More stories

  • in

    Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, S. & Read, D. Mycorrhizal Symbiosis (Elsevier, 2008).Soudzilovskaia, N. A. et al. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob. Ecol. Biogeogr. 24, 371–382 (2015).Article 

    Google Scholar 
    Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 
    Article 

    Google Scholar 
    Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51, 227–234 (2001).Article 

    Google Scholar 
    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).PubMed 
    Article 

    Google Scholar 
    Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. New Phytol. 171, 41–53 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bender, S. F. & van der Heijden, M. G. A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52, 228–239 (2015).CAS 
    Article 

    Google Scholar 
    Rodriguez, A. & Sanders, I. R. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 9, 1053–1061 (2015).PubMed 
    Article 

    Google Scholar 
    Oviatt, P. & Rillig, M. C. Mycorrhizal technologies for an agriculture of the middle. Plants, People, Planet. https://doi.org/10.1002/ppp3.10177 (2020).Ryan, M. H. & Graham, J. H. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220, 1092–1107 (2018).PubMed 
    Article 

    Google Scholar 
    Rillig, M. C. et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222, 1171–1175 (2019).PubMed 
    Article 

    Google Scholar 
    Zhang, S., Lehmann, A., Zheng, W., You, Z. & Rillig, M. C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol. 222, 543–555 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M. & Field, K. J. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J. Ecol. 105, 921–929 (2017).CAS 
    Article 

    Google Scholar 
    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pringle, A. & Bever, J. D. Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytol. 180, 162–175 (2008).PubMed 
    Article 

    Google Scholar 
    Francis, R. & Read, D. J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can. J. Bot. 73, 1301–1309 (1995).Article 

    Google Scholar 
    Thirkell, T. J., Pastok, D. & Field, K. J. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Change Biol. 26, 1725–1738 (2020).Article 

    Google Scholar 
    Lehmann, A., Barto, E. K., Powell, J. R. & Rillig, M. C. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355, 231–250 (2012).CAS 
    Article 

    Google Scholar 
    Martín-Robles, N. et al. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 218, 322–334 (2018).PubMed 
    Article 

    Google Scholar 
    Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).Article 

    Google Scholar 
    Oehl, F. et al. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69, 2816–2824 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiang, D. et al. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol. 204, 968–978 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bainard, L. D. et al. Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the Mixed Prairie ecoregion of the North American Great Plains. Agric. Ecosyst. Environ. 249, 187–195 (2017).Article 

    Google Scholar 
    Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W. Ploughing up the wood-wide web? Nature 394, 431–431 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 
    CAS 

    Google Scholar 
    Vogelsang, K. M., Reynolds, H. L. & Bever, J. D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172, 554–562 (2006).PubMed 
    Article 

    Google Scholar 
    Scheublin, T. R., Ridgway, K. P., Young, J. P. W. & van der Heijden, M. G. A. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 70, 6240–6246 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oehl, F. et al. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 42, 724–738 (2010).CAS 
    Article 

    Google Scholar 
    De Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verbruggen, E., Xiang, D., Chen, B., Xu, T. & Rillig, M. C. Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biol. Biochem. 86, 1–4 (2015).CAS 
    Article 

    Google Scholar 
    Balami, S., Vašutová, M., Godbold, D., Kotas, P. & Cudlín, P. Soil fungal communities across land use types. iForest 13, 548–558 (2020).Article 

    Google Scholar 
    Öpik, M., Mari, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Jansa, J. et al. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Groenigen, K. J. et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42, 48–55 (2010).Article 
    CAS 

    Google Scholar 
    Sallach, J. B., Thirkell, T. J., Field, K. J. & Carter, L. J. The emerging threat of human‐use antifungals in sustainable and circular agriculture schemes. Plants People Planet 3, 685–693 (2021).Article 

    Google Scholar 
    Meyer, A. et al. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 8, e73536 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).Article 

    Google Scholar 
    Tardy, V. et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol. Biochem. 90, 204–213 (2015).CAS 
    Article 

    Google Scholar 
    Sawers, R. J. H. et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol. 214, 632–643 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svenningsen, N. B. et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schweiger, P. F., Thingstrup, I. & Jakobsen, I. Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8, 207–213 (1999).CAS 
    Article 

    Google Scholar 
    Emmett, B. D., Lévesque-Tremblay, V. & Harrison, M. J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 15, 2276–2288 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, F., Zhang, L., Zhou, J., George, T. S. & Feng, G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230, 304–315 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thonar, C., Schnepf, A., Frossard, E., Roose, T. & Jansa, J. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231–245 (2011).CAS 
    Article 

    Google Scholar 
    Cavagnaro, T. R., Smith, F. A., Smith, S. E. & Jakobsen, I. Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ. 28, 642–650 (2005).CAS 
    Article 

    Google Scholar 
    Jakobsen, I., Gazey, C. & Abbott, L. K. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol. 149, 95–103 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, J. N. & Jakobsen, I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol. 124, 489–494 (1993).CAS 
    Article 

    Google Scholar 
    Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I. & Bucher, M. Erratum: mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol. 184, 1029 (2009).Article 

    Google Scholar 
    Smith, S. E., Jakobsen, I., Grønlund, M. & Smith, F. A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156, 1050–1057 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A., Manoharan, L., Rosenstock, N. P., Olsson, P. A. & Hedlund, K. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 213, 874–885 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The Vegetation N:P Ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441 (1996).Article 

    Google Scholar 
    Van Aarle, I. M., Olsson, P. A. & Söderström, B. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol. 155, 173–182 (2002).PubMed 
    Article 

    Google Scholar 
    Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).Article 

    Google Scholar 
    Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).Article 

    Google Scholar 
    Peat, H. J. & Fitter, A. H. The distribution of arbuscular mycorrhizas in the British flora. New Phytol. 125, 845–854 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cruz-Paredes, C. et al. Suppression of arbuscular mycorrhizal fungal activity in a diverse collection of non-cultivated soils. FEMS Microbiol. Ecol. 95, fiz020 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jansa, J., Erb, A., Oberholzer, H.-R., Šmilauer, P. & Egli, S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 23, 2118–2135 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, H. et al. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 87, 70–77 (2011).CAS 
    Article 

    Google Scholar 
    Riedo, J. et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c06405 (2021).Pánková, H., Dostálek, T., Vazačová, K. & Münzbergová, Z. Slow recovery of arbuscular mycorrhizal fungi and plant community after fungicide application: an eight-year experiment. J. Veg. Sci. 29, 695–703 (2018).Article 

    Google Scholar 
    Ipsilantis, I., Samourelis, C. & Karpouzas, D. G. The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2011.08.007 (2012).Buysens, C., Dupré de Boulois, H. & Declerck, S. Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza. https://doi.org/10.1007/s00572-014-0610-7 (2015).Lekberg, Y., Wagner, V., Rummel, A., McLeod, M. & Ramsey, P. W. Strong indirect herbicide effects on mycorrhizal associations through plant community shifts and secondary invasions. Ecol. Appl. 27, 2359–2368 (2017).PubMed 
    Article 

    Google Scholar 
    Hage-Ahmed, K., Rosner, K. & Steinkellner, S. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag. Sci. 75, 583–590 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kjøller, R. & Rosendahl, S. Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fertil. Soils 31, 361–365 (2000).Article 

    Google Scholar 
    Gange, A. C., Brown, V. K. & Sinclair, G. S. Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct. Ecol. 7, 616 (1993).Article 

    Google Scholar 
    Hartnett, D. C. & Wilson, G. W. T. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244, 319–331 (2002).CAS 
    Article 

    Google Scholar 
    Guzman, A. et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytol. https://doi.org/10.1111/nph.17306 (2021).LUCAS 2018 Technical Reference Document C3 Classification (Land Cover and Land Use) (Eurostat, 2018).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinnott, R. W. Virtues of the Haversine. Sky Telescope 68, 158–159 (1984).
    Google Scholar 
    Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).Article 

    Google Scholar 
    Boden‐und Substratuntersuchungen zur Düngeberatung (Schweizerische Referenzmethoden der Eidgenössischen Forschungsanstalten, 1996).Berry, D., Mahfoudh, K., Ben, Wagner, M. & Loy, A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846–7849 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D. & Taylor, J. W. Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can. J. Bot. 69, 180–190 (1991).CAS 
    Article 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiore-Donno, A. M. et al. New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts. Mol. Ecol. Resour. 18, 229–239 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helfenstein, J., Jegminat, J., McLaren, T. I. & Frossard, E. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies. Biogeosciences 15, 105–114 (2018).CAS 
    Article 

    Google Scholar 
    Thirkell, T. J. et al. Cultivar‐dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2. Plants People Planet 3, 553–566 (2021).Article 

    Google Scholar 
    Rodushkin, I., Ruth, T. & Huhtasaari, Å. Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Anal. Chim. Acta 378, 191–200 (1999).CAS 
    Article 

    Google Scholar 
    Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).CAS 
    Article 

    Google Scholar 
    Frossard, E. et al. in Phosphorus in Action (eds Bünemann, E. et al.) 59–91 (Springer, 2011).Sato, K., Suyama, Y., Saito, M. & Sugawara, K. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl. Sci. 51, 179–181 (2005).CAS 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Calcagno, V. glmulti: Model Selection and Multimodel Inference Made Easy. R version 1.0.8 https://CRAN.R-project.org/package=glmulti (2020).Cade, B. S. Model averaging and muddled multimodel inferences. Ecology. https://doi.org/10.1890/14-1639.1 (2015).Barton, K. MuMIn: Multi-Model Inference. R version 1.43.17 https://CRAN.R-project.org/package=MuMIn (2020).Burnham, K. P. & Anderson, D. R. (eds) Model Selection and Multimodel Inference (Springer, 2002).Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012). More

  • in

    A path forward for analysing the impacts of marine protected areas

    Sala, E. et al. Protecting the global ocean for biodiversity, food and climate. Nature 592, 397–402 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Gillispie, C. C., Gratton-Guinness, I. & Fox, R. Pierre-Simon Laplace, 1749-1827: A Life in Exact Science (Princeton Univ. Press, 1999).Dinmore, T. A., Duplisea, D. E., Rackham, B. D., Maxwell, D. L. & Jennings, S. Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities. ICES J. Mar. Sci. 60, 371–380 (2003).Article 

    Google Scholar 
    Hiddink, J. G., Hutton, T., Jennings, S. & Kaiser, M. J. Predicting the effects of area closures and fishing effort restrictions on the production, biomass, and species richness of benthic invertebrate communities. ICES J. Mar. Sci. 63, 822–830 (2006).Article 

    Google Scholar 
    Greenstreet, S. P. R., Fraser, H. M. & Piet, G. J. Using MPAs to address regional-scale ecological objectives in the North Sea: modelling the effects of fishing effort displacement. ICES J. Mar. Sci. 66, 90–100 (2009).Article 

    Google Scholar 
    Suuronen, P. et al. A path to a sustainable trawl fishery in Southeast Asia. Rev. Fish. Sci. Aquac. 28, 499–517 (2020).Article 

    Google Scholar 
    Amoroso, R. O. et al. Bottom trawl fishing footprints on the world’s continental shelves. Proc. Natl Acad. Sci. USA 115, E10275–E10282 (2018).CAS 
    Article 

    Google Scholar 
    Atwood, T. B., Witt, A., Mayorga, J., Hammill, E. & Sala, E. Global patterns in marine sediment carbon stocks. Front. Mar. Sci. 7, 165 (2020).Article 

    Google Scholar 
    Smeaton, C., Hunt, C. A., Turrell, W. R. & Austin, W. E. N. Marine sedimentary carbon stocks of the United Kingdom’s exclusive economic zone. Front. Earth Sci. 9, 593324 (2021).Article 

    Google Scholar 
    Legge, O. et al. Carbon on the northwest European shelf: contemporary budget and future influences. Front. Mar. Sci. 7, 143 (2020).Article 

    Google Scholar 
    Melnychuk, M. C. et al. Identifying management actions that promote sustainable fisheries. Nat. Sustain. 4, 440–449 (2021).Article 

    Google Scholar  More

  • in

    Short-term mercury exposure disrupts muscular and hepatic lipid metabolism in a migrant songbird

    Bowler, D. E. et al. Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat. 2, 380–394 (2020).Article 

    Google Scholar 
    Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.1c04158 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations Environment Programme (UNEP). 2019. Global Mercury Assessment 2018. UN Environment Programme, Chemicals and Health Branch Geneva, Switzerland. https://www.unep.org/resources/publication/global-mercury-assessment-2018Rimmer, C. C., Miller, E. K., McFarland, K. P., Taylor, R. J. & Faccio, S. D. Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest. Ecotoxicology 19, 697–709 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cristol, D. A. et al. The movement of aquatic mercury through terrestrial food webs. Science 320, 335 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Evers, D. The effects of methylmercury on wildlife: A comprehensive review and approach for interpretation. Encycl. Anthropocene 5, 181–194 (2018).Article 

    Google Scholar 
    Whitney, M. C. & Cristol, D. A. Impacts of sublethal mercury exposure on birds: a detailed review. Rev. Environ. Contam. Toxicol. 244, 113–163 (2017).
    Google Scholar 
    Seewagen, C. L. Threats of environmental mercury to birds: Knowledge gaps and priorities for future research. Bird Conserv. Int. 20, 112–123 (2010).Article 

    Google Scholar 
    Seewagen, C. L. The threat of global mercury pollution to bird migration: Potential mechanisms and current evidence. Ecotoxicology 29, 1254–1267 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, Y., Branfireun, B. A., Hobson, K. A. & Guglielmo, C. G. Evidence of negative seasonal carry-over effects of breeding ground mercury exposure on survival of migratory songbirds. J. Avian Biol. 49, jav-01656 (2018).Article 

    Google Scholar 
    Newton, I. Can conditions experienced during migration limit the population levels of birds?. J. Ornithol. 147, 146–166 (2006).Article 

    Google Scholar 
    Klaassen, M., Hoye, B. J., Nolet, B. A. & Buttemer, W. A. Ecophysiology of avian migration in the face of current global hazards. Philos. Trans. R. Soc. B 367, 1719–1732 (2020).Article 

    Google Scholar 
    Zurell, D., Graham, C. H., Gallien, L., Thuiller, W. & Zimmermann, N. E. Long-distance migratory birds threatened by multiple independent risks from global change. Nat. Clim. Chang. 8, 992–996 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seewagen, C. L., Ma, Y., Morbey, Y. E. & Guglielmo, C. G. Stopover departure behavior and flight orientation of spring-migrant Yellow-rumped Warblers (Setophaga coronata) experimentally exposed to methylmercury. J. Ornithol. 160, 617–624 (2019).Article 

    Google Scholar 
    Seewagen, C. L. Blood mercury levels and the stopover refueling performance of a long-distance migratory songbird. Can. J. Zool. 91, 41–45 (2013).CAS 
    Article 

    Google Scholar 
    Adams, E. M., Williams, K. A., Olsen, B. J. & Evers, D. C. Mercury exposure in migrating songbirds: Correlations with physical condition. Ecotoxicology 29, 1240–1253 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, Y., Perez, C. R., Branfireun, B. A. & Guglielmo, C. G. Dietary exposure to methylmercury affects flight endurance in a migratory songbird. Environ. Pollut. 234, 894–901 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gerson, A. R., Cristol, D. A. & Seewagen, C. L. Environmentally relevant methylmercury exposure reduces the metabolic scope of a model songbird. Environ. Pollut. 246, 790–796 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jenni, L. & Jenni-Eiermann, S. Fuel supply and metabolic constraints in migrating birds. J. Avian Biol. 29, 521–552 (1998).Article 

    Google Scholar 
    McWilliams, S. R., Guglielmo, C., Pierce, B. & Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 35, 377–393 (2004).Article 

    Google Scholar 
    Guglielmo, C. G. Move that fatty acid: Fuel selection and transport in migratory birds and bats. Integr. Comp. Biol. 50, 336–345 (2010).PubMed 
    Article 

    Google Scholar 
    Guglielmo, C. G. Obese super athletes: Fat-fueled migration in birds and bats. J. Exp. Biol. 221(Suppl_1), 165753 (2018).Article 

    Google Scholar 
    Kawakami, T. et al. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol. Appl. Pharmacol. 258, 32–42 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yadetie, F. et al. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. Aquat. Toxicol. 126, 314–325 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Park, K. & Seo, E. Association between toenail mercury and metabolic syndrome is modified by selenium. Nutrients 8, 424 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Caito, S. W., Newell-Caito, J., Martell, M., Crawford, N. & Aschner, M. Methylmercury induces metabolic alterations in Caenorhabditis elegans: Role for C/EBP transcription factor. Toxicol. Sci. 174, 112–123 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edmonds, S. T., O’Driscoll, N. J., Hillier, N. K., Atwood, J. L. & Evers, D. C. Factors regulating the bioavailability of methylmercury to breeding rusty blackbirds in northeastern wetlands. Environ. Pollut. 171, 148–154 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rowse, L. M., Rodewald, A. D., Mažeika, S. & Sullivan, P. Pathways and consequences of contaminant flux to Acadian flycatchers (Empidonax virescens) in urbanizing landscapes of Ohio, USA. Sci. Total Environ. 485, 461–467 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Marsh, R. L. Catabolic enzyme activities in relation to premigratory fattening and muscle hypertrophy in the gray catbird (Dumetella carolinensis). J. Comp. Physiol. 141, 417–423 (1981).CAS 
    Article 

    Google Scholar 
    Guglielmo, C. G., Haunerland, N. H., Hochachka, P. W. & Williams, T. D. Seasonal dynamics of flight muscle fatty acid binding protein and catabolic enzymes in a migratory shorebird. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 282(5), R1405–R1413 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maillet, D. & Weber, J. M. Relationship between n-3 PUFA content and energy metabolism in the flight muscles of a migrating shorebird: Evidence for natural doping. J. Exp. Biol. 210, 413–420 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weber, J. M. Metabolic fuels: Regulating fluxes to select mix. J. Exp. Biol. 214, 286–294 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Feige, J. N., Gelman, L., Michalik, L., Desvergne, B. & Wahli, W. From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog. Lipid. Res. 45, 120–159 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bensinger, S. J. & Tontonoz, P. Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature 454, 470–477. https://doi.org/10.1038/nature07202 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ynalvez, R., Gutierrez, J. & Gonzalez-Cantu, H. Mini-review: Toxicity of mercury as a consequence of enzyme alteration. Biometals 29, 781–788 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gerson, A. R. & Guglielmo, C. G. Energetics and metabolite profiles during early flight in American robins (Turdus Migratorius). J. Comp. Physiol. B. 183, 983–991 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Price, E. R., McFarlan, J. T. & Guglielmo, C. G. Preparing for migration? The effects of photoperiod and exercise on muscle oxidative enzymes, lipid transporters, and phospholipids in white-crowned sparrows. Physiol. Biochem. Zool. 83, 252–262 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bradley, S. S., Dick, M. F., Guglielmo, C. G. & Timoshenko, A. V. Seasonal and flight-related variation of galectin expression in heart, liver and flight muscles of yellow-rumped warblers (Setophaga coronata). Glycoconj. J. 34, 603–611 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFarlan, J. T., Bonen, A. & Guglielmo, C. G. Seasonal upregulation of fatty acid transporters in flight muscles of migratory white-throated sparrows (Zonotrichia albicollis). J. Exp. Biol. 212, 2934–2940 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Y., King, M. O., Harmon, E., Eyster, K. & Swanson, D. L. Migration-induced variation of fatty acid transporters and cellular metabolic intensity in passerine birds. J. Comp. Physiol. B. 185, 797–810 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dick, M. F. & Guglielmo, C. G. Dietary polyunsaturated fatty acids influence flight muscle oxidative capacity but not endurance flight performance in a migratory songbird. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 316(4), R362–R375 (2019).CAS 
    Article 

    Google Scholar 
    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bittencourt, L. O. et al. Oxidative biochemistry disbalance and changes on proteomic profile in salivary glands of rats induced by chronic exposure to methylmercury. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2017/5653291 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Q., Sun, N., Kou, H., Wang, H. & Zhao, H. Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder. Ecotoxicol. Environ. Saf. 164, 500–509 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nøstbakken, O. J. et al. Dietary methylmercury alters the proteome in Atlantic salmon (Salmo salar) kidney. Aquat. Toxicol. 108, 70–77 (2012).PubMed 
    Article 
    CAS 

    Google Scholar 
    Zink, E. M. Comparison of the mercury induced proteomes of Escherichia coli MG1655 with and without the NR1 plasmid. MSc thesis, Washington State University, Pullman, WA (2009).Lundgren, B. O. & Kiessling, K. H. Seasonal variation in catabolic enzyme activities in breast muscle of some migratory birds. Oecologia 66, 468–471 (1985).ADS 
    PubMed 
    Article 

    Google Scholar 
    Banerjee, S. & Chaturvedi, C. M. Migratory preparation associated alterations in pectoralis muscle biochemistry and proteome in Palearctic-Indian emberizid migratory finch, red-headed bunting, Emberiza bruniceps. Comp. Biochem. Physiol. D Genom. Proteom. 17, 9–25 (2016).CAS 

    Google Scholar 
    Dick, M. F. The long haul: migratory flight preparation and performance in songbirds. Ph.D. dissertation, University of Western Ontario, London, Canada (2017).Driedzic, W. R., Crowe, H. L., Hicklin, P. W. & Sephton, D. H. Adaptations in pectoralis muscle, heart mass, and energy metabolism during premigratory fattening in semipalmated sandpipers (Calidris pusilla). Can. J. Zool. 71, 1602–1608 (1993).Article 

    Google Scholar 
    De Moranville, K. J. et al. PPAR expression, muscle size and metabolic rates across the gray catbird’s annual cycle are greatest in preparation for fall migration. J. Exper. Biol. 222, 198028 (2019).Article 

    Google Scholar 
    Zajac, D. M., Cerasale, D. J., Landman, S. & Guglielmo, C. G. Behavioral and physiological effects of photoperiod-induced migratory state and leptin on Zonotrichia albicollis: II. Effects on fatty acid metabolism. Gen. Comp. Endocrinol. 174, 269–275 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tinant, G. et al. Methylmercury displays pro-adipogenic properties in rainbow trout preadipocytes. Chemosphere 263, 127917 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cambier, S. et al. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int. J. Biochem. Cell Biol. 41, 791–799 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferain, A. et al. Transcriptional effects of phospholipid fatty acid profile on rainbow trout liver cells exposed to methylmercury. Aquat. Toxicol. 199, 174–187 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Börchers, T., Højrup, P., Nielsen, S. U., Roepstorff, P., Spener, F., Knudsen, J. Revision of the amino acid sequence of human heart fatty acid-binding protein. In Cellular Fatty Acid-binding Proteins 127–133 (Springer, Boston, 1990).Dörmann, P. et al. Amino acid exchange and covalent modification by cysteine and glutathione explain isoforms of fatty acid-binding protein occurring in bovine liver. J. Biol. Chem. 268, 16286–16292 (1993).PubMed 
    Article 

    Google Scholar 
    Su, X. & Abumrad, N. A. Cellular fatty acid uptake: A pathway under construction. Trends Endocrinol. Metab. 20(2), 72–77 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Oort, M. M. et al. Each of the four intracellular cysteines of CD36 is essential for insulin-or AMP-activated protein kinase-induced CD36 translocation. Arch. Physiol. Biochem. 120, 40–49 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 56, 2238–2247 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vallee, B. L. & Ulmer, D. D. Biochemical effects of mercury, cadmium, and lead. Annu. Rev. Biochem. 41, 91–128 (1972).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aschner, M. & Syversen, T. Methylmercury: Recent advances in the understanding of its neurotoxicity. Ther. Drug Monit. 27, 278–283 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kenow, K. P., Meyer, M. W., Hines, R. K. & Karasov, W. H. Distribution and accumulation of mercury in tissues of captive-reared common loon (Gavia immer) chicks. Environ. Toxicol. Chem. 26, 1047–1055 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Varian-Ramos, C. W., Whitney, M., Rice, G. W. & Cristol, D. A. Form of dietary methylmercury does not affect total mercury accumulation in the tissues of zebra finch. Bull. Environ. Contam. Toxicol. 99, 1–8 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rizzetti, D. A. et al. Chronic mercury at low doses impairs white adipose tissue plasticity. Toxicology 418, 41–50 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Richter, C. A. et al. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides). Gen. Comp. Endocrinol. 203, 215–224 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, D. M., Hanlon, P. R. & Kircher, E. A. Effects of inorganic HgCl2 on adipogenesis. Toxicol. Sci. 75(2), 368–377 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Corder, K. R., DeMoranville, K. J., Russell, D. E., Huss, J. M. & Schaeffer, P. J. Annual life-stage regulation of lipid metabolism and storage and association with PPARs in a migrant species: the gray catbird (Dumetella carolinensis). J. Exp. Biol. 219, 3391–3398 (2016).PubMed 

    Google Scholar 
    DeMoranville, K. J., Carter, W. A., Pierce, B. J. & McWilliams, S. R. Flight training in a migratory bird drives metabolic gene expression in the flight muscle but not liver, and dietary fat quality influences select genes. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 319(6), R637–R652 (2020).CAS 
    Article 

    Google Scholar 
    Gavrilova, O. et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278(36), 34268–34276 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bedoucha, M., Atzpodien, E. & Boelsterli, U. A. Diabetic KKAy mice exhibit increased hepatic PPARγ1 gene expression and develop hepatic steatosis upon chronic treatment with antidiabetic thiazolidinediones. J. Hepatol. 35, 17–23 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Egeler, O., Williams, T. D. & Guglielmo, C. G. Modulation of lipogenic enzymes, fatty acid synthase and Δ 9-desaturase, in relation to migration in the western sandpiper (Calidris mauri). J. Comp. Physiol. B 170, 169–174 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klaper, R. et al. Use of a 15k gene microarray to determine gene expression changes in response to acute and chronic methylmercury exposure in the fathead minnow (Pimephales promelas). J. Fish Biol. 72, 2207–2280 (2008).CAS 
    Article 

    Google Scholar 
    Calow, P. Physiological costs of combating chemical toxicants: Ecological implications. Comp. Biochem. Physiol. C 100, 3–6 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spalding, M. G. et al. Histologic, neurologic, and immunologic effects of methylmercury in captive great egrets. J. Wildl. Dis. 36, 423–435 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlson, J. R., Cristol, D. & Swaddle, J. P. Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate in European starlings (Sturnus vulgaris). Ecotoxicology 23, 1464–1473 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Faaborg, J. et al. Conserving migratory land birds in the New World: Do we know enough?. Ecol. Appl. 20, 398–418 (2010).PubMed 
    Article 

    Google Scholar 
    Duijns, S. et al. Body condition explains migratory performance of a long-distance migrant. Proc. R. Soc. B https://doi.org/10.1098/rspb.2017.1374 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Single-cell stable isotope probing in microbial ecology

    Neufeld JD, Wagner M, Murrell JC. Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J. 2007;1:103–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature. 1998;392:801–5Jehmlich N, Schmidt F, von Bergen M, Richnow H-H, Vogt C. Protein-based stable isotope probing (Protein-SIP) reveals active species within anoxic mixed cultures. ISME J. 2008;2:1122–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Radajewski S, Ineson P, Parekh NR, Colin Murrell J. Stable-isotope probing as a tool in microbial ecology. Nature. 2000;403:646–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Manefield M, Whiteley AS, Griffiths RI, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol. 2002;68:5367–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berry D, Mader E, Lee TK, Woebken D, Wang Y, Zhu D, et al. Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells. Proc Natl Acad Sci USA. 2015;112:E194–203.CAS 
    PubMed 

    Google Scholar 
    Jehmlich N, Vogt C, Lünsmann V, Richnow HH, von Bergen M. Protein-SIP in environmental studies. Curr Opin Biotechnol. 2016;41:26–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    Haichar, FEZ, Achouak W, Christen R, Heulin T, et al. Identification of cellulolytic bacteria in soil by stable isotope probing. Environ Microbiol. 2007;9:625–34Rangel-Castro JI, Ignacio Rangel-Castro J, Killham K, Ostle N, Nicol GW, Anderson IC, et al. Stable isotope probing analysis of the influence of liming on root exudate utilization by soil microorganisms. Environ Microbiol. 2005;7:828–38.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang Y, Song Y, Tao Y, Muhamadali H, Goodacre R, Zhou N-Y, et al. Reverse and multiple stable isotope probing to study bacterial metabolism and interactions at the single cell level. Anal Chem. 2016;88:9443–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma K, Palatinszky M, Nikolov G, Berry D, Shank EA. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. Elife. 2020;9:e56275.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee KS, Landry Z, Pereira FC, Wagner M, Berry D, Huang WE, et al. Raman microspectroscopy for microbiology. Nat. Rev. Methods Primers. 2021;1:80.CAS 
    Article 

    Google Scholar 
    Hatzenpichler R, Krukenberg V, Spietz RL, Jay ZJ. Next-generation physiology approaches to study microbiome function at single cell level. Nat Rev Microbiol. 2020;18:241–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wagner M. Single-cell ecophysiology of microbes as revealed by raman microspectroscopy or secondary ion mass spectrometry imaging. Ann Rev Microbiol. 2009;63:411–29Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol. 2006;5:48–56.PubMed 
    Article 
    CAS 

    Google Scholar 
    Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D. Release and persistence of extracellular DNA in the environment. Environ Biosafety Res. 2007;6:37–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. Use of propidium monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol. 2007;73:5111–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tawakoli PN, Al-Ahmad A, Hoth-Hannig W, Hannig M, Hannig C. Comparison of different live/dead stainings for detection and quantification of adherent microorganisms in the initial oral biofilm. Clin Oral Investig. 2013;17:841–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Netuschil L, Auschill TM, Sculean A, Arweiler NB. Confusion over live/dead stainings for the detection of vital microorganisms in oral biofilms-which stain is suitable? BMC Oral Health. 2014;14:2.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hatzenpichler R, Connon SA, Goudeau D, Malmstrom RR, Woyke T, Orphan VJ. Visualizing in situ translational activity for identifying and sorting slow-growing archaeal−bacterial consortia. Proc Natl Acad Sci USA. 2016;113:E4069–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S, Cava F, et al. In Situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent D-amino acids. Angew Chem Int Ed Engl. 2012;51:12519–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kopf SH, McGlynn SE, Green-Saxena A, Guan Y, Newman DK, Orphan VJ. Heavy water and15N labelling with NanoSIMS analysis reveals growth rate-dependent metabolic heterogeneity in chemostats. Environ Microbiol. 2015;17:2542–56Kopf SH, Sessions AL, Cowley ES, Reyes C, Van Sambeek L, Hu Y, et al. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci USA. 2016;113:E110–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Neubauer C, Kasi AS, Grahl N, Sessions AL, Kopf SH, Kato R, et al. Refining the Application of Microbial Lipids as Tracers of Staphylococcus aureus Growth Rates in Cystic Fibrosis Sputum. J Bacteriol. 2018;200:e00365–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haider S, Wagner M, Schmid MC, Sixt BS, Christian JG, Häcker G, et al. Raman microspectroscopy reveals long-term extracellular activity of Chlamydiae. Mol Microbiol. 2010;77:687–700.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kloehn J, Boughton BA, Saunders EC, O’Callaghan S, Binger KJ, McConville MJ. Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio. 2021;12:e00129–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kong L, Setlow P, Li Y-Q. Direct analysis of water content and movement in single dormant bacterial spores using confocal Raman microspectroscopy and Raman imaging. Anal Chem. 2013;85:7094–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    Knudsen SM, Cermak N, Delgado FF, Setlow B, Setlow P, Manalis SR. Water and small-molecule permeation of dormant Bacillus subtilis spores. J Bacteriol. 2016;198:168–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen D, Huang S-S, Li Y-Q. Real-time detection of kinetic germination and heterogeneity of single Bacillus spores by laser tweezers Raman spectroscopy. Anal Chem. 2006;78:6936–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, et al. Defining and measuring ecological specialization. J Appl Ecol. 2010;47:15–25.Article 

    Google Scholar 
    Pereira FC, Berry D. Microbial nutrient niches in the gut. Environ Microbiol. 2017;19:1366–78.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shakya M, Lo C-C, Chain PSG. Advances and challenges in metatranscriptomic analysis. Front Genet. 2019;10:904.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berry D, Loy A. Stable-Isotope probing of human and animal microbiome function. Trends Microbiol. 2018;26:999–1007.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Terrado R, Pasulka AL, Lie AA-Y, Orphan VJ, Heidelberg KB, Caron DA. Autotrophic and heterotrophic acquisition of carbon and nitrogen by a mixotrophic chrysophyte established through stable isotope analysis. ISME J. 2017;11:2022–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dekas AE, Parada AE, Mayali X, Fuhrman JA, Wollard J, Weber PK, et al. Characterizing Chemoautotrophy and Heterotrophy in Marine Archaea and Bacteria With Single-Cell Multi-isotope NanoSIP. Front Microbiol. 2019;10:2682.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wegener G, Bausch M, Holler T, Thang NM, Mollar XP, Kellermann MY, et al. Assessing sub-seafloor microbial activity by combined stable isotope probing with deuterated water and 13C-bicarbonate. Environ Microbiol. 2019;14:1517–27Jing X, Gou H, Gong Y, Su X, Xu L, Ji Y, et al. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean. Environ Microbiol. 2018;20:2241–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu J, Zhu D, Ibrahim AD, Allen CCR, Gibson CM, Fowler PW, et al. Raman deuterium isotope probing reveals microbial metabolism at the single-cell level. Anal Chem. 2017;89:13305–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang M, Hong W, Abutaleb NS, Li J, Dong P-T, Zong C, et al. Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. Adv Chem Microsc Life Sci Transl Med. 2021.Lima C, Muhamadali H, Xu Y, Kansiz M, Goodacre R. Imaging Isotopically Labeled Bacteria at the Single-Cell Level Using High-Resolution Optical Infrared Photothermal Spectroscopy. Anal Chem. 2021;93:3082–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ackermann M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol. 2015;13:497–508.CAS 
    PubMed 
    Article 

    Google Scholar 
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science. 2004;305:1622–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Maamar H, Raj A, Dubnau D. Noise in gene expression determines cell fate in Bacillus subtilis. Science. 2007;317:526–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Emonet T, Cluzel P. Relationship between cellular response and behavioral variability in bacterial chemotaxis. Proc Natl Acad Sci USA. 2008;105:3304–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A. Multistability in the lactose utilization network of Escherichia coli. Nature. 2004;427:737–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ. Stochasticity of metabolism and growth at the single-cell level. Nature. 2014;514:376–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kotte O, Volkmer B, Radzikowski JL, Heinemann M. Phenotypic bistability in Escherichia coli’s central carbon metabolism. Mol Syst Biol. 2014;10:736.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S, et al. Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol. 2014;12:e1001764.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Solopova A, van Gestel J, Weissing FJ, Bachmann H, Teusink B, Kok J, et al. Bet-hedging during bacterial diauxic shift. Proc Natl Acad Sci USA. 2014;111:7427–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nat Microbiol. 2016;1:16055.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nikolic N, Schreiber F, Dal Co A, Kiviet DJ, Bergmiller T, Littmann S, et al. Cell-to-cell variation and specialization in sugar metabolism in clonal bacterial populations. PLoS Genet. 2017;13:e1007122.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Takhaveev V, Heinemann M. Metabolic heterogeneity in clonal microbial populations. Curr Opin Microbiol. 2018;45:30–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Altschuler SJ, Wu LF. Cellular heterogeneity: do differences make a difference? Cell. 2010;141:559–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Beaumont HJE, Gallie J, Kost C, Ferguson GC, Rainey PB. Experimental evolution of bet hedging. Nature. 2009;462:90–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Calabrese F, Voloshynovska I, Musat F, Thullner M, Schlömann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zimmermann M, Escrig S, Hübschmann T, Kirf MK, Brand A, Inglis RF, et al. Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol. 2015;6:243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zimmermann M, Escrig S, Lavik G, Kuypers MMM, Meibom A, Ackermann M, et al. Substrate and electron donor limitation induce phenotypic heterogeneity in different metabolic activities in a green sulphur bacterium. Environ Microbiol Rep. 2018;10:179–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sheik AR, Muller EE, Audinot J-N, Lebrun LA, Grysan P, Guignard C, et al. In situ phenotypic heterogeneity among single cells of the filamentous bacterium Candidatus Microthrix parvicella. ISME J. 2016;10:1274–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem. 2011;3:331–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ferrier-Pagès C, Leal MC. Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecol Evol. 2019;9:723–40.PubMed 
    Article 

    Google Scholar 
    Pasulka AL, Thamatrakoln K, Kopf SH, Guan Y, Poulos B, Moradian A, et al. Interrogating marine virus-host interactions and elemental transfer with BONCAT and nanoSIMS-based methods. Environ Microbiol. 2018;20:671–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M, Meibom A. Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio. 2015;6:e02299–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rädecker N, Pogoreutz C, Gegner HM, Cárdenas A, Roth F, Bougoure J, et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc Natl Acad Sci U S A. 2021;118:e2022653118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Krueger T, Bodin J, Horwitz N, Loussert-Fonta C, Sakr A, Escrig S, et al. Temperature and feeding induce tissue level changes in autotrophic and heterotrophic nutrient allocation in the coral symbiosis – a NanoSIMS study. Sci Rep. 2018;8:12710.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibbin E, Gavish A, Krueger T, Kramarsky-Winter E, Shapiro O, Guiet R, et al. Vibrio coralliilyticus infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. ISME J. 2019;13:989–1003.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rix L, Ribes M, Coma R, Jahn MT, de Goeij JM, van Oevelen D, et al. Heterotrophy in the earliest gut: a single-cell view of heterotrophic carbon and nitrogen assimilation in sponge-microbe symbioses. ISME J. 2020;14:2554–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mills MM, Turk-Kubo KA, van Dijken GL, Henke BA, Harding K, Wilson ST, et al. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 2020;14:2395–406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turk-Kubo KA, Mills MM, Arrigo KR, van Dijken G, Henke BA, Stewart B, et al. UCYN-A/haptophyte symbioses dominate N2 fixation in the Southern California Current System. ISME Commun. 2021;1:1–13.Article 

    Google Scholar 
    Moore CM, Mills MM, Arrigo KR, Berman-Frank I, Bopp L, Boyd PW, et al. Processes and patterns of oceanic nutrient limitation. Nat Geosci. 2013;6:701–10.CAS 
    Article 

    Google Scholar 
    Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science. 2016;351:703–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pereira FC, Wasmund K, Cobankovic I, Jehmlich N, Herbold CW, Lee KS, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020;11:5104.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mooshammer M, Kitzinger K, Schintlmeister A, Ahmerkamp S, Nielsen JL, Nielsen PH, et al. Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities. ISME J. 2021;15:348–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Słomka J, Alcolombri U, Secchi E, Stocker R, Fernandez VI. Encounter rates between bacteria and small sinking particles. New J Phys. 2020;22:043016.Article 

    Google Scholar 
    Alcolombri U, Peaudecerf FJ, Fernandez VI, Behrendt L, Lee KS, Stocker R. Sinking enhances the degradation of organic particles by marine bacteria. Nat Geosci. 2021;14:775–80.CAS 
    Article 

    Google Scholar 
    University of Massachusetts Amherst Massachusetts Lynn Margulis, Margulis L, Fester R. Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press; 1991. 454 p.Legin AA, Schintlmeister A, Sommerfeld NS, Eckhard M, Theiner S, Reipert S, et al. Nano-scale imaging of dual stable isotope labeled oxaliplatin in human colon cancer cells reveals the nucleolus as a putative node for therapeutic effect. Nanoscale Adv. 2021;3:249–62.CAS 
    Article 

    Google Scholar 
    Schaible GA, et al. Correlative SIP-FISH-Raman-SEM-NanoSIMS links identity, morphology, biochemistry, and physiology of environmental microbes. ISME COMMUN. 2022;2:52.Article 

    Google Scholar 
    Yu G-H, Chi Z-L, Kappler A, Sun F-S, Liu C-Q, Teng HH, et al. Fungal nanophase particles catalyze iron transformation for oxidative stress removal and iron acquisition. Curr Biol. 2020;30:2943–50.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Subirana MA, Riemschneider S, Hause G, Dobritzsch D, Schaumlöffel D, Herzberg M. High spatial resolution imaging of subcellular macro and trace element distribution during phagocytosis. Metallomics. 2022;14:mfac011.PubMed 
    Article 

    Google Scholar 
    Bonnin EA, Fornasiero EF, Lange F, Turck CW, Rizzoli SO. NanoSIMS observations of mouse retinal cells reveal strict metabolic controls on nitrogen turnover. BMC Mol Cell Biol. 2021;22:5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jo MC, Liu W, Gu L, Dang W, Qin L. High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci U S A. 2015;112:9364–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anggraini D, Ota N, Shen Y, Tang T, Tanaka Y, Hosokawa Y, et al. Recent advances in microfluidic devices for single-cell cultivation: methods and applications. Lab Chip. 2022;22:1438–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Eriksen R, Daria V, Gluckstad J. Fully dynamic multiple-beam optical tweezers. Opt Express. 2002;10:597–602.PubMed 
    Article 

    Google Scholar 
    Dai X, Fu W, Chi H, Mesias VSD, Zhu H, Leung CW, et al. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures. Nat Commun. 2021;12:1292.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun. 2015;6:8686.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods. 2019;16:830–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ge X, Pereira FC, Mitteregger M, Berry D, Zhang M, Hausmann B, et al. SRS-FISH: A high-throughput platform linking microbiome metabolism to identity at the single-cell level. Proc Natl Acad Sci U S A. 2022;119:e2203519119.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vandergrift GW, Kew W, Lukowski JK, Bhattacharjee A, Liyu AV, Shank EA, et al. Imaging and direct sampling capabilities of nanospray desorption electrospray ionization with absorption-mode 21 Tesla Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 2022;94:3629–36.CAS 
    PubMed 
    Article 

    Google Scholar 
    Harrison JP, Berry D. Vibrational spectroscopy for imaging single microbial cells in complex biological samples. Front Microbiol. 2017;8:675.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mayali X. NanoSIMS: microscale quantification of biogeochemical activity with large-scale impacts. Ann Rev Mar Sci. 2020;12:449–67.PubMed 
    Article 

    Google Scholar 
    Alexandrov T. Spatial metabolomics and imaging mass spectrometry in the age of artificial intelligence. Annu Rev Biomed Data Sci. 2020;3:61–87.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boschker HTS, Middelburg JJ. Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol. 2002;40:85–95.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Nuccio E, Lietard J, Somoza M, Blazewicz SJ, et al. Chip-SIP: Stable Isotope Probing analyzed with rRNA-targeted microarrays and nanoSIMS. Methods Mol Biol. 2019;2046:71–87.PubMed 
    Article 

    Google Scholar 
    Chokkathukalam A, Kim D-H, Barrett MP, Breitling R, Creek DJ. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks. Bioanalysis. 2014;6:511–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hiller K, Metallo CM, Kelleher JK, Stephanopoulos G. Nontargeted elucidation of metabolic pathways using stable-isotope tracers and mass spectrometry. Anal Chem. 2010;82:6621–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rusconi R, Garren M, Stocker R. Microfluidics expanding the frontiers of microbial ecology. Annu Rev Biophys. 2014;43:65–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee KS, Pereira FC, Palatinszky M, Behrendt L, Alcolombri U, Berry D, et al. Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat Protoc. 2021;16:634–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner M, Haider S. New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr Opin Biotechnol. 2012;23:96–102.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Nonreproductive effects are more important than reproductive effects in a host feeding parasitoid

    Godfray, H. C. Parasitoids: Behavioural and Evolutionary Ecology (Princeton University Press, 1994).Book 

    Google Scholar 
    Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jervis, M. A. & Kidd, N. A. C. Host-feeding strategies in hymenopteran parasitoids. Biol. Rev. 61, 395–434 (1986).Article 

    Google Scholar 
    Cebolla, R., Vanaclocha, P., Urbaneja, A. & Tena, A. Overstinging by hymenopteran parasitoids causes mutilation and surplus killing of hosts. J. Pest Sci. 91, 327–339 (2018).Article 

    Google Scholar 
    Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Münster-Swendsen, M. Population cycles of the spruce needle miner in Denmark driven by interactions with insect parasitoids. In Population Cycles: The Case for Trophic Interactions (ed. Berryman, A. A.) 29–43 (Oxford University Press, 2002).
    Google Scholar 
    Abram, P. K., Brodeur, J., Burte, V. & Boivin, G. Parasitoid-induced host egg abortion: an underappreciated component of biological control services provided by egg parasitoids. Biol. Control 98, 52–60 (2016).Article 

    Google Scholar 
    Vinson, S. B. & Iwantsch, G. F. Host suitability for insect parasitoids. Annu. Rev. Entomol. 25, 397–419 (1980).Article 

    Google Scholar 
    Heimpel, G. E. & Collier, T. R. The evolution of host-feeding behaviour in insect parasitoids. Biol. Rev. 71, 373–400 (1996).Article 

    Google Scholar 
    Heimpel, G. E., Rosenheim, J. A. & Adams, J. M. Behavioral ecology of host feeding in Aphytis melinus parasitoid. Nor. J. Agric. Sci. 6, 101–115 (1994).
    Google Scholar 
    Heimpel, G. E. & Rosenheim, J. A. Dynamic host feeding by the parasitoid Aphytis melinus: the balance between current and future reproduction. J. Anim. Ecol. 64, 153–167 (1995).Article 

    Google Scholar 
    Choi, W. I., Yoon, T. J. & Ryoo, M. I. Host-size-dependent feeding behaviour and progeny sex ratio of Anisopteromalus calandrae (Hym., Pteromalidae). J. Appl. Entomol. 125, 71–77 (2001).Article 

    Google Scholar 
    Burger, J. M. S., Hemerik, L., Leteren, J. C. & Vet, L. E. M. Reproduction now or later: optimal host-handling strategies in the whitefly parasitoid Encasia formosa. Oikos 106, 117–130 (2004).Article 

    Google Scholar 
    Guillemaud, T. et al. The tomato borer, Tuta absoluta, invading the Mediterranean Basin, originates from a single introduction from Central Chile. Sci. Rep. 5, 8371 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Desneux, N., Luna, M. G., Guillemaud, T. & Urbaneja, A. The invasive South American tomato pinworm, Tuta absoluta, continues to spread in Afro-Eurasia and beyond: the new threat to tomato world production. J. Pest Sci. 84, 403–408 (2011).Article 

    Google Scholar 
    Desneux, N. et al. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J. Pest Sci. 83, 197–215 (2010).Article 

    Google Scholar 
    Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread and management of the invasive South American tomato pinworm, Tuta absoluta: past, present and future. Annu. Rev. Entomol. 63, 239–258 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campos, M. R., Biondi, A., Adiga, A., Guedes, R. N. C. & Desneux, N. From the Western Palaearctic region to beyond: Tuta absoluta 10 years after invading Europe. J. Pest Sci. 90, 787–796 (2017).Article 

    Google Scholar 
    Han, P. et al. Are we ready for the invasion of Tuta absoluta? Unanswered key questions for elaborating an integrated pest management package in Xinjiang, China. Entomol. Gen. 38, 125 (2018).
    Google Scholar 
    Han, P. et al. Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. J. Pest Sci. 92, 1317–1327 (2019).Article 

    Google Scholar 
    Mansour, R. et al. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol. Gen. 38, 83–111 (2018).Article 

    Google Scholar 
    Zhang, G. F. et al. Outbreak of the South American tomato leafminer, Tuta absoluta, in the Chinese mainland: geographic and potential host range expansion. Pest Manag. Sci. 77, 5475–5488 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Desneux, N. et al. Integrated pest management of Tuta absoluta: practical implementations across different world regions. J. Pest Sci. 95, 17–39 (2022).Article 

    Google Scholar 
    Wang, M. H. et al. Polygyny of Tuta absoluta may affect sex pheromone-based control techniques. Entomol. Gen. 41, 357–367 (2021).Article 

    Google Scholar 
    Rostami, E., Madadi, H., Abbasipour, H., Allahyari, H. & Cuthbertson, A. G. S. Pest density influences on tomato pigment contents: the South American tomato pinworm scenario. Entomol. Gen. 40, 195–205 (2020).Article 

    Google Scholar 
    Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gebiola, M., Bernardo, U., Ribes, A. & Gibson, G. A. P. An integrative study of Necremnus Thomson (Hymenoptera: Eulophidae) associated with invasive pests in Europe and North America: taxonomic and ecological implications. Zool. J. Linn. Soc. 173, 352–423 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naselli, M. et al. Insights into food webs associated with the South American tomato pinworm. Pest Manag. Sci. 73, 1352–1357 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campos, M. R. et al. Impact of a shared sugar food source on biological control of Tuta absoluta by the parasitoid Necremnus tutae. J. Pest Sci. 93, 207–218 (2020).Article 

    Google Scholar 
    Zhang, Y. B. et al. Host selection behavior of the host-feeding parasitoid Necremnus tutae on Tuta absoluta. Entomol. Gen. https://doi.org/10.1127/entomologia/2021/1246 (2021).Article 

    Google Scholar 
    Bodino, N., Ferracini, C. & Tavella, L. Is host selection influenced by natal and adult experience in the parasitoid Necremnus tutae (Hymenoptera: Eulophidae)?. Anim. Behav. 112, 221–228 (2016).Article 

    Google Scholar 
    Biondi, A., Desneux, N., Amiens-Desneux, E., Siscaro, G. & Zappalà, L. Biology and developmental strategies of the Palaearctic parasitoid, Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 106, 1638–1647 (2013).PubMed 
    Article 

    Google Scholar 
    Foltyn, S. & Gerling, D. The parasitoids of the aleyrodid Bemisia tabaci in Israel. Development, host preference and discrimination of the aphelinid Eretmocerus mundus. Entomol. Exp. Appl. 38, 255–260 (1985).Article 

    Google Scholar 
    Zhang, Y. B., Yang, N. W., Sun, L. Y. & Wan, F. H. Host instar suitability in two invasive whiteflies for the naturally occurring parasitoid Eretmocerus hayati in China. J. Pest Sci. 88(2), 1612–1618 (2015).
    Google Scholar 
    Lebreton, S., Darrouzet, E. & Chevrier, C. Could hosts considered as low quality for egg-laying be considered as high quality for host-feeding?. J. Insect Physiol. 55, 694–699 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Calvo, F. J., Soriano, J. D., Bolckmans, K. & Belda, J. E. Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta. Biocontrol Sci. Technol. 23(7), 803–815 (2013).Article 

    Google Scholar 
    Chailleux, A., Desneux, N., Arnó, J. & Gabarra, R. Biology of two key Palaearctic larval ectoparasitoids when parasitizing the invasive pest Tuta absoluta. J. Pest Sci. 87(3), 441–448 (2014).Article 

    Google Scholar 
    Asgari, S. & Rivers, D. B. Venom proteins from endoparasitoid wasps and their role in host-parasite interactions. Annu. Rev. Entomol. 56, 313–335 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abram, P. K., Gariepy, T. D., Boivin, G. & Brodeur, J. An invasive stink bug as an evolutionary trap for an indigenous egg parasitoid. Biol. Invasions 16, 1387–1395 (2014).Article 

    Google Scholar 
    Schlaepfer, M. A., Sherman, P. W., Blossey, B. & Runge, M. C. Introduced species as evolutionary traps. Ecol. Lett. 8, 241–246 (2005).Article 

    Google Scholar 
    van Driesche, R. G., Bellotti, A., Herrera, C. J. & Castello, J. A. Host feeding and ovipositor insertion as sources of mortality in the mealybug Phenacoccus herreni caused by two encyrtids, Epidinocarsis diversicornis and Acerophagus coccois. Entomol. Exp. Appl. 44, 97–100 (1987).Article 

    Google Scholar 
    Barrett, B. & Brunner, J. Types of parasitoid-induced mortality, host stage preferences, and sex ratios exhibited by Pnigalio flavipes (Hymenoptera: Eulophidae) using Phyllonorycter elmaella (Lepidoptera: Gracillaridae) as a host. Environ. Entomol. 19, 803–807 (1990).Article 

    Google Scholar 
    Huang, Y., Loomans, A. J. M., van Lenteren, J. C. & Xu, R. M. Hyperparasitism behavior of the autoparasitoid Encarsia tricolor on two secondary host species. BioControl 54, 411–424 (2009).Article 

    Google Scholar 
    Patel, K. J., Schuster, D. J. & Smerage, G. H. Density dependent parasitism and host-killing of Liriomyza trifolii (Diptera: Agromyzidae) by Diglyphus intermedius (Hymenoptera: Eulophidae). Fla. Entomol. 86, 8–14 (2003).Article 

    Google Scholar 
    Lauziere, I., Perez-Lachaud, G. & Bordeur, J. Influence of host density on the reproductive strategy of Cephalonomia stephanoderis, a parasitoid of the coffee berry borer. Entomol. Exp. Appl. 92, 21–28 (1999).Article 

    Google Scholar 
    Blanckenhorn, W. U. The evolution of body size: what keeps organisms small?. Quart. Rev. Biol. 75(4), 385–407 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Idriss, G. E. A., Mohamed, S. A., Khamis, F., Plessis, H. D. & Ekesi, S. Biology and performance of two indigenous larval parasitoids on Tuta absoluta (Lepidoptera: Gelechiidae) in Sudan. Biocontrol Sci. Technol. 28(6), 614–628 (2018).Article 

    Google Scholar 
    Blanckenhorn, W. U., Preziosi, R. F. & Fairbairn, D. J. Time and energy constraints and the evolution of sexual size dimorphism-to eat or to mate?. Evol. Ecol. 9, 369–381 (1995).Article 

    Google Scholar 
    Blomqvist, D., Johansson, O. C., Unger, U., Larsson, M. & Flodin, L. A. Male aerial display and reversed sexual size dimorphism in the dunlin. Anim. Behav. 54, 1291–1299 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simmons, L. W., Tomkins, J. L. & Hunt, J. Sperm competition games played by dimorphic male beetles. Proc. R. Soc. Lond. B 266, 145–150 (1999).Article 

    Google Scholar 
    Madsen, T. & Shine, R. Costs of reproduction influence the evolution of sexual size dimorphism in snakes. Evolution 48, 1389–1397 (1994).PubMed 
    Article 

    Google Scholar 
    Blanckenhorn, W. U., Morf, C., Mühlhäuser, C. & Reusch, T. Spatiotemporal variation in selection on body size in the dung fly Sepsis cynipsea. J. Evol. Biol. 9, 369–381 (1999).
    Google Scholar  More

  • in

    Life table construction for crapemyrtle bark scale (Acanthococcus lagerstroemiae): the effect of different plant nutrient conditions on insect performance

    USDA, N. Census of Horticultural Specialties (USDA, 2014).
    Google Scholar 
    USDA, N. Census of Horticultural Specialties (USDA, 2019).
    Google Scholar 
    Soliman, A. S. & Shanan, N. T. The role of natural exogenous foliar applications in alleviating salinity stress in Lagerstroemia indica L. seedlings. J. Appl. Hortic. 19, 35–45 (2017).Article 

    Google Scholar 
    Chappell, M. R., Braman, S. K., Williams-Woodward, J. & Knox, G. J. J. o. E. H. Optimizing plant health and pest management of Lagerstroemia spp. in commercial production and landscape situations in the southeastern United States: A review. 30, 161–172 (2012).Gu, M., Merchant, M., Robbins, J. & Hopkins, J. Crape Myrtle Bark Scale: A New Exotic Pest. Texas A&M AgriLife Ext. Service. EHT 49 (2014).Kondo, T., Gullan, P. J. & Williams, D. J. Coccidology. The study of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Ciencia y Tecnología Agropecuaria 9, 55–61 (2008).Article 

    Google Scholar 
    Jiang, N. & Xu, H. Observertion on Eriococcus lagerostroemiae Kuwana. J. Anhui Agric. Coll. 25, 142–144 (1998).
    Google Scholar 
    He, D., Cheng, J., Zhao, H. & Chen, S. Biological characteristic and control efficacy of Eriococcus lagerstroemiae. Chin. Bull. Entomol. 45, 812–814 (2008).
    Google Scholar 
    Harcourt, D. The development and use of life tables in the study of natural insect populations. Annu. Rev. Entomol. 14, 175–196 (1969).Article 

    Google Scholar 
    Leslie, P. H. On the use of matrices in certain population mathematics. Biometrika 33, 183–212 (1945).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Birch, L. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol., 15–26 (1948).Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).Article 

    Google Scholar 
    Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin 24, 225–240 (1985).
    Google Scholar 
    Fathipour, Y. & Maleknia, B. in Ecofriendly Pest Management for Food Security (ed Omkar) 329–366 (Academic Press, 2016).Auad, A. et al. The impact of temperature on biological aspects and life table of Rhopalosiphum padi (Hemiptera: Aphididae) fed with signal grass. Fla. Entomol. 569–577 (2009).Qu, Y. et al. Sublethal and hormesis effects of beta-cypermethrin on the biology, life table parameters and reproductive potential of soybean aphid Aphis glycines. Ecotoxicology 26, 1002–1009 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Araujo, E. S., Benatto, A., Mogor, A. F., Penteado, S. C. & Zawadneak, M. A. Biological parameters and fertility life table of Aphis forbesi Weed, 1889 (Hemiptera: Aphididae) on strawberry. Braz. J. Biol. 76, 937–941. https://doi.org/10.1590/1519-6984.04715 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Krishnamoorthy, S. V. & Mahadevan, N. R. Life table studies of sugarcane scale, Melanaspis glomerata G. J. Entomol. Res. 27, 203–212 (2003).
    Google Scholar 
    Uematsu, H. Studies on life table for an armored scale insect, Aonidiella taxus Leonardi (Homoptera: Diaspididae). J. Fac. Agric. Kyushu Univ. (1979).Hill, M. G., Mauchline, N. A., Hall, A. J. & Stannard, K. A. Life table parameters of two armoured scale insect (Hemiptera: Diaspididae) species on resistant and susceptible kiwifruit (Actinidia spp.) germplasm. N. Z. J. Crop Hortic. Sci. 37, 335–343 (2009).Article 

    Google Scholar 
    Yong, C. X. W. Z. C. & Shaoyun, Z. J. Y. S. W. Age-specific life table of chinese white wax scale (Ericerus pela) natural population and analysis of death key factors. Scientia Silvae Sinica 9 (2008).Rosado, J. F. et al. Natural biological control of green scale (Hemiptera: Coccidae): a field life-table study. Biocontrol. Sci. Technol. 24, 190–202 (2014).Article 

    Google Scholar 
    Fand, B. B., Gautam, R. D., Chander, S. & Suroshe, S. S. Life table analysis of the mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) under laboratory conditions. J. Entomol. Res. 34, 175–179 (2010).
    Google Scholar 
    Vargas-Madríz, H. et al. Life and fertility table of Bactericera cockerelli (Hemiptera: Triozidae), under different fertilization treatments in the 7705 tomato hybrid. Rev. Chil. entomol. 39 (2014).Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett)(Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).Article 

    Google Scholar 
    Saska, P. et al. Leaf structural traits rather than drought resistance determine aphid performance on spring wheat. J. Pest. Sci. 94, 423–434 (2021).Article 

    Google Scholar 
    Ma, K., Tang, Q., Xia, J., Lv, N. & Gao, X. Fitness costs of sulfoxaflor resistance in the cotton aphid, Aphis gossypii Glover. Pestic. Biochem. Physiol. 158, 40–46 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ullah, F. et al. Fitness costs in clothianidin-resistant population of the melon aphid, Aphis gossypii. PLoS ONE 15, e0238707 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Güncan, A. & Gümüş, E. Influence of different hazelnut cultivars on some demographic characteristics of the filbert aphid (Hemiptera: Aphididae). J. Econ. Entomol. 110, 1856–1862 (2017).PubMed 
    Article 

    Google Scholar 
    Bailey, R., Chang, N.-T., Lai, P.-Y. & Hsu, T.-C. Life table of cycad scale, Aulacaspis yasumatsui (Hemiptera: Diaspididae), reared on Cycas in Taiwan. J. Asia Pac. Entomol. 13, 183–187 (2010).Article 

    Google Scholar 
    Wang, Z., Chen, Y. & Diaz, R. Temperature-dependent development and host range of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana)(Hemiptera: Eriococcidae). Fla. Entomol. 102, 181–186 (2019).Article 

    Google Scholar 
    Zhang, Z.-J. et al. A determining factor for insect feeding preference in the silkworm, Bombyx mori. PLoS Biol. 17, e3000162 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Z., Chen, Y., Diaz, R. & Laine, R. A. Physiology of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), associated with seasonally altered cold tolerance. J. Insect Physiol. 112, 1–8 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Suh, S.-J. Notes on some parasitoids (Hymenoptera: Chalcidoidea) associated with Acanthococcus lagerstroemiae (Kuwana)(Hemiptera: Eriococcidae) in the Republic of Korea. Insecta mundi 0690, 1–5 (2019).
    Google Scholar 
    Meindl, G. A., Bain, D. J. & Ashman, T.-L. Edaphic factors and plant–insect interactions: Direct and indirect effects of serpentine soil on florivores and pollinators. Oecologia 173, 1355–1366 (2013).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wielgolaski, F. E. Phenological modifications in plants by various edaphic factors. Int. J. Biometeorol. 45, 196–202 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Uchida, R. in Plant nutrient management in Hawaii’s soils (ed Raymond S. Uchida James A. Silva) 31–55 (University of Hawaii at Manoa, College of Agriculture & Tropical Resources, 2000).Flanders, S. E. Observations on host plant induced behavior of scale insects and their endoparasites. Can. Entomol. 102, 913–926 (1970).Article 

    Google Scholar 
    Yang, T.-C. & Chi, H. Life tables and development of Bemisia argentifolii (Homoptera: Aleyrodidae) at different temperatures. J. Econ. Entomol. 99, 691–698 (2006).PubMed 
    Article 

    Google Scholar 
    Tuan, S. J., Lee, C. C. & Chi, H. Population and damage projection of Spodoptera litura (F.) on peanuts (Arachis hypogaea L.) under different conditions using the age-stage, two-sex life table. Pest Manag. Sci. 70, 805–813 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vafaie, E. et al. Seasonal population patterns of a new scale pest, Acanthococcus lagerstroemiae Kuwana (Hemiptera: Sternorrhynca: Eriococcidae), of Crapemyrtles in Texas, Louisiana, and Arkansas. J. Environ. Hortic. 38, 8–14 (2020).Article 

    Google Scholar 
    Vafaie, E. K. Bark and systemic insecticidal control of Acanthococcus (= Eriococcus) lagerstroemiae (Hemiptera: Eriococcidae) on Potted Crapemyrtles, 2017. Arthropod manag. tests 44, tsy109 (2019).Vafaie, E. K. & Knight, C. M. J. A. M. T. Bark and systemic insecticidal control of Acanthococcus (= Eriococcus) lagerstroemiae (Crapemyrtle Bark Scale) on Landscape Crapemyrtles, 2016. 42, tsx130 (2017).Vafaie, E. & Gu, M. Insecticidal control of crapemyrtle bark scale on potted crapemyrtles, Fall 2018. Arthropod. Manag. Tests 44, tsz061 (2019).Article 

    Google Scholar 
    Aktar, M. W., Sengupta, D. & Chowdhury, A. J. I. t. Impact of pesticides use in agriculture: their benefits and hazards. 2, 1 (2009).Grafton-Cardwell, E. & Vehrs, S. Monitoring for organophosphate-and carbamate-resistant armored scale (Homoptera: Diaspididae) in San Joaquin valley citrus. J. Econ. Entomol. 88, 495–504 (1995).CAS 
    Article 

    Google Scholar 
    Almarinez, B. J. M. et al. Biological control: A major component of the pest management program for the invasive coconut scale insect, Aspidiotus rigidus Reyne, in the Philippines. Insects 11, 745 (2020).PubMed Central 
    Article 

    Google Scholar 
    Grout, T. & Richards, G. Value of pheromone traps for predicting infestations of red scale, Aonidiella aurantii (Maskell)(Hom., Diaspididae), limited by natural enemy activity and insecticides used to control citrus thrips, Scirtothrips aurantii Faure (Thys., Thripidae). J. Appl. Entomol. 111, 20–27 (1991).Article 

    Google Scholar 
    Grafton-Cardwell, E., Millar, J., O’Connell, N. & Hanks, L. Sex pheromone of yellow scale, Aonidiella citrina (Homoptera: Diaspididae): Evaluation as an IPM tactic. J. Agric. Urban. Entomol. 17, 75–88 (2000).CAS 

    Google Scholar 
    Jactel, H., Menassieu, P., Lettere, M., Mori, K. & Einhorn, J. Field response of maritime pine scale, Matsucoccus feytaudi Duc. (Homoptera: Margarodidae), to synthetic sex pheromone stereoisomers. J. Chem. Ecol. 20, 2159–2170 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendel, Z. et al. Outdoor attractancy of males of Matsucoccus josephi (Homoptera: Matsucoccidae) and Elatophilus hebraicus (Hemiptera: Anthocoridae) to synthetic female sex pheromone of Matsucoccus josephi. J. Chem. Ecol. 21, 331–341 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zada, A. et al. Sex pheromone of the citrus mealybug Planococcus citri: Synthesis and optimization of trap parameters. J. Econ. Entomol. 97, 361–368 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Z. & Shi, Y. Studies on the Morphology and Biology of Eriococcus Lagerstroemiae Kuwana. J. Shandong Agri. Univ. 2 (1986).Savopoulou-Soultani, M., Papadopoulos, N. T., Milonas, P. & Moyal, P. Abiotic factors and insect abundance. PSYCHE 2012 (2012).Vandegehuchte, M. L., de la Pena, E. & Bonte, D. Relative importance of biotic and abiotic soil components to plant growth and insect herbivore population dynamics. PLoS ONE 5, e12937 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clavijo McCormick, A. Can plant–natural enemy communication withstand disruption by biotic and abiotic factors?. Ecol. Evol. 6, 8569–8582 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nebapure, S. M. & Sagar, D. Insect-plant interaction: A road map from knowledge to novel technology. Karnataka J. Agric. Sci. 28, 1–7 (2015).
    Google Scholar 
    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).CAS 
    Article 

    Google Scholar 
    Hogendorp, B. K., Cloyd, R. A. & Swiader, J. M. Effect of nitrogen fertility on reproduction and development of citrus mealybug, Planococcus citri Risso (Homoptera: Pseudococcidae), feeding on two colors of coleus Solenostemon scutellarioides L. Codd. Environ. Entomol. 35, 201–211 (2006).Article 

    Google Scholar 
    Lema, K. & Mahungu, N. in Tropical root crops: Production and uses in Africa: proceedings of the Second Triennial Symposium of the International Society for Tropical Root Crops-Africa Branch held in Douala, Cameroon, 14-19 Aug. 1983. (IDRC, Ottawa, ON, CA).McClure, M. S. Dispersal of the scale Fiorinia externa (Homoptera: Diaspididae) and effects of edaphic factors on its establishment on hemlock. Environ. Entomol. 6, 539–544 (1977).Article 

    Google Scholar 
    Salama, H., Amin, A. & Hawash, M. Effect of nutrients supplied to citrus seedlings on their susceptibility to infestation with the scale insects Aonidiella aurantii (Maskell) and Lepidosaphes beckii (Newman)(Coccoidea). Zeitschrift für Angewandte Entomologie 71, 395–405 (1972).Article 

    Google Scholar 
    Rasmann, S. & Pellissier, L. in Climate Change and Insect Pests Vol. 8 (ed P. Niemelä C. Björkman) 38–53 (Wallingford, UK: CAB Int., 2015).Wang, Z. & Li, S. Effects of nitrogen and phosphorus fertilization on plant growth and nitrate accumulation in vegetables. J. Plant Nutr. 27, 539–556 (2004).CAS 
    Article 

    Google Scholar 
    Da Costa, P. B. et al. The effects of different fertilization conditions on bacterial plant growth promoting traits: Guidelines for directed bacterial prospection and testing. Plant Soil. 368, 267–280 (2013).Article 

    Google Scholar 
    Dong, H., Kong, X., Li, W., Tang, W. & Zhang, D. Effects of plant density and nitrogen and potassium fertilization on cotton yield and uptake of major nutrients in two fields with varying fertility. Field Crops Res. 119, 106–113 (2010).Article 

    Google Scholar 
    Aulakh, M., Dev, G. & Arora, B. Effect of sulphur fertilization on the nitrogen–sulphur relationships in alfalfa (Medicago sativa L. Pers.). Plant Soil. 45, 75–80 (1976).CAS 
    Article 

    Google Scholar 
    Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sauge, M. H., Grechi, I. & Poëssel, J. L. Nitrogen fertilization effects on Myzus persicae aphid dynamics on peach: Vegetative growth allocation or chemical defence?. Entomol. Exp. Appl. 136, 123–133 (2010).CAS 
    Article 

    Google Scholar 
    Chen, Y., Serteyn, L., Wang, Z., He, K. & Francis, F. Reduction of plant suitability for corn leaf aphid (Hemiptera: Aphididae) under elevated carbon dioxide condition. Environ. Entomol. (2019).Miller, D. R. & Kosztarab, M. Recent advances in the study of scale insects. Annu. Rev. Entomol. 24, 1–27 (1979).CAS 
    Article 

    Google Scholar 
    Hardy, N. B., Peterson, D. A. & Normark, B. B. Scale insect host ranges are broader in the tropics. Biol. Lett. 11, 20150924 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Q. et al. Age-stage, two-sex life table of Parapoynx crisonalis (Lepidoptera: Pyralidae) at different temperatures. PLoS ONE 12, e0173380 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, X. et al. Density-dependent demography and mass-rearing of Carposina sasakii (Lepidoptera: Carposinidae) incorporating life table variability. J. Econ. Entomol. 112, 255–265 (2019).PubMed 
    Article 

    Google Scholar 
    Ning, S., Zhang, W., Sun, Y. & Feng, J. Development of insect life tables: comparison of two demographic methods of Delia antiqua (Diptera: Anthomyiidae) on different hosts. Sci. Rep. 7, 1–10 (2017).ADS 
    Article 

    Google Scholar 
    TWOSEX-MSChart: A computer program for the age-stage, two-sex life table analysis (2020).Goodman, D. Optimal life histories, optimal notation, and the value of reproductive value. Am. Nat. 119, 803–823 (1982).MathSciNet 
    Article 

    Google Scholar 
    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (CRC Press, 1994).MATH 
    Book 

    Google Scholar  More

  • in

    Effects of strip cropping with reducing row spacing and super absorbent polymer on yield and water productivity of oat (Avena sativa L.) under drip irrigation in Inner Mongolia, China

    Clemens, R. et al. Oats, more than just a whole grain: an introduction. Br. J. Nutr. 112, S1–S3 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stewart, D. & Mcdougal, G. Oat agriculture, cultivation and breeding targets: implications for human nutrition and health. Br. J. Nutr. 2, 50–57 (2014).Article 
    CAS 

    Google Scholar 
    Ren, C. Z. et al. “Twelfth Five-Year” Development Report of China’s Oat and Buckwheat Industry. Xi’an: Shaanxi Science and Technology Press, 2011–2015 (2016).Gleick, P. H. & Palaniappan, M. Peak water limits to freshwater withdrawal and use. Proc. Indian Natl. Sci. Acad. 107, 11155–11162 (2010).ADS 
    CAS 

    Google Scholar 
    Yu, L., Zhao, X., Gao, X. & Siddique, K. H. M. Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis. Agric. Water Manag. 228, 105906 (2020).Article 

    Google Scholar 
    Bai, W., Zhang, H., Liu, B., Wu, Y. & Song, J. Effects of super-absorbent polymers on the physical and chemical properties of soil following different wetting and drying cycles. Soil Use Manag. 26, 253–260 (2010).Article 

    Google Scholar 
    Döll, P. Impact of climate change and variability on irrigation requirements: A global perspective. Clim. Change 54, 269–293 (2002).ADS 
    Article 

    Google Scholar 
    Harris, F. et al. The water use of Indian diets and socio- demographic factors related to dietary blue water footprint. Sci. Total Environ. 587, 128–136 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Unesco. Water and jobs: Facts and figures. Perugia, Italy: UNESCO, World Water Assessment Program. Retrieved from http://unesdoc.unesco.org/images/0024/002440/244041e.pdf (2016).Landi, A. et al. Land suitability evaluation for surface, sprinkle and drip irrigation methods in Fakkeh Plain. Iran. J. Appl. Anim. Sci. 8, 3646–3653 (2008).ADS 

    Google Scholar 
    Kang, S. et al. Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agric. Water Manag. 179, 5–17 (2017).Article 

    Google Scholar 
    Yang, D. et al. Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China. Agric. Water Manag. 232, 106001 (2020).Article 

    Google Scholar 
    Xu, S. T., Zhang, L., Neil, B. & McLaughlin, Mi. Effect of synthetic and natural water absorbing soil amendment soil physical properties under potato production in a semi-arid region. Soil Till. Res. 148, 31–39 (2015).Article 

    Google Scholar 
    Roper, M. M., Ward, P. R., Keulen, A. F. & Hill, J. R. Under no-tillage and stubble retention, soil water content and crop growth are poorly related to soil water repellency. Soil Till. Res. 126, 143–150 (2013).Article 

    Google Scholar 
    Zhao, H. et al. Ridge-furrow with full plasticfilm mulching improves water use efficiency and tuber yields of potato in a se miarid rainfed ecosystem. Field Crop Research. 161, 137–148 (2014).Article 

    Google Scholar 
    Li, J. et al. Effects of micro-sprinkling with different irrigation amount on grain yield and water use efficiency of winter wheat in the North China Plain. Agric. Water Manag. 224, 105736 (2019).Article 

    Google Scholar 
    Chouhan, S. S., Awasthi, M. K. & Nema, R. K. Studies on water productivity and yields responses of wheat based on drip irrigation systems in clay loam soil. Indian J. Sci. Technol. 8, 650 (2015).Article 

    Google Scholar 
    Liao, L., Zhang, L. & Bengtsson, L. Soil moisture variation and water consumption of spring wheat and their effects on crop yield under drip irrigation. Irrigat. Drainag. Syst. 22, 253–270 (2008).Article 

    Google Scholar 
    Jha, S. K. et al. Response of growth, yield and water use efficiency of winter wheat to different irrigation methods and scheduling in North China Plain. Agric. Water Manag. 217, 292–302 (2019).Article 

    Google Scholar 
    Yan, Z., Fengxin, W., Qi, Z., Kaijing, Y. & Youliang, Z. Effect of drip tape distance and irrigation amount on spring wheat yield and water use efficiency. Chin. Agric. Sci. Bull. 32, 194–199 (2016).
    Google Scholar 
    Chen, R. et al. Lateral spacing in drip-irrigated wheat: the effects on soil moisture, yield, and water use efficiency. Field Crop Res. 179, 52–62 (2015).Article 

    Google Scholar 
    Shock, C. C., Feibert, E.B.G., & Saunders, L. D. Water management for drip-irrigated spring wheat. Annual Rep. Med. Chem.. 2007 (2005).Bhardwaj, A. K., Shainberg, I., Goldstein, D., Warrington, D. N. & Levy, G. J. Water retention and hydraulic conductivity of cross-linked polyacrylamides in sandy soils. Soil Sci. Soc. Am. J. 71, 406–412 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Demitri, C., Scalera, F., Madaghiele, M., Sannino, A. & Maffezzoli, A. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int. J. Polym. Sci. 2013, 1–6 (2013).Article 
    CAS 

    Google Scholar 
    Islam, M. R. et al. Effectiveness of a water-saving super-absorbent polymer in soil water conservation for corn (Zea mays L.) based on eco- physiological parameters. J. Agric. Food Sci. 91, 1998–2005 (2011).CAS 
    Article 

    Google Scholar 
    Nazarli, H., Zardashti, M. R., Darvishzadeh, R. & Najafi, S. The effect of water stress and polymer on water use efficiency, yield, and several morphological traits of sunflower under greenhouse condition. Notulae Scientia Biologicae. 2, 53–58 (2010).Article 

    Google Scholar 
    Huettermann, A., Orikiriza, L. J. & Agaba, H. Application of superabsorbent polymers for improving the ecological chemistry of degraded or polluted lands. Clean: Soil, Air, Water 37, 517–526 (2009).CAS 

    Google Scholar 
    Jain, N. K., Meena, H. N. & Bhaduri, D. Improvement in productivity, water use efficiency, and soil nutrient dynamics of summer peanut (Arachis hypogaea L) through use of polythene mulch, hydrogel, and nutrient management. Commun. Soil Sci. Plant Anal. 48, 549–564 (2017).CAS 
    Article 

    Google Scholar 
    Shekari, F., Javanmard, A. & Abbasi, A. Effects of super absorbent polymer application on yield and yield components of rapeseed. Notulae Scientia Biologicae. 7, 361–366 (2015).Article 

    Google Scholar 
    Wang, L. et al. Drip irrigation mode and water-retaining agent on growth regulation and water-saving effect of small coffee. Chin. J. Drainag. Irrigat. Mech. Eng. 33, 796–801 (2015).
    Google Scholar 
    Liu, P. et al. Effects of soil treatments on soil moisture and soybean yield under the condition of underground drip irrigation. Water Saving Irrigat. 25–28 (2019).Li, R. et al. Effects of water-retaining agent on soil water, fertilizer and corn yield under drip irrigation. J. Drainag. Irrigat. Mech. Eng. 36, 1337–1344 (2018).
    Google Scholar 
    Ma, B. L., Biswas, D. K., Zhou, Q. P. & Ren, C. Z. Comparisons among cultivars of wheat, hulled and hulless oats: Effects of N fertilization on growth and yield. Can. J. Plant Sci. 92, 1213–1222 (2012).Article 

    Google Scholar 
    He, W. Effects of different irrigation methods on photosynthesis and soil biological characteristics of oat. Inner Mongolia: Hohhot, Inner Mongolia Agricultural University Master’s Thesis (2013).Wu, N. et al. Effects of water-retaining agent dosage on the yield and quality of naked oats under two irrigation methods. J. Crops 35, 1552–1557 (2009).CAS 

    Google Scholar 
    Gee, G.W., Bauder, J.W.,. Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis, Part 1. Soil Science Society of America, South Segoe Road, Madison, WI 53711 USA. 383–409 (1986).Lu, R. Soil Agricultural Chemical Analysis Method (China Agricultural Science and Technology Press, 2000).
    Google Scholar 
    Wang, D. Water use efficiency and optimal supplemental irrigation in a high yield wheat field. Field Crop Res. 213, 213–220 (2017).Article 

    Google Scholar 
    Chen, Y. et al. Straw strips mulch on furrows improves water use efficiency and yield of potato in a rainfed semiarid area. Agric. Water Manag. 211, 142–151 (2019).Article 

    Google Scholar 
    Finn, D. et al. Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biol. Biochem. 91, 160–168 (2015).CAS 
    Article 

    Google Scholar 
    Mo, F., Wang, J. Y., Xiong, Y. C., Nguluu, S. N. & Li, F. M. Ridge-furrow mulching system in semiarid Kenya: A promising solution to improve soil water availability and maize productivity. Eur. J. Agron. 80, 124–136 (2016).Article 

    Google Scholar 
    Luo, C. L. et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bengough, A. G. Water dynamics of the root zone: Rhizosphere biophysics and its control on soil hydrology. Vadose Zone Journal. 11, 1–6 (2012).Article 

    Google Scholar 
    Zobel, R. W. Plant Roots: Rowth, Activity and Interaction with Soils. Crop Sci. 46, 2699 (2006).Article 

    Google Scholar 
    Scholl, P. et al. Root induced changes of effective 1D hydraulic properties in a soil column. Plant Soil 381, 193–213 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, S. M. & Weil, R. R. Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci. Soc. Am. J. 68, 1403–1409 (2010).Article 

    Google Scholar 
    Farrell, C., Ang, X. Q. & Rayner, J. P. Water-retention additives increase plant available water in green roof substrates. Ecol. Eng. 52, 112–118 (2013).Article 

    Google Scholar 
    Agaba, H. et al. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. Clean: Soil, Air, Water 38, 328–335 (2010).CAS 

    Google Scholar 
    Wu, L., Liu, M. Z. & Liang, R. Preparation and properties of a double-coated slow release NPK compound fertilizer with superabsorbent and water-retention. Biores. Technol. 99, 547–554 (2008).CAS 
    Article 

    Google Scholar 
    Afshar, R. K. et al. Interactive effect of deficit irrigation and soil organic amendments on seed yield and flavonolignan production of milk thistle (Silybum marianum L. Gaertn.). Ind. Crops Prod. 58, 166–172 (2014).CAS 
    Article 

    Google Scholar 
    Wang, L. Effects of different sowing dates and fertilizer rates on the growth and yield of oats in Yinshan hilly area. Hohhot, Inner Mongolia Agricultural University Master’s Thesis (2020).Liu, Y. G. et al. Influence of planting density on the yield of naked oats and its constituent factors. J. Wheat Crops 28, 140–143 (2008).
    Google Scholar 
    Jia, Z. F. Effects of sowing rate and row spacing on grain quality of naked oat. Seed. 32, 67–69 (2013).
    Google Scholar 
    Lascano, R. J. & Van Bavel, C. H. M. Stimulation and measurement of evaporation from bare soil. Soil Sci. Soc. Am. J. 50, 1127–1132 (1986).ADS 
    Article 

    Google Scholar 
    Lv, P. et al. Effects of descending distance under wide sowing conditions on wheat yield and dry matter accumulation and transport. J. Wheat Crops 40, 1–6 (2020).
    Google Scholar 
    Sun, H. Y. et al. Effects of different row spacing on evapotranspiration and yield of winter wheat in wheat fields. Chin. J. Agric. Eng. 1, 22–26 (2006).
    Google Scholar 
    Li, G. X. et al. Effects of sowing row spacing on yield and water use efficiency of dryland wheat in different years. Agric. Technol. Equipm. 1, 22–26 (2012).ADS 

    Google Scholar 
    Chen, S. Y. et al. Effects of planting row spacing on soil evaporation and water use in winter wheat fields. Chin. J. Ecol. Agric. 14, 86–89 (2006).
    Google Scholar 
    Yang, Y. H. et al. Effects of water-retaining agent on soil moisture and utilization of winter wheat at different growth stages. Chin. J. Agric. Eng. 26, 19–26 (2010).
    Google Scholar 
    Yang, Y. H. et al. Effects of different moisture conservation tillage measures on water consumption characteristics and annual water use of wheat and maize. North China Agric. J. 32, 103–110 (2017).
    Google Scholar 
    Du, S. N. et al. Effects of Water and PAM Application Modes on Soil Moisture and Maize Growth. Chin. J. Agric. Eng. 24, 30–35 (2008).
    Google Scholar 
    Tian, L. et al. Effects of combined application of water-retaining agent and microbial fertilizer on dry matter accumulation, distribution, transport and yield of dry oat. J. Ecol. 39, 2996–3003 (2020).
    Google Scholar  More

  • in

    A thorough annotation of the krill transcriptome offers new insights for the study of physiological processes

    To create and annotate a de novo transcriptome assembly for Antarctic krill a preliminary investigation focusing on the efficiency and quality of already existing strategies for de novo transcriptome assembly of non-model organisms was performed. In a second step, we focused on identifying and applying the best transcriptome assembly strategy to finally explore the gene expression levels across different developmental stages and krill responses to different environmental conditions. At first, separate transcriptome reconstructions using different assembly programs were carried out. A combination of two filtering steps was applied to these results to discard artifacts and improve the assembly quality. Reconstructed transcripts across all assemblers were joined, producing a set of non-redundant representative transcripts. We obtained these results by applying the EvidentialGene pipeline (version 4), which was specifically designed to combine different reconstructions and to eliminate redundant sequences. Finally, we applied another filter to identify redundant or mis-assembled sequences still appearing in the transcriptome.Transcriptome qualityWe checked the quality of our reconstructed transcriptome step by step, starting from the independent de novo assemblies, then evaluating the potential of merging all assemblies into a unique meta-assembly, and finally filtering the transcriptome for redundancy. All these results are summarized in Fig. 1, Tables 1 and 2. The result of our reconstruction strategy was evaluated using different measures: the N50 statistics highlighted an increase in transfrag lengths at each step. Recent benchmarks, such as18, have shown that, while reconstructing the transcriptome of a species, no single approach is uniformly superior: the quality of each result is influenced by a number of factors, both technical (k-mer size, strategy for duplicate resolution) and biological (genome size, presence of contaminants). In our study, we observed that, although a consistent number of sequences was removed through each step of the assembly, merging and filtering procedure, we didn’t encounter any decline in the quality described by the basic statistics of the reconstructed transcripts (Table 1).Figure 1Transcriptome quality assessment results. Results of the first assembly filtering in terms of total number of transcripts.Full size imageTable 1 Quality measures computed at each assembly step, from the independent de novo assembly algorithms (a), after the first filtering process (b) and finally comparing the quality of the EvidentialGene meta-assembly and the final krill transcriptome after the redundancy filter (c).Full size tableTable 2 BUSCO assessment results on independent de novo assemblies from RNA-seq stranded library.Full size tableWe then explored the completeness of the krill transcriptome according to conserved ortholog content using BUSCO (version 4.0.5) comparing our sequences to all the expected single-copy orthologs from the Arthropoda phylum. The results of the BUSCO analyses performed on each independent de novo assembly, on the EvidentialGene reconstruction and the final transcriptome are reported in Table 2. This analysis confirms that our strategy for controlling redundancy did not affect transcriptome completeness: indeed, the fraction of complete single-copy essential genes dropped by 1.8% only, while 123,376 redundant transfrags were discarded.We finally compared our quality assessment results with those from previously released krill transcriptomes (Table 3). Our latest assembly significantly improves all the metrics we have discussed above. While this evidence suggests that our assembly is reasonably close to providing a complete representation of the krill transcriptome, it is more difficult to gauge the amount of redundancy it contains. Specifically, it remains difficult to distinguish between splice variants of a gene and possible paralogous copies. We believe that only the availability of a genome draft will make it possible to reliably discriminate between these two signals.Table 3 Quality statistics of the previously released krill transcriptomes compared to the newly assembled KrillDB2. GenBank accession GFCS00000000.1 refers to the SuperbaSe krill transcriptome reference19.Full size tableFunctional classificationThe assembled fragments were aligned against known protein and nucleotide databases to understand whether they could be linked to specific functions or processes described in other species. The functional annotation analyses showed that 63,903 contigs (42% of the total krill transcriptome) matched at least one protein from the NCBI NR (non-redundant) collection for a total of 98,316 unique proteins, while 62,518 transfrags found homology with a UniProtKB/TREMBL protein sequences (41% of the total), matching a total of 96,005 unique proteins. Furthermore, 22,024 krill transcripts (15% of the total) had significant matches with sequences in the NCBI NT nucleotide database. To classify transcripts by putative function, we performed a GO assignment. Specifically, 2833 GO terms (corresponding to 13,064 genes) were assigned: 1224 of those (corresponding to 11,575 genes) represented molecular functions; 1193 terms (corresponding to 6990 genes) were linked to biological processes; 416 terms (corresponding to 4301 genes) represented cellular components.A case study on the discovery of opsin genesTo evaluate the gene discovery potential of the new assembly, we searched the transcriptome for novel members of the opsin family. Opsins are a group of light sensitive G protein-coupled receptors with seven transmembrane domains. Fourteen genes were annotated as putative opsins, and the conserved domains analysis revealed that all of them possess the distinctive 7 α-helix transmembrane domain structure. The eight previously cloned opsins20 were all represented in KrillDB2 (sequence identity  > 90%; Table S1 Supplementary Material). The other six genes we identified can therefore be considered new putative opsins. Among those, we found four putative rhabdomeric opsins: EsRh7 and EsRh8, with 70% and 59% of amino acid identity to EsRh1a and EsRh4, respectively; EsRh9 and EsRh10 showing high sequence identity (87% and 74%, respectively) to EsRh5. Furthermore, we identified two putative ancestral opsins: a non-visual arthropsin (EsArthropsin), and an onychopsin (EsOnychopsin) with 70% and 49% of sequence identity with crustacean and onychophoran orthologous, respectively. Phylogenetic analysis (Fig. 2) suggested that EsRh7-10 are middle-wavelength-sensitive (MWS) rhabdomeric opsins, and further confirmed EsArthropsin and EsOnychopsin annotation.Figure 2Phylogenetic relationships of Euphausia superba opsins shown as circular cladogram. Colored dots indicate krill opsins: red, previously cloned opsins; green, novel identified opsins. The spectral sensitivities of rhabdomeric opsin clades were inferred from the curated invertebrate-only opsin dataset proposed by DeLeo & Bracken‐Grissom, 2020. Represented opsin classes: LWS, long-wavelenght-sensitive; LSM, long/middle-wavelenght-sensitive; MWS, middle-wavelenght-sensitive; SWS/UV, short/UV-wavelenght-sensitive; ONY, onychopsins; MEL, melanopsins; PER, peropsin; ART, arthropsin. Rectangular phylogram is reported in Fig. S1 (Supplementary Material).Full size imageDifferential expressionThe availability of a new assembly of the krill transcriptome, reconstructed by collecting the largest amount of experimental data available thus far, suggested the possibility of performing a more detailed investigation of differential expression patterns. Therefore, we decided to reanalyze the dataset from Höring et al.21 to assess the possibility of identifying differentially expressed genes that were not detected in the original study due to the use of an older reference transcriptome15.Our design matrix for the model included all the independent factors (season, area and sex) and, in addition, the interaction between area and season, sex and area, sex and season.In total 1741 genes were differentially expressed (DEG) among experimental conditions. They correspond to around 2% of the total reconstructed genes. In the previous work by Höring21, the same samples were quantified against 58,581 contigs15 producing 1654 DEGs. Table 4 summarizes the list of performed contrasts, each one with the number of differentially expressed up and down regulated genes.Table 4 List of contrasts computed with total number of differentially expressed genes and numbers of up- and downregulated genes.Full size table1195 DEGs were identified in the comparison between summer and winter specimens: 1078 were up-regulated and 117 down-regulated. In addition, 396 of such DEGs had some form of functional annotation. In general, these results are in accordance with the discussion by Höring21, which found that seasonal differences are predominant compared to regional ones. A summary of the DEGs is listed in Table 5. Complete tables of differentially expressed genes are downloadable on KrillDB2 (Fig. 3c; https://krilldb2.bio.unipd.it/, Section “Differentially Expressed Genes (DEGs)”).Table 5 List of biologically relevant DEGs identified, starting from those already described by Höring et al.35.Full size tableFigure 3Blast search section. The new search box for sequence searches (a) with an example of a BLAST search (highlighted in yellow) and the corresponding results (b). By clicking on each target identifier, the user will be redirected to that specific transcript page, where new sections have been added, as shown in Fig. 6.Full size imageSummer versus winterWe selected a series of genes among seasonal DEGs according to what has been already described in the literature. Höring et al.21 previously identified and described 35 relevant DEGs involved in seasonal physiology and behavior: we recovered the same gene signature in our analysis by comparing summer to winter samples. The majority of these DEGs appear to be involved in the development of cuticles (chitin synthase, carbohydrate sulfotransferase 11), lipid metabolism (fatty acid synthase 2, enoyl-CoA ligase), reproduction (vitellogenin, hematopoietic prostaglandin D synthase), metabolism of different hormones (type 1 iodothyronine deiodinase) and in the circadian clock (cryptochrome). Our results also include DEGs that were involved in the moult cycle of krill in other studies16. Specifically, we identified a larger group of genes involved in the different stages of the cuticle developmental process (peritrophin-A domain, calcified cuticle protein, glycosyltransferase 8-domain containing protein 1, collagen alpha 1, glutamine-fructose 6 phosphate), including proteins such as cuticle protein-3,6,19.8, early cuticle protein, pupal cuticle protein, endocuticle structural glycoprotein, chitinase-3 and chitinase-4, the latter representing a group of chitinase which have been shown to be expressed predominantly in gut tissue during larval and/or adult stages in other arthropods and are proposed to be involved in the digestion of chitin-containing substrates22. Finally, in addition to trypsin and crustin 4 (immune-related gene, essential in early pre-moult stage when krill still have a soft cuticle to protect them from pathogen attack, as seen by Seear et al.16), we also identified crustin-1,2,3,5 and 7. All the reported genes were up-regulated in summer, the period in which growth takes place and krill moult regularly.Cuticle development genes were also identified as differentially expressed in the analysis of the interaction of multiple factors, between male samples coming from South Georgia and female specimens coming from the area of Bransfield Strait-South Orkney (considered as a unique area since they are placed at similar latitudes). Strikingly, we also identified a pro-resilin gene, whose role in many insects consists in providing efficient energy storage, being up-regulated in South Georgia male specimens.Interaction effectsA number of relevant DEGs were found among specific regional and seasonal factors interactions. For instance, by comparing krill samples coming from South Georgia in summer and individuals sampled in Bransfield Strait-South Orkney in winter, we found genes up-regulated in summer in South Georgia related to reproductive activities, such as doublesex and mab-3 related transcription factor. The latter is a transcription factor crucial for sex determination and sexual differentiation, which was already described in other arthropods23. Since no differentially expressed gene related to reproduction was found by Höring et al.21 in the same comparisons, this suggests that the new krill transcriptome improves the power to identify new expression patterns and characterize the krill samples.Finally, the comparison between male individuals from the Lazarev Sea and female specimens from the Bransfield Strait-South Orkney showed additional DEGs involved in reproduction, such as ovochymase 2, usually highly expressed in female adults or eggs, serine protease and a trypsin-like gene. In particular, trypsin-like genes are usually thought to be digestive serine proteases, but previous works suggested that they can play other roles24; many trypsins show female or male-specific expression patterns and have been found exclusively expressed in males, as in our analysis, suggesting that they play a role in the reproductive processes.The simultaneous presence of differentially expressed genes involved in different steps of the krill moulting cycle, in the reproductive process and in sexual maturation that appear to be differentially expressed in the same comparisons is in accordance with what was already observed in krill25 and other krill species26. In particular, there is evidence of a strong relation between the krill moulting process and its growth and sexual maturation during the year, which supports and confirms the reliability of our results in terms of genes involved in such krill life cycle steps.Identification of microRNA PrecursorsAlthough microRNAs play a key role in the regulation of gene expression and in many important biological processes, such as development or cell differentiation, there is still no information about microRNAs in krill species.Here we performed an investigation to test whether the new transcriptome could also include sequences with a significant homology to known mature microRNAs.In total we identified 261 krill transcripts whose sequences are highly similar to 644 known microRNAs from other species. 306 sequences were linked to at least one GO term, matching 54 krill transcripts (Table S2, Supplementary Material). Among them, we identified 5 putative microRNAs involved with changes in cellular metabolism (age-dependent general metabolic decline—GO:0001321, GO:0001323), as well as changes in the state or activity of cells (age-dependent response to oxidative stress—GO:0001306, GO:0001322, GO:0001324), 35 microRNAs involved in interleukin activity and production. We found 26 putative microRNAs likely involved in ecdysteroidogenesis (specifically GO:0042768), a process resulting in the production of ecdysteroids, moulting and sex hormones found in many arthropods. In addition, we found a microRNA involved in fused antrum stage (GO:0048165) which appears to be related in other species to oogenesis. We also identified 27 microRNAs related to rhombomere morphogenesis, formation and development (GO:0021661, GO:0021663, GO:0021570). These functions have been linked to the development of portions of the central nervous system in vertebrates, which share the same structure of those found in arthropod brains. Lastly, 26 krill sequences showed high similarity with 2 mature microRNA related to the formation of tectum (GO:0043676), which represents in arthropods and, specifically, crustaceans, the part of the brain acting as visual center.KrillDB2 web InterfaceThe KrillDB website has been redesigned to include the new version of the transcriptome assembly. Figures 3, 4, 5 and 6 collect images taken from the new main sections of the database. The integrated full-text search engine allows the user to search for a transcript ID, gene ID, GO term, a microRNA ID or any other free-form query. Results of full-text searches are now organized into several separate tables, each representing a different data source or biological aspect (Fig. 5). Results of GO term searches are summarized in a table reporting the related genes with corresponding domain or microRNA match and associated description. Both gene and transcript-centric pages have been extended with two new sections: “Orthology” and “Expression” (Fig. 6). The Orthology section summarizes the list of orthologous sequences coming from the OMA analysis, each one with the species it belongs to and the identity score.Figure 4Differential Expression section. The new section collecting all differentially expressed genes tables (a) with an example of the corresponding result for a selected contrast (b).Full size imageFigure 5New search engine of KrillDB2. Example of the results of a full-text search on KrillDB2.Full size imageFigure 6Additional sections in gene and transcript pages. The new sections in the gene-centric page show a table listing the orthologous sequences with their belonging species and the identity score (a), a visualization of the gene structure as estimated by Lace software (d) and a boxplot coming from Expression Atlas analyses (c). Both Orthology and Expression sections are integrated also in the transcript-centric page. When a transcript is annotated as a putative microRNA, a “Predicted Hairpin” section displays a visualization of the hairpin predicted secondary structure and tables showing the alignment length, the HHMMiR score and the list of mature microRNAs matching (b).Full size imageThe “Expression” section shows a barplot representing abundances estimates obtained from Salmon. An additional section, called “Gene Structure” (Fig. 6), was added to the gene page on the basis of the results coming from the SuperTranscript analysis. Specifically, we modified the STViewer.py Python script (from Lace), optimizing and adapting it to our own data and database structure, in order to produce a visualization of each gene with its transcripts. Since Lace relies on the construction of a single directed splice graph and it is not able to compute it for complex clusters with more than 30 splicing variants, this section is available for a selection of genes only.The new KrillDB2 release includes completely updated transcript and gene identifiers. However, the user searching for a retired ID is automatically redirected to the page describing the newest definition of the appropriate transcript or gene.The KrillDB2 homepage now includes two additional sections: one is represented by the possibility to perform a BLAST search (Fig. 3). Any nucleotide or protein sequence (query) can be aligned against krill sequences stored in the database. Results are summarized in a table containing information about the krill transcripts (target) that matched with the user’s query, and the e-value corresponding to the alignment. The other new section, called “Differentially Expressed Genes”, allows the user to browse all the tables listing the genes that were found to be differentially expressed among the conditions we have described above (Fig. 4). A drop-down menu gives access to the different comparisons; DEG tables list for each gene its log fold-change, p- and FDR values as estimated by edgeR. Moreover, each gene is linked to a functional description (if available) inferred from sequence homology searches.Information about krill transcripts showing homology with an annotated microRNA is available in the “Predicted Hairpin” (Fig. 6). It contains a summary table with details about the hairpin length and the similarity score (as estimated by HHMMiR), followed by full listing of all the corresponding mature microRNAs (including links to their miRBase page). In addition, an image displaying the predicted secondary structure of the hairpin is included (computed by the “fornac” visualization software from the ViennaRNA suite). More