More stories

  • in

    Predicting the impacts of land management for sustainable development on depression risk in a Ugandan case study

    Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 1–1148 (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 2019).United Nations (UN). The Sustainable Development Goals report 2021, 1–68 (United Nations, United States, 2021).Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: Report of the Rockefeller Foundation-Lancet Commission on planetary health. The Lancet 386, 1973–2028. https://doi.org/10.1016/s0140-6736(15)60901-1 (2015).Article 

    Google Scholar 
    Convention on Biological Diversity. First draft of the post-2020 global biodiversity framework 1–12 (Convention on Biological Diversity, 2021).United Nations General Assembly. Transforming our world: The 2030 Agenda for Sustainable Development 1–35 (United Nations General Assembly, 2015).Clark, M., Hill, J. & Tilman, D. The diet, health, and environment trilemma. Annu. Rev. Environ. Resour. 43, 109–134. https://doi.org/10.1146/annurev-environ-102017-025957 (2018).Article 

    Google Scholar 
    Lu, N., Liu, L., Yu, D. & Fu, B. Navigating trade-offs in the social-ecological systems. Curr. Opin. Environ. Sustain. 48, 77–84. https://doi.org/10.1016/j.cosust.2020.10.014 (2021).Article 

    Google Scholar 
    Ellis, E. C., Pascual, U. & Mertz, O. Ecosystem services and nature’s contribution to people: Negotiating diverse values and trade-offs in land systems. Curr. Opin. Environ. Sustain. 38, 86–94. https://doi.org/10.1016/j.cosust.2019.05.001 (2019).Article 

    Google Scholar 
    World Health Organization (WHO). Promoting mental health: Concepts, emerging evidence, practice: Summary report 1–70 (World Health Organization, Geneva, Switzerland, 2004).Patel, V. et al. The Lancet Commission on global mental health and sustainable development. The Lancet 392, 1553–1598. https://doi.org/10.1016/s0140-6736(18)31612-x (2018).Article 

    Google Scholar 
    Prince, M. et al. No health without mental health. The Lancet 370, 859–877. https://doi.org/10.1016/s0140-6736(07)61238-0 (2007).Article 

    Google Scholar 
    GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (GBD). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858. https://doi.org/10.1016/s0140-6736(18)32279-7 (2018).Vigo, D., Kestel, D., Pendakur, K., Thornicroft, G. & Atun, R. Disease burden and government spending on mental, neurological, and substance use disorders, and self-harm: Cross-sectional, ecological study of health system response in the Americas. Lancet Public Health 4, e89–e96. https://doi.org/10.1016/s2468-2667(18)30203-2 (2019).Article 
    PubMed 

    Google Scholar 
    Pienkowski, T. et al. The role of nature conservation and commercial farming in psychological distress among rural Ugandans. bioRxiv. https://doi.org/10.1101/2021.06.08.446718 (2021).Article 

    Google Scholar 
    Cunsolo, W. A. et al. Climate change and mental health: An exploratory case study from Rigolet, Nunatsiavut, Canada. Climatic Change 121, 255–270. https://doi.org/10.1007/s10584-013-0875-4 (2013).ADS 
    Article 

    Google Scholar 
    Cunsolo, A. et al. “You can never replace the caribou”: Inuit experiences of ecological grief from caribou declines. Am. Imago 77, 31–59. https://doi.org/10.1353/aim.2020.0002 (2020).Article 

    Google Scholar 
    Ellis, N. R. & Albrecht, G. A. Climate change threats to family farmers’ sense of place and mental wellbeing: A case study from the Western Australian Wheatbelt. Soc. Sci. Med. 175, 161–168. https://doi.org/10.1016/j.socscimed.2017.01.009 (2017).Article 
    PubMed 

    Google Scholar 
    Scyphers, S. B., Picou, J. S. & Grabowski, J. H. Chronic social disruption following a systemic fishery failure. Proc. Natl. Acad. Sci. 116, 22912. https://doi.org/10.1073/pnas.1913914116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lund, C. et al. Social determinants of mental disorders and the sustainable development goals: A systematic review of reviews. Lancet Psychiatry 5, 357–369. https://doi.org/10.1016/s2215-0366(18)30060-9 (2018).Article 
    PubMed 

    Google Scholar 
    Nilsson, M., Griggs, D. & Visbeck, M. Policy: Map the interactions between sustainable development goals. Nature 534, 320–322. https://doi.org/10.1038/534320a (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Ridley, M., Rao, G., Schilbach, F. & Patel, V. Poverty, depression, and anxiety: Causal evidence and mechanisms. Science 370, eaay0214. https://doi.org/10.1126/science.aay0214 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kinyanda, E. et al. Poverty, life events and the risk for depression in Uganda. Soc. Psychiatry Psychiatr. Epidemiol. 46, 35–44. https://doi.org/10.1007/s00127-009-0164-8 (2011).Article 
    PubMed 

    Google Scholar 
    Kinyanda, E., Waswa, L., Baisley, K. & Maher, D. Prevalence of severe mental distress and its correlates in a population-based study in rural south-west Uganda. BMC Psychiatry 11, 1–9. https://doi.org/10.1186/1471-244X-11-97 (2011).Article 

    Google Scholar 
    United Nations (UN). The convention on biological diversity 1–30 (United Nations, Rio de Janeiro, Brazil, 1992).Díaz, S. et al. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16. https://doi.org/10.1016/j.cosust.2014.11.002 (2015).Article 

    Google Scholar 
    Rasolofoson, R. A., Hanauer, M. M., Pappinen, A., Fisher, B. & Ricketts, T. H. Impacts of forests on children’s diet in rural areas across 27 developing countries. Sci. Adv. 4, eaat2853. https://doi.org/10.1126/sciadv.aat2853 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ickowitz, A., Powell, B., Salim, M. A. & Sunderland, T. C. H. Dietary quality and tree cover in Africa. Glob. Environ. Chang. 24, 287–294. https://doi.org/10.1016/j.gloenvcha.2013.12.001 (2014).Article 

    Google Scholar 
    Ribot, J. C. & Peluso, N. L. A theory of access. Rural. Sociol. 68, 153–181. https://doi.org/10.1111/j.1549-0831.2003.tb00133.x (2003).Article 

    Google Scholar 
    Hicks, C. C. & Cinner, J. E. Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs. Proc. Natl. Acad. Sci. 111, 17791. https://doi.org/10.1073/pnas.1413473111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blaikie, P. Environment and access to resources in Africa. Africa 59, 18–40. https://doi.org/10.2307/1160761 (1989).Article 

    Google Scholar 
    Berbés-Blázquez, M., González, J. A. & Pascual, U. Towards an ecosystem services approach that addresses social power relations. Curr. Opin. Environ. Sustain. 19, 134–143. https://doi.org/10.1016/j.cosust.2016.02.003 (2016).Article 

    Google Scholar 
    Thoms, C. A. Community control of resources and the challenge of improving local livelihoods: A critical examination of community forestry in Nepal. Geoforum 39, 1452–1465. https://doi.org/10.1016/j.geoforum.2008.01.006 (2008).Article 

    Google Scholar 
    Peluso, N. L. & Lund, C. New frontiers of land control: Introduction. J. Peasant Stud. 38, 667–681. https://doi.org/10.1080/03066150.2011.607692 (2011).Article 

    Google Scholar 
    Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. 104, 15181–15187. https://doi.org/10.1073/pnas.0702288104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations Environment World Conservation Monitoring Centre (UNEP-WCMC) & International Union for Conservation of Nature (IUCN). In Protected Planet: The World Database on Protected Areas (WDPA). https://www.protectedplanet.net/ (2020).Pullin, A. S. et al. Human well-being impacts of terrestrial protected areas. Environ. Evid. 2, 1–41. https://doi.org/10.1186/2047-2382-2-19 (2013).Article 

    Google Scholar 
    Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096. https://doi.org/10.1038/s41893-019-0423-y (2019).Article 

    Google Scholar 
    ICCA Consortium. Territories of Life: 2021 report. 1–153 (ICCA Consortium, 2021).Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. https://www.fao.org/faostat/en/#data (2021).Vabi Vamuloh, V., Panwar, R., Hagerman, S. M., Gaston, C. & Kozak, R. A. Achieving Sustainable Development Goals in the global food sector: A systematic literature review to examine small farmers engagement in contract farming. Bus. Strategy Dev. 2, 276–289 (2019).Article 

    Google Scholar 
    Meemken, E.-M. & Bellemare, M. F. Smallholder farmers and contract farming in developing countries. Proc. Natl. Acad. Sci. 117, 259. https://doi.org/10.1073/pnas.1909501116 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bellemare, M. F. & Bloem, J. R. Does contract farming improve welfare? A review. World Dev. 112, 259–271. https://doi.org/10.1016/j.worlddev.2018.08.018 (2018).Article 

    Google Scholar 
    Hall, R., Scoones, I. & Tsikata, D. Plantations, outgrowers and commercial farming in Africa: Agricultural commercialisation and implications for agrarian change. J. Peasant Stud. 44, 515–537. https://doi.org/10.1080/03066150.2016.1263187 (2017).Article 

    Google Scholar 
    Travers, H., Clements, T. & Milner-Gulland, E. J. Predicting responses to conservation interventions through scenarios: A Cambodian case study. Biol. Cons. 204, 403–410. https://doi.org/10.1016/j.biocon.2016.10.040 (2016).Article 

    Google Scholar 
    Booth, H. et al. Designing locally-appropriate conservation incentives for small-scale fishers. OSF Preprints. https://doi.org/10.31219/osf.io/bxzfs (2021).Martiniello, G. Bitter sugarification: Sugar frontier and contract farming in Uganda. Globalizations 18, 355–371. https://doi.org/10.1080/14747731.2020.1794564 (2021).Article 

    Google Scholar 
    Kyongera, D. Mapping private sector investments and their impacts on great ape habitats in Uganda’s Albertine Rift region 1–50 (International Institute for Environment and Development (IIED), London, United Kingdom, 2015).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Paterson, J. D. The ecology and history of Uganda’s Budongo forest. For. Conserv. History 35, 179–187 (1991).Article 

    Google Scholar 
    Babweteera, F. et al. in Conservation and Development in Uganda (eds Sandbrook, C., Cavanagh, C. J. & Tumusiime, D. M.) 104–122 (Taylor and Francis Inc., 2018).National Planning Authority of Uganda. Third national development plan (NDP III) 2020/21–2024/25. 1–341 (Gobernment of Uganda, Entebbe, Uganda, 2020).Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th edn, 1–947 (American Psychiatric Association, 2013).Wagner, G. J. et al. The role of depression in work-related outcomes of HIV treatment in Uganda. Int. J. Behav. Med. 21, 946–955. https://doi.org/10.1007/s12529-013-9379-x (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kinyanda, E. et al. Effectiveness and cost-effectiveness of integrating the management of depression into routine HIV Care in Uganda (the HIV + D trial): A protocol for a cluster-randomised trial. Int. J. Ment. Heal. Syst. 15, 45. https://doi.org/10.1186/s13033-021-00469-9 (2021).Article 

    Google Scholar 
    Wu, Y. et al. Equivalency of the diagnostic accuracy of the PHQ-8 and PHQ-9: A systematic review and individual participant data meta-analysis. Psychol. Med. 50, 1368–1380. https://doi.org/10.1017/S0033291719001314 (2020).Article 
    PubMed 

    Google Scholar 
    Kroenke, K. et al. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 114, 163–173. https://doi.org/10.1016/j.jad.2008.06.026 (2009).Article 
    PubMed 

    Google Scholar 
    Kaiser, B. N. et al. Thinking too much: A systematic review of a common idiom of distress. Soc. Sci. Med. 147, 170–183. https://doi.org/10.1016/j.socscimed.2015.10.044 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ballard, T., Kepple, A. & Cafiero, C. The Food Insecurity Experience Scale: Development of a global standard for monitoring hunger worldwide (Food and Agriculture Organization, Rome, Italy, 2013).Jones, A. D., Ngure, F. M., Pelto, G. & Young, S. L. What are we assessing when we measure food security? A compendium and review of current metrics. Adv. Nutr. 4, 481–505. https://doi.org/10.3945/an.113.004119 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Travers, H. et al. Understanding complex drivers of wildlife crime to design effective conservation interventions. Conserv. Biol. 33, 1296–1306. https://doi.org/10.1111/cobi.13330 (2019).Article 
    PubMed 

    Google Scholar 
    Zimet, G. D., Powell, S. S., Farley, G. K., Werkman, S. & Berkoff, K. A. Psychometric characteristics of the multidimensional scale of perceived social support. J. Pers. Assess. 55, 610–617. https://doi.org/10.1080/00223891.1990.9674095 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bowling, A. Just one question: If one question works, why ask several?. J. Epidemiol. Community Health 59, 342–345. https://doi.org/10.1136/jech.2004.021204 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Office for National Statistics (ONS). General Household Survey 2007: Household and individual questionnaires 1–140 (Office for National Statistics, Titchfield, United Kingdom, 2007).Coates, J. Build it back better: Deconstructing food security for improved measurement and action. Glob. Food Sec. 2, 188–194. https://doi.org/10.1016/j.gfs.2013.05.002 (2013).Article 

    Google Scholar 
    Sseguya, H., Mazur, R. E. & Flora, C. B. Social capital dimensions in household food security interventions: Implications for rural Uganda. Agric. Hum. Values 35, 117–129. https://doi.org/10.1007/s10460-017-9805-9 (2017).Article 

    Google Scholar 
    Narayan, D., Chambers, R., Shah, M. K. & Petesch, P. Voices of the poor: Crying out for change 1–332 (The World Bank, New York, United States, 2000).Harttgen, K. & Vollmer, S. Using an asset index to simulate household income. Econ. Lett. 121, 257–262. https://doi.org/10.1016/j.econlet.2013.08.014 (2013).Article 

    Google Scholar 
    Merkle, E. C., Fitzsimmons, E., Uanhoro, J. & Goodrich, B. Efficient Bayesian structural equation modeling in Stan. arXiv preprint arXiv:2008.07733v1 (2020).Kinyanda, E. et al. Major depressive disorder and suicidality in early HIV infection and its association with risk factors and negative outcomes as seen in semi-urban and rural Uganda. J. Affect. Disord. 212, 117–127. https://doi.org/10.1016/j.jad.2017.01.033 (2017).Article 
    PubMed 

    Google Scholar 
    Jones, A. D. Food insecurity and mental health status: A global analysis of 149 countries. Am. J. Prev. Med. 53, 264–273. https://doi.org/10.1016/j.amepre.2017.04.008 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan, 1 edn, 1–505 (Chapman & Hall/CRC, 2016).Depaoli, S. & Van de Schoot, R. Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychol. Methods 22, 240–261. https://doi.org/10.1037/met0000065 (2017).Article 
    PubMed 

    Google Scholar 
    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. https://doi.org/10.1126/sciadv.aav3006 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Golden, C. D., Fernald, L. C., Brashares, J. S., Rasolofoniaina, B. J. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proc. Natl. Acad. Sci. 108, 19653–19656. https://doi.org/10.1073/pnas.1112586108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mohanakumar, S. & Sharma, R. K. Analysis of farmer suicides in Kerala. Econ. Pol. Wkly 41, 1553–1558 (2006).
    Google Scholar 
    Bryant, L. & Garnham, B. Beyond discourses of drought: The micro-politics of the wine industry and farmer distress. J. Rural. Stud. 32, 1–9. https://doi.org/10.1016/j.jrurstud.2013.03.002 (2013).Article 

    Google Scholar 
    Burgman, M. A. et al. Expert status and performance. PLOS ONE 6, e22998. https://doi.org/10.1371/journal.pone.0022998 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hemming, V., Burgman, M. A., Hanea, A. M., McBride, M. F. & Wintle, B. C. A practical guide to structured expert elicitation using the IDEA protocol. Methods Ecol. Evol. 9, 169–180. https://doi.org/10.1111/2041-210X.12857 (2018).Article 

    Google Scholar 
    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Cons. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006 (2017).Article 

    Google Scholar 
    Montana, J., Elliott, L., Ryan, M. & Wyborn, C. The need for improved reflexivity in conservation science. Environ. Conserv. https://doi.org/10.1017/s0376892920000326 (2020).Article 

    Google Scholar 
    Kleinman, A. Global mental health: A failure of humanity. The Lancet 374, 603–604. https://doi.org/10.1016/S0140-6736(09)61510-5 (2009).Article 

    Google Scholar 
    Collins, P. Y. et al. Grand challenges in global mental health. Nature 475, 27–30. https://doi.org/10.1038/475027a (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Travers, H. et al. A manifesto for predictive conservation. Biol. Cons. 237, 12–18. https://doi.org/10.1016/j.biocon.2019.05.059 (2019).Article 

    Google Scholar 
    Buckley, R. et al. Economic value of protected areas via visitor mental health. Nat. Commun. 10, 5005. https://doi.org/10.1038/s41467-019-12631-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saxena, S., Thornicroft, G., Knapp, M. & Whiteford, H. Resources for mental health: Scarcity, inequity, and inefficiency. The Lancet 370, 878–889. https://doi.org/10.1016/S0140-6736(07)61239-2 (2007).Article 

    Google Scholar 
    Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Global Environ. Change https://doi.org/10.1016/j.gloenvcha.2021.102368 (2021).Article 

    Google Scholar 
    Turyahabwe, N., Agea, J. G., Tweheyo, M. & Tumwebaze, S. B. In Sustainable Forest Management: Case Studies (ed J. J. Diez) Ch. 3, 51–74 (InTech, 2012).Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374. https://doi.org/10.1038/s41893-018-0100-6 (2018).Article 

    Google Scholar 
    Dawson, N. M. et al. The role of Indigenous peoples and local communities in effective and equitable conservation. Ecol. Soc. https://doi.org/10.5751/ES-12625-260319 (2021).Article 

    Google Scholar 
    Ministry of Agriculture, Animal Industry and Fisheries. Agriculture sector strategic plan 2015/16–2019/20. 1–199 (Government of Uganda, Entebbe, Uganda, 2016). More

  • in

    Impact of joint interactions with humans and social interactions with conspecifics on the risk of zooanthroponotic outbreaks among wildlife populations

    Gryseels, S., Bruyn, L. D., Gyselings, R., Leendertz, H. & Leirs, H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mammal Rev. 51, 272–292 (2020).Article 

    Google Scholar 
    Townsend, A. K., Hawley, D. M., Stephenson, J. F. & Williams, K. E. G. Emerging infectious disease and the challenges of social distancing in human and non-human animals: EIDs and sociality. Proc. R. Soc. B Biol. Sci. 287, 20201039 (2020).CAS 
    Article 

    Google Scholar 
    Dickman, A. J. From Cheetahs to Chimpanzees: A comparative review of the drivers of human–carnivore conflict and human–primate conflict. Folia Primatol. 83, 377–387 (2013).Article 

    Google Scholar 
    Nyhus, P. J. Human–wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).Article 

    Google Scholar 
    Cunningham, A. A. One health, emerging infectious diseases and wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 4 (2017).
    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 287, 443–449 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fagre, A. C. et al. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. Ecol. Lett. https://doi.org/10.1111/ele.14003 (2022).Article 
    PubMed 

    Google Scholar 
    Messenger, A. M., Barnes, A. N. & Gray, G. C. Reverse zoonotic disease transmission (Zooanthroponosis): A systematic review of seldom-documented human biological threats to animals. PLoS One 9, 1–9 (2014).
    Google Scholar 
    Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140107 (2015).Article 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    Balasubramaniam, K. N., Huffman, M. A., Sueur, C. & Macintosh, A. J. J. Primate infectious disease ecology: Insights and future directions at the human–macaque interface. In The Behavioral Ecology of the Tibetan Macaque. Fascinating Life Sciences (eds Li, J. et al.) 249–284 (Springer, 2020).Chapter 

    Google Scholar 
    McCabe, C. M., Reader, S. M. & Nunn, C. L. Infectious disease, behavioural flexibility and the evolution of culture in primates. Proc. R. Soc. B Biol. Sci. 282, 20140862 (2014).Article 

    Google Scholar 
    Silk, M. J. et al. Integrating social behaviour, demography and disease dynamics in network models: Applications to disease management in eclining wildlife populations. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180211 (2019).Article 

    Google Scholar 
    Engel, G. A. & Jones-Engel, L. The role of Macaca fascicularis in infectious disease transmission. In Monkeys on the Edge: Ecology and Management of Long-Tailed Macaques and Their Interface with Humans (eds Gumert, M. D. et al.) 183–203 (Cambridge University Press, 2011).Chapter 

    Google Scholar 
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1992).
    Google Scholar 
    Drewe, J. A. & Perkins, S. E. Disease transmission in animal social networks. In Animal Social Networks (eds Krause, J. et al.) 95–110 (Oxford University Press, 2015).
    Google Scholar 
    Godfrey, S. S. Networks and the ecology of parasite transmission: A framework for wildlife parasitology. Int. J. Parasitol. Parasites Wildl. 2, 235–245 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomez, J. M., Nunn, C. L. & Verdu, M. Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc. Natl. Acad. Sci. 110, 7738–7741 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Godfrey, S. S., Bull, C. M., James, R. & Murray, K. Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii. Behav. Ecol. Sociobiol. 63, 1045–1056 (2009).Article 

    Google Scholar 
    VanderWaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. 83, 406–414 (2014).PubMed 
    Article 

    Google Scholar 
    Drewe, J. A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. R. Soc. B Biol. Sci. 277, 633–642 (2010).Article 

    Google Scholar 
    MacIntosh, A. J. J. et al. Monkeys in the middle: Parasite transmission through the social network of a wild primate. PLoS One 7, 15–21 (2012).
    Google Scholar 
    Epstein, J. & Axtell, R. Growing Artificial Societies: Social Science from the Bottom Up (MIT Press, 1996).Book 

    Google Scholar 
    Bansal, S., Grenfell, B. T. & Meyers, L. A. When individual behaviour matters: Homogeneous and network models in epidemiology. J. R. Soc. Interface 4, 879–891 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brauer, F. Compartmental models in epidemiology, chapter 2. In Mathematical Epidemiology (eds Brauer, F. et al.) (Springer, 2008).MATH 
    Chapter 

    Google Scholar 
    Carne, C., Semple, S., MacLarnon, A., Majolo, B. & Maréchal, L. Implications of tourist–macaque interactions for disease transmission. EcoHealth 14, 704–717 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushmore, J. et al. Network-based vaccination improves prospects for disease control in wild chimpanzees. J. R. Soc. Interface 11, 20140349 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sah, P., Mann, J. & Bansal, S. Disease implications of animal social network structure: A synthesis across social systems. J. Anim. Ecol. 87, 546–558 (2018).PubMed 
    Article 

    Google Scholar 
    Griffin, R. H. & Nunn, C. L. Community structure and the spread of infectious disease in primate social networks. Evol. Ecol. 26, 779–800 (2012).Article 

    Google Scholar 
    Hasegawa, M., Kishino, H. & Yano, T. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fuentes, A. & Hockings, K. J. The ethnoprimatological approach in primatology. Am. J. Primatol. 72, 841–847 (2010).PubMed 
    Article 

    Google Scholar 
    Lappan, S., Malaivijitnond, S., Radhakrishna, S., Riley, E. P. & Ruppert, N. The human–primate interface in the new normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am. J. Primatol. 82, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Mckinney, T. A classification system for describing anthropogenic influence on nonhuman primate populations. Am. J. Primatol. 77, 715–726 (2015).PubMed 
    Article 

    Google Scholar 
    Devaux, C. A., Mediannikov, O., Medkour, H. & Raoult, D. Infectious disease risk across the growing human–non human primate interface: A review of the evidence. Front. Public Health 7, 1–22 (2019).Article 

    Google Scholar 
    Kaur, T. & Singh, J. Primate-parasitic zoonoses and anthropozoonoses: A literature review. In Primate Parasite Ecology: The Dynamics and Study of Host–Parasite Relationships (eds Huffman, M. A. & Chapman, C. A.) 199–230 (Cambridge University Press, 2009).
    Google Scholar 
    Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S. & Higham, J. P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. 3, 641 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Klegarth, A. Synanthropy. In The International Encyclopedia of Primatology (Wiley, 2017). https://doi.org/10.1002/9781119179313.wbprim0448.Chapter 

    Google Scholar 
    Gumert, M. D. A common monkey of Southeast Asia: Longtailed macaque populations, ethnophoresy, and their occurrence in human environments. In Monkeys on the Edge: Ecology and Management of Longtailed Macaques and Their Interface with Humans (eds Gumert, M. D. et al.) 3–43 (Cambridge University Press, 2011).Chapter 

    Google Scholar 
    Riley, E. P. The human–macaque interface: Conservation implications of current and future overlap and conflict in Lore Lindu National Park, Sulawesi, Indonesia. Am. Anthropol. 109, 473–484 (2007).Article 

    Google Scholar 
    Thierry, B. Unity in diversity: Lessons from macaque societies. Evol. Anthropol. 16, 224–238 (2007).Article 

    Google Scholar 
    Balasubramaniam, K. N. et al. The influence of phylogeny, social style, and sociodemographic factors on macaque social network structure. Am. J. Primatol. 80, e227227 (2018).Article 

    Google Scholar 
    Sueur, C. et al. A comparative network analysis of social style in macaques. Anim. Behav. 82(4), 845–852 (2011).Article 

    Google Scholar 
    Balasubramaniam, K. N. et al. Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments. J. Anim. Ecol. 90, 2819–2833 (2021).PubMed 
    Article 

    Google Scholar 
    Henzi, S. P. & Barrett, L. The value of grooming to female primates. Primates 40, 47–59 (1999).Article 

    Google Scholar 
    Schino, G. & Aureli, F. Trade-offs in primate grooming reciprocation: Testing behavioural flexibility and correlated evolution. Biol. J. Linn. Soc. 95, 439–446 (2008).Article 

    Google Scholar 
    Radhakrishna, S. & Sinha, A. Less than wild? Commensal primates and wildlife conservation. J. Biosci. 36, 749–753 (2011).PubMed 
    Article 

    Google Scholar 
    Balasubramaniam, K. N. et al. Impact of individual demographic and social factors on human–wildlife interactions: A comparative study of three macaque species. Sci. Rep. 10, 21991 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marty, P. R. et al. Time constraints imposed by anthropogenic environments alter social behaviour in long-tailed macaques. Anim. Behav. 150, 157–165 (2019).Article 

    Google Scholar 
    Kaburu, S. S. K. et al. Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta). Behaviour 156, 1255–1282 (2019).Article 

    Google Scholar 
    Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaburu, S. S. K. et al. Rates of human–monkey interactions affect grooming behaviour among urban-dwelling rhesus macaques (Macaca mulatta). Am. J. Phys. Anthropol. 168, 92–103 (2019).PubMed 
    Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour (Cambridge University Press, 1993).Book 

    Google Scholar 
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social networks. J. Anim. Ecol. 84, 1144–1163 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rozins, C. et al. Social structure contains epidemics and regulates individual roles in disease transmission in a group-living mammal. Ecol. Evol. 8, 12044–12055 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fujii, K., Jin, J., Shev, A., Beisner, B., McCowan, B. & Fushing, H. Perc: Using percolation and conductance to find information flow certainty in a direct network (R Package Version 0.1.2.) https://rdrr.io/cran/Perc/ (2016).Funkhouser, J. A., Mayhew, J. A., Sheeran, L. K. & Mulcahy, J. B. comparative investigations of social context-dependent dominance in captive chimpanzees (Pan troglodytes) and wild Tibetan macaques (Macaca thibetana). Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    McCowan, B. J. et al. Measuring dominance certainty and assessing its impact on individual and societal health in a nonhuman primate: A network approach. Philos. Trans. R. Soc. B 377, 20200438 (2022).Article 

    Google Scholar 
    Bjornstad, O. N. Package ‘epimdr’ (2020).Tuite, A. R. et al. Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. CMAJ 182, 131–136 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arienzo, M. D. & Coniglio, A. Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosaf. Health 2, 57–59 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailey, N. T. The Mathematical Theory of Epidemics (Griffin, 1957).
    Google Scholar 
    Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham, K., Sadat, N., Bolker, B. & Brooks, M. Package ‘glmmTMB’. https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf (2019).Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).ADS 
    Article 

    Google Scholar 
    Chiyo, P. I., Moss, C. J. & Alberts, S. C. The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. PLoS One 7, e31382 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    VanderWaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol. Conserv. 169, 136–146 (2014).Article 

    Google Scholar 
    Berman, C. M. Primate kinship: Contributions from Cayo Santiago. Am. J. Primatol. 78, 63–77 (2016).PubMed 
    Article 

    Google Scholar 
    Balasubramaniam, K. N. et al. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques (Macaca mulatta). PeerJ 6, e4271 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marty, P. R. et al. Individuals in urban dwelling primate species face unequal benefits associated with living in an anthropogenic environment. Primates 61, 245–259 (2020).Article 

    Google Scholar 
    Zinsstag, J., Schelling, E., Waltner-Toews, D. & Tanner, M. From ‘one medicine’ to ‘one health’ and systemic approaches to health and well-being. Prev. Vet. Med. 101, 148–156 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schülke, O. et al. Quantifying within-group variation in sociality—covariation among metrics and patterns across primate groups and species. Behav. Ecol. Sociobiol. 76, 50 (2022).Article 

    Google Scholar 
    Romano, V., Shen, M., Pansanel, J., MacIntosh, A. J. J. & Sueur, C. Social transmission in networks: Global efficiency peaks with intermediate levels of modularity. Behav. Ecol. Sociobiol. 72, 154 (2018).Article 

    Google Scholar  More

  • in

    The effects of protected areas on the ecological niches of birds and mammals

    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.1086/343878 (2003).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).CAS 
    Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192. https://doi.org/10.1016/j.tree.2011.01.009 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2021).Article 

    Google Scholar 
    Ortego, J., Calabuig, G., Cordero, P. J. & Aparicio, J. M. Egg production and individual genetic diversity in lesser kestrels. Mol. Ecol. 16, 2383–2392 (2007).CAS 
    Article 

    Google Scholar 
    Peacor, S. D., Schiesari, L. & Werner, E. E. Mechanisms of nonlethal predator effect on cohort size variation: Ecological and evolutionary implications. Ecology 88, 1536–1547 (2007).Article 

    Google Scholar 
    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).Article 

    Google Scholar 
    Carlson, B. S., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Individual environmental niches in mobile organisms. Nat. Commun. 12, 4572. https://doi.org/10.1038/s41467-021-24826-x (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchinson, G. E. Population studies: Animal ecology and demography. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103 (2022).CAS 
    Article 

    Google Scholar 
    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).Article 

    Google Scholar 
    Hällfors, M. H. et al. Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecol. Lett. 24, 1619–1632 (2021).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B Biol. Sci. 278, 1633–1638. https://doi.org/10.1098/rspb.2010.1713 (2011).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995. https://doi.org/10.1111/2041-210X.13424 (2020).Article 

    Google Scholar 
    Mammola, S. Assessing similarity of n-dimensional hypervolumes: Which metric to use? J. Biogeogr. 46, 2012 (2019).Article 

    Google Scholar 
    Carvalho, J. C. & Cardoso, P. Decomposing the causes for niche differentiation between species using hypervolumes. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00243 (2020).Article 

    Google Scholar 
    Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133. https://doi.org/10.1111/jbi.13987 (2021).Article 

    Google Scholar 
    Wang, X. et al. Exploring ecological specialization in pipefish using genomic, morphometric and ecological evidence. Divers. Distrib. 27, 1393–1406. https://doi.org/10.1111/ddi.13286 (2021).Article 

    Google Scholar 
    Jaturapruek, R., Fontaneto, D., Mammola, S. & Maiphae, S. Potential niche displacement in species of aquatic bdelloid rotifers between temperate and tropical areas. Hydrobiologia. https://doi.org/10.1007/s10750-021-04681-z (2021).Article 

    Google Scholar 
    Hu, Z. M. et al. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol. Ecol. 30, 3840–3855. https://doi.org/10.1111/mec.15996 (2021).Article 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P. & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957. https://doi.org/10.1038/s41467-020-16792-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).Article 

    Google Scholar 
    Santangeli, A., Högmander, J. & Laaksonen, T. Returning white-tailed eagles breed as successfully in landscapes under intensive forestry regimes as in protected areas. Anim. Conserv. 16, 500–508. https://doi.org/10.1111/acv.12017 (2013).Article 

    Google Scholar 
    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).CAS 
    Article 

    Google Scholar 
    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).Article 

    Google Scholar 
    Dietz, H. & Edwards, P. J. Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87, 1359–1367 (2006).Article 

    Google Scholar 
    Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: Single species approaches. Oikos 108, 18–27 (2005).Article 

    Google Scholar 
    Zhang, Z., Mammola, S., McLay, C. L., Capinha, C. & Yokota, M. To invade or not to invade? Exploring the niche-based processes underlying the failure of a biological invasion using the invasive Chinese mitten crab. Sci. Total Environ. 728, 138815. https://doi.org/10.1016/j.scitotenv.2020.138815 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. 117, 23643–23651 (2020).CAS 
    Article 

    Google Scholar 
    Sarasola, J. H., Grande, J. M. & Negro, J. J. Birds of Prey: Biology and Conservation in the XXI Century 63–94 (Springer, 2018).Book 

    Google Scholar 
    Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413. https://doi.org/10.1111/oik.02276 (2016).Article 

    Google Scholar 
    Thornton, D., Branch, L. & Sunquist, M. Passive sampling effects and landscape location alter associations between species traits and response to fragmentation. Ecol. Appl. 21, 817–829. https://doi.org/10.1890/10-0549.1 (2011).Article 
    PubMed 

    Google Scholar 
    Hatfield, J. H., Orme, C. D. L., Tobias, J. A. & Banks-Leite, C. Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across data sets. Ecol. Appl. 28, 28–34. https://doi.org/10.1002/eap.1646 (2018).Article 
    PubMed 

    Google Scholar 
    Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in Northern Europe: The complexity challenge. Ambio 38, 309–315 (2009).Article 

    Google Scholar 
    Niemi, J. & Ahlstedt, J. Finnish Agriculture and Rural Industries 2011 (MTT Economic Research, Agrifood Research Finland, 2011).
    Google Scholar 
    Lehikoinen, P. et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Cons. 253, 108892. https://doi.org/10.1016/j.biocon.2020.108892 (2021).Article 

    Google Scholar 
    Virkkala, R. & Lehikoinen, A. Patterns of climate-induced density shifts of species: Poleward shifts faster in northern boreal birds than in southern birds. Glob. Change Biol. 20, 2995–3003. https://doi.org/10.1111/gcb.12573 (2014).ADS 
    Article 

    Google Scholar 
    Lehikoinen, A. & Virkkala, R. North by north-west: Climate change and directions of density shifts in birds. Glob. Change Biol. 22, 1121–1129. https://doi.org/10.1111/gcb.13150 (2016).ADS 
    Article 

    Google Scholar 
    Santangeli, A., Rajasärkkä, A. & Lehikoinen, A. Effects of high latitude protected areas on bird communities under rapid climate change. Glob. Change Biol. 23, 2241–2249. https://doi.org/10.1111/gcb.13518 (2017).ADS 
    Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—Evidence from large-scale, long-term abundance data. Glob. Change Biol. 25, 304–313. https://doi.org/10.1111/gcb.14461 (2019).ADS 
    Article 

    Google Scholar 
    Santangeli, A. & Lehikoinen, A. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Divers. Distrib. 23, 308–316. https://doi.org/10.1111/ddi.12529 (2017).Article 

    Google Scholar 
    Lindén, H., Helle, E., Helle, P. & Wikman, M. Wildlife triangle scheme in Finland: Methods and aims for monitoring wildlife populations. Finnish Game Res. 49, 4–11 (1996).
    Google Scholar 
    Blonder, B. Do hypervolumes have holes? Am. Nat. 187, E93–E105. https://doi.org/10.1086/685444 (2016).Article 
    PubMed 

    Google Scholar 
    Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: A systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, e00591. https://doi.org/10.1016/j.gecco.2019.e00591 (2019).Article 

    Google Scholar 
    Hyvärinen, E., Juslén, A., Kemppainen, E., Uddström, A. & Liukko, U.-M. Suomen lajien uhanalaisuus–Punainen kirja 2019 (2019).Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027. https://doi.org/10.1890/13-1917.1 (2014).Article 

    Google Scholar 
    Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617. https://doi.org/10.1111/ddi.13219 (2021).Article 

    Google Scholar 
    Laaksonen, T. & Lehikoinen, A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 168, 99–107. https://doi.org/10.1016/j.biocon.2013.09.007 (2013).Article 

    Google Scholar 
    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609. https://doi.org/10.1111/geb.12146 (2014).Article 

    Google Scholar 
    Cardoso, P. M., Rigal, F. & Carvalho, J. BAT-Biodiversity Assessment Tools (2014).Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article 

    Google Scholar 
    Sokal, R. R., Rohlf, F. J. & Rohlf, J. F. Biometry (Macmillan, 1995).MATH 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. https://doi.org/10.21105/joss.03139 (2021).Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R 1–552 (Springer, 2009).Book 

    Google Scholar 
    R Core Development Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. More

  • in

    A dynamically structured matrix population model for insect life histories observed under variable environmental conditions

    Renewal processes represent development under variable conditionsThe consequence of a drastic environmental change can be demonstrated by introducing a shift in development time during the process. For demonstration, we consider a scenario where a group of individuals enter into a favourable environment reducing development time from (40pm 5) time units to (20pm 5).We show, in Fig. 1, that our dynamic pseudo-stage-structured MPM yields a gradual stage completion with an average development time of approximately (30pm 5) steps (solid dark lines) when conditions shift at ({tau }=20) (each step corresponds to 1 time unit). The target Erlang-distributed development trajectories without the shift are shown as dashed gray lines. The snapshots of the population structure, represented by the development indicator q, taken at each time step, show that half of the development is complete at the time of the switch and the switch accelerates the accumulation of q (Fig. S1).Figure 1Response to change in development time. The number of developing individuals is simulated by using the cumulative development process and compared to (a) the age-dependent development process, (b) an ODE representation, (c) an LCT representation, and (d) a DDE representation. Solid dark lines show the cumulative development and thick blue lines show the alternative models. Dashed gray lines mark the two target trajectories before and after the shift in development time (marked with red crosses).Full size imageIn age-dependent development, a sharp transition, instead of a gradual one, is observed at the (20^{th}) step (Fig. 1a). The switch results in the majority of individuals reaching target development age immediately at the time of switch. Previous work, reported in Erguler et al.59 and Erguler et al.55, aimed at modelling population dynamics under variable conditions, based on this dynamic age-dependent framework. Our results suggest that cumulative development might improve the fit to the data, prediction accuracy, and applicable geospatial range of these models.We see in Fig. 1b that the canonical ODE framework represents an exponentially distributed development time and a shift in rate at (t=20). The LCT extension to the framework helps to incorporate time dependence and represent the long and short development time distributions (Fig. 1c). The resulting model accommodates change in the rate parameter (gamma ) (Eq. 8), e.g doubling of (gamma ) changes development time from (40pm 5) to (20pm 2.5). However, to accommodate the required shift, the model needs to be transformed from a 66-dimensional system to an 18-dimensional one, which is beyond the scope of this work. We argue that in cases where development time distribution is fixed a priori (excluded from model calibration), the LCT framework provides a significant advantage over canonical ODEs. Although the framework has been used in the field of infectious disease epidemiology64,65, it has recently been applied to the modelling of vector population dynamics30.The DDE framework also yields a gradual development trajectory with an intermediate duration (Fig. 1d). However, the distribution tends towards the longer development trajectory compared to the one achieved with cumulative development. The canonical DDE framework assumes a homogenous cohort, where all individuals react in the same way to variations in development rate. The assumption gives rise to sharp stage transitions within a single generation if all individuals are introduced at the same time. As a potential workaround, it has been proposed to generate a plausible population history, through variable entry times, until the required (or observed) developmental variation builds up31,32. Variation in development rates then acts upon the population and results in the modification of the existing age-structure. It is worthwhile to mention that a recent extension to the DDE framework to accommodate trait variation in population dynamics34 might also accommodate changing development rates within a single stage; however, it has not yet been employed at this scale.Cumulative development is in agreement with the widely known degree-day (DD) framework, where development time is predicted by the heat accumulating in organisms46. Although the rate of accumulation in response to environmental conditions varies considerably, the DD framework implies that the combination of two different rates yields an average development time (also seen with cumulative development in Fig. 1). Experimental evaluation of this will be the topic of future research.It is worth mentioning that our dynamically structured renewal process-based MPM follows the assumption of random population heterogeneity9,11; namely, at the individual level, the future behaviour of an organism is not affected by its historical behaviour. However, trait variation within a population is prevalent in many species, and is known to impact population dynamics and species interactions34,66,67. Future development of our framework will consider improving upon this limitation.Environmental variation transformed into development timesSeveral non-linear relationships have been proposed to represent the temperature dependence of insect development68. A common feature is the presence of low and high temperature thresholds beyond which development is prohibitively slow. Often, there exists an optimum between the thresholds where the process is most efficient. A typical relationship between temperature and development rate, reported in Briere et al.50, is seen in Fig. 2a. Mean development time, given by the reciprocal of rate in Fig. 2b, exhibits the two thresholds and the optimum.Figure 2Development under environmental variation. In (a), development rate (Eq. 9) is shown with (alpha =1.5times 10^{-5}), (T_L=0^oC), and (T_H=50^oC). In (b), mean development time is shown together with the probability densities of three temperature regimes ((rho _L), (rho _M), and (rho _H)). In (c), the number of individuals completing development at each step are shown with respect to the three temperature regimes. Solid lines indicate the median, shaded areas indicate the (90%) range of 1000 simulations, and thick lines indicate simulations with the expected values of each regime.Full size imageTo investigate how temperature variation is transformed into cumulative development time, we assumed three variation regimes at relatively low, medium, and high temperatures ((rho _L), (rho _M), and (rho _H), respectively). Densities of the corresponding Gaussian probability distributions are plotted in Fig. 2b. Accordingly, each variation is transformed by a slightly different region of the rate function (Eq. 9). Eventually, the three development time distributions emerge as shown in Fig. 2c.We found that the output of (rho _H) is skewed towards longer durations compared to what we would otherwise obtain if we simulated the process under constant conditions with the mean of (rho _H). The impact of variation in the middle range, (rho _M), is similar to that of (rho _H), but less pronounced. Conversely, the output of (rho _L) is skewed towards shorter durations. Our results suggest that, when development is already highly efficient, variation in temperature causes frequent encounters of longer (but not shorter) development durations, eventually extending the overall duration of the process. In the low efficiency range, development takes long to complete, but frequent encounters of relatively short durations—especially as the process approaches its optimum duration—triggers completion earlier than in the case of no variation.Overall, our model predictions are in agreement with the rate summation effect, which states that the different outcomes obtained under constant and varying temperatures is due to the non-linear relationship between temperature and development rate (the Kaufmann effect)16. Furthermore, acceleration of development in insects subjected to varying high temperatures, its retardation at varying low temperatures, and low variability of development time in the linear range of the rate curve have been widely discussed69. Several groups have reported evidence in support of this effect, which is also in agreement with our results. For instance, Vangansbeke et al. (2015) reported for three insect species, Phytoseiulus persimilis, Neoseiulus californicus, and Tetranychus urticae, that varying temperatures with a lower mean yields faster development compared to the yield at mean constant temperatures70. However, observations of this phenomenon might result in different responses for different species at similar temperatures due to the difference in rate curves. Identification of the optimum temperature range may facilitate comparison. For instance, Carrington et al. (2013) assumed (26^oC) as optimum based on the high dengue incidence in Thailand, and showed that large variations around (26^oC) increases development time for the dengue vector, Aedes aegypti71. Wu et al. (2015) demonstrated that development is faster at around (26^oC) compared to (23^oC) for the fly, Megaselia scalaris, and found that varying temperatures at around (23^oC) accelerates the process47. Finally, in a modelling study employing DDs, Chen et al. (2013) reported that larger diurnal temperature ranges relate to additional DD accumulation and faster development in grape berry moth, Paralobesia viteana72. Under the realistic non-optimum field conditions, where these simulations had been performed, a decrease in development time is expected in response to varying temperatures according to our results.We note that the variation in development times is due to temperature since we ignore intrinsic stochasticity to demonstrate the impact of (rho ) in isolation. The deterministic setup removes the upper limit in the number of distinct pseudo-stage indicators: a different q emerges from each k, and a different k emerges from each (rho ). Since the number of pseudo-stages quickly exhausts the computational resources, we set the precision of q to the nearest 100(^{th}) decimal point, effectively capping the number of pseudo-stages at 100 (see Accuracy of the pseudo-stage approximation). As shown in Fig. S2, the approximation has a negligible impact on accuracy.Environmental dependency extracted from life tables under constant conditionsHaving discussed the importance of environmental variability in development, in this section, we employ a well-established experimental method to unravel the relationship between temperature and development time in a common mosquito species. In contrast to invasive vectors, which effectively render new territories suitable for disease transmission, Culex species pose an imminent threat with their wide distribution and ornitophilic (Cx. pipiens biotype pipiens), mamophilic (Cx. pipiens biotype molestus), and intermixed (their hybrids) blood feeding behaviour. Here, we investigate the temperature dependencies of mortality and development of Cx. quinquefasciatus, the southern house mosquito, which is an important disease vector, widely distributed across the tropics and sub-tropics73,74.To infer the dependencies, we used a generic temperature-driven insect development model, described in Methods, and the life history observations performed at five constant temperatures (15, 20, 23, 27, and (30,^{circ })C) under laboratory conditions60,61. As a result of the inverse modelling procedure, detailed in Methods, we found that the generic model yields an overall match between the simulations and observations. In Fig. 3a, we present a comparison of observed and simulated maximum production and the stage-emergence times for pupae and adults. Here, we define the stage-emergence time as the time taken from the beginning of an experiment to the time when half of the maximum production of a stage (pupa or adult) is observed. In addition, in Fig. S3, we present the comparison of time trajectories separately for each temperature.Figure 3Inverse modelling of Cx. quinquefasciatus environmental dependency. The comparison of observed and simulated maximum pupa (P) and adult (A) production and the corresponding stage-emergence times is given in (a). Observations are represented with dots and simulations with box plots. The environmental dependency of larva and pupa development time (b) and mortality (c), derived by the posterior mode sample (Theta _q), is shown in (b,c). Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the generic model faithfully replicates the observed development times of larvae and pupae. On the other hand, stage mortalities are predicted well at three temperatures, but are overestimated at 20 or (27,^{circ })C. The impact of temperature on mortality might be more complex than it is captured by the quartic equation (Eq. 11). Optimum survival seen at (27,^{circ })C suggests that the relationship might be non-symmetrical or multimodal. In addition, the observed variability in mortality suggests that the mismatch could also be due to experimental error or the intrinsic stochasticity of the biological processes.We extracted the functional forms of temperature dependence from the posterior samples, shown in Fig. 3b, c, and found that the data inform the model as expected within the temperature range of the experiments ((15{-}30,^{circ })C). Stage durations are well informed, and reflect the low variability seen in the data (the standard deviation is less than 1.5 days at all temperatures for both stages). Accordingly, pupae develop in less than 4 days, which is much shorter than the larva development time (between 10 and 20 days above (20,^{circ })C). The model predicts that the minimum temperature at which development occurs (from the larva stage) is (10.5,^{circ })C, which is close to (10.9,^{circ })C, reported in Grech et al.75.The observed variability in pupa and adult production suggests that survival is a highly stochastic process regardless of the controlled laboratory conditions. A deterministic model, such as the one used in this context, represents the mean of such processes but does not capture their variability. The simulated variability is a result of the uncertainty in parameter estimates. Model parameters contribute unequally to the output as a result of the model structure and the functional forms of temperature dependence, and the data inform certain parameters better than others76,77. For instance, daily mortality, shown in Fig. 3c, is more constrained for larva than pupa, which is likely due to the short duration of the pupa stage—changes in daily mortality have larger consequences as development time increases.We note that a well-informed model yields predictions in the form of verifiable hypotheses; however, these are not necessarily accurate predictions. Model accuracy is assessed when such hypotheses are experimentally tested as part of the cyclic process of model development78. Here, we demonstrated that our modelling framework can be used to derive biologically meaningful inferences and to help improve the understanding of the temperature dependence of Cx. quinquefasciatus.Greater information content of semi-field experimentsThe number of experiments required to test a range of conditions, including different combinations of multiple drivers, may quickly exhaust available resources. Moreover, variable conditions may have a previously unaccounted impact on development and mortality. In this section, we demonstrate that observations performed under variable conditions are valuable sources of information for our modelling framework, which is capable of representing the dynamics under such conditions.Cx. pipiens, the northern house mosquito, is a competent disease vector, widely distributed across the temperate countries in North America, Europe, Asia, and North and East Africa74,79. Unlike Cx. quinquefasciatus, Cx. pipiens biotype pipiens is known to enter a reproductive diapause phase, where adult females arrest oogenesis during harsh winter conditions80,81. When larvae are exposed to short photoperiods and low temperatures during development, they emerge as adults destined to diapause. Although Cx. pipiens biotype molestus has lost the ability to diapause, its immature stages have been reported to retain metabolic sensitivity to photoperiod82,83.To reveal the environmental dependence of the molestus biotype, we exposed its eggs to variable temperatures in semi-field conditions until adult emergence (or loss of cohort). The numbers of viable larvae, pupae, and adults observed in different experimental batches are given in Fig. S4. We employed the extended model with both temperature and photoperiod dependence (see Methods), and calibrated the model against seven of the semi-field experiments, performed in March, May, June, July, August, and September (Fig. S4(a), (b), (d), (f), (g), (i) and (j)).As a result, we found that the model replicates the patterns of abundance emerging in the observations, e.g. stage timing and maximum adult production, reasonably well in most of the experiments, regardless of the times during which they were performed (Figs. S5 and S6). Quantitative evaluation of the agreement reveals that the observed and simulated adult emergence times are less than a week apart (Table 1).Table 1 Comparison of observed and simulated adult emergence time and the total number of adults produced. Simulation output is given in terms of the median and (90%) range.Full size tableOn the other hand, we found that egg and larva mortalities, and also, pupa and adult production are highly variable in the observations (see Fig. S4(c), (f), and (g)). Spikes of larva mortality are seen in Spring and Autumn (especially in May, September, and October). Despite this variability, the difference between the predicted and observed adult production was around 11 or less, except in the case of the experiment E7, which unexpectedly yielded only one pupa and no adults.We obtain relatively large mismatches when predicting larva abundances, specifically where egg mortality is not predicted well (E5, E7, E8, E10, E11, E12). We hypothesise that the stress associated with rearing lab-grown specimens under variable conditions might elevate egg mortality, induce premature hatching, or affect the survival of the larvae produced. Since egg development starts inside gravid females, i.e. under the optimum conditions of the laboratory, the observable part of development subjected to variable conditions remains mainly the hatching behaviour. Consequently, we observed rapid and synchronous completion of the egg stage in all experiments (see Figs. S5 and S6). Being exposed to a narrow range of temperatures, relatively less information can be obtained on the environmental dependency of the egg stage. As a potential improvement, we recommend that future adaptations of the semi-field experiments consider using field-captured adult female mosquitoes as the source of eggs.In addition to egg mortality, we observed spikes of larva mortality in May (E3), July (E8), and in Autumn (E14, E15, and E16). A likely cause of such transient high mortality is brief temperature shifts towards the extremes. However, the rarity of such events prevents the inverse modelling procedure from adequately capturing their impacts on life processes. As a potential improvement, we recommend that the experiments are performed in overlapping time frames, increasing the likelihood of observing the impact of an extreme event at different times during development. We note that the early decline in larva abundance seen in Autumn could be a result of insufficient food supply due to the increased nutritional requirements. According to the proposed metabolic response to short photoperiods, larvae would require additional food to accumulate fat reserves in preparation for diapause, the state where adult females endure several months without feeding. This implies that development takes longer than it would at long photoperiods when subjected to similar temperature regimes.Using the extended model and the semi-field data, we identified the environmental dependencies shown in Fig. 4. The data informed about the temperature dependency of each life stage as well as the photoperiod dependency of larvae. As expected, the overall variability in the inferred dependencies is higher for Cx. pipiens compared to Cx. quinquefasciatus (Fig. 3). We found that the larva and pupa development times closely match the observations reported by Spanoudis et al.62 at long photoperiods (see Fig. S7). However, the development times reported in Kiarie-Makara et al.84 at short photoperiods and moderate temperatures do not suggest a significant impact of daylight, which could be due to the particular strain of Cx. pipiens used in these experiments. As expected, the temperature dependency of egg development was not well informed by the data in the current configuration of the model and the functional forms of environmental dependence.Figure 4Environmental dependency of Cx. pipiens development and mortality inferred from semi-field life table experiments. Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the photoperiod dependency is significantly non-linear with an average threshold of 13.7 hours of daylight (Fig. 4c). Photoperiod-driven extension in development time (about 1.7 times more at 13:11 h L:D than at 15:9 h L:D) contributes to improving the accuracy of predictions at the end of the high season (Fig. S8). The critical photoperiod (CPP) agrees well with the ones identified for Cx. pipiens biotype pipiens85,86. For instance, Sanburg and Larsen reported that there is an exponential relationship between follicle sizes in adult females (signifying commitment to diapause) and the photoperiods they were exposed to during immature stages85. We inferred a similar (but reverse) gradient between photoperiod and the extension of larva development time from 15 to 12 hours of daylight (Fig. 4c).Risk assessment with annual development profilesWe extrapolated the development dynamics of Cx. pipiens over the calendar year by setting up a hypothetical experiment at the beginning of each week. We simulated the subsequent development dynamics and obtained the annual development profile as shown in Fig. 5. Accordingly, the immature stages begin development from late February and the first adults emerge in May (adults emerging late in May start developing in the experiments set up late in March). The profile is consistent with the regular Cx. pipiens high season in the region.Figure 5Annual development profile of Cx. pipiens in Petrovaradin, Serbia, in 2017. The outcome of each hypothetical semi-field experiment is plotted vertically along the y-axis at the date when the experiment is initiated. The maximum number of adults produced is given in blue, and the time it takes (from the date indicated on the x-axis) to produce half of the maximum is given in green. Solid lines represent the median and shaded areas represent the 90% range of model predictions. Outcomes of the semi-field experiments (dots) are plotted together with the model predictions. The time points marked with circles indicate the experiments used to calibrate the model. Estimated time of first adult emergence is given in the inset.Full size imageAs seen in Fig. 5, predicted adult emergence times agree well with the observations throughout the high season. However, there is a greater variation in the maximum number of adults than the times of emergence (extending to almost (40%) of the possible outcomes in early August). A greater variability (almost (80%) in August) is seen in the corresponding observations, which we transformed into the percentage of eggs emerging as adults (where available) to facilitate comparison. According to the model, variation in adult production is associated with the variation in both development times and mortality during immature stages. We recall that the uncertainty in the informed environmental dependencies is high around relatively less frequently encountered values—especially the lower and higher temperature extremes (Fig. 4). Specifically, egg development times cannot be identified precisely, but immediate hatching of the larvae is predicted between 20 and 25 °C. Consequently, we found that frequent exposure to temperatures outside the well-informed range have a significant impact on the variation in adult production (Fig. S9).We adopt the time of first adult emergence as a proxy of the first generation of adults in the season. According to our model, early adult emergence is a result of shorter development times and higher success rates, which indicates that the temperature conditions allow for an early first generation of adults. An early first generation greatly contributes to an early peak of adult abundance, which may increase the risk of vector-borne disease transmission in humans. For instance, an early peak of abundance may cause an early start of West Nile virus circulation and amplification in Culex pipiens and their avian hosts, which increases the likelihood of virus spillover to humans51,87. Anecdotal evidence shows that the anomalously hot April and May that occurred in 2018 in Serbia shifted the peak of Cx. pipiens abundance forward by more than one month (Petrić et al., unpublished). Similarly, 2018 was the year with the largest number of autochthonous West Nile virus infections throughout Europe (more than the total of the previous seven years together)88,89.In summary, our results showed that the semi-field experiments, when used in combination with our dynamic pseudo-stage-structured MPM, help to develop predictive models and inform over a wide range of environmental conditions. We developed a predictive model of Cx. pipiens biotype molestus development and gained insights into the specifics of temperature and photoperiod dependencies by reducing the need of extensive laboratory data. We used life history observations from 7 experiments performed under semi-field conditions and employed a generic model structure, largely uninformed on the specific environmental dependencies of the species. The cumulative development framework we introduced applies broadly to poikilotherms subjected to highly variable environmental conditions. Although the generic model structure helps to develop exploratory models and identify potential environmental dependencies, accuracy can be improved by customising the models for the known dependencies of particular species. With a straightforward extension of the development model to cover the complete life cycle (with egg laying and density dependence), it is possible to incorporate field observations of eggs or adult mosquitoes, and develop an environment-driven population dynamics model. More

  • in

    Late quaternary biotic homogenization of North American mammalian faunas

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).ADS 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 52, 52–58 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Petrozzi, F. et al. Surveys of mammal communities in a system of five forest reserves suggest an ongoing biotic homogenization process for the Niger Delta (Nigeria). Trop. Zool. 28, 95–113 (2015).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).Article 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 
    PubMed 

    Google Scholar 
    Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. Lond. B: Biol. Sci. 279, 4772–4777 (2012).
    Google Scholar 
    Longman, E. K., Rosenblad, K. & Sax, D. F. Extreme homogenization: the past, present and future of mammal assemblages on islands. Glob. Ecol. Biogeogr. 27, 77–95 (2018).Article 

    Google Scholar 
    Spear, D. & Chown, S. L. Taxonomic homogenization in ungulates: patterns and mechanisms at local and global scales. J. Biogeogr. 35, 1962–1975 (2008).Article 

    Google Scholar 
    Tóth, A. B., Lyons, S. K. & Behrensmeyer, A. K. A century of change in Kenya’s mammal communities: increased richness and decreased uniqueness in six protected areas. PLoS ONE 9, e93092 (2014).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Qian, H. & Ricklefs, R. E. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 9, 1293–1298 (2006).Article 
    PubMed 

    Google Scholar 
    Muthukrishnan, R. & Larkin, D. J. Invasive species and biotic homogenization in temperate aquatic plant communities. Glob. Ecol. Biogeogr. 29, 656–667 (2020).Article 

    Google Scholar 
    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7 1–9 (2016).Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Naturalist 162, 442–460 (2003).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95, 565–573 (2007).Article 

    Google Scholar 
    Byers, J. E., Wright, J. T. & Gribben, P. E. Variable direct and indirect effects of a habitat‐modifying invasive species on mortality of native fauna. Ecology 91, 1787–1798 (2010).Article 
    PubMed 

    Google Scholar 
    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).Article 
    PubMed 

    Google Scholar 
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    Lavery, T. H., Posala, C. K., Tasker, E. M. & Fisher, D. O. Ecological generalism and resilience of tropical island mammals to logging: a 23 year test. Glob. Change Biol. 26, 3285–3293 (2020).ADS 
    Article 

    Google Scholar 
    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinclair, A. Mammal population regulation, keystone processes and ecosystem dynamics. Philos. Trans. R. Soc. B: Biol. Sci. 358, 1729–1740 (2003).CAS 
    Article 

    Google Scholar 
    Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).Article 

    Google Scholar 
    O’Connor, N. E. & Crowe, T. P. Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86, 1783–1796 (2005).Article 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mihoub, J.-B. et al. Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci. Rep. 7, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    Beller, E. et al. Toward principles of historical ecology. Am. J. Bot. 104, 645–648 (2017).Article 
    PubMed 

    Google Scholar 
    Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118 e2023483118 (2021).Waters, M. R. Late Pleistocene exploration and settlement of the Americas by modern humans. Science 365 https://doi.org/10.1126/science.aat5447 (2019).Bennett, M. R. et al. Evidence of humans in North America during the last glacial maximum. Science 373, 1528–1531 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26, 56–69 (2007).ADS 
    Article 

    Google Scholar 
    Lyons, S. K., Smith, F. A. & Brown, J. H. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6, 339–358 (2004).
    Google Scholar 
    Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Ann. Rev. Ecol. Evol. Syst. 37 215–250 (2006).Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Pineda-Munoz, S., Wang, Y., Lyons, S. K., Tóth, A. B. & McGuire, J. L. Mammal species occupy different climates following the expansion of human impacts. Proc. Natl Acad. Sci. USA 118, e1922859118 (2021).Graham, R. W. et al. Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 1601–1606 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–775 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B: Biol. Sci. 277, 661 (2010).Article 

    Google Scholar 
    Lyons, S. K., Wagner, P. J. & Dzikiewicz, K. Ecological correlates of range shifts of Late Pleistocene mammals. Philos. Trans. R. Soc. B: Biol. Sci. 365, 3681–3693 (2010).Article 

    Google Scholar 
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, https://doi.org/10.1098/rsbl.2016.0342 (2016).Pineda‐Munoz, S. et al. Body mass‐related changes in mammal community assembly patterns during the late Quaternary of North America. Ecography 44, 56–66 (2021).Article 

    Google Scholar 
    Lyons, S. K. A quantitative model for assessing community dynamics of Pleistocene mammals. Am. Naturalist 165, E168–E185 (2005).Article 

    Google Scholar 
    Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. B: Biol. Sci. 282, 20151367 (2015).Article 

    Google Scholar 
    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).Article 

    Google Scholar 
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).Article 
    PubMed 

    Google Scholar 
    Olden, J. D., Lockwood, J. L. & Parr, C. L. In Conservation biogeography (eds. Ladle, R. & Whittaker, R. J.) Ch. 9, 224–243 (John Wiley & Songs, 2011).Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    Alroy, J. A new twist on a very old binary similarity coefficient. Ecology 96, 575–586 (2015).Article 
    PubMed 

    Google Scholar 
    Ulrich, W. & Gotelli, N. J. Null model analysis of species nestedness patterns. Ecology 88, 1824–1831 (2007).Article 
    PubMed 

    Google Scholar 
    Behrensmeyer, A. K., Western, D. & Boaz, D. E. D. New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology 5, 12–21 (1979).Article 

    Google Scholar 
    Behrensmeyer, A. K. & Dechant Boaz, D. E. In Fossils in the Making (ed. Behrensmeyer, A.K.) 72–92 (University of Chicago Press, 1980).Andrews, P. Owls, caves and fossils: predation, preservation and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK (University of Chicago Press, 1990).Badgley, C. Tectonics, topography, and mammalian diversity. Ecography 33, 220–231 (2010).
    Google Scholar 
    Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. USA 105, 17836–17841 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Qian, H., Badgley, C. & Fox, D. L. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Glob. Ecol. Biogeogr. 18, 111–122 (2009).Article 

    Google Scholar 
    Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. J. S. d. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. 3, 160048 (2016).Rosenblad, K. C. & Sax, D. F. A new framework for investigating biotic homogenization and exploring future trajectories: Oceanic island plant and bird assemblages as a case study. Ecography 40, 1040–1049 (2017).Article 

    Google Scholar 
    Kortz, A. R. & Magurran, A. E. Increases in local richness (α-diversity) following invasion are offset by biotic homogenization in a biodiversity hotspot. Biol. Lett. 15, 20190133 (2019).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Castro, S. A. et al. Partitioning β-diversity reveals that invasions and extinctions promote the biotic homogenization of Chilean freshwater fish fauna. PLoS ONE 15, e0238767 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Peoples, B. K., Davis, A. J., Midway, S. R., Olden, J. D. & Stoczynski, L. Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia 847, 3727–3741 (2020).Article 

    Google Scholar 
    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Qian, H. & Xiao, M. Global patterns of the beta diversity energy relationship in terrestrial vertebrates. Acta Oecol 39, 67–71 (2012).ADS 
    Article 

    Google Scholar 
    Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl Acad. Sci. USA 113, 10908–10913 (2016).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Figueirido, B., Janis, C. M., Pérez-Claros, J. A., Renzi, M. D. & Palmqvist, P. Cenozoic climate change influences mammalian evolutionary dynamics. Proc. Natl Acad. Sci. USA 109, 722–727 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D., Hadly, E. A. & Bell, C. J. Mammalian response to global warming on varied temporal scales. J. Mammal. 84, 354–368 (2003).Article 

    Google Scholar 
    Fraser, D., Hassall, C., Gorelick, R. & Rybczynski, N. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America. PloS ONE 9, e106499 (2014).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Darroch, S. A. F., Webb, A. E., Longrich, N. & Belmaker, J. Palaeocene–Eocene evolution of beta diversity among ungulate mammals in North America. Glob. Ecol. Biogeogr. 23, 757–768 (2014).Article 

    Google Scholar 
    Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl Acad. Sci. USA 109, E1134–E1142 (2012).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).ADS 
    Article 

    Google Scholar 
    McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thiagarajan, N., Subhas, A. V., Southon, J. R., Eiler, J. M. & Adkins, J. F. Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature 511, 75–78 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev. 19, 213–226 (2000).ADS 
    Article 

    Google Scholar 
    Lyons, S. K. A quantitative assessment of the range shifts of Pleistocene mammals. J. Mammal. 84, 385–402 (2003).Article 

    Google Scholar 
    Davis, M. What North America’s skeleton crew of megafauna tells us about community disassembly. Proc. R. Soc. B. 284, 20162116 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Owen-Smith, R. N. Megaherbivores: the influence of very large body size on ecology (Cambridge university press, 1992).Doughty, C. E. et al. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences USA (2015).Araujo, B. B., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quat. Int. 431, 216–222 (2017).Article 

    Google Scholar 
    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. Lond. B: Biol. Sci., rspb 2008, 1921 (2009).
    Google Scholar 
    Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl Acad. Sci. USA 113, 856–861 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kelt, D. A. & Van Vuren, D. Energetic constraints and the relationship between body size and home range area in mammals. Ecology 80, 337–340 (1999).Article 

    Google Scholar 
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Rodrigo, A. Do Forest Fires Make Biotic Communities Homogeneous or Heterogeneous? Patterns of taxonomic, functional, and phylogenetic ant beta diversity at local and regional landscape scales. Front. Forests Glob. Change 3, https://doi.org/10.3389/ffgc.2020.00067 (2020).Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).Article 

    Google Scholar 
    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non‐random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. science 292, 281–284 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Price, T. D. Ancient farming in eastern North America. Proc. Natl Acad. Sci. USA 106, 6427–6428 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Smith, B. D. The origins of agriculture in the Americas. Evolut. Anthropol.: Issues, N., Rev. 3, 174–184 (1994).Article 

    Google Scholar 
    Olden, J. D., Poff, N. L. & McKinney, M. L. Forecasting faunal and floral homogenization associated with human population geography in North America. Biol. Conserv. 127, 261–271 (2006).Article 

    Google Scholar 
    Olden, J. D., LeRoy Poff, N., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24 (2004).Article 
    PubMed 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article 

    Google Scholar 
    Toivanen, T. et al. The many Anthropocenes: a transdisciplinary challenge for the Anthropocene research. Anthropocene Rev. 4, 183–198 (2017).Article 

    Google Scholar 
    Biotic homogenization (Github, 2022).Brown, J. H. & Nicoletto, P. F. Spatial scaling of species composition: body masses of North American Land Mammals. Am. Naturalist 138, 1478–1512 (1991).Article 

    Google Scholar 
    Lyons, S. K. & Smith, F. A. In Animal body size: linking pattern and process across space, time, and taxonomic group (eds. Smith & S. Kathleen Lyons) (University of Chicago Press, 2013).Graham, R. W. & E. L. Lundelius, J. FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0., 2010).Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. Roy. Stat. Soc. Ser. C. (Appl. Stat.) 57, 399–418 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2005).raster: Geographic data analysis and modeling version 3.4-10 (2021).mapdata: Extra Map Database. R package version 2.3.0. (2018).maps: Draw Geographical Maps version 3.4.0 (2021).Wickham, H. ggplot2: elegant graphics for data analysis (Springer-Verlag, 2016).Grimm, E. C., Maher, L. J. Jr & Nelson, D. M. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quatern. Res 72, 301–308 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).Baselga, A. & Orme, D. Package ‘betapart’. (2012).Package vegan version 2.5-7 (2012).Vavrek, M. J. fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electron. 14, 1T (2011).
    Google Scholar 
    Marschner, I. C. glm2: Fitting generalized linear models with convergence problems. R. J. 3, 12–15 (2011).Article 

    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).Article 
    PubMed 

    Google Scholar 
    Nekola, J. C. & McGill, B. J. Scale dependency in the functional form of the distance decay relationship. Ecography 37, 309–320 (2014).Article 

    Google Scholar 
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).Article 
    PubMed 

    Google Scholar 
    Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).Article 
    PubMed 

    Google Scholar 
    Calenge, C. A collection of tools for the estimation of animals home range. (2017).Ulrich, W. et al. Species richness correlates of raw and standardized co‐occurrence metrics. Glob. Ecol. Biogeogr. 27, 395–399 (2018).Article 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Newell, N. D. Adequacy of the fossil record. J. Paleontol. 33, 488–499 (1959).
    Google Scholar 
    Raup, D. M. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. 13, 85–91 (1979).
    Google Scholar 
    Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33, 561–588 (2002).Article 

    Google Scholar 
    Benton, M. J., Dunhill, A. M., Lolyd, G. T. & Marx, F. G. In Comparing the geological and fossil records: implications for biodiversity studies Vol. 358 (eds. McGowan, A. J. & A. B. Smith, A. B.) 63–94 (Geological Society of London, 2011).Graham, C. H. & Fine, P. V. A. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 1265–1277 (2008).Patterson, B. D. et al. Digital Distribution Maps of the Mammals of the Western Hemisphere, version 3.0. NatureServe, (Arlington, Virginia, USA, 2007).Wilson, D. E. & Reeder, D. M. Mammal species of the world:ataxonomic and geographic reference. 3rd edition. (Johns Hopkins University Press,Baltimore, Maryland, 2,142 pp 2005).Fraser, D. & Lyons, S. K. Biotic interchange has structured Western Hemisphere mammal communities. Glob. Ecol. Biogeogr. 26, 1408–1422 (2017).Article 

    Google Scholar 
    Bivand, R. & Lewin-Koh, N. J. Maptools: Tools for Reading and Handling Spatial Objects R package (2021).Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied spatial data analysis with R. (Springer, 2008).Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).Article 

    Google Scholar  More

  • in

    Effects of cavity orientation on nesting success inferred from long-term monitoring of the endangered red-cockaded woodpecker

    Biere, J. M. & Uetz, G. W. Web orientation in the spider Micrathena gracilis (Araneae: Araneidae). Ecology 62(2), 336–344 (1981).Article 

    Google Scholar 
    Korb, J. & Linsenmair, K. E. The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav. Ecol. 10(3), 312–316 (1999).Article 

    Google Scholar 
    Hansell, M. H. Bird nests and construction behaviour (Cambridge University Press, 2000).Book 

    Google Scholar 
    Kawase, H., Okata, Y. & Ito, K. Role of huge geometric circular structures in the reproduction of a Marine Pufferfish. Sci. Rep. 3, 1–5 (2013).Article 

    Google Scholar 
    Dawkins, R. The extended phenotype 295 (Oxford University Press, 1982).
    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction. Am. Nat. 147(4), 641–648 (1996).Article 

    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction: the Neglected process in evolution (Princeton University Press, 2003).
    Google Scholar 
    Short, L. L. Burdens of the picid hole-excavating habit. Wilson Bull. 91(1), 16–28 (1979).
    Google Scholar 
    Wiebe, K. L., Koenig, W. D. & Martin, K. Costs and benefits of nest reuse versus excavation in cavity-nesting birds. Ann. Zool. Fenn. 44(3), 209–217 (2007).
    Google Scholar 
    Landler, L. et al. Global trends in woodpecker cavity orientation: latitudinal and continental effects suggest regional climate influence. Acta Ornithol. 49(2), 257–266 (2014).Article 

    Google Scholar 
    Ojeda, V. et al. Latitude does not influence cavity entrance orientation of South American avian excavators. Auk 138(1), ukaa064 (2021).Article 

    Google Scholar 
    Wiebe, K. L. Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? Auk 118(2), 412–421 (2001).Article 

    Google Scholar 
    Schaaf, A. A. Effects of sun exposure and vegetation cover on Woodpecker nest orientation in subtropical forests of South America. J. Ethol. 38, 117–120 (2019).Article 

    Google Scholar 
    Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the acorn woodpecker. Auk 116(1), 45–54 (1999).Article 

    Google Scholar 
    Schaaf, A. A. & de la Pena, M. R. Bird nest orientation and local temperature: an analysis over three decades. Ecology 20, e03042 (2020).
    Google Scholar 
    Charter, M. et al. Does nest box location and orientation affect occupation rate and breeding success of barn owls Tyto alba in a semi-arid environment? Acta Ornithol. 45(1), 115–119 (2010).Article 

    Google Scholar 
    Butler, M. W., Whitman, B. A. & Dufty, A. M. Nest box temperature and hatching success of American kestrels varies with nest box orientation. Wilson J. Ornithol. 121(4), 778–782 (2009).Article 

    Google Scholar 
    Goodenough, A. E. et al. Nestbox orientation: a species-specific influence on occupation and breeding success in woodland passerines. Bird Study 55(2), 222–232 (2008).Article 

    Google Scholar 
    Viñuela, J. & Sunyer, C. Nest orientation and hatching success of black kites milvus migrans in Spain. Ibis 134(4), 340–345 (1992).Article 

    Google Scholar 
    Larson, E. R. et al. How does nest box temperature affect nestling growth rate and breeding success in a parrot?. Emu 115(3), 247–255 (2015).Article 

    Google Scholar 
    Austin, G. T. Nesting success of the cactus wren in relation to nest orientation. Condor 76(2), 216–217 (1974).Article 

    Google Scholar 
    Verbeek, N. A. Nesting success and orientation of water pipit Anthus spinoletta nests. Ornis Scand. 25, 37–39 (1981).Article 

    Google Scholar 
    Conner, R. N. & Rudolph, D. C. Excavation dynamics and use patterns of red-cockaded woodpecker cavities: relationships with cooperative breeding. Red cockaded Woodpecker: recovery, ecology, and management. Center for Applied Studies in Forestry, College of Forestry, Stephen F. Austin State University, Nacogdoches, TX, 1995: 343–352.Harding, S. R. & Walters, J. R. Dynamics of cavity excavation by red-cockaded woodpeckers. In Red-Cockaded Woodpecker: Road to Recovery (eds Costa, R. & Daniels, S.) 412–422 (Hancock House, 2004).
    Google Scholar 
    Harding, S. R. & Walters, J. R. Processes regulating the population dynamics of red-cockaded woodpecker cavities. J. Wildl. Manage. 66(4), 1083–1095 (2002).Article 

    Google Scholar 
    Dennis, J. V. The yellow-shafted flicker (Colaptes Auratus) on Nantucket Island, Massachusetts. Bird Banding 40(4), 290–308 (1969).Article 

    Google Scholar 
    Baker, W. W. Progress report on life history studies of the red-cockaded woodpecker at Tall Timbers Research Station. Ecology and Management of the Redcockaded Woodpecker 44–59 (US Bureau of Sport Fisheries and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Dennis, J. V. Species using red-cockaded woodpecker holes in Northeastern South Carolina. Bird-Banding 42(2), 79–87 (1971).Article 

    Google Scholar 
    Conner, R. N. et al. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production. Auk 115(2), 447–454 (1998).Article 

    Google Scholar 
    Conner, R. N. Orientation of entrances to woodpecker nest cavities. Auk 92(2), 371–374 (1975).Article 

    Google Scholar 
    Copeyon, C. K., Walters, J. R. & Carter, J. III. Induction of red-cockaded woodpecker group formation by artificial cavity construction. J. Wildl. Manage. 55(4), 549–556 (1991).Article 

    Google Scholar 
    Locke, B. A. & Conner, R. N. A statistical analysis of the orientation of entrances to redcockaded woodpecker cavities. In Red-Cockaded Woodpecker Symposium II (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Lay, D. W., Red-cockaded woodpecker study. Texas Parks and Wildlife Department. Project W-80-R-16. 1973. p. 33.Jones, H. K. & Ott, F. T. Some characteristics of red-cockaded woodpecker cavity trees in Georgia. Oriole 38, 33–39 (1973).
    Google Scholar 
    Hopkins, M. L. & Lynn, T. E. Jr. Some characteristics of red-cockaded woodpecker cavity trees and management implications in South Carolina. Ecology and Management of The Red-Cockaded Woodpecker 140–169 (US Bureau of Sport Fishing and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Wood, D. A. Foraging and colony habitat characteristics of the red-cockaded woodpecker in Oklahoma. In Red-Cockaded Woodpecker Symposium II 51–58 (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Kalisz, P. J. & Boettcher, S. E. Active and abandoned red-cockaded woodpecker habitat in Kentucky. J. Wildl. Manage. 25, 146–154 (1991).Article 

    Google Scholar 
    Walters, J. R., Doerr, P. D. & J. H. Carter, III. The cooperative breeding system of the red cockaded woodpecker. Ethology 78, 275–305 (1988).Article 

    Google Scholar 
    Batschelet, E. Circular statistics in biology (Academic Press, 1981).MATH 

    Google Scholar 
    Agostinelli, C. & U. Lund, R package “circular”: circular statistics. R package version 0.4-7. https://r-forge.r-project.org/projects/circular (2013).Hijmans, R. J. & Etten, J. V. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12 (2012).R Development Core Team R. A language and environment for statistical computing (R Foundation for Statistical Computing, 2012).
    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19 (2007).Article 

    Google Scholar 
    Cox, N. J. Speaking Stata: In praise of trigonometric predictors. Stand. Genomic Sci. 6(4), 561–579 (2006).
    Google Scholar 
    Smith, J. A. et al. How effective is the Safe Harbor program for the conservation of Red-cockaded Woodpeckers? Condor Ornithol. Appl. 120(1), 223–233 (2018).
    Google Scholar 
    Zuur, A. et al. Mixed effects models and extensions in ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Bates, D., et al., lme4: Linear mixed-effects models using Eigen and S4. 2014: http://CRAN.R-project.org/package=lme4.Conner, R. N., Rudolph, D. C. & Walters, J. R. The red-cockaded woodpecker: surviving in a fire-maintained ecosystem (University of Texas Press, 2001).Book 

    Google Scholar 
    Rudolph, D. C., Kyle, H. & Conner, R. N. Red-cockaded woodpeckers vs rat snakes: the effectiveness of the resin barrier. Wilson Bull. 102(1), 14–22 (1990).
    Google Scholar 
    Conner, R. N. The effect of tree hardness on woodpecker nest entrance orientation. Auk 94(2), 369–370 (1977).Article 

    Google Scholar 
    Jackson, J. A. & Jackson, B. J. Ecological relationships between fungi and woodpecker cavity sites. Condor 106(1), 37–49 (2004).Article 

    Google Scholar 
    Jusino, M. A. et al. Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proc. R. Soc. B Biol. Sci. 2016(283), 20160106 (1827).
    Google Scholar 
    Losin, N. et al. Relationship between aspen heartwood rot and the location of cavity excavation by a primary cavity-nester, the Red-naped Sapsucker. Condor 108(3), 706–710 (2006).Article 

    Google Scholar 
    Williamson, L., Garcia, V. & Walters, J. R. Life history trait differences in isolated populations of the endangered Red-cockaded Woodpecker. Ornis Hungar. 24(1), 55–68 (2016).Article 

    Google Scholar 
    DeMay, S. M. & Walters, J. R. Variable effects of a changing climate on lay dates and productivity across the range of the Red-cockaded Woodpecker. Condor 20, 20 (2019).
    Google Scholar 
    Garcia, V. Lifetime fitness and changing life history traits in red-cockaded woodpeckers (Virginia Tech, 2014).
    Google Scholar 
    Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17(10), 1211–1218 (2014).PubMed 
    Article 

    Google Scholar 
    Helbig, A. J. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE-and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28(1), 9–12 (1991).Article 

    Google Scholar  More

  • in

    Food webs for three burn severities after wildfire in the Eldorado National Forest, California

    Site selectionOur study focused on the mixed-conifer zone of the Sierra Nevada which is dominated by Ponderosa pine (Pinus ponderosa), Jeffrey pine (Pinus jeffreyi), Incense cedar (Calocedrus decurrens), White fir (Abies concolor) and California black oak (Quercus kelloggii). Common shrubs include Deer brush (Caenothus integerrimus), Mountain whitethorn (Caenothus cordulatus), Greenleaf manzanita (Arctostaphylos patula) and Prostrate ceanothus (Caenothus prostrates). Study sites in the Eldorado National Forest near Placerville, CA (38°45′N 120°20′W), were in and near the area burned during the King Fire (Fig. 2).We sampled sites in the mixed-conifer zone between 4000–6000 ft in three burn categories: unburned, low-to-moderate severity and high severity. We selected sites that occurred in similar pre-burn habitat (moderate to dense conifer forest) based on remotely-sensed vegetation class data from the California Wildlife Habitat Relationships program (CWHR)16. No site experienced wildfire or controlled burns in the preceding century23. Burn categories were based on remote sensing relative differenced Normalized Burn Ratio (RdNBR) canopy cover calibrated for the Sierra Nevada24. We validated these burn categories as meaningful and discrete with remote sensing (immediately post fire) and field data (3 years post-fire). Monitoring Trends in Burn Severity (MTBS) maps classify burn severity with Landsat reflectance imagery of pre-fire and post-fire conditions at 30-m resolution25. MTBS assigns pixels a value based on burn severity: 0 = outside the burn boundary; 1 = unburned-low severity within the fire perimeter; 2 = low severity; 3 = moderate severity; 4 = high severity). At each site, we determined the mean MTBS value of pixels in the small-mammal trapping grid (90 × 90 m) and a 225 m buffer (the largest home range diameter for small mammals we captured)26 extended on all sides. Immediately after the fire, the three burn categories differed significantly in tree cover and remote sensing scores of burn severity25 and are still different in tree surveys three years later.We sampled 27 sites, each 4 ha in size. To minimize site-specific influences, we paired sites across treatments to account for elevation, slope, pre-burn vegetation characteristics, pre-burn forest management, ownership, and soil type. Each burn category received nine sites. We blocked sites across burn severities (one site in each burn category per block). Site locations were chosen for accessibility, but all sites were at least 50 m from access roads and at least 200 m apart (sites were >1 km apart on average). We also excluded areas that experienced or were scheduled to experience salvage logging post fire. Occasionally, field conditions at a site location did not align with remotely sensed data classifications, a site was not large enough for homogeneous sampling plots or was dominated by slopes >30 degrees. In these cases, sites were moved to nearby locations that satisfied the site selection criteria.Sampling designIn this study we report the body size, abundance and biomass density of plants and free-living animals using a variety of methods in three different fire severities. Each site consisted of a 200 m × 200 m plot (4 ha) around which sampling methods were organized (Fig. 3). We collected data for organisms with 19 different sampling methods that were scaled to the abundance and body size of targeted organisms. Some methods were not performed at all sites, and some methods were pooled across sites (within treatments) due to low sampling success. Below, we explain each sampling method and detail any variation in its application across sites. To minimize seasonal effects, we sampled all sites in a block at the same time, over 4–5 continuous days, between late June and early September 2017. Weather was consistently hot and dry during this period with no pronounced variation. All animal survey procedures were approved by UC Davis IACUC (protocol number CA-17-451736) and carried out under CDFW permit #SC-3638.Species inclusionTo evaluate the effects of wildfire-burn severity on community structure we assembled a list of organisms and life stages encountered during our sampling of the Eldorado National Forest. Every animal in our list was broken into ontogenetic life stages. Plants were broken into constituent parts (e.g. leaves, roots, seeds) rather than stages. Every organism in our lists had at least one life stage observed by this study in the Eldorado National Forest. Not all life stages in the list were directly observed, many were inferred. These life stages were suspected to occur in the habitat but were not observed (or quantified) because (1) it was impractical (e.g. mycorrhizae), (2) our sampling methods did not capture them (e.g. larval insects in plant tissues) or (3) they could not be identified to species (e.g. arthropod eggs). Stages (not species) were excluded when they did not occur in the terrestrial habitat (e.g. aquatic larvae). Stages (or parts) were lumped when they could not be distinguished in terms of their resources or consumers (e.g. parasitoid wasp eggs, larvae and pupae). Unobserved stages were omitted from a burn category community if they were feeding (e.g. not eggs) but did not have any resources. All life stages, observed or not, received a body size estimate.This approach has several benefits. First, it fills life-cycle gaps without artificially inflating species richness (e.g. having a node labelled “bird eggs”). Second, unobserved life stages may not be major biomass contributors, but they do make important contributions to food-web structure and population dynamics. Including life stages without abundance information is useful because it allows their inclusion in analyses of network structure, informs consumer-resource body-size ratios and allows comparisons to other food datasets organized around body size, but lacking abundance estimates.A comprehensive food web required the inclusion of non-living nodes like detritus which is an important resource for many consumers. Fire creates strong spatial structure in woody detritus, so we collected mass-density information on it and partitioned detritus into types (e.g., woody vs. leaf) and size classes. We did not collect mass-density information on carcasses but treated them similarly by partitioning them into logarithmic size classes to reflect their availability to different consumers (e.g., tick carcasses vs. deer carcasses). We have also included the biotic products honeydew and dung due to their importance to certain consumer groups in the system. We have not done so here but future efforts may wish to include nutrients as resources for plants to capture gradients and competition. Finally, analyses may wish to augment our lists by explicitly including fire as a consumer/herbivore as opposed to an external force shaping treatment effects.Below we describe the methods used to quantify the richness, abundance, and biomass density of these organisms in each of our burn categories. Unless noted, sampling effort did not vary with burn category.Species resolutionMost entries in the species list represent ontogenetic stages or constituent parts. With the exception of a few nodes (i.e. algae, moss, lichen, mycorrhizae, saprophytic bacteria, saprophytic fungi and nematodes) this ecological resolution is consistent throughout the list. Taxonomic information was assigned using the Global Biodiversity Information Facility database27, but taxonomic resolution varies. Vertebrates are identified at the species level. Invertebrates, while distinguished as morphospecies, were not identified below the family level in many cases. Despite not always being identified to the lowest taxonomic category, entries represent life stages of distinct species or groups, and are accompanied by all the taxonomic information we could provide at that level of resolution.Biomass density estimationEach species observed in our sampling methods received a biomass density estimate. Biomass density was estimated as the product of mean individual body mass and density. We estimated body-mass either by weighing individuals directly, or conservatively estimating their mass volumetrically. For the latter, we measured the length (tip of abdomen to tip of head), width (max width of body excluding appendages) and depth (max depth of body excluding appendages) of individual organisms and converted into an approximate volumetric shape (e.g. ellipsoid, cylinder, hemisphere, etc.)28,29. Mass was estimated by multiplying this volume by a tissue density of 1.1 g/mL30,31,32. Body sizes for stages that were not directly observed were inferred from published records and databases. Density estimates were derived from the sampling methods discussed below and varied with burn category. Mean and standard errors were derived from the nine replicate sites within each treatment, unless otherwise stated. Due to the brief sampling window at each site, these estimates should be regarded as point estimates rather than integrated over time.Plant samplingVegetation transectsTo estimate density and biomass of trees, shrubs, and ground cover, we conducted vegetation transects at each site. Transects were located within each 200 m × 200 m plot but were offset from other sampling methods by 10 m to avoid trampling. Transect direction was chosen at random and two transects were run in parallel. Each transect was 50 m in length but width (and distance between transects and sampling area) varied with sampling method as detailed below.Ground coverTo estimate plant ground cover, we surveyed 1 m2 quadrats at 5 m intervals on each 50 m transect. Summed, this gave a pooled ground cover sample area of 20 m2 at each site. Within each quadrat we estimated the percent cover and average height of grasses, forbs, woody litter, soft-loose and soft-rooted litter, shrubs, and trees. We identified small trees, shrubs and dominant forbs (i.e., forbs with the greatest cover at a site) to species. We then used cover area and height to estimate a volume for each species or group. Volumes were later multiplied by taxon-specific measurements of mass-to-volume ratios derived from vegetation box quadrats to obtain biomass estimates for each ground cover species or group.Canopy coverTo estimate canopy cover, above each of the 20 ground cover sampling locations, we identified each tree species overhead and estimated its absolute canopy cover. This gave a pooled canopy cover sample area of 20 m2 at each site. Canopy cover estimates were incorporated into arthropod biomass density estimates from fogging.TreesTo estimate tree density, we identified and measured all trees that exceeded 15 cm diameter-at-breast-height (DBH) within a 15 m wide band extending the length of each 50 m vegetation transect. Small trees (DBH 1 cm. We estimated shrub volume (length × width × height) and biomass density by combining volume and density estimates with taxon-specific measurements of mass-to-volume ratios derived from vegetation box quadrats. We estimated above ground biomass for small trees using species-specific DBH-to-biomass conversions33.

    Understory plants
    To estimate the volume and cover of understory vegetation we used three-dimensional box quadrats. These box quadrats consisted of a canvas-walled rectangular box with the floor panel removed, that was placed over the understory to be surveyed. The canvas walls prevent arthropods from escaping as they were also used in arthropod sampling. Each box quadrat measured 1 m × 0.5 m × 0.5 m, covering a ground area of 0.25 m2. At each site, we placed box quadrats at three locations representative of the dominant vegetation. This gave a pooled sample area of 0.75 m2 at each site. To generate a volume estimate, within each box we estimated the percent cover and maximum height of each plant species. Leaf litter was treated separately but also quantified. Then, using a Velcroed flap as access (designed to prevent bugs from escaping), we collected and weighed all the above ground plant biomass, separated by species and type (litter, branches, leaves, etc.). A subsample of material (up to 1 kg) from each plant species and type was retained and returned to the station to extract the associated arthropods via Berlese funnels (detailed below).
    For each plant species measured in the vegetation box samples, we estimated a mass-to-volume ratio. We estimated the biomass of understory plants by combining our mass-to-volume ratios with volume estimates from ground cover transects. For taxa present in ground cover transects but not vegetation boxes, or with fewer than three measurements of mass-to-volume ratio, we pooled measurements from higher taxonomic levels. For example, if there was only one measurement of species A, but two measurements for a congener, species B, we used measurements for both species A and B to represent the mass-to-volume ratio of each. In this way, we estimated mean mass-to-volume ratios for every species-type encountered in the shrub and cover transects.
    Coarse woody debrisTo estimate the mass density of woody detritus we quantified it according to the method detailed in Waddell (2002). Specifically, we used the center of the vegetation transect as a line-intercept for woody detritus. Woody debris was recorded if its longitudinal axis intersected the transect line, its diameter at the point of intersection was ≧ 12.5 cm; it was ≧ 1 m long and it was not decayed to the point of disintegration. For each piece of woody detritus, we measured the diameter at both ends, the length, and the stage of decay. Length was measured only for the portion exceeding 12.5 cm in diameter. We estimated the volume (m3) for each piece of debris:$$V{m}^{3}=left.frac{(pi /8)({D}_{s}^{2}+{D}_{L}^{2})l}{10,000}right)$$
    (4)
    ({D}_{S}^{2}) is small diameter (cm), ({D}_{L}^{2}) is the large diameter (cm) and l is the length (m)34. We converted this estimate to a volume-density (m3 ha−1) estimate:$${m}^{3}h{a}^{-1}=left(frac{pi }{2;{L}_{t}}right)left(frac{V{m}^{3}}{{l}_{i}}right)f$$
    (5)
    Lt is the combined transect length (100 m), lt is the length of the individual piece, f is a conversion for area (10,000 m3 ha−1)34. Finally, we converted this is a dry-weight biomass density (kg ha−1):$$kg;h{a}^{-1}=({m}^{3}h{a}^{-1})left(frac{1000,kg}{{m}^{3}}right)SpGast D$$
    (6)
    SpG is a specific gravity estimate and D is the correction for the state of decay34. Specific gravity can be a species-specific estimate. Woody debris is difficult to identify to species so we applied a single specific gravity estimate to all debris weighted by the relative abundance of tree species in our surveys. We used a weighted specific gravity of 0.382, estimated by multiplying the mean specific gravity of Pinaceae (0.372) by their relative abundance (0.947) and adding that to the specific gravity of Quercus (0.566) multiplied by their relative abundance (0.053). We applied the weighted means to the decay corrections in Waddell (2002).Species of uncertain identificationSome plant identifications were difficult, particularly at burned sites, where some individuals were identified to genus or family. To assign species identities to individuals classified a higher taxonomic rank at a focal site, we first randomly selected a proxy site from the nine unburned sites. This proxy approach is possible because the composition of burned and unburned sites was similar before the fire. Proxy sites were randomly selected from among all the unburned sites because the spatial grouping didn’t lend itself to maintaining distinctions between blocks. Using the species abundance distribution of the focal plant taxon at the proxy site, we randomly assigned (with replacement) plant species identities to unidentified individual plants at the focal site. We repeated this random sampling 999 times, then estimated the resulting mean species abundance and bootstrapped standard errors at the treatment level.Invertebrate samplingGiven the diversity of invertebrates in the ecosystem, and the biases associated with each invertebrate sampling method, we employed several methods to quantitatively survey the entire community.Arthropods on understory plantsTo estimate the density of arthropods on understory plants we collected them along with plant material in the box quadrats. Up to 1 kg of plant material of each species was bagged inside box quadrats and transported to the field station for processing. Insects were extracted from the plant material in Berlese funnels that were hung in the shade at ambient temperatures and powered with 60 W frosted-incandescent bulbs. All plant samples were processed in funnels for 72 hours, after which they were checked twice a day (collecting jars changed). After no additional arthropods had been collected for 24 hours samples were removed. Arthropods were placed in ethanol for later identification. After identification, arthropod densities were estimated as the product of the arthropod-to-volume ratio for each plant and the total volume of each plant estimated from transects. We collected 4543 individual arthropods from 170 morphospecies associated with plant material from box quadrats, processed in Berlese funnels.Soil-dwelling arthropodsTo estimate the density of soil-dwelling arthropods we collected soil cores. Alongside each box, we collected four cores, each 10 cm in diameter. Two shallow cores were sunk to a depth of 5 cm, giving a combined (6 replicates total) sample area of 0.0471 m2 at each site. Shallow cores, which targeted small arthropods (e.g. collembola, diplura, acari), were collected and transported back to the field station for processing in Berlese funnels. Soil samples were processed in Berlese funnels in the same manner as plant material. Two deep cores were sunk to a depth of 15 cm, giving a combined (6 replicates total) sample area of 0.0471 m2 at each site. Deep cores targeted large invertebrates (e.g. lumbricidae, myriapoda) and were processed by hand in the field. Any large invertebrates encountered were placed in ethanol for later identification. After identification, densities were estimated as the quotient of counts and area sampled. We collected 690 individual arthropods from 57 morphospecies from soil cores.Arthropods on hard substrateTo estimate the density of arthropods like wasps and spiders on tree trunks, rock and logs we visually surveyed these hard substrates. In three locations at each site, we surveyed all hard substrates within a cylinder 5 m in diameter and 2 m in height. The total sample area at each site was 58.9 m2. All invertebrates larger than 2 cm in length were collected and fixed in ethanol for later identification. After identification, hard substrate densities were estimated as the quotient of counts and sample area. Hard substrate surveys yielded 616 individual arthropods from 74 morphospecies.Understory arthropodsTo estimate the arthropod densities associated with understory shrubs at each site we supplemented box quadrats with sweep net surveys. We used nets with a 38 cm diameter opening (Bioquip) to sweep the same 5 m diameter area as the hard substrate surveys. Three replicates at each site gave a total sample area of 58.9 m2. Net sweeps were performed at a constant pace of 2 arcs per meter. All invertebrates collected were fixed in ethanol for later identification. After identification, arthropod densities were estimated as the quotient of counts and sample area. Sweep net surveys yielded 706 individual arthropods from 168 morphospecies.Canopy arthropodsTo survey arboreal arthropods, we used a thermal fogger to loft insecticidal fog into the tree canopy. While this method can sample a large area, we were hampered by permit and accessibility issues at some sites. As a result, we sampled a representative subset of 12 sites (6 unburned, 3 high severity, and 3 low-to-moderate severity) with canopy fogging. Chemical fogging remains the most widely used method for sampling canopy arthropods35,36,37. It is notoriously difficult to assess canopy arthropods with any other method35. We used an IGEBA TF-35 Thermal Fogger to disperse a pyrethrum-based insecticide (EverGreen Crop Protection EC 60-6) into the forest canopy. During each fog we dispersed 4 L of solution (a 7% concentration of insecticide in a water-based carrier-dispersant) in 10 minutes over two representative trees and one live shrub at each site. Live trees were sampled at unburned sites, dead trees were sampled at high severity sites, and one dead and one live tree were sampled at low-to-moderate severity sites. Fogging was done under low-wind conditions allowing the thermal fogger and temperature gradients to lift the fog into the canopy. White 2.25 m2 tarps were placed beneath the fogged area to collect insects. The number of tarps used varied with the size and shape of the canopy. After an optimal elapsed drop-time of 120 minutes37, arthropods were collected from tarps and placed in ethanol for later identification. To estimate site-level arthropod abundance using canopy fogging, we estimated the density per square meter of tarp for each morphospecies and habitat type (living tree, dead tree, or shrub), then multiplied these densities by the total area covered by each habitat type. The area covered by each fogged habitat type was obtained from canopy cover transects (trees) and shrub transects (shrubs). Mean and standard errors for density estimates were estimated using the 3 (or 6) sites per treatment. Canopy fogging yielded 16,353 individual arthropods from 489 morphospecies.Strong-flying insectsTo estimate the diversity and relative abundance of strong-flying arthropods, we utilized blacklight traps (Miniature Downdraft Blacklight (UV) Trap Model 912). We supplemented our sampling with blacklight traps, because strong flying arthropods (e.g. vespid wasps) may not be adequately sampled by fogging or sweep netting. Black lights were deployed at sites prior to dusk on the third night of bat acoustic surveys (see below). Each site received one trap and black lights were not deployed on rainy or windy nights. Samples were collected the following morning. To preserve their integrity for later identification, lepidoptera samples were removed and frozen, other flying insects were fixed in ethanol. Black light traps collected 5,508 individuals from 279 morphospecies.Black light samples were only used to estimate densities for those species not regularly captured with other methods. Two hundred fifteen morphospecies were only found in black light samples. Black light traps, which can sample large areas, are an efficient means of generating diversity estimates for nocturnal flying insects. However, black light traps generate activity densities rather than absolute densities, over sample areas that vary within and between nights. To convert counts to density estimates for morphospecies collected only in black lights we paired them with an analogous species (based on taxonomy and body size). These density analogues were captured at the same site in both black lights and at least one other method with explicit absolute densities. We estimated the mean relative abundance ratios of these species in black lights across all sites in which they co-occurred. We then multiplied the density of the ecological analog by these abundance ratios to estimate densities of all species that were collected only in the black light traps.Larval biomass densityTo estimate the density of larval Formicidae, lepidoptera and coleoptera, we partitioned them according to the relative abundance of their adults present in the same treatments. Larvae for many hemimetabolous invertebrates can be difficult to identify without molecular methods. When larvae could not be identified to species, they were binned into categories of Formicidae, lepidoptera and coleoptera. We then collected body size information and density estimates for these stages. Larval densities were then partitioned according to the relative abundance of adults within each treatment. Adults were eligible to receive larvae if (1) they belonged to the same taxonomic rank as the larvae, (2) they did not already have any observed larval stages, (3) there were available resources for their larvae in the treatment.Vertebrate samplingSmall mammalsTo estimate the density of mammals less than 2.5 kg we used live traps uniformly distributed over a 90 m × 90 m grid38. We placed 100 traps 10 m apart, alternating between large (7.5 cm × 9 cm × 23 cm) and extra-large Sherman traps (10 cm × 11.5 cm × 38 cm)39. Traps were baited (a mix of oats, peanut butter, bird seed and molasses) and covered with natural materials for insulation. Traps were locked open and pre-baited for three days and then operated for three consecutive nights. Traps were closed during the day due to high daytime temperatures and lack of shade, particularly in the high severity burn areas. Traps were re-opened in the late afternoon. Captured mammals were identified to species (or individuals during recaptures), weighed, measured and fit with ear tags for future identification, then released. In 7,906 trap nights (adjusted for trap failures), we had 988 captures of 11 species of small mammals.Live-trapping and marking of small mammals allowed us to estimate their abundance using spatial capture-recapture (SCR) models40. These models use individual detections in combination with detection locations (here, location of a given live trap within the grid) to estimate density while accounting for imperfect detection and variation in detection due to variability in individual exposure to the trapping grid. When data are collected across several trapping grids, as in the present study, the joint modeling of all data allows estimation of grid-level covariate effects on density41. We used this framework to analyze data from all 27 plots jointly and allowed for density to vary according to burn category of a site (unburned, low-to-moderate severity or high severity), so that, for example, all unburned sites had the same density of a given species. If a species was never caught in a burn category, we fixed its density (and consequently, its biomass) to 0 for all sites in that burn category.Because trapping data for most species was too sparse to fit species-specific models, we grouped ecologically similar species and built models that shared parameters among grouped species. In this manner, we analyzed the joint data of mice and chipmunks: Brush mouse (Peromyscus boylii), Deer mouse (Peromyscus maniculatus), Pinyon mouse (Peromyscus truei) and Western harvest mouse (Reithrodontomys megalotis), Yellow-pine chipmunks (Tamias amoenus), Long-eared chipmunks (Tamias quadrimaculatus) and Shadow chipmunks (Tamias senex).In the mouse model, Brush mouse and Pinyon mouse densities were assumed to have the same response to burn category (but not the same densities), whereas Deer mice were allowed a different response to burn category. This choice was made based on capture frequencies of species in the different burn categories. Pinyon mice and Western harvest mice had a fixed density of 0 in low-to-moderate and high severity burn sites. All species shared the same detection parameters.Even combined, the chipmunk data captures were too sparse to estimate species specific densities. We therefore treated all chipmunks like a single species to estimate overall chipmunk density, then calculated species specific densities by multiplying overall density with the proportion of individuals of a given species in the data. For example, if species A made up 50% of all individuals in the data, we would calculate density for species A by multiplying overall chipmunk density by 0.5. This model entails the assumption that the effect of burn category on density was the same for all chipmunks, which seems reasonable based on capture frequencies.We built species-specific SCR models for California ground squirrels (Otospermophilus beecheyi) and Dusky-footed woodrats (Neotoma fuscipes); for the latter we fixed density to 0 in high severity sites. Northern flying squirrels were only caught 3 times at unburned sites, so we set its density to 0 in low-to-moderate and high severity sites, and used a published density estimate from a Sierra Nevada site42 for unburned sites. Because individuals of Trowbridge’s shrew (Sorex trowbridgii) were never recaptured and had high rates of trap mortality, we estimated their abundance using non-spatial removal models43 for unburned and moderately burned sites and set their abundance to 0 at high severity sites. We transformed abundance to density by dividing it by the 8100 m2 area (90 × 90 m) of the live trapping grid.We fit SCR models in R using the package “secr” ver. 3.1.344, and removal models using the package RMark ver. 2.2.445.BirdsTo estimate the diversity and density of birds, we conducted point count surveys46. Each site had two point-count stations, spaced at least 200 m apart, that were surveyed on the same day. Counts were conducted at each site on three different days per season. To mitigate migration effects all counts were conducted between mid-June and mid-July. Bird surveys did not take place when it was raining, extremely cold (20 kmh). Wind speeds were obtained with handheld anemometers. Point counts began 15 minutes after sunrise and were completed by 10:00 AM, corresponding to when passerine birds are most active. Each survey consisted of one ten-minute count, split into two five-minute periods. Each individual bird was recorded only once over the entire count. Trained observers identified all birds to species by sight or sound and estimated the number of individuals of each species within 100 m of the sampling point. This gave us a sample area of 15,708 m2 at each site. Birds that flew through or were detected outside of the survey area or survey time were documented but not included in richness or density estimates. During 162 point-surveys we observed 1,039 birds from 52 species (107 individuals could not be identified).The repeated point counts allowed us to estimate bird abundance and density using N-mixture models47. These models use repeated counts of individuals to estimate abundance within a sampling unit (in this case, the 100 m radius point count) while accounting for imperfect detection. Because abundance estimates refer to a set area, these can be converted to densities. Because data for some bird species were sparse, we fit data of all species jointly in a community model48. In community models, each species has its own set of parameters, but species-specific parameters are modeled as coming from a common underlying distribution that is shared by the community of species (essentially, a species-level random effect). This constitutes a form of information sharing, which improves parameter estimates for data-sparse species. In our community N-mixture model, we allowed for species-specific detection probabilities, as well as species-specific effects of burn category on abundance. We further included a fixed (across species) effect of the amount of wind during a given survey on detection, as wind can impair auditory detection of birds. We implemented the community N-mixture model in a Bayesian framework using the program JAGS ver. 4.2.049 accessed through R with the package jagsUI ver. 1.5.050. JAGS fits models using Markov chain Monte Carlo (MCMC) algorithms; we ran 100,000 MCMC iterations and discarded the first 50,000 as burn-in. We checked for chain convergence using the Gelman-Rubin statistic51; all parameters had a value 2.5 kg we used camera traps. At each site, we deployed two Reconyx HC600 Hyperfire cameras, which have a no-glow infrared flash, preventing disturbance to wildlife and detection by humans. To reduce false triggers, we set cameras in shaded locations and cleared vegetation in front. Cameras were deployed along landscape features that suggested animal movement: game trails, forest openings, abandoned dirt roads, etc. Cameras were set at least 50 m apart and strapped to trees 40 cm above the ground and 1–2 m away from the edge of a trail or opening. Cameras were operated for 24 hours a day, with 3 consecutive pictures per trigger and no time lapse between triggers. All 54 camera traps were installed by early-July and retrieved in mid-September. Cameras were checked after four to six weeks for SD card and battery replacement. All pictures were reviewed manually for species identification; identified pictures of animals were organized into camera and species-specific folders for post-processing in the R computing environment ver. 3.4.352 using the package camtrapR ver. 0.99.553. Even though some bird and small mammal species were occasionally photographed by camera traps, we excluded their photo-records from further analysis. After adjusting for malfunction, cameras operated for 4,238 trapping nights over which they assembled 12,243 independent records (detections that were at least one hour apart if of the same species at the same camera) comprising 10 species of mammals >2.5 kg.Because camera-trap images do not allow identification or counting of individuals for analysis with SCR or N-mixture models, we used the Royle-Nichols (RN) occupancy modeling framework54 to estimate abundance of medium/large mammal species. Occupancy models55 use repeated species detection/non-detection data from a collection of sampling locations to estimate species occurrence probability while accounting for imperfect detection. The RN model makes use of the fact that the probability of detecting a species at a site increases with the abundance of that species at that site, allowing estimation of site-level abundance from species level detection/non-detection data. We used the R package camtrapR53 to convert raw camera trap data for each species into a binary (detected = 1, not detected = 0) location-by-occasion format. Because of their proximity, we considered both cameras at a given plot to constitute a single sampling location. We defined an occasion as 10 consecutive days of sampling. To account for malfunctioning of some cameras, we calculated effort as the number of days per occasion that each pair of cameras was functional.Because data for some species were sparse, we jointly analyzed data for all species in a community RN model (see Birds for a description of community models); we allowed for species-specific detection probabilities as well as species-specific effects of burn category on species abundance and included a fixed effect (across species) of effort on detection. The RN model returns sampling location level estimates of abundance, but in contrast to bird and reptile surveys, which were explicitly linked to a specific sampled area, the area sampled by a camera trap is not easily defined. Mammals recorded in the relatively small detection zone of a camera use much larger areas. We calculated densities of large mammals by dividing the abundance estimates from the RN model by the average home ranges of the recorded species. We fit the community RN model in a Bayesian framework as described for birds, running 30,000 MCMC iterations and discarding the first 15,000 as burn-in. All chains converged, according to the Gelman-Rubin statistic.To obtain estimates for home range size and individual mass of large mammals, we searched the scientific literature for studies conducted in similar habitat (temperate coniferous forests) and for home ranges, during the summer and fall seasons. When no information from a similar habitat was available, we used studies from forested areas. When no information for target species was available, we used information from congeners. When multiple studies were available, we calculated the mean across studies, weighted by sample size if provided. Similarly, when studies provided information separately for males and females, we calculated a weighted mean. For some large mammal species, we only found information on annual home ranges, and to approximate a summer/fall home range, we multiplied these annual ranges by 0.67.BatsTo survey bat community composition and abundance, we conducted acoustic sampling at each site. We placed a Wildlife Acoustics Songmeter SM4BAT FS echolocation detector at each site for a minimum of three consecutive nights. The detectors were set to record from sunset to sunrise when bats are most active. We attached microphones to t-posts placed in open areas, elevating them 2.5 meters from the ground to minimize signal attenuation from nearby vegetation and canopy. Bat calls were analyzed using SonoBat software to assess likely species for each file. These identifications were vetted by an experienced bat researcher, Ted Weller (USDA Forest Service). One site (B3U1) was not sampled with bat detectors, whereas two sites had one and two additional nights sampled, respectively. During 81 recorder nights, acoustic recorders captured 17,484 calls, of which 7348 were identified to 17 species.Similar to camera traps, bat calls recorded by acoustic recorders do not allow counting or identifying individuals. Therefore, we built a community RN model to estimate abundance for bats. The model structure was identical to that described for medium/large mammals, except that it did not include any covariate on detection probability. Analogous to our medium/large mammal analysis, we used literature information on average home range size to convert bat abundance to bat density. We ran the bat model for 150,000 iterations and discarded the first 75,000 iterations as burn-in. All chains converged according to the Gelman-Rubin statistic.ReptilesTo estimate community composition and density of reptiles, we conducted timed searches within the 90 m × 90 m small mammal trapping grids at each site. This gave us a sample area of 8100 m2 at each site. Reptile surveys were conducted either prior to small mammal trapping or two weeks post to minimize impacts from sampling disturbance. Reptile surveys were conducted between 8:00 am and 10:00 am by teams of two to four, for a total of one person-hour. We performed reptile surveys three times at each site, with at least one week between surveys. During searches, all refugia (i.e., rocks, logs) within the plot were carefully overturned and then replaced. In addition to reptile species, we documented time of day and weather, as well as cover type and cover length if applicable. Our reptile surveys yielded 145 records of two snake species and four lizard species. Two additional snake species were observed incidentally during other sampling methods.Repeated counts of reptiles allowed us to use N-mixture models47 to estimate abundance and density. However, reptile data were extremely sparse and contained few species, precluding the use of a full community model as fit for birds. Instead, we structured reptile data into three groups: snakes (Western terrestrial garter snake (Thamnophis elegans) and Yellow-bellied racer (Coluber constrictor)), Alligator lizards (Elgaria coerulea and E. multicarinata) and Western fence lizards (Sceloporus occidentalis). We then combined data from all groups in a single N-mixture model, allowing for group-specific abundances. Due to sparse data, we only estimated an effect of burn category on abundance for fence lizards. Abundance for other species groups was assumed to be constant across burn categories in the model. To obtain species and burn category specific estimates of abundance, we combined model estimates of abundance with raw counts of individuals. For the two snakes, we calculated species level abundance by burn category by multiplying overall model-estimated snake abundance with the proportion of individuals made up by each species in each burn category. Because some Elgaria sp. observations could not be identified to species level, we did not attempt to calculate species specific abundances (but we note that the majority of observations was of E. coerula). We calculated species/group density by dividing abundance by the size of the sampling unit, in this case, a 90 × 90 m square. We fit the N-mixture model in R using the package unmarked ver. 0.12.256.Species identificationVertebrates were identified in the field or from photographs. Invertebrate specimens were collected and fixed in the field for identification in the lab where they were split into morphospecies using published keys57,58 and consultation with experts at the UC Davis Bohart Museum. Morphospecies were not always identified to lower taxonomic levels but were distinguished from similar species by coarse morphological characters. Prior to density estimation some morphospecies were aggregated based on taxonomy, body size, sample methodology, co-occurrence patterns and the difficulty in distinguishing members of the group. The rationales behind aggregations are documented in the raw invertebrate sampling data.Body size estimationFood webs are commonly organized around body size59,60,61,62,63 and we include length and mass estimates for all life stages in our data set. We assume mean body size does not change substantially across burn severities and use a single estimate for all life stages regardless of treatment. When possible, we measured 10 individuals for each morphospecies and life stage (for invertebrates and small mammals only, as individuals from other taxonomic groups were not handled). Body mass for small mammals was measured directly with a Pesola scale. Body length estimates for invertebrates were derived from the longest measurement. Volumetric estimates were derived by applying the measured length, height and width to the three-dimensional shape that most closely approximates that of the organism (e.g. ellipsoid, rectangular prism, cylinder, hemisphere, cone). We estimated biomass by multiplying these volumetric estimates by a tissue density of 1.1 g/mL30.Body sizes for organismal life stages observed but not captured (e.g. adult birds and large mammals) were estimated from the literature. Life stages for many organisms were not directly observed (e.g. lepidoptera eggs) but are almost certainly present. For these stages we again used the literature to estimate the body sizes. For example, we used a data set of egg sizes from 6,700 insect species to inform estimates for the species in our study64. The species list indicates the estimation method and literature source used to estimate the body size of each individual life stage is included in the species list.LinksEcological networks can be broken into two types: Undirected and directed. Undirected networks include bipartite networks (e.g. plant-pollinator, host-parasite) and social-networks. In undirected networks, interactions (links) and their participants (nodes) are observed at the same time. Links are not inferred in undirected ecological networks (unless false-negatives due to sampling error are taken into account) because they are directly observed (e.g. tick removed from a lizard). Undirected links can be weighted (interaction strength) by counting observations.Directed networks include food webs. Most food web links are inferred because it is not feasible to evaluate all possible consumer-resource interactions in a system through direct observation. The number of possible consumer-resource interactions in a food web is equivalent to the number of nodes squared. There were 3,084 nodes in the Eldorado National Forest, resulting in 9,511,056 potential consumer-resource interactions. In the scope of an ecological study, it is rarely feasible to directly observe most feeding links for most species15, much less an entire web, though molecular methods are bringing this closer to possibility for some guilds (e.g. large mammalian herbivores)65. While often detailed for birds and mammals, published accounts of direct observations of diets are often general (e.g. “Species A eats organic matter”) or entirely lacking for other groups. Restricting link assignments only to those that are directly observed will not create an accurate or unbiased food web.To assign resources to consumers we supplemented our own field observations with published diet records, expert opinion and rule-based filters. In the absence of direct observation, rule-based filters are an important tool for sorting through the huge number of potential feeding interactions. Filters varied with the species and ontogenetic stages to which they were applied but consisted of two main types: Encounter and compatibility. Encounter filters determine the potential for consumers to interact with resources. Encounter filters are based on habitat co-occurrence, forging strategy and diel activity patterns. Applied to links that have passed through encounter filters, compatibility filters determine the outcome of a potential encounter. Compatibility filters are based on consumer diet information, consumer diet breadth, resource palatability, and consumer-resource body size ratios. For inclusion in the food web, a link must pass through both filters.Link assignmentAll species were considered potential resources. For feasibility and reproducibility, species were broken into groups of encounter filters. First, we separated plants, fungi and detritus from other metazoans.Fig. 2Sampling sites map and King Fire perimeter. We sampled 27 sites total in the Eldorado National Forest, California, three years after the King Fire, nine in each burn category: Unburned, moderate severity, and high severity. Features not indicated in legend are typical of topological maps.Full size imageFig. 3Representative map of sampling design. We employed 19 different methods to estimate the richness and biomass density of organisms in the Eldorado National Forest, California, three years after the King Fire. Methods were conducted entirely within or centered within the 200 × 200 m site perimeter. Methods were paired in space and time when useful (e.g. black lights and acoustic bat surveys), and separated when necessary to avoid interference (e.g. small mammal trapping grid and vegetation transects). All methods at a site were conducted over 4–5 consecutive days.Full size imageThe first encounter filter was a loose group consisting of primary producers, non-living resources (e.g. detritus, carcasses), and saprophytes. In this first filter, primary producers were broken into parts (e.g. root, seed, leaves, etc). With few exceptions (i.e. moss, lichens, algae) primary producers in this filter group were evaluated as families or species. Saprophytes were evaluated as spores or adults. These groups served as the encounter filter for primary consumers and fungivores.Next, we partitioned all other metazoans into smaller encounter filters based on phylogeny, behavior, activity, habitat and palatability. A species’ life stage can be a member of multiple resource groups. These groups served as the encounter filter for most predatory or omnivorous organism stages. These encounter filters included:

    Flying invertebrates

    Nocturnal flying invertebrates

    Diurnal flying invertebrates

    Non-flying invertebrates

    Ground-dwelling invertebrates

    Ground-dwelling invertebrates excluding spider eggs

    Soft-bodied ground dwelling invertebrates

    Invertebrates on plants

    Invertebrates on plants excluding spider eggs

    Soft-bodied invertebrates on plants

    Invertebrates on trees

    Reptiles

    Birds

    Small mammals

    Large mammals

    Encounter filter exposure was tailored to consumer type. For consistency, consumers were broken into phylogenetic and ontogenetic guilds (e.g. lepidoptera larvae). For example, web-building spiders were exposed to flying insects, but not small-mammals encounter filters. Compatibility filters are specific to species and stage. For example, while both are exposed to the flying-insects encounter filter, adult and juvenile web-building spiders will have different compatibility filters because they have different consumer-resource body size ratios. Phylogenetic and ontogenetic consumer guilds are detailed below, but the decisions for each of the 178,655 links assignments in the food web can be found in and reproduced with the R code accompanying this manuscriptSpidersAs common, generalist insectivores, spiders are important consumers in the network66. To assign them resource links, spiders were broken into three ontogenetic stages: adult, egg, juvenile. Spiders were then separated into 17 consumer guilds by Family. The 87 spider species that could not be identified at the family level were assumed to be web-building spiders. To assign feeding interactions, we applied one or more invertebrate resource group filters (see above) to the members (species and stages) of each spider guild. Next, each link passed through a consumer-resource body size filter before being included in the network. For example, web-building spiders were assigned to capture flying insects and consume insects larger than 20% of their own body-length (as mesh size sets a lower limit of prey size) and less than 200% of their own body length67. Because of the generality of their filter-feeding hunting strategy, web-building spiders accounted for nearly half (32,663) of interactions with spiders as consumers. Additionally, when it was reported in the literature, adult members of a guild were assigned to consume nectar.Herbivorous beetlesTo assign consumer links to non-predatory beetles, their larval and adult stages were separated into Family-level feeding guilds. When information was available, links were evaluated at the species-stage level rather than the Family level. Resource links containing primary producers and non-living resources (detritus, carcasses, dung, etc) were assessed based on direct observation, published reports and expert opinions. When feeding on living plants, beetles were assigned to specific tissue types (e.g. flower, leaves, roots). For example, Cerambycidae_sp_2 was assigned to feed on the stems of Arctostaphylos patula as well as stems of plants from the family Rhamnaceae. This assigned 10,289 consumer links to herbivorous beetles.Larval lepidopteraCaterpillars were the most speciose herbivore group in the network. Larval lepidoptera vary greatly in host plant range and the quantity of information on their feeding habitats and were not lumped into guilds whenever possible. Microlepidoptera were not identified below the order level and were assumed to feed like Gelechiidae caterpillars (many species of which have been documented in Eldorado National Forest). We assigned links to caterpillars with resource filters of host plants and parts based on published diet records, palatability, expert opinion and observed co-occurrence between potential hosts and adults. This assigned 2,434 consumer links to caterpillars.Adult lepidopteraAdult lepidoptera feed primarily or exclusively on nectar from flowering plants. The host ranges for most adult lepidoptera are not well described. To assign nectar links, adult lepidoptera were grouped into families and passed through resource filters based on published records, co-occurrence, and expert opinion. Non-feeding adult moths were removed from link consideration. These filters assigned 5,854 nectar links to adult lepidoptera.Adult hymenoptera as herbivoresMost species of hymenoptera are parasitoids as larvae and free-living as adults (eusocial hymenoptera are a notable exception). Many adult parasitic wasps supplement their protein intake with nectar and pollen. The plant host ranges for solitary adult wasps are not well known. We applied nectar and pollen resource filters to adult hymenoptera based on published records, co-occurrence and expert opinion. These filters assigned 4,880 links to adult hymenoptera.Predatory beetlesPredatory and scavenging beetles are important consumers in terrestrial ecosystems. At the family level, the diets of predatory beetles are well-described relative to other arthropods. We grouped predatory and scavenging beetles into family guilds. We applied resource filters to predatory and scavenging beetles based on published records and expert opinion, habitat overlap, foraging strategy, palatability, and body size. These filters assigned 10,320 resource links to predatory beetles.FliesFlies in the Eldorado National Forest are a speciose group with diverse consumer strategies: herbivores, predators, scavengers, detritivores, parasitoids, and micropredators. Because of their trophic diversity each dipteran family was treated as its own guild, even then there were often large ontogenetic diet shifts across stages within a guild. We applied resource filters to dipterans based on published records and expert opinion of their diet. These filters were based on habitat overlap, palatability, and for predatory stages consumer-resource body size ratios. These filters assigned 9,541 resource links to flies.Hymenopteran parasitoidsParasitoid wasps are a diverse group that can have strong, even regulatory, effects on their host populations. We applied resource filters to hymenopteran parasitoid larvae in a three-step process. First, we used published records and expert opinion to establish their host range and host specificity. Next, we looked for the subset of potential hosts that co-occured with adult parasitoids across the most sites. Finally, we retained the subset of those host species whose adult body sizes were equivalent to or slightly larger than adult parasitoids. These filters assigned 4,695 host links to parasitoid wasps.Other hymenopteraThe remaining hymenoptera were composed of wood wasps and gall wasps, as well as bees, predatory wasps and ants. Host plant links were assigned to wood wasps and gall wasps in the same way as larval lepidoptera. Nectar links were assigned to bees in the same way as adult lepidoptera. Prey links were assigned to solitary and eusocial wasps in the same way as insectivorous gleaning birds. Ants were treated as generalist omnivores whose links were assigned links in a manner similar to all of the above.HemipteraHemiptera were the most abundant consumer group in the Eldorado National Forest. Hemiptera use their proboscis to feed on fluids, either as herbivores or predators. To accommodate this variation in consumer strategies resource filters were assigned to individual hemiptera species based on phylogeny. Host plants were assigned to herbivores based on field observations, published records and expert opinion. Plant fluids (with the exception of sap from soft woods) were not included in the node list, so herbivores were assigned feeding links based on the plant tissues that they pierced (i.e. stem or leaves). Predatory hemiptera were assigned insects on plants passed through consumer-resource body size filters. When more specific dietary information was available resource filters were further refined. These filters assigned 3,177 links to the hemipteraCollembolaFrom soil to canopy, springtails were widely distributed across Eldorado National Forest habitats and are important resources for arthropod secondary consumers. Collembola are herbivores, detritivores and fungivores. Little diet information is available for collembola, which were assigned resource filters based on habitat and phylogeny (order). Habitat was determined by collection method, and resource availability was determined by habitat. These, phylogenetic-habitat-resource filters assigned 140 links to the collembola.Bark licePsocoptera were common on plants in the Eldorado National Forest, feeding on algae, lichen, moss, fungi and detritus. They exhibit little variation in diet and were assigned resource filters as a group at the Order level. This small set of resource filters assigned 120 links to the psocoptera.ThripsThysanoptera were common and abundant consumers in the Eldorado National Forest, whose diets can range from herbivory to facultative predation and predation. To accommodate this variation in consumer strategy, resource filters were assigned to individual thysanoptera species based on phylogeny. Host plants for herbivores were based on field observations, supplemented with published records and expert opinion. Thysanoptera predators were assigned soft-bodied insects on plants passed through consumer-resource body size ratio filters. These resource filters assigned 924 links to thysanoptera.BatsBats are important consumers of arthropods. Arthropod encounter filters were determined by bat foraging strategies reported in the literature. Juvenile bats were treated separately. Aerial hawking bats capture nocturnal flying insects. Gleaning bats capture insects on plants. Pallid bats (Antrozous pallidus) which fly close to the ground, capture arthropods on the ground and understory plants. These arthropod filters then passed through consumer-resource body size ratio filters, which assigned 4,621 links to adult bats.BirdsBirds were the most speciose vertebrate group in the Eldorado National Forest. This diversity is reflected in their diets. Bird resource filters were based on published records and expert opinion. Herbivorous birds that were reported to feed on a type of plant tissue were assumed to feed on all tissues of that type, unless the literature indicated resource specialization. For example, if a bird was reported to feed on a fruit, it was assumed to feed on all fruit in the system. Resource links for predatory and omnivorous birds were passed through consumer-resource body size ratio filters. These filters assigned 56,584 links to birds as consumers.Small mammalsMammals 2.5 kg were comparatively uncommon but important consumers in the Eldorado National Forest. Large mammal resource filters were based on published records and expert opinion. Herbivorous large mammals that were reported to feed on a type of plant tissue were assumed to feed on all tissues of that type, unless the literature indicated resource specialization. Resource links for omnivorous and predatory large mammals were passed through consumer-resource body size ratio filters. These filters assigned 840 links to large mammals as consumers.Juvenile mammalsJuvenile mammals were considered unweaned. Nursing mammals were included in the species list because they are more vulnerable than adults and are potential resources to different consumers as a result. Unweaned mammals “feed” on their mothers, who are considered their only resource link. Nursing filters assigned 38 links to juvenile mammals.ReptilesWhile not diverse or common, reptiles on the mountain slopes of Eldorado National Forest are potentially important consumers for many groups. Reptile resource filters were assigned based on published records and expert opinion. All resource links were passed through consumer-resource body size ratio filters. These filters assigned 1,487 links to reptiles.MitesMites are ubiquitous and important consumers in many habitats but are often overlooked because of their small size and taxonomic difficulty. Mites were treated as consumer groups based on taxonomy. Resources for predatory mites were based on habitat and passed through consumer-resource body size ratios filters. Resource filters assigned 2,971 links to mites.Miscellaneous arthropodsA few arthropods not discussed above were not speciose enough to be dealt with separately here. These remaining miscellaneous arthropods were treated as groups at various taxonomic levels. Encounter and compatability filters for these groups were based on published records. Encounter filters for predatory (centipedes, odonates, pseudoscorpions, solfugids, mantids, opiliones, neuroptera, embioptera, pauropoda, eusocial wasps) and omnivorous (dermaptera) groups were based on habitat and passed through consumer-resource body size filters. Encounter filters were assigned by habitat for detritivores, herbivores and fungivores (archeognatha and isopods). These filters assigned 3,157 links to miscellaneous arthropods as consumers. More

  • in

    Biophysical impacts of northern vegetation changes on seasonal warming patterns

    Coupled model experiments for detecting vegetation-climate feedbackWe quantified changes of near-surface (2-m) air temperature (Ta) in response to the observed NH greening for all active growing seasons during 1982–2014 using IPSL-CM. We defined the three growing seasons (spring, summer, and autumn) across the entire NH domain as periods of March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. For each season, a pair of transient numerical experiments was performed by modifying LAI: a dynamic vegetation experiment (SCE) forced by annually and seasonally varying LAI from satellite observations36, and three seasonal control experiments (({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{MAM}}}}}}}), ({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{JJA}}}}}}}), and ({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{SON}}}}}}}) for MAM, JJA, and SON, respectively) forced by annually varying LAI for all seasons, except in the season of interest when the LAI was fixed to the climatological conditions observed during 1982–2014 (Fig. S1). For all experiments, other boundary conditions, including sea surface temperature (SST), sea ice fraction (SIC), and atmospheric CO2 concentrations, were kept consistent (Methods). Therefore, differences between SCE and the control experiments characterized the effects of the observed LAI changes on Ta (hereafter denoted as ΔTa), both intra- and inter-seasonally. Multimember paired ensembles were generated for each coupled model experiment by performing 30 repeated runs but with different initial conditions (see Methods).The capacity of the IPSL-CM GCM for simulating the seasonal variations and spatial patterns of Ta was assessed by comparing the SCE simulation results with the observation-based Ta data (Methods). Throughout most of the growing season (May to October), the SCE simulation well reproduced the increasing trend and interannual variability of the NH land mean Ta observed during 1982–2014 (Fig. S2). Observational data showed that the strongest NH warming occurred in early spring (March and April) and late autumn (November). However, the SCE simulation failed to capture the exceptionally strong warming during the transitional seasons, leading to the underestimation of the annual mean warming trend (SCE: 0.237 ± 0.024 °C decade−1; observed: 0.362 ± 0.048 °C decade−1). This underestimation stemmed from a negative bias in the increase of downwelling shortwave radiation, possibly due to an absence of short-lived forcing and bias in the cloud systems37. Overall, the SCE reproduced the geographical patterns of seasonal warming reasonably well (Fig. S3), which strengthened our confidence in the model projections. Notably, it successfully captured the observed amplified warming over pan-arctic and semi-arid regions, as well as the few cases of regional cooling, such as that over northwestern North America during MAM (Fig. S3).Intra-seasonal temperature responses to NH LAI changesFor the period from 1982 to 2014, satellite-retrieved LAI showed statistically significant increasing trends (p  0.1), strong and significant JJA cooling (−0.044 ± 0.008 °C decade−1, p  0.1) (intra-seasonal feedbacks shown in Fig. 1b). The LAI-induced JJA Ta trend was equivalent to cooling of −0.15 ± 0.03 °C in JJA over the study period, offsetting the overall SCE-simulated near-surface air warming over this period by ~12.5%. This strong JJA cooling was further supported by a significant negative correlation (r = −0.64, p  0.1) or SON (r = 0.07, p  > 0.1) (Fig. S4a, c), during which the LAI-induced changes accounted for only 1.3% (MAM) and −3.2% (SON) of the concurrent greenhouse warming. We also verified the robustness of our results by performing equilibrium experiments with an independent model, the NCAR Community Atmosphere Model coupled with Community Land Model (CAM-CLM, Methods). Indeed, this model generated a similarly strong LAI-induced cooling in JJA (−0.18 °C, p  0.1) and SON (−0.05 °C, p  > 0.1) (Fig. S5).Fig. 1: Intra- and inter-seasonal temperature responses to leaf area index (LAI) changes.a Monthly trends (shadings) of Northern Hemisphere (NH) mean LAI during 1982–2014 used as input to the seasonal simulations. The dashed curve and transparent bars indicate trends of monthly LAI and seasonally aggregated LAI values, respectively. b Linear trends of Ta driven by LAI changes within the same season (intra-seasonal) and other growing seasons (inter-seasonal). Error bars in a, b indicate uncertainty ranges [1 – standard deviation (SD)]. c Monthly trends of LAI-induced air temperature changes (ΔTa), with red and blue shadings representing positive and negative trends, respectively. The bottom panel shows the overall ΔTa trends induced by LAI changes in all growing seasons, calculated as the sum of ΔTa trends from the three seasonal runs shown separately in the above panels. ***p  More