Cumulative effects of widespread landscape change alter predator–prey dynamics
Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).Article
Google Scholar
Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278. https://doi.org/10.1098/rstb.2010.0095 (2010).CAS
Article
Google Scholar
Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).Article
Google Scholar
Holling, C. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly (1959).Dickie, M., McNay, S. R., Sutherland, G. D., Cody, M. & Avgar, T. Corridors or risk? Movement along, and use of, linear features varies predictably among large mammal predator and prey species. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13130 (2019).Article
PubMed
PubMed Central
Google Scholar
DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. Biol. Sci. 279, 4626–4633. https://doi.org/10.1098/rspb.2012.1698 (2012).Article
PubMed
PubMed Central
Google Scholar
Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator-prey space race. PLoS ONE 6, e17050. https://doi.org/10.1371/journal.pone.0017050 (2011).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Fleming, P. A. & Bateman, P. W. Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 138, 145–155. https://doi.org/10.1016/j.anbehav.2018.02.011 (2018).Article
Google Scholar
Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542. https://doi.org/10.1111/j.1365-2664.2011.02043.x (2011).Article
Google Scholar
Larivière, S. & Messier, F. Effect of density and nearest neighbours on simulated waterfowl nests: Can predators recognize high-density nesting patches?. Oikos 83, 12–20. https://doi.org/10.2307/3546541 (1998).Article
Google Scholar
Taitt, M. J. & Krebs, C. J. Predation, cover, and food manipulations during a spring decline of Microtus townsendii. J. Anim. Ecol. 52, 837–848. https://doi.org/10.2307/4458 (1983).Article
Google Scholar
Fisher, J. T. & Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal. Rev. 35, 51–81 (2005).Article
Google Scholar
Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328. https://doi.org/10.1002/fee.1807 (2018).Article
Google Scholar
Francis, A. L., Procter, C., Kuzyk, G. & Fisher, J. T. Female Moose Prioritize Forage Over Mortality Risk in Harvested Landscapes. J. Wildl. Manag. (2021).Hebblewhite, M., Munro, R. H. & Merrill, E. H. Trophic consequences of postfire logging in a wolf–ungulate system. For. Ecol. Manag. 257, 1053–1062. https://doi.org/10.1016/j.foreco.2008.11.009 (2009).Article
Google Scholar
Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article
Google Scholar
Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).Article
Google Scholar
Nielsen, S. E., Stenhouse, G. B. & Boyce, M. S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 130, 217–229 (2006).Article
Google Scholar
Bentz, B. et al. Salt Lake City 42 (University of Utah Press, 2005).
Google Scholar
Carroll, A. L., Taylor, S. W., Régnière, J. & Safranyik, L. in Mountain pine beetle symposium: challenges and solutions. 223–232 (Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre).Lindenmayer, D. B. & Noss, R. F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 20, 949–958. https://doi.org/10.1111/j.1523-1739.2006.00497.x (2006).CAS
Article
PubMed
Google Scholar
Leverkus, A. B., Lindenmayer, D. B., Thorn, S. & Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27, 1140–1154. https://doi.org/10.1111/geb.12772 (2018).Article
Google Scholar
Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).
Google Scholar
Kuzyk, G. W. Provincial population and harvest estimates of moose in British Columbia. Alces J. Devot. Biol. Manag. Moose 52, 1–11 (2016).Procter, C. et al. Factors affecting moose population declines in British Columbia. 2020 Progress Report: February 2012-May 2020. B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Victoria, B.C., Wildlife Working Report No. WR-128. Pp. 89. https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/wildlife/wildlife-conservation/moose/moose-conservation/moose-research. (2020).Wittmer, H. U., Sinclair, A. R. E. & McLellan, B. N. The role of predation in the decline and extirpation of woodland caribou. Oecologia 144, 257–267. https://doi.org/10.1007/s00442-005-0055-y (2005).ADS
Article
PubMed
Google Scholar
Latham, A. D. M., Latham, M. C., Boyce, M. S. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).Article
Google Scholar
James, A. R. C. & Stuart-Smith, A. K. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manag. 64, 154–159. https://doi.org/10.2307/3802985 (2000).Article
Google Scholar
DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator–prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284. https://doi.org/10.1111/1365-2656.12760 (2018).Article
PubMed
Google Scholar
McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus 2, 205–216. https://doi.org/10.1098/rsfs.2011.0086 (2012).Article
PubMed
PubMed Central
Google Scholar
Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433. https://doi.org/10.1007/s10980-009-9420-2 (2010).Article
Google Scholar
Kuzyk, G. W., Kneteman, J. & Schmiegelow, F. K. Winter habitat use by wolves, Canis lupus, in relation to forest harvesting in west-central Alberta. Can. Field Nat. 118, 368–375 (2004).Article
Google Scholar
Mumma, M. A. et al. Regional moose (Alces alces) responses to forestry cutblocks are driven by landscape-scale patterns of vegetation composition and regrowth. For. Ecol. Manag. 481, 118763 (2021).Article
Google Scholar
Scheideman, M. Use and selection at two spatial scales by female moose (Alces alces) across central British Columbia following a mountain pine beetle outbreak MSc thesis, University of Northern British Columbia (2018).Alfaro, R. I., van Akker, L. & Hawkes, B. Characteristics of forest legacies following two mountain pine beetle outbreaks in British Columbia Canada. Can. J. For. Res. 45, 1387–1396 (2015).Article
Google Scholar
Dhar, A., Parrott, L. & Hawkins, C. D. B. Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests 7, 171 (2016).Article
Google Scholar
Shackelford, N., Standish, R. J., Ripple, W. & Starzomski, B. M. Threats to biodiversity from cumulative human impacts in one of North America’s last wildlife frontiers. Conserv. Biol. 32, 672–684 (2018).Article
Google Scholar
Corbett, L. J., Withey, P., Lantz, V. A. & Ochuodho, T. O. The economic impact of the mountain pine beetle infestation in British Columbia: Provincial estimates from a CGE analysis. For. Int. J. For. Res. 89, 100–105. https://doi.org/10.1093/forestry/cpv042 (2015).Latham, A. D. M. Wolf ecology and caribou-primary prey-wolf spatial relationships in low productivity peatland complexes in northeastern Alberta PhD thesis, University of Alberta, (2009).Person, D. K. & Russell, A. L. Reproduction and den site selection by wolves in a disturbed landscape. Northw. Sci. 83, 211–224. https://doi.org/10.3955/046.083.0305 (2009).Article
Google Scholar
Gillingham, M. Documentation for using Find Points Cluster Identification Program (Version 2) (University of Northern British Columbia, 2009).
Google Scholar
Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630. https://doi.org/10.1111/2041-210X.12528 (2016).Article
Google Scholar
Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).Article
Google Scholar
Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4. https://doi.org/10.1186/2051-3933-2-4 (2014).Article
PubMed
PubMed Central
Google Scholar
Benson, J. F. & Patterson, B. R. Spatial overlap, proximity, and habitat use of individual wolves within the same packs. Wildl. Soc. Bull. (2011-) 39, 31–40 (2015).Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. B Biol. Sci. 365, 2233–2244 (2010).Article
Google Scholar
Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).Article
Google Scholar
Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 638–652 (2018).Article
Google Scholar
Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542. https://doi.org/10.1093/beheco/arx182 (2018).Article
Google Scholar
Prokopenko, C. M., Boyce, M. S. & Avgar, T. Characterizing wildlife behavioural responses to roads using integrated step selection analysis. J. Appl. Ecol. 54, 470–479. https://doi.org/10.1111/1365-2664.12768 (2017).Article
Google Scholar
Avgar, T., Lele, S. R., Keim, J. L. & Boyce, M. S. Relative selection strength: Quantifying effect size in habitat- and step-selection inference. Ecol. Evol. 7, 5322–5330. https://doi.org/10.1002/ece3.3122 (2017).Article
PubMed
PubMed Central
Google Scholar
Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4 (2002).Article
Google Scholar
Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scales: Implications of forest management. For. Ecol. Manag. 257, 96–106. https://doi.org/10.1016/j.foreco.2008.08.018 (2009).Article
Google Scholar
Stelfox, J. G., Lynch, G. M. & McGillis, J. R. Effects of clearcut logging on wild ungulates in the Central Albertan foothills. For. Chron. 52, 65–70. https://doi.org/10.5558/tfc52065-2 (1976).Article
Google Scholar
Gagné, C., Mainguy, J. & Fortin, D. The impact of forest harvesting on caribou–moose–wolf interactions decreases along a latitudinal gradient. Biol. Conserv. 197, 215–222. https://doi.org/10.1016/j.biocon.2016.03.015 (2016).Article
Google Scholar
Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: a reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).Article
Google Scholar
Rempel, R. S., Elkie, P. C., Rodgers, A. R. & Gluck, M. J. Timber-management and natural-disturbance effects on moose habitat: landscape evaluation. J. Wildl. Manag. 61, 517–524. https://doi.org/10.2307/3802610 (1997).Article
Google Scholar
Kunkel, K. E. & Pletscher, D. H. Habitat factors affecting vulnerability of moose to predation by wolves in southeastern British Columbia. Can. J. Zool. 78, 150–157. https://doi.org/10.1139/z99-181 (2000).Article
Google Scholar
Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Charnov, E. L. Optimal foraging, the marginal value theorem. (1976).Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454. https://doi.org/10.1890/08-2090.1 (2009).Article
PubMed
Google Scholar
Lendrum, P. E., Anderson Jr, C. R., Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development. Ecosphere 3, art82. https://doi.org/10.1890/ES12-00165.1 (2012).Mumma, M. & Gillingham, M. Determining factors that affect survival of moose in Central British Columbia. Technical report to the Habitat Conservation Trust Foundation for Grant Agreement CAT19-0-522 (1 April 2017 through 31 March 2019). 56 (2019).Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manag. 409, 190–201. https://doi.org/10.1016/j.foreco.2017.11.025 (2018).Article
Google Scholar
Lesmerises, F., Dussault, C. & St-Laurent, M.-H. Wolf habitat selection is shaped by human activities in a highly managed boreal forest. For. Ecol. Manag. 276, 125–131. https://doi.org/10.1016/j.foreco.2012.03.025 (2012).Article
Google Scholar
Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815. https://doi.org/10.1002/ece3.5600 (2019).Article
PubMed
PubMed Central
Google Scholar
Mladenoff, D. J., Sickley, T. A. & Wydeven, A. P. Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecol. Appl. 9, 37–44. https://doi.org/10.1890/1051-0761(1999)009[0037:PGWLRL]2.0.CO;2 (1999).Rogala, J. K. et al. Human activity differentially redistributes large mammals in the Canadian Rockies National Parks. Ecol. Soc. 16 (2011).Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085. https://doi.org/10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2 (2006).Article
PubMed
Google Scholar
Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE 13, e0195480. https://doi.org/10.1371/journal.pone.0195480 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).Article
Google Scholar More