More stories

  • in

    Toxicity and genotoxicity of imidacloprid in the tadpoles of Leptodactylus luctator and Physalaemus cuvieri (Anura: Leptodactylidae)

    Karlsson, O. et al. Pesticide-induced multigenerational effects on amphibian reproduction and metabolism. Sci. Total Environ. 775, 145771 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-3. https://www.iucnredlist.org (2022).Wake, D. B. & Koo, M. S. Amphibians. Curr. Biol. 28, R1237–R1241 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campbell Grant, E. H., Miller, D. A. & Muths, E. A synthesis of evidence of drivers of amphibian declines. Herpetologica 76, 101–107 (2020).Article 

    Google Scholar 
    Green, D. M., Lannoo, M. J., Lesbarrères, D. & Muths, E. Amphibian population declines: 30 years of progress in confronting a complex problem. Herpetologica 76, 97–100 (2020).Article 

    Google Scholar 
    Mason, R., Tennekes, H., Sánchez-Bayo, F. & Jepsen, P. U. Immune suppression by neonicotinoid insecticides at the root of global wildlife declines. J. Environ. Immunol. Toxicol. 1, 3–12 (2013).Article 

    Google Scholar 
    Adams, E., Leeb, C. & Brühl, C. A. Pesticide exposure affects reproductive capacity of common toads (Bufo bufo) in a viticultural landscape. Ecotoxicology 30, 213–223 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Frost, D. R. Amphibian species of the world 6,1, an online reference. Electron. Datab. https://doi.org/10.5531/db.vz.0001 (American Museum of Natural History, 2021).Article 

    Google Scholar 
    Eterovick, P. C., Souza, A. M. & Sazima, I. Anfíbios da Serra do Cipó [Amphibians from the Serra do Cipó]. http://herpeto.org/wp-content/uploads/2020/11/ANFIBIOS-DA-SERRA-DO-CIPO.pdf (PUCMINAS, 2020).Mijares, A., Rodrigues, M. T. & Baldo, D. Physalaemus cuvieri The IUCN Red List of Threatened Species, version 2014.3. http://www.iucnredlist.org (2010). Accessed 9 Jan 2015.de Sá, F. P., Zina, J. & Haddad, C. F. B. Reproductive dynamics of the Neotropical treefrog Hypsiboas albopunctatus (Anura, Hylidae). J. Herpetol. 48, 181–185 (2014).Article 

    Google Scholar 
    Herek, J. S. et al. Can environmental concentrations of glyphosate affect survival and cause malformation in amphibians? Effects from a glyphosate-based herbicide on Physalaemus cuvieri and P. gracilis (Anura: Leptodactylidae). Environ. Sci. Pollut. Res. 27, 22619–22630 (2020).CAS 
    Article 

    Google Scholar 
    Silva, F. L. et al. Swimming ability in tadpoles of Physalaemus cf. cuvieri, Scinax x-signatus and Leptodactylus latrans (Amphibia: Anura) exposed to the insecticide chlorpyrifos. Ecotoxicol. Environ. Contam. 16, 13–18 (2021).
    Google Scholar 
    Pavan, F. A. et al. Morphological, behavioral and genotoxic effects of glyphosate and 2,4-D mixture in tadpoles of two native species of South American amphibians. Environ. Toxicol. Pharmacol. 85, 103637 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34 (2015).CAS 
    Article 

    Google Scholar 
    Pietrzak, D., Kania, J., Malina, G., Kmiecik, E. & Wątor, K. Pesticides from the EU first and second watch lists in the water environment. Clean 47, 1–10 (2019).
    Google Scholar 
    IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de comercialização de agrotóxicos 2019 [Brazilian Pesticide Marketing Report 2019] https://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de-agrotoxicos#boletinsanuais (2021).IBAMA: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Vendas de ingredientes ativos por UF [Active ingredient sales by UF in Brazil]. http://ibama.gov.br/phocadownload/qualidadeambiental/relatorios/2019/Vendas_ingredientes_ativos_UF_2019.x (2021).IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil [Annual bulletins of production, import, export and sales of pesticides in Brazil]. http://ibama.gov.br/index.php?option=com_content&view=article&id=594&Itemid=54 (2021).Pietrzak, D., Kania, J., Kmiecik, E., Malina, G. & Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 255, 126981 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    ANVISA: Agência Nacional de Vigilância Sanitária; Índice Monográfico I13. Imidacloprido. http://portal.anvisa.gov.br/documents/111215/117782/I13+%E2%80%93+Imidacloprido/9d08c7e5-8979-4ee9-b76c-1092899514d7 (2021).Kagabu, S. Discovery of imidacloprid and further developments from strategic molecular designs. J. Agric. Food Chem. 59, 2887–2896 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tomizawa, M. & Casida, J. E. Neonicotinoid insecticide toxicology: Mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45, 247–268 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hashimoto, F. et al. Occurrence of imidacloprid and its transformation product (imidacloprid-nitroguanidine) in rivers during an irrigating and soil puddling duration. Microchem. J. 153, 12 (2020).Article 
    CAS 

    Google Scholar 
    Hladik, M. L. et al. Year-round presence of neonicotinoid insecticides in tributaries to the Great Lakes, USA. Environ. Pollut. 235, 1022–1029 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jurado, A., Walther, M. & Díaz-Cruz, M. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Sci. Total Environ. 663, 285–296 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Montagner, C. C. et al. Ten years-snapshot of the occurrence of emerging contaminants in drinking, surface and ground waters and wastewaters from São Paulo State, Brazil. J. Braz. Chem. Soc. 30, 614–632 (2019).CAS 

    Google Scholar 
    CCME. Council of Ministers of the Environment. Canadian water quality guidelines for the protection of aquatic life. Imidacloprid. In Canadian water quality guidelines, Council of Ministers of the Environment. Winnipeg. https://ccme.ca/en/res/imidacloprid-en-canadian-water-quality-guidelines-for-the-protection-of-aquatic-life.pdf (2007).RIVM. Water quality standards for imidacloprid: Proposal for an update according to the Water Framework Directive in National Institute for Public Health and the Environment. https://www.rivm.nl/bibliotheek/rapporten/270006001.pdf (2014).PAN. Pesticide Action Network. International Consolidated List of Banned Pesticides. https://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (2021).Brazil. Secretaria Estadual da Saúde do Rio Grande do Sul. Portaria SES RS nº 320, de 28 de abril de 2014. https://www.cevs.rs.gov.br/upload/arquivos/201705/11110603-portaria-agrotoxicos-n-320-de-28-de-abril-de-2014.pdf. (2014).Kobashi, K. et al. Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol. Environ. Saf. 138, 122–129 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Islam, M. A., Hossen, M. S., Sumon, K. A. & Rahman, M. M. Acute toxicity of imidacloprid on the developmental stages of common carp Cyprinus carpio. Toxicol. Environ. Health Sci. 11, 244–251 (2019).Article 

    Google Scholar 
    Pérez-Iglesias, J. M. et al. The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 104, 120–126 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sievers, M., Hale, R., Swearer, S. E. & Parris, K. M. Contaminant mixtures interact to impair predator-avoidance behaviours and survival in a larval amphibian. Ecotoxicol. Environ. Saf. 161, 482–488 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    USEPA. United States Environmental Protection Agency. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides. https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk. (2021).Feng, S., Kong, Z., Wang, X., Zhao, L. & Peng, P. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallwell. Chemosphere 56, 457–463 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Arcaute, C. R. et al. Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol. Indic. 45, 632–639 (2014).Article 
    CAS 

    Google Scholar 
    Nkontcheu, D. B. K., Tchamadeu, N. N., Ngealekeleoh, F. & Nchase, S. Ecotoxicological effects of imidacloprid and lambda-cyhalothrin (insecticide) on tadpoles of the African common toad, Amietophrynus regularis (Reuss, 1833) (Amphibia: Bufonidae). Emerg. Sci. J. 1, 49–53 (2017).
    Google Scholar 
    Bortoluzzi, E. C. et al. Contaminação de águas superficiais por agrotóxicos em função do uso do solo numa microbacia hidrográfica de Agudo, RS. Rev. Bras. Eng. Agric. Ambient. 10, 881–887 (2006).Article 

    Google Scholar 
    Bortoluzzi, E. C. et al. Investigation of the occurrence of pesticide residues in rural wells and surface water following application to tobacco. Quim. Nova 30, 1872–1876 (2007)CAS 
    Article 

    Google Scholar 
    La, N., Lamers, M., Bannwarth, M., Nguyen, V. V. & Streck, T. Imidacloprid concentrations in paddy rice fields in northern Vietnam: measurement and probabilistic modeling. Paddy Water Environ. 13, 191–203 (2015).Article 

    Google Scholar 
    Sweeney, M. R., Thompson, C. M. & Popescu, V. D. Sublethal, behavioral, and developmental effects of the neonicotinoid pesticide imidacloprid on larval wood frogs (Rana sylvatica). Environ. Toxicol. Chem. 40, 1838–1847 (2021).Article 
    CAS 

    Google Scholar 
    Gibbons, D., Morrissey, C. & Mineau, P. A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ. Sci. Pollut. Res. 22, 103–118 (2015).CAS 
    Article 

    Google Scholar 
    Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 150920 (2015).Article 
    CAS 

    Google Scholar 
    Stinson, S. A. et al. Agricultural surface water, imidacloprid, and chlorantraniliprole result in altered gene expression and receptor activation in Pimephales promelas. Sci. Total Environ. 806, 150920. (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DiGiacopo, D. G. & Hua, J. Evaluating the fitness consequences of plasticity in tolerance to pesticides. Ecol. Evol. 10, 4448–4456 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, B. E. & Langkilde, T. Body size variation in aquatic consumers causes pervasive community effects, independent of mean body size. Ecol. Evol. 7, 9978–9990 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phung, T. X., Nascimento, J. C. S., Novarro, A. J. & Wiens, J. J. Correlated and decoupled evolution of adult and larval body size in frogs. Proc. Royal Soc. B 287, 20201474 (2020).Article 

    Google Scholar 
    Beasley, V. R. Direct and indirect effects of environmental contaminants on amphibians. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/b978-0-12-409548-9.11274-6 (Elsevier, 2020).Toledo, L. F., Sazima, I. & Haddad, C. F. B. Behavioural defences of anurans: An overview. Ethol. Ecol. Evol. 23, 1–25 (2011).Article 

    Google Scholar 
    Hartmann, M. T., Hartmann, P. A. & Haddad, C. F. B. Reproductive modes and fecundity of an assemblage of anuran amphibians in the Atlantic rainforest, Brazil. Inheringia 100, 207–215 (2010).Article 

    Google Scholar 
    Pupin, N. C., Gasparini, J. L., Bastos, R. P., Haddad, C. F. B. & Prado, C. P. A. Reproductive biology of an endemic Physalaemus of the Brazilian Atlantic forest, and the trade-off between clutch and egg size in terrestrial breeders of the P. signifer group. Herpetol. J. 20, 147–156 (2010).
    Google Scholar 
    Pereira, G. & Maneyro, R. Size-fecundity relationships and reproductive investment in females of Physalaemus riograndensis Milstead, 1960 (Anura, Leiuperidae) in Uruguay. Herpetol. J. 22, 145–150 (2012).
    Google Scholar 
    Tolledo, J., Silva, E. T., Nunes-de-Almeida, C. H. L. & Toledo, L. F. Anomalous tadpoles in a Brazilian oceanic archipelago: implications of oral anomalies on foraging behaviour, food intake and metamorphosis. Herpetol. J. 24, 237–243 (2014).
    Google Scholar 
    Annibale, F. S. et al. Smooth, striated, or rough: how substrate textures affect the feeding performance of tadpoles with different oral morphologies. Zoomorphology 139, 97–110 (2020).Article 

    Google Scholar 
    Venesky, M. D., Wassersug, R. J. & Parris, M. J. The impact of variation in labial tooth number on the feeding kinematics of tadpoles of southern leopard frog (Lithobates sphenocephalus). Copeia 3, 481–486 (2010).Article 

    Google Scholar 
    Venesky, M. D. et al. Comparative feeding kinematics of tropical hylid tadpoles. J. Exp. Biol. 216, 1928–1937 (2013).PubMed 

    Google Scholar 
    Jones, S. K. C., Munn, A. J., Penman, T. D. & Byrne, P. G. Long-term changes in food availability mediate the effects of temperature on growth, development and survival in striped marsh frog larvae: implications for captive breeding programmes. Conserv. Physiol. 3, cov029 (2015).Article 
    CAS 

    Google Scholar 
    Bach, N. C., Natale, G. S., Somoza, G. M. & Ronco, A. E. Effect on the growth and development and induction of abnormalities by a glyphosate commercial formulation and its active ingredient during two developmental stages of the South-American Creole frog, Leptodactylus latrans. Environ. Sci. Pollut. Res. 23, 23959–23971 (2016).CAS 
    Article 

    Google Scholar 
    Capellán, E. & Nicieza, A. G. Non-equivalence of growth arrest induced by predation risk or food limitation: context-dependent compensatory growth in anuran tadpoles. J. Anim. Ecol. 76, 1026–1035 (2007).PubMed 
    Article 

    Google Scholar 
    Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. Semin. Cell Dev. Biol. 66, 81–93 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sun, Y., Zhang, J., Song, W. & Shan, A. Vitamin E alleviates phoxim-induced toxic effects on intestinal oxidative stress, barrier function, and morphological changes in rats. Environ. Sci. Pollut. Res. 25, 26682–26692 (2018).
    Google Scholar 
    Ouellet, M. Amphibian deformities: current state of knowledge. In Ecotoxicology of Amphibians and Reptiles (eds Sparling, D. W. et al.) 617–661 (Society of Environmental Toxicology and Chemistry, 2000).Hussein, M. & Singh, V. Effect on chick embryos development after exposure to neonicotinoid insecticide imidacloprid. J. Anat. Soc. India 65, 83–89 (2016).Article 

    Google Scholar 
    Crosby, E. B., Bailey, J. M., Oliveri, A. N. & Levin, E. D. Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicol. Teratol. 49, 81–90 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lonare, M. et al. Evaluation of imidacloprid-induced neurotoxicity in male rats: A protective effect of curcumin. Neurochem. Int. 78, 122–129 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Žegura, B., Lah, T. T. & Filipič, M. The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology 200, 59–68 (2004).PubMed 
    Article 
    CAS 

    Google Scholar 
    Odetti, L. M., López González, E. C., Romito, M. L., Simoniello, M. F. & Poletta, G. L. Genotoxicity and oxidative stress in Caiman latirostris hatchlings exposed to pesticide formulations and their mixtures during incubation period. Ecotoxicol. Environ. Saf. 193, 110312 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutkoski, C. F. et al. Morphological and biochemical traits and mortality in Physalaemus gracilis (Anura: Leptodactylidae) tadpoles exposed to the insecticide chlorpyrifos. Chemosphere 250, 126162 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Herek, J. S. et al. Genotoxic effects of glyphosate on Physalaemus tadpoles. Environ. Toxicol. Pharmacol. 81, 103516 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Natale, G. S. et al. Lethal and sublethal effects of the pirimicarb-based formulation Aficida® on Boana pulchella (Duméril and Bibron, 1841) tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 147, 471–479 (2018)
    Google Scholar 
    Gilbert, S. F. Developmental Biology, 8th edn. (Sinauer Associates, 2006).Soto, M., García-Santisteban, I., Krenning, L., Medema, R. H. & Raaijmakers, J. A. Chromosomes trapped in micronuclei are liable to segregation errors. J. Cell Sci. 131, 214742 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Crott, J. & Fenech, M. Preliminary study of the genotoxic potential of homocysteine in human lymphocytes in vitro. Mutagenesis 16, 213–217 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benvindo-Souza, M. et al. Micronucleus test in tadpole erythrocytes: Trends in studies and new paths. Chemosphere 240, 124910 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fenech, M. The in vitro micronucleus technique. Mutat. Res. 455, 81–95 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Podratz, J. L. et al. Drosophila melanogaster: A new model to study cisplatin-induced neurotoxicity. Neurobiol. Dis. 43, 330–337 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Iturburu, F. G. et al. Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ. Toxicol. Chem. 36, 699–708 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, C. E. D., Pérez, M. R., Acayaba, R. D. A., Raimundo, C. C. M. & Martinez, C. B. R. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 195, 125–134 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanchéz-Bayo, F., Goka, K. & Hayasaka, D. Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front. Environ. Sci. 4, 71 (2016).Article 

    Google Scholar 
    Wood, T. & Goulson, D. The environmental risks of neonicotinoid pesticides: a review of the evidence post-2013. Environ. Sci. Pollut. Res. 24, 17285–17325 (2017).CAS 
    Article 

    Google Scholar 
    Craddock, H. A., Huang, D., Turner, P.C., Quirós-Alcalá, L. & Payne-Sturges, D. C. Trends in neonicotinoid pesticide residues in food and water in the United States, 1999–2015. Environ. Health 18, 7 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heyer, R. et al. Leptodactylus latrans. IUCN Red List https://doi.org/10.2305/IUCN.UK.2010-2.RLTS.T57151A11592655.en (2010).Ade, C. M., Boone, M. D. & Puglis, H. J. Effects of an insecticide and potential predators on green frogs and northern cricket frogs. J. Herpetol. 44, 591–600 (2010).Article 

    Google Scholar 
    Sarkar, M. A., Roy, S., Kole, R. K. & Chowdhury, A. Persistence and metabolism of imidacloprid in different soils of West Bengal. Pest Manag. Sci. 57, 598–602 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article 

    Google Scholar 
    Mineau, P. Neonic insecticides and invertebrate species endangerment. In Reference Module in Earth Systems and Environmental Sciences https://doi.org/10.1016/B978-0-12-821139-7.00126-4 (2021).Yamamuro, M. et al. Neonicotinoids disrupt aquatic food webs and decrease fishery yields. Science 366, 620–623 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gosner. K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Percie-du-Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herkovits, J. & Pérez-Coll, C. S. AMPHITOX: A customized set of toxicity tests employing amphibian embryos. Symposium on multiple stressor effects in relation to declining amphibian populations. In Multiple Stressor Effects in Relation to Declining Amphibian Populations (eds Linder, G. et al.) 46–60 (ASTM International STP 1443, 2003).Merga, L. B. & Van den Brink, P. J. Ecological effects of imidacloprid on a tropical freshwater ecosystem and subsequent recovery dynamics. Sci. Total Environ. 784, 147167 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonmatin, J.-M. et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. 22, 35–67 (2015).CAS 
    Article 

    Google Scholar 
    Sumon, K. A. et al. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut. 236, 432–441 (2018).CONCEA – Conselho Nacional de Controle e Experimentação Animal. Resolução normativa Nº 25, 29 de setembro de 2015. Guia Brasileiro de Produção, Manutenção ou Utilização de Animais para Atividades de Ensino ou Pesquisa Científica do Conselho Nacional de Controle e Experimentação Animal. http://www.mctic.gov.br/mctic/export/sites/institucional/institucional/concea/arquivos/legislacao/resolucoes_normativas/Resolucao-Normativa-CONCEA-n-27-de-23.10.2015-D.O.U.-de-27.10.2015-Secao-I-Pag.-10.pdf. (2015).Rutkoski, C. F. et al. Lethal and sublethal effects of the herbicide atrazine in the early stages of development of Physalaemus gracilis (Anura: Leptodactylidae). Arch. Environ. Contam. Toxicol. 74, 587–593 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pérez-Iglesias, J. M., Soloneski, S., Nikoloff, N., Natale, G. S. & Larramendy, M. L. Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol. Environ. Saf. 119, 15–24 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Montalvão, M. F. et al. The genotoxicity and cytotoxicity of tannery effluent in bullfrog (Rana catesbeianus). Chemosphere 183, 491–502 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    Case study of the convergent evolution in the color patterns in the freshwater bivalves

    Remarks on the residual color patterns in the Kitadani Freshwater BivalvesResidual color patterns in the form of visible pigmentation on fossil molluscan shells are generally uncommon2,3. In the Paleozoic to Mesozoic fossil records, the color patterns were limited to marine species3, which are preserved as black to dark-colored bands running on the shell surface as melanin pigments20,21. The black to dark-colored stripes on the shells of the Kitadani Freshwater Bivalves resemble the color patterns in some extant freshwater bivalves, suggesting that the dark bands are residual color patterns remaining as melanin pigments. Consequently, the Kitadani Freshwater Bivalves represents the oldest and second fossil record of residual color patterns among fossil freshwater bivalves.The residual color patterns of the Kitadani Freshwater Bivalves resemble the color patterns of extant freshwater bivalves in terms of width, number, and distribution of the colored bands. Both the Kitadani Freshwater Bivalves and extant freshwater bivalves examined in this study consist of two types of color patterns: stripes along the growth lines and radial rays tapered toward the umbo. Notably, the former pattern is similar among all the species examined, as it forms in the peripheries of prominent growth lines occurring periodically. In the latter pattern, however, the morphology and distribution of the bands are slightly different between the Kitadani Freshwater Bivalves and the extant species. The Kitadani Freshwater Bivalves exhibits relatively distinct and wide radial rays running roughly parallel to the lengths of the sculpture elements (radial plications and/or wrinkles), while the extant species bear obscure and fine radial rays running diagonally to the lengths of the sculpture elements. Nonetheless, the taxa with V-shaped sculpture elements (wrinkles, ribs or arranged nodules) lack or bear ambiguous radial rays, whether extant (e.g., Triplodon spp., Indochinella spp. and Tritogonia spp.)13,15,22 or extinct (†Trigonioides tetoriensis).Hypothesis I: phylogenetic constraintsThe resemblance of the color patterns between the Kitadani Freshwater Bivalves and the extant unionids possibly resulted from the phylogenetic constrains. Each of the three species of the Kitadani Freshwater Bivalves belongs to a separate family (†Trigonioides tetoriensis: †Trigonioididae, †Plicatounio naktongensis: †Plicatounionidae, and †Matsuomtoina matsumotoi: †Pseudohyriidae) in the order Trigoniida19. Trigoniida in turn, forms the subclass Palaeoheterodonta with Unionida23. This raises a possibility that the color patterns observed in the Kitadani Freshwater Bivalves and the extant unionids is inherited from their most recent common ancestor. In other words, these color patterns, stripes along the growth lines and radial rays tapered toward the umbo, may be the apomorphy for Palaeoheterodonta. In fact, some extant trigoniid species belonging to Neotrigonia exhibit color pattern similar to those in the Kitadani Freshwater Bivalves and extant unionids in this study (e.g. Neotrigonia margaritacea)1.Interestingly, the coloration of color patterns is quite different between unioniids (green to blue colorings) and trigoniids (red to yellow colorings), and the oldest known color patterns of the Palaeoheterodonta (Myophorella nodulosa, a marine species of Trigoniida from the Oxfordian of the Early Jurassic) appears different (concentric rows of patches)10 from those of the Kitadani Freshwater Bivalves or the extant unioniids. These observations suggest that colorations evolved independently, in contrast to the color patterns, between Trigoniida and Unionida, and that Trigoniida more diverse color patterns than Unionida did in the Palaeoheterodont evolutionary history. Although further examination of the fossil record for the residual colors and color patterns in Palaeoheterodonta is essential, it is plausible that the habitat differences may have caused such discrepancy in the colorations and color patterns between Trigoniida (mainly marine) and Unionida (freshwater) in spite of the phylogenetic constrains.Hypothesis II: convergent evolutionThe other possible interpretation of the color pattern similarity between the Kitadani Freshwater Bivalves and extant Unionida, is the convergent evolution. One potential factor that may have caused this convergent evolution of the color patterns is an adaptation to their habitats. In general, much of the convergent evolution in animals occurs through the morphological evolution in response to their habitats24. Similarly in mollusks, shell colors and their patterns are generally influenced by their habitats2,6,25. Considering marine mollusks, the shell colors and their patterns have great diversity due to varying habitat environments, especially in coral reeves that exhibit various colors and complex ecosystem2,6. Conversely, in the freshwater ecosystem, the environmental colors are relatively monotonous with rocks, sand, mud, and green algae8, and such habitat conditions are likely indifferent between the Mesozoic and Cenozoic. As a result, the freshwater bivalves retained simple and monotonous color patterns for adapting to such environments throughout their evolution.Another conceivable factor to explain the convergent evolution in the color patterns of the studied freshwater bivalves is the selection pressure by visual predators. In general, the shell colors and their patterns in bivalves act as camouflages against the predators2,7,8,26,27,28. Previous studies have demonstrated that extant freshwater bivalves are preyed upon by crayfish, fish, birds, reptiles, and mammals29,30. Because shell colors in freshwater bivalves tend to be greenish, such colors may be an adaptation against visual predators for blending into the freshwater sediments on which abundant greenish phytoplanktons occur2,8. Therefore, the evolutionary conservatism in color patterns of freshwater bivalves may result from camouflages into freshwater microenvironments, which has been advantageous against visual predators since the late Early Cretaceous.The above discussion assumes that the visual predators of freshwater bivalves remained similar for at least 120 million years. Which animals could have been potential threads to the Kitadani Freshwater Bivalves, and, in turn, the Early Cretaceous freshwater bivalves? Among the extant visual predators of the freshwater bivalves, those whose lineages were present in the Early Cretaceous include crustaceans (especially brachyuran decapoda31), fish, lizards, turtles, crocodiles, birds, and mammals. Among them, the fossil record of durophagous lizards and mammals can be traced back only to the Late Cretaceous32,33. Conversely, lines of fossil evidence suggest that some fish34,35, turtles36, and crocodiles35 fed on molluscan invertebrates during the Early Cretaceous, and the Kitadani Freshwater Bivalves indeed occurs with abundant lepisosteiform scales, testudinate shells and crocodile teeth. Additionally, at least one Early Cretaceous avian species with crustacean gut contents can be attributed to the durophagous diet37, and the Kitadani Formation has yielded avialan skeletal remains38, and footprints39,40. Therefore, fish, turtles, crocodiles, and birds are likely candidates for visual predators of the Early Cretaceous freshwater bivalves, and have remained so until present. Additionally, while crustaceans have not been identified in the Kitadani Formation, they flourished in the Early Cretaceous and their remains occur with the fossil freshwater bivalves of the time elsewhere31. Thus, crustaceans may have also played a role as visual predators of the freshwater bivalves since the Early Cretaceous.In addition to the crustaceans, fishes, turtles, crocodiles and birds, the visual predators of the Early Cretaceous freshwater bivalves likely include extinct lineages. For example, some pliosauroid plesiosaurs are suggested as being durophagous34, although the freshwater members of the group are considered endemic41 and less likely to be a major thread to the Early Cretaceous freshwater bivalves. Another extinct candidate is non-avian dinosaurs. Ornithischians are suggested to have possessed a dietary flexibility including the durophagy. For instance, well-preserved hadrosaurid coprolites from the Late Cretaceous of Montana, U.S.A. include sizeable crustaceans and mollusks, possibly suggesting that the Cretaceous freshwater mollusks were consumed by these herbivorous dinosaurs42. In addition, some basal ceratopsian psittacosaurids are hypothesized for the durophagy based on the predicted large bite force in the caudal portion of the toothrow43. Among saurischians, some oviraptorosaurian theropods are indicated to consume mollusks with hard shells based on their mandibular features44. While hadrosaurids, psittacosaurids, and oviraptorosaurians have not been identified in the Kitadani Formation, psittacosaurids, and oviraptorosaurians are common elsewhere in the Early Cretaceous of East Asia45,46, and hadrosauroid Koshisaurus is present in the formation47. Because dinosaurs occupied a niche of large terrestrial predators throughout the Mesozoic, they may have acted as one of major mollusk consumers in absence of large lizards and mammals in the Early Cretaceous ecosystem. Thus, the predation pressure by visual predators to the freshwater bivalves in the Early Cretaceous is likely similar to that in the present. Consequently, one of evolutionary adaptations of the freshwater bivalves against such pressure has remained to camouflage in the phytoplankton-rich sediments, leading to the long-term evolutionary conservatism of their color patterns. More

  • in

    The influence and acting pattern of China's national carbon emission trading scheme on regional ecologicalization efficiency of industry

    Benchmark regression resultsParallel trend testThe premise of using DID is that the treatment group and control group meet the assumptions of parallel trend, which means that before ETS is officially implemented, the evolution trend of ecologicalization efficiency of industry of the control group and the experimental group is consistent and does not show a systematic difference. This study uses a more rigorous empirical test in parallel trend test: if the interaction coefficient is not significant and is different from zero before the implementation of ETS; and if the interaction coefficient is significant and is different from zero after the implementation of ETS, it indicates that there is no significant difference in ecologicalization efficiency of industry between the control group and the experimental group before the implementation of ETS. Results are shown in Table 4: before ETS was officially implemented, the difference coefficient was not significant; after the official implementation of ETS in 2013, the difference coefficient was significant and not equal to 0, and the ecologicalization efficiency of industry was improved significantly, which met the parallel trend of the DID. Therefore, it is scientific and reasonable to evaluate the effectiveness of ETS with DID.Table 4 Parallel trend test.Full size tableDynamic effect analysisTo compare the conditions of the experimental group and the control group before and after the implementation of ETS, dynamic graphs are drawn in this study, as shown in Fig. 1, which shows the impact of ETS on the regional ecologicalization efficiency of industry. The vertical line represents a 95% confidence interval and the broken line shows the marginal effect of regional ecologicalization efficiency, which means that the confidence interval contains is 0 before ETS’s implementation, and the result is not significant. In contrast, after 2013, the effect of ETS became apparent, the marginal effect gradually increased and the results became significant, perhaps owing to the implementation of ETS.Figure 1Dynamic analysis diagram.Full size imageThe effect of ETS on ecologicalization efficiency of industryControlling time effect and fixed effect, this study collected the data of pilot and non-pilot provinces of ETS from 2007 to 2019 to analyze the impact of ETS on the regional ecologicalization efficiency of industry and regional heterogeneity. The results are shown in Table 5. According to the results in the first column, ETS has significantly promoted the regional ecologicalization efficiency of industry, and the national implementation of ETS has achieved remarkable results. Compared with the regions that are not ETS pilot areas, the ecologicalization efficiency of industry of pilot provinces and cities has increased by 35%. Results also show that ETS has different effects on the ecologicalization efficiency of industry in different regions. Specifically, ETS significantly promoted regional ecologicalization efficiency of industry in the eastern and central regions, and the efficiency in the eastern region was more significant than that of the central region. However, the impact of ETS on the regional ecologicalization efficiency of industry in the western region was negative which may result from the fact that compared to the central and western regions, the east region has better economic development, advanced technology, and lots of talents that can respond to the implementation of ETS, accelerate the upgrade of industries, and improve the utilization level of regional resources. There are many traditional industries in the central and western regions, and the development of scientific and technological levels as well as the resource utilization efficiency there are relatively slow. Besides, it is difficult for the central and western regions to adapt to ETS in a short-term of time leading to the failure of improving the regional ecologicalization efficiency of industry in a short time.Table 5 Influence of ETS on ecologicalization efficiency of industry.Full size tableRobustness testPropensity matching score—double difference method (PSM-DID)The assumption of homogeneity and randomness between the control group and the experimental group is the premise of using the DID model. However, due to the large economic and regional differences among provinces and cities, there may be systematic differences between the experimental group and the control group, which may cause deviations in the results. Therefore, the data after propensity score matching is used in this study, making the matched individuals have no other significant differences unless they have been treated or not. The dual difference is conducted again to avoid self-selection bias, and the robustness of the above results is verified according to the measurement results. Control variables were used to match characteristic variables, the experimental group was matched with the control group, and the Logit model was adopted to delete the samples that fail to meet the matching criteria. After the matching, there are 168 observation values. The regression results of PSM-DID model show that, ETS has positive effects on the regional ecologicalization of industry (0.460***), which again proves that the conclusion that ETS improves regional ecologicalization of industry efficiency is reliable. The results are shown in Table 6.Table 6 The result of the PSM-DID.Full size tableCounterfactual testTo verify the robustness of the results again, six provinces and cities are randomly selected as experimental groups for multiple tests to construct new dummy variables of ETS, and the DID model was used again to verify the credibility of the above results. Four random samples were conducted in this study, and the results are shown in Table 7. It can be seen that the results are not significant, which also reversely proves that ETS improves the regional ecologicalization efficiency of industry.Table 7 Counterfactual test results.Full size tableActing pattern analysis of ETS on the regional ecologicalization efficiency of industryFirst, ETS may improve the regional ecologicalization efficiency of industry through industrial structure optimization and upgrading. Promoting upgrading of the industrial structure is one of the important approaches of social and economic development during the 14th Five-Year Plan formulation and is the only way to promote low-carbon and sustainable development of modern national industries. The upgrading of the industrial structure has been promoted to the national strategic level, contributing to the healthy development of the national economy system. ETS bring costs and benefits to enterprises, forcing them to transform and upgrade, increase investment in environmental protection and use clean energy, and accelerate the pace of energy conservation and emission reduction31. Second, ETS may improve the regional ecologicalization efficiency of industry through the coordinated agglomeration of resources. Marshall’s theory of scale economy, Krugman’s theory of new economic geography, Weber’s theory of agglomeration economy, Coase’s transaction cost theory, and so on reflect the importance of resource aggregation of economic activities through cost-saving, resource sharing, and other ways to improve industrial input–output efficiency, enhance industrial competitiveness, increase regional comprehensive strength and strengthen the competitive advantage of regional industrial clusters32. The benefits generated by resource aggregation far exceed the sum of benefits generated by various industries in the decentralized state. Under the pressure of ETS, enterprises may alleviate the mismatch between labor and capital through the collaborative aggregation of industrial resources, aiming to improve economic benefits and regional resource allocation efficiency and promote regional ecologicalization efficiency of industry. Third, ETS may improve the regional ecologicalization efficiency of industry by supporting ecological optimization. The sustainable development of the ecological environment is closely related to emission reduction policy. To alleviate the bad effects on the ecology, environmental protection is more and more brought to the attention of society and government. Policies for ecological protection have been introduced to reduce pollution20. All regions take effective and targeted measures to control environmental pollution and optimize the investment structure in light of their actual conditions. The purpose of ecological optimization is to improve the regional environment and strengthen pollution control which is one of the important parts of China’s fiscal spending. The government must guide the market to carry out ecological protection and environmental governance according to ETS. Studies have found that a low-carbon pilot policy helps to enhance the level of regional pollution control, promote the harmonious development of regional economy and environment, and then improve the regional ecologicalization efficiency of industry.To explore the transmission mechanism of ETS on the regional ecologicalization of industry efficiency, Baron and Kenny (1986)’s mediating effect model was referred to explore and verify whether there exists a structural optimization upgrade effect, resource synergistic agglomeration effect, ecological optimization support effect when ETC promotes regional ecologicalization efficiency of industry. Table 8 shows the regression results of the influence mechanism of ETS on the regional ecologicalization efficiency of industry. This study refers to the definition and research of industrial optimization and upgrading by Wang Qunwei, Huang Xianglan, and others, and the proportion of tertiary industry added value accounting for industrial added value is selected to measure the effectiveness of industrial optimization and upgrading. For resource synergistic agglomeration effect, this study refers to the calculation methods of Cui Shuhui, Chen Jianjun et al. and adopts the collaborative aggregation index of manufacturing and producer services to measure the collaborative aggregation effect of resources, which effectively avoids the scale difference between different regions. It can be seen from the table that the implementation of ETS has significantly influenced the three effects proposed by this study: the optimization and upgrading effect of industrial structure, the synergistic aggregation effect of resources, and the support effect of ecological optimization. In addition, ETS has a positive and significant impact on the regional ecologicalization efficiency of industry. The results in Columns 3, 5, and 7 of the table show the industrial optimization and upgrading effect, resource synergistic aggregation effect, structural upgrading effect, and resource allocation effect generated in the process of low-carbon pilot policy operation can significantly promote regional ecologicalization efficiency of industry and have an obvious intermediary effect. The mediating effect produced by industrial structure optimization and upgrading is about 0.042, the mediating effect produced by resource synergy agglomeration is about 0.148, and the mediating effect produced by ecological optimization support is about 0.166. According to the Sobal test results, all of them have passed the test, indicating that the above results are reliable.Table 8 Mediating effect test results.Full size table More

  • in

    Reply to: Restoration prioritization must be informed by marginalized people

    Rio Conservation and Sustainability Science Centre, Department of Geography and the Environment, Pontifical Catholic University, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Alvaro Iribarrem, Carlos Leandro Cordeiro, Renato Crouzeilles, Catarina Jakovac, André Braga Junqueira, Eduardo Lacerda & Agnieszka E. LatawiecInternational Institute for Sustainability, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Alvaro Iribarrem, Carlos Leandro Cordeiro, Renato Crouzeilles, Catarina Jakovac, André Braga Junqueira, Eduardo Lacerda, Agnieszka E. Latawiec, Robin L. Chazdon & Carlos Alberto de Mattos ScaramuzzaPrograma de Pós Graduacão em Ecologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. Strassburg, Renato Crouzeilles & Fabio R. ScaranoBotanical Garden Research Institute of Rio de Janeiro, Rio de Janeiro, BrazilBernardo B. N. StrassburgSchool of Biological Sciences, University of Queensland, St Lucia, Queensland, AustraliaHawthorne L. BeyerAgricultural Science Center, Federal University of Santa Catarina, Florianópolis, BrazilCatarina JakovacInstitut de Ciència i Tecnologia Ambientals, Universitat Autònoma de Barcelona, Barcelona, SpainAndré Braga JunqueiraDepartment of Geography, Fluminense Federal University, Niterói, BrazilEduardo LacerdaDepartment of Production Engineering, Logistics and Applied Computer Science, Faculty of Production and Power Engineering, University of Agriculture in Kraków, Kraków, PolandAgnieszka E. LatawiecSchool of Environmental Sciences, University of East Anglia, Norwich, UKAgnieszka E. LatawiecDepartment of Zoology, University of Cambridge, Cambridge, UKAndrew Balmford, Stuart H. M. Butchart & Paul F. DonaldInternational Union for Conservation of Nature (IUCN), Gland, SwitzerlandThomas M. BrooksWorld Agroforestry Center (ICRAF), University of The Philippines, Los Baños, The PhilippinesThomas M. BrooksInstitute for Marine & Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaThomas M. BrooksBirdLife International, Cambridge, UKStuart H. M. Butchart & Paul F. DonaldDepartment of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USARobin L. ChazdonWorld Resources Institute, Global Restoration Initiative, Washington, DC, USARobin L. ChazdonTropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, AustraliaRobin L. ChazdonInstitute of Social Ecology, University of Natural Resources and Life Sciences Vienna, Vienna, AustriaKarl-Heinz Erb & Christoph PlutzarDepartment of Forest Sciences, ‘Luiz de Queiroz’ College of Agriculture, University of São Paulo, Piracicaba, BrazilPedro BrancalionRSPB Centre for Conservation Science, Royal Society for the Protection of Birds, Edinburgh, UKGraeme Buchanan & Paul F. DonaldSecretariat of the Convention on Biological Diversity (SCBD), Montreal, Quebec, CanadaDavid CooperInstituto Multidisciplinario de Biología Vegetal, CONICET and Universidad Nacional de Córdoba, Córdoba, ArgentinaSandra DíazUnited Nations Environment Programme World Conservation Monitoring Centre, Cambridge, UKValerie Kapos & Lera MilesBiodiversity and Natural Resources (BNR) program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, AustriaDavid Leclère, Michael Obersteiner & Piero ViscontiDivision of Conservation Biology, Vegetation Ecology and Landscape Ecology, University of Vienna, Vienna, AustriaChristoph PlutzarB.B.N.S. wrote the first version of the paper. All authors provided input into subsequent versions of the manuscript. More

  • in

    Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap

    IPCC. Summary for policymakers in Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 3–32 (Cambridge University Press, 2021).Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).United Nations. What is the United Nations Framework Convention on Climate Change? https://unfccc.int/process-and-meetings/the-convention/what-is-the-united-nations-framework-convention-on-climate-change (2021).United Nations. The Paris Agreement. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (2022).United Nations. The Convention on Biological Diversity. https://www.cbd.int/convention/ (2021).UN environment programme. Aichi Target 11, Convention on Biological Diversity https://www.cbd.int/aichi-targets/target/11 (2021).Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).Article 

    Google Scholar 
    Wells, J. V., Dawson, N., Culver, N., Reid, F. A. & Morgan Siegers, S. The state of conservation in North America’s boreal forest: issues and opportunities. Front. For. Glob. Chang. 3, 90 (2020).Article 

    Google Scholar 
    Bradshaw, C. J. A. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).ADS 
    Article 

    Google Scholar 
    Drever, C. R. et al. Natural climate solutions for Canada. Sci. Adv. 7, eabd6034. https://doi.org/10.1126/sciadv.abd6034 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Government of Canada. Species at Risk Act (S.C. 2002, c. 29) https://laws.justice.gc.ca/eng/acts/S-15.3/ (2021).SARA registry. Woodland caribou (Rangifer tarandus), boreal population: species summary. https://species-registry.canada.ca/index-en.html#/species/636-252 (2022).Brandt, J. P. The extent of the North American boreal zone. Environ. Rev. 17, 101–161 (2009).Article 

    Google Scholar 
    Environment and Climate Change Canada. Boreal caribou ranges – Canada https://open.canada.ca/data/en/dataset/4eb3e825-5b0f-45a3-8b8b-355188d24b71 (2016).Hebblewhite, M. Billion dollar boreal woodland caribou and the biodiversity impacts of the global oil and gas industry. Biol. Cons. 206, 102–111 (2017).Article 

    Google Scholar 
    Hebblewhite, M. & Fortin, D. Canada fails to protect its caribou. Science 358, 730 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Boan, J. J., Malcolm, J. R., Vanier, M. D., Euler, D. L. & Moola, F. M. From climate to caribou: how manufactured uncertainty is affecting wildlife management. Wildl. Soc. Bull. 42, 366–381 (2018).Article 

    Google Scholar 
    Government of Canada. Overview of the Pan-Canadian approach to transforming species at risk conservation in Canada https://www.canada.ca/en/services/environment/wildlife-plants-species/species-risk/pan-canadian-approach.html (2020).Environment and Climate Change Canada. Pan-Canadian approach to transforming species at risk conservation in Canada (Environment and Climate Change Canada, 2018).Assembly of First Nations & David Suzuki Foundation. Cultural and ecological value of Boreal Woodland Caribou habitat https://davidsuzuki.org/science-learning-centre-article/cultural-ecological-value-boreal-woodland-caribou-habitat/ (2013).Royal Canadian Mint. A familiar face – the 25-cent coin. https://www.mint.ca/en/discover/canadian-circulation/25-cents (2022).Drever, C. R. et al. Conservation through co-occurrence: woodland caribou as a focal species for boreal biodiversity. Biol. Conserv. 232, 238–252 (2019).Article 

    Google Scholar 
    Johnson, C. A., Drever, C. R., Kirby, P., Neave, E. & Martin, A. E. Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada. Sci. Rep. (in review).Government of Canada. Canadian Protected and Conserved Areas Database https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html (2022).Trudeau, J. Minister of Environment and Climate Change mandate letter https://pm.gc.ca/en/mandate-letters/2021/12/16/minister-environment-and-climate-change-mandate-letter (2021).Environment Canada. Scientific assessment to inform the identification of critical habitat for Woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada: 2011 update (Environment Canada, 2011).Environment and Climate Change Canada. Amended recovery strategy of the Woodland Caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at Risk Act Recovery Strategy Series (Environment and Climate Change Canada, 2020).Johnson, C. A. et al. Science to inform policy: linking population dynamics to habitat for a threatened species in Canada. J. Appl. Ecol. 57, 1314–1327 (2020).Article 

    Google Scholar 
    Mansuy, N. et al. Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environ. Res. Lett. 14, 064007. https://doi.org/10.1088/1748-9326/ab1bc5 (2019).ADS 
    Article 

    Google Scholar 
    Mitchell, M. G. E. et al. Identifying key ecosystem service providing areas to inform national-scale conservation planning. Environ. Res. Lett. 16, 014038. https://doi.org/10.1088/1748-9326/abc121 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Kocsis, Á. T., Zhao, Q., Costello, M. J. & Kiessling, W. Not all biodiversity rich spots are climate refugia. Biogeosciences 18, 6567–6579 (2021).ADS 
    Article 

    Google Scholar 
    Barr, S. L., Larson, B. M. H., Beechey, T. J. & Scott, D. J. Assessing climate change adaptation progress in Canada’s protected areas. Can. Geogr. 65, 152–165 (2021).Article 

    Google Scholar 
    Groves, C. R. et al. Incorporating climate change into systematic conservation planning. Biodivers. Conserv. 21, 1651–1671 (2012).Article 

    Google Scholar 
    Reside, A. E., Butt, N. & Adams, V. M. Adapting systematic conservation planning for climate change. Biodivers. Conserv. 27, 1–29 (2018).Article 

    Google Scholar 
    Sothe, C. et al. Large soil carbon storage in terrestrial ecosystems of Canada. Global Biogeochem. Cycles 36, e2021GB007213. https://doi.org/10.1029/2021GB007213 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Beyer, H. L., Dujardin, Y., Watts, M. E. & Possingham, H. P. Solving conservation planning problems with integer linear programming. Ecol. Modell. 328, 14–22 (2016).Article 

    Google Scholar 
    Hanson, J. O., Schuster, R., Strimas-Mackey, M. & Bennett, J. R. Optimality in prioritizing conservation projects. Methods Ecol. Evol. 10, 1655–1663 (2019).Article 

    Google Scholar 
    Schuster, R., Hanson, J. O., Strimas-Mackey, M. & Bennett, J. R. Exact integer linear programming solvers outperform simulated annealing for solving conservation planning problems. PeerJ 8, e9258. https://doi.org/10.7717/peerj.9258 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McIntosh, E. J. et al. Absence of evidence for the conservation outcomes of systematic conservation planning around the globe: a systematic map. Environ. Evid. 7, 22. https://doi.org/10.1186/s13750-018-0134-2 (2018).Article 

    Google Scholar 
    Díaz-Yáñez, O., Pukkala, T., Packalen, P., Lexer, M. J. & Peltola, H. Multi-objective forestry increases the production of ecosystem services. For. Int. J. For. Res. 94, 386–394 (2021).
    Google Scholar 
    Coristine, L. E. et al. Informing Canada’s commitment to biodiversity conservation: a science-based framework to help guide protected areas designation through Target 1 and beyond. Facets 3, 531–562 (2018).Article 

    Google Scholar 
    Carroll, C. & Ray, J. C. Maximizing the effectiveness of national commitments to protected area expansion for conserving biodiversity and ecosystem carbon under climate change. Glob. Chang. Biol. 27, 3395–3414 (2021).Article 

    Google Scholar 
    Indigenous Circle of Experts. We rise together: achieving Pathway to Canada Target 1 through the creation of Indigenous Protected and Conserved Areas in the spirit and practice of reconciliation. (2018).Zurba, M., Beazley, K. F., English, E. & Buchmann-Duck, J. Indigenous Protected and Conserved Areas (IPCAs), Aichi Target 11 and Canada’s Pathway to Target 1: focusing conservation on reconciliation. Land 8, 10. https://doi.org/10.3390/land8010010 (2019).Article 

    Google Scholar 
    Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).Article 

    Google Scholar 
    Lee, P. & Boutin, S. Persistence and developmental transition of wide seismic lines in the western Boreal Plains of Canada. J. Environ. Manage. 78, 240–250 (2006).Article 

    Google Scholar 
    Ray, J. C. Defining habitat restoration for boreal caribou in the context of national recovery: a discussion paper (Wildlife Conservation Society Canada, 2014).Carwardine, J. et al. Avoiding costly conservation mistakes: the importance of defining actions and costs in spatial priority settings. PLoS ONE 3, e2586. https://doi.org/10.1371/journal.pone.0002586 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeCesare, N. J. et al. Estimating ungulate recruitment and growth rates using age ratios. J. Wildl. Manage. 76, 144–153 (2012).Article 

    Google Scholar 
    Cunningham, C. A., Thomas, C. D., Morecroft, M. D., Crick, H. Q. P. & Beale, C. M. The effectiveness of the protected area network of Great Britain. Biol. Conserv. 257, 109146. https://doi.org/10.1016/j.biocon.2021.109146 (2021).Article 

    Google Scholar 
    Olds, A. D., Connolly, R. M., Pitt, K. A. & Maxwell, P. S. Habitat connectivity improves reserve performance. Conserv. Lett. 5, 56–63 (2012).Article 

    Google Scholar 
    Gurd, D. B., Nudds, T. D. & Rivard, D. H. Conservation of mammals in eastern North American wildlife reserves: how small is too small? Conserv. Biol. 15, 1355–1363 (2001).Article 

    Google Scholar 
    Government of Canada. Canadian Protected and Conserved Areas Database, December 2019 CPCAD data https://www.canada.ca/en/environment-climate-change/services/national-wildlife-areas/protected-conserved-areas-database.html (2019).Environment Canada. Recovery strategy for the woodland caribou (Rangifer tarandus caribou), boreal population, in Canada. Species at Risk Act Recovery Strategy Series (Environment Canada, 2012).R Core Team. R: A language and environment for statistical computing. Version 4.0.4 (The R Foundation, 2021).Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. Jaccard/Tanimoto similarity test and estimation methods for biological presence-absence data. BMC Bioinf. 20, 644. https://doi.org/10.1186/s12859-019-3118-5 (2019).Article 

    Google Scholar 
    Chung, N. C., Miasojedow, B., Startek, M. & Gambin, A. jaccard: test similarity between binary data using Jaccard/Tanimoto coefficients. R package version 0.1.0. https://cran.r-project.org/package=jaccard (2018).Ralphs, T., Ladanyi, L., Guzelsoy, M. & Mahajan, A. Symphony. Zenodo https://doi.org/10.5281/zenodo.2576603/ (2019).Theußl, S., Schwendinger, F. & Hornik, K. ROI: an extensible R optimization infrastructure. J. Stat. Softw. 94, 1–64 (2020).Article 

    Google Scholar 
    Theussl, S. ROI.plugin.symphony: ‘SYMPHONY’ plug-in for the ‘R’ optimization interface. R package version 1.0–0 https://CRAN.R-project.org/package=ROI.plugin.symphony (2020).Environment and Climate Change Canada. 2015 – Anthropogenic disturbance footprint within boreal caribou ranges across Canada – as interpreted from 2015 Landsat satellite imagery https://open.canada.ca/data/en/dataset/a71ab99c-6756-4e56-9d2e-2a63246a5e94 (2019).Stralberg, D. Velocity-based macrorefugia for North American ecoregions. Zenodo https://doi.org/10.5281/zenodo.2579337 (2019).Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748. https://doi.org/10.1371/journal.pone.0169748 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The evolution of neurosensation provides opportunities and constraints for phenotypic plasticity

    Pigliucci, M. Evolution of phenotypic plasticity: Where are we going now?. Trends Ecol. Evol. 20, 481–486 (2005).PubMed 
    Article 

    Google Scholar 
    Pfennig, D. W. et al. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).PubMed 
    Article 

    Google Scholar 
    Xue, B. & Leibler, S. Benefits of phenotypic plasticity for population growth in varying environments. PNAS 115, 12745–12750 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: Limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scheiner, S. Selection experiments and the study of phenotypic plasticity. J. Evol. Biol. 15, 889–898 (2002).Article 

    Google Scholar 
    Garland, T. & Kelly, S. A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361 (2006).PubMed 
    Article 

    Google Scholar 
    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1005 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Snell-Rood, E. C. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).Article 

    Google Scholar 
    Gu, L. et al. Induction and reversibility of Ceriodaphnia cornuta horns under varied intensity of predation risk and their defensive effectiveness against Chaoborus larvae. Freshw. Biol. 66, 1200–1210 (2021).Article 

    Google Scholar 
    Van Buskirk, J. & Steiner, U. The fitness costs of developmental canalization and plasticity. J. Evol. Biol. 22, 852–860 (2009).PubMed 
    Article 

    Google Scholar 
    Zhang, C. et al. Resurrecting the metabolome: Rapid evolution magnifies the metabolomic plasticity to predation in a natural Daphnia population. Mol. Ecol. 30, 2285–2297 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Auld, J. R., Agrawal, A. A. & Relyea, R. A. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. R. Soc. Lond. B Biol. Sci. 20, 25 (2009).
    Google Scholar 
    Tsuji, H., Taoka, K.-I. & Shimamoto, K. Regulation of flowering in rice: Two florigen genes, a complex gene network, and natural variation. Curr. Opin. Plant Biol. 14, 45–52 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bay, R. A. & Palumbi, S. R. Multilocus adaptation associated with heat resistance in reef-building corals. Curr. Biol. 24, 2952–2956 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nei, M., Niimura, Y. & Nozawa, M. The evolution of animal chemosensory receptor gene repertoires: Roles of chance and necessity. Nat. Rev. Genet. 9, 951–963 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nozawa, M., Kawahara, Y. & Nei, M. Genomic drift and copy number variation of sensory receptor genes in humans. Proc. Natl. Acad. Sci. 104, 20421–20426 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Raible, F. et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev. Biol. 300, 461–475 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abbott, L. F. & Nelson, S. B. Synaptic plasticity: Taming the beast. Nat. Neurosci. 3, 1178–1183 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Andersen, S. L. Trajectories of brain development: Point of vulnerability or window of opportunity?. Neurosci. Biobehav. Rev. 27, 3–18 (2003).PubMed 
    Article 

    Google Scholar 
    Miyakawa, H. et al. Gene up-regulation in response to predator kairomones in the water flea, Daphnia pulex. BMC Dev. Biol. 10, 1 (2010).Article 
    CAS 

    Google Scholar 
    Dennis, S. R., LeBlanc, G. A. & Beckerman, A. P. Endocrine regulation of predator-induced phenotypic plasticity. Oecologia 176, 625–635 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boidron-Metairon, I. F. Morphological plasticity in laboratory-reared echinoplutei of Dendraster excentricus (Eschscholtz) and Lytechinus variegatus (Lamarck) in response to food conditions. J. Exp. Mar. Biol. Ecol. 119, 31–41 (1988).Article 

    Google Scholar 
    Miner, B. G. Larval feeding structure plasticity during pre-feeding stages of echinoids: Not all species respond to the same cues. J. Exp. Mar. Biol. Ecol. 343, 158–165 (2007).Article 

    Google Scholar 
    Chaturvedi, A. et al. Extensive standing genetic variation from a small number of founders enables rapid adaptation in Daphnia. Nat. Commun. 12, 4306 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byrne, M., Sewell, M. & Prowse, T. Nutritional ecology of sea urchin larvae: Influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).Article 

    Google Scholar 
    Sewell, M. A., Cameron, M. J. & McArdle, B. H. Developmental plasticity in larval development in the echinometrid sea urchin Evechinus chloroticus with varying food ration. J. Exp. Mar. Biol. Ecol. 309, 219–237 (2004).Article 

    Google Scholar 
    Adams, D. K., Sewell, M. A., Angerer, R. C. & Angerer, L. M. Rapid adaptation to food availability by a dopamine-mediated morphogenetic response. Nat. Commun. 2, 592 (2011).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Williamson, D. The Origins of Larvae (Springer, 2003).Book 

    Google Scholar 
    McIntyre, D. C., Lyons, D. C., Martik, M. & McClay, D. R. Branching out: Origins of the sea urchin larval skeleton in development and evolution. Genesis 52, 173–185 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Littlewood, D. & Smith, A. A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philos. Trans. R. Soc. B Biol. Sci. 347, 213–234 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Kroh, A. & Smith, A. B. The phylogeny and classification of post-Palaeozoic echinoids. J. Syst. Paleontol. 8, 147–212 (2010).Article 

    Google Scholar 
    Smith, A. B. et al. Testing the molecular clock: Molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol. Biol. Evol. 23, 1832–1851 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reitzel, A. M. & Heyland, A. Reduction in morphological plasticity in echinoid larvae: Relationship of plasticity with maternal investment and food availability. Evol. Ecol. Res. 9, 109–121 (2007).
    Google Scholar 
    McAlister, J. S. Evolutionary responses to environmental heterogeneity in Central American echinoid larvae: Plastic versus constant phenotypes. Evolution 62, 1358–1372 (2008).PubMed 
    Article 

    Google Scholar 
    Soars, N. A., Prowse, T. A. A. & Byrne, M. Overview of phenotypic plasticity in echinoid larvae, ‘Echinopluteus transversus’ type vs typical echinoplutei. Mar. Ecol. Progress Ser. 383, 113–125 (2009).ADS 
    Article 

    Google Scholar 
    Eckert, G. L. A novel larval feeding strategy of the tropical sand dollar, Encope michelini (Agassiz): Adaptation to food limitation and an evolutionary link between planktotrophy and lecithotrophy. J. Exp. Mar. Biol. Ecol. 187, 103–128 (1995).Article 

    Google Scholar 
    Miner, B. G. & Vonesh, J. R. Effects of fine grain environmental variability on morphological plasticity. Ecol. Lett. 7, 794–801 (2004).Article 

    Google Scholar 
    Strathmann, R. R., Fenaux, L. & Strathmann, M. F. Heterochronic developmental plasticity in larval sea urchins and its implications for evolution of nonfeeding larvae. Evolution 20, 972–986 (1992).Article 

    Google Scholar 
    Poorbagher, H., Lamare, M. D., Barker, M. F. & Rayment, W. Relative importance of parental diet versus larval nutrition on development and phenotypic plasticity of Pseudechinus huttoni larvae (Echinodermata: Echinoidea). Mar. Biol. Res. 6, 302–314 (2010).Article 

    Google Scholar 
    Bertram, D. F. & Strathmann, R. R. Effects of maternal and larval nutrition on growth and form of planktotrophic larvae. Ecology 79, 315–327 (1998).Article 

    Google Scholar 
    Miner, B. G. Evolution of feeding structure plasticity in marine invertebrate larvae: A possible trade-off between arm length and stomach size. J. Exp. Mar. Biol. Ecol. 315, 117–125 (2005).Article 

    Google Scholar 
    McAlister, J. S. Egg size and the evolution of phenotypic plasticity in larvae of the echinoid genus Strongylocentrotus. J. Exp. Mar. Biol. Ecol. 352, 306–316 (2007).Article 

    Google Scholar 
    McIntyre, D. C., Seay, N. W., Croce, J. C. & McClay, D. R. Short-range Wnt5 signaling initiates specification of sea urchin posterior ectoderm. Development 140, 4881–4889 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adomako-Ankomah, A. & Ettensohn, C. A. Growth factor-mediated mesodermal cell guidance and skeletogenesis during sea urchin gastrulation. Development 140, 4214–4225 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Duloquin, L., Lhomond, G. & Gache, C. Localized VEGF signaling from ectoderm to mesenchyme cells controls morphogenesis of the sea urchin embryo skeleton. Development 134, 2293–2302 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ettensohn, C. A. Lessons from a gene regulatory network: Echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development 136, 11–21 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rafiq, K., Shashikant, T., McManus, C. J. & Ettensohn, C. A. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins. Development 141, 950–961 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Röttinger, E. et al. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis and regulate gastrulation during sea urchin development. Development 135, 353–365 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cavalieri, V., Spinelli, G. & Di Bernardo, M. Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos. Dev. Biol. 262, 107–118 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hegarty, S. V., Sullivan, A. M. & O’Keeffe, G. W. Midbrain dopaminergic neurons: A review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123–138 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ryu, S. et al. Orthopedia homeodomain protein is essential for diencephalic dopaminergic neuron development. Curr. Biol. 17, 873–880 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smidt, M. P., Smits, S. M. & Burbach, J. P. H. Molecular mechanisms underlying midbrain dopamine neuron development and function. Eur. J. Pharmacol. 480, 75–88 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rast, J. P., Smith, L. C., Loza-Coll, M., Hibino, T. & Litman, G. W. Genomic insights into the immune system of the sea urchin. Science 314, 952–956 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hibino, T. et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 300, 349–365 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zigler, K. S. & Lessios, H. Speciation on the coasts of the new world: Phylogeography and the evolution of bindin in the sea urchin genus Lytechinus. Evolution 58, 1225–1241 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maggio, R. & Millan, M. J. Dopamine D2–D3 receptor heteromers: Pharmacological properties and therapeutic significance. Curr. Opin. Pharmacol. 10, 100–107 (2010).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Restoration prioritization must be informed by marginalized people

    Strassburg, B. B. N. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).CAS 
    Article 

    Google Scholar 
    Holl, K. D. Restoring tropical forests from the bottom up. Science 355, 455–456 (2017).CAS 
    Article 

    Google Scholar 
    Rights and Resources Initiative. Estimate of the Area of Land and Territories of Indigenous Peoples, Local Communities, and Afro-Descendants Where Their Rights Have Not Been Recognized https://doi.org/10.53892/UZEZ6605 (Rights + Resources, 2020).Erbaugh, J. T. et al. Global forest restoration and the importance of prioritizing local communities. Nat. Ecol. Evol. 4, 1472–1476 (2020).CAS 
    Article 

    Google Scholar 
    Adams, C., Rodrigues, S. T., Calmon, M. & Kumar, C. Impacts of large-scale forest restoration on socioeconomic status and local livelihoods: what we know and do not know. Biotropica 48, 731–744 (2016).Article 

    Google Scholar 
    Ramprasad, V., Joglekar, A. & Fleischman, F. Plantations and pastoralists: afforestation activities make pastoralists in the Indian Himalaya vulnerable. Ecol. Soc. 25, 1 (2020).Article 

    Google Scholar 
    Kumar, B. M. Species richness and aboveground carbon stocks in the homegardens of central Kerala, India. Agric. Ecosyst. Environ. 140, 430–440 (2011).Article 

    Google Scholar 
    Ribot, J. Cause and response: vulnerability and climate in the Anthropocene. J. Peasant Stud. 41, 667–705 (2014).Article 

    Google Scholar 
    Davis, D. K. & Robbins, P. Ecologies of the colonial present: pathological forestry from the taux de boisement to civilized plantations. Environ. Plan. E Nat. Space 1, 447–469 (2018).Article 

    Google Scholar 
    Agrawal, A. & Redford, K. Conservation and displacement: an overview. Conserv. Soc. https://www.jstor.org/stable/pdf/26392956.pdf (2009).Barletti, J. P. S. & Larson, A. M. Rights Abuse Allegations in the Context of REDD+ Readiness and Implementation: A Preliminary Review and Proposal for Moving Forward https://doi.org/10.17528/cifor/006630 (Center for International Forestry Research, 2017).Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl Acad. Sci. USA 115, 2335–2340 (2018).CAS 
    Article 

    Google Scholar 
    IUFRO. Forests, Trees and the Eradication of Poverty: Potential and Limitations. World Series Vol. 39 (International Union of Forest Research Organizations, 2020).Luttrell, C., Sills, E., Aryani, R., Ekaputri, A. D. & Evinke, M. F. Beyond opportunity costs: who bears the implementation costs of reducing emissions from deforestation and degradation? Mitig. Adapt. Strateg. Glob. Chang 23, 291–310 (2018).Article 

    Google Scholar 
    Coleman, E. A., Manyindo, J., Parker, A. R. & Schultz, B. Stakeholder engagement increases transparency, satisfaction, and civic action. Proc. Natl Acad. Sci. USA 116, 24486–24491 (2019).CAS 
    Article 

    Google Scholar  More

  • in

    Tropical forests as drivers of lake carbon burial

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Brando, P. M. et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc. B Biol. Sci. 363, 1839–1848 (2008).Article 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl Acad. Sci. USA 113, 10759–10768 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Malhi, Y. & Grace, J. Tropical forests and atmospheric carbon dioxide. Trends Res. Ecol. Environ. 15, 332–337 (2000).CAS 
    Article 

    Google Scholar 
    Mulholland, P. J. & Elwood, J. W. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34, 490–499 (1982).ADS 
    CAS 

    Google Scholar 
    Dean, W. E. & Gorham, E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26, 535–538 (1998).ADS 
    Article 

    Google Scholar 
    Tranvik, L. J., Cole, J. J. & Prairie, Y. T. The study of carbon in inland waters-from isolated ecosystems to players in the global carbon cycle. Limnol. Oceanogr. Lett. 3, 41–48 (2018).Article 

    Google Scholar 
    Mendonça, R. et al. Organic carbon burial in global lakes and reservoirs. Nat. Commun. 8, 1694 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stallard, R. F. Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Glob. Biogeochem. Cycles 12, 231–257 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Anderson, N. J., Heathcote, A. J. & Engstrom, D. R. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Sci. Adv. 6, eaaw2145 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marotta, H., Pinho, L. & Gudasz, C. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Chang. 4, 11–14 (2014).Article 
    CAS 

    Google Scholar 
    Cardoso, S. J. B., Enrich-Prast, A. C., Pace, M. L. & Rol, F. B. Do models of organic carbon mineralization extrapolate to warmer tropical sediments? Limnol. Oceanogr. 59, 48–54 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933 (2001).Article 

    Google Scholar 
    Tateishi, R. et al. Production of global land cover data – GLCNMO2008. J. Geogr. Geol. 6, (2014).Hess, L. L. et al. Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 synthetic aperture radar. Wetlands 35, 745–756 (2015).Article 

    Google Scholar 
    Clow, D. W. et al. Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ. Sci. Technol. 49, 7614–7622 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lundin, E. J. et al. Large difference in carbon emission – burial balances between boreal and arctic lakes. Sci. Rep. 5, 14248 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heathcote, A. J., Anderson, N. J., Prairie, Y. T., Engstrom, D. R. & del Giorgio, P. A. Large increases in carbon burial in northern lakes during the Anthropocene. Nat. Commun. 6, 10016 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymond, P. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, N. J., Dietz, R. D. & Engstrom, D. R. Land-use change, not climate, controls organic carbon burial in lakes. Proc. Biol. Sci. 280, 20131278 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders, L. M. et al. Carbon accumulation in Amazonian floodplain lakes: a significant component of Amazon budgets? Limnol. Oceanogr. Lett. 2, 29–35 (2017).Article 

    Google Scholar 
    Appleby, P. G. & Oldfield, F. In Uranium-series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences (eds. Ivanovich, M. & Harmon, R. S.) (Clarendon Press, 1992).Engstrom, D. R., Fritz, S. C., Almendinger, J. E. & Juggins, S. Chemical and biological trends during lake evolution in recently deglaciated terrain. Nature 408, 161–166 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, J.-H. et al. Tracing soil organic carbon in the lower Amazon River and its tributaries using GDGT distributions and bulk organic matter properties. Geochim. Cosmochim. Acta 90, 163–180 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Marotta, H., Paiva, L. T. & Petrucio, M. M. Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil. Limnology 10, 195–202 (2009).CAS 
    Article 

    Google Scholar 
    Anderson, N. J., Bennion, H. & Lotter, A. F. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob. Chang. Biol. 20, 2741–2751 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanders, L. M. et al. Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil. Biogeosciences 15, 447–455 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang. 9, 73–79 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Marotta, H., Duarte, C. M., Sobek, S. & Enrich-Prast, A. Large CO 2 disequilibria in tropical lakes. Glob. Biogeochem. Cycles 23, (2009).Richey, J. E., Melack, J. M., Aufdenkampe, A. K., Ballester, V. M. & Hess, L. L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416, 617–620 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunne, T., Mertes, L. A. K. K., Meade, R. H., Richey, J. E. & Forsberg, B. R. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Bull. Geol. Soc. Am. 110, 450–467 (1998).Article 

    Google Scholar 
    McLeod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    Abril, G. et al. Technical note: large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 12, 67–78 (2015).ADS 
    Article 

    Google Scholar 
    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).ADS 
    Article 

    Google Scholar 
    Gardner, T. A. et al. Prospects for tropical forest biodiversity in a human-modified world. Ecol. Lett. 12, 561–582 (2009).Dietz, R. D., Engstrom, D. R. & Anderson, N. J. Patterns and drivers of change in organic carbon burial across a diverse landscape: insights from 116 Minnesota lakes. Glob. Biogeochem. Cycles 29, 708–727 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Hobbs, W. O., Engstrom, D. R., Scottler, S. P., Zimmer, K. D. & Cotner, J. B. Estimating modern carbon burial rates in lakes using a single sediment sample. Limnol. Oceanogr. Methods 11, 316–326 (2013).CAS 
    Article 

    Google Scholar 
    Appleby, P. G. & Oldfield, F. The calculation of Pb-210 dates assuming a constant rate of supply of unsupported Pb-210 to the sediment. Catena 5, 1–8 (1978).CAS 
    Article 

    Google Scholar 
    Turner, L. J. & Delorme, L. D. Assessment of 210Pb data from Canadian lakes using the CIC and CRS models. Environ. Geol. 28, 78–87 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Breithaupt, J. L., Smoak, J. M., Smith, T. J. & Sanders, C. J. Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. J. Geophys. Res. G Biogeosci. 119, 2032–2048 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Sanders, C. J. et al. Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophys. Res. Lett. 41, 2475–2480 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Mitra, S., Wassmann, R. & Vlek, P. L. G. An appraisal of global wetland area and its organic carbon stock. Curr. Sci. 88, 25–35 (2005).CAS 

    Google Scholar 
    Ravichandran, K. S. Thermal residual stresses in a functionally graded material system. Mater. Sci. Eng. A 201, 269–276 (1995).Article 

    Google Scholar 
    Hedges, J. I. et al. Compositions and fluxes of particulate organic material in the Amazon River1. Limnol. Oceanogr. 31, 717–738 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Araujo-Lima, C. A. R. M., Forsberg, B. R., Victoria, R. & Martinelli, L. Energy sources for detritivorous fishes in the Amazon. Science 234, 1256–1258 (1986).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Martinelli, L. A., Victoria, R. L. & Forsberg, B. R. Isotopic composition of majors carbon reservoirs in the Amazon floodplain. Int. J. Ecol. Environ. Sci. 20, 31–46 (1994).
    Google Scholar 
    Martinelli, L. A. et al. Inland variability of carbon-nitrogen concentrations and δ13C in Amazon floodplain (várzea) vegetation and sediment. Hydrol. Process. 17, 1419–1430 (2003).ADS 
    Article 

    Google Scholar 
    Zar, J. H. Biostatistical Analysis, Books a la Carte Edition (Pearson, 2010). More