More stories

  • in

    Cumulative effects of widespread landscape change alter predator–prey dynamics

    Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).Article 

    Google Scholar 
    Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278. https://doi.org/10.1098/rstb.2010.0095 (2010).CAS 
    Article 

    Google Scholar 
    Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).Article 

    Google Scholar 
    Holling, C. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly (1959).Dickie, M., McNay, S. R., Sutherland, G. D., Cody, M. & Avgar, T. Corridors or risk? Movement along, and use of, linear features varies predictably among large mammal predator and prey species. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13130 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. Biol. Sci. 279, 4626–4633. https://doi.org/10.1098/rspb.2012.1698 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator-prey space race. PLoS ONE 6, e17050. https://doi.org/10.1371/journal.pone.0017050 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fleming, P. A. & Bateman, P. W. Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 138, 145–155. https://doi.org/10.1016/j.anbehav.2018.02.011 (2018).Article 

    Google Scholar 
    Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542. https://doi.org/10.1111/j.1365-2664.2011.02043.x (2011).Article 

    Google Scholar 
    Larivière, S. & Messier, F. Effect of density and nearest neighbours on simulated waterfowl nests: Can predators recognize high-density nesting patches?. Oikos 83, 12–20. https://doi.org/10.2307/3546541 (1998).Article 

    Google Scholar 
    Taitt, M. J. & Krebs, C. J. Predation, cover, and food manipulations during a spring decline of Microtus townsendii. J. Anim. Ecol. 52, 837–848. https://doi.org/10.2307/4458 (1983).Article 

    Google Scholar 
    Fisher, J. T. & Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal. Rev. 35, 51–81 (2005).Article 

    Google Scholar 
    Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328. https://doi.org/10.1002/fee.1807 (2018).Article 

    Google Scholar 
    Francis, A. L., Procter, C., Kuzyk, G. & Fisher, J. T. Female Moose Prioritize Forage Over Mortality Risk in Harvested Landscapes. J. Wildl. Manag. (2021).Hebblewhite, M., Munro, R. H. & Merrill, E. H. Trophic consequences of postfire logging in a wolf–ungulate system. For. Ecol. Manag. 257, 1053–1062. https://doi.org/10.1016/j.foreco.2008.11.009 (2009).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).Article 

    Google Scholar 
    Nielsen, S. E., Stenhouse, G. B. & Boyce, M. S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 130, 217–229 (2006).Article 

    Google Scholar 
    Bentz, B. et al. Salt Lake City 42 (University of Utah Press, 2005).
    Google Scholar 
    Carroll, A. L., Taylor, S. W., Régnière, J. & Safranyik, L. in Mountain pine beetle symposium: challenges and solutions. 223–232 (Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre).Lindenmayer, D. B. & Noss, R. F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 20, 949–958. https://doi.org/10.1111/j.1523-1739.2006.00497.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leverkus, A. B., Lindenmayer, D. B., Thorn, S. & Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27, 1140–1154. https://doi.org/10.1111/geb.12772 (2018).Article 

    Google Scholar 
    Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).
    Google Scholar 
    Kuzyk, G. W. Provincial population and harvest estimates of moose in British Columbia. Alces J. Devot. Biol. Manag. Moose 52, 1–11 (2016).Procter, C. et al. Factors affecting moose population declines in British Columbia. 2020 Progress Report: February 2012-May 2020. B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Victoria, B.C., Wildlife Working Report No. WR-128. Pp. 89. https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/wildlife/wildlife-conservation/moose/moose-conservation/moose-research. (2020).Wittmer, H. U., Sinclair, A. R. E. & McLellan, B. N. The role of predation in the decline and extirpation of woodland caribou. Oecologia 144, 257–267. https://doi.org/10.1007/s00442-005-0055-y (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    Latham, A. D. M., Latham, M. C., Boyce, M. S. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).Article 

    Google Scholar 
    James, A. R. C. & Stuart-Smith, A. K. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manag. 64, 154–159. https://doi.org/10.2307/3802985 (2000).Article 

    Google Scholar 
    DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator–prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284. https://doi.org/10.1111/1365-2656.12760 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus 2, 205–216. https://doi.org/10.1098/rsfs.2011.0086 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433. https://doi.org/10.1007/s10980-009-9420-2 (2010).Article 

    Google Scholar 
    Kuzyk, G. W., Kneteman, J. & Schmiegelow, F. K. Winter habitat use by wolves, Canis lupus, in relation to forest harvesting in west-central Alberta. Can. Field Nat. 118, 368–375 (2004).Article 

    Google Scholar 
    Mumma, M. A. et al. Regional moose (Alces alces) responses to forestry cutblocks are driven by landscape-scale patterns of vegetation composition and regrowth. For. Ecol. Manag. 481, 118763 (2021).Article 

    Google Scholar 
    Scheideman, M. Use and selection at two spatial scales by female moose (Alces alces) across central British Columbia following a mountain pine beetle outbreak MSc thesis, University of Northern British Columbia (2018).Alfaro, R. I., van Akker, L. & Hawkes, B. Characteristics of forest legacies following two mountain pine beetle outbreaks in British Columbia Canada. Can. J. For. Res. 45, 1387–1396 (2015).Article 

    Google Scholar 
    Dhar, A., Parrott, L. & Hawkins, C. D. B. Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests 7, 171 (2016).Article 

    Google Scholar 
    Shackelford, N., Standish, R. J., Ripple, W. & Starzomski, B. M. Threats to biodiversity from cumulative human impacts in one of North America’s last wildlife frontiers. Conserv. Biol. 32, 672–684 (2018).Article 

    Google Scholar 
    Corbett, L. J., Withey, P., Lantz, V. A. & Ochuodho, T. O. The economic impact of the mountain pine beetle infestation in British Columbia: Provincial estimates from a CGE analysis. For. Int. J. For. Res. 89, 100–105. https://doi.org/10.1093/forestry/cpv042 (2015).Latham, A. D. M. Wolf ecology and caribou-primary prey-wolf spatial relationships in low productivity peatland complexes in northeastern Alberta PhD thesis, University of Alberta, (2009).Person, D. K. & Russell, A. L. Reproduction and den site selection by wolves in a disturbed landscape. Northw. Sci. 83, 211–224. https://doi.org/10.3955/046.083.0305 (2009).Article 

    Google Scholar 
    Gillingham, M. Documentation for using Find Points Cluster Identification Program (Version 2) (University of Northern British Columbia, 2009).
    Google Scholar 
    Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630. https://doi.org/10.1111/2041-210X.12528 (2016).Article 

    Google Scholar 
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).Article 

    Google Scholar 
    Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4. https://doi.org/10.1186/2051-3933-2-4 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benson, J. F. & Patterson, B. R. Spatial overlap, proximity, and habitat use of individual wolves within the same packs. Wildl. Soc. Bull. (2011-) 39, 31–40 (2015).Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. B Biol. Sci. 365, 2233–2244 (2010).Article 

    Google Scholar 
    Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).Article 

    Google Scholar 
    Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 638–652 (2018).Article 

    Google Scholar 
    Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542. https://doi.org/10.1093/beheco/arx182 (2018).Article 

    Google Scholar 
    Prokopenko, C. M., Boyce, M. S. & Avgar, T. Characterizing wildlife behavioural responses to roads using integrated step selection analysis. J. Appl. Ecol. 54, 470–479. https://doi.org/10.1111/1365-2664.12768 (2017).Article 

    Google Scholar 
    Avgar, T., Lele, S. R., Keim, J. L. & Boyce, M. S. Relative selection strength: Quantifying effect size in habitat- and step-selection inference. Ecol. Evol. 7, 5322–5330. https://doi.org/10.1002/ece3.3122 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4 (2002).Article 

    Google Scholar 
    Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scales: Implications of forest management. For. Ecol. Manag. 257, 96–106. https://doi.org/10.1016/j.foreco.2008.08.018 (2009).Article 

    Google Scholar 
    Stelfox, J. G., Lynch, G. M. & McGillis, J. R. Effects of clearcut logging on wild ungulates in the Central Albertan foothills. For. Chron. 52, 65–70. https://doi.org/10.5558/tfc52065-2 (1976).Article 

    Google Scholar 
    Gagné, C., Mainguy, J. & Fortin, D. The impact of forest harvesting on caribou–moose–wolf interactions decreases along a latitudinal gradient. Biol. Conserv. 197, 215–222. https://doi.org/10.1016/j.biocon.2016.03.015 (2016).Article 

    Google Scholar 
    Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: a reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).Article 

    Google Scholar 
    Rempel, R. S., Elkie, P. C., Rodgers, A. R. & Gluck, M. J. Timber-management and natural-disturbance effects on moose habitat: landscape evaluation. J. Wildl. Manag. 61, 517–524. https://doi.org/10.2307/3802610 (1997).Article 

    Google Scholar 
    Kunkel, K. E. & Pletscher, D. H. Habitat factors affecting vulnerability of moose to predation by wolves in southeastern British Columbia. Can. J. Zool. 78, 150–157. https://doi.org/10.1139/z99-181 (2000).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Charnov, E. L. Optimal foraging, the marginal value theorem. (1976).Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454. https://doi.org/10.1890/08-2090.1 (2009).Article 
    PubMed 

    Google Scholar 
    Lendrum, P. E., Anderson Jr, C. R., Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development. Ecosphere 3, art82. https://doi.org/10.1890/ES12-00165.1 (2012).Mumma, M. & Gillingham, M. Determining factors that affect survival of moose in Central British Columbia. Technical report to the Habitat Conservation Trust Foundation for Grant Agreement CAT19-0-522 (1 April 2017 through 31 March 2019). 56 (2019).Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manag. 409, 190–201. https://doi.org/10.1016/j.foreco.2017.11.025 (2018).Article 

    Google Scholar 
    Lesmerises, F., Dussault, C. & St-Laurent, M.-H. Wolf habitat selection is shaped by human activities in a highly managed boreal forest. For. Ecol. Manag. 276, 125–131. https://doi.org/10.1016/j.foreco.2012.03.025 (2012).Article 

    Google Scholar 
    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815. https://doi.org/10.1002/ece3.5600 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mladenoff, D. J., Sickley, T. A. & Wydeven, A. P. Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecol. Appl. 9, 37–44. https://doi.org/10.1890/1051-0761(1999)009[0037:PGWLRL]2.0.CO;2 (1999).Rogala, J. K. et al. Human activity differentially redistributes large mammals in the Canadian Rockies National Parks. Ecol. Soc. 16 (2011).Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085. https://doi.org/10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE 13, e0195480. https://doi.org/10.1371/journal.pone.0195480 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).Article 

    Google Scholar  More

  • in

    Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system

    Gattuso JP, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst. 1998;29:405–34.Article 

    Google Scholar 
    Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:81–108.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA. 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12:616–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science.1998;280:694–96.CAS 
    Article 

    Google Scholar 
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bunse C, Bertos-Fortis M, Sassenhagen I, Sildever S, Sjoqvist C, Godhe A, et al. Spatio-temporal interdependence of bacteria and phytoplankton during a baltic sea spring bloom. Front Microbiol. 2016;7:517.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cram JA, Chow CE, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed 
    Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor JD, Cottingham SD, Billinge J, Cunliffe M. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. ISME J. 2014;8:245–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science.2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and seasonal patterns control bacterioplankton communities at two horizontally coherent coastal upwelling sites off galicia (NW Spain). Microb Ecol. 2018;76:866–84.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.Tada Y, Taniguchi A, Nagao I, Miki T, Uematsu M, Tsuda A, et al. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol. 2011;77:4055–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci USA. 2013;110:E488–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R 3rd, Schuster SC, et al. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science. 2014;345:207–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beier S, Rivers AR, Moran MA, Obernosterer I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ Microbiol. 2015;17:3466–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarmento H, Gasol JM. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol. 2012;14:2348–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi Y, McCarren J, DeLong EF. Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol. 2012;14:191–206.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vorobev A, Sharma S, Yu M, Lee J, Washington BJ, Whitman WB, et al. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ Microbiol. 2018;20:3012–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, et al. Ecological genomics of marine Roseobacters. Appl Environ Microbiol. 2007;73:4559–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nowinski B, Moran MA. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol. 2021;6:524–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol. 2012;14:228–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma AK, Becker JW, Ottesen EA, Bryant JA, Duhamel S, Karl DM, et al. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade. Environ Microbiol. 2013;16:2815–30.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci USA. 2021;118:e2101178118.McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA. 2010;107:16420–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sosa OA, Gifford SM, Repeta DJ, DeLong EF. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures. ISME J. 2015;9:2725–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pontiller B, Martínez-García S, Lundin D, Pinhassi J. Labile dissolved organic matter compound characteristics select for divergence in marine bacterial activity and transcription. Front Microbiol. 2020;11:588778.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryson S, Li Z, Chavez F, Weber PK, Pett-Ridge J, Hettich RL, et al. Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J. 2017;11:2781–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joglar V, Prieto A, Barber-Lluch E, Hernández-Ruiz M, Fernández E, Teira E. Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system. Biogeosciences.2020;17:2807–23.Article 

    Google Scholar 
    Martínez-García S, Fernández E, Álvarez-Salgado XA, González J, Lønborg C, Marañón E, et al. Differential responses of phytoplankton and heterotrophic bacteria to organic and inorganic nutrient additions in coastal waters off the NW Iberian Peninsula. Mar Ecol Prog Ser. 2010;416:17–33.Article 
    CAS 

    Google Scholar 
    Welschmeyer NA. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr. 1994;39:1985–92.CAS 
    Article 

    Google Scholar 
    Parsons TR, Maita Y, Lalli CM. Fluorometric determination of chlorophylls. A manual of chemical & biological methods for seawater analysis: Oxford, UK: Pergamon Press; 1984. p. 107–09.Hansen H, Grasshoff K. Automated chemical analysis. Methods of seawater analysis. 2nd ed: Verlag Chemie, Weinheim; 1983. p. 347–95.Álvarez-Salgado XA, Miller AEJ. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Mar Chem. 1998;62:325–33.Article 

    Google Scholar 
    Calvo-Díaz A, Morán XAG. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat Micro Ecol. 2006;42:159–74.Article 

    Google Scholar 
    Smith DC, Farooq A. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Micro Food Webs. 1992;6:107–14.
    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (Gene) amplicon sequencing pipeline. Front Microbiol. 2020;11:1–18.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Poretsky RS, Gifford S, Rinta-Kanto J, Vila-Costa M, Moran MA. Analyzing gene expression from marine microbial communities using environmental transcriptomics. J Vis Exp. 2009;24:1–6.
    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. 2011. https://github.com/najoshi/sickle.Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One. 2013;8:1–13.
    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics.2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ.2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:1–12.Article 
    CAS 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ. It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol. 2016;26:322–9.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 4.1.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2021.Cottrell MT, Kirchman DL. Transcriptional control in marine copiotrophic and oligotrophic bacteria with streamlined genomes. Appl Environ Microbiol. 2016;82:6010–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Giovannoni SJ. SAR11 bacteria: The most abundant plankton in the oceans. Ann Rev Mar Sci. 2017;9:231–55.PubMed 
    Article 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Allers E, Gomez-Consarnau L, Pinhassi J, Gasol JM, Simek K, Pernthaler J. Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol. 2007;9:2417–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alonso C, Pernthaler J. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol. 2006;8:2022–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noell SE, Giovannoni SJ. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ Microbiol. 2019;21:2559–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 2009;3:93–105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chenard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, et al. Temporal and spatial dynamics of bacteria, archaea and protists in equatorial coastal waters. Sci Rep. 2019;9:16390.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pajares S, Varona-Cordero F, Hernández-Becerril DU. Spatial distribution patterns of bacterioplankton in the oxygen minimum zone of the tropical mexican pacific. Micro Ecol. 2020;80:519–36.CAS 
    Article 

    Google Scholar 
    Signori CN, Pellizari VH, Enrich-Prast A, Sievert SM. Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula. Deep-Sea Res Pt Ii. 2018;149:150–60.Article 

    Google Scholar 
    Ling SK, Xia J, Liu Y, Chen GJ, Du ZJ. Agarilytica rhodophyticola gen. nov., sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol. 2017;67:3778–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng H, Zhang S, Huo YY, Jiang XW, Zhang XQ, Pan J, et al. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus. Int J Syst Evol Microbiol. 2015;65:562–69.CAS 
    PubMed 
    Article 

    Google Scholar 
    Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol. 2004;70:4129–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Ann Rev Mar Sci. 2016;8:285–309.PubMed 
    Article 

    Google Scholar 
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ Microbiol. 2017;19:3500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 
    CAS 

    Google Scholar 
    Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Natl Acad Sci USA. 2014;111:7202–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.CAS 
    PubMed 
    Article 

    Google Scholar 
    López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, et al. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep. 2012;2:696.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hou S, López-Pérez M, Pfreundt U, Belkin N, Stüber K, Huettel B, et al. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. ISME J. 2018;12:981–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol. 2004;70:6753–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol. 2000;66:578–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Glavina Del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Hania W, Joseph M, Bunk B, Spröer C, Klenk HP, Fardeau ML, et al. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol. 2017;19:1134–48.PubMed 
    Article 
    CAS 

    Google Scholar 
    Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J. 2015;9:1410–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.Ivanova AA, Naumoff DG, Miroshnikov KK, Liesack W, Dedysh SN. Comparative genomics of four Isosphaeraceae Planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4(T), Isosphaera pallida IS1B(T), Singulisphaera acidiphila DSM 18658(T), and Strain SH-PL62. Front Microbiol. 2017;8:412.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann JH, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.Bode A, Estévez MG, Varela M, Vilar JA. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Mar Environ Res. 2015;110:81–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cermeño P, Marañón E, Pérez V, Serret P, Fernández E, Castro CG. Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo, NW-Spain): Seasonal and short-time scale variability. Estuar Coast Shelf Sci. 2006;67:251–66.Article 

    Google Scholar 
    Nogueira E, Pérez FF, Rı́os AF. Modelling thermohaline properties in an estuarine upwelling ecosystem (Rı́a de Vigo: NW Spain) using box-jenkins transfer function models. Estuar Coast Shelf Sci. 1997;44:685–702.Article 

    Google Scholar 
    Broullón E, López-Mozos M, Reguera B, Chouciño P, Doval MD, Fernández-Castro B, et al. Thin layers of phytoplankton and harmful algae events in a coastal upwelling system. Prog Oceanogr. 2020;189:102449.Fraga F. Upwelling off the Galician Coast, Northwest Spain. In: Richards FA, editor. Coastal Upwelling. Washington: American Geophysical Union; 1981. p. 176–82.Nogueira E, Figueiras FG. The microplankton succession in the Ría de Vigo revisited: species assemblages and the role of weather-induced, hydrodynamic variability. J Mar Syst. 2005;54:139–55.Article 

    Google Scholar 
    Pitcher GC, Walker DR, Mitchellinnes BA, Moloney CL. Short-term variability during an anchor station study in the southern Benguela Upwelling System – phytoplankton dynamics. Prog Oceanogr. 1991;28:39–64.Article 

    Google Scholar 
    Smayda TJ, Trainer VL. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr. 2010;85:92–107.Article 

    Google Scholar 
    Wilkerson FP, Lassiter AM, Dugdale RC, Marchi A, Hogue VE. The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep-Sea Res Pt Ii. 2006;53:3023–48.Article 

    Google Scholar 
    Reintjes G, Arnosti C, Fuchs B, Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks

    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS 
    Article 

    Google Scholar 
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. Camb. Philos. Soc. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2011).Article 
    PubMed 

    Google Scholar 
    Larsen, T. et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8, e73441. https://doi.org/10.1371/journal.pone.0073441 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology. Ibis 150, 447–461 (2008).Article 

    Google Scholar 
    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS 
    Article 

    Google Scholar 
    Olive, P. J. W., Pinnegar, J. K., Polunin, N. V. C., Richards, G. & Welch, R. Isotope trophic-step fractionation: A dynamic equilibrium model. J. Anim. Ecol. 72, 608–617 (2003).Article 

    Google Scholar 
    McMahon, K. W., Polito, M. J., Abel, S., McCarthy, M. D. & Thorrold, S. R. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol. Evol. 5, 1278–1290. https://doi.org/10.1002/ece3.1437 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webb, E. C. et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. Archaeol. Anthropol. Sci. 10, 1–18. https://doi.org/10.1007/s12520-015-0309-5 (2016).Article 

    Google Scholar 
    Whiteman, J. P., Kim, S. L., McMahon, K. W., Koch, P. L. & Newsome, S. D. Amino acid isotope discrimination factors for a carnivore: Physiological insights from leopard sharks and their diet. Oecologia 188, 977–989. https://doi.org/10.1007/s00442-018-4276-2 (2018).ADS 
    Article 
    PubMed 

    Google Scholar 
    Rogers, M., Bare, R., Gray, A., Scott-Moelder, T. & Heintz, R. Assessment of two feeds on survival, proximate composition, and amino acid carbon isotope discrimination in hatchery-reared Chinook salmon. Fisher. Res. https://doi.org/10.1016/j.fishres.2019.06.001 (2019).Article 

    Google Scholar 
    Wang, Y. V., Wan, A. H. L., Krogdahl, A., Johnson, M. & Larsen, T. (13)C values of glycolytic amino acids as indicators of carbohydrate utilization in carnivorous fish. PeerJ 7, e7701. https://doi.org/10.7717/peerj.7701 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMahon, K. W., Fogel, M. L., Elsdon, T. S. & Thorrold, S. R. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79, 1132–1141. https://doi.org/10.1111/j.1365-2656.2010.01722.x (2010).Article 
    PubMed 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Y. V. et al. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chem 256, 380–389. https://doi.org/10.1016/j.foodchem.2018.02.095 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jim, S., Jones, V., Ambrose, S. H. & Evershed, R. P. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. Br J. Nutr. 95, 1055–1062. https://doi.org/10.1079/bjn20051685 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Newsome, S. D., Fogel, M. L., Kelly, L. & del Rio, C. M. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062. https://doi.org/10.1111/j.1365-2435.2011.01866.x (2011).Article 

    Google Scholar 
    Griffiths, H. Applications of stable isotope technology in physiological ecology. Funct. Ecol. 5, 254–269 (1991).Article 

    Google Scholar 
    Lorrain, A. et al. Differential δ13C and δ15N signatures among scallop tissues: Implications for ecology and physiology. J. Exp. Mar. Biol. Ecol. 275, 47–61 (2002).CAS 
    Article 

    Google Scholar 
    Li, P., Mai, K., Trushenski, J. & Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 37, 43–53. https://doi.org/10.1007/s00726-008-0171-1 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440. https://doi.org/10.1146/annurev-ecolsys-102209-144726 (2011).Article 

    Google Scholar 
    Perga, M. E. & Gerdeaux, D. “Are fish what they eat” all year round?. Oecologia 144, 598–606. https://doi.org/10.1007/s00442-005-0069-5 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sponheimer, M. et al. Turnover of stable carbon isotopes in the muscle, liver, and breath CO2 of alpacas (Lama pacos). Rapid Commun. Mass Spectrom. 20, 1395–1399. https://doi.org/10.1002/rcm.2454 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Logan, J. M. & Lutcavage, M. E. Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644, 231–244. https://doi.org/10.1007/s10750-010-0120-3 (2010).CAS 
    Article 

    Google Scholar 
    Madigan, D. J. et al. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, pacific bluefin tuna (Thunnus orientalis). PLoS ONE 7, e49220. https://doi.org/10.1371/journal.pone.0049220 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Skinner, M. M., Cross, B. K. & Moore, B. C. Estimating in situ isotopic turnover in Rainbow Trout (Oncorhynchus mykiss) muscle and liver tissue. J. Freshw. Ecol. 32, 209–217. https://doi.org/10.1080/02705060.2016.1259127 (2016).CAS 
    Article 

    Google Scholar 
    Kaushik, S. J. & Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 41, 322–332. https://doi.org/10.1111/j.1365-2109.2009.02174.x (2010).CAS 
    Article 

    Google Scholar 
    Hou, Y., Hu, S., Li, X., He, W. & Wu, G. Amino Acid Metabolism in the Liver: Nutritional and Physiological Significance. Vol. 1265 (2020).Gannes, L. Z., O’Brien, D. M. & Del Rio, C. M. Stable isotopes in animal ecology: Assumptions, caveats and a call for more laboratory experiments. Ecology 78, 1271–1276 (1997).Article 

    Google Scholar 
    Martinez del Rio, C. M., Wolf, N., Carleton, S. A. & Gannes, L. Z. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. Camb. Philos Soc. 84, 91–111. https://doi.org/10.1111/j.1469-185X.2008.00064.x (2009).Article 

    Google Scholar 
    Hendry, A. P., Peichel, C. L., Boughman, J. W., Matthews, B. & Nosil, P. Stickleback research: The now and the next. Evol. Ecol. Res. 15, 111–141 (2013).
    Google Scholar 
    Fang, B., Merila, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol Phylogenet Evol 127, 613–625. https://doi.org/10.1016/j.ympev.2018.06.008 (2018).Article 
    PubMed 

    Google Scholar 
    Kume, M. & Kitano, J. Genetic and stable isotope analyses of threespine stickleback from the Bering and Chukchi seas. Ichthyol. Res. 64, 478–480. https://doi.org/10.1007/s10228-017-0580-9 (2017).Article 

    Google Scholar 
    Reimchen, T. E., Ingram, T. & Hansen, S. C. Assessing niche differences of sex, armour and asymmetry phenotypes using stable isotope analyses in Haida Gwaii sticklebacks. Behaviour 145, 561–577 (2008).Article 

    Google Scholar 
    Pinnegar, J. Unusual stable isotope fractionation patterns observed for fish host–parasite trophic relationships. J. Fish Biol. 59, 494–503. https://doi.org/10.1006/jfbi.2001.1660 (2001).Article 

    Google Scholar 
    Power, M. & Klein, G. M. Fish host-cestode parasite stable isotope enrichment patterns in marine, estuarine and freshwater fishes from northern Canada. Isotopes Environ. Health Stud. 40, 257–266 (2004).CAS 
    Article 

    Google Scholar 
    Li, X., Zheng, S. & Wu, G. Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52, 671–691. https://doi.org/10.1007/s00726-020-02851-2 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182. https://doi.org/10.1371/journal.pone.0116182 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newsome, S. D., del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436. https://doi.org/10.1890/060150.01 (2007).Article 

    Google Scholar 
    Voigt, C. C., Rex, K., Michener, R. H. & Speakman, J. R. Nutrient routing in omnivorous animals tracked by stable carbon isotopes in tissue and exhaled breath. Oecologia 157, 31–40. https://doi.org/10.1007/s00442-008-1057-3 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 21–37 (1983).Article 

    Google Scholar 
    Cerling, T. E. et al. Determining biological tissue turnover using stable isotopes: The reaction progress variable. Oecologia 151, 175–189. https://doi.org/10.1007/s00442-006-0571-4 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    Martínez del Rio, C. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues: Fig. 1. J. Mammal. 93, 353–359. https://doi.org/10.1644/11-mamm-s-165.1 (2012).Article 

    Google Scholar 
    McCullagh, J. S., Juchelka, D. & Hedges, R. E. Analysis of amino acid 13C abundance from human and faunal bone collagen using liquid chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 20, 2761–2768. https://doi.org/10.1002/rcm.2651 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Raghavan, M., McCullagh, J. S., Lynnerup, N. & Hedges, R. E. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: Paleodietary implications from intra-individual comparisons. Rapid Commun. Mass Spectrom. 24, 541–548. https://doi.org/10.1002/rcm.4398 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Newsome, S. D., Wolf, N., Peters, J. & Fogel, M. L. Amino acid δ13C analysis shows flexibility in the routing of dietary protein and lipids to the tissue of an omnivore. Integr. Comp. Biol. 54, 890–902. https://doi.org/10.1093/icb/icu106 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walton, M. J. & Cowey, C. B. Aspects of intermediary metabolism in salmonid fish. Comp. Biochem. Physiol. 73B, 59–79 (1982).CAS 

    Google Scholar 
    Fernandes, R., Nadeau, M.-J. & Grootes, P. M. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 4, 291–301. https://doi.org/10.1007/s12520-012-0102-7 (2012).Article 

    Google Scholar 
    Ohkouchi, N., Ogawa, N. O., Chikaraishi, Y., Tanaka, H. & Wada, E. Biochemical and physiological bases for the use of carbon and nitrogen isotopes in environmental and ecological studies. Prog. Earth Planet Sci. 2, 1–17. https://doi.org/10.1186/s40645-015-0032-y (2015).ADS 
    Article 

    Google Scholar 
    Wu, G. & Morris, M. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).CAS 
    Article 

    Google Scholar 
    Metges, C. C., Petzke, K. J. & Henning, U. Gas chromatography/combustion/isotope ratio mass spectrometric comparison of N-acetyl- and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples : A pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs. J. Mass Spectrom. 31, 367–376 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Dunn, P. J., Honch, N. V. & Evershed, R. P. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction. Rapid Commun. Mass Spectrom. 25, 2995–3011. https://doi.org/10.1002/rcm.5174 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ayayee, P. A., Jones, S. C. & Sabree, Z. L. Can (13)C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?. PeerJ 3, e1218. https://doi.org/10.7717/peerj.1218 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayayee, P. A., Larsen, T. & Sabree, Z. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions. PeerJ 4, e2046. https://doi.org/10.7717/peerj.2046 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larsen, T. et al. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts. J. Anim. Ecol. 85, 1275–1285. https://doi.org/10.1111/1365-2656.12563 (2016).Article 
    PubMed 

    Google Scholar 
    Romero-Romero, S., Miller, E. C., Black, J. A., Popp, B. N. & Drazen, J. C. Abyssal deposit feeders are secondary consumers of detritus and rely on nutrition derived from microbial communities in their guts. Sci. Rep. 11, 12594. https://doi.org/10.1038/s41598-021-91927-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCullagh, J. S. Mixed-mode chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 483–494. https://doi.org/10.1002/rcm.4322 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tsai, Y. et al. Histamine contents of fermented fish products in Taiwan and isolation of histamine-forming bacteria. Food Chem. 98, 64–70. https://doi.org/10.1016/j.foodchem.2005.04.036 (2006).CAS 
    Article 

    Google Scholar 
    Landete, J. M., De Las Rivas, B., Marcobal, A. & Munoz, R. Updated molecular knowledge about histamine biosynthesis by bacteria. Crit. Rev. Food Sci. Nutr. 48, 697–714. https://doi.org/10.1080/10408390701639041 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kanki, M., Yoda, T., Tsukamoto, T. & Baba, E. Histidine decarboxylases and their role in accumulation of histamine in tuna and dried saury. Appl. Environ. Microbiol. 73, 1467–1473. https://doi.org/10.1128/AEM.01907-06 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez-Salguero, J. & Mackie, I. M. Histidine metabolism in mackerel (Scomber scombrus). Studies on histidine decarboxylase activity and histamine formation during storage of flesh and liver under sterile and non-sterile conditions. J. Fd Technol. 14, 131–139 (1979).CAS 
    Article 

    Google Scholar 
    Sánchez-Muros, M.-J., Barroso, F. G. & Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 65, 16–27. https://doi.org/10.1016/j.jclepro.2013.11.068 (2014).CAS 
    Article 

    Google Scholar 
    Khan, M. A. Histidine requirement of cultivable fish species: A review. Oceanogr Fish Open Access J. 8, 1–7. https://doi.org/10.19080/ofoaj.2018.08.555746 (2018).Article 

    Google Scholar 
    Hatch, K. A. in Comparative Physiology of Fasting, Starvation, and Food Limitation Ch. Chapter 20, 337–364 (2012).Bertinetto, C., Engel, J. & Jansen, J. ANOVA simultaneous component analysis: A tutorial review. Anal. Chim. Acta X 6, 100061. https://doi.org/10.1016/j.acax.2020.100061 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nogales-Mérida, S. et al. Insect meals in fish nutrition. Rev. Aquac. 11, 1080–1103. https://doi.org/10.1111/raq.12281 (2018).Article 

    Google Scholar 
    Thongprajukaew, K., Pettawee, S., Muangthong, S., Saekhow, S. & Phromkunthong, W. Freeze-dried forms of mosquito larvae for feeding of Siamese fighting fish (Betta splendens Regan, 1910). Aquac. Res. 50, 296–303. https://doi.org/10.1111/are.13897 (2018).CAS 
    Article 

    Google Scholar 
    Jackson, G. P., An, Y., Konstantynova, K. I. & Rashaid, A. H. Biometrics from the carbon isotope ratio analysis of amino acids in human hair. Sci. Justice 55, 43–50. https://doi.org/10.1016/j.scijus.2014.07.002 (2015).Article 
    PubMed 

    Google Scholar 
    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid. Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Marks, R. G. H., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. How to couple LC-IRMS with HRMS─a proof-of-concept study. Anal. Chem. 94, 2981–2987 (2022).CAS 
    Article 

    Google Scholar 
    Lynch, A. H., McCullagh, J. S. & Hedges, R. E. Liquid chromatography/isotope ratio mass spectrometry measurement of δ13C of amino acids in plant proteins. Rapid Commun. Mass Spectrom. 25, 2981–2988. https://doi.org/10.1002/rcm.5142 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Falco, F., Stincone, P., Cammarata, M. & Brandelli, A. Amino acids as the main energy source in fish tissues. Aquac. Fish Stud. 3, 1–11 (2020).
    Google Scholar  More

  • in

    Widespread increasing vegetation sensitivity to soil moisture

    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Canadell, J. G., et al “[Global Carbon and other Biogeochemical Cycles and Feedbacks”] in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, in Press, 2021).Li, W. et al. Revisiting Global Vegetation Controls Using Multi-Layer Soil Moisture. Geophys. Res. Lett. 48, e2021GL092856 (2021).ADS 

    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. N. Phytol. 218, 1430–1449 (2018).Article 

    Google Scholar 
    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? N. Phytol. 231, 2118–2124 (2021).Article 
    CAS 

    Google Scholar 
    Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).ADS 
    Article 

    Google Scholar 
    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosc. Rem. Sens. 33, 481–486 (1995).ADS 
    Article 

    Google Scholar 
    Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frankenberg, C. et al. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eaabg2947 (2021).Article 
    CAS 

    Google Scholar 
    Wang, S. et al. Response to Comments on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373 (2021).Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10, 356–362 (2020).ADS 
    Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 99, 125–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Balsamo, G. et al. Satellite and in situ observations for advancing global Earth surface modelling: A Review. Remote Sens. 10, 2038 (2018).ADS 
    Article 

    Google Scholar 
    Muñoz-Sabater, J. et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).ADS 
    Article 

    Google Scholar 
    Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2021). [online: https://christophm.github.io/interpretable-ml-book/].Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohta, T. et al. Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998–2011. Agric. Meteorol. 188, 64–75 (2014).Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fort, F. et al. Root traits are related to plant water‐use among rangeland Mediterranean species. Funct. Ecol. 31, 1700–1709 (2017).Article 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. evolution 3, 772–779 (2019).Article 

    Google Scholar 
    Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. N. Phytol. 213, 22–42 (2016).Article 

    Google Scholar 
    Arora, V. K. & Boer, G. J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 11, 39–59 (2004).ADS 
    Article 

    Google Scholar 
    Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).ADS 
    Article 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).ADS 
    Article 

    Google Scholar 
    Medlyn, B. E., De Kauwe, M. G. & Duursma, R. A. New developments in the effort to model ecosystems under water stress. N. Phytol. 212, 5–7 (2016).Article 

    Google Scholar 
    Ito, A. & Oikawa, T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol. Model. 151, 143–176 (2002).CAS 
    Article 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. 12, 919–938 (2021).ADS 
    Article 

    Google Scholar 
    O, S. & Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 8, 170 (2021).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).ADS 
    Article 

    Google Scholar 
    Wahr, J., Swenson, S., Zlotnicki, V. & Velicogna, I. Time-variable gravity from GRACE: first results. Geophys. Res. Lett. 31, L11501 (2004).ADS 
    Article 

    Google Scholar 
    Tucker, C. J. et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).Article 

    Google Scholar 
    Jiang, C. et al. Inconsistencies of interannual variability and trends in long‐term satellite leaf area index products. Glob. Change Biol. 23, 4133–4146 (2017).ADS 
    Article 

    Google Scholar 
    Liu, Y. et al. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 206, 174–188 (2018).ADS 
    Article 

    Google Scholar 
    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).ADS 
    Article 

    Google Scholar 
    Pedelty, J. et al. Generating a long-term land data record from the AVHRR and MODIS instruments. 2007 IEEE international Geoscience and remote sensing Symposium, 1021-1025 (2017).Xiao, Z. et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 54, 5301–5318 (2016).ADS 
    Article 

    Google Scholar 
    Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data. J. Geophys. Res. 117, G04003 (2012).ADS 

    Google Scholar 
    Verger, A., Baret, F. & Weiss, M. (2020). Algorithm Theoretical Basis Document – GEOV2/AVHRR: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and Fraction of green Vegetation Cover (FCOVER) from LTDR AVHRR. (Available at https://www.theia-land.fr/wp-content/uploads/2022/03/THEIA-SP-44-0207-CREAF_I2.50-1.pdf).Liu, Y., De Jeu, R. A., McCabe, M. F., Evans, J. P. & Van Dijk, A. I. Global long‐term passive microwave satellite‐based retrievals of vegetation optical depth. Geophys. Res. Lett. 38 (2011).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Update high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Kobayashi, S. et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Met. Soc. Jpn. 93, 5–48 (2015).Article 

    Google Scholar 
    Li, X. & Xiao, J. Global climatic controls on interannual variability of ecosystem productivity: Similarities and differences inferred from solar-induced chlorophyll fluorescence and enhanced vegetation index. Agric. For. Meteorol. 288–289, 108018 (2020).ADS 
    Article 

    Google Scholar 
    Walther, S. et al. Satellite observations of the contrasting response of trees and grasses to variations in water availability. Geophys. Res. Lett. 46, 1429–1440 (2020).ADS 
    Article 

    Google Scholar 
    Li, M., Wu, P. & Ma, Z. A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Climatol. 40, 5744–5766 (2020).Article 

    Google Scholar 
    Liu, L., Zhang, R. & Zuo, Z. Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China. J. Geophys. Res.: Atmospheres 119, 54–64 (2014).ADS 
    Article 

    Google Scholar 
    Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L. & Muñoz-Sabater, J. Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeorol. 13, 1442–1460 (2012).ADS 
    Article 

    Google Scholar 
    Albergel, C. et al. Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeorol. 14, 1259–1277 (2013).ADS 
    Article 

    Google Scholar 
    Jing, W., Song, J. & Zhao, X. Validation of ECMWF multi-layer reanalysis soil moisture based on the OzNet hydrology network. Water 10, 1123 (2018).Article 

    Google Scholar 
    Albergel, C. et al. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci. 22, 3515–3532 (2018).ADS 
    Article 

    Google Scholar 
    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Dev. 10, 1903–1925 (2017).ADS 
    Article 

    Google Scholar 
    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data. 10, 2141–2194 (2018).ADS 
    Article 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521–1545 (2015).ADS 
    Article 

    Google Scholar 
    Budyko, M. I. & Miller, D. H. Climate and life. New York (Academic press, 1974).Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    Kraft, B., Jung, M., Körner, M., Koirala, S. & Reichstein, M. Towards hybrid modeling of the global hydrological cycle. Hydrol. Earth Syst. Sci. 26, 1579–1614 (2022).ADS 
    Article 

    Google Scholar 
    Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. (2017).Besnard, S. et al. Global sensitivities of forest carbon changes to environmental conditions. Glob. Change Biol. 27, 6467–6483 (2021).Article 

    Google Scholar 
    Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18, 107–121 (1982).ADS 
    Article 

    Google Scholar  More

  • in

    Predicting the impacts of land management for sustainable development on depression risk in a Ugandan case study

    Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 1–1148 (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, 2019).United Nations (UN). The Sustainable Development Goals report 2021, 1–68 (United Nations, United States, 2021).Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: Report of the Rockefeller Foundation-Lancet Commission on planetary health. The Lancet 386, 1973–2028. https://doi.org/10.1016/s0140-6736(15)60901-1 (2015).Article 

    Google Scholar 
    Convention on Biological Diversity. First draft of the post-2020 global biodiversity framework 1–12 (Convention on Biological Diversity, 2021).United Nations General Assembly. Transforming our world: The 2030 Agenda for Sustainable Development 1–35 (United Nations General Assembly, 2015).Clark, M., Hill, J. & Tilman, D. The diet, health, and environment trilemma. Annu. Rev. Environ. Resour. 43, 109–134. https://doi.org/10.1146/annurev-environ-102017-025957 (2018).Article 

    Google Scholar 
    Lu, N., Liu, L., Yu, D. & Fu, B. Navigating trade-offs in the social-ecological systems. Curr. Opin. Environ. Sustain. 48, 77–84. https://doi.org/10.1016/j.cosust.2020.10.014 (2021).Article 

    Google Scholar 
    Ellis, E. C., Pascual, U. & Mertz, O. Ecosystem services and nature’s contribution to people: Negotiating diverse values and trade-offs in land systems. Curr. Opin. Environ. Sustain. 38, 86–94. https://doi.org/10.1016/j.cosust.2019.05.001 (2019).Article 

    Google Scholar 
    World Health Organization (WHO). Promoting mental health: Concepts, emerging evidence, practice: Summary report 1–70 (World Health Organization, Geneva, Switzerland, 2004).Patel, V. et al. The Lancet Commission on global mental health and sustainable development. The Lancet 392, 1553–1598. https://doi.org/10.1016/s0140-6736(18)31612-x (2018).Article 

    Google Scholar 
    Prince, M. et al. No health without mental health. The Lancet 370, 859–877. https://doi.org/10.1016/s0140-6736(07)61238-0 (2007).Article 

    Google Scholar 
    GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (GBD). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858. https://doi.org/10.1016/s0140-6736(18)32279-7 (2018).Vigo, D., Kestel, D., Pendakur, K., Thornicroft, G. & Atun, R. Disease burden and government spending on mental, neurological, and substance use disorders, and self-harm: Cross-sectional, ecological study of health system response in the Americas. Lancet Public Health 4, e89–e96. https://doi.org/10.1016/s2468-2667(18)30203-2 (2019).Article 
    PubMed 

    Google Scholar 
    Pienkowski, T. et al. The role of nature conservation and commercial farming in psychological distress among rural Ugandans. bioRxiv. https://doi.org/10.1101/2021.06.08.446718 (2021).Article 

    Google Scholar 
    Cunsolo, W. A. et al. Climate change and mental health: An exploratory case study from Rigolet, Nunatsiavut, Canada. Climatic Change 121, 255–270. https://doi.org/10.1007/s10584-013-0875-4 (2013).ADS 
    Article 

    Google Scholar 
    Cunsolo, A. et al. “You can never replace the caribou”: Inuit experiences of ecological grief from caribou declines. Am. Imago 77, 31–59. https://doi.org/10.1353/aim.2020.0002 (2020).Article 

    Google Scholar 
    Ellis, N. R. & Albrecht, G. A. Climate change threats to family farmers’ sense of place and mental wellbeing: A case study from the Western Australian Wheatbelt. Soc. Sci. Med. 175, 161–168. https://doi.org/10.1016/j.socscimed.2017.01.009 (2017).Article 
    PubMed 

    Google Scholar 
    Scyphers, S. B., Picou, J. S. & Grabowski, J. H. Chronic social disruption following a systemic fishery failure. Proc. Natl. Acad. Sci. 116, 22912. https://doi.org/10.1073/pnas.1913914116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lund, C. et al. Social determinants of mental disorders and the sustainable development goals: A systematic review of reviews. Lancet Psychiatry 5, 357–369. https://doi.org/10.1016/s2215-0366(18)30060-9 (2018).Article 
    PubMed 

    Google Scholar 
    Nilsson, M., Griggs, D. & Visbeck, M. Policy: Map the interactions between sustainable development goals. Nature 534, 320–322. https://doi.org/10.1038/534320a (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Ridley, M., Rao, G., Schilbach, F. & Patel, V. Poverty, depression, and anxiety: Causal evidence and mechanisms. Science 370, eaay0214. https://doi.org/10.1126/science.aay0214 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kinyanda, E. et al. Poverty, life events and the risk for depression in Uganda. Soc. Psychiatry Psychiatr. Epidemiol. 46, 35–44. https://doi.org/10.1007/s00127-009-0164-8 (2011).Article 
    PubMed 

    Google Scholar 
    Kinyanda, E., Waswa, L., Baisley, K. & Maher, D. Prevalence of severe mental distress and its correlates in a population-based study in rural south-west Uganda. BMC Psychiatry 11, 1–9. https://doi.org/10.1186/1471-244X-11-97 (2011).Article 

    Google Scholar 
    United Nations (UN). The convention on biological diversity 1–30 (United Nations, Rio de Janeiro, Brazil, 1992).Díaz, S. et al. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16. https://doi.org/10.1016/j.cosust.2014.11.002 (2015).Article 

    Google Scholar 
    Rasolofoson, R. A., Hanauer, M. M., Pappinen, A., Fisher, B. & Ricketts, T. H. Impacts of forests on children’s diet in rural areas across 27 developing countries. Sci. Adv. 4, eaat2853. https://doi.org/10.1126/sciadv.aat2853 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ickowitz, A., Powell, B., Salim, M. A. & Sunderland, T. C. H. Dietary quality and tree cover in Africa. Glob. Environ. Chang. 24, 287–294. https://doi.org/10.1016/j.gloenvcha.2013.12.001 (2014).Article 

    Google Scholar 
    Ribot, J. C. & Peluso, N. L. A theory of access. Rural. Sociol. 68, 153–181. https://doi.org/10.1111/j.1549-0831.2003.tb00133.x (2003).Article 

    Google Scholar 
    Hicks, C. C. & Cinner, J. E. Social, institutional, and knowledge mechanisms mediate diverse ecosystem service benefits from coral reefs. Proc. Natl. Acad. Sci. 111, 17791. https://doi.org/10.1073/pnas.1413473111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blaikie, P. Environment and access to resources in Africa. Africa 59, 18–40. https://doi.org/10.2307/1160761 (1989).Article 

    Google Scholar 
    Berbés-Blázquez, M., González, J. A. & Pascual, U. Towards an ecosystem services approach that addresses social power relations. Curr. Opin. Environ. Sustain. 19, 134–143. https://doi.org/10.1016/j.cosust.2016.02.003 (2016).Article 

    Google Scholar 
    Thoms, C. A. Community control of resources and the challenge of improving local livelihoods: A critical examination of community forestry in Nepal. Geoforum 39, 1452–1465. https://doi.org/10.1016/j.geoforum.2008.01.006 (2008).Article 

    Google Scholar 
    Peluso, N. L. & Lund, C. New frontiers of land control: Introduction. J. Peasant Stud. 38, 667–681. https://doi.org/10.1080/03066150.2011.607692 (2011).Article 

    Google Scholar 
    Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. 104, 15181–15187. https://doi.org/10.1073/pnas.0702288104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations Environment World Conservation Monitoring Centre (UNEP-WCMC) & International Union for Conservation of Nature (IUCN). In Protected Planet: The World Database on Protected Areas (WDPA). https://www.protectedplanet.net/ (2020).Pullin, A. S. et al. Human well-being impacts of terrestrial protected areas. Environ. Evid. 2, 1–41. https://doi.org/10.1186/2047-2382-2-19 (2013).Article 

    Google Scholar 
    Schleicher, J. et al. Protecting half of the planet could directly affect over one billion people. Nat. Sustain. 2, 1094–1096. https://doi.org/10.1038/s41893-019-0423-y (2019).Article 

    Google Scholar 
    ICCA Consortium. Territories of Life: 2021 report. 1–153 (ICCA Consortium, 2021).Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. https://www.fao.org/faostat/en/#data (2021).Vabi Vamuloh, V., Panwar, R., Hagerman, S. M., Gaston, C. & Kozak, R. A. Achieving Sustainable Development Goals in the global food sector: A systematic literature review to examine small farmers engagement in contract farming. Bus. Strategy Dev. 2, 276–289 (2019).Article 

    Google Scholar 
    Meemken, E.-M. & Bellemare, M. F. Smallholder farmers and contract farming in developing countries. Proc. Natl. Acad. Sci. 117, 259. https://doi.org/10.1073/pnas.1909501116 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bellemare, M. F. & Bloem, J. R. Does contract farming improve welfare? A review. World Dev. 112, 259–271. https://doi.org/10.1016/j.worlddev.2018.08.018 (2018).Article 

    Google Scholar 
    Hall, R., Scoones, I. & Tsikata, D. Plantations, outgrowers and commercial farming in Africa: Agricultural commercialisation and implications for agrarian change. J. Peasant Stud. 44, 515–537. https://doi.org/10.1080/03066150.2016.1263187 (2017).Article 

    Google Scholar 
    Travers, H., Clements, T. & Milner-Gulland, E. J. Predicting responses to conservation interventions through scenarios: A Cambodian case study. Biol. Cons. 204, 403–410. https://doi.org/10.1016/j.biocon.2016.10.040 (2016).Article 

    Google Scholar 
    Booth, H. et al. Designing locally-appropriate conservation incentives for small-scale fishers. OSF Preprints. https://doi.org/10.31219/osf.io/bxzfs (2021).Martiniello, G. Bitter sugarification: Sugar frontier and contract farming in Uganda. Globalizations 18, 355–371. https://doi.org/10.1080/14747731.2020.1794564 (2021).Article 

    Google Scholar 
    Kyongera, D. Mapping private sector investments and their impacts on great ape habitats in Uganda’s Albertine Rift region 1–50 (International Institute for Environment and Development (IIED), London, United Kingdom, 2015).Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853. https://doi.org/10.1126/science.1244693 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Paterson, J. D. The ecology and history of Uganda’s Budongo forest. For. Conserv. History 35, 179–187 (1991).Article 

    Google Scholar 
    Babweteera, F. et al. in Conservation and Development in Uganda (eds Sandbrook, C., Cavanagh, C. J. & Tumusiime, D. M.) 104–122 (Taylor and Francis Inc., 2018).National Planning Authority of Uganda. Third national development plan (NDP III) 2020/21–2024/25. 1–341 (Gobernment of Uganda, Entebbe, Uganda, 2020).Kroenke, K., Spitzer, R. L. & Williams, J. B. W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th edn, 1–947 (American Psychiatric Association, 2013).Wagner, G. J. et al. The role of depression in work-related outcomes of HIV treatment in Uganda. Int. J. Behav. Med. 21, 946–955. https://doi.org/10.1007/s12529-013-9379-x (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kinyanda, E. et al. Effectiveness and cost-effectiveness of integrating the management of depression into routine HIV Care in Uganda (the HIV + D trial): A protocol for a cluster-randomised trial. Int. J. Ment. Heal. Syst. 15, 45. https://doi.org/10.1186/s13033-021-00469-9 (2021).Article 

    Google Scholar 
    Wu, Y. et al. Equivalency of the diagnostic accuracy of the PHQ-8 and PHQ-9: A systematic review and individual participant data meta-analysis. Psychol. Med. 50, 1368–1380. https://doi.org/10.1017/S0033291719001314 (2020).Article 
    PubMed 

    Google Scholar 
    Kroenke, K. et al. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 114, 163–173. https://doi.org/10.1016/j.jad.2008.06.026 (2009).Article 
    PubMed 

    Google Scholar 
    Kaiser, B. N. et al. Thinking too much: A systematic review of a common idiom of distress. Soc. Sci. Med. 147, 170–183. https://doi.org/10.1016/j.socscimed.2015.10.044 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ballard, T., Kepple, A. & Cafiero, C. The Food Insecurity Experience Scale: Development of a global standard for monitoring hunger worldwide (Food and Agriculture Organization, Rome, Italy, 2013).Jones, A. D., Ngure, F. M., Pelto, G. & Young, S. L. What are we assessing when we measure food security? A compendium and review of current metrics. Adv. Nutr. 4, 481–505. https://doi.org/10.3945/an.113.004119 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Travers, H. et al. Understanding complex drivers of wildlife crime to design effective conservation interventions. Conserv. Biol. 33, 1296–1306. https://doi.org/10.1111/cobi.13330 (2019).Article 
    PubMed 

    Google Scholar 
    Zimet, G. D., Powell, S. S., Farley, G. K., Werkman, S. & Berkoff, K. A. Psychometric characteristics of the multidimensional scale of perceived social support. J. Pers. Assess. 55, 610–617. https://doi.org/10.1080/00223891.1990.9674095 (1990).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bowling, A. Just one question: If one question works, why ask several?. J. Epidemiol. Community Health 59, 342–345. https://doi.org/10.1136/jech.2004.021204 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Office for National Statistics (ONS). General Household Survey 2007: Household and individual questionnaires 1–140 (Office for National Statistics, Titchfield, United Kingdom, 2007).Coates, J. Build it back better: Deconstructing food security for improved measurement and action. Glob. Food Sec. 2, 188–194. https://doi.org/10.1016/j.gfs.2013.05.002 (2013).Article 

    Google Scholar 
    Sseguya, H., Mazur, R. E. & Flora, C. B. Social capital dimensions in household food security interventions: Implications for rural Uganda. Agric. Hum. Values 35, 117–129. https://doi.org/10.1007/s10460-017-9805-9 (2017).Article 

    Google Scholar 
    Narayan, D., Chambers, R., Shah, M. K. & Petesch, P. Voices of the poor: Crying out for change 1–332 (The World Bank, New York, United States, 2000).Harttgen, K. & Vollmer, S. Using an asset index to simulate household income. Econ. Lett. 121, 257–262. https://doi.org/10.1016/j.econlet.2013.08.014 (2013).Article 

    Google Scholar 
    Merkle, E. C., Fitzsimmons, E., Uanhoro, J. & Goodrich, B. Efficient Bayesian structural equation modeling in Stan. arXiv preprint arXiv:2008.07733v1 (2020).Kinyanda, E. et al. Major depressive disorder and suicidality in early HIV infection and its association with risk factors and negative outcomes as seen in semi-urban and rural Uganda. J. Affect. Disord. 212, 117–127. https://doi.org/10.1016/j.jad.2017.01.033 (2017).Article 
    PubMed 

    Google Scholar 
    Jones, A. D. Food insecurity and mental health status: A global analysis of 149 countries. Am. J. Prev. Med. 53, 264–273. https://doi.org/10.1016/j.amepre.2017.04.008 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan, 1 edn, 1–505 (Chapman & Hall/CRC, 2016).Depaoli, S. & Van de Schoot, R. Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist. Psychol. Methods 22, 240–261. https://doi.org/10.1037/met0000065 (2017).Article 
    PubMed 

    Google Scholar 
    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. https://doi.org/10.1126/sciadv.aav3006 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Golden, C. D., Fernald, L. C., Brashares, J. S., Rasolofoniaina, B. J. & Kremen, C. Benefits of wildlife consumption to child nutrition in a biodiversity hotspot. Proc. Natl. Acad. Sci. 108, 19653–19656. https://doi.org/10.1073/pnas.1112586108 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mohanakumar, S. & Sharma, R. K. Analysis of farmer suicides in Kerala. Econ. Pol. Wkly 41, 1553–1558 (2006).
    Google Scholar 
    Bryant, L. & Garnham, B. Beyond discourses of drought: The micro-politics of the wine industry and farmer distress. J. Rural. Stud. 32, 1–9. https://doi.org/10.1016/j.jrurstud.2013.03.002 (2013).Article 

    Google Scholar 
    Burgman, M. A. et al. Expert status and performance. PLOS ONE 6, e22998. https://doi.org/10.1371/journal.pone.0022998 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hemming, V., Burgman, M. A., Hanea, A. M., McBride, M. F. & Wintle, B. C. A practical guide to structured expert elicitation using the IDEA protocol. Methods Ecol. Evol. 9, 169–180. https://doi.org/10.1111/2041-210X.12857 (2018).Article 

    Google Scholar 
    Bennett, N. J. et al. Conservation social science: Understanding and integrating human dimensions to improve conservation. Biol. Cons. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006 (2017).Article 

    Google Scholar 
    Montana, J., Elliott, L., Ryan, M. & Wyborn, C. The need for improved reflexivity in conservation science. Environ. Conserv. https://doi.org/10.1017/s0376892920000326 (2020).Article 

    Google Scholar 
    Kleinman, A. Global mental health: A failure of humanity. The Lancet 374, 603–604. https://doi.org/10.1016/S0140-6736(09)61510-5 (2009).Article 

    Google Scholar 
    Collins, P. Y. et al. Grand challenges in global mental health. Nature 475, 27–30. https://doi.org/10.1038/475027a (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Travers, H. et al. A manifesto for predictive conservation. Biol. Cons. 237, 12–18. https://doi.org/10.1016/j.biocon.2019.05.059 (2019).Article 

    Google Scholar 
    Buckley, R. et al. Economic value of protected areas via visitor mental health. Nat. Commun. 10, 5005. https://doi.org/10.1038/s41467-019-12631-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saxena, S., Thornicroft, G., Knapp, M. & Whiteford, H. Resources for mental health: Scarcity, inequity, and inefficiency. The Lancet 370, 878–889. https://doi.org/10.1016/S0140-6736(07)61239-2 (2007).Article 

    Google Scholar 
    Fedele, G., Donatti, C. I., Bornacelly, I. & Hole, D. G. Nature-dependent people: mapping human direct use of nature for basic needs across the tropics. Global Environ. Change https://doi.org/10.1016/j.gloenvcha.2021.102368 (2021).Article 

    Google Scholar 
    Turyahabwe, N., Agea, J. G., Tweheyo, M. & Tumwebaze, S. B. In Sustainable Forest Management: Case Studies (ed J. J. Diez) Ch. 3, 51–74 (InTech, 2012).Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374. https://doi.org/10.1038/s41893-018-0100-6 (2018).Article 

    Google Scholar 
    Dawson, N. M. et al. The role of Indigenous peoples and local communities in effective and equitable conservation. Ecol. Soc. https://doi.org/10.5751/ES-12625-260319 (2021).Article 

    Google Scholar 
    Ministry of Agriculture, Animal Industry and Fisheries. Agriculture sector strategic plan 2015/16–2019/20. 1–199 (Government of Uganda, Entebbe, Uganda, 2016). More

  • in

    Impact of joint interactions with humans and social interactions with conspecifics on the risk of zooanthroponotic outbreaks among wildlife populations

    Gryseels, S., Bruyn, L. D., Gyselings, R., Leendertz, H. & Leirs, H. Risk of human-to-wildlife transmission of SARS-CoV-2. Mammal Rev. 51, 272–292 (2020).Article 

    Google Scholar 
    Townsend, A. K., Hawley, D. M., Stephenson, J. F. & Williams, K. E. G. Emerging infectious disease and the challenges of social distancing in human and non-human animals: EIDs and sociality. Proc. R. Soc. B Biol. Sci. 287, 20201039 (2020).CAS 
    Article 

    Google Scholar 
    Dickman, A. J. From Cheetahs to Chimpanzees: A comparative review of the drivers of human–carnivore conflict and human–primate conflict. Folia Primatol. 83, 377–387 (2013).Article 

    Google Scholar 
    Nyhus, P. J. Human–wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).Article 

    Google Scholar 
    Cunningham, A. A. One health, emerging infectious diseases and wildlife. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, 4 (2017).
    Google Scholar 
    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—Threats to biodiversity and human health. Science 287, 443–449 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fagre, A. C. et al. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. Ecol. Lett. https://doi.org/10.1111/ele.14003 (2022).Article 
    PubMed 

    Google Scholar 
    Messenger, A. M., Barnes, A. N. & Gray, G. C. Reverse zoonotic disease transmission (Zooanthroponosis): A systematic review of seldom-documented human biological threats to animals. PLoS One 9, 1–9 (2014).
    Google Scholar 
    Craft, M. E. Infectious disease transmission and contact networks in wildlife and livestock. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140107 (2015).Article 

    Google Scholar 
    Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    Balasubramaniam, K. N., Huffman, M. A., Sueur, C. & Macintosh, A. J. J. Primate infectious disease ecology: Insights and future directions at the human–macaque interface. In The Behavioral Ecology of the Tibetan Macaque. Fascinating Life Sciences (eds Li, J. et al.) 249–284 (Springer, 2020).Chapter 

    Google Scholar 
    McCabe, C. M., Reader, S. M. & Nunn, C. L. Infectious disease, behavioural flexibility and the evolution of culture in primates. Proc. R. Soc. B Biol. Sci. 282, 20140862 (2014).Article 

    Google Scholar 
    Silk, M. J. et al. Integrating social behaviour, demography and disease dynamics in network models: Applications to disease management in eclining wildlife populations. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180211 (2019).Article 

    Google Scholar 
    Engel, G. A. & Jones-Engel, L. The role of Macaca fascicularis in infectious disease transmission. In Monkeys on the Edge: Ecology and Management of Long-Tailed Macaques and Their Interface with Humans (eds Gumert, M. D. et al.) 183–203 (Cambridge University Press, 2011).Chapter 

    Google Scholar 
    Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, 1992).
    Google Scholar 
    Drewe, J. A. & Perkins, S. E. Disease transmission in animal social networks. In Animal Social Networks (eds Krause, J. et al.) 95–110 (Oxford University Press, 2015).
    Google Scholar 
    Godfrey, S. S. Networks and the ecology of parasite transmission: A framework for wildlife parasitology. Int. J. Parasitol. Parasites Wildl. 2, 235–245 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomez, J. M., Nunn, C. L. & Verdu, M. Centrality in primate–parasite networks reveals the potential for the transmission of emerging infectious diseases to humans. Proc. Natl. Acad. Sci. 110, 7738–7741 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Godfrey, S. S., Bull, C. M., James, R. & Murray, K. Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii. Behav. Ecol. Sociobiol. 63, 1045–1056 (2009).Article 

    Google Scholar 
    VanderWaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Linking social and pathogen transmission networks using microbial genetics in giraffe (Giraffa camelopardalis). J. Anim. Ecol. 83, 406–414 (2014).PubMed 
    Article 

    Google Scholar 
    Drewe, J. A. Who infects whom? Social networks and tuberculosis transmission in wild meerkats. Proc. R. Soc. B Biol. Sci. 277, 633–642 (2010).Article 

    Google Scholar 
    MacIntosh, A. J. J. et al. Monkeys in the middle: Parasite transmission through the social network of a wild primate. PLoS One 7, 15–21 (2012).
    Google Scholar 
    Epstein, J. & Axtell, R. Growing Artificial Societies: Social Science from the Bottom Up (MIT Press, 1996).Book 

    Google Scholar 
    Bansal, S., Grenfell, B. T. & Meyers, L. A. When individual behaviour matters: Homogeneous and network models in epidemiology. J. R. Soc. Interface 4, 879–891 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brauer, F. Compartmental models in epidemiology, chapter 2. In Mathematical Epidemiology (eds Brauer, F. et al.) (Springer, 2008).MATH 
    Chapter 

    Google Scholar 
    Carne, C., Semple, S., MacLarnon, A., Majolo, B. & Maréchal, L. Implications of tourist–macaque interactions for disease transmission. EcoHealth 14, 704–717 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rushmore, J. et al. Network-based vaccination improves prospects for disease control in wild chimpanzees. J. R. Soc. Interface 11, 20140349 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sah, P., Mann, J. & Bansal, S. Disease implications of animal social network structure: A synthesis across social systems. J. Anim. Ecol. 87, 546–558 (2018).PubMed 
    Article 

    Google Scholar 
    Griffin, R. H. & Nunn, C. L. Community structure and the spread of infectious disease in primate social networks. Evol. Ecol. 26, 779–800 (2012).Article 

    Google Scholar 
    Hasegawa, M., Kishino, H. & Yano, T. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fuentes, A. & Hockings, K. J. The ethnoprimatological approach in primatology. Am. J. Primatol. 72, 841–847 (2010).PubMed 
    Article 

    Google Scholar 
    Lappan, S., Malaivijitnond, S., Radhakrishna, S., Riley, E. P. & Ruppert, N. The human–primate interface in the new normal: Challenges and opportunities for primatologists in the COVID-19 era and beyond. Am. J. Primatol. 82, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Mckinney, T. A classification system for describing anthropogenic influence on nonhuman primate populations. Am. J. Primatol. 77, 715–726 (2015).PubMed 
    Article 

    Google Scholar 
    Devaux, C. A., Mediannikov, O., Medkour, H. & Raoult, D. Infectious disease risk across the growing human–non human primate interface: A review of the evidence. Front. Public Health 7, 1–22 (2019).Article 

    Google Scholar 
    Kaur, T. & Singh, J. Primate-parasitic zoonoses and anthropozoonoses: A literature review. In Primate Parasite Ecology: The Dynamics and Study of Host–Parasite Relationships (eds Huffman, M. A. & Chapman, C. A.) 199–230 (Cambridge University Press, 2009).
    Google Scholar 
    Melin, A. D., Janiak, M. C., Marrone, F., Arora, P. S. & Higham, J. P. Comparative ACE2 variation and primate COVID-19 risk. Commun. Biol. 3, 641 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Klegarth, A. Synanthropy. In The International Encyclopedia of Primatology (Wiley, 2017). https://doi.org/10.1002/9781119179313.wbprim0448.Chapter 

    Google Scholar 
    Gumert, M. D. A common monkey of Southeast Asia: Longtailed macaque populations, ethnophoresy, and their occurrence in human environments. In Monkeys on the Edge: Ecology and Management of Longtailed Macaques and Their Interface with Humans (eds Gumert, M. D. et al.) 3–43 (Cambridge University Press, 2011).Chapter 

    Google Scholar 
    Riley, E. P. The human–macaque interface: Conservation implications of current and future overlap and conflict in Lore Lindu National Park, Sulawesi, Indonesia. Am. Anthropol. 109, 473–484 (2007).Article 

    Google Scholar 
    Thierry, B. Unity in diversity: Lessons from macaque societies. Evol. Anthropol. 16, 224–238 (2007).Article 

    Google Scholar 
    Balasubramaniam, K. N. et al. The influence of phylogeny, social style, and sociodemographic factors on macaque social network structure. Am. J. Primatol. 80, e227227 (2018).Article 

    Google Scholar 
    Sueur, C. et al. A comparative network analysis of social style in macaques. Anim. Behav. 82(4), 845–852 (2011).Article 

    Google Scholar 
    Balasubramaniam, K. N. et al. Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments. J. Anim. Ecol. 90, 2819–2833 (2021).PubMed 
    Article 

    Google Scholar 
    Henzi, S. P. & Barrett, L. The value of grooming to female primates. Primates 40, 47–59 (1999).Article 

    Google Scholar 
    Schino, G. & Aureli, F. Trade-offs in primate grooming reciprocation: Testing behavioural flexibility and correlated evolution. Biol. J. Linn. Soc. 95, 439–446 (2008).Article 

    Google Scholar 
    Radhakrishna, S. & Sinha, A. Less than wild? Commensal primates and wildlife conservation. J. Biosci. 36, 749–753 (2011).PubMed 
    Article 

    Google Scholar 
    Balasubramaniam, K. N. et al. Impact of individual demographic and social factors on human–wildlife interactions: A comparative study of three macaque species. Sci. Rep. 10, 21991 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marty, P. R. et al. Time constraints imposed by anthropogenic environments alter social behaviour in long-tailed macaques. Anim. Behav. 150, 157–165 (2019).Article 

    Google Scholar 
    Kaburu, S. S. K. et al. Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta). Behaviour 156, 1255–1282 (2019).Article 

    Google Scholar 
    Altmann, J. Observational study of behavior: Sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaburu, S. S. K. et al. Rates of human–monkey interactions affect grooming behaviour among urban-dwelling rhesus macaques (Macaca mulatta). Am. J. Phys. Anthropol. 168, 92–103 (2019).PubMed 
    Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour (Cambridge University Press, 1993).Book 

    Google Scholar 
    Farine, D. R. & Whitehead, H. Constructing, conducting and interpreting animal social networks. J. Anim. Ecol. 84, 1144–1163 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rozins, C. et al. Social structure contains epidemics and regulates individual roles in disease transmission in a group-living mammal. Ecol. Evol. 8, 12044–12055 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fujii, K., Jin, J., Shev, A., Beisner, B., McCowan, B. & Fushing, H. Perc: Using percolation and conductance to find information flow certainty in a direct network (R Package Version 0.1.2.) https://rdrr.io/cran/Perc/ (2016).Funkhouser, J. A., Mayhew, J. A., Sheeran, L. K. & Mulcahy, J. B. comparative investigations of social context-dependent dominance in captive chimpanzees (Pan troglodytes) and wild Tibetan macaques (Macaca thibetana). Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    McCowan, B. J. et al. Measuring dominance certainty and assessing its impact on individual and societal health in a nonhuman primate: A network approach. Philos. Trans. R. Soc. B 377, 20200438 (2022).Article 

    Google Scholar 
    Bjornstad, O. N. Package ‘epimdr’ (2020).Tuite, A. R. et al. Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza. CMAJ 182, 131–136 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arienzo, M. D. & Coniglio, A. Assessment of the SARS-CoV-2 basic reproduction number, R0, based on the early phase of COVID-19 outbreak in Italy. Biosaf. Health 2, 57–59 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailey, N. T. The Mathematical Theory of Epidemics (Griffin, 1957).
    Google Scholar 
    Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham, K., Sadat, N., Bolker, B. & Brooks, M. Package ‘glmmTMB’. https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf (2019).Quinn, G. P. & Keough, M. J. Experimental Designs and Data Analysis for Biologists (Cambridge University Press, 2002).Book 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).ADS 
    Article 

    Google Scholar 
    Chiyo, P. I., Moss, C. J. & Alberts, S. C. The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. PLoS One 7, e31382 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    VanderWaal, K. L., Atwill, E. R., Isbell, L. A. & McCowan, B. Quantifying microbe transmission networks for wild and domestic ungulates in Kenya. Biol. Conserv. 169, 136–146 (2014).Article 

    Google Scholar 
    Berman, C. M. Primate kinship: Contributions from Cayo Santiago. Am. J. Primatol. 78, 63–77 (2016).PubMed 
    Article 

    Google Scholar 
    Balasubramaniam, K. N. et al. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques (Macaca mulatta). PeerJ 6, e4271 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marty, P. R. et al. Individuals in urban dwelling primate species face unequal benefits associated with living in an anthropogenic environment. Primates 61, 245–259 (2020).Article 

    Google Scholar 
    Zinsstag, J., Schelling, E., Waltner-Toews, D. & Tanner, M. From ‘one medicine’ to ‘one health’ and systemic approaches to health and well-being. Prev. Vet. Med. 101, 148–156 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schülke, O. et al. Quantifying within-group variation in sociality—covariation among metrics and patterns across primate groups and species. Behav. Ecol. Sociobiol. 76, 50 (2022).Article 

    Google Scholar 
    Romano, V., Shen, M., Pansanel, J., MacIntosh, A. J. J. & Sueur, C. Social transmission in networks: Global efficiency peaks with intermediate levels of modularity. Behav. Ecol. Sociobiol. 72, 154 (2018).Article 

    Google Scholar  More

  • in

    The effects of protected areas on the ecological niches of birds and mammals

    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.1086/343878 (2003).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).CAS 
    Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192. https://doi.org/10.1016/j.tree.2011.01.009 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2021).Article 

    Google Scholar 
    Ortego, J., Calabuig, G., Cordero, P. J. & Aparicio, J. M. Egg production and individual genetic diversity in lesser kestrels. Mol. Ecol. 16, 2383–2392 (2007).CAS 
    Article 

    Google Scholar 
    Peacor, S. D., Schiesari, L. & Werner, E. E. Mechanisms of nonlethal predator effect on cohort size variation: Ecological and evolutionary implications. Ecology 88, 1536–1547 (2007).Article 

    Google Scholar 
    Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).Article 

    Google Scholar 
    Carlson, B. S., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Individual environmental niches in mobile organisms. Nat. Commun. 12, 4572. https://doi.org/10.1038/s41467-021-24826-x (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchinson, G. E. Population studies: Animal ecology and demography. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103 (2022).CAS 
    Article 

    Google Scholar 
    Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).Article 

    Google Scholar 
    Hällfors, M. H. et al. Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecol. Lett. 24, 1619–1632 (2021).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B Biol. Sci. 278, 1633–1638. https://doi.org/10.1098/rspb.2010.1713 (2011).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article 

    Google Scholar 
    Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995. https://doi.org/10.1111/2041-210X.13424 (2020).Article 

    Google Scholar 
    Mammola, S. Assessing similarity of n-dimensional hypervolumes: Which metric to use? J. Biogeogr. 46, 2012 (2019).Article 

    Google Scholar 
    Carvalho, J. C. & Cardoso, P. Decomposing the causes for niche differentiation between species using hypervolumes. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00243 (2020).Article 

    Google Scholar 
    Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133. https://doi.org/10.1111/jbi.13987 (2021).Article 

    Google Scholar 
    Wang, X. et al. Exploring ecological specialization in pipefish using genomic, morphometric and ecological evidence. Divers. Distrib. 27, 1393–1406. https://doi.org/10.1111/ddi.13286 (2021).Article 

    Google Scholar 
    Jaturapruek, R., Fontaneto, D., Mammola, S. & Maiphae, S. Potential niche displacement in species of aquatic bdelloid rotifers between temperate and tropical areas. Hydrobiologia. https://doi.org/10.1007/s10750-021-04681-z (2021).Article 

    Google Scholar 
    Hu, Z. M. et al. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol. Ecol. 30, 3840–3855. https://doi.org/10.1111/mec.15996 (2021).Article 
    PubMed 

    Google Scholar 
    Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199–236 (2007).Article 

    Google Scholar 
    Terraube, J., Van Doninck, J., Helle, P. & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957. https://doi.org/10.1038/s41467-020-16792-7 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).Article 

    Google Scholar 
    Santangeli, A., Högmander, J. & Laaksonen, T. Returning white-tailed eagles breed as successfully in landscapes under intensive forestry regimes as in protected areas. Anim. Conserv. 16, 500–508. https://doi.org/10.1111/acv.12017 (2013).Article 

    Google Scholar 
    Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).CAS 
    Article 

    Google Scholar 
    Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).Article 

    Google Scholar 
    Dietz, H. & Edwards, P. J. Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87, 1359–1367 (2006).Article 

    Google Scholar 
    Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: Single species approaches. Oikos 108, 18–27 (2005).Article 

    Google Scholar 
    Zhang, Z., Mammola, S., McLay, C. L., Capinha, C. & Yokota, M. To invade or not to invade? Exploring the niche-based processes underlying the failure of a biological invasion using the invasive Chinese mitten crab. Sci. Total Environ. 728, 138815. https://doi.org/10.1016/j.scitotenv.2020.138815 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. 117, 23643–23651 (2020).CAS 
    Article 

    Google Scholar 
    Sarasola, J. H., Grande, J. M. & Negro, J. J. Birds of Prey: Biology and Conservation in the XXI Century 63–94 (Springer, 2018).Book 

    Google Scholar 
    Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413. https://doi.org/10.1111/oik.02276 (2016).Article 

    Google Scholar 
    Thornton, D., Branch, L. & Sunquist, M. Passive sampling effects and landscape location alter associations between species traits and response to fragmentation. Ecol. Appl. 21, 817–829. https://doi.org/10.1890/10-0549.1 (2011).Article 
    PubMed 

    Google Scholar 
    Hatfield, J. H., Orme, C. D. L., Tobias, J. A. & Banks-Leite, C. Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across data sets. Ecol. Appl. 28, 28–34. https://doi.org/10.1002/eap.1646 (2018).Article 
    PubMed 

    Google Scholar 
    Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in Northern Europe: The complexity challenge. Ambio 38, 309–315 (2009).Article 

    Google Scholar 
    Niemi, J. & Ahlstedt, J. Finnish Agriculture and Rural Industries 2011 (MTT Economic Research, Agrifood Research Finland, 2011).
    Google Scholar 
    Lehikoinen, P. et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Cons. 253, 108892. https://doi.org/10.1016/j.biocon.2020.108892 (2021).Article 

    Google Scholar 
    Virkkala, R. & Lehikoinen, A. Patterns of climate-induced density shifts of species: Poleward shifts faster in northern boreal birds than in southern birds. Glob. Change Biol. 20, 2995–3003. https://doi.org/10.1111/gcb.12573 (2014).ADS 
    Article 

    Google Scholar 
    Lehikoinen, A. & Virkkala, R. North by north-west: Climate change and directions of density shifts in birds. Glob. Change Biol. 22, 1121–1129. https://doi.org/10.1111/gcb.13150 (2016).ADS 
    Article 

    Google Scholar 
    Santangeli, A., Rajasärkkä, A. & Lehikoinen, A. Effects of high latitude protected areas on bird communities under rapid climate change. Glob. Change Biol. 23, 2241–2249. https://doi.org/10.1111/gcb.13518 (2017).ADS 
    Article 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—Evidence from large-scale, long-term abundance data. Glob. Change Biol. 25, 304–313. https://doi.org/10.1111/gcb.14461 (2019).ADS 
    Article 

    Google Scholar 
    Santangeli, A. & Lehikoinen, A. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Divers. Distrib. 23, 308–316. https://doi.org/10.1111/ddi.12529 (2017).Article 

    Google Scholar 
    Lindén, H., Helle, E., Helle, P. & Wikman, M. Wildlife triangle scheme in Finland: Methods and aims for monitoring wildlife populations. Finnish Game Res. 49, 4–11 (1996).
    Google Scholar 
    Blonder, B. Do hypervolumes have holes? Am. Nat. 187, E93–E105. https://doi.org/10.1086/685444 (2016).Article 
    PubMed 

    Google Scholar 
    Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: A systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, e00591. https://doi.org/10.1016/j.gecco.2019.e00591 (2019).Article 

    Google Scholar 
    Hyvärinen, E., Juslén, A., Kemppainen, E., Uddström, A. & Liukko, U.-M. Suomen lajien uhanalaisuus–Punainen kirja 2019 (2019).Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027. https://doi.org/10.1890/13-1917.1 (2014).Article 

    Google Scholar 
    Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617. https://doi.org/10.1111/ddi.13219 (2021).Article 

    Google Scholar 
    Laaksonen, T. & Lehikoinen, A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 168, 99–107. https://doi.org/10.1016/j.biocon.2013.09.007 (2013).Article 

    Google Scholar 
    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609. https://doi.org/10.1111/geb.12146 (2014).Article 

    Google Scholar 
    Cardoso, P. M., Rigal, F. & Carvalho, J. BAT-Biodiversity Assessment Tools (2014).Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article 

    Google Scholar 
    Sokal, R. R., Rohlf, F. J. & Rohlf, J. F. Biometry (Macmillan, 1995).MATH 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. https://doi.org/10.21105/joss.03139 (2021).Article 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R 1–552 (Springer, 2009).Book 

    Google Scholar 
    R Core Development Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. More

  • in

    A dynamically structured matrix population model for insect life histories observed under variable environmental conditions

    Renewal processes represent development under variable conditionsThe consequence of a drastic environmental change can be demonstrated by introducing a shift in development time during the process. For demonstration, we consider a scenario where a group of individuals enter into a favourable environment reducing development time from (40pm 5) time units to (20pm 5).We show, in Fig. 1, that our dynamic pseudo-stage-structured MPM yields a gradual stage completion with an average development time of approximately (30pm 5) steps (solid dark lines) when conditions shift at ({tau }=20) (each step corresponds to 1 time unit). The target Erlang-distributed development trajectories without the shift are shown as dashed gray lines. The snapshots of the population structure, represented by the development indicator q, taken at each time step, show that half of the development is complete at the time of the switch and the switch accelerates the accumulation of q (Fig. S1).Figure 1Response to change in development time. The number of developing individuals is simulated by using the cumulative development process and compared to (a) the age-dependent development process, (b) an ODE representation, (c) an LCT representation, and (d) a DDE representation. Solid dark lines show the cumulative development and thick blue lines show the alternative models. Dashed gray lines mark the two target trajectories before and after the shift in development time (marked with red crosses).Full size imageIn age-dependent development, a sharp transition, instead of a gradual one, is observed at the (20^{th}) step (Fig. 1a). The switch results in the majority of individuals reaching target development age immediately at the time of switch. Previous work, reported in Erguler et al.59 and Erguler et al.55, aimed at modelling population dynamics under variable conditions, based on this dynamic age-dependent framework. Our results suggest that cumulative development might improve the fit to the data, prediction accuracy, and applicable geospatial range of these models.We see in Fig. 1b that the canonical ODE framework represents an exponentially distributed development time and a shift in rate at (t=20). The LCT extension to the framework helps to incorporate time dependence and represent the long and short development time distributions (Fig. 1c). The resulting model accommodates change in the rate parameter (gamma ) (Eq. 8), e.g doubling of (gamma ) changes development time from (40pm 5) to (20pm 2.5). However, to accommodate the required shift, the model needs to be transformed from a 66-dimensional system to an 18-dimensional one, which is beyond the scope of this work. We argue that in cases where development time distribution is fixed a priori (excluded from model calibration), the LCT framework provides a significant advantage over canonical ODEs. Although the framework has been used in the field of infectious disease epidemiology64,65, it has recently been applied to the modelling of vector population dynamics30.The DDE framework also yields a gradual development trajectory with an intermediate duration (Fig. 1d). However, the distribution tends towards the longer development trajectory compared to the one achieved with cumulative development. The canonical DDE framework assumes a homogenous cohort, where all individuals react in the same way to variations in development rate. The assumption gives rise to sharp stage transitions within a single generation if all individuals are introduced at the same time. As a potential workaround, it has been proposed to generate a plausible population history, through variable entry times, until the required (or observed) developmental variation builds up31,32. Variation in development rates then acts upon the population and results in the modification of the existing age-structure. It is worthwhile to mention that a recent extension to the DDE framework to accommodate trait variation in population dynamics34 might also accommodate changing development rates within a single stage; however, it has not yet been employed at this scale.Cumulative development is in agreement with the widely known degree-day (DD) framework, where development time is predicted by the heat accumulating in organisms46. Although the rate of accumulation in response to environmental conditions varies considerably, the DD framework implies that the combination of two different rates yields an average development time (also seen with cumulative development in Fig. 1). Experimental evaluation of this will be the topic of future research.It is worth mentioning that our dynamically structured renewal process-based MPM follows the assumption of random population heterogeneity9,11; namely, at the individual level, the future behaviour of an organism is not affected by its historical behaviour. However, trait variation within a population is prevalent in many species, and is known to impact population dynamics and species interactions34,66,67. Future development of our framework will consider improving upon this limitation.Environmental variation transformed into development timesSeveral non-linear relationships have been proposed to represent the temperature dependence of insect development68. A common feature is the presence of low and high temperature thresholds beyond which development is prohibitively slow. Often, there exists an optimum between the thresholds where the process is most efficient. A typical relationship between temperature and development rate, reported in Briere et al.50, is seen in Fig. 2a. Mean development time, given by the reciprocal of rate in Fig. 2b, exhibits the two thresholds and the optimum.Figure 2Development under environmental variation. In (a), development rate (Eq. 9) is shown with (alpha =1.5times 10^{-5}), (T_L=0^oC), and (T_H=50^oC). In (b), mean development time is shown together with the probability densities of three temperature regimes ((rho _L), (rho _M), and (rho _H)). In (c), the number of individuals completing development at each step are shown with respect to the three temperature regimes. Solid lines indicate the median, shaded areas indicate the (90%) range of 1000 simulations, and thick lines indicate simulations with the expected values of each regime.Full size imageTo investigate how temperature variation is transformed into cumulative development time, we assumed three variation regimes at relatively low, medium, and high temperatures ((rho _L), (rho _M), and (rho _H), respectively). Densities of the corresponding Gaussian probability distributions are plotted in Fig. 2b. Accordingly, each variation is transformed by a slightly different region of the rate function (Eq. 9). Eventually, the three development time distributions emerge as shown in Fig. 2c.We found that the output of (rho _H) is skewed towards longer durations compared to what we would otherwise obtain if we simulated the process under constant conditions with the mean of (rho _H). The impact of variation in the middle range, (rho _M), is similar to that of (rho _H), but less pronounced. Conversely, the output of (rho _L) is skewed towards shorter durations. Our results suggest that, when development is already highly efficient, variation in temperature causes frequent encounters of longer (but not shorter) development durations, eventually extending the overall duration of the process. In the low efficiency range, development takes long to complete, but frequent encounters of relatively short durations—especially as the process approaches its optimum duration—triggers completion earlier than in the case of no variation.Overall, our model predictions are in agreement with the rate summation effect, which states that the different outcomes obtained under constant and varying temperatures is due to the non-linear relationship between temperature and development rate (the Kaufmann effect)16. Furthermore, acceleration of development in insects subjected to varying high temperatures, its retardation at varying low temperatures, and low variability of development time in the linear range of the rate curve have been widely discussed69. Several groups have reported evidence in support of this effect, which is also in agreement with our results. For instance, Vangansbeke et al. (2015) reported for three insect species, Phytoseiulus persimilis, Neoseiulus californicus, and Tetranychus urticae, that varying temperatures with a lower mean yields faster development compared to the yield at mean constant temperatures70. However, observations of this phenomenon might result in different responses for different species at similar temperatures due to the difference in rate curves. Identification of the optimum temperature range may facilitate comparison. For instance, Carrington et al. (2013) assumed (26^oC) as optimum based on the high dengue incidence in Thailand, and showed that large variations around (26^oC) increases development time for the dengue vector, Aedes aegypti71. Wu et al. (2015) demonstrated that development is faster at around (26^oC) compared to (23^oC) for the fly, Megaselia scalaris, and found that varying temperatures at around (23^oC) accelerates the process47. Finally, in a modelling study employing DDs, Chen et al. (2013) reported that larger diurnal temperature ranges relate to additional DD accumulation and faster development in grape berry moth, Paralobesia viteana72. Under the realistic non-optimum field conditions, where these simulations had been performed, a decrease in development time is expected in response to varying temperatures according to our results.We note that the variation in development times is due to temperature since we ignore intrinsic stochasticity to demonstrate the impact of (rho ) in isolation. The deterministic setup removes the upper limit in the number of distinct pseudo-stage indicators: a different q emerges from each k, and a different k emerges from each (rho ). Since the number of pseudo-stages quickly exhausts the computational resources, we set the precision of q to the nearest 100(^{th}) decimal point, effectively capping the number of pseudo-stages at 100 (see Accuracy of the pseudo-stage approximation). As shown in Fig. S2, the approximation has a negligible impact on accuracy.Environmental dependency extracted from life tables under constant conditionsHaving discussed the importance of environmental variability in development, in this section, we employ a well-established experimental method to unravel the relationship between temperature and development time in a common mosquito species. In contrast to invasive vectors, which effectively render new territories suitable for disease transmission, Culex species pose an imminent threat with their wide distribution and ornitophilic (Cx. pipiens biotype pipiens), mamophilic (Cx. pipiens biotype molestus), and intermixed (their hybrids) blood feeding behaviour. Here, we investigate the temperature dependencies of mortality and development of Cx. quinquefasciatus, the southern house mosquito, which is an important disease vector, widely distributed across the tropics and sub-tropics73,74.To infer the dependencies, we used a generic temperature-driven insect development model, described in Methods, and the life history observations performed at five constant temperatures (15, 20, 23, 27, and (30,^{circ })C) under laboratory conditions60,61. As a result of the inverse modelling procedure, detailed in Methods, we found that the generic model yields an overall match between the simulations and observations. In Fig. 3a, we present a comparison of observed and simulated maximum production and the stage-emergence times for pupae and adults. Here, we define the stage-emergence time as the time taken from the beginning of an experiment to the time when half of the maximum production of a stage (pupa or adult) is observed. In addition, in Fig. S3, we present the comparison of time trajectories separately for each temperature.Figure 3Inverse modelling of Cx. quinquefasciatus environmental dependency. The comparison of observed and simulated maximum pupa (P) and adult (A) production and the corresponding stage-emergence times is given in (a). Observations are represented with dots and simulations with box plots. The environmental dependency of larva and pupa development time (b) and mortality (c), derived by the posterior mode sample (Theta _q), is shown in (b,c). Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the generic model faithfully replicates the observed development times of larvae and pupae. On the other hand, stage mortalities are predicted well at three temperatures, but are overestimated at 20 or (27,^{circ })C. The impact of temperature on mortality might be more complex than it is captured by the quartic equation (Eq. 11). Optimum survival seen at (27,^{circ })C suggests that the relationship might be non-symmetrical or multimodal. In addition, the observed variability in mortality suggests that the mismatch could also be due to experimental error or the intrinsic stochasticity of the biological processes.We extracted the functional forms of temperature dependence from the posterior samples, shown in Fig. 3b, c, and found that the data inform the model as expected within the temperature range of the experiments ((15{-}30,^{circ })C). Stage durations are well informed, and reflect the low variability seen in the data (the standard deviation is less than 1.5 days at all temperatures for both stages). Accordingly, pupae develop in less than 4 days, which is much shorter than the larva development time (between 10 and 20 days above (20,^{circ })C). The model predicts that the minimum temperature at which development occurs (from the larva stage) is (10.5,^{circ })C, which is close to (10.9,^{circ })C, reported in Grech et al.75.The observed variability in pupa and adult production suggests that survival is a highly stochastic process regardless of the controlled laboratory conditions. A deterministic model, such as the one used in this context, represents the mean of such processes but does not capture their variability. The simulated variability is a result of the uncertainty in parameter estimates. Model parameters contribute unequally to the output as a result of the model structure and the functional forms of temperature dependence, and the data inform certain parameters better than others76,77. For instance, daily mortality, shown in Fig. 3c, is more constrained for larva than pupa, which is likely due to the short duration of the pupa stage—changes in daily mortality have larger consequences as development time increases.We note that a well-informed model yields predictions in the form of verifiable hypotheses; however, these are not necessarily accurate predictions. Model accuracy is assessed when such hypotheses are experimentally tested as part of the cyclic process of model development78. Here, we demonstrated that our modelling framework can be used to derive biologically meaningful inferences and to help improve the understanding of the temperature dependence of Cx. quinquefasciatus.Greater information content of semi-field experimentsThe number of experiments required to test a range of conditions, including different combinations of multiple drivers, may quickly exhaust available resources. Moreover, variable conditions may have a previously unaccounted impact on development and mortality. In this section, we demonstrate that observations performed under variable conditions are valuable sources of information for our modelling framework, which is capable of representing the dynamics under such conditions.Cx. pipiens, the northern house mosquito, is a competent disease vector, widely distributed across the temperate countries in North America, Europe, Asia, and North and East Africa74,79. Unlike Cx. quinquefasciatus, Cx. pipiens biotype pipiens is known to enter a reproductive diapause phase, where adult females arrest oogenesis during harsh winter conditions80,81. When larvae are exposed to short photoperiods and low temperatures during development, they emerge as adults destined to diapause. Although Cx. pipiens biotype molestus has lost the ability to diapause, its immature stages have been reported to retain metabolic sensitivity to photoperiod82,83.To reveal the environmental dependence of the molestus biotype, we exposed its eggs to variable temperatures in semi-field conditions until adult emergence (or loss of cohort). The numbers of viable larvae, pupae, and adults observed in different experimental batches are given in Fig. S4. We employed the extended model with both temperature and photoperiod dependence (see Methods), and calibrated the model against seven of the semi-field experiments, performed in March, May, June, July, August, and September (Fig. S4(a), (b), (d), (f), (g), (i) and (j)).As a result, we found that the model replicates the patterns of abundance emerging in the observations, e.g. stage timing and maximum adult production, reasonably well in most of the experiments, regardless of the times during which they were performed (Figs. S5 and S6). Quantitative evaluation of the agreement reveals that the observed and simulated adult emergence times are less than a week apart (Table 1).Table 1 Comparison of observed and simulated adult emergence time and the total number of adults produced. Simulation output is given in terms of the median and (90%) range.Full size tableOn the other hand, we found that egg and larva mortalities, and also, pupa and adult production are highly variable in the observations (see Fig. S4(c), (f), and (g)). Spikes of larva mortality are seen in Spring and Autumn (especially in May, September, and October). Despite this variability, the difference between the predicted and observed adult production was around 11 or less, except in the case of the experiment E7, which unexpectedly yielded only one pupa and no adults.We obtain relatively large mismatches when predicting larva abundances, specifically where egg mortality is not predicted well (E5, E7, E8, E10, E11, E12). We hypothesise that the stress associated with rearing lab-grown specimens under variable conditions might elevate egg mortality, induce premature hatching, or affect the survival of the larvae produced. Since egg development starts inside gravid females, i.e. under the optimum conditions of the laboratory, the observable part of development subjected to variable conditions remains mainly the hatching behaviour. Consequently, we observed rapid and synchronous completion of the egg stage in all experiments (see Figs. S5 and S6). Being exposed to a narrow range of temperatures, relatively less information can be obtained on the environmental dependency of the egg stage. As a potential improvement, we recommend that future adaptations of the semi-field experiments consider using field-captured adult female mosquitoes as the source of eggs.In addition to egg mortality, we observed spikes of larva mortality in May (E3), July (E8), and in Autumn (E14, E15, and E16). A likely cause of such transient high mortality is brief temperature shifts towards the extremes. However, the rarity of such events prevents the inverse modelling procedure from adequately capturing their impacts on life processes. As a potential improvement, we recommend that the experiments are performed in overlapping time frames, increasing the likelihood of observing the impact of an extreme event at different times during development. We note that the early decline in larva abundance seen in Autumn could be a result of insufficient food supply due to the increased nutritional requirements. According to the proposed metabolic response to short photoperiods, larvae would require additional food to accumulate fat reserves in preparation for diapause, the state where adult females endure several months without feeding. This implies that development takes longer than it would at long photoperiods when subjected to similar temperature regimes.Using the extended model and the semi-field data, we identified the environmental dependencies shown in Fig. 4. The data informed about the temperature dependency of each life stage as well as the photoperiod dependency of larvae. As expected, the overall variability in the inferred dependencies is higher for Cx. pipiens compared to Cx. quinquefasciatus (Fig. 3). We found that the larva and pupa development times closely match the observations reported by Spanoudis et al.62 at long photoperiods (see Fig. S7). However, the development times reported in Kiarie-Makara et al.84 at short photoperiods and moderate temperatures do not suggest a significant impact of daylight, which could be due to the particular strain of Cx. pipiens used in these experiments. As expected, the temperature dependency of egg development was not well informed by the data in the current configuration of the model and the functional forms of environmental dependence.Figure 4Environmental dependency of Cx. pipiens development and mortality inferred from semi-field life table experiments. Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the photoperiod dependency is significantly non-linear with an average threshold of 13.7 hours of daylight (Fig. 4c). Photoperiod-driven extension in development time (about 1.7 times more at 13:11 h L:D than at 15:9 h L:D) contributes to improving the accuracy of predictions at the end of the high season (Fig. S8). The critical photoperiod (CPP) agrees well with the ones identified for Cx. pipiens biotype pipiens85,86. For instance, Sanburg and Larsen reported that there is an exponential relationship between follicle sizes in adult females (signifying commitment to diapause) and the photoperiods they were exposed to during immature stages85. We inferred a similar (but reverse) gradient between photoperiod and the extension of larva development time from 15 to 12 hours of daylight (Fig. 4c).Risk assessment with annual development profilesWe extrapolated the development dynamics of Cx. pipiens over the calendar year by setting up a hypothetical experiment at the beginning of each week. We simulated the subsequent development dynamics and obtained the annual development profile as shown in Fig. 5. Accordingly, the immature stages begin development from late February and the first adults emerge in May (adults emerging late in May start developing in the experiments set up late in March). The profile is consistent with the regular Cx. pipiens high season in the region.Figure 5Annual development profile of Cx. pipiens in Petrovaradin, Serbia, in 2017. The outcome of each hypothetical semi-field experiment is plotted vertically along the y-axis at the date when the experiment is initiated. The maximum number of adults produced is given in blue, and the time it takes (from the date indicated on the x-axis) to produce half of the maximum is given in green. Solid lines represent the median and shaded areas represent the 90% range of model predictions. Outcomes of the semi-field experiments (dots) are plotted together with the model predictions. The time points marked with circles indicate the experiments used to calibrate the model. Estimated time of first adult emergence is given in the inset.Full size imageAs seen in Fig. 5, predicted adult emergence times agree well with the observations throughout the high season. However, there is a greater variation in the maximum number of adults than the times of emergence (extending to almost (40%) of the possible outcomes in early August). A greater variability (almost (80%) in August) is seen in the corresponding observations, which we transformed into the percentage of eggs emerging as adults (where available) to facilitate comparison. According to the model, variation in adult production is associated with the variation in both development times and mortality during immature stages. We recall that the uncertainty in the informed environmental dependencies is high around relatively less frequently encountered values—especially the lower and higher temperature extremes (Fig. 4). Specifically, egg development times cannot be identified precisely, but immediate hatching of the larvae is predicted between 20 and 25 °C. Consequently, we found that frequent exposure to temperatures outside the well-informed range have a significant impact on the variation in adult production (Fig. S9).We adopt the time of first adult emergence as a proxy of the first generation of adults in the season. According to our model, early adult emergence is a result of shorter development times and higher success rates, which indicates that the temperature conditions allow for an early first generation of adults. An early first generation greatly contributes to an early peak of adult abundance, which may increase the risk of vector-borne disease transmission in humans. For instance, an early peak of abundance may cause an early start of West Nile virus circulation and amplification in Culex pipiens and their avian hosts, which increases the likelihood of virus spillover to humans51,87. Anecdotal evidence shows that the anomalously hot April and May that occurred in 2018 in Serbia shifted the peak of Cx. pipiens abundance forward by more than one month (Petrić et al., unpublished). Similarly, 2018 was the year with the largest number of autochthonous West Nile virus infections throughout Europe (more than the total of the previous seven years together)88,89.In summary, our results showed that the semi-field experiments, when used in combination with our dynamic pseudo-stage-structured MPM, help to develop predictive models and inform over a wide range of environmental conditions. We developed a predictive model of Cx. pipiens biotype molestus development and gained insights into the specifics of temperature and photoperiod dependencies by reducing the need of extensive laboratory data. We used life history observations from 7 experiments performed under semi-field conditions and employed a generic model structure, largely uninformed on the specific environmental dependencies of the species. The cumulative development framework we introduced applies broadly to poikilotherms subjected to highly variable environmental conditions. Although the generic model structure helps to develop exploratory models and identify potential environmental dependencies, accuracy can be improved by customising the models for the known dependencies of particular species. With a straightforward extension of the development model to cover the complete life cycle (with egg laying and density dependence), it is possible to incorporate field observations of eggs or adult mosquitoes, and develop an environment-driven population dynamics model. More