More stories

  • in

    Evolutionary ecology of Miocene hominoid primates in Southeast Asia

    Spehar, S. N. et al. Orangutans venture out of the rainforest and into the anthropocene. Sci. Adv. 4, e1701422. https://doi.org/10.1126/sciadv.1701422 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suganuma, Y. et al. Magnetostratigraphy of the Miocene Chiang Muan Formation, northern Thailand. Implications for revised chronology of the earliest Miocene hominoid in Southeast Asia. Palaeogeogr. Palaeoclimatol. Plaeoecol. 239, 75–86 (2006).
    Google Scholar 
    Coster, P. et al. A complete magnetic-polarity stratigraphy of the Miocene continental deposits of Mae Moh Basin, northern Thailand, and a reassessment of the age of hominoid-bearing localities in northern Thailand. Geol. Soc. Am. Bull. 122, 1180–1191 (2010).ADS 

    Google Scholar 
    Begun, D. R. The Miocene hominoid radiations. In A Companion to Paleoanthropology (ed. Begun, D. R.) 398–416 (Blackwell Publishing, 2013).
    Google Scholar 
    Pugh, K. D. Phylogenetic analysis of Middle-Late Miocene apes. J. Hum. Evol. 165, 1–33 (2022).
    Google Scholar 
    Chaimanee, Y. et al. Khoratpithecus piriyai, a Late Miocene Hominoid of Thailand. Am. J. Phys. Anthropol. 131, 311–323 (2006).PubMed 

    Google Scholar 
    Chavasseau, O. et al. Advances in the biochronology and biostratigraphy of the continental Neogene of Myanmar. In Fossil Mammals in Asia. Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 461–474 (Columbia University Press, 2013).
    Google Scholar 
    Patnaik, R. Indian Neogene Siwalik Mammalian biostratigraphy. An overview. In Fossil Mammals in Asia Neogene Biostratigraphy and Chronology (eds Wang, X. et al.) 423–444 (Columbia University Press, 2013).
    Google Scholar 
    Chaimanee, Y. et al. A middle Miocene hominoid from Thailand and orangutan origins. Nature 422, 61–65 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y. et al. A new orang-utan relative from the Late Miocene of Thailand. Nature 427, 439–441 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, Y., Lazzari, V., Chaivanich, K. & Jaeger, J.-J. First maxilla of a late Miocene hominid from Thailand and the evolution of pongine derived characters. J. Hum. Evol. 134, 102636. https://doi.org/10.1016/j.jhevol.2019.06.007 (2019).Article 
    PubMed 

    Google Scholar 
    Jaeger, J.-J. et al. First Hominoid from the Late Miocene of the Irrawaddy formation (Myanmar). PLoS ONE 6, 1–14 (2011).
    Google Scholar 
    Begun, D. R. European hominoids. In The Primate Fossil Record (ed. Hartwig, W. C.) 339–368 (Cambridge University Press, 2002).
    Google Scholar 
    Kelley, J. & Gao, F. Juvenile hominoid cranium from the late Miocene of southern China and hominoid diversity in Asia. Proc. Natl. Acad. Sci. U.S.A. 109, 6882–6885 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kettle, C. J., Maycock, C. R. & Burslem, D. New directions in dipterocarp biology and conservation: A synthesis. Biotropica 44, 658–660. https://doi.org/10.1111/j.1744-7429.2012.00912.x (2012).Article 

    Google Scholar 
    Cannon, C. H., Morley, R. J. & Bush, A. B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl. Acad. Sci. U.S.A. 106, 11188–11193. https://doi.org/10.1073/pnas.0809865106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, S. V. Isotopic reconstruction of habitat change surrounding the extinction of Sivapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeogr. Palaeoclimatol. Palaeoecol. 243, 204–222 (2007).
    Google Scholar 
    Bender, M. M. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10, 1239–1244 (1971).CAS 

    Google Scholar 
    Kohn, M. J. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proc. Natl. Acad. Sci. 107, 19691–19695 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonafini, M., Pellegrini, M., Ditchfield, P. & Pollard, A. M. Investigation of the ‘canopy effect’ in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 40, 3926–3935. https://doi.org/10.1016/j.jas.2013.03.028 (2013).Article 

    Google Scholar 
    Krigbaum, J., Berger, M. H., Daegling, D. J. & McGraw, W. S. Stable isotope canopy effects for sympatric monkeys at Tai Forest, Cote d’Ivoire. Biol. Lett. 9, 20130466. https://doi.org/10.1098/rsbl.2013.0466 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).ADS 

    Google Scholar 
    Fannin, L. D. & McGraw, W. S. Does oxygen stable isotope composition in primates vary as a function of vertical stratification or folivorous behaviour?. Folia Primatol. Int. J. Primatol. 91, 219–227. https://doi.org/10.1159/000502417 (2020).Article 

    Google Scholar 
    Louys, J. & Roberts, P. Environmental drivers of megafauna and hominin extinction in Southeast Asia. Nature 586, 402–406. https://doi.org/10.1038/s41586-020-2810-y (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zin-Maung-Maung-Thein, et al. Stable isotope analysis of the tooth enamel of Chaingzauk mammalian fauna (late Neogene, Myanmar) and its implication to paleoenvironment and paleogeography. Palaeogeogr. Palaeoclimatol. Palaeoecol. 300, 11–22. https://doi.org/10.1016/j.palaeo.2010.11.016 (2011).Article 

    Google Scholar 
    Patnaik, R., Cerling, T. E., Uno, K. T. & Fleagle, J. G. Diet and habitat of Siwalik primates Indopithecus, Sivaladapis and Theropithecus. Ann. Zool. Fenn. 51, 123–142. https://doi.org/10.5735/086.051.0214 (2014).Article 

    Google Scholar 
    Pushkina, D., Bocherens, H., Chaimanee, Y. & Jaeger, J.-J. Stable carbon isotope reconstructions of diet and paleoenvironment from the late Middle Pleistocene Snake Cave in Northeastern Thailand. Naturwissenschaften 97, 299–309 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nelson, S. V. The paleoecology of early Pleistocene Gigantopithecus blacki inferred from isotopic analyses. Am. J. Phys. Anthropol. 155, 571–578. https://doi.org/10.1002/ajpa.22609 (2014).Article 
    PubMed 

    Google Scholar 
    Qu, Y. et al. Preservation assessments and carbon and oxygen isotopes analysis of tooth enamel of Gigantopithecus blacki and contemporary animals from Sanhe Cave, Chongzuo, South China during the Early Pleistocene. Quat. Int. 354, 52–58. https://doi.org/10.1016/j.quaint.2013.10.053 (2014).Article 

    Google Scholar 
    Bocherens, H. et al. Flexibility of diet and habitat in Pleistocene South Asian mammals. Implications for the fate of the giant fossil ape Gigantopithecus. Quat. Int. 434, 148–155 (2017).
    Google Scholar 
    Bacon, A.-M. et al. Nam Lot (MIS 5) and Duoi U’Oi (MIS 4) Southeast Asian sites revisited. Zooarchaeological and isotopic evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 132–144. https://doi.org/10.1016/j.palaeo.2018.03.034 (2018).Article 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L., Guo, L. & Hu, Y.-W. First direct evidence of conservative foraging ecology of early Gigantopithecus blacki (~2 Ma) in Guangxi, southern China. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.24300 (2021).Article 
    PubMed 

    Google Scholar 
    Ma, J. et al. Isotopic evidence of foraging ecology of Asian elephant (Elephas maximus) in South China during the Late Pleistocene. Quat. Int. 443, 160–167. https://doi.org/10.1016/j.quaint.2016.09.043 (2017).Article 

    Google Scholar 
    Ma, J., Wang, Y., Jin, C., Hu, Y. & Bocherens, H. Ecological flexibility and differential survival of Pleistocene Stegodon orientalis and Elephas maximus in mainland southeast Asia revealed by stable isotope (C, O) analysis. Quat. Sci. Rev. 212, 33–44. https://doi.org/10.1016/j.quascirev.2019.03.021 (2019).ADS 
    Article 

    Google Scholar 
    Janssen, R. et al. Tooth enamel stable isotopes of Holocene and Pleistocene fossil fauna reveal glacial and interglacial paleoenvironments of hominins in Indonesia. Quat. Sci. Rev. 144, 145–154. https://doi.org/10.1016/j.quascirev.2016.02.028 (2016).ADS 
    Article 

    Google Scholar 
    Wang, W. et al. Sequence of mammalian fossils, including hominoid teeth, from the Bubing Basin caves, South China. J. Hum. Evol. 52, 370–379. https://doi.org/10.1016/j.jhevol.2006.10.003 (2007).Article 
    PubMed 

    Google Scholar 
    Suraprasit, K., Bocherens, H., Chaimanee, Y., Panha, S. & Jaeger, J.-J. Late Middle Pleistocene ecology and climate in Northeastern Thailand inferred from the stable isotope analysis of Khok Sung herbivore tooth enamel and the land mammal cenogram. Quat. Sci. Rev. 193, 24–42. https://doi.org/10.1016/j.quascirev.2018.06.004 (2018).ADS 
    Article 

    Google Scholar 
    Bocherens, H., Fizet, M. & Mariotti, A. Diet, physiology and ecology of fossil mammals as inferred from stable carbon and nitrogen biogeochemistry. Implications for Pleistocene bears. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 213–225 (1994).
    Google Scholar 
    Koch, P. L., Tuross, N. & Fogel, M. L. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. J. Archaeol. Sci. 24, 417–429 (1997).
    Google Scholar 
    Wright, L. E. & Schwarcz, H. P. Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine. Infant diets at Kaminaljuyú. J. Archaeol. Sci. 26, 1159–1170 (1999).
    Google Scholar 
    Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurments in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, A. L. & Hobson, K. A. Reporting stable-isotope ratios in ecology. Recommended terminology, guidelines and best practices. Waterbirds 35, 324–331 (2012).
    Google Scholar 
    Craig, H. Carbon 13 in plants and the relationships between carbon 13 and carbon 14 variations in nature. J. Geol. 62, 115–149. https://doi.org/10.1086/626141 (1954).ADS 
    CAS 
    Article 

    Google Scholar 
    Cerling, T. E. & Harris, J. M. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–363 (1999).ADS 
    PubMed 

    Google Scholar 
    Passey, B. H. et al. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. J. Archaeol. Sci. 32, 1459–1470. https://doi.org/10.1016/j.jas.2005.03.015 (2005).Article 

    Google Scholar 
    Howland, M. R. et al. Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int. J. Osteoarchaeol. 13, 54–65. https://doi.org/10.1002/oa.658 (2003).Article 

    Google Scholar 
    Crowley, B. E. et al. Stable carbon and nitrogen isotope enrichment in primate tissues. Oecologia 164, 611–626. https://doi.org/10.1007/s00442-010-1701-6 (2010).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon–14Carbon interrelations. Environ. Int. 2, 229–300. https://doi.org/10.1016/0160-4120(79)90005-9 (1979).CAS 
    Article 

    Google Scholar 
    Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2. Nature 357, 461–466. https://doi.org/10.1038/357461a0 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Tipple, B. J., Meyers, S. R. & Pagani, M. Carbon isotope ratio of Cenozoic CO2 A comparative evaluation of available geochemical proxies. Paleoceanography https://doi.org/10.1029/2009PA001851 (2010).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cerling, T. E., Harris, J. M., Leakey, M. G., Passey, B. H. & Levin, N. E. Stable carbon and oxygen isotopes in East African Mammals. Modern and fossil. In Cenozoic Mammals of Africa (ed. Werdelin, L.) 941–952 (University of California Press, 2010).
    Google Scholar 
    Friedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U. & Stauffer, B. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324, 237–238. https://doi.org/10.1038/324237a0 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Paleoseasonality inferred from equid teeth and intra-tooth isotopic variability. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 122–144 (2005).
    Google Scholar 
    Komsta, L. Processing data for outliers. R News 6, 10–13 (2006).
    Google Scholar 
    Hutchinson, G. E. Concluding remarks. In Cold spring Harbor Symposium on Quantitative Biology, edited by Q. Biology (1957).Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).MATH 

    Google Scholar 
    Baumann, C., Bocherens, H., Drucker, D. G. & Conard, N. J. Fox dietary ecology as a tracer of human impact on Pleistocene ecosystems. PLoS ONE 15, e0235692. https://doi.org/10.1371/journal.pone.0235692 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x (2011).Article 
    PubMed 

    Google Scholar 
    Nelson, S. V. & Hamilton, M. I. Evolution of the human dietary niche. Initial transitions. In Chimpanzees and Human Evolution (eds Muller, M. N. et al.) 286–310 (Harvard University Press, 2017).
    Google Scholar 
    Sun, F. et al. Paleoenvironment of the late Miocene Shuitangba hominoids from Yunnan, Southwest China: Insights from stable isotopes. Chem. Geol. 569, 120123. https://doi.org/10.1016/j.chemgeo.2021.120123 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, S. V. Chimpanzee fauna isotopes provide new interpretations of fossil ape and hominin ecologies. Proc. R. Soc. B: Biol. Sci. 280, 20132324. https://doi.org/10.1098/rspb.2013.2324 (2013).CAS 
    Article 

    Google Scholar 
    Merceron, G., Taylor, S., Scott, R., Chaimanee, Y. & Jaeger, J.-J. Dietary characterization of the hominoid Khoratpithecus (Miocene of Thailand). Evidence from dental topographic and microwear texture analyses. Naturwissenschaften 93, 329–333. https://doi.org/10.1007/s00114-006-0107-0 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kay, R. F. The nut-crackers—A new theory of the adaptations of the ramapithecinae. Am. J. Phys. Anthropol. 55, 141–151 (1981).
    Google Scholar 
    Nelson, S. V. The Extinction of Sivapithecus. Faunal and Environmental Changes Surrounding the Disappearance of a Miocene Hominoid in the Siwaliks of Pakistan (Brill Academic Publishers, 2003).
    Google Scholar 
    Kanamori, T., Kuze, N., Bernard, H., Malim, T. P. & Kohshima, S. Feeding ecology of Bornean orangutans (Pongo pygmaeus morio) in Danum Valley, Sabah, Malaysia: A 3-year record including two mast fruitings. Am. J. Primatol. 72, 820–840. https://doi.org/10.1002/ajp.20848 (2010).Article 
    PubMed 

    Google Scholar 
    Vogel, E. R. et al. Nutritional ecology of wild Bornean orangutans (Pongo pygmaeus wurmbii) in a peat swamp habitat. Effects of age, sex, and season. Am. J. Primatol. 79, 1–20. https://doi.org/10.1002/ajp.22618 (2017).Article 
    PubMed 

    Google Scholar 
    Louys, J. et al. Sumatran orangutan diets in the Late Pleistocene as inferred from dental microwear texture analysis. Quat. Int. 603, 74–81. https://doi.org/10.1016/j.quaint.2020.08.040 (2021).Article 

    Google Scholar 
    Quade, J., Cerling, T. E. & Bowman, J. R. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342, 163–166 (1989).ADS 

    Google Scholar 
    Hoorn, C., Ohja, T. & Quade, J. Palynological evidence for vegetation development and climatic change in the sub-Himalayan Zone (Neogene, Central Nepal). Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 133–161 (2000).
    Google Scholar 
    Morley, R. J. A review of the Cenozoic palaeoclimate history of Southeast Asia. In Biotic Evolution and Environmental Change in Southeast Asia (eds Gower, D. et al.) 79–114 (Cambridge University Press, 2012).
    Google Scholar 
    Morley, R. J. Assembly and division of the South and South-East Asian flora in relation to tectonics and climate change. J. Trop. Ecol. 34, 209–234. https://doi.org/10.1017/S0266467418000202 (2018).Article 

    Google Scholar 
    Sepulchre, P. et al. Mid-tertiary paleoenvironments in Thailand. Pollen evidence. Clim. Past 6, 461–473 (2010).
    Google Scholar 
    Sepulchre, P., Jolly, D., Ducrocq, S., Chaimanee, Y. & Jaeger, J.-J. Mid-tertiary palaeoenvironments in Thailand. Pollen evidence. Clim. Past Discuss. 5, 709–734 (2009).ADS 

    Google Scholar 
    Fleagle, J. G., Janson, C. H. & Reed, K. E. Primate Communities (Cambridge University Press, 1999).
    Google Scholar 
    Fleagle, J. G. Primate Adaptation and Evolution 3rd edn. (Elsevier, 2013).
    Google Scholar 
    Pilbeam, D. Gigantopithecus and the origins of Hominidae. Nature 225, 516–519. https://doi.org/10.1038/225516a0 (1970).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jiang, Q.-Y., Zhao, L.-X. & Hu, Y.-W. Isotopic (C, O) variations of fossil enamel bioapatite caused by different preparation and measurement protocols: A case study of Gigantopithecus fauna. Vertebr. PalAsiat. 58, 159–168 (2020).
    Google Scholar 
    Hunt, K. D. Why are there apes? Evidence for the co-evolution of ape and monkey ecomorphology. J. Anat. 228, 630–685. https://doi.org/10.1111/joa.12454 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zihlman, A. L., Mcfarland, R. K. & Underwood, C. E. Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus). Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 1842–1855. https://doi.org/10.1002/ar.21449 (2011).Article 

    Google Scholar 
    Thorpe, S. K. & Crompton, R. H. Orangutan positional behavior and the nature of arboreal locomotion in Hominoidea. Am. J. Phys. Anthropol. 131, 384–401. https://doi.org/10.1002/ajpa.20422 (2006).Article 
    PubMed 

    Google Scholar 
    Barry, J. C. The history and chronology of Siwalik cercopithecids. J. Hum. Evol. 2, 47–58 (1987).
    Google Scholar 
    Jablonski, N. G., Whitfort, M. J., Roberts-Smith, N. & Qinqi, X. The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J. Hum. Evol. 39, 131–157 (2000).CAS 
    PubMed 

    Google Scholar 
    Takai, M., Saegusa, H., Thaung-Htike, & Zin-Maung-Maung-Thein,. Neogene mammalian fauna in Myanmar. Asian Paleoprimatol. 4, 143–172 (2006).
    Google Scholar 
    Houle, A., Chapman, C. A. & Vickery, W. L. Intratree vertical variation of fruit density and the nature of contest competition in frugivores. Behav. Ecol. Sociobiol. 64, 429–441. https://doi.org/10.1007/s00265-009-0859-6 (2010).Article 

    Google Scholar 
    Vuille, M., Werner, M., Bradley, R. S. & Keimig, F. Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. 110, D23108 (2005).ADS 

    Google Scholar  More

  • in

    Small lakes at risk from extensive solar-panel coverage

    Rafael Almeida and his colleagues estimate that floating solar panels on 5–10% of the area of large reservoirs could help the world to reach electricity decarbonization targets by 2050 (R. M. Almeida et al. Nature 606, 246–249; 2022). On small lakes in Europe and Asia, however, the existing coverage is significantly higher (averaging 50%, according to our unpublished data), with potentially greater ecological impact (G. Exley et al. Solar Energy 219, 24–33; 2021).
    Competing Interests
    The authors declare no competing interests. More

  • in

    Trypsin is a coordinate regulator of N and P nutrients in marine phytoplankton

    Widespread occurrence and environmental stimuli responsiveness of trypsin in marine phytoplanktonTo assess whether trypsin occurs broadly in marine phytoplankton and what ecological functions phytoplankton trypsin genes may play, we investigated the occurrence of trypsin genes and environmental stimuli regulating their expression based on PhyloDB, Tara Oceans unigenes and metatranscriptomes datasets. From Tara Oceans unigenes and metatranscriptomes, trypsin homologs were found at all the sampling stations worldwide and in all major phytoplankton phyla (Fig. 1a and Supplementary Fig. 1). The broad phylogenetic representation is corroborated by the prevalence of trypsin in the individual species’ transcriptomes in the PhyloDB database (Fig. 1b), most notably in Bacillariophyta, Dinophyta, Chlorophyta, Cryptophyta and Haptophyta, the major eukaryotic groups of phytoplankton in the ocean. These indicate that trypsin is widely distributed in phytoplankton both taxonomically and geographically, a finding that advances our knowledge on the distribution of this ancient enzyme. Moreover, phylogenetic and structure alignment analysis showed that phytoplankton trypsins are more closely related with bacterial trypsins than metazoan and fungal counterparts, but contain the conserved important residues and structure typical of animal trypsins (Supplementary Figs. 2–4). These observations suggest some complex evolutionary trajectory that might result in functional innovation of phytoplankton trypsin.Fig. 1: Widespread occurrence and environmental nutrient responsiveness of trypsin in global marine phytoplankton.a Wide geographic distribution of trypsin in phytoplankton found in Tara Oceans. Color scale depicts trypsin mRNA abundance. b Wide taxonomic distribution of trypsin in algae found in PhyloDB. c Environmental nutrient drivers of phytoplankton trypsin abundance. Pairwise comparisons of environmental nutrient concentrations are shown with a color gradient denoting Pearson’s correlation coefficient. The trypsin abundance and taxonomic distribution based on the 5–180 µm size fraction from SRF layer from Tara Ocean datasets. Taxonomic trypsin abundance was related to each nutrient factor by partial (geographic distance-corrected) Mantel tests. Edge width corresponds to the Mantel’s r statistic for the corresponding distance correlations, and edge color denotes the statistical significance based on 9999 permutations. Baci Bacillariophyta, Dino Dinophyta, Chlo Chlorophyta, Cryp Cryptophyta, Hapt Haptophyta. Source data are provided as a Source Data file.Full size imageWe found a large amount of trypsin gene duplication, 5 copies to 65 copies in each algal genome we examined6. The evolution of the gene family, in gene sequence and organization relative to other functional domain, need to be treated in a separate paper6, but the rampant gene duplication suggests that trypsin may have important roles in phytoplankton. Moreover, our correlation analysis for trypsin gene expression with environmental parameters in the Tara Oceans metatranscriptomic data showed that the phytoplankton trypsin transcript abundance was correlated with environmental conditions in some taxa, size fractions, and water depths, evidence that trypsin may be important in phytoplankton to adapt to dynamical environmental conditions6. To further explore specific environmental drivers modulating the expression of trypsin, we analyzed distance-corrected dissimilarities of phytoplankton trypsin transcript abundance with environmental nutrient factors using the partial Mantel test. Analyses were restricted to the 5–20 and 20–180 µm size fractions from surface layer as their trypsin appeared to be more responsive to environmental stimuli. As shown in Fig. 1c, trypsin expression in Bacillariophyta, Dinophyta, Chlorophyta, Cryptophyta and Haptophyta was differentially correlated with nutrient availability, most notably in Bacillariophyta and Chlorophyta. Moreover, nitrate and nitrite (NO3, NO3_5m*, and NO3_NO2) and phosphate (PO4) were the strongest correlates of both Bacillariophyta and Chlorophyta trypsin transcript abundances (Fig. 1c). Hence, we posit that trypsin have important functions in the response of phytoplankton to N and P nutrient conditions.Involvement of trypsin in nitrogen and phosphorus nutrient responsesTo gain mechanistic insights into the function of trypsin in phytoplankton, we conducted experiments on the model diatom Phaeodactylum tricornutum. We identified ten trypsin genes from its genome (Supplementary Table 1), and based on qRT-PCR, we observed their growth stage- and condition-specific expression variations (Fig. 2a and Supplementary Fig. 5). Interestingly, one of these genes (PtTryp2) exhibited opposite directions of expression dynamic under N- and P-depleted conditions: downregulated under N-depleted but upregulated under P-depleted condition (Fig. 2a). Furthermore, PtTryp2 transcript increased with increasing cellular N content but decreased with increasing cellular P content (Fig. 2b, c). These results suggest that PtTryp2 is involved in an opposite-direction regulation of responses to nitrogen and phosphorus nutrient status.Fig. 2: Involvement of PtTryp2 in nitrogen and phosphorus nutrient responses.a PtTryp2 expression in P. tricornutum under different growth stages and conditions based on qRT-PCR. Nutrient-replete, HNHP; N-depletion, LNHP; P-depletion, HNLP. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. b Time-course expression patterns of PtTryp2 when P. tricornutum was grown with different forms of nitrogen nutrients. Data are presented as mean values ± SD (n = 2 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. c PtTryp2 expression pattern after phosphorus supplement. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. Source data are provided as a Source Data file.Full size imageTo interrogate the function of PtTryp2 in N and P nutrient responses, we analyzed the physiology of homologous overexpression and CRISPR/Cas9 knockout lines we generated. A PtTryp2-overexpression cell line with C-terminal eGFP fusion (named PtTryp2-OE) was generated, and the expression of OE cell line was confirmed at a protein level through Western blot (Fig. 3a). Because the function of a protein corresponds with its subcellular location, we first examined where PtTryp2 is located inside P. tricornutum cells. By computational simulation, we find PtTryp2 is potentially localized in the chloroplast via the secretory pathway (Supplementary Table 2), in accordance with the fact that chloroplasts contain a rather high number of proteases and are the main location of nutrients assimilation and remobilization7. To obtain experimental verification of the chloroplast localization, we carried out subcellular localization analysis in the OE and OEC cell lines using confocal fluorescence microscopy. Interestingly, results show PtTryp2-eGFP are localized in both the chloroplast and cytoplasmic endoplasmic reticulum (ER), to the exclusion of the nucleus and Golgi apparatus, whereas the fluorescence from the eGFP blank vector control is outspread in the cell instead of being co-localized with chloroplast and ER (Fig. 3b and Supplementary Figs. 6–8). Further analyses show that PtTryp2 lacks the C-terminal -(K/H) DEL sequences, a typical ER-retention signal that prevents ER-resident proteins from being transported to downstream locations of the secretory system8,9. Hence, PtTtryp2 is evidently transported via the ER to the chloroplast, as in the case of the previously documented light-harvesting chlorophyll a/b-binding protein in Euglena10.Fig. 3: Subcellular localization of PtTryp2.a Detection of the expression of GFP-PtTryp2 by Western blot using anti-GFP primary antibody. Left panel, GFP-PtTryp2 fusion protein. Middle panel, GFP protein. GAPDH (on the right) was detected using anti-GAPDH as the control to indicate equal protein quantities loaded to each lane. The GFP-PtTryp2 was confirmed expressed successfully at protein level in OE cell line. All experiments were repeated independently three times, and similar results were obtained. b Confocal micrographs showing subcellular localization of GFP-PtTryp2 in chloroplast (PAF, showing red autofluorescence) and endoplasmic reticulum (ER, showing blue fluorescent stain by ER-Tracker) but not in nucleus (Hoechst 33342, showing blue fluorescent stain). TL merge, merger of the fluorescence images with transmission light image. Scale bar, 10 µm, applies to all images. All experiments were repeated independently three times, and similar results were obtained. Source data are provided as a Source Data file.Full size imagePtTryp2 contains one trypsin domain and two internal repeats 1 (RPT) (Fig. 4a), offering one single target for trypsin mutagenesis. Using an optimized efficient CRISPR/Cas9 gene editing system11, we obtained three PtTryp2 mutants with different mutation characteristics in the trypsin domain (named KO1, KO2, and KO3, respectively; Fig. 4b). As shown in Fig. 4c, compared with the knockout control cell line (KOC), all three PtTryp2-KO lines exhibited a significantly diminished PtTryp2 expression under both nutrient depletion and repletion; conversely, the OE cell line displayed markedly elevated PtTryp2 expression in comparison to the overexpression control cell line (OEC). Moreover, the PtTryp2 expression level in KOC cell lines strongly responded to the ambient N and P level, but consistently showed a constant and low expression pattern in KO lines (Fig. 4d). These results verified that KO cell lines with the loss of PtTryp2 function, and OE with enhanced function of PtTryp2, can be used for subsequent functional analyses of PtTryp2.Fig. 4: Mutation generations of PtTryp2 and characters of mutants.a Schematic presentation of PtTryp2 protein. The target site (vertical arrow) for CRISPR/Cas9-based knockout is located within the conserved functional domain (green pentagon), with PAM motif shown in orange font. Red rectangle on the left depicts signal peptide; RPT: internal repeat 1; b Alignment of partial PtTryp2 sequences of the CRISPR/Cas9-generated mutants showing frameshift indels compared to wild type. The frequency by which the sequence was detected within the same colony is indicated in parenthesis. Font color coding: Black, WT sequence; Orange, functional domain containing target for CRISPR/Cas9; Purple, PAM sequence; Blue, Inserted bases; Red dashes, deleted bases. c PtTryp2 expression patterns of knockout and overexpression mutants under different conditions. FC fold change. Data are presented as mean values ± SD (n = 3 biologically independent samples). d PtTryp2 expression of knockout mutants exhibited no response to ambient N and P fluctuation. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. e Growth curves of different PtTryp2 mutants under different N and P conditions. Nutrient conditions in c–e are indicated by HNHP (Nutrient-replete), LNHP (N-depleted, P-replete), HNLP (N-replete, P-depleted), and LNLP (Nutrient-depleted). Data are presented as mean values ± SD (n = 3 biologically independent samples). Source data are provided as a Source Data file.Full size imageMoreover, we observed the growth physiology of different PtTryp2 mutants across different nutrient conditions. As shown in Fig. 4e and Supplementary Fig. 9, both of the knockout and overexpression of PtTryp2 resulted in decreases in the exponential growth rates (days 1–4) and maximum cell density across different N and P culture conditions. Taken together, these results demonstrate that both elevation and reduction of PtTryp2 expression result in cell growth repression, evidence that PtTryp2 has a crucial role in modulating cell growth in response to different N and P conditions.
    PtTryp2 represses nitrogen assimilation and metabolismTranscriptomic data show that PtTryp2 knockout led to the upregulation of most of the nitrogen assimilation and metabolism genes under both N-depleted and replete conditions (Fig. 5a). The transcriptomic data are confirmed to be reproducible based on the correlation analysis of housekeeping genes (Supplementary Fig. 10 and Supplementary Table 3). Notably, the expression fold change of most N assimilation and metabolism genes under N-depleted, P-replete (LNHP) versus nutrient repete (HNHP) conditions were moderated in the PtTryp2 knockout mutant compared to that in its control (KOC), with the exception of GOGAT, which exhibited larger response to the nutrient changes in KOC (Fig. 5a). All these indicate that the inactivation of PtTryp2 enhanced N assimilation and metabolism to mitigate cell stress and reduce overall transcriptomic swing from N-depletion. Under replete conditions (HNHP), substantial transcriptional reprogramming and a significant increase in nitrate uptake rate and cellular N content was observed in the knockout mutants (KO1, KO2 and KO3) (Fig. 5b). The physiological changes were reversed in the overexpression cell lines: a decline in nitrate uptake rate and cellular N content was noted in PtTryp2-OE (Fig. 5c). All the results demonstrate that PtTryp2 functions as a repressor of nitrogen assimilation and metabolism.Fig. 5: Transcriptomic and physiological evidence that PtTryp2 directly represses nitrogen assimilation and metabolism.a PtTryp2 knockout resulted in upregulation of major nitrate-uptake and N-metabolism genes in PtTryp2 knockout (KO1) and control (KOC) under N-depleted (LNHP), P-depleted (HNLP), and nutrient-replete conditions (HNHP). NRT nitrate transporter, NR nitrate reductase, NiR nitrite reductase, GS glutamine synthetase, GOGAT glutamate synthase, GDH glutamate dehydrogenase, 2OG 2-Oxoglutarate; b NO3− uptake rate and cellular N content, increasing dramatically in PtTryp2-KO under HNHP, but decreasing remarkably under HNLP. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. c NO3− uptake rate and cellular N content, decreasing remarkably in PtTryp2-overexpressing P. tricornutum under HNHP, but increasing under HNLP. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. d Venn diagram showing the number of N-depletion induced DEGs in PtTryp2-KO1 and KOC. In parentheses, total number of DEGs; red font, upregulated; green font, downregulated. e Log2 fold changes (FC) of N-depletion induced differential gene expression in PtTryp2-KO1 against that in KOC. Most data points (93.37%) are distributed in 1,3 quadrants, indicating the same direction of change. Source data are provided as a Source Data file.Full size imageIn addition, when comparing N-depleted with N-replete conditions, 646 differentially expressed genes (DEGs) were identified in the blank vector control (KOC) but only 187 in PtTryp2-KO1, considerably fewer in the knockout mutant (Fig. 5d). Besides, the magnitude of change was smaller in PtTryp2-KO1 than in KOC for the majority (73%) of the DEGs (Fig. 5e). It is thus evident PtTryp2 in the wild type functions as an amplifier of general metabolic response to N-starvation by repressing nitrogen assimilation and metabolism. Notably, the PtTryp2-KO-promoted and PtTryp2-OE-repressed NO3− uptake patterns observed under nutrient repletion were reversed under P-depletion, indicating that PtTryp2’s roles in N and P signaling are not separated, but rather the protein might mediate the cross-talk between N and P signaling.Besides the direction of action (repression or promotion) shown above, the function of PtTryp2 involves another layer of regulation: the direction of its own expression changes. We find that PtTryp2 expression decreased under N-depletion and increased after N-supplement. Under this two-level regulatory scheme, PtTryp2 is a repressor of N uptake and assimilation genes and a promoter of N starvation-responsiveness in general metabolic pathways per se; yet its own expression decreases under N-limitation to upgrade N-uptake and assimilation under N depletion, and increases under N richness to prevent excessive N-uptake and assimilation; meanwhile, the decreased expression of PtTryp2 actually dampens the dynamic swing in the metabolic landscape in response to N-starvation. This PtTryp2-based regulatory mechanism might enable cells to swiftly respond to fluctuating N availability and cellular demand in order to finetune N responses so that N acquisition is optimized.
    PtTryp2 promotes P starvation-induced genes and Pi uptakeAs shown above, PtTryp2 expression is downregulated under N-deficiency to release PtTryp2’s repressing effects on N-starvation response and to promote N uptake, thereby the cells achieve N homeostasis, and an opposite expression pattern of PtTryp2 was observed under P-deficiency, suggesting a N-P coregulation. However, the role of PtTryp2 in P-starvation responses and P homeostasis still needs to be unraveled. Toward that goal, we examined the effects of PtTryp2 inactivation on the expression changes of P starvation-induced genes and the inhibitory regulator of P signaling (SPX), which in plants is a typical P starvation response mechanism12. Consistently, most of Pi transporters (PTs) and alkaline phosphatase (APs) exhibited upregulation to P starvation response in KOC, but most of SPX genes showed downregulation (Fig. 6a).Fig. 6: Transcriptomic and physiological evidence that PtTryp2 positively modulates P starvation-induced genes during Pi starvation.a PtTryp2 knockout resulted in a reverse regulation of most P starvation-induced genes relative to that in control (KOC) under N-depleted (LNHP), P-depleted (HNLP), and nutrient-replete (HNHP) conditions. b PtTryp2 knockout caused decreases in Pi uptake and cellular P content under nutrient-replete condition (HNHP) but caused increases under N-depleted condition (LNHP). Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. c PtTryp2 knockout caused increases in Pi uptake rate and cellular P content under HNHP and LNHP. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. d Venn diagram showing the number of P-depletion induced DEGs in PtTryp2-KO1 and KOC. In parentheses, total number of DEGs; red font, upregulated; green font, downregulated. e Log2 fold changes (FC) of P-depletion induced differential gene expression in PtTryp2-KO1 against that in KOC. Most data points (95.69%) are distributed in 1,3 quadrants, indicating the same direction of change. Source data are provided as a Source Data file.Full size imageInterestingly, under P-depletion, PtTryp2 knockout downregulated the expression of most of PTs and APs, but upregulated most of the SPX genes (Fig. 6a), revealing PtTryp2’s role in WT to promote P-starvation responses. Consistent with gene transcription, PtTryp2 knockout lowered Pi uptake rate and cellular P content under the nutrient-replete condition (Fig. 6b), whereas an increase was noted in the overexpression cell line PtTryp2-OE (Fig. 6c). Based on RNA-seq, remarkably more DEGs were found for the P-depleted versus nutrient-replete comparison in PtTryp2-KO1 (1501) than that in KOC (277) (Fig. 6d). Besides, in PtTryp2-KO1, the majority of these DEGs (77.25%) exhibited greater fold changes than that in KOC (Fig. 6e). These results indicate that PtTryp2 upregulation in the wild type would dampen metabolic reprogramming in responses to P-limitation, and PtTryp2 downregulation would prevent cells from over P accumulation after P supplement, as opposed to the response to N-depletion. All these findings are indicative that PtTryp2 in the WT functions to upregulate the P starvation-induced genes and restrict general metabolic reconfiguration in response to P-limitation, a mechanism to maintain P homeostasis. Similar to that the PtTryp2-KO-promoted and PtTryp2-OE-repressed NO3− uptake patterns were reversed under P-depletion, the PtTryp2-KO-repressed Pi uptake pattern was reversed under N-depletion (Fig. 6b), implying that PtTryp2 might mediate the cross-talk between N and P signaling. The PtTryp2-OE-promoted Pi uptake pattern was not reversed under N-depletion, however, because N-depletion downregulated the expression of PtTryp2, resulting in the PtTryp2 expression pattern between OEC and OE similar to that under nutrient repletion.
    PtTryp2 coordinately regulate N and P uptake and mediates N-P cross-talkGiven the PtTryp2-mediated cross-talk between N and P signaling in P. tricornutum implied in the results presented above, we were tempted to investigate the nature and the mechanism the cross-talk. Here, we uncover Pi and NO3− antagonistic interactions in P. tricornutum, which resemble that in land plants to achieve an optimal N-P nutrient balance13,14. In wild-type (WT) P. tricornutum, we observed a significant repression of NO3− uptake under P starvation and a significant repression of Pi uptake rate under N starvation. Consequently, cellular N content decreased under the P-depleted condition, and cellular P content decreased under the N-depleted condition, relative to nutrient-replete conditions (Fig. 7a, b). In accordance, the transcription of N assimilation and metabolism genes was repressed by P deficiency, and that of P starvation-induced genes was repressed by N limitation (Supplementary Fig. 11). Moreover, transcriptomic results demonstrated that PtTryp2 knockout led to the magnification of Pi and NO3− antagonistic interaction (Supplementary Fig. 11), linking PtTryp2 inactivation to the disruption of the N-P homeostasis. Taken together, our data reveal that PtTryp2’s function operates in opposite directions for N and P responses, but in a coordinated manner, consistent with a role to coregulate N and P signaling.Fig. 7: Illustration that PtTryp2 coordinately regulates N and P acquisition under fluctuating nutritional conditions.a NO3− uptake and cellular N content repressed under HNLP in wild-type cells (WT). Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. b Pi uptake and cellular P content repressed under LNHP in wild-type cells (WT). Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. c Time-course expression of PtTryp2 showed co-varied with the N/P nutrient ratio. Moreover, PtTryp2 expression fluctuated less at the N/P ratio of 16:1 compared to other N/P ratios. The 4 h after nutrient addition represents nutrient-repletion and 72 h nutrient-depletion. Data are presented as mean values ± SD (n = 3 biologically independent samples). d The cellular N/P ratio was significantly elevated by the inactivation of PtTryp2. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. e The cellular N/P ratio was significantly decreased by the overexpression of PtTryp2. Data are presented as mean values ± SD (n = 3 biologically independent samples). The comparisons between the averages of the two groups were evaluated using the one-tailed Student’s t test. The p values with significance (p ≤ 0.05) are shown. f Hypothetical model depicting the role of PtTryp2 in balancing N and P acquisition. Under N-depletion, PtTryp2 expression is downregulated to promote N-starvation responses and repress P-starvation responses. In contrast, under P-depletion, PtTryp2 expression is upregulated to reinforce P-starvation responses and lessen N-starvation response. By this feedback loop, optimal N-P uptake is achieved to maintain stoichiometric homeostasis. Upregulated genes and enhancement processes are shown in red, downregulated genes and weakened processes colored green. The black arrows depict transcriptional activation. Black bar at line’s end depicts inhibitory regulation. The gray arrows depict possible but unverified interaction between PtTryp2 and the existing P regulating cascade SPX-PHR or an equivalent of the N regulating cascade known in plants (SPX-NLP where NLP stands for NIN-like protein, a transcription factor). Source data are provided as a Source Data file.Full size imageTo further illustrate this, we have carried out PtTryp2 expression pattern analysis across different N/P nutrient stoichiometric ratio conditions, and found that PtTryp2 expression co-varied with the N/P nutrient ratio (Fig. 7c). The time-course analysis showed that PtTryp2 expression fluctuated less under different N or P conditions at the N/P ratio of 16:1 compared to other N/P ratios. The N/P nutrient ratio of 16:1 is considered balanced stoichiometry (Redfield ratio) and appears to be optimal for P. tricornutum growth (Supplementary Fig. 12), as previously documented15, suggesting that at this nutrient stoichiometry there is no need for a significant change in PtTryp2 expression to maintain N/P balance, but other N:P nutrient ratios deviating from 16:1 caused changes in PtTryp2 expression to maintain N/P balance. Moreover, the extent of change in PtTryp2 expression varied between cultures with different levels of N:P nutrient ratios, and between 4 and 72 h after culture inoculation from N- and P-depletion-acclimated parent culture into the experimental nutrient conditions. At 72 h PtTryp2 expression level increased with the degree of P stress (the higher the N:P ratio, the more P stressed the cultures were), except for the N:P = 1:1 condition, an extreme N-limited condition that seemed to cause PtTryp2 expression not to respond according to the general trend. Overall, all these data indicate that PtTryp2 responds strongly to the variability of the N:P ratio. Correspondingly, the cellular N/P ratio under nutrient-repletion also seems to be influenced by PtTryp2 expression level: the cellular N/P ratio was significantly elevated by PtTryp2 knockout, but conversely, was significantly decreased by the overexpression of PtTryp2 (Fig. 7d). Evidently, PtTryp2 serves to coordinate N and P uptake and metabolism to dampen the amplitude of N:P ratio changes that occur when the P. tricornutum cells experience fluctuations in nutrient conditions16,17. That is, PtTryp2 in P. tricornutum acts like an amplitude reducer of the N-P seesaw to achieve the N and P stoichiometric homeostasis (Fig. 7f).As critical nutrients for phytoplankton and plants, the balance and homeostasis of N and P are crucial to the growth of the organisms. For plants, nutrient supply in the soil is highly variable; therefore, to achieve optimal and coordinated utilization of N and P, integration of N and P signaling into an integrated network is required18. Recent studies have revealed the critical components of the network in the model plants Arabidopsis thaliana and Oryza sativa12,19,20,21. Similarly, phytoplankton in the ocean face remarkable environmental nutrient variations, and N and P nutrients are often limited22,23. Although the respective responses to N and P deficiencies have been extensively studied in phytoplankton24,25, an integrative signaling pathway of N-P nutrition cross-talk has remained unknown until now. It is striking to find that trypsin, rather than homologs of plant NRT1.1 and NIGT114,19, mediates and regulates the nitrate-phosphate signaling cross-talk.The two-level model of PtTryp2 function (Fig. 7f), including the direction of PtTryp2 action and the direction of PtTryp2 expression changes, demonstrate that PtTryp2 functions by shifting the setpoints, by tuning its own expression level, at which N signaling or P signaling is triggered in response to environmental nutrient fluctuations so that cells commit to appropriate responses. However, much of the mechanics in the regulatory cascade, from environmental nutrient sensing, PtTryp2-mediated signaling, to the regulation of the effectors such as N- and Pi-transporters and assimilatory genes, remains to be elucidated. Although the interplay between N and P nutrition based on SPX-NLP-NIGT1 and SPX-PHR-NIGT1 cascades, respectively have been uncovered in plants12,19, how PtTryp2 interacts with the SPX-PHR cascade26 and whether a SPX-NLP cascade or other regulatory cascades exist and interact with PtTryp2 for P and N nutrient regulation in phytoplankton remain to be addressed.As an initial attempt, we have performed transcriptional regulatory interaction analysis based on the Inferelator algorithm27 to predict the potential co-regulated genes in the PtTryp2-dependent regulatory cascade. Consequently, a set of 1034 genes co-regulated with PtTryp2 were identified, including 10 transcription factors (Supplementary Table 4), 10 N metabolism and assimilation genes, and a P responsive gene (Supplementary Fig. 13). Moreover, the functional enrichment of the gene set showed that PtTryp2 is possibly involved in post-transcriptional regulation, intracellular signal transduction pathway and kinase-based phosphorus metabolism and recycle pathway (Supplementary Fig. 14). The results hint on a potentially complex regulatory network that requires much more transcriptomes derived from more growth conditions than just the N and P conditions used in this study and other experimental approaches to unravel.We used the potential co-regulated gene list identified in this study in a comparative analysis with the published co-regulatory analysis datasets that contained hundreds of public RNA-seq datasets: DiatomPortal28 and PhaeoNet29. Interestingly, based on the DiatomPortal dataset, the PtTryp2 was found in the Phatr_hclust_0381 hierarchical cluster that consists of 10 genes, which has been identified as the GO term of ubiquitin-dependent protein catabolism. In terrestrial plants, the ubiquitination and degradation of SPX4 was found to mediate the nitrate-phosphate interaction signaling pathway by enabling the release of PHR2 and NLP3 into the nucleus to activate the expression of both phosphate- and nitrate-responsive genes12,19. In addition, we found 120 genes that were common in our gene list and PhaeoNet, some of which are transcription factors.Taken together, our analyses showed that the deletion and overexpression of PtTryp2 simultaneously impacted nitrogen and phosphorus uptake, nitrogen and phosphorus contents of the cell, and the N:P ratio. The simultaneous impact on N and P in opposite directions suggests that this protein either directly regulates the N and P uptake machinery or is close to the direct regulator, e.g., functioning through the ubiquitination and degradation of the direct regulators as in terrestrial plants. Furthermore, it is conceivable that one or more intermediate relays between PtTryp2 and the direct regulator would make it extremely challenging, if not impossible, to exert such precise and coordinated bidirectional regulation on N and P. To understand the mechanics of the regulatory mechanism, co-immunoprecipitation and Chromation immunoprecipitation sequencing are underway in our laboratory to experimentally identify the potential proteins and DNAs interacting with PtTryp2. Further studies on multiple fronts surrounding trypsin and its regulatory pathway are required for gaining an in-depth understanding of the interplay between N and P nutrition in phytoplankton and how phytoplankton will adapt to the potentially more variable and skewed N-P environment in the Anthropocene oceans. More

  • in

    Routes of soil microbiome dispersal

    Dispersal is assumed to contribute to microbiome composition and function; however, it is difficult to measure. Walters et al. now set out a 6-month experiment looking at different dispersal routes of environmental microorganisms to the surface soil layer. They set up different ‘traps’, either glass slides or freshly cut grass, to determine the number, identity and function of incoming microorganisms. The traps ‘recorded’ dispersal through air, from plants and their litter, or from below through the decomposing litter and bulk soil. This was achieved by placing the traps either on a pedestal, closing them off at the bottom or leaving them open, respectively. The authors found that the overall dispersal rate was low, with little influence of the route, with only 0.5% incoming bacterial cells per day compared with the number of resident cells. However, the dispersal routes did influence microbiome composition, at least if from above and close to the surface. Finally, without dispersal, the initial decomposition of the cut grass was slower.
    This is a preview of subscription content More

  • in

    Impact of squid predation on juvenile fish survival

    Bailey, K. M. & Houde, E. D. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv. Mar. Biol. 25, 1–83. https://doi.org/10.1016/S0065-2881(08)60187-X (1989).Article 

    Google Scholar 
    Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).ADS 

    Google Scholar 
    Anderson, J. T. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J. Northw. Atl. Fish. Sci. 8, 55–66. https://doi.org/10.2960/J.v8.a6 (1988).Article 

    Google Scholar 
    McCarthy, I. D. Temporal repeatability of relative standard metabolic rate in juvenile Atlantic salmon and its relation to life history variation. J. Fish Biol. 57, 224–238. https://doi.org/10.1111/j.1095-8649.2000.tb00788.x (2000).Article 

    Google Scholar 
    Biro, P. A. & Stamps, J. A. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior?. Trends Ecol. Evol. 25, 653–659. https://doi.org/10.1016/j.tree.2010.08.003,Pubmed:20832898 (2010).Article 
    PubMed 

    Google Scholar 
    Endler, J. A. Natural Selection in the Wild (Princeton Univ. Pr., 1986).Meekan, M. G. & Fortier, L. Selection for fast growth during the larval life of Atlantic cod Gadus morhua on the Scotian Shelf. Mar. Ecol. Prog. Ser. 137, 25–37. https://doi.org/10.3354/meps137025 (1996).ADS 
    Article 

    Google Scholar 
    Gilly, W. F. et al. Vertical and horizontal migrations by the jumbo squid Dosidicus gigas revealed by electronic tagging. Mar. Ecol. Prog. Ser. 326, 1–17 (2006).ADS 
    Article 

    Google Scholar 
    Watanabe, H., Kubodera, T., Moku, M. & Kawaguchi, K. Diel vertical migration of squid in the warm core ring and cold water masses in the transition region of the western North Pacific. Mar. Ecol. Prog. Ser. 315, 187–197. https://doi.org/10.3354/meps315187 (2006).ADS 
    Article 

    Google Scholar 
    Phillips, K. L., Jackson, G. D. & Nichols, P. D. Predation on myctophids by the squid Moroteuthis ingens around Macquarie and Heard Islands: stomach contents and fatty acid analyses. Mar. Ecol. Prog. Ser. 215, 179–189. https://doi.org/10.3354/meps215179 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Field, J. C., Baltz, K., Phillips, A. J. & Walker, W. A. Range expansion and trophic interactions of the jumbo squid, Dosidicus gigas, in the California Current. CalCOFI Rep. 48, 131–146 (2007).
    Google Scholar 
    Ellis, T. & Gibson, R. N. Size-selective predation of 0-group flatfishes on a Scottish coastal nursery ground. Mar. Ecol. Prog. Ser. 127, 27–37. https://doi.org/10.3354/meps127027 (1995).ADS 
    Article 

    Google Scholar 
    Takasuka, A., Aoki, I. & Oozeki, Y. Predator-specific growth-selective predation on larval Japanese anchovy Engraulis japonicus. Mar. Ecol. Prog. Ser. 350, 99–107. https://doi.org/10.3354/meps07158 (2007).ADS 
    Article 

    Google Scholar 
    Tucker, S., Hipfner, J. M. & Trudel, M. Size- and condition-dependent predation: A seabird disproportionately targets substandard individual juvenile salmon. Ecology 97, 461–471. https://doi.org/10.1890/15-0564.1,Pubmed:27145620 (2016).Article 
    PubMed 

    Google Scholar 
    Rodhouse, P. G. & Nigmatullin, C. M. Role as consumers. Phil. Trans. R. Soc. Lond. B 351, 1003–1022. https://doi.org/10.1098/rstb.1996.0090 (1996).ADS 
    Article 

    Google Scholar 
    Hunsicker, M. E. & Essington, T. E. Size-structured patterns of piscivory of the longfin inshore squid (Loligo pealeii) in the mid-Atlantic continental shelf ecosystem. Can. J. Fish. Aquat. Sci. 63, 754–765. https://doi.org/10.1139/f05-258 (2006).Article 

    Google Scholar 
    Hunsicker, M. E. & Essington, T. E. Evaluating the potential for trophodynamic control of fish by the longfin inshore squid (Loligo pealeii) in the northwest Atlantic Ocean. Can. J. Fish. Aquat. Sci. 65, 2524–2535. https://doi.org/10.1139/F08-154 (2008).Article 

    Google Scholar 
    Wang, K. Y., Liao, C. H. & Lee, K. T. Population and maturation dynamics of the swordtip squid (Photololigo edulis) in the southern East China Sea. Fish. Res. 90, 178–186. https://doi.org/10.1016/j.fishres.2007.10.015 (2008).Article 

    Google Scholar 
    Sassa, C., Yamamoto, K., Tsukamoto, Y., Konishi, Y. & Tokimura, M. Distribution and migration of age-0 jack mackerel (Trachurus japonicus) in the East China and Yellow Seas, based on seasonal bottom trawl surveys. Fish. Oceanogr. 18, 255–267. https://doi.org/10.1111/j.1365-2419.2009.00510.x (2009).Article 

    Google Scholar 
    Tokai, T., Shiode, D., Sakai, T. & Yoda, M. Codend selectivity in the East China Sea of a trawl net with the legal minimum mesh size. Fish. Sci. 85, 19–32. https://doi.org/10.1007/s12562-018-1270-x (2019).CAS 
    Article 

    Google Scholar 
    Sassa, C. & Konishi, Y. Vertical distribution of jack mackerel Trachurus japonicus larvae in the southern part of the East China Sea. Fish. Sci. 72, 612–619. https://doi.org/10.1111/j.1444-2906.2006.01191.x (2006).CAS 
    Article 

    Google Scholar 
    Takahashi, M., Sassa, C. & Tsukamoto, Y. Growth-selective survival of young jack mackerel Trachurus japonicus during transition from pelagic to demersal habitats in the East China Sea. Mar. Biol. 159, 2675–2685. https://doi.org/10.1007/s00227-012-2025-3 (2012).Article 

    Google Scholar 
    Ishida, K. Feeding ecology of swordtip squid (Loligo edulis). Rep. Shimane Pref. Fish. Exp. Stan. 3, 31–35 (1981) (in Japanese).
    Google Scholar 
    Tashiro, M., Tokunaga, T., Machida, S. & Takata, J. Distribution of a squidfish, Loliogo edulis HOYLE, in the East China Sea. Bull. Nagasaki Pref. Inst. Fish. 7, 21–30 (1981) (in Japanese).
    Google Scholar 
    Jennings, S. & Warr, K. J. Smaller predator-prey body size ratios in longer food chains. Proc. Biol. Sci. 270, 1413–1417. https://doi.org/10.1098/rspb.2003.2392 (2003).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, C., Maxwell, D., Reuman, D. C. & Jennings, S. Global patterns in predator-prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91, 222–232. https://doi.org/10.1890/08-2061.1 (2010).Article 
    PubMed 

    Google Scholar 
    Cabana, G. & Rasmussen, J. B. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372, 255–257. https://doi.org/10.1038/372255a0 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    Castilla, A. C., Hernández-Urcera, J., Gouranguine, A., Guerra, Á. & Cabanellas-Reboredo, M. Predation behaviour of the European squid Loligo vulgaris. J. Ethol. 38, 311–322. https://doi.org/10.1007/s10164-020-00652-4 (2020).Article 

    Google Scholar 
    Fiorito, G. et al. Guidelines for the Care and Welfare of Cephalopods in Research–A consensus based on an initiative by CephRes, FELASA and the Boyd Group. Lab. Anim. 49, 1–90. https://doi.org/10.1177/0023677215580006la.sagepub.com (2015).Article 
    PubMed 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411 (2020). https://doi.org/10.1371/journal.pbio.3000411Campana, S. E. How reliable are growth back-calculations based on otoliths?. Can. J. Fish. Aquat. Sci. 47, 2219–2227. https://doi.org/10.1139/f90-246 (1990).Article 

    Google Scholar 
    Xie, S. et al. Growth and morphological development of sagittal otoliths of larval and early juvenile Trachurus japonicus. J. Fish Biol. 66, 1704–1719. https://doi.org/10.1111/j.0022-1112.2005.00717.x (2005).Article 

    Google Scholar 
    Yasui, T. & Sakurai, Y. Gastric evacuation rate of Todarodes pacificus. Rep. Annu. Meet. Squid Res 32, 55–57 (2005) (in Japanese).
    Google Scholar 
    Šifner, S. K. & Vrgoč, N. Population structure, maturation and reproduction of the European squid, Loligo vulgaris, in the Central Adriatic Sea. Fish. Res. 69, 239–249. https://doi.org/10.1016/j.fishres.2004.04.011 (2004).Article 

    Google Scholar 
    Kono, N., Tsukamoto, Y. & Zenitani, H. RNA:DNA ratio for diagnosis of the nutritional condition of Japanese anchovy larvae Engraulis japonicus during the first-feeding stage. Fish. Sci. 69, 1096–1102. https://doi.org/10.1111/j.0919-9268.2003.00733.x (2003).CAS 
    Article 

    Google Scholar 
    Booman, C., Folkvord, A. & Hunter, J. R. Responsiveness of starved northern anchovy Engraulis mordax larvae to predation attacks by adult anchovy. Fish. Bull. 89, 707–711 (1991).
    Google Scholar 
    Chick, J. H. & Van Den Avyle, M. J. Effects of feeding ration on larval swimming speed and responsiveness to predator attacks: Implications for cohort survival. Can. J. Fish. Aquat. Sci. 57, 106–115. https://doi.org/10.1139/f99-185 (2000).Article 

    Google Scholar 
    Hunsicker, M. E. et al. Functional responses and scaling in predator-prey interactions of marine fishes: Contemporary issues and emerging concepts. Ecol. Lett. 14, 1288–1299. https://doi.org/10.1111/j.1461-0248.2011.01696.x (2011).Article 
    PubMed 

    Google Scholar 
    Chambers, R. C. & Miller, T. J. Evaluating fish growth by means of otolith increment analysis: spectral properties of individual-level longitudinal data in in Recent Developments in Fish Otolith Research (ed. Secor, D. H., Dean, J. M. & Campana, S. E.) 155–175 (University of South Carolina Press, 1995).Mizutani, T. et al. Diel variability in the catch composition of bottom trawl survey in East China Sea. Nippon Suisan Gakkaishi 71, 44–53 (2005). (in Japanese with English abstract). https://doi.org/10.2331/suisan.71.44.Sassa, C., Takahashi, M., Konishi, Y. & Tsukamoto, Y. Interannual variations in distribution and abundance of Japanese jack mackerel Trachurus japonicus larvae in the East China Sea. ICES J. Mar. Sci. 73, 1170–1185. https://doi.org/10.1093/icesjms/fsv269 (2016).Article 

    Google Scholar 
    Takahashi, M., Sassa, C., Nishiuchi, K. & Tsukamoto, Y. Interannual variations in rates of larval growth and development of jack mackerel (Trachurus japonicus) in the East China Sea: Implications for juvenile survival. Can. J. Fish. Aquat. Sci. 73, 155–162. https://doi.org/10.1139/cjfas-2015-0077 (2016).Article 

    Google Scholar 
    Takahashi, M., Sassa, C., Nishiuchi, K. & Tsukamoto, Y. Variability in growth rates of Japanese jack mackerel Trachurus japonicus larvae and juveniles in the East China Sea—effects of temperature and prey abundance in in Kuroshio Current, Physical, Biogeochemical and Ecosystem Dynamics (ed. Nagai, T., Saito, H., Suzuki, K. & Takahashi, M.) 295–307 (Wiley, 2019).Anraku, M. & Azeta, M. The feeding habits of larvae and juveniles of the yellowtail, Seriola quinqueradiata Temminck et Schlegel, associated with floating seaweeds. Bull. Seikai Reg. Fish. Res. Lab 33, 13–45 (1965) (in Japanese with English abstract).
    Google Scholar 
    Villanueva, R., Perricone, V. & Fiorito, G. Cephalopods as predators: a short journey among behavioral flexibilities, adaptations, and feeding habits. Front. Physiol. 8, 598. https://doi.org/10.3389/fphys.2017.00598,Pubmed:28861006 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, R., Zuo, T. & Wang, K. The Yellow Sea Cold Bottom Water—an oversummering site for Calanus sinicus (Copepoda, Crustacea). J. Plankton Res. 25, 169–183. https://doi.org/10.1093/plankt/25.2.169 (2003).CAS 
    Article 

    Google Scholar 
    Sassa, C., Kitajima, S., Nishiuchi, K. & Takahashi, M. Ontogenetic and inter-annual variation in the diet of Japanese jack mackerel (Trachurus japonicus) juveniles in the East China Sea. J. Mar. Biol. Assoc. U K 99, 525–538. https://doi.org/10.1017/S0025315418000206 (2019).Article 

    Google Scholar 
    Nakazawa, T., Ushio, M. & Kondoh, M. Scale dependence of predator–prey mass ratio: Determinants and applications. Adv. Ecol. Res. 45, 269–302. https://doi.org/10.1016/B978-0-12-386475-8.00007-1 (2011).Article 

    Google Scholar 
    Ohshimo, S., Tanaka, H., Nishiuchi, K. & Yasuda, T. Trophic positions and predator-prey mass ratio of the pelagic food web in the East China Sea and Sea of Japan. Mar. Freshw. Res. 67, 1692–1699. https://doi.org/10.1071/MF15115 (2016).Article 

    Google Scholar 
    Vidal, E. A. G. & Salvador, B. The tentacular strike behavior in squid: functional interdependency of morphology and predatory behaviors during ontogeny. Front. Physiol. 10, 1558. https://doi.org/10.3389/fphys.2019.01558 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407. https://doi.org/10.1016/j.cub.2016.04.002 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Overholtz, W. J., Link, J. S. & Suslowicz, L. E. Consumption of important pelagic fish and squid by predatory fish in the northeastern USA shelf with some fishery comparisons. ICES J. Mar. Sci. 57, 1147–1159. https://doi.org/10.1006/jmsc.2000.0802 (2000).Article 

    Google Scholar 
    Montevecchi, W. A. & Myers, R. A. Prey harvests of seabirds reflect pelagic fish and squid abundance on multiple spatial and temporal scales. Mar. Ecol. Prog. Ser. 117, 1–9. https://doi.org/10.3354/meps117001 (1995).ADS 
    Article 

    Google Scholar  More

  • in

    Reply to: No new evidence for an Atlantic eels spawning area outside the Sargasso Sea

    The Sargasso Sea has long been considered as the spawning area for Atlantic eels, despite the absence of direct observations after more than a hundred years of the survey. We proposed a new insight on the location of Atlantic eels spawning areas eastward of the Sargasso Sea at the intersection between the Mid-Atlantic Ridge and the oceanic fronts1. Our hypothesis is based on a body of corroborating cues from literature. We suggested that European silver eels converge towards the Azores whatever their departure point from Europe and Northern Africa, then they follow the Mid-Atlantic Ridge south westerly until they reach oceanographic fronts where temperature and depths are favourable for reproduction. These orientation behaviours are potentially based on magnetic fields and odours that might be generated by the Mid-Atlantic Ridge volcanic activity and detected by eels during their diel vertical movements. The first favourable meeting point is then located at the crossing between the Mid-Atlantic Ridge and the oceanic thermic isotherms located around 45° W and 26° N. Our hypothesis is supported by (i) microchemical differences between the core of otoliths extracted from leptocephali collected in the Sargasso Sea and from glass eels collected across Europe suggesting that glass eels hatch in different chemical environments than leptocephali (ii) an asymmetric genetic introgression between American and European eels2 suggesting that the overlapping spawning areas favour transport of hybrids towards northern Europe rather than to America and to southern Europe. This supports the possible existence of several distinct spawning areas, where currents favour transport either westward (American eel), north eastward (hybrids and European eels) or eastward (European eels). To test this hypothesis, we developed a transport model and compared the dispersion dynamics of virtual leptocephali released from the Sargasso Sea and from above the Mid-Atlantic Ridge. The transport models showed that virtual eels released from the Mid-Atlantic Ridge reached Europe and America following similar patterns than those released from the Sargasso Sea thus supporting the Mid-Atlantic Ridge spawning hypothesis.Hanel et al.3 have raised several concerns, one of which being that “microchemical evidence was the only was the major argument supporting the Mid-Atlantic Ridge hypothesis”. This was their start point of a critical rebuttal of our findings to question our hypothesis. Instead, we consider that our regrettable error does not fundamentally contradict the possibility that eels do indeed successfully spawn outside the so-called Sargasso Sea.(Comment 1) The importance of seamounts as orientation and navigation cues towards a spawning area was hypothesized, no clear mechanism is proposed for how the migrating eels can detect the ridge.(Response 1) Our Hypothesis does not state that eels find a kind of shallow seamount where they spawn. Instead, we propose that orientation of silver eels during their spawning migration could be based on a combination of behavioural mechanisms including geomagnetism, odours, temperature and salinity gradients4,5,6,7,8. These environmental cues and related gradients are strongly controlled or influenced by the topography of the oceanic floor. The Mid-Atlantic Ridge and the Mariana areas have similarities with ridges and seamount chains oriented perpendicularly to temperature and salinity fronts surrounded by deep abyssal plains. Our Mid-Atlantic Ridge hypothesis proposed that Atlantic eels could use similar signposts as Japanese eel, which hatch near the Mariana Ridge9. Indeed, as for the Japanese eels, the orientation mechanism that lead Atlantic eels from the growth areas to the ridge are not understood, but the empirical observations from Righton et al.10 suggest that eels converge towards the Azores whatever their release point across Europe and that their diel vertical migration takes them down to 500–1000 m every day. The reasons for this behaviour are not elucidated, but since they cost energy, they are likely compensated by advantages such as orientation together with predator avoidance and sexual maturation11,12,13. Following our hypothesis, eels search for orientation cues during DVM. The geomagnetic fields are suggested to provide detectable information for silver eels on their oceanic spawning migration14. However, whether magnetic characteristics of the Mid-Atlantic ridge may provide detectable orientation cues still needs to be documented. Similarly, the existence of detectable odours that might be generated by the tectonic activity and hydrodynamics of the Mid-Atlantic ridge and serve as orientation cues for eels is still unknown. Hydrodynamic mesoscale turbulence and vertical flows have been shown to be generated along the Mid-Atlantic Ridge15, which we propose eels might be able to detect. There are no well supported spawning areas of freshwater eels other than A. japonica and one north Pacific population of A. marmorata. The spawning areas of the other species remain unknown. In the south west Indian Ocean, spawning areas of 3 species (A. mossambica, A. marmorata and A. bicolor) were proposed on the east of the Mascarene Ridge with a similar topography (although shallower) than along the Mid-Atlantic Ridge and the Mid-Pacific ridge and seamounts16,17. Inaccurate spawning areas were also proposed for the South Pacific A. diffenbachii between Fiji, New Caledonia and New Zealand; in the vicinity of a number of oceanic ridges and trenches18 that may also serve as landmarks. Because all eel species studied on their spawning migration show similar diel vertical migration behaviours, it is likely that common orientation mechanisms could lead to detection of oceanographic variability related to the topography of the sea floor and related geomagnetism, local hydrodynamic turbulence and odour caused by vertical currents. This kind of oceanic landscape (chains of seamounts) occurs on narrow areas which strongly increase the meeting probability of spawners searching for partners and favourable spawning places.(Comment 2) Drift simulation with departures from the Mid-Atlantic Ridge and from the Sargasso Sea showed similar results. This is not surprising since the modelling of larval drift seems essentially just to reflect the slow westward drift prevailing both in the Sargasso Sea and Mid-Atlantic Ridge areas. The assumption of using the intersection of the Mid-Atlantic Ridge by the two thermal fronts as presumed spawning places seems to have little basis. There is no indication neither of one nor two temperature fronts at depths where leptocephali are found along a 45  W latitudinal section in the middle of the Mid-Atlantic Ridge area.(Response 2) We agree with the comments that the similar distributions between the departure from the Sargasso Sea and the Mid-Atlantic Ridge are expected, as they mainly reflect the ocean circulation. This is also what we wanted to address, if different departures could lead to similar distributions, either Sargasso Sea or Mid-Atlantic Ridge could be candidates for the spawning area. We also agree that many eel larvae were collected at the two fronts in the Sargasso Sea, but not near the Mid-Atlantic Ridge. However, if the departure from the Sargasso Sea and the Mid-Atlantic Ridge led to similar distributions after 720 days, they were not the result of westward current, but the cause of a relatively quiet ocean in the Sargasso Sea and its surrounding area (i.e. Fig. 1). Without prevailing current, small larvae were mainly transported by ocean dispersion, and would later be transported by the major currents that lie in the north (Azores Current), south (North Equatorial Current), and west (Gulf Stream) of the Sargasso Sea. So, we compared departures at 100 km from west and east of the Mid-Atlantic Ridge. Subtle differences occurred (figure below). V-larvae departing from the east of the ridge dispersed relatively less northward compared to larvae released 100 km at the west of the ridge (this figure and original paper). Secondly v-larvae released at the south east of the study area (red dots on the figure, right panel) disperse relatively less towards the Caribbean Sea than when released at the west (red dots of the figure, left panel). This suggests that the dispersion of European eel larvae is optimum in an area comprised between the Mid-Atlantic Ridge and the Sargasso Sea (our previous simulation in the original paper), and declines eastward of the Mid-Atlantic Ridge (present simulation below).Figure 1Distribution of v-larvae released departure at the west (left) and east (right) of Mid-Atlantic Ridge. The tracking method is the same as described in the paper, v-larvae were release within 100 km west and east of the ridge.Full size imageHanel et al. also indicate that the convergence front weakens from West, in the Sargasso Sea, to East above the ridge. We consider that this constitutes an additional argument that the Mid-Atlantic Ridge is indeed at the edge of the convergence zone at the first area of the Atlantic Ocean where currents and temperatures are favourable for reproduction of eels.(Comment 3) Elevated manganese (Mn) concentrations in the otolith cores of glass eels as a hint for successful spawning only in areas with volcanic activity based on observations of Martin et al.18. However, the results from Martin et al.19 were entirely misread, resulting in a mis-interpretation of the data.(Response 3) Based on Martin et al.19, we stated that higher concentrations of Mn were found in glass eels’ otoliths collected across European estuaries than in otoliths of leptocephali larvae sampled in the Sargasso Sea. We suggested that this was the indication that glass eels were born in areas where volcanic activity produces high loads of Mn and other metals. This formed one of the arguments supporting our hypothesis that Atlantic eels could spawn in the proximity to the Mid-Atlantic Ridge. Thanks to Reinhold Hanel and colleagues, we realized that Martin et al.19 in fact showed that concentrations of Mn were higher in the center of otoliths of leptocephali larvae than in those of glass eels collected along the European coasts. Consequently, this argument is no longer valid. Nonetheless, otolith microchemical fingerprints significantly differ between young leptocephali sampled in the Sargasso Sea in 2008 and glass eels collected in Europe, hence suggesting that they have distinct spawning areas19. These authors indicated that the incorporation of elements from the environment to the otoliths needed to be better understood, namely as stated by Hanel et al., because of physiological and environmental control such as temperature and salinity. In addition, they outline that the dynamics of elements from the sea floor to the subsurface is not well understood and could be slow. We totally share these conclusions that are well known facts, and that simply confirm that environmental characteristics (trace element concentrations, salinity and temperature) are responsible for the elemental signature of the central part of otoliths. Hanel et al. also state that the composition of otoliths are also controlled by elemental maternal transfer from the egg to the otoliths. We are aware of this fact that has been shown is other fish species. However, the laser ablations were performed after the first feed check where maternal influence is reduced and is overruled by environment18. This supports the idea that glass eels collected in Europe do not originate from the same environments as leptocephali captured in the Sargasso Sea.(Comment 4) Insufficient sampling efforts and a limited area coverage of recent surveys as a possible reason for “false negative” observations along the Mid-Atlantic Ridge. This statement does not recognize the investigations by Johannes Schmidt as well as earlier and later surveys in the Mid-Atlantic Ridge area. The ICES “Eggs and Larvae database” records a total of 48 A anguilla leptocephali caught within the area 15–29 N and 43–48 W, at 10 stations between 1913 and 1970.Thanks for pointing out that larvae have been caught near the Mid-Atlantic Ridge, in which larvae were not newly hatched because of their relatively large size (23–45 mm). Ocean currents were weak and could flow either eastward or westward in this region, indicating that the spawning could occur from west to east of the ridge, without considering swimming. Note that ocean currents could change directions, so that it was also possible to spawn near the ridge after been transported eastward and westward.The observed distribution of small larvae  More

  • in

    Author Correction: MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants

    Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, DenmarkMorten Kam Dahl Dueholm, Marta Nierychlo, Kasper Skytte Andersen, Vibeke Rudkjøbing, Simon Knutsson, Per H. Nielsen, Mads Albertsen & Per Halkjær NielsenEnvironmental Science Department, The Institute for Scientific and Technological Research of San Luis Potosi (IPICYT), San Luis Potosí, MexicoSonia ArriagaDepartment of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn, NorwayRune BakkeCenter for Microbial Ecology and Technology, Ghent University, Ghent, BelgiumNico BoonInstitute for Water and Wastewater Technology, Durban University of Technology, Durban, South AfricaFaizal Bux & Sheena KumariVeolia Water Technologies AB, AnoxKaldnes, Lund, SwedenMagnus ChristenssonDepartment Of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, MalaysiaAdeline Seak May ChuaEnvironmental Engineering, Newcastle University, Newcastle, EnglandThomas P. CurtisThe Cytryn Lab, Microbial Agroecology, Volcani Center, Agricultural Research Organization, Rishon Lezion, IsraelEddie CytrynINGEBI-CONICET, University of Buenos Aires, Buenos Aires, ArgentinaLeonardo ErijmanDepartment of Biochemistry and Microbial Genetics, Biological Research Institute “Clemente Estable”, Montevideo, UruguayClaudia EtchebehereNIREAS-International Water Research Center, University of Cyprus, Nicosia, CyprusDespo Fatta-KassinosEnvironmental Engineering, McGill University, Montreal, QC, CanadaDominic FrigonSchool of Microbiology, Universidad de Antioquia, Medellín, ColombiaMaria Carolina Garcia-ChavesSchool of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USAApril Z. GuWater Chemistry and Water Technology and DVGW Research Laboratories, Karlsruhe Institute of Technology (KIT), Karlsruhe, GermanyHarald HornDavid Jenkins & Associates, Inc, Kensington, CA, USADavid JenkinsInstitute for Water Quality and Resource Management, TU Wien, Vienna, AustriaNorbert KreuzingerWater Innovation and Research Centre, University of Bath, Bath, EnglandAna LanhamSingapore Centre of Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Singapore, SingaporeYingyu LawWater Desalination and Reuse Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi ArabiaTorOve LeiknesProcess Engineering in Urban Water Management, ETH Zürich, Zürich, SwitzerlandEberhard MorgenrothDepartment of Biology, Warsaw University of Technology, Warsaw, PolandAdam MuszyńskiEnvironmental Microbial Genetics Lab, La Trobe University, Melbourne, VIC, AustraliaSteve PetrovskiTechnologies and Evaluation Area, Catalan Institute for Water Research, ICRA, Girona, SpainMaite PijuanVA Tech Wabag Ltd, Chennai, IndiaSuraj Babu PillaiBiochemical Engineering Group, Universidade Nova de Lisboa, Lisboa, PortugalMaria A. M. ReisState Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, ChinaQi RongWater Research Institute IRSA – National Research Council (CNR), Rome, ItalySimona RossettiLa Trobe University, Melbourne, VIC, AustraliaRobert SeviourDepartment of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USANick TookerKemira Oyj, Espoo R&D Center, Espo, FinlandPirjo VainioEnvironmental Biotechnology, TU Delft, Delft, The NetherlandsMark van LoosdrechtVA Tech Wabag, Philippines Inc., Makati City, PhilippinesR. VikramanDepartment of Water Technology and Environmental Engineering, University of Chemistry and Technology, Prague, Czech RepublicJiří WannerEnvironmental Life Science Engineering, TU Delft, Delft, The NetherlandsDavid WeissbrodtSchool of Environment, Tsinghua University, Beijing, ChinaXianghua WenEnvironmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong, Hong KongTong Zhang More

  • in

    Cumulative cultural evolution and mechanisms for cultural selection in wild bird songs

    Study population and song recordingsAll animal procedures were carefully reviewed by the Williams College IACUC (WH-D), the Bowdoin College Research and Oversight Committee (2009–18), and the University of Guelph Animal Care Committee (08R601), and were carried out as specified by the Canadian Wildlife Service (banding permit 10789D).We studied Savannah sparrows (Passerculus sandwichensis) at the Bowdoin Scientific Station on Kent Island, New Brunswick, Canada (44.5818°N, 66.7547°W). Since 1988, individuals nesting within a 10 ha study area in the middle of the island (30–70 pairs each year; part of a larger population of 350–500 males breeding on Kent Island and two adjacent islands) have been colour-banded to facilitate visual identification, and complete demographic information is available for birds on the study site (though not for the entire population) for the years 1989–2004 and 2009–2013. Because of strong natal and breeding philopatry51, birds hatched on the study site itself represent 40–80% of adult breeders in that area, and because of the systematic banding program, ages are known. Each year adds a new generation to the population, with yearlings making up approximately half of the adult breeding males. The birds banded and recorded on the study site are estimated to make up 10–20% of the Savannah sparrow population on Kent Island and two nearby islands.Details of the recording methods used in this study (covering the years 1980, 1982, 1988-9, 1993-8, and 2003–13) can be found elsewhere36,49. Using digitally generated sound spectrograms (using SoundEdit Pro and Audacity), birds were scored as having either a) high note cluster=a final introductory segment interval including at least two different note types, or b) a click train=one or more introductory segment intervals including at least two clicks and no other note types, or c) both features36 (see Supplementary Fig. 1 for a full description of note types). Although a small proportion of birds (mean = 8.3%) did not include either feature in their songs (such birds either had no feature in the introductory segment intervals or one non-click note type in the final interval), we did not include this option in the model and omitted these birds from summaries of the data. We did not include data after the breeding year 2013 because of we began an experimental field tutoring study in the summer of 201364.ModellingWe used a dynamic, discrete time model which allowed us to focus our analysis to specific time points within the year that are related to song learning (the beginning and end of the breeding season). These were: (1) the return of older birds between breeding seasons, (2) the recruitment of young birds singing newly crystallized songs in the spring, and (3) reproduction, resulting in the addition of juveniles during the summer breeding season.Because survival data were not available for every year during the time span we studied, we captured the variation in survival rates observed in the field57 by using a binomial distribution centered on the average historical survival rate for each age class (addressing the possibility that cultural drift resulting from random differences in survival rates was responsible for the shift in song features). The model incorporates stochasticity to capture the variation in population dynamics and return rates by assigning parameter values for survival and return rates from empirically generated probability distributions.We did not include spatial distribution of song variants in the model; although spatial patterns can be important for the dynamics of language loss58, territories with birds singing click trains and high note clusters were intermixed and no spatial structure was apparent (Fig. 3).The model assumes that males choose which features to incorporate into the introductory sections of their songs during song development. Individuals fall into one of six mutually exclusive classes of male Savannah sparrows. The classes are defined by (1) the bird’s developmental stage in the song learning process: juvenile (J, the first year, when the song is plastic) or adult (A, after the first spring, when the song is crystallized), and (2) the variant or variants sung as part of the bird’s introduction (high note clusters, click trains, or both). Denoting note high note clusters with X and click trains with C, the adult classes are therefore AX, AC, and AXC, and the juvenile classes are JX, JC, and JXC. The sum of the individuals in these classes is the total male population.We used two times during each year – late spring and late summer – to correspond to stages in song development (Fig. 5). At a given time t, when breeding is underway in the late spring, the male population consists entirely of adults singing crystallized song, and therefore each juvenile class is empty. At the end of the summer, the population of males has been augmented by juveniles, which are initially assigned to the same variant class as their fathers. To capture these dynamics, we define an intermediate time step, denoted ti. Time t + 1 then corresponds to the following breeding season (late spring), when juvenile males hatched the previous year have completed song development, crystallized their songs, and joined the adult class.Fig. 5: Model of song development.We used two age classes (J = juvenile and A = adult) and three classes of introductions (C = click trains, X = high note clusters, and  XC = both). In the late spring of a given year (time = t), only adult males are present. In late summer, those adults have bred and both they and juvenile males are present; at this intermediate time (ti) each male is initially allocated the same introduction type as his father (solid lines). Then, as song development progresses and juvenile males can be influenced by other tutors, they may retain their initial introduction type or switch to either of the other two types (dashed lines) before they crystallize their songs late in the following spring (time = t+1), and join the breeding cohort, which also includes adult males from the previous year who returned to breed again.Full size imageIn the late summer the male population increases with the addition of juveniles hatched that year, some of which will return to join the singing population the following year; survivors will return to breed within a few hundred meters of where they hatched51. To fit the observed historical decline in the Kent Island population57, the total number of returning juveniles, r (including both those hatched on site and those immigrating from nearby populations at time), follows a Poisson distribution where m = 33.6 – .182x and x is the number of years since 1980 (this function results in a decline of 5 males per decade; the initial number on the study site used in the model, 70, was extrapolated from historical data). The size of each returning juvenile class at time ti then takes the form:$${{{{{{rm{JY}}}}}}}_{{{{{{{rm{t}}}}}}}^{{{{{{rm{i}}}}}}}} sim {{{{{rm{Poisson}}}}}}left(mright)frac{{{{{{rm{A}}}}}}{{{{{{rm{Y}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}}{{{{{{rm{A}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{rm{t}}}}}}}+{{{{{rm{A}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{rm{t}}}}}}}+{{{{{rm{AX}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{rm{t}}}}}}}}$$
    (1)
    for each Y ∈ {X, C, XC}.After the following winter, the proportion of surviving adults at time t + 1 follows a binomial distribution where the mean survival rate s = 0.48 is derived from historical data. Therefore, each adult class takes the form:$${{{{{rm{A}}}}}}{{{{{{rm{Y}}}}}}}_{{{{{{rm{t}}}}}}+1} sim {{{{{rm{Binomial}}}}}}left({{{{{rm{AY}}}}}},{{{{{rm{s}}}}}}right)* {{{{{rm{A}}}}}}{{{{{{rm{Y}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}$$
    (2)
    At the beginning of the next breeding season, juveniles complete song learning64, choosing which variant to crystallize as part of the song, and enter an adult song class; thus all of the juvenile classes disappear at t + 1. Which adult class juveniles join depends on separate learning functions for each of the two variants, ϕX for the high note cluster and ϕC for the click train. The ϕ function takes values between 0 and 1 and gives the probability of crystallizing a song form during the transition from natal year to breeding, depending upon the frequency-dependent bias and selection parameters (see below). These functions define the proportion of features that appear in the next generation as compared to that of the previous generation. Therefore we have:$${{{{{rm{A}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{rm{t}}}}}}+1}={left({{{upphi }}}_{{{{{{rm{X}}}}}}}right)}^{2}{{{{{rm{J}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{left(1-{{{upphi }}}_{{{{{{rm{C}}}}}}}right)}^{2}{{{{{rm{J}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{{{upphi }}}_{{{{{{rm{X}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{C}}}}}}}right){{{{{rm{JX}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{{{{{rm{A}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}$$
    (3)
    $${{{{{rm{A}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{rm{t}}}}}}+1}={left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right)}^{2}{{{{{rm{J}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{left({{{upphi }}}_{{{{{{rm{C}}}}}}}right)}^{2}{{{{{rm{J}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right){{{upphi }}}_{{{{{{rm{C}}}}}}}{{{{{rm{JX}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+{{{{{rm{A}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}$$
    (4)
    $${{{{{rm{A}}}}}}{{{{{{rm{XC}}}}}}}_{{{{{{rm{t}}}}}}+1}=2{{{upphi }}}_{{{{{{rm{X}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right){{{{{rm{J}}}}}}{{{{{{rm{X}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+2{{{upphi }}}_{{{{{{rm{C}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{C}}}}}}}right){{{{{rm{J}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}+({{{upphi }}}_{{{{{{rm{X}}}}}}}{{{upphi }}}_{{{{{{rm{C}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right)left(1-{{{upphi }}}_{{{{{{rm{C}}}}}}}right){{{{{rm{JX}}}}}}{{{{{{rm{C}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}})+{{{{{rm{A}}}}}}{{{{{{rm{XC}}}}}}}_{{{{{{{rm{t}}}}}}}_{{{{{{rm{i}}}}}}}}$$
    (5)
    The sum of probabilities defining all of song crystallization outcomes for the songs of fathers with song type X is:$${left({{{upphi }}}_{{{{{{rm{X}}}}}}}right)}^{2}+{left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right)}^{2}+2{{{upphi }}}_{{{{{{rm{X}}}}}}}left(1-{{{upphi }}}_{{{{{{rm{X}}}}}}}right)=1$$
    (6)
    Learning curvesTo define how young males’ song learning is influenced by the songs they hear, we used learning curves based on type III Holling response curves59 which provide a means to numerically capture functional responses. In our model, the type III curve models the response of juvenile to the song form of adults in the population based on two variables: (1) frequency-dependent bias that favors one form based on its prevalence within the adult population, and (2) selection that favors a particular form of the song.The learning curves, ϕx for the high note cluster and ϕc for the click train, are modified forms of the type III Holling response curve):$${{{upphi }}}_{{{{{{rm{x}}}}}}}=frac{{x}^{{{{{{rm{beta }}}}}}}/{{{{{rm{sigma }}}}}}}{{(1-x)}^{{{{{{rm{beta }}}}}}}+({x}^{{{{{{rm{beta }}}}}}}/{{{{{rm{sigma }}}}}})}$$
    (7)
    and$${{{upphi }}}_{{{{{{rm{c}}}}}}}=frac{{{{{{rm{sigma }}}}}},{c}^{{{{{{rm{beta }}}}}}}}{{(1-c)}^{{{{{{rm{beta }}}}}}}+{{{{{rm{sigma }}}}}}{{c}}^{{{{{{rm{beta }}}}}}}}$$
    (8)
    where x is the proportion of the high note cluster within the population, c is the proportion of the click train within the population, β is frequency-dependent bias (favoring learning the novel or retaining the common variant), and σ is selection on the novel variant (a preference for learning the variant that is not dependent on frequency of the variant and includes factors such as prestige bias, success bias, status, and content bias). Note that the two learning curves do not have identical equations, because selection is not frequency-dependent. In these equations, β  > 1 corresponds to conformist selection, and when β  1 correspond to selection for a novel variant and values of σ  More