30 Years of Forestry Research Folia Forestalia Bohemica edn, Vol. 86 (Lesnická práce, 2013).Ruchin, A. B. & Egorov, L. V. Vertical stratification of beetles in deciduous forest communities in the centre of European Russia. Diversity 13, 508. https://doi.org/10.3390/d13110508 (2021).Article 

    Google Scholar 
    Parmain, G. et al. Can rove beetles (Staphylinidae) be excluded in studies focusing on saproxylic beetles in central European beech forests?. Bull. Entomol. Res. 105(1), 101–109. https://doi.org/10.1017/S0007485314000741 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmidl, J. & Bußler, H. Ökologische gilden xylobionter Käfer Deutschlands. Nat. Landsch. 36, 202–218 (2004).
    Google Scholar 
    Seibold, S. et al. Association of extinction risk of saproxylic beetles with ecological degradation of forests in Europe. Conserv. Biol. 29(2), 382–390. https://doi.org/10.1111/cobi.12427 (2015).Article 
    PubMed 

    Google Scholar 
    Hejda, R., Farkač, J. & Chobot, K. Red List of Threatened Species of the Czech Republic Vol. 36, 1–612 (Agentura ochrany přírody a krajiny České republiky, Praha, 2017).
    Google Scholar 
    Lepš, J., Šmilauer, P. Biostatistika (Nakladatelství Jihočeské univerzity v Českých Budějovicích, 2016)Chao, A. Non-parametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).
    Google Scholar 
    Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Colwell, R. K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates (2013).Seibold, S. et al. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manag. 409, 564–570. https://doi.org/10.1016/j.foreco.2017.11.052 (2018).Article 

    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1 (2014).Article 

    Google Scholar 
    Chao, A., Ma, K. H., Hsieh, T. C. iNEXT (iNterpolation and EXTrapolation)Online: Software for Interpolation and Extrapolation of Species Diversity. ProgramandUser’s Guide published at http://chao.stat.nthu.edu.tw/wordpress/software_download/ (2016).Schenker, N. & Gentleman, J. F. On judging the significance of differences by examining the overlap between confidence intervals. Am. Stat. 55, 182–186 (2001).MathSciNet 
    Article 

    Google Scholar 
    Horak, J. et al. Biodiversity of most dead wood-dependent organisms in thermophilic temperate oak woodlands thrives on diversity of open landscape structures. For. Ecol. Manag. 315, 80–85. https://doi.org/10.1016/j.foreco.2013.12.018 (2014).Article 

    Google Scholar 
    Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using Canoco (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511615146.Book 
    MATH 

    Google Scholar 
    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 2nd edn. (New York, 2014).Book 

    Google Scholar 
    Parisi, F. et al. Spatial patterns of saproxylic beetles in a relic silver fir forest (Central Italy), relationships with forest structure and biodiversity indicators. For. Ecol. Manag. 381, 217–234. https://doi.org/10.1016/j.foreco.2016.09.041 (2016).Article 

    Google Scholar 
    Siitonen, J. Decaying wood and saproxylic coleoptera in two old spruce forests: a comparison based on two sampling methods. Ann. Zool. Fenn. 31, 89–95 (1994).
    Google Scholar 
    Alinvi, O., Ball, J. P., Danell, K., Hjältén, J. & Pettersson, R. B. Sampling saproxylic beetle assemblages in dead wood logs: comparing window and eclector traps to traditional bark sieving and a refinement. J. Insect Conserv. 11(2), 99–112. https://doi.org/10.1007/s10841-006-9012-2 (2007).Article 

    Google Scholar 
    Økland, B. A comparison of three methods of trapping saproxylic beetles. Eur. J. Entomol. 93, 195–209 (1996).
    Google Scholar 
    Quinto, J., Marcos-García, M. D. L. Á., Brustel, H., Galante, E. & Micó, E. Effectiveness of three sampling methods to survey saproxylic beetle assemblages in mediterranean Woodland. J. Insect Conserv. 17(4), 765–776. https://doi.org/10.1007/s10841-013-9559-7 (2013).Article 

    Google Scholar 
    Müller, J. et al. Increasing temperature may compensate for lower amounts of dead wood in driving richness of saproxylic beetles. Ecography 38(5), 499–509. https://doi.org/10.1111/ecog.00908 (2015).Article 

    Google Scholar 
    Schiegg, K. Are there saproxylic beetle species characteristic of high dead wood connectivity?. Ecography 23, 579–587 (2000).Article 

    Google Scholar 
    Bouget, C., Larrieu, L., Nusillard, B. & Parmain, G. In search of the best local habitat drivers for saproxylic beetle diversity in temperate deciduous forests. Biodivers. Conserv. 22(9), 2111–2130. https://doi.org/10.1007/s10531-013-0531-3 (2013).Article 

    Google Scholar 
    Brunet, J. & Isacsson, G. Restoration of beech forest for saproxylic beetles—effects of habitat fragmentation and substrate density on species diversity and distribution. Biodivers. Conserv. 18(9), 2387–2404. https://doi.org/10.1007/s10531-009-9595-5 (2009).Article 

    Google Scholar 
    Eckelt, A. et al. “Primeval forest relict beetles” of central Europe: a set of 168 umbrella species for the protection of primeval forest remnants. J. Insect Conserv. 22(1), 15–28. https://doi.org/10.1007/s10841-017-0028-6 (2018).Article 

    Google Scholar 
    Speight, M. C. D. (1989). Saproxylic Invertebrates and Their Conservation. Saproxylic Invertebrates and Their Conservation, Vol. 42, Nature and Environmental Series, Strasbourg, 81.Gustafsson, L. et al. Research on retention forestry in northern Europe. Ecol. Process. https://doi.org/10.1186/s13717-019-0208-2 (2020).Article 

    Google Scholar 
    Zumr, V. & Remeš, J. Saproxylic beetles as an indicator of forest biodiversity and the influence of forest management on their crucial life attributes: review. Rep. For. Res. 65, 242–257 (2020).
    Google Scholar 
    Bouget, C. & Duelli, P. The effects of windthrow on forest insect communities: a literature review. Biol. Cons. 118(3), 281–299. https://doi.org/10.1016/j.biocon.2003.09.009 (2004).Article 

    Google Scholar 
    Gran, O. & Götmark, F. Long-term experimental management in Swedish mixed oak-rich forests has a positive effect on saproxylic beetles after 10 years. Biodivers. Conserv. 28, 1451–1472. https://doi.org/10.1007/s10531-019-01736-5 (2019).Article 

    Google Scholar 
    Fahrig, L. & Storch, D. Why do several small patches hold more species than few large patches?. Glob. Ecol. Biogeogr. 29(4), 615–628. https://doi.org/10.1111/geb.13059 (2020).Article 

    Google Scholar 
    Müller, J., Engel, H. & Blaschke, M. Assemblages of wood-inhabiting fungi related to silvicultural management intensity in beech forests in southern Germany. Eur. J. For. Res. 126(4), 513–527. https://doi.org/10.1007/s10342-007-0173-7 (2007).Article 

    Google Scholar 
    Friess, N. et al. Arthropod communities in fungal fruitbodies are weakly structured by climate and biogeography across European beech forests. Divers. Distrib. 25(5), 783–796. https://doi.org/10.1111/ddi.12882 (2019).Article 

    Google Scholar 
    Brin, A., Brustel, H. & Jactel, H. Species variables or environmental variables as indicators of forest biodiversity: a case study using saproxylic beetles in maritime pine plantations. Ann. For. Sci. https://doi.org/10.1051/forest/2009009 (2009).Article 

    Google Scholar 
    Müller, J. & Bütler, R. A review of habitat thresholds for dead wood: a baseline for management recommendations in european forests. Eur. J. For. Res. 129(6), 981–992. https://doi.org/10.1007/s10342-010-0400-5 (2010).Article 

    Google Scholar 
    Alencar, J. B. R., Fonseca, C. R. V., Marra, D. M. & Baccaro, F. B. Windthrows promote higher diversity of saproxylic beetles (Coleoptera: Passalidae) in a central Amazon forest. Insect Conserv. Divers. https://doi.org/10.1111/icad.12523 (2021).Article 

    Google Scholar 
    Audisio, P. et al. Preliminary re-examination of genus-level taxonomy of the pollen beetle subfamily Meligethinae (Coleoptera: Nitidulidae). Acta Entomol. Musei Natl. Pragae 49(2), 341–504 (2009).
    Google Scholar 
    Burakowski, B., Mroczkowski, M., Stefańska, J. Chrząszcze – Coleoptera. Ryjkowce – Curculionidae, Część 1. Katalog Fauny Polski Vol. XXIII, no, 19 Warszawa.Laibner, S. Elateridae of the Czech and Slovak Republics (Kabourek, Zlín, 2000).
    Google Scholar 
    Frank, T. & Reichhart, B. Staphylinidae and Carabidae overwintering in wheat and sown wildflower areas of different age. Bull. Entomol. Res. 94(3), 209–217. https://doi.org/10.1079/BER2004301 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Herrmann, S., Kahl, T. & Bauhus, J. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. https://doi.org/10.1186/s40663-015-0052-5 (2015).Article 

    Google Scholar 
    Hararuk, O., Kurz, W. A. & Didion, M. Dynamics of dead wood decay in swiss forests. For. Ecosyst. https://doi.org/10.1186/s40663-020-00248-x (2020).Article 

    Google Scholar 
    Jonsell, M., Weslien, J. & Ehnström, B. Substrate requirements of red-listed saproxylic invertebrates in Sweden. Biodivers. Conserv. 7(6), 749–764. https://doi.org/10.1023/A:1008888319031 (1998).Article 

    Google Scholar 
    Bobiec, A. (ed.) The After Life of a Tree 252 (Warsawa, WWF Poland, 2005).
    Google Scholar 
    Gossner, M. M. et al. Deadwood enrichment in European forests – which tree species should be used to promote saproxylic beetle diversity?. Biol. Cons. 201, 92–102. https://doi.org/10.1016/j.biocon.2016.06.032 (2016).Article 

    Google Scholar 
    Vogel, S. et al. Optimizing enrichment of deadwood for biodiversity by varying sun exposure and tree species: an experimental approach. J. Appl. Ecol. 57(10), 2075–2085. https://doi.org/10.1111/1365-2664.13648 (2020).Article 

    Google Scholar 
    Gough, L. A. et al. Specialists in ancient trees are more affected by climate than generalists. Ecol. Evol. 5(23), 5632–5641. https://doi.org/10.1002/ece3.1799 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koch Widerberg, M., Ranius, T., Drobyshev, I., Nilsson, U. & Lindbladh, M. Increased openness around retained oaks increases species richness of saproxylic beetles. Biodivers. Conserv. 21(12), 3035–3059. https://doi.org/10.1007/s10531-012-0353-8 (2012).Article 

    Google Scholar 
    Horák, J., Pavlíček, J., Kout, J. & Halda, J. P. Winners and losers in the wilderness: response of biodiversity to the abandonment of ancient forest pastures. Biodivers. Conserv. 27(11), 3019–3029. https://doi.org/10.1007/s10531-018-1585-z (2018).Article 

    Google Scholar 
    Vandekerkhove, K. et al. Saproxylic beetles in non-intervention and coppice-with-standards restoration management in meerdaal forest (Belgium): an exploratory analysis. IFor. Biogeosci. For. 9(4), 536–545. https://doi.org/10.3832/ifor1841-009 (2016).Article 

    Google Scholar 
    Lachat, T. et al. Saproxylic beetles as indicator species for dead-wood amount and temperature in European beech forests. Ecol. Ind. 23, 323–331. https://doi.org/10.1016/j.ecolind.2012.04.013 (2012).Article 

    Google Scholar 
    Müller, J. et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos 129(10), 1579–1588. https://doi.org/10.1111/oik.07335 (2020).Article 

    Google Scholar 
    Černecká, Ľ, Mihál, I., Gajdoš, P. & Jarčuška, B. The effect of canopy openness of European beech (Fagus Sylvatica) forests on ground-dwelling spider communities. Insect Conserv. Divers. 13(3), 250–261. https://doi.org/10.1111/icad.12380 (2020).Article 

    Google Scholar 
    Spitzer, L. et al. Does closure of traditionally managed open woodlands threaten epigeic invertebrates? Effects of coppicing and high deer densities. Biol. Cons. 141(3), 827–837. https://doi.org/10.1016/j.biocon.2008.01.005 (2008).Article 

    Google Scholar 
    Podrázský, V., Remeš, J. & Farkač, J. Složení společenstev střevlíkovitých brouků (Coleoptera: Carabidae) v lesních porostech s různou druhovou strukturou a systémem hospodaření. Zpr. Lesn. Výzk. 55, 10–15 (2010).
    Google Scholar 
    Welti, E. A. R. et al. Temperature drives variation in flying insect biomass across a german malaise trap network. Insect Conserv. Divers. https://doi.org/10.1111/icad.12555 (2021).Article 

    Google Scholar 
    Brang, P. et al. Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87(4), 492–503. https://doi.org/10.1093/forestry/cpu018 (2014).Article 

    Google Scholar 
    Schall, P. et al. The impact of even-aged and uneven-aged forest management on regional biodiversity of multiple taxa in European beech forests. J. Appl. Ecol. 55(1), 267–278. https://doi.org/10.1111/1365-2664.12950 (2018).Article 

    Google Scholar 
    Leidinger, J. et al. Shifting tree species composition affects biodiversity of multiple taxa in central European forests. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119552 (2021).Article 

    Google Scholar 
    Christensen, M. et al. Dead wood in European beech (Fagus Sylvatica) forest reserves. For. Ecol. Manag. 210(1–3), 267–282. https://doi.org/10.1016/j.foreco.2005.02.032 (2005).Article 

    Google Scholar 
    Plieninger, T. et al. Wood-pastures of Europe: geographic coverage, social-ecological values, conservation management, and policy implications. Biol. Cons. 190, 70–79. https://doi.org/10.1016/j.biocon.2015.05.014 (2015).Article 

    Google Scholar 
    Weiss, M. et al. The effect of coppicing on insect biodiversity. Small-scale mosaics of successional stages drive community turnover. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2020.118774 (2021).Article 

    Google Scholar  More

  • in

    Myctobase, a circumpolar database of mesopelagic fishes for new insights into deep pelagic prey fields

    Webb, T. J., vanden Berghe, E. & O’Dor, R. Biodiversity’s big wet secret: The global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, https://doi.org/10.1371/journal.pone.0010223 (2010).Drazen, J. C. & Sutton, T. T. Dining in the Deep: The Feeding Ecology of Deep-Sea Fishes. Annual Review of Marine Science 9, 337–366, https://doi.org/10.1146/annurev-marine-010816-060543 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    Brierley, A. S. Diel vertical migration. Current Biology 24, R1074–R1076, https://doi.org/10.1016/j.cub.2014.08.054 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Irigoien, X. et al. Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications 5, 10, https://doi.org/10.1038/ncomms4271 (2014).CAS 
    Article 

    Google Scholar 
    Anderson, T. R. et al. Quantifying carbon fluxes from primary production to mesopelagic fish using a simple food web model. ICES Journal of Marine Science 76, 690–701, https://doi.org/10.1093/icesjms/fsx234 (2018).Article 

    Google Scholar 
    Saba, G. K. et al. Toward a better understanding of fish-based contribution to ocean carbon flux. Limnology and Oceanography 66, 1639–1664, https://doi.org/10.1002/lno.11709 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Koslow, J. A., Kloser, R. J. & Williams, A. Pelagic biomass and community structure over the mid-continental slope off southeastern Australia based upon acoustic and midwater trawl sampling. Marine Ecology Progress Series 146, 21–35, https://doi.org/10.3354/meps146021 (1997).ADS 
    Article 

    Google Scholar 
    Kaartvedt, S., Staby, A. & Aksnes, D. L. Efficient trawl avoidance by mesopelagic fishes causes large underestimation of their biomass. Marine Ecology Progress Series 456, 1–6, https://doi.org/10.3354/meps09785 (2012).ADS 
    Article 

    Google Scholar 
    Lehodey, P., Murtugudde, R. & Senina, I. Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Progress in Oceanography 84, 69–84, https://doi.org/10.1016/j.pocean.2009.09.008 (2010).ADS 
    Article 

    Google Scholar 
    Van de Putte, A., Flores, H., Volckaert, F. & van Franeker, J. A. Energy content of Antarctic mesopelagic fishes: Implications for the marine food web. Polar Biology 29, 1045–1051, https://doi.org/10.1007/s00300-006-0148-z (2006).Article 

    Google Scholar 
    Stowasser, G. et al. Food web dynamics in the Scotia Sea in summer: A stable isotope study. Deep-Sea Research Part II-Topical Studies in Oceanography 59, 208–221, https://doi.org/10.1016/j.dsr2.2011.08.004 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    McCormack, S. A. et al. Decades of dietary data demonstrate regional food web structures in the Southern Ocean. Ecology and Evolution 11, 227–241, https://doi.org/10.1002/ece3.7017 (2021).Article 
    PubMed 

    Google Scholar 
    Griffiths, S. P., Olson, R. J. & Watters, G. M. Complex wasp-waist regulation of pelagic ecosystems in the Pacific Ocean. Reviews in Fish Biology and Fisheries 23, 459–475, https://doi.org/10.1007/s11160-012-9301-7 (2013).Article 

    Google Scholar 
    Saunders, R. A., Hill, S. L., Tarling, G. A. & Murphy, E. J. Myctophid Fish (Family Myctophidae) Are Central Consumers in the Food Web of the Scotia Sea (Southern Ocean). Frontiers in Marine Science 6, https://doi.org/10.3389/fmars.2019.00530 (2019).Dornan, T., Fielding, S., Saunders, R. A. & Genner, M. J. Swimbladder morphology masks Southern Ocean mesopelagic fish biomass. Proceedings of the Royal Society B-Biological Sciences 286, 8, https://doi.org/10.1098/rspb.2019.0353 (2019).Article 

    Google Scholar 
    Freer, J. J., Tarling, G. A., Collins, M. A., Partridge, J. C. & Genner, M. J. Predicting future distributions of lanternfish, a significant ecological resource within the Southern Ocean. Diversity and Distributions 25, 1259–1272, https://doi.org/10.1111/ddi.12934 (2019).Article 

    Google Scholar 
    Hidalgo, M. & Browman, H. I. Developing the knowledge base needed to sustainably manage mesopelagic resources Introduction. ICES Journal of Marine Science 76, 609–615, https://doi.org/10.1093/icesjms/fsz067 (2019).Article 

    Google Scholar 
    Proud, R. et al. From siphonophores to deep scattering layers: Uncertainty ranges for the estimation of global mesopelagic fish biomass. ICES Journal of Marine Science 76, 718–733, https://doi.org/10.1093/icesjms/fsy037 (2019).Article 

    Google Scholar 
    Caccavo, J. A. et al. Productivity and Change in Fish and Squid in the Southern Ocean. Frontiers in Ecology and Evolution 9, https://doi.org/10.3389/fevo.2021.624918 (2021).Davison, P., Lara-Lopez, A. & Anthony Koslow, J. Mesopelagic fish biomass in the southern California current ecosystem. Deep-Sea Research Part II: Topical Studies in Oceanography 112, 129–142, https://doi.org/10.1016/j.dsr2.2014.10.007 (2015).ADS 
    Article 

    Google Scholar 
    Pakhomov, E. & Yamamura, O. Report of the Advisory Panel on Micronekton Sampling Inter-calibration Experiment. Tech. Rep., PICES (2010).Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10, 235–251, https://doi.org/10.1111/j.1467-2979.2008.00315.x (2009).Article 

    Google Scholar 
    Saunders, R. A. & Tarling, G. A. Southern Ocean Mesopelagic Fish Comply with Bergmann’s Rule. American Naturalist 191, 343–351, https://doi.org/10.1086/695767 (2018).Article 

    Google Scholar 
    Proud, R., Cox, M. J. & Brierley, A. S. Biogeography of the Global Ocean’s Mesopelagic Zone. Current Biology 27, 113–119, https://doi.org/10.1016/j.cub.2016.11.003 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Robison, B. H. Conservation of Deep Pelagic Biodiversity. Conservation Biology 23, 847–858, https://doi.org/10.1111/j.1523-1739.2009.01219.x (2009).Article 
    PubMed 

    Google Scholar 
    Constable, A. J. et al. Developing priority variables (“ecosystem Essential Ocean Variables” – eEOVs) for observing dynamics and change in Southern Ocean ecosystems. Journal of Marine Systems 161, 26–41, https://doi.org/10.1016/j.jmarsys.2016.05.003 (2016).ADS 
    Article 

    Google Scholar 
    St John, M. A. et al. A Dark Hole in Our Understanding of Marine Ecosystems and Their Services: Perspectives from the Mesopelagic Community. Frontiers in Marine Science 3, 6, https://doi.org/10.3389/fmars.2016.00031 (2016).Article 

    Google Scholar 
    Newman, L. et al. Delivering Sustained, Coordinated, and Integrated Observations of the Southern Ocean for Global Impact. Frontiers in Marine Science 6, https://doi.org/10.3389/fmars.2019.00433 (2019).Costello, M. J. & Vanden Berghe, E. ‘Ocean biodiversity informatics’: a new era in marine biology research and management. Marine Ecology Progress Series 316, 203–214, https://doi.org/10.3354/meps316203 (2006).ADS 
    Article 

    Google Scholar 
    Van de Putte, A. et al. From data to marine ecosystem assessments of the Southern Ocean, achievements, challenges, and lessons for the future. Frontiers in Marine Science 8, https://doi.org/10.3389/fmars.2021.637063 (2021).Duhamel, G. et al. Biogeographic Patterns of Fish. In Biogeographic Atlas of the Southern Ocean, 328–362 (Scientific Committee of Antarctic Research, Cambridge, UK, 2014).Piatkowski, U., Rodhouse, P. G., White, M. G., Bone, D. G. & Symon, C. Nekton community of the Scotia Sea as sampled by the RMT-25 during the austral summer. Marine Ecology Progress Series 112, 13–28, https://doi.org/10.3354/meps112013 (1994).ADS 
    Article 

    Google Scholar 
    Collins, M. A. et al. Patterns in the distribution of myctophid fish in the northern Scotia Sea ecosystem. Polar Biology 31, 837–851, https://doi.org/10.1007/s00300-008-0423-2 (2008).Article 

    Google Scholar 
    Collins, M. A. et al. Latitudinal and bathymetric patterns in the distribution and abundance of mesopelagic fish in the Scotia Sea. Deep-Sea Research Part II-Topical Studies in Oceanography 59, 189–198, https://doi.org/10.1016/j.dsr2.2011.07.003 (2012).ADS 
    Article 

    Google Scholar 
    Loeb, V. J., Hofmann, E. E., Klinck, J. M., Holm-Hansen, O. & White, W. B. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarctic Science 21, 135–148, https://doi.org/10.1017/s0954102008001636 (2009).ADS 
    Article 

    Google Scholar 
    Reiss, C. S. et al. Overwinter habitat selection by Antarctic krill under varying sea-ice conditions: implications for top predators and fishery management. Marine Ecology Progress Series 568, 1–16, https://doi.org/10.3354/meps12099 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Flores, H. et al. Distribution, abundance and ecological relevance of pelagic fishes in the Lazarev Sea, Southern Ocean. Marine Ecology Progress Series 367, 271–282, https://doi.org/10.3354/meps07530 (2008).ADS 
    Article 

    Google Scholar 
    Flores, H. et al. Seasonal changes in the vertical distribution and community structure of Antarctic macrozooplankton and micronekton. Deep-Sea Research Part I-Oceanographic Research Papers 84, 127–141, https://doi.org/10.1016/j.dsr.2013.11.001 (2014).ADS 
    Article 

    Google Scholar 
    Duhamel, G. The Pelagic Fish Community of the Polar Frontal Zone off the Kerguelen Islands. In Fishes of Antarctica, 63–74, https://doi.org/10.1007/978-88-470-2157-0_5 (Springer, Milano, 1998).Duhamel, G., Koubbi, P. & Ravier, C. Day and night mesopelagic fish assemblages off the Kerguelen Islands (Southern Ocean). Polar Biology 23, 106–112, https://doi.org/10.1007/s003000050015 (2000).Article 

    Google Scholar 
    Duhamel, G., Gasco, N. & Davaine, P. Poissons des îles Kerguelen et Crozet: Guide régional de l’océan Austral (Muséum national d’Histoire naturelle, Paris, 2005).Trebilco, R. et al. Mesopelagic community struture on the southern Kerguelen Axis. In The Kerguelen Plateau: Marine Ecosystem and Fisheries, 49–54 (Australian Antarctic Division, Kingston, Tasmania, 2019).Constable, A. J. & Swadling, K. M. Ecosystem drivers of food webs on the Kerguelen Axis of the Southern Ocean. Deep-Sea Research Part II-Topical Studies in Oceanography 174, 6, https://doi.org/10.1016/j.dsr2.2020.104790 (2020).Article 

    Google Scholar 
    Van de Putte, A. P., Jackson, G. D., Pakhomov, E., Flores, H. & Volckaert, F. A. M. Distribution of squid and fish in the pelagic zone of the Cosmonaut Sea and Prydz Bay region during the BROKE-West campaign. Deep-Sea Research Part II-Topical Studies in Oceanography 57, 956–967, https://doi.org/10.1016/j.dsr2.2008.02.015 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Flynn, A. J. & Williams, A. Lanternfish (Pisces: Myctophidae) biomass distribution and oceanographic-topographic associations at Macquarie Island, Southern Ocean. Marine and Freshwater Research 63, 251–263, https://doi.org/10.1071/mf11163 (2012).Article 

    Google Scholar 
    Sutton, C. A., Kloser, R. J. & Gershwin, L. A. Micronekton in southeastern Australian and the Southern Ocean; A collation of the biomass, abundance, biodiversity and distribution data from CSIRO’s historical mesopelagic depth stratified new samples. CSIRO, Aust. http://hdl.handle.net/102.100.100/365479?index=1 (2018).Gon, O. & Heemstra, P. C. Fishes of the Southern Ocean (J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa, 1990).Darwin Core Maintenance Group. List of Darwin Core terms (2021).R Core Team. R: A language and environment for statistical computing (2021).Holstein, J. worms: Retrieving Aphia Information from World Register of Marine Species (2018).Bivand, R. et al. maptools: Tools for handling spatial objects. R package version 1.1-1 (2021).Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research Part I-Oceanographic Research Papers 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-w (1995).ADS 
    Article 

    Google Scholar 
    Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Global Change Biology 20, 3004–3025, https://doi.org/10.1111/gcb.12623 (2014).ADS 
    Article 
    PubMed 

    Google Scholar 
    Woods, B. et al. Myctobase. Zenodo https://doi.org/10.5281/zenodo.5590999 (2021).Saunders, R. A., Collins, M. A., Stowasser, G. & Tarling, G. A. Southern Ocean mesopelagic fish communities in the Scotia Sea are sustained by mass immigration. Marine Ecology Progress Series 569, 173–185, https://doi.org/10.3354/meps12093 (2017).ADS 
    Article 

    Google Scholar 
    Provoost, P. & Bosch, S. obistools: Tools for data enhancement and quality control (2021).Murphy, E. J. et al. Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change, https://doi.org/10.1098/rspb.2016.1646 (2016).McCormack, S. A., Melbourne-Thomas, J., Trebilco, R., Blanchard, J. L. & Constable, A. Alternative energy pathways in Southern Ocean food webs: Insights from a balanced model of Prydz Bay, Antarctica. Deep-Sea Research Part II-Topical Studies in Oceanography 174, https://doi.org/10.1016/j.dsr2.2019.07.001 (2020).Rodhouse, P. G. K. Role of squid in the Southern Ocean pelagic ecosystem and the possible consequences of climate change. Deep-Sea Research Part II-Topical Studies in Oceanography 95, 129–138, https://doi.org/10.1016/j.dsr2.2012.07.001 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    The MathWorks Inc., V.. MATLAB (2019).Potter, D. C., Lough, R. G., Perry, R. I. & Neilson, J. D. Comparison of the mocness and iygpt pelagic samplers for the capture of 0-group cod (gadus morhua) on georges bank. ICES Journal of Marine Science 46, https://doi.org/10.1093/icesjms/46.2.121 (1990).Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. Journal of Animal Ecology 77, 802–813, https://doi.org/10.1111/j.1365-2656.2008.01390.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Oppel, S. et al. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biological Conservation 156, https://doi.org/10.1016/j.biocon.2011.11.013 (2012).McClatchie, S., Thorne, R. E., Grimes, P. & Hanchet, S. Ground truth and target identification for fisheries acoustics. Fisheries Research 47, 173–191, https://doi.org/10.1016/s0165-7836(00)00168-5 (2000).Article 

    Google Scholar 
    Collins, M., Piatkowski, U. & Saunders, R. A. Distribution of mesopelagic fish in the Scotia Sea from RMT25 and pelagic trawls deployed from RRS James Clark Ross and RRS John Biscoe, UK Polar Data Centre https://doi.org/10.5285/f4dfc0ee-4f61-47c5-a5a8-238e02ff2fdd (2021).Hoddell, R. J., Crossley, C., Hosie, G. & Williams, D. Fish and zooplankton from RMT-8 net hauls on the BROKE voyage. Australian Antarctic Data Centre https://doi.org/10.4225/15/57BA97EA8A22D (2016).Constable, A., Williams, D. & Lamb, T. Heard Island and McDonald Islands (HIMI) Marine Ecosystem. Australian Antarctic Data Centre https://doi.org/10.4225/15/5b31be45e8977 (2018).Van de Putte, A. Fish catches from Rectangular Midwater Trawl – data collected from the BROKE-West voyage of the Aurora Australis, 2006. Australian Antarctic Data Centre https://doi.org/10.4225/15/598d453109182 (2010).Flynn, A. J., Kloser, R. J. & Sutton, C. Micronekton assemblages and bioregional setting of the Great Australian Bight: A temperate northern boundary current system. Deep-Sea Research Part II: Topical Studies in Oceanography 157–158, https://doi.org/10.1016/j.dsr2.2018.08.006 (2018).Oozeki, Y., Hu, F., Tomatsu, C. & Kubota, H. Development of a new multiple sampling trawl with autonomous opening/closing net control system for sampling juvenile pelagic fish. Deep-Sea Research Part I-Oceanographic Research Papers 61, https://doi.org/10.1016/j.dsr.2011.12.001 (2012). More

  • in

    Emerging signals of declining forest resilience under climate change

    Climate driversTo explore the impact of climate on forest resilience (see the following sections), we used monthly averaged total precipitation, 2-m air temperature, evapotranspiration deficit and surface solar radiation downwards acquired from the ERA5-Land reanalysis product at 0.1° spatial resolution for the 2000–2020 period (https://cds.climate.copernicus.eu/cdsapp#!/home). Evapotranspiration deficit was quantified as the total precipitation minus evapotranspiration. In this study, we referred to climate regions as defined by the Köppen–Geiger world map of climate classification51 (http://koeppen-geiger.vu-wien.ac.at/present.htm). The original 31 climatic zones were merged into major zones and only those characterized by vegetation cover were included in our study (tropical, arid, temperate and boreal; Extended Data Fig. 8).Vegetation dynamicsNDVI data acquired from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Terra satellite was used to derive changes in global vegetation for the period 2000–2020. We used cloud-free spatial composites provided at 16-day temporal resolution and 0.05° spatial resolution (MOD13C1 Version 6; https://lpdaac.usgs.gov/products/mod13c1v006/) and retained only pixels with good and marginal overall quality. The MODIS-derived NDVI dataset represents a state-of-the-art product of vegetation state whose retrieval algorithm is constantly improved52, and being derived from a unique platform and sensor, it is temporally and spatially consistent. Vegetation dynamics were analysed in terms of kNDVI, a nonlinear generalization of the NDVI based on ref. 22 and derived as follows:$$text{kNDVI=}tanh left({text{NDVI}}^{2}right)$$
    (1)
    kNDVI has recently been proposed as a strong proxy for ecosystem productivity that shows high correlations with both plot level measurements of primary productivity and satellite retrievals of sun-induced fluorescence22. In addition, kNDVI has been documented to be more closely related to primary productivity, to be resistant to saturation, bias and complex phenological cycles, and to show enhanced robustness to noise and stability across spatial and temporal scales compared to alternative products (for example, NDVI and near-infrared reflectance of vegetation). For these reasons, it has been retained in this study as the preferred metric to describe the state of the forest ecosystem.To obtain an accurate estimate of resilience indicators, vegetation time series need to be stationary without seasonal periodic patterns or long-term trends53. To this aim, vegetation anomalies were obtained from kNDVI data by first subtracting the multi-year 16-day sample mean and then removing linear trends from the resulting time series. Missing data, due for instance to snow cover affecting the retrieval of reflectance properties, have been gap-filled by climatological kNDVI values. The time series of kNDVI-based vegetation anomalies was used to derive resilience indicators and assess their spatial and temporal variations (see next sections).Interannual changes in vegetation were assessed in terms of growing-season-averaged kNDVI. To this end, a climatological growing season that spanned months with at least 75% of days in the greenness phase was derived from the Vegetation Index and Phenology satellite-based product54 (https://vip.arizona.edu/) and acquired for the 2000–2016 period at 0.05° spatial resolution. In addition, forest cover (FC) fraction was derived from the annual land-cover maps of the European Space Agency’s Climate Change Initiative (https://www.esa-landcover-cci.org/)55 over the 2000–2018 period at 300-m spatial resolution. FC was retrieved by summing the fraction of broadleaved deciduous, broadleaved evergreen, needle leaf deciduous and needle leaf evergreen forest. FC was resampled to 0.05° to match the kNDVI spatial resolution.Spatial patterns of slowness and its dependence on environmental factorsIn this study, we quantified the resilience of forest ecosystems—their ability to recover from external perturbations—by the use of the 1-lag TAC (refs. 3,4,5). Such an indicator was initially computed on the whole time series of vegetation anomalies (2000–2020) for forest pixels with less than 50% missing data in the original NDVI and FC greater than 0.05 and referred to in the text as long-term TAC. This analysis was used to assess the spatial patterns of the forest slowness mediated by environmental factors that affect plant growth rates and capacity to recover from perturbations. The long-term TAC was explored both in the geographic and climate space (Extended Data Fig. 1). In the climate space, long-term TAC was binned in a 50 × 50 grid as a function of average annual precipitation and temperature, both computed over the 2000–2020 period, using the average as an aggregation metric weighted by the areal extents of each record. We retained only bins with at least 50 records.To explore the potential drivers of long-term TAC, we developed an RF regression model23 and predicted the observed long-term TAC (response variable) based on a set of environmental features (predictors). The use of machine learning in general and of RF in particular, being nonparametric and nonlinear data-driven methods, does not require a priori assumptions about the functional form relating the key drivers and the response functions. The environmental variables include vegetation properties (FC and growing-season-averaged kNDVI) and climate variables (total precipitation, 2-m air temperature, evapotranspiration deficit and surface solar radiation downwards). Each of the climate variables was expressed in terms of average, coefficient of variation and 1-lag autocorrelation and resampled to 0.05° spatial resolution to match the spatial resolution of kNDVI. All environmental variables were computed annually and then averaged over time, except the autocorrelation that was computed directly for the whole period, analogously to the long-term TAC. This resulted in a set of 14 predictors representing the forest density, the background climate, the climate variability and its TAC in the observational period (Extended Data Table 1). The RF model was developed by splitting the observed long-term TAC into two separate samples: 60% of records were used for model calibration, and the remaining 40% were used to validate model performances in terms of coefficient of determination (R2), mean squared error and percentage bias (PBIAS). Each record refers to a 0.05° pixel. The RF implemented here uses 100 regression trees, whose depth and number of predictors to sample at each node were identified using Bayesian optimization. The general model formulation is as follows:$$text{TAC},=,fleft(Xright)+{varepsilon }_{{rm{f}}}$$
    (2)
    in which f is the RF regression model, X are the environmental predictors and εf are the residuals. We found that the model explains 87% of the spatial variance (R2) of the observed long-term TAC with a mean squared error of 0.007 and an average overestimation of 0.058 (PBIAS; Extended Data Fig. 2a). By definition, machine learning methods are not based on the mechanistic representation of the phenomena and therefore cannot provide direct information on the underlying processes influencing the system response to drivers. However, some model-agnostic methods can be applied to gain insights into the outputs of RF models. Here we used variable importance metrics to quantify and rank how individual environmental factors influence TAC (Extended Data Fig. 2b). Furthermore, using partial dependence plots derived from the machine learning algorithm RF, we explored the ecosystem response function (TAC) across gradients of vegetation and climate features (Supplementary Discussion 1 and Extended Data Fig. 2c–f).CSD indicatorsTo explore the temporal variation in forest resilience, we used CSD indicators, here quantified in terms of temporal changes in TAC retrieved for two consecutive and independent periods ranging from 2000 to 2010 and from 2011 to 2020, and assessed the significance of the change in the sampled mean aggregated for different climate regions through a two-sided t-test (Fig. 1c). This analysis was complemented by the computation of TAC on the annual scale over a 2-year lagged temporal window (3-year window size) to track the temporal changes in CSD. This resulted in a time series of TAC with an annual time step.We point out that temporal dynamics of annual TAC are driven by two processes: the changes in the resilience of the system that affect the velocity of the recovery from external perturbations and the confounding effects of the changes in autocorrelation of the climate drivers (Xac) that directly affect the autocorrelation of NDVI. Given the specific goals of this study, we factored out the second process from the total TAC signal to avoid that an increasing autocorrelation in the drivers would affect our analysis and conclusions about the resilience and the potential increase in instability56. For this purpose, we disentangled the temporal changes in TAC due to variations in autocorrelation in the climate drivers (({rm{TAC}}| {X}_{{rm{ac}}})) by adopting the space-for-time analogy and applied the RF model (f) at an annual time step (t) in a set of factorial simulations as follows:$${text{TAC}}^{t},{rm{| }},{X}_{{rm{ac}}}=fleft({X}^{t}right)-fleft({X}_{-{rm{ac}}}^{t},{X}_{{rm{ac}}}^{2000}right)$$
    (3)
    The first term on the right side of equation (3) is the RF model simulation obtained by accounting for the dynamics of all predictors, and the second term is the RF model simulation generated by considering all predictors dynamic except the factors of autocorrelation in climate that are kept constant to their first-year value (year 2000). For such runs, we used predictors computed on an annual scale over a 2-year lagged temporal window, consistently to the TAC time series. We found that the direct effects of autocorrelation in climate have led to a positive trend of TAC in dry zones (due to the increasing autocorrelation of the drivers in these regions) and to an opposite effect in temperate humid forests (Supplementary Fig. 3). To remove these confounding effects, the estimated term ({{rm{TAC}}}^{t}| {X}_{{rm{ac}}}) is factored out from the TACt by subtraction to derive an enhanced estimate of annual resilience that is independent of autocorrelation in climate (Extended Data Fig. 3).Long-term linear trends computed on the resulting enhanced TAC time series (δTAC) represent our reference CSD indicator used in this study to explore the changes in forest resilience. δTAC was quantified for each grid cell (Fig. 1a) and represented in the climate space following the methodology previously described (Fig. 1b). We then assessed the significance of the trends at bin level by applying a two-sided t-test for the sampled trend distributions within each bin. This significance test is independent from the structural temporal dependencies originating from the use of a 2-year lagged temporal window to compute the TAC time series.Following an analogous approach described in equation (3), we disentangled the effect of the variation in forest density, background climate and climate variability on temporal changes in TAC (Fig. 1d,e). We recognize that other environmental factors not explicitly accounted for in our RF model could play a role in modulating the temporal variations in TAC. However, given the comprehensiveness of the suite of predictors used in equation (2) (Extended Data Table 1), it seems plausible that residuals mostly reflect the intrinsic forest resilience, the component intimately connected to the short-term responses of forests to perturbations, which is not directly related to climate variability. Forest ecosystem evolutionary processes could also play a role, but longer time series would be required to reliably capture these dynamics. Furthermore, abrupt declines (ADs) in the vegetation state and following recoveries, similarly to those potentially originating from forest disturbances (for example, wildfires and insect outbreaks), could influence the TAC changes. However, such occurrences, being distributed across the globe throughout the whole period, are expected to only marginally affect the resulting trend in TAC time series.Sensitivity analysisTo assess the robustness of our results with respect to the modelling choices described above, we performed a series of sensitivity analyses for the difference in TAC retrieved for the two independent periods (2000–2010 and 2011–2020). To this aim, we tested their dependence on: the quality flag of the NDVI data used for the analyses (good, good and marginal); the gap-filling procedure tested on different periods (year and growing season); the inclusion or exclusion of forest areas affected by ADs; the threshold on the maximum percentage of missing NDVI data allowed at the pixel level (20%, 50% and 80%); the threshold on the minimum percentage of FC allowed at the pixel level (5%, 50% and 90%); and the pixel spatial resolution used for the analyses (0.05°, 0.25° and 1°). In addition, we tested the sensitivity of the trend in total TAC signal on the moving temporal window length used to calculate autocorrelation at lag 1. Results obtained for the different configurations were compared in terms of frequency distributions, separately for climate regions (Extended Data Fig. 4), and further explored in the climate space (Extended Data Figs. 5 and 6). Outcomes of the sensitivity analysis are discussed in Supplementary Discussion 2.Interplay between GPP and CSDResilience and GPP interact with each other through mutual causal links. On one hand, a reduction in forest resilience makes the system more sensitive to perturbations with potential consequent losses in GPP (ref. 26). On the other hand, a reduction in GPP may lead to a decline in resilience according to the carbon starvation hypothesis, and may be associated with increasing hydraulic failure46. To explore the link between forest resilience and primary productivity, we quantified the correlation between TAC and GPP. Estimates of GPP were derived from the FluxCom Model Tree Ensemble for the 2001–2019 period at 8-daily temporal resolution and 0.0833° spatial resolution and generated using ecosystem GPP fluxes from the FLUXNET network and MODIS remote sensing data as predictor variables36 (http://www.fluxcom.org/). Annual maps of GPP were quantified and resampled to 0.05° to match the temporal and spatial resolution of TAC time series. The Spearman rank correlation (ρ) was then computed between annual GPP and TAC over a 1° spatial moving window to better sample the empirical distribution of the two variables (Fig. 2d). The significance of ρ(GPP,TAC) was assessed over the climate space separately for each bin (Fig. 2e), similarly to the approach used to test the significance of δTAC. Furthermore, we explored the relationships between the trend in GPP (δGPP) and the trend in TAC (δTAC) by clustering the globe according to the directions of the long-term trajectories of the above-mentioned variables (Fig. 2f).Disentangling the impact of forest managementTo characterize TAC on different forest types and disentangle the potential effects originating from forest management, results were separately analysed for intact forests and managed forests. Intact forests were considered those forest pixels constituting the Intact Forest Landscapes57 dataset (https://intactforests.org/). Intact Forest Landscapes identifies the forest extents with no sign of significant human activity over the period 2000–2016 based on Landsat time series. The remaining forests pixels—not labelled as intact—were considered as managed forests (Extended Data Fig. 8). The resulting forest type map is consistent with those used for United Nations Framework Convention on Climate Change reporting58, although with more conservative estimates of intact forests in the boreal zone due to the masking based on FC and percentage of missing data applied in this study.We analysed the differences in long-term TAC (computed for the whole 2000–2020 period) between managed and intact forests by masking out the potential effect of climate background. To this aim, we compared the climate spaces generated separately for managed and intact forests by extracting only those bins that are covered by both forest classes. The resulting distributions—one for each forest class—have the same sample size, and each pair of elements shares the same climate background. Potential confounding environmental effects on average recovery rates are, therefore, minimized. We then applied a two-sided t-test for analysing the significance of the difference in the sampled means (Fig. 2a). An analogous approach was used to test the differences in δTAC and ρ(GPP,TAC) between managed and intact forests (Fig. 2b,c).Early-warning signals of abrupt forest declinesWhen forest ecosystems are subject to an extended and progressive degradation, the loss of resilience can lead to an AD (refs. 3,4,5). Such abrupt changes can trigger a regime shift (tipping point) depending on the capacity of the system to recover from the perturbations (Supplementary Methods 1 and 2). We investigated the potential of changes in TAC as early-warning signals of ADs in intact forests over the 2010–2020 period. To this aim, we quantified at the pixel level ADs as the events occurring on a certain year when the corresponding growing-season average kNDVI was more than n-times local standard deviation below the local mean. Local mean and standard deviation (σ) were computed over the 10-year antecedent temporal window (undisturbed) period and n varies between 1 and 6 with higher values reflecting more severe changes in the state of the system. For each pixel and for each fixed n value, we recorded only the first AD occurrence, thus imposing a univocal record for each abrupt change in the state of the system.We then explored whether the retrieved ADs were statistically associated with antecedent high values of δTAC. To avoid confusion with the attribution of causality, for each AD that occurred at time t (over the 2010–2020 period), we derived the δTAC over the temporal window 2000 − (t − 1). The resulting trend in δTAC is therefore antecedent and independent of the changes in vegetation associated with the AD. Then, for each pixel with an AD at time t, we also extracted randomly one of the undisturbed (with no AD) adjacent pixels and retrieved δTAC over the same temporal window. This analysis produced two distributions of δTAC associated with pixels with and without ADs (AD and no AD, respectively). The two distributions have the same size and each pair of elements shares similar background climate. We calculated the probability of occurrence of AD conditional on the trend in δTAC (({rm{AD}}| delta {rm{TAC}})) as the frequency of ADs for which (delta {rm{TAC}}left(mathrm{AD}right)| > delta {rm{TAC}}left(mathrm{no; AD}right)), and the significance of the difference in the two sampled means (AD and no AD) was evaluated through a two-sided t-test. Probability and significance were assessed for different climate regions and severity of ADs (Fig. 3a). High statistically significant probabilities suggest that the AD is following the drifting towards a critical resilience threshold plausibly associated with changes in environmental drivers.We complemented the aforementioned analyses by retrieving the tolerance and proximity to AD, hereafter determined for a 3σ severity. We first quantified the TAC that proceeded the occurrence of an AD and followed a progressive loss of resilience as captured by positive δTAC. This value, hereafter referred to as abrupt decline temporal autocorrelation (TACAD), reflects the TAC threshold over which we observed an abrupt change in the forest state (Fig. 3b). The tolerance to AD was quantified as the difference between the local TACAD and the TAC value averaged over the 2000–2009 period to characterize the pre-disturbance conditions. The tolerance metric was explored across a gradient of aridity index59 (Fig. 3c).TACAD can be directly retrieved only on those forest pixels that have already experienced an AD. As a considerable fraction of undisturbed forests could potentially be close to their critical TAC threshold, or even have already passed it, it is important to determine their TACAD. To this aim, we developed an RF regression model that expresses the TACAD as a function of the set X of environmental variables used in model f (equation (2)) but excluding the autocorrelation in climate drivers (Xreduced) already disentangled in the TAC signal. The general formulation is as follows:$${{rm{TAC}}}_{{rm{AD}}}=gleft({X}_{text{reduced}}right)+{varepsilon }_{{rm{g}}}$$
    (4)
    in which g is the RF regression model, Xreduced are the environmental predictors and εg are the residuals. Implementation, calibration and validation of g follow the same rationale described before for the f model. We found that the RF model explains 50% of the variance (R2) of the observed TACAD, with a mean squared error of 0.019 and an average underestimation of 0.86 (PBIAS).The RF model was then used to predict the TACAD over the whole domain of intact forests and served as input to quantify the proximity to AD of undisturbed forest pixels at the end of the observational period (year 2020). Here we defined the proximity metric as the difference between the value of TAC in 2020 and TACAD. Proximity takes negative or zero values when TACAD has already been reached (({{{rm{TAC}}}^{2020}ge {rm{TAC}}}_{{rm{AD}}})) and positive values when there are still margins before reaching the critical threshold (({{{rm{TAC}}}^{2020} < {rm{TAC}}}_{{rm{AD}}})). Together (delta {rm{TAC}} > 0) and ({{{rm{TAC}}}^{2020}ge {rm{TAC}}}_{{rm{AD}}}) therefore represent the most critical conditions, as they indicate that the critical resilience threshold for AD has already been reached and the ecosystem is continuing to lose its capacity to respond to external perturbations. We finally quantified the amount of GPP potentially exposed to such critical conditions by linearly extrapolating the GPP for the year 2020 (available GPP data stop in 2019) and overlaying it on the map of critical conditions (proximity to ({rm{AD}} < 0) and (delta {rm{TAC}} > 0)).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this paper. More

  • in

    The Campsis-Icterus association as a model system for avian nectar-robbery studies

    Darwin, C. On the various Contrivances by which British and Foreign Orchids are Fertilised by Insects, and on the good effects of Intercrossing. (John Murray, 1862).Darwin, C. The various Contrivances by which Orchids are Fertilised by Insects. Second edition, revised., (D. Appleton and Company, 1877).Sprengel, C. K. Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. (Vieweg, 1793).Müller, H. Befruchtung der Blumen durch Insekten (Verlag Von Wilhelm Englemann, 1873).Book 

    Google Scholar 
    Riley, C. V. The yucca moth and yucca pollination. Rep. Missouri Botan. Garden 3, 99–159 (1892).Article 

    Google Scholar 
    Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology 3rd edn. (Pergamon, Berlin, 1979).
    Google Scholar 
    Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R. & Thomson, J. D. Pollination syndromes and floral specialization. Annu. Rev. Ecol. Evol. Syst. 35, 375–403. https://doi.org/10.1146/annurev.ecolsys.34.011802.132347 (2004).Article 

    Google Scholar 
    Inouye, D. W. In The Biology of Nectaries (eds Elias, T. S. & Bentley, B. L.) 153–173 (Columbia University Press, 1983).
    Google Scholar 
    Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292. https://doi.org/10.1146/annurev.ecolsys.110308.120330 (2010).Article 

    Google Scholar 
    Irwin, R. E. & Maloof, J. E. Variation in nectar robbing over time, space, and species. Oecologia 133, 525–533. https://doi.org/10.1007/s00442-002-1060-z (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Maloof, J. E. & Inouye, D. W. Are nectar robbers cheaters or mutualists?. Ecology 81, 2651–2661. https://doi.org/10.1890/0012-9658(2000)081[2651:ANRCOM]2.0.CO;2 (2000).Article 

    Google Scholar 
    Inouye, D. W. The terminology of floral larceny. Ecology 61, 1251–1253. https://doi.org/10.2307/1936841 (1980).Article 

    Google Scholar 
    Lyon, D. L. & Chadek, C. Exploitation of nectar resources by hummingbirds, bees (Bombus), and Diglossa baritula and Its role in the evolution of Penstemon kunthii. Condor 73, 246–248. https://doi.org/10.2307/1365847 (1971).Article 

    Google Scholar 
    Colwell, R. K., Betts, B. J., Bunnell, P., Carpenter, F. L. & Feinsinger, P. Competition for the nectar of Centropogon valerii by the hummingbird Colibri thalassinus and the flower-piercer Diglossa plumbea, and Its evolutionary implications. Condor 76, 447–452. https://doi.org/10.2307/1365817 (1974).Article 

    Google Scholar 
    Arizmendi, M. C., Dominguez, C. A. & Dirzo, R. The role of an avian nectar robber and of hummingbird pollinators in the reproduction of two plant species. Funct. Ecol. 10, 119–127. https://doi.org/10.2307/2390270 (1996).Article 

    Google Scholar 
    Arizmendi, M. C. Multiple ecological interactions: Nectar robbers and hummingbirds in a highland forest in Mexico. Can. J. Zool. 79, 997–1006. https://doi.org/10.1139/z01-066 (2001).Article 

    Google Scholar 
    Navarro, L. Pollination ecology and effect of nectar removal in Macleania bullata (Ericaceae)1. Biotropica 31, 618–625. https://doi.org/10.1111/j.1744-7429.1999.tb00410.x (1999).Article 

    Google Scholar 
    Traveset, A., Willson, M. F. & Sabag, C. Effect of nectar-robbing birds on fruit set of Fuchsia magellanica in Tierra Del Fuego: A disrupted mutualism. Funct. Ecol. 12, 459–464. https://doi.org/10.1046/j.1365-2435.1998.00212.x (1998).Article 

    Google Scholar 
    Skutch, A. F. Life histories of Central American birds. Families Fringillidae, Thraupidae Parulidae and Coerebidae. Pacific Coast Avifauna 31, 1–448 (1954).
    Google Scholar 
    Vuilleumier, F. Systematics and evolution in Diglossa (Aves, Coerebidae). Am. Mus. Novit. 2381, 1–44 (1969).
    Google Scholar 
    Graves, G. R. Pollination of a Tristerix mistletoe (Loranthaceae) by Diglossa (Aves: Thraupidae). Biotropica 14, 315–317. https://doi.org/10.2307/2388094 (1982).Article 

    Google Scholar 
    Hernández, H. M. & Toledo, V. M. The role of nectar robbers and pollinators in the reproduction of Erythrina leptorhiza. Ann. Mo. Bot. Gard. 66, 512–520. https://doi.org/10.2307/2398843 (1979).Article 

    Google Scholar 
    Neill, D. A. Trapliners in the trees: Hummingbird pollination of Erythrina Sect Erythrina (Leguminosae: Papilionoideae). Ann. Missouri Botan. Garden 74, 27–41. https://doi.org/10.2307/2399259 (1987).Article 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Nectar robbing impacts pollinator behavior but not plant reproduction. Oikos 125, 1668–1676. https://doi.org/10.1111/oik.03195 (2016).CAS 
    Article 

    Google Scholar 
    Cuta-Pineda, J. A., Arias-Sosa, L. A. & Pelayo, R. C. The flowerpiercers interactions with a community of high Andean plants. Avian Res. 12, 22. https://doi.org/10.1186/s40657-021-00256-7 (2021).Article 

    Google Scholar 
    Askins, R. A., Karen, M. E. & Jeffrey, D. W. Flower destruction and nectar depletion by avian nectar robbers on a tropical tree, Cordia sebestena. J. Field Ornithol. 58, 345–349 (1987).
    Google Scholar 
    McDade, L. A. & Kinsman, S. The impact of floral parasitism in two Neotropical hummingbird-pollinated plant species. Evolution 34, 944–958. https://doi.org/10.2307/2408000 (1980).Article 
    PubMed 

    Google Scholar 
    Ingels, J. Observations of the hummingbirds Orthorhynchus cristatus and Eulampis jugularis of Martinique (West Indies). Gerfaut 66, 129–132 (1976).
    Google Scholar 
    Feinsinger, P., Beach, J. H., Linhart, Y. B., Busby, W. H. & Murray, K. G. Disturbance, pollinator predictability, and pollination success among Costa Rican cloud forest plants. Ecology 68, 1294–1305. https://doi.org/10.2307/1939214 (1987).Article 

    Google Scholar 
    Kodric-Brown, A., Brown, J. H., Byers, G. S. & Gori, D. F. Organization of a tropical island community of hummingbirds and flowers. Ecology 65, 1358–1368. https://doi.org/10.2307/1939116 (1984).Article 

    Google Scholar 
    Lara, C. & Ornelas, J. F. Preferential nectar robbing of flowers with long corollas: Experimental studies of two hummingbird species visiting three plant species. Oecologia 128, 263–273. https://doi.org/10.1007/s004420100640 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hazlehurst, J. A. & Karubian, J. O. Impacts of nectar robbing on the foraging ecology of a territorial hummingbird. Behav. Proc. 149, 27–34. https://doi.org/10.1016/j.beproc.2018.01.001 (2018).Article 

    Google Scholar 
    Boehm, M. A. Biting the hand that feeds you: Wedge-billed hummingbird is a nectar robber of a sicklebill-adapted Andean bellflower. Acta Amazon. 48, 146–150. https://doi.org/10.1590/1809-4392201703932 (2018).Article 

    Google Scholar 
    Igić, B., Nguyen, I. & Fenberg, P. B. Nectar robbing in the trainbearers (Lesbia, Trochilidae). PeerJ 8, e9561. https://doi.org/10.7717/peerj.9561 (2020).Article 

    Google Scholar 
    Lunardi, V. D. O., Silva, É. E., Silva, S. T. A. & Lunardi, D. G. Handroanthus impetiginosus (Bignoniaceae) as an important floral resource for synanthropic birds in the Brazilian semiarid. Oecol. Austr. https://doi.org/10.4257/oeco.2019.2301.12 (2019).Article 

    Google Scholar 
    Almeida, J. M., Missagia, C. C. C. & Alves, M. A. S. Effects of the availability of floral resources and neighboring plants on nectar robbery in a specialized pollination system. Curr. Zool. https://doi.org/10.1093/cz/zoab083 (2021).Article 

    Google Scholar 
    Rodríguez-Rodríguez, M. C. & Valido, A. Opportunistic nectar-feeding birds are effective pollinators of bird-flowers from Canary Islands: experimental evidence from Isoplexis canariensis (Scrophulariaceae). Am. J. Bot. 95, 1408–1415. https://doi.org/10.3732/ajb.0800055 (2008).Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. Untangling the phylogeny of neotropical lianas (Bignonieae, Bignoniaceae). Am. J. Bot. 93, 304–318. https://doi.org/10.3732/ajb.93.2.304 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Olmstead, R. G., Zjhra, M. L., Lohmann, L. G., Grose, S. O. & Eckert, A. J. A molecular phylogeny and classification of Bignoniaceae. Am. J. Bot. 96, 1731–1743. https://doi.org/10.3732/ajb.0900004 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lohmann, L. G. & Taylor, C. M. A new generic classification of tribe Bignonieae (Bignoniaceae). Ann. Mo. Bot. Gard. 99, 348–489. https://doi.org/10.3417/2003187 (2014).Article 

    Google Scholar 
    Gentry, A. H. Coevolutionary patterns in Central American bignoniaceae. Ann. Mo. Bot. Gard. 61, 728–759. https://doi.org/10.2307/2395026 (1974).Article 

    Google Scholar 
    Bertin, R. I. Floral biology, hummingbird pollination and fruit production of trumpet creeper (Campsis radicans, Bignoniaceae). Am. J. Bot. 69, 122–134. https://doi.org/10.2307/2442837 (1982).Article 

    Google Scholar 
    Bertin, R. I. Paternity and fruit production in trumpet creeper (Campsis radicans). Am. Nat. 119, 694–709. https://doi.org/10.1086/283943 (1982).Article 

    Google Scholar 
    Bertin, R. I. & Sullivan, M. Pollen interference and cryptic self-fertility in Campsis radicans. Am. J. Bot. 75, 1140–1147. https://doi.org/10.1002/j.1537-2197.1988.tb08827.x (1988).Article 

    Google Scholar 
    Bertin, R. I. Paternal success following mixed pollinations of Campsis radicans. Am. Midl. Nat. 124, 153–163. https://doi.org/10.2307/2426088 (1990).Article 

    Google Scholar 
    Bertin, R. I. Effects of pollination intensity in Campsis radicans. Am. J. Bot. 77, 178–187. https://doi.org/10.1002/j.1537-2197.1990.tb13544.x (1990).Article 
    PubMed 

    Google Scholar 
    Bertin, R. I. & Peters, P. J. Paternal effects on offspring quality in Campsis radicans. Am. Nat. 140, 166–178. https://doi.org/10.1086/285408 (1992).Article 

    Google Scholar 
    Kartesz, J. T. Campsis radicans. Floristic Synthesis of North America, Version 1.0. Biota of North America Program (BONAP) http://bonap.net/MapGallery/County/Campsis%20radicans.png. (2015).Kolodziejska-Degorska, I. & Zych, M. Bees substitute birds in pollination of ornitogamous climber Campsis radicans [L.] Seem in Poland. Acta Soc. Botanicorum Poloniae 75, 79–85 (2006).Article 

    Google Scholar 
    Catesby, M. The Natural History of Carolina, Florida and the Bahama islands. Volume 1. (Published by the author, 1731).Audubon, J. J. Ornithological Biography Vol. 3, 638 (Adam and Charles Black, 1835).
    Google Scholar 
    Audubon, J. J. Ruby-throated Hummingbird, plate CCLIII, The Birds of America Vol. 3 (Havell, 1835).
    Google Scholar 
    Nuttall, T. Manual of the Ornithology of the United States and of Canada. The Land Birds (Hilliard and Brown, 1832).
    Google Scholar 
    Stiles, F. G. & Freeman, C. E. Patterns in floral nectar characteristics of some bird-visited plant species from Costa Rica. Biotropica 25, 191–205. https://doi.org/10.2307/2389183 (1993).Article 

    Google Scholar 
    Stiles, F. G. Ecology, flowering phenology, and hummingbird pollination of some Costa Rican Heliconia species. Ecology 56, 285–301. https://doi.org/10.2307/1934961 (1975).Article 

    Google Scholar 
    McDade, L. A. & Weeks, J. A. Nectar in hummingbird-pollinated Neotropical plants I: Patterns of production and variability in 12 species. Biotropica 36, 196–215. https://doi.org/10.1111/j.1744-7429.2004.tb00312.x (2004).Article 

    Google Scholar 
    Wunderle, J. M. Jr. Nectar robbing by Orchard Orioles. Chat 44, 107–108 (1980).
    Google Scholar 
    Tyler, W. M. in Life histories of North American blackbirds, orioles, tanagers, and allies. Order Passeriformes: Families Ploceidae, Icteridae, and Thraupidae. United States National Museum Bulletin 211 (ed Arthur Cleveland Bent) 247–270 (United States Government Printing Office, 1958).George, F. W. Baltimore Orioles destroying trumpet vine blossoms. Wilson Bull. 46, 64 (1934).
    Google Scholar 
    Ridgway, R. The birds of North and Middle America, Part 2. Bull. U.S. Natl. Mus. 50, 1–834 (1902).
    Google Scholar 
    Scharf, W. C. & Kren, J. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    Morton, E. S. Effective pollination of Erythrina fusca by the Orchard Oriole (Icterus spurius): Coevolved behavioral manipulation?. Ann. Mo. Bot. Gard. 66, 482–489. https://doi.org/10.2307/2398840 (1979).Article 

    Google Scholar 
    Dickey, D. R. & van Rossem, A. J. The birds of El Salvador. Field Mus. Publ. Zool. 23, 1–609 (1938).
    Google Scholar 
    Baumel, J. J., King, A. S., Breazile, J. E., Evans, H. E. & Vanden Berge, J. C. (eds). Handbook of Avian Anatomy: Nomina Anatomica Avium, Second Edition. Publications of the Nuttall Ornithological Club no. 23 (Nuttall Ornithological Club, 1993).Beecher, W. J. Adaptations for food-getting in the American blackbirds. Auk 68, 411–440. https://doi.org/10.2307/4080840 (1951).Article 

    Google Scholar 
    Zusi, R. The role of the depressor mandibulae muscle in kinesis of the avian skull. Proc. U.S. Natl. Mus. 123, 1–28 (1967).Article 

    Google Scholar 
    Remsen, J. V. Jr. & Robinson, S. K. A classification scheme for foraging behavior of birds in terrestrial habitats. Stud. Avian Biol. 13, 144–160 (1990).
    Google Scholar 
    Skutch, A. F. Orioles, Blackbirds, and Their Kin (University of Arizona Press, 1996).
    Google Scholar 
    Hansell, M. P. Bird nests and Construction Behaviour 294 (Cambridge University Press, 2000).Book 

    Google Scholar 
    Bent, A. C. Life histories of North American blackbirds, orioles, tanagers, and allies. Bull. U.S. Natl. Museum 211, 1–531 (1958).
    Google Scholar 
    Dennis, J. V. Observations on the orchard oriole in lower Mississippi Delta. Bird-Banding 19, 12–21. https://doi.org/10.2307/4509997 (1948).Article 

    Google Scholar 
    Wunderle, J. M. & Lodge, D. J. The effect of age and visual cues on floral patch use by bananaquits (Aves: Emberizidae). Anim. Behav. 36, 44–54. https://doi.org/10.1016/S0003-3472(88)80248-3 (1988).Article 

    Google Scholar 
    Edge, A. A. Characteristics of nectar production and standing crop in Campsis radicans (Bignoniaceae). MSc thesis. (East Tennessee State University, 2010).Galetto, L. Nectary structure and nectar characteristics in some Bignoniaceae. Plant Syst. Evol. 196, 99–121. https://doi.org/10.1007/BF00985338 (1995).Article 

    Google Scholar 
    Elias, T. S. & Gelband, H. Nectar: Its production and functions in trumpet creeper. Science 189, 289–291. https://doi.org/10.1126/science.189.4199.289 (1975).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Elias, T. S. & Gelband, H. Morphology and anatomy of floral and extrafloral nectaries in Campsis (Bignoniaceae). Am. J. Bot. 63, 1349–1353. https://doi.org/10.1002/j.1537-2197.1976.tb13220.x (1976).Article 

    Google Scholar 
    Hermans, M. & Rasson, J. P. A new Sobolev test for uniformity on the circle. Biometrika 72, 698–702. https://doi.org/10.2307/2336748 (1985).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Landler, L., Ruxton, G. D. & Malkemper, E. P. The Hermans-Rasson test as a powerful alternative to the Rayleigh test for circular statistics in biology. BMC Ecol. 19, 30. https://doi.org/10.1186/s12898-019-0246-8 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development for R. PBC, Boston, MA http://www.rstudio.com/. (RStudio 2020).Beecher, W. J. Convergent evolution in the American orioles. Wilson Bulletin 62, 50–86 (1950).
    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Stiles, F. G. Energetics of foraging: Rate and efficiency of nectar extraction by hummingbirds. Science 176, 1351–1352. https://doi.org/10.1126/science.176.4041.1351 (1972).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Wolf, L. L., Hainsworth, F. R. & Gill, F. B. Foraging efficiencies and time budgets in nectar-feeding birds. Ecology 56, 117–128. https://doi.org/10.2307/1935304 (1975).Article 

    Google Scholar 
    Alcantara, S. & Lohmann, L. G. Evolution of floral morphology and pollination system in Bignonieae (Bignoniaceae). Am. J. Bot. 97, 782–796. https://doi.org/10.3732/ajb.0900182 (2010).Article 
    PubMed 

    Google Scholar 
    Gentry, A. H. Bignoniaceae: Part II (Tribe Tecomeae). Flora Neotrop. 25, 1–370 (1992).
    Google Scholar 
    Grant, V. Historical development of ornithophily in the western North American flora. Proc. Natl. Acad. Sci. 91, 10407–10411. https://doi.org/10.1073/pnas.91.22.10407 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    James, R. L. Some hummingbird flowers east of the Mississippi. Castanea 13, 97–109 (1948).
    Google Scholar 
    Van Nest, B. N., Edge, A. A., Feathers, M. V., Worley, A. C. & Moore, D. Bees provide pollination service to Campsis radicans (Bignoniaceae), a primarily ornithophilous trumpet flowering vine. Ecol. Entomol. 46, 117–127. https://doi.org/10.1111/een.12947 (2021).Article 

    Google Scholar 
    Patuxent Wildlife Research Center. Orchard oriole Icterus spurius. BBS summer distribution map, 2011–2015 (relative abundance map). https://www.mbr-pwrc.usgs.gov/bbs/ra2015/ra2015_red_v3.shtml (accessed 7 March 2021) (2021). More

  • in

    No new evidence for an Atlantic eels spawning area outside the Sargasso Sea

    The Sargasso Sea was identified as the spawning area of the European eel (Anguilla anguilla) 100 years ago, and numerous subsequent surveys have verified that eel larvae just a week old are regularly recorded there. However, no adult eels or eel eggs have ever been found, leaving room for alternative hypotheses on the reproduction biology of this enigmatic species. Chang et al.1 theorize about an area along the Mid-Atlantic Ridge as a potential spawning ground. The main argument for this hypothesis was that the chemical signature found in eel otoliths would indicate that early stage larvae had been exposed to a volcanic environment, such as the one present along the Mid-Atlantic Ridge. Since this correlation was solely based on a mis-interpretation of cited literature data, no new, conclusive information to pinpoint the Mid-Atlantic Ridge as an additional or even alternative spawning area was presented by Chang et al.For more than 100 years, the life history of Atlantic eels remains a matter of scientific debate. In a recent paper by Chang and colleagues, published in Scientific Reports (Sci Rep 10, 15981 (2020)), it is hypothesized that the spawning areas of the European eel (Anguilla anguilla) and the American eel (A. rostrata) are located along the Mid-Atlantic Ridge at longitudes between 50° W and 40° W1. This area lies outside the Sargasso Sea, which has so far been widely assumed to be the spawning region of both species since the beginning of the twentieth century2. The Danish researcher Johannes Schmidt collected eel leptocephali 30 mm long or less, some as short as 9 mm, all south of 30° N and west of 50° W3,4. Since then, Schmidt’s assumption was supported by a number of investigations that found recently hatched European eel larvae ( More

  • in

    Caught by a whisker

    The whiskers of seals are known to function as vibration receptors. Earlier experiments with blindfolded harbour seals in captivity have for example revealed that the animals can detect small water movements, and follow the hydrodynamic trails created by passing objects. But it is unclear if seals in the wild actively use this ability to find prey.
    This is a preview of subscription content More

  • in

    Evolutionary ecology of Miocene hominoid primates in Southeast Asia

    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the anthropocene. Sci. Adv. 4, e1701422. https://doi.org/10.1126/sciadv.1701422 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suganuma, Y. et al. Magnetostratigraphy of the Miocene Chiang Muan Formation, northern Thailand. Implications for revised chronology of the earliest Miocene hominoid in Southeast Asia. Palaeogeogr. Palaeoclimatol. Plaeoecol. 239, 75–86 (2006).
    Google Scholar 
    Coster, P. et al. A complete magnetic-polarity stratigraphy of the Miocene continental deposits of Mae Moh Basin, northern Thailand, and a reassessment of the age of hominoid-bearing localities in northern Thailand. Geol. Soc. Am. Bull. 122, 1180–1191 (2010).ADS 

    Google Scholar 
    Begun, D. R. The Miocene hominoid radiations. In A Companion to Paleoanthropology (ed. Begun, D. R.) 398–416 (Blackwell Publishing, 2013).
    Google Scholar 
    Pugh, K. D. Phylogenetic analysis of Middle-Late Miocene apes. J. Hum. Evol. 165, 1–33 (2022).
    Google Scholar 
    Chaimanee, Y. et al. Khoratpithecus piriyai, a Late Miocene Hominoid of Thailand. Am. J. Phys. Anthropol. 131, 311–323 (2006).PubMed 

    Google Scholar 
    Chavasseau, O. et al. Advances in the biochronology and biostratigraphy of the continental Neogene of Myanmar. In Fossil Mammals in Asia. Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 461–474 (Columbia University Press, 2013).
    Google Scholar 
    Patnaik, R. Indian Neogene Siwalik Mammalian biostratigraphy. An overview. In Fossil Mammals in Asia Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 423–444 (Columbia University Press, 2013).
    Google Scholar 
    Chaimanee, Y. et al. A middle Miocene hominoid from Thailand and orangutan origins. Nature 422, 61–65 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y. et al. A new orang-utan relative from the Late Miocene of Thailand. Nature 427, 439–441 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y., Lazzari, V., Chaivanich, K. & Jaeger, J.-J. First maxilla of a late Miocene hominid from Thailand and the evolution of pongine derived characters. J. Hum. Evol. 134, 102636. https://doi.org/10.1016/j.jhevol.2019.06.007 (2019).Article 
    PubMed 

    Google Scholar 
    Jaeger, J.-J. et al. First Hominoid from the Late Miocene of the Irrawaddy formation (Myanmar). PLoS ONE 6, 1–14 (2011).
    Google Scholar 
    Begun, D. R. European hominoids. In The Primate Fossil Record (ed. Hartwig, W. C.) 339–368 (Cambridge University Press, 2002).
    Google Scholar 
    Kelley, J. & Gao, F. Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proc. Natl. Acad. Sci. U.S.A. 109, 6882–6885 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kettle, C. J., Maycock, C. R. & Burslem, D. New directions in dipterocarp biology and conservation: A synthesis. Biotropica 44, 658–660. https://doi.org/10.1111/j.1744-7429.2012.00912.x (2012).Article 

    Google Scholar 
    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. U.S.A. 106, 11188–11193. https://doi.org/10.1073/pnas.0809865106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, S. V. Isotopic reconstruction of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 204–222 (2007).
    Google Scholar 
    Bender, M. M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239–1244 (1971).CAS 

    Google Scholar 
    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. 107, 19691–19695 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935. https://doi.org/10.1016/j.jas.2013.03.028 (2013).Article 

    Google Scholar 
    Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Tai Forest, Cote d’Ivoire. Biol. Lett. 9, 20130466. https://doi.org/10.1098/rsbl.2013.0466 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).ADS 

    Google Scholar 
    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. Int. J. Primatol. 91, 219–227. https://doi.org/10.1159/000502417 (2020).Article 

    Google Scholar 
    Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406. https://doi.org/10.1038/s41586-020-2810-y (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zin-Maung-Maung-Thein, et al. Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 11–22. https://doi.org/10.1016/j.palaeo.2010.11.016 (2011).Article 

    Google Scholar 
    Patnaik, R., Cerling, T. E., Uno, K. T. & Fleagle, J. G. Diet and habitat of Siwalik primates Indopithecus, Sivaladapis and Theropithecus. Ann. Zool. Fenn. 51, 123–142. https://doi.org/10.5735/086.051.0214 (2014).Article 

    Google Scholar 
    Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nelson, S. V. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am. J. Phys. Anthropol. 155, 571–578. https://doi.org/10.1002/ajpa.22609 (2014).Article 
    PubMed 

    Google Scholar 
    Qu, Y. et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, South China during the Early Pleistocene. Quat. Int. 354, 52–58. https://doi.org/10.1016/j.quaint.2013.10.053 (2014).Article 

    Google Scholar 
    Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals. Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).
    Google Scholar 
    Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited. Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144. https://doi.org/10.1016/j.palaeo.2018.03.034 (2018).Article 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L., Guo, L. & Hu, Y.-W. First direct evidence of conservative foraging ecology of early Gigantopithecus blacki (~2 Ma) in Guangxi, southern China. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24300 (2021).Article 
    PubMed 

    Google Scholar 
    Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167. https://doi.org/10.1016/j.quaint.2016.09.043 (2017).Article 

    Google Scholar 
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44. https://doi.org/10.1016/j.quascirev.2019.03.021 (2019).ADS 
    Article 

    Google Scholar 
    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154. https://doi.org/10.1016/j.quascirev.2016.02.028 (2016).ADS 
    Article 

    Google Scholar 
    Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379. https://doi.org/10.1016/j.jhevol.2006.10.003 (2007).Article 
    PubMed 

    Google Scholar 
    Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42. https://doi.org/10.1016/j.quascirev.2018.06.004 (2018).ADS 
    Article 

    Google Scholar 
    Bocherens, H., Fizet, M. & Mariotti, A. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen biogeochemistry. Implications for Pleistocene bears. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 213–225 (1994).
    Google Scholar 
    Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).
    Google Scholar 
    Wright, L. E. & Schwarcz, H. P. Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine. Infant diets at Kaminaljuyú. J. Archaeol. Sci. 26, 1159–1170 (1999).
    Google Scholar 
    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurments in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology. Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).
    Google Scholar 
    Craig, H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J. Geol. 62, 115–149. https://doi.org/10.1086/626141 (1954).ADS 
    CAS 
    Article 

    Google Scholar 
    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).ADS 
    PubMed 

    Google Scholar 
    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470. https://doi.org/10.1016/j.jas.2005.03.015 (2005).Article 

    Google Scholar 
    Howland, M. R. et al. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13, 54–65. https://doi.org/10.1002/oa.658 (2003).Article 

    Google Scholar 
    Crowley, B. E. et al. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164, 611–626. https://doi.org/10.1007/s00442-010-1701-6 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon–14Carbon interrelations. Environ. Int. 2, 229–300. https://doi.org/10.1016/0160-4120(79)90005-9 (1979).CAS 
    Article 

    Google Scholar 
    Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357, 461–466. https://doi.org/10.1038/357461a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2 A comparative evaluation of available geochemical proxies. Paleoceanography https://doi.org/10.1029/2009PA001851 (2010).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H. & Levin, N. E. Stable carbon and oxygen isotopes in East African Mammals. Modern and fossil. In Cenozoic Mammals of Africa (ed. Werdelin, L.) 941–952 (University of California Press, 2010).
    Google Scholar 
    Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238. https://doi.org/10.1038/324237a0 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Paleoseasonality inferred from equid teeth and intra-tooth isotopic variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 122–144 (2005).
    Google Scholar 
    Komsta, L. Processing data for outliers. R News 6, 10–13 (2006).
    Google Scholar 
    Hutchinson, G. E. Concluding remarks. In Cold spring Harbor Symposium on Quantitative Biology, edited by Q. Biology (1957).Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).MATH 

    Google Scholar 
    Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692. https://doi.org/10.1371/journal.pone.0235692 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    Nelson, S. V. & Hamilton, M. I. Evolution of the human dietary niche. Initial transitions. In Chimpanzees and Human Evolution (eds Muller, M. N. et al.) 286–310 (Harvard University Press, 2017).
    Google Scholar 
    Sun, F. et al. Paleoenvironment of the late Miocene Shuitangba hominoids from Yunnan, Southwest China: Insights from stable isotopes. Chem. Geol. 569, 120123. https://doi.org/10.1016/j.chemgeo.2021.120123 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B: Biol. Sci. 280, 20132324. https://doi.org/10.1098/rspb.2013.2324 (2013).CAS 
    Article 

    Google Scholar 
    Merceron, G., Taylor, S., Scott, R., Chaimanee, Y. & Jaeger, J.-J. Dietary characterization of the hominoid Khoratpithecus (Miocene of Thailand). Evidence from dental topographic and microwear texture analyses. Naturwissenschaften 93, 329–333. https://doi.org/10.1007/s00114-006-0107-0 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kay, R. F. The nut-crackers—A new theory of the adaptations of the ramapithecinae. Am. J. Phys. Anthropol. 55, 141–151 (1981).
    Google Scholar 
    Nelson, S. V. The Extinction of Sivapithecus. Faunal and Environmental Changes Surrounding the Disappearance of a Miocene Hominoid in the Siwaliks of Pakistan (Brill Academic Publishers, 2003).
    Google Scholar 
    Kanamori, T., Kuze, N., Bernard, H., Malim, T. P. & Kohshima, S. Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: A 3-year record including two mast fruitings. Am. J. Primatol. 72, 820–840. https://doi.org/10.1002/ajp.20848 (2010).Article 
    PubMed 

    Google Scholar 
    Vogel, E. R. et al. Nutritional ecology of wild Bornean orangutans (Pongo pygmaeus wurmbii) in a peat swamp habitat. Effects of age, sex, and season. Am. J. Primatol. 79, 1–20. https://doi.org/10.1002/ajp.22618 (2017).Article 
    PubMed 

    Google Scholar 
    Louys, J. et al. Sumatran orangutan diets in the Late Pleistocene as inferred from dental microwear texture analysis. Quat. Int. 603, 74–81. https://doi.org/10.1016/j.quaint.2020.08.040 (2021).Article 

    Google Scholar 
    Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).ADS 

    Google Scholar 
    Hoorn, C., Ohja, T. & Quade, J. Palynological evidence for vegetation development and climatic change in the sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 133–161 (2000).
    Google Scholar 
    Morley, R. J. A review of the Cenozoic palaeoclimate history of Southeast Asia. In Biotic Evolution and Environmental Change in Southeast Asia (eds Gower, D. et al.) 79–114 (Cambridge University Press, 2012).
    Google Scholar 
    Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234. https://doi.org/10.1017/S0266467418000202 (2018).Article 

    Google Scholar 
    Sepulchre, P. et al. Mid-tertiary paleoenvironments in Thailand. Pollen evidence. Clim. Past 6, 461–473 (2010).
    Google Scholar 
    Sepulchre, P., Jolly, D., Ducrocq, S., Chaimanee, Y. & Jaeger, J.-J. Mid-tertiary palaeoenvironments in Thailand. Pollen evidence. Clim. Past Discuss. 5, 709–734 (2009).ADS 

    Google Scholar 
    Fleagle, J. G., Janson, C. H. & Reed, K. E. Primate Communities (Cambridge University Press, 1999).
    Google Scholar 
    Fleagle, J. G. Primate Adaptation and Evolution 3rd edn. (Elsevier, 2013).
    Google Scholar 
    Pilbeam, D. Gigantopithecus and the origins of Hominidae. Nature 225, 516–519. https://doi.org/10.1038/225516a0 (1970).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L.-X. & Hu, Y.-W. Isotopic (C, O) variations of fossil enamel bioapatite caused by different preparation and measurement protocols: A case study of Gigantopithecus fauna. Vertebr. PalAsiat. 58, 159–168 (2020).
    Google Scholar 
    Hunt, K. D. Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J. Anat. 228, 630–685. https://doi.org/10.1111/joa.12454 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zihlman, A. L., Mcfarland, R. K. & Underwood, C. E. Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus). Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 1842–1855. https://doi.org/10.1002/ar.21449 (2011).Article 

    Google Scholar 
    Thorpe, S. K. & Crompton, R. H. Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am. J. Phys. Anthropol. 131, 384–401. https://doi.org/10.1002/ajpa.20422 (2006).Article 
    PubMed 

    Google Scholar 
    Barry, J. C. The history and chronology of Siwalik cercopithecids. J. Hum. Evol. 2, 47–58 (1987).
    Google Scholar 
    Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N. & Qinqi, X. The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J. Hum. Evol. 39, 131–157 (2000).CAS 
    PubMed 

    Google Scholar 
    Takai, M., Saegusa, H., Thaung-Htike, & Zin-Maung-Maung-Thein,. Neogene mammalian fauna in Myanmar. Asian Paleoprimatol. 4, 143–172 (2006).
    Google Scholar 
    Houle, A., Chapman, C. A. & Vickery, W. L. Intratree vertical variation of fruit density and the nature of contest competition in frugivores. Behav. Ecol. Sociobiol. 64, 429–441. https://doi.org/10.1007/s00265-009-0859-6 (2010).Article 

    Google Scholar 
    Vuille, M., Werner, M., Bradley, R. S. & Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. 110, D23108 (2005).ADS 

    Google Scholar  More

  • in

    Small lakes at risk from extensive solar-panel coverage

    Rafael Almeida and his colleagues estimate that floating solar panels on 5–10% of the area of large reservoirs could help the world to reach electricity decarbonization targets by 2050 (R. M. Almeida et al. Nature 606, 246–249; 2022). On small lakes in Europe and Asia, however, the existing coverage is significantly higher (averaging 50%, according to our unpublished data), with potentially greater ecological impact (G. Exley et al. Solar Energy 219, 24–33; 2021).
    Competing Interests
    The authors declare no competing interests. More