More stories

  • in

    Author Correction: MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants

    Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, DenmarkMorten Kam Dahl Dueholm, Marta Nierychlo, Kasper Skytte Andersen, Vibeke Rudkjøbing, Simon Knutsson, Per H. Nielsen, Mads Albertsen & Per Halkjær NielsenEnvironmental Science Department, The Institute for Scientific and Technological Research of San Luis Potosi (IPICYT), San Luis Potosí, MexicoSonia ArriagaDepartment of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn, NorwayRune BakkeCenter for Microbial Ecology and Technology, Ghent University, Ghent, BelgiumNico BoonInstitute for Water and Wastewater Technology, Durban University of Technology, Durban, South AfricaFaizal Bux & Sheena KumariVeolia Water Technologies AB, AnoxKaldnes, Lund, SwedenMagnus ChristenssonDepartment Of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, MalaysiaAdeline Seak May ChuaEnvironmental Engineering, Newcastle University, Newcastle, EnglandThomas P. CurtisThe Cytryn Lab, Microbial Agroecology, Volcani Center, Agricultural Research Organization, Rishon Lezion, IsraelEddie CytrynINGEBI-CONICET, University of Buenos Aires, Buenos Aires, ArgentinaLeonardo ErijmanDepartment of Biochemistry and Microbial Genetics, Biological Research Institute “Clemente Estable”, Montevideo, UruguayClaudia EtchebehereNIREAS-International Water Research Center, University of Cyprus, Nicosia, CyprusDespo Fatta-KassinosEnvironmental Engineering, McGill University, Montreal, QC, CanadaDominic FrigonSchool of Microbiology, Universidad de Antioquia, Medellín, ColombiaMaria Carolina Garcia-ChavesSchool of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USAApril Z. GuWater Chemistry and Water Technology and DVGW Research Laboratories, Karlsruhe Institute of Technology (KIT), Karlsruhe, GermanyHarald HornDavid Jenkins & Associates, Inc, Kensington, CA, USADavid JenkinsInstitute for Water Quality and Resource Management, TU Wien, Vienna, AustriaNorbert KreuzingerWater Innovation and Research Centre, University of Bath, Bath, EnglandAna LanhamSingapore Centre of Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Singapore, SingaporeYingyu LawWater Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi ArabiaTorOve LeiknesProcess Engineering in Urban Water Management, ETH Zürich, Zürich, SwitzerlandEberhard MorgenrothDepartment of Biology, Warsaw University of Technology, Warsaw, PolandAdam MuszyńskiEnvironmental Microbial Genetics Lab, La Trobe University, Melbourne, VIC, AustraliaSteve PetrovskiTechnologies and Evaluation Area, Catalan Institute for Water Research, ICRA, Girona, SpainMaite PijuanVA Tech Wabag Ltd, Chennai, IndiaSuraj Babu PillaiBiochemical Engineering Group, Universidade Nova de Lisboa, Lisboa, PortugalMaria A. M. ReisState Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, ChinaQi RongWater Research Institute IRSA – National Research Council (CNR), Rome, ItalySimona RossettiLa Trobe University, Melbourne, VIC, AustraliaRobert SeviourDepartment of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USANick TookerKemira Oyj, Espoo R&D Center, Espo, FinlandPirjo VainioEnvironmental Biotechnology, TU Delft, Delft, The NetherlandsMark van LoosdrechtVA Tech Wabag, Philippines Inc., Makati City, PhilippinesR. VikramanDepartment of Water Technology and Environmental Engineering, University of Chemistry and Technology, Prague, Czech RepublicJiří WannerEnvironmental Life Science Engineering, TU Delft, Delft, The NetherlandsDavid WeissbrodtSchool of Environment, Tsinghua University, Beijing, ChinaXianghua WenEnvironmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong, Hong KongTong Zhang More

  • in

    Cumulative cultural evolution and mechanisms for cultural selection in wild bird songs

    Study population and song recordingsAll animal procedures were carefully reviewed by the Williams College IACUC (WH-D), the Bowdoin College Research and Oversight Committee (2009–18), and the University of Guelph Animal Care Committee (08R601), and were carried out as specified by the Canadian Wildlife Service (banding permit 10789D).We studied Savannah sparrows (Passerculus sandwichensis) at the Bowdoin Scientific Station on Kent Island, New Brunswick, Canada (44.5818°N, 66.7547°W). Since 1988, individuals nesting within a 10 ha study area in the middle of the island (30–70 pairs each year; part of a larger population of 350–500 males breeding on Kent Island and two adjacent islands) have been colour-banded to facilitate visual identification, and complete demographic information is available for birds on the study site (though not for the entire population) for the years 1989–2004 and 2009–2013. Because of strong natal and breeding philopatry51, birds hatched on the study site itself represent 40–80% of adult breeders in that area, and because of the systematic banding program, ages are known. Each year adds a new generation to the population, with yearlings making up approximately half of the adult breeding males. The birds banded and recorded on the study site are estimated to make up 10–20% of the Savannah sparrow population on Kent Island and two nearby islands.Details of the recording methods used in this study (covering the years 1980, 1982, 1988-9, 1993-8, and 2003–13) can be found elsewhere36,49. Using digitally generated sound spectrograms (using SoundEdit Pro and Audacity), birds were scored as having either a) high note cluster=a final introductory segment interval including at least two different note types, or b) a click train=one or more introductory segment intervals including at least two clicks and no other note types, or c) both features36 (see Supplementary Fig. 1 for a full description of note types). Although a small proportion of birds (mean = 8.3%) did not include either feature in their songs (such birds either had no feature in the introductory segment intervals or one non-click note type in the final interval), we did not include this option in the model and omitted these birds from summaries of the data. We did not include data after the breeding year 2013 because of we began an experimental field tutoring study in the summer of 201364.ModellingWe used a dynamic, discrete time model which allowed us to focus our analysis to specific time points within the year that are related to song learning (the beginning and end of the breeding season). These were: (1) the return of older birds between breeding seasons, (2) the recruitment of young birds singing newly crystallized songs in the spring, and (3) reproduction, resulting in the addition of juveniles during the summer breeding season.Because survival data were not available for every year during the time span we studied, we captured the variation in survival rates observed in the field57 by using a binomial distribution centered on the average historical survival rate for each age class (addressing the possibility that cultural drift resulting from random differences in survival rates was responsible for the shift in song features). The model incorporates stochasticity to capture the variation in population dynamics and return rates by assigning parameter values for survival and return rates from empirically generated probability distributions.We did not include spatial distribution of song variants in the model; although spatial patterns can be important for the dynamics of language loss58, territories with birds singing click trains and high note clusters were intermixed and no spatial structure was apparent (Fig. 3).The model assumes that males choose which features to incorporate into the introductory sections of their songs during song development. Individuals fall into one of six mutually exclusive classes of male Savannah sparrows. The classes are defined by (1) the bird’s developmental stage in the song learning process: juvenile (J, the first year, when the song is plastic) or adult (A, after the first spring, when the song is crystallized), and (2) the variant or variants sung as part of the bird’s introduction (high note clusters, click trains, or both). Denoting note high note clusters with X and click trains with C, the adult classes are therefore AX, AC, and AXC, and the juvenile classes are JX, JC, and JXC. The sum of the individuals in these classes is the total male population.We used two times during each year – late spring and late summer – to correspond to stages in song development (Fig. 5). At a given time t, when breeding is underway in the late spring, the male population consists entirely of adults singing crystallized song, and therefore each juvenile class is empty. At the end of the summer, the population of males has been augmented by juveniles, which are initially assigned to the same variant class as their fathers. To capture these dynamics, we define an intermediate time step, denoted ti. Time t + 1 then corresponds to the following breeding season (late spring), when juvenile males hatched the previous year have completed song development, crystallized their songs, and joined the adult class.Fig. 5: Model of song development.We used two age classes (J = juvenile and A = adult) and three classes of introductions (C = click trains, X = high note clusters, and  XC = both). In the late spring of a given year (time = t), only adult males are present. In late summer, those adults have bred and both they and juvenile males are present; at this intermediate time (ti) each male is initially allocated the same introduction type as his father (solid lines). Then, as song development progresses and juvenile males can be influenced by other tutors, they may retain their initial introduction type or switch to either of the other two types (dashed lines) before they crystallize their songs late in the following spring (time = t+1), and join the breeding cohort, which also includes adult males from the previous year who returned to breed again.Full size imageIn the late summer the male population increases with the addition of juveniles hatched that year, some of which will return to join the singing population the following year; survivors will return to breed within a few hundred meters of where they hatched51. To fit the observed historical decline in the Kent Island population57, the total number of returning juveniles, r (including both those hatched on site and those immigrating from nearby populations at time), follows a Poisson distribution where m = 33.6 – .182x and x is the number of years since 1980 (this function results in a decline of 5 males per decade; the initial number on the study site used in the model, 70, was extrapolated from historical data). The size of each returning juvenile class at time ti then takes the form:$${{{{{{rm{JY}}}}}}}_{{{{{{{rm{t}}}}}}}^{{{{{{rm{i}}}}}}}} sim {{{{{rm{Poisson}}}}}}left(mright)frac{{{{{{rm{A}}}}}}{{{{{{rm{Y}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}}{{{{{{rm{A}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{rm{t}}}}}}}+{{{{{rm{A}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{rm{t}}}}}}}+{{{{{rm{AX}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{rm{t}}}}}}}}$$
    (1)
    for each Y ∈ {X, C, XC}.After the following winter, the proportion of surviving adults at time t + 1 follows a binomial distribution where the mean survival rate s = 0.48 is derived from historical data. Therefore, each adult class takes the form:$${{{{{rm{A}}}}}}{{{{{{rm{Y}}}}}}}_{{{{{{rm{t}}}}}}+1} sim {{{{{rm{Binomial}}}}}}left({{{{{rm{AY}}}}}},{{{{{rm{s}}}}}}right)* {{{{{rm{A}}}}}}{{{{{{rm{Y}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}$$
    (2)
    At the beginning of the next breeding season, juveniles complete song learning64, choosing which variant to crystallize as part of the song, and enter an adult song class; thus all of the juvenile classes disappear at t + 1. Which adult class juveniles join depends on separate learning functions for each of the two variants, ϕX for the high note cluster and ϕC for the click train. The ϕ function takes values between 0 and 1 and gives the probability of crystallizing a song form during the transition from natal year to breeding, depending upon the frequency-dependent bias and selection parameters (see below). These functions define the proportion of features that appear in the next generation as compared to that of the previous generation. Therefore we have:$${{{{{rm{A}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{rm{t}}}}}}+1}={left({{{upphi }}}_{{{{{{rm{X}}}}}}}right)}^{2}{{{{{rm{J}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{left(1-{{{upphi }}}_{{{{{{rm{C}}}}}}}right)}^{2}{{{{{rm{J}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{{{upphi }}}_{{{{{{rm{X}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{C}}}}}}}right){{{{{rm{JX}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{{{{{rm{A}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}$$
    (3)
    $${{{{{rm{A}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{rm{t}}}}}}+1}={left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right)}^{2}{{{{{rm{J}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{left({{{upphi }}}_{{{{{{rm{C}}}}}}}right)}^{2}{{{{{rm{J}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right){{{upphi }}}_{{{{{{rm{C}}}}}}}{{{{{rm{JX}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{{{{{rm{A}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}$$
    (4)
    $${{{{{rm{A}}}}}}{{{{{{rm{XC}}}}}}}_{{{{{{rm{t}}}}}}+1}=2{{{upphi }}}_{{{{{{rm{X}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right){{{{{rm{J}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+2{{{upphi }}}_{{{{{{rm{C}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{C}}}}}}}right){{{{{rm{J}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+({{{upphi }}}_{{{{{{rm{X}}}}}}}{{{upphi }}}_{{{{{{rm{C}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right)left(1-{{{upphi }}}_{{{{{{rm{C}}}}}}}right){{{{{rm{JX}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}})+{{{{{rm{A}}}}}}{{{{{{rm{XC}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}$$
    (5)
    The sum of probabilities defining all of song crystallization outcomes for the songs of fathers with song type X is:$${left({{{upphi }}}_{{{{{{rm{X}}}}}}}right)}^{2}+{left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right)}^{2}+2{{{upphi }}}_{{{{{{rm{X}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right)=1$$
    (6)
    Learning curvesTo define how young males’ song learning is influenced by the songs they hear, we used learning curves based on type III Holling response curves59 which provide a means to numerically capture functional responses. In our model, the type III curve models the response of juvenile to the song form of adults in the population based on two variables: (1) frequency-dependent bias that favors one form based on its prevalence within the adult population, and (2) selection that favors a particular form of the song.The learning curves, ϕx for the high note cluster and ϕc for the click train, are modified forms of the type III Holling response curve):$${{{upphi }}}_{{{{{{rm{x}}}}}}}=frac{{x}^{{{{{{rm{beta }}}}}}}/{{{{{rm{sigma }}}}}}}{{(1-x)}^{{{{{{rm{beta }}}}}}}+({x}^{{{{{{rm{beta }}}}}}}/{{{{{rm{sigma }}}}}})}$$
    (7)
    and$${{{upphi }}}_{{{{{{rm{c}}}}}}}=frac{{{{{{rm{sigma }}}}}},{c}^{{{{{{rm{beta }}}}}}}}{{(1-c)}^{{{{{{rm{beta }}}}}}}+{{{{{rm{sigma }}}}}}{{c}}^{{{{{{rm{beta }}}}}}}}$$
    (8)
    where x is the proportion of the high note cluster within the population, c is the proportion of the click train within the population, β is frequency-dependent bias (favoring learning the novel or retaining the common variant), and σ is selection on the novel variant (a preference for learning the variant that is not dependent on frequency of the variant and includes factors such as prestige bias, success bias, status, and content bias). Note that the two learning curves do not have identical equations, because selection is not frequency-dependent. In these equations, β  > 1 corresponds to conformist selection, and when β  1 correspond to selection for a novel variant and values of σ  More

  • in

    Transatlantic spread of highly pathogenic avian influenza H5N1 by wild birds from Europe to North America in 2021

    Epidemiological description of exhibition farm outbreakThe index farm where highly pathogenic avian influenza (HPAI) H5N1 virus in captive birds occurred was an exhibition farm in St. John’s, Province of Newfoundland and Labrador, Canada. The farm housed 409 birds of different species, namely chickens, guineafowl, peafowl, emus, domestic ducks, domestic geese, and domestic turkeys. On 9th December 2021, the farm owner first noticed mortality. On 13th December, the farm owner reported the increased mortality to a local veterinarian. Autopsies on four chickens showed swollen heads and cutaneous haemorrhages. Oropharyngeal and cloacal swabs from these chickens tested positive for H5 avian influenza virus at the Atlantic Veterinary College, University of Prince Edward Island, and the Canadian Food Inspection Agency (CFIA) was notified. On 16th December, by which time 306 birds (mostly chickens, turkeys and guineafowl) had died, staff of the CFIA collected tissue samples from dead chickens, as well as oropharyngeal and cloacal swabs and sera from different species of captive birds still present (Table 1), after which all remaining captive birds were culled. All oropharyngeal and cloacal swabs tested positive for HPAI virus of the subtype H5N1 by real-time RT-PCR, and all sera tested positive for influenza nucleoprotein antibodies by ELISA. On 20th December, the CFIA confirmed the diagnosis of HPAI of the subtype H5N1.Table 1 List of samples for virological and serological analysis collected by CFIA on 17 December 2021 from different species of captive birds still present at the farm.Full size tableWild birds were frequently observed co-mingling with the captive population. Captive birds except emus were allowed to move freely in and out of the open pens in which they were housed. At an on-site pond, domestic ducks were reported to mingle with free-living mallards (scientific names of wild birds in Table 2), and a snowy egret had been observed around 2nd to 6th December. Other wild birds reported on the farm were common starlings, feral pigeons, and unspecified gulls.Table 2 Common and scientific species names of the birds mentioned in the text.Full size tableRetrospectively, HPAI H5N1 virus also was identified in tissues of a great black-backed gull found at a nearby pond in St. John’s. The gull had been found ill on 26th November 2021 and taken to a local wildlife rehabilitation centre, where it died the following day.Phylogenetic analysisPhylogenetic analyses were performed to compare the genome sequences of the Newfoundland viruses from the exhibition farm birds and a great black-backed gull found nearby to other influenza viruses in the database. Based on BLAST analysis all eight gene segments of the virus had a Eurasian origin, and the virus was identified as a clade 2.3.4.4b H5N1 virus. Based on maximum likelihood and time-resolved trees inferred by use of whole genome sequences, the Newfoundland viruses had a shared common ancestor with European viruses circulating in early 2021 (Figs. 1, 2). The dates for the most recent common ancestor (MRCA) of all gene segments ranged from December 2019 to April 2021 (Table 3). There was no evidence that the Newfoundland viruses were genetically closely related to other current or recent viruses circulating in Europe. In contrast to currently circulating European viruses, the sequences of the Newfoundland viruses had no evidence of reassortment with other avian influenza viruses after ancestral emergence (Fig. 3). The virus from the great black-backed gull was highly similar to those from the exhibition farm, except for a small number of nucleotide differences in the neuraminidase (N) gene segment.Figure 1Maximum likelihood phylogenetic tree of the H5 HA gene. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order. Clades are collapsed for clarity.Full size imageFigure 2Maximum likelihood phylogenetic tree of the H5 gene segments. Relationships among the European 2021 H5 2.3.4.4b HPAI strains (magenta) and the Newfoundland wild bird and outbreak strains (red) are shown. The tree is rooted by the outgroup and nodes placed in descending order; order: HA, NA, PA, PB1, PB2, NP, MP, NS.Full size imageTable 3 Dates for the most recent common ancestor (MRCA) of all gene segments.Full size tableFigure 3Phylogenetic incongruence analyses. Maximum likelihood trees for the H and N gene segments and internal gene segments from equivalent strains were connected across the trees. Tips and connecting lines are coloured according to the legend.Full size imageAnalysis of avian migration and potential routes for HPAI H5 virus to be carried across the Atlantic with migrating birdsThere are several pathways for HPAI H5N1 virus to be carried across the Atlantic with migrating birds, based on the multitude of migration routes of wild birds and their overlapping ranges at breeding, stop-over, and wintering sites. Ring-recovery data confirm the regular movements of wild birds from Europe to Iceland and other North Atlantic islands, and from there to North America, and also provide evidence for direct movements of for example seabirds and gulls (Supplementary Table 1). Ringed individuals with a European origin have been found on Newfoundland for 10 of the 24 species in Supplementary Table 1: barnacle goose (1 ringed individual), Eurasian wigeon (5), Eurasian teal (1), great skua (13), European herring gull (1), black-headed gull (1), black-legged kittiwake (102), purple sandpiper (1), Brunnich’s guillemot (15), and Atlantic puffin (50). Given that the most likely ancestor of the virus detected in Newfoundland was circulating in Northwest Europe between the beginning of the 2020/2021 outbreak in Europe in October 2020 and April 2021 (see above), likely routes include spring migration of bird species moving to Icelandic, Greenlandic or Canadian High Arctic breeding grounds, or migration directly across the Atlantic Ocean (Fig. 4).Figure 4Maps of transatlantic migration. Putative virus transmission pathways between Europe and Newfoundland via migratory waterfowl/shorebirds (a) and pelagic seabirds (b). Many Icelandic waterfowl and shorebirds (a) winter in Northwest Europe and return to Iceland to breed in spring (1), including whooper swans, greylag geese, pink-footed geese, Eurasian wigeons, Eurasian teals, northern pintails, common ringed plovers and purple sandpipers. Some bird populations use Iceland as a stopover site, and continue to breeding grounds in East Greenland (2; barnacle geese and pink-footed geese), the East Canadian Arctic (3; light-bellied brent geese, red knots, ruddy turnstones) and West Greenland (4; greater white-fronted geese). Migratory birds from Europe share these breeding areas with species that winter in North America, including Canada geese and snow geese from East Greenland and the East Canadian Arctic (5), and some Iceland-breeding species of duck, including small numbers of Eurasian wigeons, Eurasian teals, and tufted ducks (6). Several seabird species (b), such as gulls, skuas, fulmars and auks, have large breeding ranges in the Arctic. After the breeding season many species become fully pelagic and can roam large parts of the northern Atlantic. The mid-Atlantic ridge outside Newfoundland is an important non-breeding area for seabirds, and is frequented by auks from Iceland (7), Svalbard (8) and Norway (9), including large numbers of Atlantic puffins and Brünnich guillemots, and by black-legged kittiwakes and northern fulmars originating from Iceland, Norway and the United Kingdom (7–8, 10). There these birds are joined by seabirds from Canadian and Greenlandic waters (11). Direct migratory links to Newfoundland occurs through greater and lesser-black backed gulls as well as black-headed gulls from Iceland and Greenland (12, 13), and gulls also link the pelagic and the coastal zone around Newfoundland (14). Thickness of the lines highlights the relative approximate population sizes. Dashed lines show where small numbers of individuals, or vagrants, provide a potential pathway. For more details on species and population numbers see Table 2. This figure was prepared using the software R (version 4.0.5, https://www.r-project.org/) and the following packages: -ggplot2 (version 3.3.5, https://cran.r-project.org/web/packages/ggplot2/index.html), -sf (version 1.0.5, https://cran.r-project.org/web/packages/sf/index.html).Full size imageThe first possible route via Iceland seems to be the strongest link between Newfoundland and Europe14,15,16,17, because it is a meeting point of breeding bird populations which winter in Europe as well as along the East coast of North America. Numerous species, totaling almost two million individual birds, migrate annually from northwestern Europe to breeding grounds in Iceland and beyond. Several populations breed on Iceland, including swans (whooper swan) (Supplementary Table 1), geese (greylag goose, pink-footed goose), ducks (Eurasian wigeon, Eurasian teal, Northern pintail), gulls (great- and lesser black-backed gull, black-headed gull, black-legged kittiwake) and shorebirds (common ringed plover, purple sandpiper, Supplementary Table 1). In addition, several species (e.g. barnacle geese and pink-footed geese) migrating to breeding grounds further away (Greenland and/or Canadian High Arctic) make spring and autumn stopovers in Iceland18,19. This creates potential for the virus to have been spread northwards to Iceland (or further northward) in spring, where it could have circulated among breeding birds, or transmitted during autumn migration by species returning from the Arctic. Several Iceland-breeding species of ducks (Eurasian wigeon, Eurasian teal, tufted duck), gulls (lesser black-backed gull, black-legged kittiwake, black-headed gull) and alcids (Brunnich’s guillemot, Atlantic puffin) winter along the Atlantic coast of North America in variable numbers (Supplementary Table 1). If the virus was transmitted to one of these populations during their stay on Iceland, it could have been spread to Newfoundland during the subsequent autumn migration. Importantly, Iceland-breeding Eurasian wigeons or Eurasian teals could be responsible for both the journey to Iceland from European wintering grounds, as well as the journey from Iceland to Newfoundland, where these species are frequently encountered as vagrants (Supplementary Table 1)20,21.The second possible route is via species that migrate from northwestern Europe to the Canadian High Arctic and/or Northwest Greenland. These include shorebirds (e.g. ruddy turnstone, red knot) and some geese (light-bellied brent goose and greater white-fronted goose). If the virus circulated in these breeding populations and then moved to other coastal marine bird populations bordering Baffin Bay, which include huge numbers of colonial seabirds and marine waterfowl22,23, the virus could have followed a coastal or even pelagic route south with the large autumn migration of Arctic marine birds (various sea ducks, auks and larids)24,25 to emerge in Newfoundland. Alternatively, shorebirds and waterfowl may have played a role: several European-wintering populations have overlapping breeding grounds with populations wintering along the east coast of North America. Regarding geese, greater white-fronted geese share breeding grounds in western Greenland with Canada geese26,27, which migrate south along the Canadian Atlantic coast. Also, brent geese have overlapping breeding grounds with snow geese18. In addition, individual barnacle geese and pink-footed geese breeding in Greenland could also have travelled south to Newfoundland carrying the virus, as these birds are regular vagrants to the North American Atlantic coast28. While geese occur only in small numbers on Newfoundland, two barnacle geese and four pink-footed geese, probably originating from Greenland breeding grounds, were observed in the autumn of 2021. St. John’s is the first major population center on a coastal route south from Baffin Bay/Davis Strait and along the Labrador Shelf, so emergence in eastern Newfoundland is consistent with this route.Three wild bird species involved in the Iceland and/or Greenland/High Canadian Arctic routes deserve particular attention. Eurasian wigeon have been prominently involved in outbreaks in Eurasia, and are considered prime candidates for carrying HPAI virus over long distances29. Also, during the first stages of an outbreak they are one of the first species to be detected HPAI virus positive, often without clinical signs. Barnacle geese and greylag geese, which congregate in Iceland, were in the top three most abundant species detected H5-positive in Europe in late winter and early spring 20215. Given that both greylag and barnacle geese have populations breeding on Iceland/Greenland and wintering in Europe (particularly the UK), these two species are high on the list of probable vectors that transported the virus to Iceland/Greenland and finally to Newfoundland. The high involvement of infected geese in the HPAI dynamics, which was not seen before October 2020, together with the unusually high levels of HPAI H5 virus presence in wild birds in Northwest Europe in spring 2021, might also explain why HPAI H5 virus spread to Newfoundland this winter (2021/2022), and not in the previous winters (2020/2021, 2016/2017, 2014/2015, 2005/2006). It is, however, striking that no cases of HPAI H5 virus have been recorded on Iceland in 2021.A third possible, pelagic, route is directly across the Atlantic Ocean. Such a route could have started with coastal and pelagic seabirds in Northwest Europe, where the virus may have remained undetected for much of the summer of 2021. A subsequent migration of seabirds to Newfoundland waters in the autumn of 2021 could have brought the virus to North America. The large populations of black-legged kittiwakes and northern fulmars that breed in the U.K. have long been known to frequent Newfoundland waters30, and these movements have been corroborated by recent telemetry studies31. Further, recent telemetry information reveals that millions of pelagic seabirds breeding all across the Atlantic congregate over the Mid-Atlantic Ridge in the central North Atlantic at all times of year32, making a pelagic transmission route a possibility. From the pelagic wintering grounds off Newfoundland, a species that uses both pelagic and coastal habitats, possibly a gull, may have brought the virus to shore in St. John’s. Trans-Atlantic transmission via seabirds has been suggested for LPAI viruses, including detection of mosaic Eurasian-North American viruses in gulls and alcids12,33,34,35.For the time period and geographical frame considered, HPAI-H5-positive species included ducks (Eurasian wigeon, mallard, common eider), geese (barnacle, greylag, brent, pink-footed and greater white-fronted goose), swans (whooper), gulls (black-headed, herring, lesser black-backed, great black-backed), and shorebirds (red knot, ruddy turnstone) (Supplementary Table 2). Of these 15 species, ringed individuals with a European origin have been recorded on Newfoundland for barnacle goose (1 ringed individual), Eurasian wigeon (5), great skua (13), and black-headed gull (1) (Supplementary Table 1). Ringed individuals with a European origin have been found on Newfoundland for 5 species which were found to be HPAI-H5-positive between October 2020 and April 2021, such as Barnacle Goose (1), Eurasian Wigeon (5), Great Skua (13), Black-headed Gull (1). These species might be considered to be possible carriers of HPAI H5 virus from Europe in late winter 2020/2021 or early spring 2021 partly or all the way to Newfoundland. However, given the incompleteness of sampling and the possibility of wild birds carrying HPAI virus subclinically, the involvement of other wild bird species in transatlantic virus transport cannot be ruled out.Having reached the Avalon Peninsula of Newfoundland via one of above routes, the virus may have spread further within the abundant local populations of ducks and gulls wintering in the city of St. John’s. The peridomestic populations of some of these species may be candidates for incursion of the virus into the farm in St John’s. More

  • in

    Periodically taken photographs reveal the effect of pollinator insects on seed set in lotus flowers

    Faegri, K. & van der Pijl, L. The Principles of Pollination Ecology 2nd edn. (Pergamon Press, 1971).
    Google Scholar 
    Crepet, W. L. The role of insect pollination in the evolution of the angiosperms. In Pollination Biology (ed. Real, L.) 29–50 (Academic Press, 1983).Chapter 

    Google Scholar 
    Dressler, R. L. Biology of the orchid bees (Euglossini). Annu. Rev. Ecol. Syst. 13, 373–394 (1982).Article 

    Google Scholar 
    Ollerton, J. et al. A global test of the pollination syndrome hypothesis. Ann. Bot. 103, 1471–1480 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IPBES. The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. (IPBES Secretariat, 2016).Kearns, C. A., Inouye, D. W. & Waser, N. M. Endangered mutualisms : The conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112 (1998).Article 

    Google Scholar 
    Ollerton, J. Pollinator diversity: Distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).Article 

    Google Scholar 
    Irwin, R. E., Bronstein, J. L., Manson, J. S. & Richardson, L. Nectar robbing: Ecological and evolutionary perspectives. Annu. Rev. Ecol. Evol. Syst. 41, 271–292 (2010).Article 

    Google Scholar 
    Hargreaves, A. L., Harder, L. D. & Johnson, S. D. Consumptive emasculation: The ecological and evolutionary consequences of pollen theft. Biol. Rev. 84, 259–276 (2009).PubMed 
    Article 

    Google Scholar 
    McCall, A. C. & Irwin, R. E. Florivory: The intersection of pollination and herbivory. Ecol. Lett. 9, 1351–1365 (2006).PubMed 
    Article 

    Google Scholar 
    King, C., Ballantyne, G. & Willmer, P. G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811–818 (2013).Article 

    Google Scholar 
    Komamura, R., Koyama, K., Yamauchi, T., Konno, Y. & Gu, L. Pollination contribution differs among insects visiting cardiocrinum cordatum flowers. Forests 12, 452 (2021).Article 

    Google Scholar 
    Aizen, M. A. Flower sex ratio, pollinator abundance, and the seasonal pollination dynamics of a protandrous plant. Ecology 82, 127–144 (2001).Article 

    Google Scholar 
    Forrest, J. R. K., Ogilvie, J. E., Gorischek, A. M. & Thomson, J. D. Seasonal change in a pollinator community and the maintenance of style length variation in Mertensia fusiformis (Boraginaceae). Ann. Bot. 108, 1–12 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burrill, R. M. & Dietz, A. The response of honey bees to variations in solar radiation and temperature. Apidologie 12, 319–328 (1981).Article 

    Google Scholar 
    Corbet, S. A. et al. Temperature and the pollinating activity of social bees. Ecol. Entomol. 18, 17–30 (1993).Article 

    Google Scholar 
    Herrera, C. M. Daily patterns of pollinator activity, differential pollinating effectiveness, and floral resource availability, in a summer-flowering Mediterranean shrub. Oikos 58, 277–288 (1990).Article 

    Google Scholar 
    Zoller, L., Bennett, J. M. & Knight, T. M. Diel-scale temporal dynamics in the abundance and composition of pollinators in the Arctic summer. Sci. Rep. 10, 21187 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirk, W. D. J., Ali, M. & Breadmore, K. N. The effects of pollen beetles on the foraging behaviour of honey bees. J. Apic. Res. 34, 15–22 (1995).Article 

    Google Scholar 
    Tan, K. et al. Fearful foragers: Honey bees tune colony and individual foraging to multi-predator presence and food quality. PLoS ONE 8, e75841 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baldock, K. C. R., Memmott, J., Carlos Ruiz-Guajardo, J., Roze, D. & Stone, G. N. Daily temporal structure in African savanna flower visitation networks and consequences for network sampling. Ecology 92, 687–698 (2011).PubMed 
    Article 

    Google Scholar 
    Edwards, J., Smith, G. P. & McEntee, M. H. F. Long-term time-lapse video provides near complete records of floral visitation. J. Pollinat. Ecol. 16, 91–100 (2015).CAS 
    Article 

    Google Scholar 
    Knop, E. et al. Rush hours in flower visitors over a day–night cycle. Insect Conserv. Divers. 11, 267–275 (2018).Article 

    Google Scholar 
    Herrera, J. Pollination relationships in southern Spanish Mediterranean shrublands. J. Ecol. 76, 274–287 (1988).Article 

    Google Scholar 
    Eckhart, V. M. Spatio-temporal variation in abundance and variation in foraging behavior of the pollinators of gynodioecious Phacelia linearis (Hydrophyllaceae). Oikos 64, 573–586 (1992).Article 

    Google Scholar 
    Nakano, C. & Washitani, I. Variability and specialization of plant-pollinator systems in a northern maritime grassland. Ecol. Res. 18, 221–246 (2003).Article 

    Google Scholar 
    Moeller, D. A. Pollinator community structure and sources of spatial variation in plant-pollinator interactions in Clarkia xantiana ssp. xantiana. Oecologia 142, 28–37 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    Lortie, C. J., Budden, A. E. & Reid, A. M. From birds to bees: Applying video observation techniques to invertebrate pollinators. J. Pollinat. Ecol. 6, 125–128 (2012).
    Google Scholar 
    Pegoraro, L., Hidalgo, O., Leitch, I. J., Pellicer, J. & Barlow, S. E. Automated video monitoring of insect pollinators in the field. Emerg. Top. Life Sci. 4, 87–97 (2020).PubMed 
    Article 

    Google Scholar 
    Steen, R. & Aase, A. L. T. O. Portobale digital video surveillance system for monitoring flower-visiting bumblebees. J. Pollinat. Ecol. 5, 90–94 (2011).Article 

    Google Scholar 
    Sakamoto, R. L., Morinaga, S. I., Ito, M. & Kawakubo, N. Fine-scale flower-visiting behavior revealed by using a high-speed camera. Behav. Ecol. Sociobiol. 66, 669–674 (2012).Article 

    Google Scholar 
    Georgian, E., Fang, Z., Emshwiller, E. & Pidgeon, A. The pollination ecology of Rhododendron floccigerum Franchet (Ericaceae) in Weixi, Yunnan Province, China. J. Pollinat. Ecol. 16, 72–81 (2015).Article 

    Google Scholar 
    Suetsugu, K., Nakahama, N., Ito, A. & Isagi, Y. Time-lapse photography reveals the occurrence of unexpected bee-pollination in Calanthe izuinsularis, an endangered orchid endemic to the Izu archipelago. J. Nat. Hist. 51, 783–792 (2017).Article 

    Google Scholar 
    Steen, R. Diel activity, frequency and visit duration of pollinators in focal plants: in situ automatic camera monitoring and data processing. Methods Ecol. Evol. 8, 203–213 (2017).Article 

    Google Scholar 
    Burton, A. C. et al. Wildlife camera trapping: A review and recommendations for linking surveys to ecological processes. J. Appl. Ecol. 52, 675–685 (2015).Article 

    Google Scholar 
    Edwards, J., Griffin, A. J. & Knoedler, M. R. Simultaneous recordings of insect visitors to flowers show spatial and temporal heterogeneity. Ann. Entomol. Soc. Am. 112, 93–98 (2019).Article 

    Google Scholar 
    Droissart, V. et al. PICT: A low-cost, modular, open-source camera trap system to study plant–insect interactions. Methods Ecol. Evol. 12, 1389–1396 (2021).Article 

    Google Scholar 
    Li, Y. et al. Paleobiogeography of the lotus plant (Nelumbonaceae: Nelumbo) and its bearing on the paleoclimatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 284–293 (2014).Article 

    Google Scholar 
    Li, J. & Huang, S. Effective pollinators of Asian sacred lotus (Nelumbo nucifera): Contemporary pollinators may not reflect the historical pollination syndrome. Ann. Bot. 104, 845–851 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee, T. D. Patterns of fruit and seed production. In Plant Reproductive Ecology: Patterns and Strategies (eds Doust, J. L. & Doust, L. L.) 179–202 (Oxford University Press, 1988).
    Google Scholar 
    Moro, C. F., Yonekura, M., Kouzuma, Y., Agrawal, G. K. & Rakwal, R. Lotus—a source of food and medicine: Current status and future perspectives in context of the seed proteomics. Int. J. Life Sci. 7, 1–5 (2013).CAS 
    Article 

    Google Scholar 
    Zhu, M., Liu, T. & Guo, M. Current advances in the metabolomics study on lotus seeds. Front. Plant Sci. 7, 891 (2017).
    Google Scholar 
    Guo, H. B. Cultivation of lotus (Nelumbo nucifera Gaertn. Ssp. nucifera) and its utilization in China. Genet. Resour. Crop Evol. 56, 323–330 (2009).Article 

    Google Scholar 
    Vogel, S. & Hadacek, F. Contributions to the functional anatomy and biology of Nelumbo nucifera (Nelumbonaceae) III. An ecological reappraisal of floral organs. Plant Syst. Evol. 249, 173–189 (2004).Article 

    Google Scholar 
    Seymour, R. S. & Schultze-Motel, P. Thermoregulating lotus flowers. Nature 383, 305 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Dieringer, G., Leticia Cabrera, R. & Mottaleb, M. Ecological relationship between floral thermogenesis and pollination in Nelumbo lutea (Nelumbonaceae). Am. J. Bot. 101, 357–364 (2014).PubMed 
    Article 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).Inouye, D. W., Gill, D. E., Dudash, M. R. & Fenster, C. B. A model and lexicon for pollen fate. Am. J. Bot. 81, 1517–1530 (1994).Article 

    Google Scholar 
    Ne’Eman, G., Jürgens, A., Newstrom-Lloyd, L., Potts, S. G. & Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. 85, 435–451 (2010).PubMed 

    Google Scholar 
    Kearns, C. A. & Inouye, D. W. Techniques for Pollination Biologists (University Press of Colorado, 1993).
    Google Scholar 
    Delaplane, K. S., Mayer, D. R. & Mayer, D. F. Crop Pollination by Bees (CABI Publishing, 2000).
    Google Scholar 
    Oldroyd, B. P. & Nanork, P. Conservation of Asian honey bees. Apidologie 40, 296–312 (2009).Article 

    Google Scholar 
    Abou-Shaara, H. F. The foraging behaviour of honey bees Apis mellifera: A review. Vet. Med. (Praha) 59, 1–10 (2014).Article 

    Google Scholar 
    Reyes-Carrillo, J. L., Eischen, F. A., Cano-Rios, P., Rodríguez Martínez, R. & Nava Camberos, U. Pollen collection and honey bee forager distribution in cantaloupe. Acta Zool. Mex. 23, 29–36 (2007).
    Google Scholar 
    Bloch, G., Bar-Shai, N., Cytter, Y. & Green, R. Time is honey: Circadian clocks of bees and flowers and how their interactions may influence ecological communities. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160256 (2017).Article 
    CAS 

    Google Scholar 
    Lawson, D. A. & Rands, S. A. The effects of rainfall on plant–pollinator interactions. Arthropod. Plant. Interact. 13, 561–569 (2019).Article 

    Google Scholar 
    Antiqueira, P. A. P. et al. Precipitation and predation risk alter the diversity and behavior of pollinators and reduce plant fitness. Oecologia 192, 745–753 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Matsuura, M. Comparative biology of the five Japanese species of the genus Vespa (Hymenoptera, Vespidae). Bull. Fac. Agric. Mie Univ. 69, 1–131 (1984).
    Google Scholar 
    Dukas, R. Effects of perceived danger on flower choice by bees. Ecol. Lett. 4, 327–333 (2001).Article 

    Google Scholar 
    Romero, G. Q., Antiqueira, P. A. P. & Koricheva, J. A meta-analysis of predation risk effects on pollinator behaviour. PLoS ONE 6, e20689 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kluser, S. & Peduzzi, P. Global pollinator decline : A literature review. UNEP/GRID-Europe (2007).Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).Article 

    Google Scholar 
    Paudel, Y. P., Mackereth, R., Hanley, R. & Qin, W. Honey bees (Apis mellifera L.) and pollination issues: current status, impacts and potential drivers of decline. J. Agric. Sci. 7, 93–109 (2015).
    Google Scholar 
    Theisen-Jones, H. & Bienefeld, K. The Asian honey bee (Apis cerana) is significantly in decline. Bee World 93, 90–97 (2016).Article 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. U.S.A. 108, 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wood, T. J. et al. Managed honey bees as a radar for wild bee decline?. Apidologie 51, 1100–1116 (2020).Article 

    Google Scholar 
    Thapa, R. Honeybees and other insect pollinators of cultivated plants: A review. J. Inst. Agric. Anim. Sci. 27, 1–23 (2006).Article 

    Google Scholar 
    Nicholls, C. I. & Altieri, M. A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 33, 257–274 (2013).Article 

    Google Scholar 
    Rader, R., Howlett, B. G., Cunningham, S. A., Westcott, D. A. & Edwards, W. Spatial and temporal variation in pollinator effectiveness: Do unmanaged insects provide consistent pollination services to mass flowering crops?. J. Appl. Ecol. 49, 126–134 (2012).Article 

    Google Scholar 
    Nikkeshi, A., Inoue, H., Arai, T., Kishi, S. & Kamo, T. The bumblebee Bombus ardens ardens (Hymenoptera: Apidae) is the most important pollinator of Oriental persimmon, Diospyros kaki (Ericales: Ebenaceae), in Hiroshima, Japan. Appl. Entomol. Zool. 54, 409–419 (2019).Article 

    Google Scholar 
    Macgregor, C. J. & Scott-Brown, A. S. Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerg. Top. Life Sci. 4, 19–32 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilpin, A. M., Denham, A. J. & Ayre, D. J. The use of digital video recorders in pollination biology. Ecol. Entomol. 42, 383–388 (2017).Article 

    Google Scholar 
    Barlow, S. E. & O’Neill, M. A. Technological advances in field studies of pollinator ecology and the future of e-ecology. Curr. Opin. Insect Sci. 38, 15–25 (2020).PubMed 
    Article 

    Google Scholar 
    Suzuki-Ohno, Y. et al. Deep learning increases the availability of organism photographs taken by citizens in citizen science programs. Sci. Rep. 12, 1–10 (2022).Article 
    CAS 

    Google Scholar 
    Høye, T. T. et al. Deep learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. U.S.A. 118, 1–10 (2021).
    Google Scholar  More

  • in

    Morphological variability of Carex buekii (Cyperaceae) as a function of soil conditions: a case study of the Central European populations

    Mal, T. K. & Lovett-Doust, J. Phenotypic plasticity in vegetative and reproductive traits in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. Am. J. Bot. 92, 819–825 (2005).PubMed 
    Article 

    Google Scholar 
    Wang, S., Li, L. & Zhou, D.-W. Morphological plasticity in response to population density varies with soil conditions and growth stage in Abutilon theophrasti (Malvaceae). Plant Ecol. 218, 785–797 (2017).Article 

    Google Scholar 
    Eid, E. M., Shaltout, K. H., Al-Sodany, Y. M., Haroun, S. A. & Jensen, K. A comparison of the functional traits of Phragmites australis in Lake Burullus (a Ramsar site in Egypt): Young vs. old populations over the nutrient availability gradient. Ecol. Eng. 166, 106244 (2021).Article 

    Google Scholar 
    Hassan, M. O. et al. Habitat variations affect morphological, reproductive and some metabolic traits of Mediterranean Centaurea glomerata Vahl populations. Heliyon 6, e04173 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Więcław, H. Within-species variation among populations of the Carex flava complex as a function of habitat conditions. Plant Ecol. Divers. 10, 443–451 (2017).Article 

    Google Scholar 
    MacLeod, N. Phylogenetic signals in morphometric data. In Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P.) 100–138 (Taylor & Francis, Routledge, 2002).Chapter 

    Google Scholar 
    Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 208747 (2014).
    Google Scholar 
    Koopman, J. et al. Global distribution of Carex buekii (Cyperaceae) reappraised. Phytotaxa 358, 139–161 (2018).Article 

    Google Scholar 
    Egorova, T. V. The Sedges (Carex L.) of Russia and Adjacent States (Within the Limits of the Former USSR) (St.-Petersburg State Chemical-Pharmaceutical Academy, St.-Petersburg, 1999).
    Google Scholar 
    Burkart, M. River corridor plants (Stromtalpflanzen) in Central European lowland: A review of a poorly understood plant distribution pattern: River corridor plants. Glob. Ecol. Biogeogr. 10, 449–468 (2001).Article 

    Google Scholar 
    Więcław, H. et al. Ecology, threats and conservation status of Carex buekii (Cyperaceae) in Central Europe. Sci. Rep. 9, 11162 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nobis, A. & Skórka, P. River corridor plants revisited: What drives their unique distribution patterns?. Plant Biosyst. 150, 244–253 (2016).Article 

    Google Scholar 
    Spink, A., Sparks, R. E., Van Oorschot, M. & Verhoeven, J. T. A. Nutrient dynamics of large river floodplains. Regul. Rivers. Res. Manag. 14, 203–216 (1998).Article 

    Google Scholar 
    Myśliwy, M. Diversity and environmental variability of riparian tall herb fringe communities of the order Convolvuletalia sepium in Polish river valleys. Monographiae Botaniceae 108, 1–129 (2019).Article 

    Google Scholar 
    Fischer, W. Die Stromtalpflanzen Brandenburgs. Unter Havel. Naturkundliche Berichte 5, 4–13 (1996).
    Google Scholar 
    Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (assessed: 08 March 2022).Methods of Soil Analysis: Part 3 Chemical Methods. (Soil Science Society of America, American Society of Agronomy, 1996). https://doi.org/10.2136/sssabookser5.3.StatSoft Inc. Electronic Statistics Textbook. (Tulsa, OK: StatSoft, 2013).ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). (Ithaca NY, 2002).Xu, X. et al. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 11, 904 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sardans, J. & Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 10, 419 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Broadley, M. R. et al. Phylogenetic variation in the shoot mineral concentration of angiosperms. J. Exp. Bot. 55, 321–336 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watanabe, T. et al. Evolutionary control of leaf element composition in plants. New Phytol. 174, 516–523 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Konings, H., Koot, E. & Wolf, A. T. Growth characteristics, nutrient allocation and photosynthesis of Carex species from floating fens. Oecologia 80, 111–121 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Busch, J. Characteristic values of key ecophysiological parameters in the genus Carex. Flora 196, 405–430 (2001).Article 

    Google Scholar 
    Zhang, D. et al. Effect of hydrological fluctuation on nutrient stoichiometry and trade-offs of Carex schmidtii. Ecol. Ind. 120, 106924 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, D. et al. Growth and physiological responses of Carex schmidtii to water-level fluctuation. Hydrobiologia 847(3), 967–981 (2020).CAS 
    Article 

    Google Scholar 
    Yan, H. et al. Growth and physiological responses to water depths in Carex schmidtii Meinsh. PLoS ONE 10(5), e0128176 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Luo, W. & Xie, Y. Growth and morphological responses to water level and nutrient supply in three emergent macrophyte species. Hydrobiologia 624(1), 151–160 (2009).CAS 
    Article 

    Google Scholar 
    Lu, Y. Growth and morphological responses to water level variations in two Carex species from Sanjiang Plain, China. Afr. J. Agric. Res. 6, 28–34 (2011).
    Google Scholar 
    Cao, Y. et al. Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: A meta-analysis. CATENA 215, 106287 (2022).CAS 
    Article 

    Google Scholar 
    Sardans, T., Peñuelas, T., Prieto, P. & Estiarte, M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant Soil 306, 261–271 (2007).Article 
    CAS 

    Google Scholar 
    Flórez-Flórez, C. P., León-Peláez, J. D., Osorio-Vega, N. W. & Restrepo-Llano, M. F. Nutrient dynamics in forest plantations of Azadirachta indica (Meliaceae) established for restoration of degraded lands in Colombia. Rev. Biol. Trop. 61, 515–529 (2013).PubMed 
    Article 

    Google Scholar 
    Jordan-Meille, L. & Pellerin, S. Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 265, 75–92 (2004).CAS 
    Article 

    Google Scholar 
    Gerardeaux, E., Jordan-Meille, L., Constantin, J., Pellerin, S. & Dingkuhn, M. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum L. Environ. Exp. Bot. 67, 451–459 (2010).CAS 
    Article 

    Google Scholar 
    Bailey, J. S. & Laidlaw, A. S. Growth and development of white clover (Trifolium repens L.) as influenced by P and K nutrition. Ann. Bot. 81, 783–786 (1998).Article 

    Google Scholar 
    White, P. Relationship between the development and growth of rye (Secale cereale L.) and the potassium concentration in solution. Ann. Bot. 72, 349–358 (1993).CAS 
    Article 

    Google Scholar 
    Pujos, A. & Morard, P. Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 189, 189–196 (1997).CAS 
    Article 

    Google Scholar 
    Osakabe, Y. et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25, 609–624 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebaudy, A. et al. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc. Natl. Acad. Sci. 105, 5271–5276 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tränkner, M., Tavakol, E. & Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plantarum 163, 414–431 (2018).Article 
    CAS 

    Google Scholar 
    Du, Q. et al. Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agric. Sci. 8, 1263–1277 (2017).CAS 

    Google Scholar 
    Hu, W., Coomer, T. D., Loka, D. A., Oosterhuis, D. M. & Zhou, Z. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiol. Biochem. 115, 408–417 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reisch, C., Meier, S., Schmid, C. & Bartelheimer, M. Clonal diversity and genetic variation of the sedge Carex nigra in an alpine fen depend on soil nutrients. PeerJ 8, e8887 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lenssen, J. P. M., Menting, F. B. J. & Van der Putten, W. H. Plant responses to simultaneous stress of waterlogging and shade: Amplified or hierarchical effects?. New Phytol. 157, 281–290 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Z. G. & Li, Z. Q. Effects of different grazing regimes on the morphological traits of Carex duriuscula on the Inner Mongolia steppe, China. N. Z. J. Agric. Res. 53(1), 5–12 (2010).Article 

    Google Scholar 
    Więcław, H. et al. Morphological variability and genetic diversity in Carex buxbaumii and Carex hartmaniorum (Cyperaceae) populations. PeerJ 9, e11372 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Więcław, H., Kurnicki, B., Bihun, M., Białecka, B. & Koopman, J. Carex section Racemosae (Cyperaceae) in Europe: Morphological diversity, taxonomy and phylogenetic relationships. Bot. J. Linn. Soc. 183, 124–145 (2017).
    Google Scholar 
    Jiménez-Mejías, P., Benítez-Benítez, C., Fernández-Mazuecos, M. & Martín-Bravo, S. Cut from the same cloth: The convergent evolution of dwarf morphotypes of the Carex flava group (Cyperaceae) in Circum-Mediterranean mountains. PLoS ONE 12(12), e0189769 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Więcław, H. Carex flava agg. (section Ceratocystis, Cyperaceae) in Poland: taxonomy, morphological variation, and soil conditions. Biodivers. Res. Conserv. 33, 3–51 (2014).Article 

    Google Scholar 
    Kalela, A. Systematische und Pflanzengeographische Studien an der Carex-Subsektion Alpinae Kalela. Annales Botanici Societatis Zoologicae-Botanicae Fennicae 19, 1–218 (1944).
    Google Scholar 
    Wallnöfer, B. Uber Carex melanostachya, C. norvegica, C. cespitosa und C. hartmanii in Südtirol. Gredleriana 4, 413–418 (2004).
    Google Scholar 
    Gebauer, S., Röser, M. & Hoffmann, M. H. Molecular phylogeny of the species-rich Carex sect. Racemosae (Cyperaceae) based on four nuclear and chloroplast markers. Syst. Bot. 40, 433–447 (2015).Article 

    Google Scholar 
    Molina, A., Acedo, C. & Llamas, F. Taxonomy and new taxa in Eurasian Carex (Section Phaestoglochin, Cyperaceae). Syst. Bot. 33, 237–250 (2008).Article 

    Google Scholar 
    Molina, A., Acedo, C. & Llamas, F. Taxonomy and new taxa of the Carex divulsa aggregate in Eurasia (section Phaestoglochin, Cyperaceae). Botan. J. Linn. Soc. 156, 385–409 (2008).Article 

    Google Scholar 
    Jiménez-Mejías, P. & Luceño, M. Cyperaceae. in Euro+Med. etc. Plantbase – the information resource for Euro-Mediterranean plant diversity. Available from: http://www.emplantbase.org/home.html (accessed 07 January 2022). (eds Greuter, W. & Raab-Straube, E. von) (2011).Míguez, M., Martín-Bravo, S. & Jiménez-Mejías, P. Reconciling morphology and phylogeny allows an integrative taxonomic revision of the giant sedges of Carex section Rhynchocystis (Cyperaceae). Botan. J. Linn. Soc. 188, 34–58 (2018).Article 

    Google Scholar 
    Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic. Preslia 93, 255–304 (2021).Article 

    Google Scholar  More

  • in

    Neuron numbers link innovativeness with both absolute and relative brain size in birds

    Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc. Natl Acad. Sci. USA 107, 21582–21586 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jerison, H. J. Animal intelligence as encephalization. Phil. Trans. R. Soc. Lond. B 308, 21–35 (1985).CAS 
    Article 

    Google Scholar 
    Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).PubMed 
    Article 

    Google Scholar 
    Lefebvre, L., Whitle, P., Lascaris, E. & Finkelstein, A. Feeding innovations and forebrain size in birds. Anim. Behav. 53, 549–560 (1997).Article 

    Google Scholar 
    Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim. Behav. 78, 1001–1010 (2009).Article 

    Google Scholar 
    Reader, S. M., Hager, Y. & Laland, K. N. The evolution of primate general and cultural intelligence. Phil. Trans. R. Soc. B 366, 1017–1027 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad. Sci. USA 113, 2532–2537 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).PubMed 
    Article 

    Google Scholar 
    van Woerden, J. T., van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: evidence from Strepsirrhine primates. Am. Nat. 176, 758–767 (2010).PubMed 
    Article 

    Google Scholar 
    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).PubMed 
    Article 

    Google Scholar 
    Herculano-Houzel, S. Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann. NY Acad. Sci. 1225, 191–199 (2011).PubMed 
    Article 

    Google Scholar 
    Logan, C. J. et al. Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization. Comp. Cogn. Behav. Rev. 13, 55–89 (2018).Article 

    Google Scholar 
    Jerison, H. Evolution of the Brain and Intelligence (Academic Press, 1973).Herculano-Houzel, S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 16, 1–7 (2017).Article 

    Google Scholar 
    Van Schaik, C. P., Triki, Z., Bshary, R. & Heldstab, S. A. A farewell to the encephalization quotient: a new brain size measure for comparative primate cognition. Brain Behav. Evol. 96, 1–12 (2021).PubMed 
    Article 

    Google Scholar 
    Striedter, G. F. Principles of Brain Evolution (Sinauer Associates, 2005).
    Google Scholar 
    MacLean, E. L. et al. The evolution of self-control. Proc. Natl Acad. Sci. USA 111, E2140–E2148 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matějů, J. et al. Absolute, not relative brain size correlates with sociality in ground squirrels. Proc. R. Soc. B 283, 20152725 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Deaner, R. O., Isler, K., Burkart, J. & Van Schaik, C. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124 (2007).PubMed 
    Article 

    Google Scholar 
    Smaers, J. B., Dechmann, D. K. N., Goswami, A., Soligo, C. & Safi, K. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proc. Natl Acad. Sci. USA 109, 18006–18011 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, eabe2101 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Němec, P. & Osten, P. The evolution of brain structure captured in stereotyped cell count and cell type distributions. Curr. Opin. Neurobiol. 60, 176–183 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kverková, K. et al. The evolution of brain neuron numbers in amniotes. Proc. Natl Acad. Sci. USA 119, e2121624119 (2022).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Iwaniuk, A. N. & Hurd, P. L. The evolution of cerebrotypes in birds. Brain Behav. Evol. 65, 215–230 (2005).PubMed 
    Article 

    Google Scholar 
    Timmermans, S., Lefebvre, L., Boire, D. & Basu, P. Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain Behav. Evol. 56, 196–203 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sayol, F., Lefebvre, L. & Sol, D. Relative brain size and its relation with the associative pallium in birds. Brain Behav. Evol. 87, 69–77 (2016).PubMed 
    Article 

    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).Deaner, R. O., Barton, R. A. & van Schaik, C. P. in Primate Life Histories and Socioecology (eds Kappeler, P. M. & Pereira, M. E.) 233–265 (Univ. of Chicago Press, 2003).Sol, D., Sayol, F., Ducatez, S. & Lefebvre, L. The life-history basis of behavioural innovations. Phil. Trans. R. Soc. B 371, 20150187 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dukas, R. Evolutionary biology of animal cognition. Ann. Rev. Ecol. Evol. Syst. 35, 347–374 (2004).Article 

    Google Scholar 
    Ricklefs, R. E. The cognitive face of life histories. Wilson Bull. 116, 119–133 (2004).Article 

    Google Scholar 
    Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P. & Ton, R. Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. Am. Nat. 186, 223–236 (2015).PubMed 
    Article 

    Google Scholar 
    Unzeta, M., Martin, T. E. & Sol, D. Daily nest predation rates decrease with body size in passerine birds. Am. Nat. 196, 743–754 (2020).PubMed 
    Article 

    Google Scholar 
    Charvet, C. J. & Striedter, G. F. Developmental modes and developmental mechanisms can channel brain evolution. Front. Neuroanat. 5, 4 (2011).Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herculano-Houzel, S. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massen, J. J. M. et al. Brain size and neuron numbers drive differences in yawn duration across mammals and birds. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Ramsey, G., Bastian, M. L. & Schaik, C. Van Animal innovation defined and operationalized. Behav. Brain Sci. 30, 393–437 (2007).PubMed 
    Article 

    Google Scholar 
    Lefebvre, L. A global database of feeding innovations in birds. Wilson J. Ornithol. 132, 803–809 (2021).Article 

    Google Scholar 
    Barton, R. A. Embodied cognitive evolution and the cerebellum. Phil. Trans. R. Soc. B 367, 2097–2107 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez-Ibáñez, C., Iwaniuk, A. N. & Wylie, D. R. Parrots have evolved a primate-like telencephalic–midbrain–cerebellar circuit. Sci. Rep. 8, 9960 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brieuc, M. S. O. O., Waters, C. D., Drinan, D. P. & Naish, K. A. A practical introduction to random forest for genetic association studies in ecology and evolution. Mol. Ecol. Res. 18, 755–766 (2018).Article 

    Google Scholar 
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Güntürkün, O., Ströckens, F., Scarf, D. & Colombo, M. Apes, feathered apes, and pigeons: differences and similarities. Curr. Opin. Behav. Sci. 16, 35–40 (2017).Article 

    Google Scholar 
    Ströckens, F. et al. High associative neuron numbers could drive cognitive performance in corvid species. J. Comp. Neurol. 530, 1588–1605 (2022).PubMed 
    Article 

    Google Scholar 
    Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M. & Güntürkün, O. Large-scale network organisation in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89 (2013).Emery, N. J. Cognitive ornithology: the evolution of avian intelligence. Phil. Trans. R. Soc. B 361, 23–43 (2006).PubMed 
    Article 

    Google Scholar 
    Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. P. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019).Article 

    Google Scholar 
    Ksepka, D. T. et al. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026–2036 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herculano-Houzel, S., Manger, P. R. & Kaas, J. H. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front. Neuroanat. 8, 77 (2014).Smaers, J. B., Mongle, C. S., Safi, K. & Dechmann, D. K. N. Allometry, evolution and development of neocortex size in mammals. Prog. Brain Res. 250, 83–107 (2019).PubMed 
    Article 

    Google Scholar 
    Cárdenas, A. & Borrell, V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol. Life Sci. 77, 435–1460 (2020).Article 
    CAS 

    Google Scholar 
    García-Moreno, F. & Molnár, Z. Variations of telencephalic development that paved the way for neocortical evolution. Prog. Neurobiol. 194, 101865 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charvet, C. J. & Striedter, G. F. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis. Proc. R. Soc. B 276, 3421–3427 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Striedter, G. F. & Charvet, C. J. Developmental origins of species differences in telencephalon and tectum size: morphometric comparisons between a parakeet (Melopsittacus undulatus) and a quail (Colinus virgianus). J. Comp. Neurol. 507, 1663–1675 (2008).PubMed 
    Article 

    Google Scholar 
    Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uomini, N., Fairlie, J., Gray, R. D. & Griesser, M. Extended parenting and the evolution of cognition. Phil. Trans. R. Soc. Lond. B 375, 20190495 (2020).Article 

    Google Scholar 
    Reiner, A. et al. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473, 377–414 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mezey, S. et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100–116 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Ducatez, S. & Lefebvre, L. Patterns of research effort in birds. PLoS ONE 9, e89955 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).Cooney, C. R. et al. Ecology and allometry predict the evolution of avian developmental durations. Nat. Commun. 11, 2383 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Botelho, J. F. & Faunes, M. The evolution of developmental modes in the new avian phylogenetic tree. Evol. Dev. 17, 221–223 (2015).PubMed 
    Article 

    Google Scholar 
    Bürkner, P.-C. Brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berk, R. A. Statistical Learning from a Regression Perspective (Springer International, 2017).Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    Lleonart, J., Salat, J. & Torres, G. J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205, 85–93 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021). More

  • in

    First tagging data on large Atlantic bluefin tuna returning to Nordic waters suggest repeated behaviour and skipped spawning

    Satellite tracking has yielded key information about the movements and behaviour of marine vertebrates in ways that were previously logistically impossible34. In the current study, we tagged the first 18 angler-caught ABFT in Skagerrak, and tracked their movements for up to one year. Despite the majority of tags detaching prematurely, our data provides new insights regarding the migration behaviour and habitat use of this species, both locally within the Nordic region and more widely throughout the northeast Atlantic and western Mediterranean Sea. Most fish (N = 9) left Skagerrak via the Norwegian Trench, heading north before exiting into the Atlantic. In addition, the two tags which remained deployed for approximately one full year showed a return migration into the Skagerrak from the northern North Sea and southern Norwegian Sea regions, re-entering north of the British Isles and through the Norwegian Trench. No fish exited or re-entered through the English Channel or the southern North Sea. These observations of entry/exit from the Skagerrak are similar to migration behaviour inferred from historical commercial fishery data in the region during the 1950s–1960s16,19. These historical records also demonstrated that some individuals migrated from the southern Norwegian Sea into the Skagerrak, Kattegat and Øresund, before leaving the area several weeks later, potentially indicating exploratory feeding on herring and mackerel, abundant in the area during this time of year. Our new tagging results confirm this behaviour among at least some of the ABFT migrating to these areas.The migration patterns revealed by our tagging study exposes tuna entering and exiting the Skagerrak, Kattegat and Øresund to targeted exploitation by regional commercial fishing vessels. Presently, these vessels catch ABFT under a Norwegian quota (315 tonnes in 2021) but additional countries in the region may acquire a quota in the future. Moreover, the relatively narrow size distribution of tunas caught indicates that this migratory behaviour may only be performed by a limited number of year classes35, meaning that the continued long-term migration of ABFT to these waters is highly dependent on recruitment and survival of younger year classes. These younger year classes, perhaps once they reach a certain size, could then also undertake a migration to Skagerrak–Kattegat–Øresund. However, the combination of local exploitation pressures, and the presently limited number of year classes found in Skagerrak could result in ABFT migrating into Skagerrak–Kattegat–Øresund being a short-lived phenomenon if those year classes are subject to a large yearly fishing mortality (both regionally within the Nordic region, and more generally throughout the population range) and no younger year classes appear. Additionally, currently there is no scientifically-derived estimates of ABFT abundance for this region. We suggest to monitor the size distribution and abundance of ABFT in Scandinavian waters in the coming years to (1) confirm that visiting ABFT consist of only a few year classes, and clarify if younger year classes begin to appear, (2) evaluate how the numbers migrating to the region annually may change over time (e.g., under different levels of exploitation, or in relation to environmental factors).While most of our tagged ABFT went north after exiting the Skagerrak, one individual turned south into the south-central North Sea before eventually leaving through the northern part of the North Sea. The region to which it migrated in the North Sea is congruent with earlier commercial catches and sightings in this region, including the Dogger Bank vicinity15,16. Although the exact routes that tagged individuals followed were not identical, no individuals used the shortest route to reach the Atlantic: from the Skagerrak through the North Sea to the English Channel, and further south to the Bay of Biscay and other southern regions. Migration along a northerly route probably reflects a trade-off between the potential for higher energetic gain from more abundant food and higher energy resources, and the longer migration distance. This could suggest that ABFT either follow the food, or simply follow the same route by which they came through learned behaviour.Three tags remained attached long enough to explore long-term migration patterns and showed widely different behaviours. One fish crossed the Atlantic and utilized areas near the Grand Banks, crossing the ICCAT management boundary between the Western and Eastern stocks of ABFT (the 45° meridian), while the other two fish remained in the eastern Atlantic. The area west of Ireland, the Bay of Biscay and the area west of Portugal appear to be important feeding areas when the fish are not in Skagerrak or the Norwegian Sea. These results reflect interconnected seascapes for foraging through the NE Atlantic. Connecting foraging grounds off Ireland and the Bay of Biscay, which was previously suggested by Ref.24 is further corroborated by one of the fish tagged in this study, which passed over the Irish continental shelf when returning to Skagerrak in 2018.Depth and temperature useWithin ICES Area 3a, ABFT were predominantly roaming the upper water column, with most observations in the upper 100 m. However, some ABFT did dive to much deeper depths, with the maximum depth recorded being 520 m, showing that they can use the majority of the depth range available in the area (max. depth in the Norwegian Trench is app. 725 m, but represents a relatively small area). The behaviour likely reflects foraging, as ABFT were also observed by both the scientific tagging crews and the anglers to actively chase prey fish, like garfish and mackerel, at the surface during the tagging operations. The temperature ranges recorded varied between 7 and 17 °C. Both the depths and temperatures recorded are well within the thermal and depth limits reported in the literature for ABFT36.SpawningABFT have been shown to successfully spawn at temperatures above 20 °C at night30,31, and to display a distinct dive pattern thought to represent courtship and spawning behaviour29. When matching this described behaviour with the data from fish 34859 in the Mediterranean Sea, almost identical behavioural patterns were detected on specific days (Fig. 4). In total, seven days aligned with temperatures above 20 °C and oscillatory movement past the thermocline. All detected spawning events occurred west of Sardinia, where fishing for mature ABFT has been conducted for centuries37.In light of the recently proposed third spawning area in the Slope Sea of northeast United States38 and other proposed areas outside the Mediterranean19, it is relevant to look for similar temperature and behavioural patterns for fish 34840, which did not enter the Mediterranean Sea, and instead stayed in the eastern Atlantic. We found that this fish did not display a similar oscillatory behaviour, and the temperature experienced during the alleged spawning period (June–July) was above 20 °C only once (20.4 °C on 11 July). In this period, the fish was on the continental shelf west of Ireland, likely feeding and not spawning. Due to the size of the fish (247 cm CFL), reflecting a likely age of 14–16 years (matching the strong 2003 cohort), and the assumption that all eastern ABFT above five years and western ABFT above eight years are mature, we find it unlikely that this fish was immature. As such, these observations may suggest that this fish skipped spawning in 2018. Fish 34861 surfaced on 25 April and the tag was not recovered. The transmitted data does not allow for a detailed analysis of potential spawning behaviour for this fish. It did however, display 6 days where maximum temperatures from the transmitted dataset reached 20 °C (observations from 15. March to 20 April, with temperatures ranging from 20 to 20.6 °C). Given the lack of detailed behaviour and the fact that this time is well outside the normal spawning time for Mediterranean ABFT, we propose that this ABFT did not spawn in that period. However, the documentation of spawning depends on the general applicability of the temperature limits and nightly spawning behaviour30,31. More studies documenting spawning behaviour will be needed to corroborate if this pattern is consistent among locations and stocks. We also suggest more studies with longer lasting tags to elucidate if skipped spawning is a common behaviour and if fish skip one or more consecutive spawning seasons. Skipped spawning has been demonstrated in many fish species, including both freshwater and marine fish39, and likely reflects physiological condition40. If a considerable proportion of the adult population skips spawning every season, current population models, which assume annual spawning by all adult fish, should be modified to more accurately reflect population egg production and reproductive output. Current population modelling may be even further challenged if the proportion of adults that skip spawning varies over time, perhaps depending on environmental conditions. However, we acknowledge that only one of two fish followed through the spawning season appeared to skip spawning, and therefore caution against broad general interpretations. More studies are needed to verify that skipped spawning is a common behaviour, and if so, to estimate just how common that behaviour is.
    Return migrationIn exploited fish populations, large adults are hypothesized to be important components of the spawning population because they contribute more to recruitment than smaller individuals due to a variety of maternal effects including higher fecundity, better quality of eggs and differences in spawning behaviour (e.g. time, location)41. Although such effects remain to be documented for ABFT, it may be prudent to conserve these large individuals as a precautionary measure, to maximize their potential contributions to reproduction and recruitment.In order to protect these fish, new knowledge about their movements and distribution is required. Data from ABFT deployed with long-term electronic tags suggests that after spawning in the Gulf of Mexico, the fish return to the feeding grounds where they were initially tagged, indicating a return feeding migration7. The same has been observed more recently from ABFT tagged in Ireland24, and other large highly migratory fish species (e.g., swordfish, Xiphias gladius42). In the current study, both ABFT that retained the tag for one year also returned to the same area, suggesting a similar seasonal return feeding migration. We also note that ABFT appeared to perform recurrent visits to the Norwegian Sea, Ireland and the Bay of Biscay on their way from Nordic waters and upon their return to the latter. Hence, we hypothesize that large ABFT in Nordic waters generally return to the same feeding area the following year, given suitable habitat features (e.g., food and temperature conditions), and follow a similar migration route as they do so. More studies are nonetheless needed to confirm this hypothesis, given few long-term deployments in the current study. For a deeper understanding of behavioural repeatability, and if/when shifts in the behaviour occur, it will be necessary to follow the same fish over multiple years. Such studies would also act as a highly valuable indicator of survival, independent of stock assessment-derived mortality estimates, and could be used to estimate the local abundance of larger ABFT43. Thus, a promising avenue for future research would be to deploy long-lasting ( > 5 to 10 years) acoustic tags and use existing infrastructure from networks such as the European Tracking Network to track these large fish over the next decade44. Given that ABFT appear to return to the area annually, we suggest that Skagerrak is a promising area for the future deployment and retrieval of PSATs and other long-lasting tags, because of the relatively easy access to locate and recover detached floating tags, given that the area is reachable from land within a few hours by boat. Retrieving PSATs that have detached from animals enables scientists to access full datasets (in the present case with 5 s resolution, rather than the much coarser and variable resolution typically transmitted). This much higher resolution enables much more detailed analysis, as shown in our analysis of spawning behaviour. Additionally, floating Pop-off Data Storage Tags (PDST) tags may also be a prominent and less costly avenue forward as the geographical region is densely populated and contains many sandy beaches and highly visited coastal areas, giving ample opportunity for tag recovery. Previous studies with floating DSTs in this area have shown remarkably high return rates45.The evidence that ABFT have returned to Nordic waters following many years of rarity or absence, and our findings that at least some individuals return to the same site for feeding in consecutive years, raises new questions about the mechanisms that underlie habitat discovery—or the return to previously used habitats—by highly migratory fish species. How individuals or entire schools have discovered this region again as a suitable feeding area after an absence of more than 50 years is unclear. In light of the positive stock development in the last 1–2 decades22 and modelling studies showing suitable habitat in the area46, density-dependent foraging and exploratory behaviour for new feeding areas may be a prominent hypothesis for their return, potentially accompanied by complex social learning interactions among individuals within the population47,48. New tagging data which documents the use of new or formerly occupied habitats will be essential for understanding these processes and how they might be affected by human pressures (e.g., exploitation, climate change). Such data can help to parameterize and validate advanced conceptual models of group movement behaviour, collective memory and habitat use49,50,51, as well as to inform modern stock assessment models used for management.
    Tag deploymentFollowing recommendations from experienced taggers previously operating in the Mediterranean, most fish were tagged in the water alongside the boat. All these tags surfaced prematurely, while two (out of three) tags deployed on tunas brought on board the tagging boat surfaced after approximately one year. Depending on the conditions at sea, tagging along the side of the boat may not be as precise as on-board tagging, and the quality of the tag anchoring cannot be properly assessed. We therefore suggest that tagging on-board a boat is superior to tagging in the water alongside the boat for the deployment of long-lasting tags. This was also suggested in Ref.24. Furthermore, on-board tagging makes biological sampling fast and feasible, as opposed to tagging in the water alongside the boat. However, our advice is limited by a small sample size, making it difficult to draw formal conclusions; more studies are necessary to assess the best method to tag large ABFT. More

  • in

    Enhanced leaf turnover and nitrogen recycling sustain CO2 fertilization effect on tree-ring growth

    Cole, C. T., Anderson, J. E., Lindroth, R. L. & Waller, D. M. Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides). Glob. Change Biol. 16, 2186–2197 (2010).Article 

    Google Scholar 
    Urrutia-Jalabert, R. et al. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades. J. Geophys. Res. Biogeosci. 120, 2505–2524 (2015).Article 

    Google Scholar 
    Cienciala, E. et al. Increased spruce tree growth in Central Europe since 1960s. Sci. Total Environ. 619–620, 1637–1647 (2018).PubMed 
    Article 

    Google Scholar 
    Mathias, J. M. & Thomas, R. B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob. Change Biol. 24, 3938–3953 (2018).Article 

    Google Scholar 
    Körner, C. et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309, 1360–1362 (2005).PubMed 
    Article 

    Google Scholar 
    Klein, T. et al. Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J. Ecol. 104, 1720–1733 (2016).CAS 
    Article 

    Google Scholar 
    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).Article 

    Google Scholar 
    Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20, 597–608 (2011).Article 

    Google Scholar 
    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Dong, N. et al. Rising CO2 and warming reduce global canopy demand for nitrogen. New Phytol. https://doi.org/10.1111/nph.18076 (2022).Finzi, A. C., Allen, A. S., DeLucia, E. H., Ellsworth, D. S. & Schlesinger, W. H. Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology 82, 470–484 (2001).
    Google Scholar 
    Liberloo, M. et al. Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiol. 25, 179–189 (2005).PubMed 
    Article 

    Google Scholar 
    Hungate, B. A. et al. Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland. Ecology 87, 26–40 (2006).PubMed 
    Article 

    Google Scholar 
    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).PubMed 
    Article 

    Google Scholar 
    Liberloo, M. et al. Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytol. 182, 331–346 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCarthy, H. R. et al. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 185, 514–528 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dawes, M. A. et al. Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. J. Ecol. 99, 383–394 (2011).
    Google Scholar 
    Luo, Y. Q. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).Article 

    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luo, Y. Q., Hui, D. F. & Zhang, D. Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87, 53–63 (2006).PubMed 
    Article 

    Google Scholar 
    Kikuzawa, K. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am. Nat. 138, 1250–1263 (1991).Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luo, T. X. et al. Summer solstice marks a seasonal shift in temperature sensitivity of stem growth and nitrogen-use efficiency in cold-limited forests. Agric. For. Meteorol. 248, 469–478 (2018).Article 

    Google Scholar 
    Rossi, S. et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol. 170, 301–310 (2006).PubMed 
    Article 

    Google Scholar 
    Bauerle, W. L. et al. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proc. Natl Acad. Sci. USA 109, 8612–8617 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jarvis, P. & Linder, S. Constraints to growth of boreal forests. Nature 405, 904–905 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sullivan, P. F., Ellison, S. B., McNown, R. W., Brownlee, A. H. & Sveinbjörnsson, B. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska. Ecology 96, 716–727 (2015).PubMed 
    Article 

    Google Scholar 
    Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, S. D. Plant responses to photoperiod. New Phytol. 181, 517–531 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapin III, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer-Verlag, 2002).Hikosaka, K. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann. Bot. 95, 521–533 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, M. K. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mathias, J. M. & Thomas, R. B. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proc. Natl Acad. Sci. USA 118, e2014286118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finzi, A. C. et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl Acad. Sci. USA 104, 14014–14019 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soulé, P. T. & Knapp, P. A. Radial growth rate increases in naturally occurring ponderosa pine trees: a late-20th century CO2 fertilization effect? New Phytol. 171, 379–390 (2006).PubMed 
    Article 

    Google Scholar 
    Linares, J. C. & Camarero, J. J. From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob. Change Biol. 18, 1000–1015 (2012).Article 

    Google Scholar 
    Kagawa, A., Sugimoto, A. & Maximov, T. C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29, 1571–1584 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Epron, D. et al. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol. 32, 776–798 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wiley, E. & Helliker, B. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol. 195, 285–289 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rocha, A. V., Goulden, M. L., Dunn, A. L. & Wofsy, S. C. On linking interannual tree ring variability with observations of whole-forest CO2 flux. Glob. Change Biol. 12, 1378–1389 (2006).Article 

    Google Scholar 
    Zweifel, R. et al. Link between continuous stem radius changes and net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps. New Phytol. 187, 819–830 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kong, G. Q., Luo, T. X., Liu, X. S., Zhang, L. & Liang, E. Y. Annual ring widths are good predictors of changes in net primary productivity of alpine Rhododendron shrubs in the Sergyemla Mountains, southeast Tibet. Plant Ecol. 213, 1843–1855 (2012).Article 

    Google Scholar 
    Teets, A. et al. Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agric. For. Meteorol. 249, 479–487 (2018).Article 

    Google Scholar 
    Luo, T. X., Li, M. C. & Luo, J. Seasonal variations in leaf δ13C and nitrogen associated with foliage turnover and carbon gain for a wet subalpine fir forest in the Gongga Mountains, eastern Tibetan Plateau. Ecol. Res. 26, 253–263 (2011).CAS 
    Article 

    Google Scholar 
    Kobe, R. K., Lepczyk, C. A. & Iyer, M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86, 2780–2792 (2005).Article 

    Google Scholar 
    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).Article 

    Google Scholar 
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Kluwer Academic Publishers, 1990).Editorial Board of Vegetation Map of China, Chinese Academy of Sciences. Vegetation Atlas of China (Science Press, 2001). More