More stories

  • in

    Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host

    Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594–1257594.PubMed 
    Article 
    CAS 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jephcott TG, Alves-de-Souza C, Gleason FH, van Ogtrop FF, Sime-Ngando T, Karpov SA, et al. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecol. 2016;19:47–58.Article 

    Google Scholar 
    Alacid E, Reñé A, Garcés E. New Insights into the Parasitoid Parvilucifera sinerae Life Cycle: The Development and Kinetics of Infection of a Bloom-forming Dinoflagellate Host. Protist. 2015;166:677–99.PubMed 
    Article 

    Google Scholar 
    Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol. 2007;9:1233–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science 2015;348:1262073.de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.PubMed 
    Article 
    CAS 

    Google Scholar 
    Siano R, Alves-De-Souza C, Foulon E, Bendif M, Simon E, Guillou NL. et al. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences. 2011;8:267–78.Article 

    Google Scholar 
    Coats DW. Parasitic life styles of marine dinoflagellates. J Eukaryot Microbiol. 1999;46:402–9.Article 

    Google Scholar 
    Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA. 2015;112:5767–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    John U, Lu Y, Wohlrab S, Groth M, Janouškovec J, Kohli GS, et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv. 2019;5:1–12.Article 
    CAS 

    Google Scholar 
    McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastid in human parasites. Nature. 1996;381:482.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sibbald SJ, Archibald JM. Genomic Insights into Plastid Evolution. Genome Biol Evol. 2020;12:978–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Not F, Probert I, Ribeiro CG, Crenn K, Guillou L, Jeanthon C, et al. Photosymbiosis in Marine Pelagic Environments. In: M. S. Cretoiu (ed). The Marine Microbiome. 2016. New York, NY: Springer International Publishing, pp 305–32.Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10:1–11.Article 
    CAS 

    Google Scholar 
    Coats DW, Park MG. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity. J Phycol. 2002;38:520–8.Article 

    Google Scholar 
    Kayal E, Alves-de-Souza C, Farhat S, Velo-Suarez L, Monjol J, Szymczak J, et al. Dinoflagellate Host Chloroplasts and Mitochondria Remain Functional During Amoebophrya Infection. Front Microbiol. 2020;11:1–11.Article 

    Google Scholar 
    Miller JJ, Delwiche CF, Coats DW. Ultrastructure of Amoebophrya sp. and its Changes during the Course of Infection. Protist. 2012;163:720–45.PubMed 
    Article 

    Google Scholar 
    Decelle J, Stryhanyuk H, Gallet B, Veronesi G, Schmidt M, Balzano S, et al. Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Curr Biol. 2019;29:968–978.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Uwizeye C, Mars Brisbin M, Gallet B, Chevalier F, LeKieffre C, Schieber NL, et al. Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci USA 2021;118.Uwizeye C, Decelle J, Jouneau P, Flori S, Gallet B, Keck J, et al. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nat Commun. 2021;12:1049.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vis. 2004;60:91–110.Article 

    Google Scholar 
    Hennies J, Lleti JMS, Schieber NL, Templin RM, Steyer AM, Schwab Y. AMST: alignment to median smoothed template for focused ion beam scanning electron microscopy image stacks. Sci Rep. 2020;10:1–10.Article 
    CAS 

    Google Scholar 
    Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. Intraoperative Imaging and Image-Guided Therapy. 2014. Springer New York, New York, NY, pp 277–89.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J, et al. Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci. 2017;8:1–18.
    Google Scholar 
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.CAS 
    PubMed 
    Article 

    Google Scholar 
    Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, et al. Comparative time-scale gene expression analysis highlights the infection processes of two amoebophrya strains. Front Microbiol. 2018;9:1–19.Article 

    Google Scholar 
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.CAS 
    Article 

    Google Scholar 
    Cachon J. Contribution à l’étude des péridiniens parasites. Cytologie, cycles évolutifs Ann Sci Nat Zool. 1964;6:1–158.
    Google Scholar 
    Van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol. 2005;57:405–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tyler KM, Matthews KR, Gull K. Anisomorphic cell division by African trypanosomes. Protist. 2001;152:367–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jakob M, Hoffmann A, Amodeo S, Peitsch C, Zuber B, Ochsenreiter T. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci Rep. 2016;6:1–13.Article 
    CAS 

    Google Scholar 
    Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci. 2017;130:637–47.CAS 
    PubMed 

    Google Scholar 
    Ovciarikova J, Lemgruber L, Stilger KL, Sullivan WJ, Sheiner L. Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Sci Rep. 2017;7:1–13.Article 
    CAS 

    Google Scholar 
    Nishi M, Hu K, Murray JM, Roos DS. Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci. 2008;121:1559–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Long M, Marie D, Szymczak J, Toullec J, Bigeard E, Sourisseau M, et al. Dinophyceae can use exudates as weapons against the parasite Amoebophrya sp. (Syndiniales). ISME Commun. 2021;1:34.Article 

    Google Scholar 
    Harris E, Yoshida K, Cardelli J, Bush J. Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in. Dictyostelium J Cell Sci. 2001;114:3035–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: Novel structural findings and functional insights. Biochim Biophys Acta – Bioenerg. 2014;1837:857–79.CAS 
    Article 

    Google Scholar 
    Cox D, Lee DJ, Dale BM, Calafat J, Greenberg S. A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci USA. 2000;97:680–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vines JH, King JS. The endocytic pathways of Dictyostelium discoideum. Int J Dev Biol. 2019;63:461–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Decelle J, Veronesi G, LeKieffre C, Gallet B, Chevalier F, Stryhanyuk H, et al. Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environ Microbiol. 2021;23:6569–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sigee DC, Kearns LP. Levels of dinoflagellate chromosome-bound metals in conditions of low external ion availability: An X-ray microanalytical study. Tissue Cell. 1981;13:441–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinchuk GE, Ammons C, Culley DE, Li SMW, McLean JS, Romine MF, et al. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: Ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol. 2008;74:1198–208.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caffaro CE, Boothroyd JC. Evidence for Host Cells as the Major Contributor of Lipids in the Intravacuolar Network of Toxoplasma-Infected Cells. Eukaryot Cell. 2011;10:1095–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez J, Bittame A, Massera C, Vasseur V, Effantin G, Valat A, et al. Intravacuolar membranes regulate CD8 T cell recognition of membrane-bound Toxoplasma gondii protective antigen. Cell Rep. 2015;13:2273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, et al. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. J Biol Chem. 2016;291:3725–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nolan SJ, Romano JD, Coppens I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 2017;13:e1006362.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. MBio. 2019; 10:e00589-19.Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, et al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell. 2017;171:148–162.e19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeeman SC, Kossmann J, Smith AM. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010;61:209–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, et al. The molecular basis for sugar import in malaria parasites. Nature. 2020;578:321–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blume M, Rodriguez-Contreras D, Landfear S, Fleige T, Soldati-Favre D, Lucius R, et al. Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci USA. 2009;106:12998–3003.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science (80-). 2012;335:207–11.CAS 
    Article 

    Google Scholar 
    Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L. Mechanism of substrate translocation in an alternating access transporter. Cell. 2017;169:96–107.e12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amiar S, Katris NJ, Berry L, Dass S, Duley S, Arnold CS, et al. Division and adaptation to host environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling. Cell Rep. 2020;30:3778–3792.e9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem. 2017;292:11009–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomes AF, Magalhães KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, et al. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasit Vectors. 2014;7:47.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol. 2016;32:56–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol. 2014;30:170–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz-Gómez SA, Wideman JG, Roger AJ, Slamovits CH, Agashe D. The origin of mitochondrial cristae from alphaproteobacteria. Mol Biol Evol. 2017;34:943–56.PubMed 

    Google Scholar 
    Evers F, Cabrera-Orefice A, Elurbe DM, Kea-te Lindert M, Boltryk SD, Voss TS, et al. Composition and stage dynamics of mitochondrial complexes in Plasmodium falciparum. Nat Commun. 2021;12:1–17.Article 
    CAS 

    Google Scholar 
    Krungkrai J, Prapunwattana P, Krungkrai SR. Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite. 2000;7:19–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Krungkrai J. The multiple roles of the mitochondrion of the malarial parasite. Parasitology 2004;129:511–524. https://doi.org/10.1017/S0031182004005888.Lee JW. Protonic capacitor: elucidating the biological significance of mitochondrial cristae formation. Sci Rep. 2020;10:1–14.Article 
    CAS 

    Google Scholar 
    Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 2020;39:1–24.Article 
    CAS 

    Google Scholar 
    Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol. 2020;30:R575–R588.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta – Mol Cell Biol Lipids. 2016. Elsevier B.V., 1861: 900-12.Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, et al. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun. 2021;12:120.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Flegontov P, Michálek J, Janouškovec J, Lai DH, Jirků M, Hajdušková E, et al. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol. 2015;32:1115–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007;446:88–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishida T, Hatama S, Ishikawa Y, Kadota K. Intranuclear coccidiosis in a calf. J Vet Med Sci. 2009;71:1109–13.PubMed 
    Article 

    Google Scholar 
    Pecka Z. Life cycle and ultrastructure of Eimeria stigmosa, the intranuclear coccidian of the goose (Anser anser domesticus). Folia Parasitol (Praha). 1992;39:105–14.CAS 

    Google Scholar 
    Voleman L, Doležal P. Mitochondrial dynamics in parasitic protists. PLoS Pathog. 2019;15:e1008008.Bílý T, Sheikh S, Mallet A, Bastin P, Pérez‐Morga D, Lukeš J, et al. Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei. J Eukaryot Microbiol. 2021;68:e12846.Elliott DA, McIntosh MT, Hosgood HD, Chen S, Zhang G, Baevova P, et al. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2008;105:2463–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Counteracting forces of introgressive hybridization and interspecific competition shape the morphological traits of cryptic Iberian Eptesicus bats

    Ottenburghs, J. et al. A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evol. Biol. 17, 14 (2017).Article 

    Google Scholar 
    Baiz, M. D., Tucker, P. K. & Cortés-Ortiz, L. Multiple forms of selection shape reproductive isolation in a primate hybrid zone. Mol. Ecol. 28, 1056–1069 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Slager, D. L. et al. Cryptic and extensive hybridization between ancient lineages of American crows. Mol. Ecol. 29, 956–969 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Introgressive hybridization and natural selection in Darwin’s finches. Biol. J. Linnean Soc. 117, 812–822 (2016).Article 

    Google Scholar 
    Pauquet, G., Salzburger, W. & Egger, B. The puzzling phylogeography of the haplochromine cichlid fish Astatotilapia burtoni. Ecol. Evol. 8, 5637–5648 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).Article 

    Google Scholar 
    Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, R. P., Peterson, A. T. & Gómez-Laverde, M. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16 (2002).Article 

    Google Scholar 
    Gramlich, S., Wagner, N. D. & Horandl, E. RAD-seq reveals genetic structure of the F-2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC Plant Biol. 18, 12 (2018).Article 

    Google Scholar 
    Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Djogbénou, L. et al. Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS ONE 3, e2172 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Enciso-Romero, J. et al. Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Mol. Ecol. 26, 5160–5172 (2017).PubMed 
    Article 

    Google Scholar 
    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Latch, E. K., Harveson, L. A., King, J. S., Hobson, M. D. & Rhodes, J. R. Assessing hybridization in wildlife populations using molecular markers: a case study in wild turkeys. J. Wildl. Manag. 70, 485–492 (2006).Article 

    Google Scholar 
    Oliveira, R., Godinho, R., Randi, E. & Alves, P. C. Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula?. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 363, 2953–2961 (2008).Article 

    Google Scholar 
    Nichols, P. et al. Secondary contact seeds phenotypic novelty in cichlid fishes. Proc. R. Soc. B Biol. Sci. 282, 8 (2015).
    Google Scholar 
    Yang, W. Z. et al. Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Mol. Ecol. 27, 4213–4224 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boratyński, Z. et al. Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?. BMC Evol. Biol. 11, 355 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mondal, M. et al. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nat. Genet. 48, 1066–1070 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S. & Alves, P. C. The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol. Ecol. 23, 4617–4630 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mims, M. C., Hulsey, C. D., Fitzpatrick, B. M. & Streelman, J. T. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Mol. Ecol. 19, 940–951 (2010).PubMed 
    Article 

    Google Scholar 
    Salazar, C. et al. Genetic evidence for hybrid trait speciation in heliconius butterflies. PLoS Genet. 6, e1000930 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Naisbit, R. E., Jiggins, C. D. & Mallet, J. Mimicry: developmental genes that contribute to speciation. Evol. Dev. 5, 269–280 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W., Dasmahapatra, K. K., Mallet, J., Moreira, G. R. P. & Kronforst, M. R. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17, 15 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, W., Kunte, K. & Kronforst, M. R. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using De Novo transcriptome assemblies. Genome Biol. Evol. 5, 1233–1245 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science (New York, NY). 360, 1355–1358 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Melville, J. Competition and character displacement in two species of scincid lizards. Ecol. Lett. 5, 386–393 (2002).Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Character displacement and the origins of diversity. Am. Nat. 176, S26–S44 (2010).PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    Kooyers, N. J., James, B. & Blackman, B. K. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evol. Int. J. Org. Evol. 71, 1205–1221 (2017).CAS 
    Article 

    Google Scholar 
    Adams, D. C. & Rohlf, F. J. Ecological character displacement in Plethodon: Biomechanical differences found from a geometric morphometric study. Proc. Natl. Acad. Sci. 97, 4106–4111 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science (New York, NY) 313, 224–226 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Pfennig, D. W. & Murphy, P. J. Character displacement in polyphenic tadpoles. Evol. Int. J. Org. Evol. 54, 1738–1749 (2000).CAS 
    Article 

    Google Scholar 
    Jones, G. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Adv. Study Behav. 26, 317–354 (1997).Article 

    Google Scholar 
    Marsteller, S., Adams, D. C., Collyer, M. L. & Condon, M. Six cryptic species on a single species of host plant: morphometric evidence for possible reproductive character displacement. Ecol. Entomol. 34, 66–73 (2009).Article 

    Google Scholar 
    Tene Fossog, B. et al. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol. Appl. 8, 326–345 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ibáñez, C., García-Mudarra, J. L., Ruedi, M., Stadelmann, B. & Juste, J. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol. 8, 277–297 (2006).Article 

    Google Scholar 
    Juste, J. et al. Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol. Phylogenet. Evol. 31, 1114–1126 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreber J. Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen. Erlangen – Expedition des Schreber’schen säugthier- und des Esper’schen Schmetterlingswerkes. Ernst Mayr Library of the MCZ, 1774–1855 (Harvard, 1774).Temminck, C. J. Monographies de Mammologie, ou description de quelques genres de Mammifères, dont les espèces ont été observes dans les différens Musées de l’Europe, Vol. 2, No. 302, 26–70 (G. Dufour et Ed. D’Ocagne, 1840).Centeno-Cuadros, A. et al. Comparative phylogeography and asymmetric hybridization between cryptic bat species. J. Zool. Syst. Evol. Res. 57, 1004–1018 (2019).Article 

    Google Scholar 
    Santos, H. et al. Shaping of bat cryptic distribution in Iberia. Biol. J. Linnean Soc. 112, 150–162 (2014).Article 

    Google Scholar 
    Novella-Fernandez, R. et al. Broad-scale patterns of geographic avoidance between species emerge in the absence of fine-scale mechanisms of coexistence. Divers. Distrib. 27, 1606–1618 (2021).Article 

    Google Scholar 
    Neubaum, M. A., Douglas, M. R., Douglas, M. E. & O’Shea, T. J. Molecular ecology of the big brown bat (Eptesicus fuscus): genetic and natural history variation in a hybrid zone. J. Mammal. 88, 1230–1238 (2007).Article 

    Google Scholar 
    Worthington-Wilmer, J. & Barratt, E. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res. News 37(1), 1–4 (1996).
    Google Scholar 
    Illumination, I.C.o. A colour appearance model for colour management systems: CIECAM02. Technical Report No CIE 159, 2004 (2004).Maroco, J. Análise estatística com utilização do SPSS. 3ª edição. Edições Silabo (2010).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. Kernlab: an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004).Article 

    Google Scholar 
    Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://cran.r-project.org/web/packages/e1071/index.html (2012).Redgwell, R. D., Szewczak, J. M., Jones, G. & Parsons, S. Classification of echolocation calls from 14 species of bat by support vector machines and ensembles of neural networks. Algorithms 2, 907–924 (2009).Article 

    Google Scholar 
    Ochoa-López, S. et al. Ontogenetic changes in the targets of natural selection in three plant defenses. New Phytol. 226, 1480–1491 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Phenotypic and genetics effects of hybridization in Darwin’s finches. Evol. Int. J. Org. Evol. 48, 297–316 (1994).Article 

    Google Scholar 
    Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R. & Tabin, C. J. Bmp4 and morphological variation of beaks in Darwin’s finches. Science (New York, NY). 305, 1462–1465 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    von Holdt, B. M., Kays, R., Pollinger, J. P. & Wayne, R. K. Admixture mapping identifies introgressed genomic regions in North American canids. Mol. Ecol. 25, 2443–2453 (2016).Article 

    Google Scholar 
    Santana, S. E., Strait, S. & Dumont, E. R. The better to eat you with: functional correlates of tooth structure in bats. Funct. Ecol. 25, 839–847 (2011).Article 

    Google Scholar 
    Kalcounis, M. C. & Brigham, R. M. Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Can. J. Zool. 73, 89–95 (1995).Article 

    Google Scholar 
    Muijres, F. T., Johansson, L. C., Winter, Y. & Anders, H. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. J. R. Soc. Interface 8, 1418–1428 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley, B. J. & Mundy, N. I. The primate palette: the evolution of primate coloration. Evol. Anthropolo. Issues News Rev. 17, 97–111 (2008).Article 

    Google Scholar 
    Müller, B. & Peichl, L. Retinal cone photoreceptors in microchiropteran bats. Investig. Ophthalmol. Vis. Sci. 46, 2259–2259 (2005).
    Google Scholar 
    Winter, Y., López, J. & von Helversen, O. Ultraviolet vision in a bat. Nature 425, 612–614 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125–136 (2005).Article 

    Google Scholar 
    Chaverri, G., Ancillotto, L. & Russo, D. Social communication in bats. Biol. Rev. 93, 1938–1954 (2018).PubMed 
    Article 

    Google Scholar 
    Dietz, C., Von Helversen, O. & Nill, D. Bats of Britain, Europe and Northwest Africa 320–333 (A&C Black Publishers Ltd, 2009).
    Google Scholar 
    Martinoli, A., Mazzamuto, M.V. & Spada, M. Serotine Eptesicus serotinus (Schreber, 1774). In Handbook of the Mammals of Europe, 1–17 (2020).Dinger, G. Winternachweise von Breitflügelfledermaus (Eptesicus serotinus) in Kirchen. Nyctalus (N.F.) 7, 614–616 (1991).
    Google Scholar 
    Kowalski, K. & Rzebik-Kowalska, B. Mammals of algeria (1991).Novella-Fernandez, R. et al. Trophic resource partitioning drives fine-scale coexistence in cryptic bat species. Ecol. Evol. 10(24), 14122–14136 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galván, I., Vargas-Mena, J. C. & Rodríguez-Herrera, B. Tent-roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. J. Zool. Syst. Evol. Res. 58, 519–527 (2020).Article 

    Google Scholar 
    Wang, Z. L., Zhang, D. Y. & Wang, G. Does spatial structure facilitate coexistence of identical competitors. Ecol. Model. 181, 17–23 (2005).Article 

    Google Scholar 
    Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science (New York, NY). 323, 1339–1343 (2009).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mingo-Casas, P. et al. First cases of European bat lyssavirus type 1 in Iberian serotine bats: implications for the molecular epidemiology of bat rabies in Europe. PLoS Negl. Trop. Dis. 12(4), e0006290 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vázquez-Moron, S., Juste, J., Ibáñez, C., Berciano, J. M. & Echevarria, J. E. Phylogeny of European bat Lyssavirus 1 in Eptesicus isabellinus bats, Spain. Emerg. Infect. Dis. 17, 520–523 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burgarella, C. et al. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102, 442–452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abrams, P. A. Character displacement and niche shift analyzed using consumer-resource models of competition. Theor. Popul. Biol. 29, 107–160 (1986).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar  More

  • in

    Cumulative effects of widespread landscape change alter predator–prey dynamics

    Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).Article 

    Google Scholar 
    Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278. https://doi.org/10.1098/rstb.2010.0095 (2010).CAS 
    Article 

    Google Scholar 
    Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).Article 

    Google Scholar 
    Holling, C. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly (1959).Dickie, M., McNay, S. R., Sutherland, G. D., Cody, M. & Avgar, T. Corridors or risk? Movement along, and use of, linear features varies predictably among large mammal predator and prey species. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13130 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. Biol. Sci. 279, 4626–4633. https://doi.org/10.1098/rspb.2012.1698 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator-prey space race. PLoS ONE 6, e17050. https://doi.org/10.1371/journal.pone.0017050 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fleming, P. A. & Bateman, P. W. Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 138, 145–155. https://doi.org/10.1016/j.anbehav.2018.02.011 (2018).Article 

    Google Scholar 
    Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542. https://doi.org/10.1111/j.1365-2664.2011.02043.x (2011).Article 

    Google Scholar 
    Larivière, S. & Messier, F. Effect of density and nearest neighbours on simulated waterfowl nests: Can predators recognize high-density nesting patches?. Oikos 83, 12–20. https://doi.org/10.2307/3546541 (1998).Article 

    Google Scholar 
    Taitt, M. J. & Krebs, C. J. Predation, cover, and food manipulations during a spring decline of Microtus townsendii. J. Anim. Ecol. 52, 837–848. https://doi.org/10.2307/4458 (1983).Article 

    Google Scholar 
    Fisher, J. T. & Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal. Rev. 35, 51–81 (2005).Article 

    Google Scholar 
    Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328. https://doi.org/10.1002/fee.1807 (2018).Article 

    Google Scholar 
    Francis, A. L., Procter, C., Kuzyk, G. & Fisher, J. T. Female Moose Prioritize Forage Over Mortality Risk in Harvested Landscapes. J. Wildl. Manag. (2021).Hebblewhite, M., Munro, R. H. & Merrill, E. H. Trophic consequences of postfire logging in a wolf–ungulate system. For. Ecol. Manag. 257, 1053–1062. https://doi.org/10.1016/j.foreco.2008.11.009 (2009).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).Article 

    Google Scholar 
    Nielsen, S. E., Stenhouse, G. B. & Boyce, M. S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 130, 217–229 (2006).Article 

    Google Scholar 
    Bentz, B. et al. Salt Lake City 42 (University of Utah Press, 2005).
    Google Scholar 
    Carroll, A. L., Taylor, S. W., Régnière, J. & Safranyik, L. in Mountain pine beetle symposium: challenges and solutions. 223–232 (Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre).Lindenmayer, D. B. & Noss, R. F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 20, 949–958. https://doi.org/10.1111/j.1523-1739.2006.00497.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leverkus, A. B., Lindenmayer, D. B., Thorn, S. & Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27, 1140–1154. https://doi.org/10.1111/geb.12772 (2018).Article 

    Google Scholar 
    Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).
    Google Scholar 
    Kuzyk, G. W. Provincial population and harvest estimates of moose in British Columbia. Alces J. Devot. Biol. Manag. Moose 52, 1–11 (2016).Procter, C. et al. Factors affecting moose population declines in British Columbia. 2020 Progress Report: February 2012-May 2020. B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Victoria, B.C., Wildlife Working Report No. WR-128. Pp. 89. https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/wildlife/wildlife-conservation/moose/moose-conservation/moose-research. (2020).Wittmer, H. U., Sinclair, A. R. E. & McLellan, B. N. The role of predation in the decline and extirpation of woodland caribou. Oecologia 144, 257–267. https://doi.org/10.1007/s00442-005-0055-y (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    Latham, A. D. M., Latham, M. C., Boyce, M. S. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).Article 

    Google Scholar 
    James, A. R. C. & Stuart-Smith, A. K. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manag. 64, 154–159. https://doi.org/10.2307/3802985 (2000).Article 

    Google Scholar 
    DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator–prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284. https://doi.org/10.1111/1365-2656.12760 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus 2, 205–216. https://doi.org/10.1098/rsfs.2011.0086 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433. https://doi.org/10.1007/s10980-009-9420-2 (2010).Article 

    Google Scholar 
    Kuzyk, G. W., Kneteman, J. & Schmiegelow, F. K. Winter habitat use by wolves, Canis lupus, in relation to forest harvesting in west-central Alberta. Can. Field Nat. 118, 368–375 (2004).Article 

    Google Scholar 
    Mumma, M. A. et al. Regional moose (Alces alces) responses to forestry cutblocks are driven by landscape-scale patterns of vegetation composition and regrowth. For. Ecol. Manag. 481, 118763 (2021).Article 

    Google Scholar 
    Scheideman, M. Use and selection at two spatial scales by female moose (Alces alces) across central British Columbia following a mountain pine beetle outbreak MSc thesis, University of Northern British Columbia (2018).Alfaro, R. I., van Akker, L. & Hawkes, B. Characteristics of forest legacies following two mountain pine beetle outbreaks in British Columbia Canada. Can. J. For. Res. 45, 1387–1396 (2015).Article 

    Google Scholar 
    Dhar, A., Parrott, L. & Hawkins, C. D. B. Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests 7, 171 (2016).Article 

    Google Scholar 
    Shackelford, N., Standish, R. J., Ripple, W. & Starzomski, B. M. Threats to biodiversity from cumulative human impacts in one of North America’s last wildlife frontiers. Conserv. Biol. 32, 672–684 (2018).Article 

    Google Scholar 
    Corbett, L. J., Withey, P., Lantz, V. A. & Ochuodho, T. O. The economic impact of the mountain pine beetle infestation in British Columbia: Provincial estimates from a CGE analysis. For. Int. J. For. Res. 89, 100–105. https://doi.org/10.1093/forestry/cpv042 (2015).Latham, A. D. M. Wolf ecology and caribou-primary prey-wolf spatial relationships in low productivity peatland complexes in northeastern Alberta PhD thesis, University of Alberta, (2009).Person, D. K. & Russell, A. L. Reproduction and den site selection by wolves in a disturbed landscape. Northw. Sci. 83, 211–224. https://doi.org/10.3955/046.083.0305 (2009).Article 

    Google Scholar 
    Gillingham, M. Documentation for using Find Points Cluster Identification Program (Version 2) (University of Northern British Columbia, 2009).
    Google Scholar 
    Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630. https://doi.org/10.1111/2041-210X.12528 (2016).Article 

    Google Scholar 
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).Article 

    Google Scholar 
    Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4. https://doi.org/10.1186/2051-3933-2-4 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benson, J. F. & Patterson, B. R. Spatial overlap, proximity, and habitat use of individual wolves within the same packs. Wildl. Soc. Bull. (2011-) 39, 31–40 (2015).Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. B Biol. Sci. 365, 2233–2244 (2010).Article 

    Google Scholar 
    Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).Article 

    Google Scholar 
    Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 638–652 (2018).Article 

    Google Scholar 
    Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542. https://doi.org/10.1093/beheco/arx182 (2018).Article 

    Google Scholar 
    Prokopenko, C. M., Boyce, M. S. & Avgar, T. Characterizing wildlife behavioural responses to roads using integrated step selection analysis. J. Appl. Ecol. 54, 470–479. https://doi.org/10.1111/1365-2664.12768 (2017).Article 

    Google Scholar 
    Avgar, T., Lele, S. R., Keim, J. L. & Boyce, M. S. Relative selection strength: Quantifying effect size in habitat- and step-selection inference. Ecol. Evol. 7, 5322–5330. https://doi.org/10.1002/ece3.3122 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4 (2002).Article 

    Google Scholar 
    Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scales: Implications of forest management. For. Ecol. Manag. 257, 96–106. https://doi.org/10.1016/j.foreco.2008.08.018 (2009).Article 

    Google Scholar 
    Stelfox, J. G., Lynch, G. M. & McGillis, J. R. Effects of clearcut logging on wild ungulates in the Central Albertan foothills. For. Chron. 52, 65–70. https://doi.org/10.5558/tfc52065-2 (1976).Article 

    Google Scholar 
    Gagné, C., Mainguy, J. & Fortin, D. The impact of forest harvesting on caribou–moose–wolf interactions decreases along a latitudinal gradient. Biol. Conserv. 197, 215–222. https://doi.org/10.1016/j.biocon.2016.03.015 (2016).Article 

    Google Scholar 
    Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: a reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).Article 

    Google Scholar 
    Rempel, R. S., Elkie, P. C., Rodgers, A. R. & Gluck, M. J. Timber-management and natural-disturbance effects on moose habitat: landscape evaluation. J. Wildl. Manag. 61, 517–524. https://doi.org/10.2307/3802610 (1997).Article 

    Google Scholar 
    Kunkel, K. E. & Pletscher, D. H. Habitat factors affecting vulnerability of moose to predation by wolves in southeastern British Columbia. Can. J. Zool. 78, 150–157. https://doi.org/10.1139/z99-181 (2000).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Charnov, E. L. Optimal foraging, the marginal value theorem. (1976).Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454. https://doi.org/10.1890/08-2090.1 (2009).Article 
    PubMed 

    Google Scholar 
    Lendrum, P. E., Anderson Jr, C. R., Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development. Ecosphere 3, art82. https://doi.org/10.1890/ES12-00165.1 (2012).Mumma, M. & Gillingham, M. Determining factors that affect survival of moose in Central British Columbia. Technical report to the Habitat Conservation Trust Foundation for Grant Agreement CAT19-0-522 (1 April 2017 through 31 March 2019). 56 (2019).Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manag. 409, 190–201. https://doi.org/10.1016/j.foreco.2017.11.025 (2018).Article 

    Google Scholar 
    Lesmerises, F., Dussault, C. & St-Laurent, M.-H. Wolf habitat selection is shaped by human activities in a highly managed boreal forest. For. Ecol. Manag. 276, 125–131. https://doi.org/10.1016/j.foreco.2012.03.025 (2012).Article 

    Google Scholar 
    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815. https://doi.org/10.1002/ece3.5600 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mladenoff, D. J., Sickley, T. A. & Wydeven, A. P. Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecol. Appl. 9, 37–44. https://doi.org/10.1890/1051-0761(1999)009[0037:PGWLRL]2.0.CO;2 (1999).Rogala, J. K. et al. Human activity differentially redistributes large mammals in the Canadian Rockies National Parks. Ecol. Soc. 16 (2011).Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085. https://doi.org/10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE 13, e0195480. https://doi.org/10.1371/journal.pone.0195480 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).Article 

    Google Scholar  More

  • in

    Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system

    Gattuso JP, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst. 1998;29:405–34.Article 

    Google Scholar 
    Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:81–108.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA. 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12:616–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science.1998;280:694–96.CAS 
    Article 

    Google Scholar 
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bunse C, Bertos-Fortis M, Sassenhagen I, Sildever S, Sjoqvist C, Godhe A, et al. Spatio-temporal interdependence of bacteria and phytoplankton during a baltic sea spring bloom. Front Microbiol. 2016;7:517.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cram JA, Chow CE, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed 
    Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor JD, Cottingham SD, Billinge J, Cunliffe M. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. ISME J. 2014;8:245–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science.2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and seasonal patterns control bacterioplankton communities at two horizontally coherent coastal upwelling sites off galicia (NW Spain). Microb Ecol. 2018;76:866–84.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.Tada Y, Taniguchi A, Nagao I, Miki T, Uematsu M, Tsuda A, et al. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol. 2011;77:4055–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci USA. 2013;110:E488–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R 3rd, Schuster SC, et al. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science. 2014;345:207–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beier S, Rivers AR, Moran MA, Obernosterer I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ Microbiol. 2015;17:3466–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarmento H, Gasol JM. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol. 2012;14:2348–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi Y, McCarren J, DeLong EF. Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol. 2012;14:191–206.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vorobev A, Sharma S, Yu M, Lee J, Washington BJ, Whitman WB, et al. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ Microbiol. 2018;20:3012–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, et al. Ecological genomics of marine Roseobacters. Appl Environ Microbiol. 2007;73:4559–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nowinski B, Moran MA. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol. 2021;6:524–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol. 2012;14:228–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma AK, Becker JW, Ottesen EA, Bryant JA, Duhamel S, Karl DM, et al. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade. Environ Microbiol. 2013;16:2815–30.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci USA. 2021;118:e2101178118.McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA. 2010;107:16420–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sosa OA, Gifford SM, Repeta DJ, DeLong EF. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures. ISME J. 2015;9:2725–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pontiller B, Martínez-García S, Lundin D, Pinhassi J. Labile dissolved organic matter compound characteristics select for divergence in marine bacterial activity and transcription. Front Microbiol. 2020;11:588778.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryson S, Li Z, Chavez F, Weber PK, Pett-Ridge J, Hettich RL, et al. Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J. 2017;11:2781–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joglar V, Prieto A, Barber-Lluch E, Hernández-Ruiz M, Fernández E, Teira E. Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system. Biogeosciences.2020;17:2807–23.Article 

    Google Scholar 
    Martínez-García S, Fernández E, Álvarez-Salgado XA, González J, Lønborg C, Marañón E, et al. Differential responses of phytoplankton and heterotrophic bacteria to organic and inorganic nutrient additions in coastal waters off the NW Iberian Peninsula. Mar Ecol Prog Ser. 2010;416:17–33.Article 
    CAS 

    Google Scholar 
    Welschmeyer NA. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr. 1994;39:1985–92.CAS 
    Article 

    Google Scholar 
    Parsons TR, Maita Y, Lalli CM. Fluorometric determination of chlorophylls. A manual of chemical & biological methods for seawater analysis: Oxford, UK: Pergamon Press; 1984. p. 107–09.Hansen H, Grasshoff K. Automated chemical analysis. Methods of seawater analysis. 2nd ed: Verlag Chemie, Weinheim; 1983. p. 347–95.Álvarez-Salgado XA, Miller AEJ. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Mar Chem. 1998;62:325–33.Article 

    Google Scholar 
    Calvo-Díaz A, Morán XAG. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat Micro Ecol. 2006;42:159–74.Article 

    Google Scholar 
    Smith DC, Farooq A. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Micro Food Webs. 1992;6:107–14.
    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (Gene) amplicon sequencing pipeline. Front Microbiol. 2020;11:1–18.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Poretsky RS, Gifford S, Rinta-Kanto J, Vila-Costa M, Moran MA. Analyzing gene expression from marine microbial communities using environmental transcriptomics. J Vis Exp. 2009;24:1–6.
    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. 2011. https://github.com/najoshi/sickle.Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One. 2013;8:1–13.
    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics.2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ.2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:1–12.Article 
    CAS 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ. It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol. 2016;26:322–9.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 4.1.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2021.Cottrell MT, Kirchman DL. Transcriptional control in marine copiotrophic and oligotrophic bacteria with streamlined genomes. Appl Environ Microbiol. 2016;82:6010–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Giovannoni SJ. SAR11 bacteria: The most abundant plankton in the oceans. Ann Rev Mar Sci. 2017;9:231–55.PubMed 
    Article 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Allers E, Gomez-Consarnau L, Pinhassi J, Gasol JM, Simek K, Pernthaler J. Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol. 2007;9:2417–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alonso C, Pernthaler J. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol. 2006;8:2022–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noell SE, Giovannoni SJ. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ Microbiol. 2019;21:2559–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 2009;3:93–105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chenard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, et al. Temporal and spatial dynamics of bacteria, archaea and protists in equatorial coastal waters. Sci Rep. 2019;9:16390.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pajares S, Varona-Cordero F, Hernández-Becerril DU. Spatial distribution patterns of bacterioplankton in the oxygen minimum zone of the tropical mexican pacific. Micro Ecol. 2020;80:519–36.CAS 
    Article 

    Google Scholar 
    Signori CN, Pellizari VH, Enrich-Prast A, Sievert SM. Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula. Deep-Sea Res Pt Ii. 2018;149:150–60.Article 

    Google Scholar 
    Ling SK, Xia J, Liu Y, Chen GJ, Du ZJ. Agarilytica rhodophyticola gen. nov., sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol. 2017;67:3778–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng H, Zhang S, Huo YY, Jiang XW, Zhang XQ, Pan J, et al. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus. Int J Syst Evol Microbiol. 2015;65:562–69.CAS 
    PubMed 
    Article 

    Google Scholar 
    Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol. 2004;70:4129–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Ann Rev Mar Sci. 2016;8:285–309.PubMed 
    Article 

    Google Scholar 
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ Microbiol. 2017;19:3500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 
    CAS 

    Google Scholar 
    Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Natl Acad Sci USA. 2014;111:7202–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.CAS 
    PubMed 
    Article 

    Google Scholar 
    López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, et al. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep. 2012;2:696.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hou S, López-Pérez M, Pfreundt U, Belkin N, Stüber K, Huettel B, et al. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. ISME J. 2018;12:981–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol. 2004;70:6753–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol. 2000;66:578–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Glavina Del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Hania W, Joseph M, Bunk B, Spröer C, Klenk HP, Fardeau ML, et al. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol. 2017;19:1134–48.PubMed 
    Article 
    CAS 

    Google Scholar 
    Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J. 2015;9:1410–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.Ivanova AA, Naumoff DG, Miroshnikov KK, Liesack W, Dedysh SN. Comparative genomics of four Isosphaeraceae Planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4(T), Isosphaera pallida IS1B(T), Singulisphaera acidiphila DSM 18658(T), and Strain SH-PL62. Front Microbiol. 2017;8:412.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann JH, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.Bode A, Estévez MG, Varela M, Vilar JA. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Mar Environ Res. 2015;110:81–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cermeño P, Marañón E, Pérez V, Serret P, Fernández E, Castro CG. Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo, NW-Spain): Seasonal and short-time scale variability. Estuar Coast Shelf Sci. 2006;67:251–66.Article 

    Google Scholar 
    Nogueira E, Pérez FF, Rı́os AF. Modelling thermohaline properties in an estuarine upwelling ecosystem (Rı́a de Vigo: NW Spain) using box-jenkins transfer function models. Estuar Coast Shelf Sci. 1997;44:685–702.Article 

    Google Scholar 
    Broullón E, López-Mozos M, Reguera B, Chouciño P, Doval MD, Fernández-Castro B, et al. Thin layers of phytoplankton and harmful algae events in a coastal upwelling system. Prog Oceanogr. 2020;189:102449.Fraga F. Upwelling off the Galician Coast, Northwest Spain. In: Richards FA, editor. Coastal Upwelling. Washington: American Geophysical Union; 1981. p. 176–82.Nogueira E, Figueiras FG. The microplankton succession in the Ría de Vigo revisited: species assemblages and the role of weather-induced, hydrodynamic variability. J Mar Syst. 2005;54:139–55.Article 

    Google Scholar 
    Pitcher GC, Walker DR, Mitchellinnes BA, Moloney CL. Short-term variability during an anchor station study in the southern Benguela Upwelling System – phytoplankton dynamics. Prog Oceanogr. 1991;28:39–64.Article 

    Google Scholar 
    Smayda TJ, Trainer VL. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr. 2010;85:92–107.Article 

    Google Scholar 
    Wilkerson FP, Lassiter AM, Dugdale RC, Marchi A, Hogue VE. The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep-Sea Res Pt Ii. 2006;53:3023–48.Article 

    Google Scholar 
    Reintjes G, Arnosti C, Fuchs B, Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Insights into amino acid fractionation and incorporation by compound-specific carbon isotope analysis of three-spined sticklebacks

    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS 
    Article 

    Google Scholar 
    Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. Camb. Philos. Soc. 87, 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x (2011).Article 
    PubMed 

    Google Scholar 
    Larsen, T. et al. Tracing carbon sources through aquatic and terrestrial food webs using amino acid stable isotope fingerprinting. PLoS ONE 8, e73441. https://doi.org/10.1371/journal.pone.0073441 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology. Ibis 150, 447–461 (2008).Article 

    Google Scholar 
    McCutchan, J. H., Lewis, W. M., Kendall, C. & McGrath, C. C. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390 (2003).CAS 
    Article 

    Google Scholar 
    Olive, P. J. W., Pinnegar, J. K., Polunin, N. V. C., Richards, G. & Welch, R. Isotope trophic-step fractionation: A dynamic equilibrium model. J. Anim. Ecol. 72, 608–617 (2003).Article 

    Google Scholar 
    McMahon, K. W., Polito, M. J., Abel, S., McCarthy, M. D. & Thorrold, S. R. Carbon and nitrogen isotope fractionation of amino acids in an avian marine predator, the gentoo penguin (Pygoscelis papua). Ecol. Evol. 5, 1278–1290. https://doi.org/10.1002/ece3.1437 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webb, E. C. et al. Compound-specific amino acid isotopic proxies for distinguishing between terrestrial and aquatic resource consumption. Archaeol. Anthropol. Sci. 10, 1–18. https://doi.org/10.1007/s12520-015-0309-5 (2016).Article 

    Google Scholar 
    Whiteman, J. P., Kim, S. L., McMahon, K. W., Koch, P. L. & Newsome, S. D. Amino acid isotope discrimination factors for a carnivore: Physiological insights from leopard sharks and their diet. Oecologia 188, 977–989. https://doi.org/10.1007/s00442-018-4276-2 (2018).ADS 
    Article 
    PubMed 

    Google Scholar 
    Rogers, M., Bare, R., Gray, A., Scott-Moelder, T. & Heintz, R. Assessment of two feeds on survival, proximate composition, and amino acid carbon isotope discrimination in hatchery-reared Chinook salmon. Fisher. Res. https://doi.org/10.1016/j.fishres.2019.06.001 (2019).Article 

    Google Scholar 
    Wang, Y. V., Wan, A. H. L., Krogdahl, A., Johnson, M. & Larsen, T. (13)C values of glycolytic amino acids as indicators of carbohydrate utilization in carnivorous fish. PeerJ 7, e7701. https://doi.org/10.7717/peerj.7701 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMahon, K. W., Fogel, M. L., Elsdon, T. S. & Thorrold, S. R. Carbon isotope fractionation of amino acids in fish muscle reflects biosynthesis and isotopic routing from dietary protein. J. Anim. Ecol. 79, 1132–1141. https://doi.org/10.1111/j.1365-2656.2010.01722.x (2010).Article 
    PubMed 

    Google Scholar 
    McMahon, K. W., Thorrold, S. R., Houghton, L. A. & Berumen, M. L. Tracing carbon flow through coral reef food webs using a compound-specific stable isotope approach. Oecologia 180, 809–821. https://doi.org/10.1007/s00442-015-3475-3 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Wang, Y. V. et al. Know your fish: A novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chem 256, 380–389. https://doi.org/10.1016/j.foodchem.2018.02.095 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jim, S., Jones, V., Ambrose, S. H. & Evershed, R. P. Quantifying dietary macronutrient sources of carbon for bone collagen biosynthesis using natural abundance stable carbon isotope analysis. Br J. Nutr. 95, 1055–1062. https://doi.org/10.1079/bjn20051685 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Newsome, S. D., Fogel, M. L., Kelly, L. & del Rio, C. M. Contributions of direct incorporation from diet and microbial amino acids to protein synthesis in Nile tilapia. Funct. Ecol. 25, 1051–1062. https://doi.org/10.1111/j.1365-2435.2011.01866.x (2011).Article 

    Google Scholar 
    Griffiths, H. Applications of stable isotope technology in physiological ecology. Funct. Ecol. 5, 254–269 (1991).Article 

    Google Scholar 
    Lorrain, A. et al. Differential δ13C and δ15N signatures among scallop tissues: Implications for ecology and physiology. J. Exp. Mar. Biol. Ecol. 275, 47–61 (2002).CAS 
    Article 

    Google Scholar 
    Li, P., Mai, K., Trushenski, J. & Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 37, 43–53. https://doi.org/10.1007/s00726-008-0171-1 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Boecklen, W. J., Yarnes, C. T., Cook, B. A. & James, A. C. On the use of stable isotopes in trophic ecology. Annu. Rev. Ecol. Evol. Syst. 42, 411–440. https://doi.org/10.1146/annurev-ecolsys-102209-144726 (2011).Article 

    Google Scholar 
    Perga, M. E. & Gerdeaux, D. “Are fish what they eat” all year round?. Oecologia 144, 598–606. https://doi.org/10.1007/s00442-005-0069-5 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sponheimer, M. et al. Turnover of stable carbon isotopes in the muscle, liver, and breath CO2 of alpacas (Lama pacos). Rapid Commun. Mass Spectrom. 20, 1395–1399. https://doi.org/10.1002/rcm.2454 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Logan, J. M. & Lutcavage, M. E. Stable isotope dynamics in elasmobranch fishes. Hydrobiologia 644, 231–244. https://doi.org/10.1007/s10750-010-0120-3 (2010).CAS 
    Article 

    Google Scholar 
    Madigan, D. J. et al. Tissue turnover rates and isotopic trophic discrimination factors in the endothermic teleost, pacific bluefin tuna (Thunnus orientalis). PLoS ONE 7, e49220. https://doi.org/10.1371/journal.pone.0049220 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Skinner, M. M., Cross, B. K. & Moore, B. C. Estimating in situ isotopic turnover in Rainbow Trout (Oncorhynchus mykiss) muscle and liver tissue. J. Freshw. Ecol. 32, 209–217. https://doi.org/10.1080/02705060.2016.1259127 (2016).CAS 
    Article 

    Google Scholar 
    Kaushik, S. J. & Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 41, 322–332. https://doi.org/10.1111/j.1365-2109.2009.02174.x (2010).CAS 
    Article 

    Google Scholar 
    Hou, Y., Hu, S., Li, X., He, W. & Wu, G. Amino Acid Metabolism in the Liver: Nutritional and Physiological Significance. Vol. 1265 (2020).Gannes, L. Z., O’Brien, D. M. & Del Rio, C. M. Stable isotopes in animal ecology: Assumptions, caveats and a call for more laboratory experiments. Ecology 78, 1271–1276 (1997).Article 

    Google Scholar 
    Martinez del Rio, C. M., Wolf, N., Carleton, S. A. & Gannes, L. Z. Isotopic ecology ten years after a call for more laboratory experiments. Biol. Rev. Camb. Philos Soc. 84, 91–111. https://doi.org/10.1111/j.1469-185X.2008.00064.x (2009).Article 

    Google Scholar 
    Hendry, A. P., Peichel, C. L., Boughman, J. W., Matthews, B. & Nosil, P. Stickleback research: The now and the next. Evol. Ecol. Res. 15, 111–141 (2013).
    Google Scholar 
    Fang, B., Merila, J., Ribeiro, F., Alexandre, C. M. & Momigliano, P. Worldwide phylogeny of three-spined sticklebacks. Mol Phylogenet Evol 127, 613–625. https://doi.org/10.1016/j.ympev.2018.06.008 (2018).Article 
    PubMed 

    Google Scholar 
    Kume, M. & Kitano, J. Genetic and stable isotope analyses of threespine stickleback from the Bering and Chukchi seas. Ichthyol. Res. 64, 478–480. https://doi.org/10.1007/s10228-017-0580-9 (2017).Article 

    Google Scholar 
    Reimchen, T. E., Ingram, T. & Hansen, S. C. Assessing niche differences of sex, armour and asymmetry phenotypes using stable isotope analyses in Haida Gwaii sticklebacks. Behaviour 145, 561–577 (2008).Article 

    Google Scholar 
    Pinnegar, J. Unusual stable isotope fractionation patterns observed for fish host–parasite trophic relationships. J. Fish Biol. 59, 494–503. https://doi.org/10.1006/jfbi.2001.1660 (2001).Article 

    Google Scholar 
    Power, M. & Klein, G. M. Fish host-cestode parasite stable isotope enrichment patterns in marine, estuarine and freshwater fishes from northern Canada. Isotopes Environ. Health Stud. 40, 257–266 (2004).CAS 
    Article 

    Google Scholar 
    Li, X., Zheng, S. & Wu, G. Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52, 671–691. https://doi.org/10.1007/s00726-020-02851-2 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS ONE 10, e0116182. https://doi.org/10.1371/journal.pone.0116182 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Newsome, S. D., del Rio, C. M., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436. https://doi.org/10.1890/060150.01 (2007).Article 

    Google Scholar 
    Voigt, C. C., Rex, K., Michener, R. H. & Speakman, J. R. Nutrient routing in omnivorous animals tracked by stable carbon isotopes in tissue and exhaled breath. Oecologia 157, 31–40. https://doi.org/10.1007/s00442-008-1057-3 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 21–37 (1983).Article 

    Google Scholar 
    Cerling, T. E. et al. Determining biological tissue turnover using stable isotopes: The reaction progress variable. Oecologia 151, 175–189. https://doi.org/10.1007/s00442-006-0571-4 (2007).ADS 
    Article 
    PubMed 

    Google Scholar 
    Martínez del Rio, C. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues: Fig. 1. J. Mammal. 93, 353–359. https://doi.org/10.1644/11-mamm-s-165.1 (2012).Article 

    Google Scholar 
    McCullagh, J. S., Juchelka, D. & Hedges, R. E. Analysis of amino acid 13C abundance from human and faunal bone collagen using liquid chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 20, 2761–2768. https://doi.org/10.1002/rcm.2651 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Raghavan, M., McCullagh, J. S., Lynnerup, N. & Hedges, R. E. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry: Paleodietary implications from intra-individual comparisons. Rapid Commun. Mass Spectrom. 24, 541–548. https://doi.org/10.1002/rcm.4398 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Newsome, S. D., Wolf, N., Peters, J. & Fogel, M. L. Amino acid δ13C analysis shows flexibility in the routing of dietary protein and lipids to the tissue of an omnivore. Integr. Comp. Biol. 54, 890–902. https://doi.org/10.1093/icb/icu106 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walton, M. J. & Cowey, C. B. Aspects of intermediary metabolism in salmonid fish. Comp. Biochem. Physiol. 73B, 59–79 (1982).CAS 

    Google Scholar 
    Fernandes, R., Nadeau, M.-J. & Grootes, P. M. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol. Anthropol. Sci. 4, 291–301. https://doi.org/10.1007/s12520-012-0102-7 (2012).Article 

    Google Scholar 
    Ohkouchi, N., Ogawa, N. O., Chikaraishi, Y., Tanaka, H. & Wada, E. Biochemical and physiological bases for the use of carbon and nitrogen isotopes in environmental and ecological studies. Prog. Earth Planet Sci. 2, 1–17. https://doi.org/10.1186/s40645-015-0032-y (2015).ADS 
    Article 

    Google Scholar 
    Wu, G. & Morris, M. Arginine metabolism: Nitric oxide and beyond. Biochem. J. 336, 1–17 (1998).CAS 
    Article 

    Google Scholar 
    Metges, C. C., Petzke, K. J. & Henning, U. Gas chromatography/combustion/isotope ratio mass spectrometric comparison of N-acetyl- and N-pivaloyl amino acid esters to measure 15N isotopic abundances in physiological samples : A pilot study on amino acid synthesis in the upper gastro-intestinal tract of minipigs. J. Mass Spectrom. 31, 367–376 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    Dunn, P. J., Honch, N. V. & Evershed, R. P. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction. Rapid Commun. Mass Spectrom. 25, 2995–3011. https://doi.org/10.1002/rcm.5174 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ayayee, P. A., Jones, S. C. & Sabree, Z. L. Can (13)C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?. PeerJ 3, e1218. https://doi.org/10.7717/peerj.1218 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ayayee, P. A., Larsen, T. & Sabree, Z. Symbiotic essential amino acids provisioning in the American cockroach, Periplaneta americana (Linnaeus) under various dietary conditions. PeerJ 4, e2046. https://doi.org/10.7717/peerj.2046 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larsen, T. et al. The dominant detritus-feeding invertebrate in Arctic peat soils derives its essential amino acids from gut symbionts. J. Anim. Ecol. 85, 1275–1285. https://doi.org/10.1111/1365-2656.12563 (2016).Article 
    PubMed 

    Google Scholar 
    Romero-Romero, S., Miller, E. C., Black, J. A., Popp, B. N. & Drazen, J. C. Abyssal deposit feeders are secondary consumers of detritus and rely on nutrition derived from microbial communities in their guts. Sci. Rep. 11, 12594. https://doi.org/10.1038/s41598-021-91927-4 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCullagh, J. S. Mixed-mode chromatography/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 24, 483–494. https://doi.org/10.1002/rcm.4322 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tsai, Y. et al. Histamine contents of fermented fish products in Taiwan and isolation of histamine-forming bacteria. Food Chem. 98, 64–70. https://doi.org/10.1016/j.foodchem.2005.04.036 (2006).CAS 
    Article 

    Google Scholar 
    Landete, J. M., De Las Rivas, B., Marcobal, A. & Munoz, R. Updated molecular knowledge about histamine biosynthesis by bacteria. Crit. Rev. Food Sci. Nutr. 48, 697–714. https://doi.org/10.1080/10408390701639041 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kanki, M., Yoda, T., Tsukamoto, T. & Baba, E. Histidine decarboxylases and their role in accumulation of histamine in tuna and dried saury. Appl. Environ. Microbiol. 73, 1467–1473. https://doi.org/10.1128/AEM.01907-06 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez-Salguero, J. & Mackie, I. M. Histidine metabolism in mackerel (Scomber scombrus). Studies on histidine decarboxylase activity and histamine formation during storage of flesh and liver under sterile and non-sterile conditions. J. Fd Technol. 14, 131–139 (1979).CAS 
    Article 

    Google Scholar 
    Sánchez-Muros, M.-J., Barroso, F. G. & Manzano-Agugliaro, F. Insect meal as renewable source of food for animal feeding: A review. J. Clean. Prod. 65, 16–27. https://doi.org/10.1016/j.jclepro.2013.11.068 (2014).CAS 
    Article 

    Google Scholar 
    Khan, M. A. Histidine requirement of cultivable fish species: A review. Oceanogr Fish Open Access J. 8, 1–7. https://doi.org/10.19080/ofoaj.2018.08.555746 (2018).Article 

    Google Scholar 
    Hatch, K. A. in Comparative Physiology of Fasting, Starvation, and Food Limitation Ch. Chapter 20, 337–364 (2012).Bertinetto, C., Engel, J. & Jansen, J. ANOVA simultaneous component analysis: A tutorial review. Anal. Chim. Acta X 6, 100061. https://doi.org/10.1016/j.acax.2020.100061 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nogales-Mérida, S. et al. Insect meals in fish nutrition. Rev. Aquac. 11, 1080–1103. https://doi.org/10.1111/raq.12281 (2018).Article 

    Google Scholar 
    Thongprajukaew, K., Pettawee, S., Muangthong, S., Saekhow, S. & Phromkunthong, W. Freeze-dried forms of mosquito larvae for feeding of Siamese fighting fish (Betta splendens Regan, 1910). Aquac. Res. 50, 296–303. https://doi.org/10.1111/are.13897 (2018).CAS 
    Article 

    Google Scholar 
    Jackson, G. P., An, Y., Konstantynova, K. I. & Rashaid, A. H. Biometrics from the carbon isotope ratio analysis of amino acids in human hair. Sci. Justice 55, 43–50. https://doi.org/10.1016/j.scijus.2014.07.002 (2015).Article 
    PubMed 

    Google Scholar 
    Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid. Commun. Mass Spectrom. 15, 501–519. https://doi.org/10.1002/rcm.258 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Marks, R. G. H., Jochmann, M. A., Brand, W. A. & Schmidt, T. C. How to couple LC-IRMS with HRMS─a proof-of-concept study. Anal. Chem. 94, 2981–2987 (2022).CAS 
    Article 

    Google Scholar 
    Lynch, A. H., McCullagh, J. S. & Hedges, R. E. Liquid chromatography/isotope ratio mass spectrometry measurement of δ13C of amino acids in plant proteins. Rapid Commun. Mass Spectrom. 25, 2981–2988. https://doi.org/10.1002/rcm.5142 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Falco, F., Stincone, P., Cammarata, M. & Brandelli, A. Amino acids as the main energy source in fish tissues. Aquac. Fish Stud. 3, 1–11 (2020).
    Google Scholar  More

  • in

    Widespread increasing vegetation sensitivity to soil moisture

    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Canadell, J. G., et al “[Global Carbon and other Biogeochemical Cycles and Feedbacks”] in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, in Press, 2021).Li, W. et al. Revisiting Global Vegetation Controls Using Multi-Layer Soil Moisture. Geophys. Res. Lett. 48, e2021GL092856 (2021).ADS 

    Google Scholar 
    Stocker, B. D. et al. Quantifying soil moisture impacts on light use efficiency across biomes. N. Phytol. 218, 1430–1449 (2018).Article 

    Google Scholar 
    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Jiao, W. et al. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 12, 3777 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? N. Phytol. 231, 2118–2124 (2021).Article 
    CAS 

    Google Scholar 
    Gampe, D. et al. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Change 11, 772–779 (2021).ADS 
    Article 

    Google Scholar 
    Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G. & Tuttle, S. E. Plant functional traits and climate influence drought intensification and land–atmosphere feedbacks. Proc. Natl Acad. Sci. USA 116, 14071–14076 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Myneni, R. B., Hall, F. G., Sellers, P. J. & Marshak, A. L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosc. Rem. Sens. 33, 481–486 (1995).ADS 
    Article 

    Google Scholar 
    Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frankenberg, C. et al. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eaabg2947 (2021).Article 
    CAS 

    Google Scholar 
    Wang, S. et al. Response to Comments on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373 (2021).Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10, 356–362 (2020).ADS 
    Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 99, 125–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Miguez-Macho, G. & Fan, Y. Spatiotemporal origin of soil water taken up by vegetation. Nature 598, 624–628 (2021).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Balsamo, G. et al. Satellite and in situ observations for advancing global Earth surface modelling: A Review. Remote Sens. 10, 2038 (2018).ADS 
    Article 

    Google Scholar 
    Muñoz-Sabater, J. et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).ADS 
    Article 

    Google Scholar 
    Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable (2021). [online: https://christophm.github.io/interpretable-ml-book/].Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ohta, T. et al. Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998–2011. Agric. Meteorol. 188, 64–75 (2014).Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fort, F. et al. Root traits are related to plant water‐use among rangeland Mediterranean species. Funct. Ecol. 31, 1700–1709 (2017).Article 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. evolution 3, 772–779 (2019).Article 

    Google Scholar 
    Rogers, A. et al. A roadmap for improving the representation of photosynthesis in Earth system models. N. Phytol. 213, 22–42 (2016).Article 

    Google Scholar 
    Arora, V. K. & Boer, G. J. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 11, 39–59 (2004).ADS 
    Article 

    Google Scholar 
    Trugman, A. T., Medvigy, D., Mankin, J. S. & Anderegg, W. R. L. Soil moisture stress as a major driver of carbon cycle uncertainty. Geophys. Res. Lett. 45, 6495–6503 (2018).ADS 
    Article 

    Google Scholar 
    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).ADS 
    Article 

    Google Scholar 
    Medlyn, B. E., De Kauwe, M. G. & Duursma, R. A. New developments in the effort to model ecosystems under water stress. N. Phytol. 212, 5–7 (2016).Article 

    Google Scholar 
    Ito, A. & Oikawa, T. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol. Model. 151, 143–176 (2002).CAS 
    Article 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mu, M. et al. Exploring how groundwater buffers the influence of heatwaves on vegetation function during multi-year droughts. Earth Syst. Dyn. 12, 919–938 (2021).ADS 
    Article 

    Google Scholar 
    O, S. & Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 8, 170 (2021).Article 

    Google Scholar 
    Dorigo, W. et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).ADS 
    Article 

    Google Scholar 
    Wahr, J., Swenson, S., Zlotnicki, V. & Velicogna, I. Time-variable gravity from GRACE: first results. Geophys. Res. Lett. 31, L11501 (2004).ADS 
    Article 

    Google Scholar 
    Tucker, C. J. et al. An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).Article 

    Google Scholar 
    Jiang, C. et al. Inconsistencies of interannual variability and trends in long‐term satellite leaf area index products. Glob. Change Biol. 23, 4133–4146 (2017).ADS 
    Article 

    Google Scholar 
    Liu, Y. et al. Satellite-derived LAI products exhibit large discrepancies and can lead to substantial uncertainty in simulated carbon and water fluxes. Remote Sens. Environ. 206, 174–188 (2018).ADS 
    Article 

    Google Scholar 
    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).ADS 
    Article 

    Google Scholar 
    Pedelty, J. et al. Generating a long-term land data record from the AVHRR and MODIS instruments. 2007 IEEE international Geoscience and remote sensing Symposium, 1021-1025 (2017).Xiao, Z. et al. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Trans. Geosci. Remote Sens. 54, 5301–5318 (2016).ADS 
    Article 

    Google Scholar 
    Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data. J. Geophys. Res. 117, G04003 (2012).ADS 

    Google Scholar 
    Verger, A., Baret, F. & Weiss, M. (2020). Algorithm Theoretical Basis Document – GEOV2/AVHRR: Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and Fraction of green Vegetation Cover (FCOVER) from LTDR AVHRR. (Available at https://www.theia-land.fr/wp-content/uploads/2022/03/THEIA-SP-44-0207-CREAF_I2.50-1.pdf).Liu, Y., De Jeu, R. A., McCabe, M. F., Evans, J. P. & Van Dijk, A. I. Global long‐term passive microwave satellite‐based retrievals of vegetation optical depth. Geophys. Res. Lett. 38 (2011).Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Update high-resolution grids of monthly climatic observations-the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Kobayashi, S. et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Met. Soc. Jpn. 93, 5–48 (2015).Article 

    Google Scholar 
    Li, X. & Xiao, J. Global climatic controls on interannual variability of ecosystem productivity: Similarities and differences inferred from solar-induced chlorophyll fluorescence and enhanced vegetation index. Agric. For. Meteorol. 288–289, 108018 (2020).ADS 
    Article 

    Google Scholar 
    Walther, S. et al. Satellite observations of the contrasting response of trees and grasses to variations in water availability. Geophys. Res. Lett. 46, 1429–1440 (2020).ADS 
    Article 

    Google Scholar 
    Li, M., Wu, P. & Ma, Z. A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets. Int. J. Climatol. 40, 5744–5766 (2020).Article 

    Google Scholar 
    Liu, L., Zhang, R. & Zuo, Z. Intercomparison of spring soil moisture among multiple reanalysis data sets over eastern China. J. Geophys. Res.: Atmospheres 119, 54–64 (2014).ADS 
    Article 

    Google Scholar 
    Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L. & Muñoz-Sabater, J. Soil moisture analyses at ECMWF: Evaluation using global ground-based in situ observations. J. Hydrometeorol. 13, 1442–1460 (2012).ADS 
    Article 

    Google Scholar 
    Albergel, C. et al. Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. J. Hydrometeorol. 14, 1259–1277 (2013).ADS 
    Article 

    Google Scholar 
    Jing, W., Song, J. & Zhao, X. Validation of ECMWF multi-layer reanalysis soil moisture based on the OzNet hydrology network. Water 10, 1123 (2018).Article 

    Google Scholar 
    Albergel, C. et al. ERA-5 and ERA-Interim driven ISBA land surface model simulations: Which one performs better? Hydrol. Earth Syst. Sci. 22, 3515–3532 (2018).ADS 
    Article 

    Google Scholar 
    Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Martens, B. et al. GLEAM v3: Satellite-based land evaporation and root-zone soil moisture. Geoscientific Model Dev. 10, 1903–1925 (2017).ADS 
    Article 

    Google Scholar 
    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data. 10, 2141–2194 (2018).ADS 
    Article 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 19, 1521–1545 (2015).ADS 
    Article 

    Google Scholar 
    Budyko, M. I. & Miller, D. H. Climate and life. New York (Academic press, 1974).Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    Kraft, B., Jung, M., Körner, M., Koirala, S. & Reichstein, M. Towards hybrid modeling of the global hydrological cycle. Hydrol. Earth Syst. Sci. 26, 1579–1614 (2022).ADS 
    Article 

    Google Scholar 
    Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model predictions. (2017).Besnard, S. et al. Global sensitivities of forest carbon changes to environmental conditions. Glob. Change Biol. 27, 6467–6483 (2021).Article 

    Google Scholar 
    Hirsch, R. M., Slack, J. R. & Smith, R. A. Techniques of trend analysis for monthly water quality data. Water Resour. Res. 18, 107–121 (1982).ADS 
    Article 

    Google Scholar  More

  • in

    Effects of organic fertilizer proportion on the distribution of soil aggregates and their associated organic carbon in a field mulched with gravel

    Ma, Z., Xue, L. & Du, S. Theory and Technology of High-Efficient Use of Water and Fertilizer for Watermelon and Melon in Gravel-Mulched Field 59–62 (Science Press, Beijing, 2018).
    Google Scholar 
    Qiu, Y., Xie, Z., Wang, Y., Malhi, S. S. & Ren, J. Long-term effects of gravel—Sand mulch on soil organic carbon and nitrogen in the Loess Plateau of northwestern China. J. Arid. Land 7, 46–53. https://doi.org/10.1007/s40333-014-0076-7 (2015).Article 

    Google Scholar 
    Zhang, K., Zhang, W., Tan, L., An, Z. & Zhang, H. Effects of gravel mulch on aeolian transport: A field wind tunnel simulation. J. Arid. Land 7, 296–303. https://doi.org/10.1007/s40333-015-0121-1 (2015).Article 

    Google Scholar 
    Yamanaka, T., Inoue, M. & Kaihotsu, I. Effects of gravel mulch on water vapor transfer above and below the soil surface. Agric. Water Manag. 67, 145–155. https://doi.org/10.1016/j.agwat.2004.01.002 (2004).Article 

    Google Scholar 
    Wang, J., Xie, Z., Guo, Z. & Wang, Y. Simulating the effect of gravel-sand mulched field degradation on soil temperature and evaporation. J. Desert Res. 30, 6 (2010).
    Google Scholar 
    Kaseke, K. F. et al. The effects of desert pavements (gravel mulch) on soil micro-hydrology. Pure Appl. Geophys. 169, 873–880. https://doi.org/10.1007/s00024-011-0367-2 (2012).ADS 
    Article 

    Google Scholar 
    Inagaki, M. N. How does a stone mulch increase transpiration and grain yield in wheat under soil water deficit stress?. Cereal Res. Commun. 40, 486–493 (2012).CAS 
    Article 

    Google Scholar 
    Abdelfattah, M. A. Pedogenesis, land management and soil classification in hyper-arid environments: Results and implications from a case study in the United Arab Emirates. Soil Use Manag. 29, 279–294 (2013).Article 

    Google Scholar 
    Lightfoot, D. The cultural ecology of Puebloan pebble-mulch gardens. Hum. Ecol. 21, 115–143. https://doi.org/10.1007/BF00889356 (1993).Article 

    Google Scholar 
    Graf, A., Kuttler, W. & Werner, J. Mulching as a means of exploiting dew for arid agriculture?. Atmos. Res. 87, 369–376 (2008).Article 

    Google Scholar 
    Shao Ping, D. U., Ma, Z. M. & Xue, L. Distribution characteristics of soil aggregates and their associated organic carbon in gravel-mulched land with different cultivation years. Ying Yong Sheng Tai Xue Bao 28, 1619–1625 (2017).
    Google Scholar 
    Zhong-Ming, M. A., Shao-Ping, D. U. & Xue, L. Influences of sand-mulching years on soil temperature, water content, and growth and water use efficiency of watermelon. J. Desert Res. 33, 1433–1439 (2013).
    Google Scholar 
    Pang, L. et al. Effect of different gravel mulched years on soil microflora and physicochemical properties in gravel-sand mulched field. Agric. Res. Arid Areas (2017).Hao, H. et al. Effects of gravel-sand mulching on soil bacterial community and metabolic capability in the semi-arid Loess Plateau, China. World J. Microbiol. Biotechnol. 33, 209 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Gregorich, E. G., Carter, M. R., Angers, D. A., Monreal, C. & Ellert, B. H. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can. J. Soil Sci. 74, 367–385 (1994).CAS 
    Article 

    Google Scholar 
    Jandl, R. et al. Current status, uncertainty and future needs in soil organic carbon monitoring. Sci. Total Environ. 468–469, 376–383 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 17, 197–209 (2010).Article 

    Google Scholar 
    Razafimbelo, T. M. et al. Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil Tillage Res. 98(2), 140–149 (2007).Article 

    Google Scholar 
    Hongbing, Z. et al. Effect of long-term tillage on soil aggregates and aggregate-associated carbon in black soil of Northeast China. PLoS ONE 13, e0199523 (2018).Article 
    CAS 

    Google Scholar 
    Bajracharya, R. M., Lal, R. & Kimble, J. M. Soil organic carbon distribution in aggregates and primary particle fractions as influenced by erosion phases and landscape position. In Soil Processes & the Carbon Cycle (eds Lal, R. et al.) (CRC Press, 1998).
    Google Scholar 
    Sekaran, U., Sagar, K. L. & Kumar, S. Soil aggregates, aggregate-associated carbon and nitrogen, and water retention as influenced by short and long-term no-till systems. Soil Tillage Res. 208, 104885 (2020).Article 

    Google Scholar 
    Tang, X., Liu, S., Liu, J. & Zhou, G. Effects of vegetation restoration and slope positions on soil aggregation and soil carbon accumulation on heavily eroded tropical land of Southern China. J. Soils Sediments 10, 505–513 (2010).CAS 
    Article 

    Google Scholar 
    Wang, Y. et al. 23-Year manure and fertilizer application increases soil organic carbon sequestration of a rice–barley cropping system. Biol. Fertil. Soils 51(5), 583–591 (2015).Article 

    Google Scholar 
    Zhou, H., Fang, H., Mooney, S. J. & Peng, X. Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies. Geoderma 266, 66–74 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Congreves, K. A., Hooker, D. C., Hayes, A., Verhallen, E. A. & Eerd, L. V. Interaction of long-term nitrogen fertilizer application, crop rotation, and tillage system on soil carbon and nitrogen dynamics. Plant Soil 410, 113–127 (2017).CAS 
    Article 

    Google Scholar 
    Tang, H., Xiao, X., Chao, L., Ke, W. & Pan, X. Impact of long-term fertilization practices on the soil aggregation and humic substances under double-cropped rice fields. Environ. Sci. Pollut. Res. Int. 25, 11034–11044 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rong, Y., Su, Y. Z., Wang, T. & Qin, Y. Effect of chemical and organic fertilization on soil carbon and nitrogen accumulation in a newly cultivated farmland. J. Integr. Agric. 15, 658–666 (2019).
    Google Scholar 
    Chen, Y. et al. Rotation and organic fertilizers stabilize soil water-stable aggregates and their associated carbon and nitrogen in flue-cured tobacco production. J. Soil Sci. Plant Nutr. 20, 192–205 (2020).Article 
    CAS 

    Google Scholar 
    Li, T. et al. Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. CATENA 194, 104739. https://doi.org/10.1016/j.catena.2020.104739 (2020).CAS 
    Article 

    Google Scholar 
    Hati, K. M. et al. 50 Years of continuous no-tillage, stubble retention and nitrogen fertilization enhanced macro-aggregate formation and stabilisation in a Vertisol. Soil Tillage Res. 214, 105163. https://doi.org/10.1016/j.still.2021.105163 (2021).Article 

    Google Scholar 
    Ma, P. et al. Macroaggregation is promoted more effectively by organic than inorganic fertilizers in farmland ecosystems of China—A meta-analysis. Soil Tillage Res. 221, 105394. https://doi.org/10.1016/j.still.2022.105394 (2022).Article 

    Google Scholar 
    Lu, R. Chemical Analysis Methods of Soil and Agriculture (China Agricultural Science and Technology Press, 2000).
    Google Scholar 
    Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S. & Kuzyakov, Y. Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on soil aggregate size. Glob. Change Biol. 15, 1603–1614 (2010).ADS 
    Article 

    Google Scholar 
    Kemper, W. D. & Rosenau, R. C. Aggregate stability and size distribution. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. Agronomy Monograph No. 9, ASA and SSSA 2nd edn (ed. Klute, A.) 425–442 (Wiley, 1986).
    Google Scholar 
    Jones, J. B. Laboratory Guide for Conducting Soil Tests and Plant Analysis (Nurse Educ, 2001).Book 

    Google Scholar 
    Blair, G., Lefroy, R. & Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 46, 393–406 (1995).Article 

    Google Scholar 
    Li, W., Zheng, Z., Li, T. & Liu, M. Distribution characteristics of soil aggregates and its organic carbon in different tea plantation age. Acta Ecol. Sin. 34, 6326–6336 (2014).
    Google Scholar 
    Matos, E. S., Freese, D., Böhm, C., Quinkenstein, A. & Hüttl, R. Organic matter dynamics in reclaimed lignite mine soils under Robinia pseudoacacia L. plantations of different ages in Germany. Commun. Soil Sci. Plant Anal. 43, 745–755 (2012).CAS 
    Article 

    Google Scholar 
    Zádorová, T., Jakšík, O., Kodešová, R. & Penížek, V. Influence of terrain attributes and soil properties on soil aggregate stability. Soil Water Res. 6, 111–119 (2011).Article 

    Google Scholar 
    Sajjadi, S. A. & Mahmoodabadi, M. Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size. Solid Earth 6(1), 311–321 (2015).ADS 
    Article 

    Google Scholar 
    Yang, W. et al. Mechanical properties and soil stability affected by fertilizer treatments for an Ultisol in subtropical China. Plant Soil 363(1), 157–174 (2013).CAS 
    Article 

    Google Scholar 
    Lal, R. Soil health and carbon management. Food Energy Secur. 5, 212–222 (2016).Article 

    Google Scholar 
    Jagadamma, S., Lal, R., Hoeft, R. G., Nafziger, E. D. & Adee, E. A. Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil Tillage Res. 95, 348–356 (2007).Article 

    Google Scholar 
    Yang, X. M. et al. Long-term effects of fertilization on soil organic carbon changes in continuous corn of northeast China: RothC model simulations. Environ. Manage. 32, 459–465 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Russell, A. E., Laird, D. A., Parkin, T. B. & Mallarino, A. P. Impact of nitrogen fertilization and cropping system on carbon sequestration in Midwestern mollisols. Soil Sci. Soc. Am. J. 69, 413–422 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Hartwig, N. L. Cover crop and living mulches. Weed Sci. 50, 688–699 (2002).CAS 
    Article 

    Google Scholar 
    Yu, H. et al. Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol. Fertil. Soils 48, 325–336 (2012).CAS 
    Article 

    Google Scholar 
    Li, C., Yan, L. & Tang, L. The effects of long-term fertilization on the accumulation of organic carbon in the deep soil profile of an oasis farmland. Plant Soil 369, 645–656 (2013).CAS 
    Article 

    Google Scholar 
    Puget, P., Chenu, C. & Balesdent, J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur. J. Soil Sci. 51, 595–605 (2000).Article 

    Google Scholar 
    Ashman, M. R., Hallett, P. D. & Brookes, P. C. Are the links between soil aggregate size class, soil organic matter and respiration rate artefacts of the fractionation procedure?. Soil Biol. Biochem. 35, 435–444 (2003).CAS 
    Article 

    Google Scholar 
    Six, J., Elliott, E. T. & Paustian, K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).CAS 
    Article 

    Google Scholar 
    Chivenge, P. P., Murwira, H. K., Giller, K. E., Mapfumo, P. & Six, J. Long-term impact of reduced tillage and residue management on soil carbon stabilization: Implications for conservation agriculture on contrasting soils. Soil Tillage Res. 94, 328–337 (2006).Article 

    Google Scholar 
    Kölbl, A. & Knabner, I. K. Content and composition of free and occluded particulate organic matter in a differently textured arable Cambisol as revealed by solid-state 13C NMR spectroscopy. J. Plant Nutr. Soil Sci. 167, 45–53 (2004).Article 
    CAS 

    Google Scholar 
    Tong, L. et al. Response of organic carbon fractions and microbial community composition of soil aggregates to long-term fertilizations in an intensive greenhouse system. J. Soils Sediments 20, 641–652. https://doi.org/10.1007/s11368-019-02436-x (2020).CAS 
    Article 

    Google Scholar 
    Li, C., Li, Y. & Tang, L. The effects of long-term fertilization on the accumulation of organic carbon in the deep soil profile of an oasis farmland. Plant Soil 369, 645–656. https://doi.org/10.1007/s11104-013-1605-4 (2013).CAS 
    Article 

    Google Scholar 
    Su, Y. Z., Wang, F., Suo, D. R., Zhang, Z. H. & Du, M. W. Long-term effect of fertilizer and manure application on soil-carbon sequestration and soil fertility under the wheat–wheat–maize cropping system in northwest China. Nutr. Cycl. Agroecosyst. 75, 285–295 (2006).CAS 
    Article 

    Google Scholar 
    Du, S. P., Ma, Z. M. & Xue, L. Effect of manure combined with chemical fertilizers on fruit yield, fruit quality and water and nitrogen use efficiency in watermelon grown in gravel-mulched field. J. Fruit Sci. 37, 10. https://doi.org/10.13925/j.cnki.gsxb.20190380 (2020).CAS 
    Article 

    Google Scholar 
    Zhengchao, Z., Zhuoting, G., Zhouping, S. & Fuping, Z. Effects of long-term repeated mineral and organic fertilizer applications on soil organic carbon and total nitrogen in a semi-arid cropland. Eur. J. Agron. 45, 20–26. https://doi.org/10.1016/j.eja.2012.11.002 (2013).CAS 
    Article 

    Google Scholar 
    Lv, W. et al. Effects of organic fertilizers on continuous cropping watermelon growth and soil microflora. Acta Agric. Shanghai 22, 96–98 (2006).
    Google Scholar 
    Zhong, W. et al. The effects of mineral fertilizer and organic manure on soil microbial community and diversity. Plant Soil 326, 511–522 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    Adaptive response of Dongzhaigang mangrove in China to future sea level rise

    Historical changes and current status of the Dongzhaigang mangrove areaBased on the literature and remote sensing data, we calculated the changes in the area of mangrove forests in Dongzhaigang since the 1950s presented in Fig. 2. In the last 60 years, the area of mangrove forests in Dongzhaigang has experienced large fluctuations mainly due to human destruction and protection activities such as mariculture reclamation, cofferdams, and restoration: it decreased from 3416 hm2 in 195617 to 3213 hm2 in 195919,29 and then decreased sharply to 1733 hm2 in 1983 and to 1537 hm2 in 198720,30. Since the establishment of the national nature reserve in 1986, the decline in area of Dongzhaigang mangrove has stopped19, which are now protected and restored owing to the law and regulations that prohibit human activities from destroying the mangrove resource. In 1988, the area was restored to 1809 hm2, and since the 1990s, it has no longer decreased, remaining constant at approximately 1711 hm2 (in the range of 1575–1812 hm2) based on the literature)18,20,31,32,33,34 (Fig. 2). The area of the Dongzhaigang mangrove forest in 2019 was estimated to be 1842 hm2 based on the latest 2 m resolution remote sensing data21. Hence, we wonder how SLR has impacted Dongzhaigang mangrove in the past decades. However, it is very difficult to analyze how SLR has historically impacted the spatial changes in the Dongzhaigang mangrove; the same can be said regarding the influence of human activities, such as destruction before mid-1980s and protection after 1990s. However, the dynamic changes among low plant edges in the intertidal zone can be used to analyze the impact of natural driving forces such as SLR35, based on the latest remote sensing data for the period of 1986–2020. Thus, we analyzed the dynamic changes in low mangrove edges (hereafter, the edges), which are mainly impacted by natural impact drivers, as shown in Fig. 3. The dynamic low mangrove edges represented by 1986, 2000, and 2020 reveal the changes in spatial distribution of Dongzhaigang mangrove. As shown in Fig. 3. Most of the edges along the coast of Dongzhaigang between 1986 and 2020 migrated landward, but not significantly. However, if we look at the changes in detail, some edges such as those in Daoxue, Sanjiang (purple circles in Figs. 3a,b–d,e–g) more clearly retreated landward compared to other places. Besides, some edges of Luodou along the northeastern coast of Dongzhaigang outside the reserve and an unnamed small island (pruple circles in Fig. 3a,h–j) also migrated landward very distinctly. On the contrary, the two smaller shore lines (black circles) in the northern part of Yangfeng and Daxue districts showed seaward expansion (Fig. 3a).Figure 2Changes in the mangrove area in Dongzhaigang from 1956 to 2019. The equation in the upper-right-hand corner of the plot refers to the fitting equation of historical changes in the total area of Dongzhaigang mangrove.Full size imageFigure 3The dynamic changes in low mangrove edges in Dongzhaigang from 1986 to 2020. Maps generated in ArcMap v10.0 (https://www.esri.com/en-us/home).Full size imageVertical rate of sediment accretion in mangrove wetlandsThe vertical rate of sediment accumulation in mangrove wetlands can reflect whether the mangroves can adjust the soil surface elevation change through sediment trapping to adapt to SLR6,11. The vertical sediment accretion rates at two sites of Dongzhaigang mangrove (i.e., Linshi and Daoxue villages in Fig. 1b) can be obtained from historical documents, which are 0.41 cm year−1 at LS and 0.64 cm year−1 at DX, respectively27,28. Since historical data may not be enough to reflect the vertical sediment accretion rates in time and space, we conducted a supplementary investigation on the sediment accumulation rates at site HG in Yanfeng and SJ site in Sanjiang farms, respectively (Fig. 1b), based on the assumption that they can reflect the sediment supplies from main reivers such as Yanfeng West River and Yanzhou River, respectively. Sediment accretion rates measured using 210Pbex specific activity in the cores from sites HG and SJ showed that 210Pbex decayed exponentially with increasing depth, and the R2 values of both cores were approximately 0.80 after curve fitting. This analysis resulted in vertical sediment accretion rates of 0.53 and 0.40 cm year−1 at HG and SJ, respectively (Fig. 4). Therefore, the locations of sediment cores at sites LS, DX, HG, and SJ can basically represent the whole Dongzhaigang mangrove forest area.Figure 4210Pbex activity profiles in selected cores such as from (a) station HG and (b) station SJ.Full size imageRate of relative sea level rise in Dongzhaigang mangroveThe global mean sea level (GMSL) is accelerating due to global warming-induced thermal expansion of the oceans and melting of land-based glaciers and ice caps into the sea36. Between 1901 and 2010, the GMSL rose by 0.19 m9. Coastal China is among the regions that experience the highest levels of SLR23. The rate of RSLR along China’s coast from 1980 to 2019 was 3.4 mm year−1, higher than the global average23. In the future, under the premise of increasing anthropogenic GHG emissions, global sea levels will rise rapidly, and it is projected that the GMSL may rise by 0.84 m (0.61–1.10 m) relative to the current levels by the end of the twenty-first century9. Based on the observations from the tide gauge stations in the Haikou area and model data from the Coupled Model Intercomparison Projection 5 (CMIP5), the rate of RSLR around Dongzhaigang reached 4.6 mm year−1 from 1980 to 2018. This rate is much higher than the global and China’s average values23,25 and will likely accelerate further in the future. Based on the results of the CMIP5 model simulations under different GHG emission scenarios24, the RSLR in coastal Haikou waters, including in Dongzhaigang, is expected to be significant by 2030, 2050, and 2100 for the low, intermediate, and very high GHG emission scenarios RCPs 2.6, 4.5, and 8.5, respectively (Table 1, Fig. 5). Under RCPs 2.6, 4.5, and 8.5, the sea level will rise by 65 (42–90, likely range), 75 (51–102, likely range), and 96 (70–125, likely range) cm by 2100, respectively, with the average RSLR rates of 6.84 (4.42–9.47, likely range), 7.89 (5.37–10.74, likely range), and 10.1 (7.37–13.12, likely range) mm year−1, respectively.Table 1 Estimated coastal relative sea level rise (cm) and its rate (mm year−1) in the Haikou area under different GHG emission scenarios (data from Kopp et al.24).Full size tableFigure 5Historical and future relative sea level changes along coastal Dongzhaigang, Haikou City from 1980 to 2100; the 5–95% uncertainty ranges are shaded for RCPs 2.6, 4.5, and 8.5, respectively.Full size imageImpact of relative sea level rise on Dongzhaigang mangroveMangroves cannot easily adapt to rising sea levels if the rate of GMSL rise exceeds 6.1 mm year−1 ( > 90% probability, very likely), whereas the survival threshold for mangroves is extremely likely to be exceeded ( > 95% probability, extremely likely) when the rate of GMSL exceeds 7.6 mm year−17. Although these values are based on global levels7, they still reflect the threat of SLR to local mangroves. In view of this, we further analyzed the potential impact and risks to Dongzhaigang mangrove from future SLR under different climate scenarios.Based on the predicted future rates of SLR under RCPs 2.6, 4.5, and 8.5 and on the vertical sediment accretion rates of Dongzhaigang mangrove wetlands, the mangroves are likely to be affected by rising sea levels by 2030, 2050, and 2100, respectively (Table 2, Fig. 6). Under the low GHG emission scenario (RCP 2.6), the area of the Dongzhaigang mangrove forest will only experience a small reduction: 16.40% (1.20–16.95%, likely range), 302 hm2 (22–312 hm2, likely range); 16.73% (1.20–17.82%, likely range), 308 hm2 (22–328 hm2, likely range); and 17.60% (1.14–31.02%, likely range), 324 hm2 (21–571 hm2, likely range) by 2030, 2050, and 2100, respectively (Table 2, Fig. 6a). This is because the vertical sediment accretion rate of Dongzhaigang mangrove will remain largely constant with increasing RSLR rate. Moreover, it should be noted that compared with 2030, the increase areas of mangroves inundation caused by SLR will be small by 2050 under three RCPs scenarios (Table 2). In contrast, under the intermediate and very high GHG emission scenarios (RCPs 4.5 and 8.5), Dongzhaigang mangrove is expected to be more significantly affected by SLR. Under RCP 4.5, 26.56% (16.19–40.74%, likely range) or 489 hm2 (298–750 hm2, likely range) of mangrove forest will likely be lost by the end of the century (Table 3, Fig. 6b). Under RCP 8.5, it is projected that 31.99% (18.14–50.73%, likely range) or 589 hm2 (334–934 hm2, likely range) of mangrove forest will be lost by 2100 (Table 2, Fig. 6c). Therefore, under RCPs 4.5 and 8.5, the impact of SLR on mangrove wetlands by 2100 is much higher than that of RCP 2.6, and is likely to result in  > 26% of mangroves being lost, whereas under RCP 2.6, only 17% of mangroves are likely to be lost.Table 2 Area (hm2) and percentage of future mangrove loss in Dongzhaigang under different climate scenarios (RCPs 2.6, 4.5, and 8.5) (likely ranges).Full size tableFigure 6Potential loss of mangrove forests in Dongzhaigang under different climate scenarios (RCPs 2.6, 4.5, and 8.5). Maps generated in ArcMap v10.0 (https://www.esri.com/en-us/home).Full size imageTable 3 Core stations and depths.Full size tableUnder RCP 2.6, the rate of RSLR around Dongzhaigang will reach 0.72 cm year−1 in 2030 and then decrease in 2050 and 2080 to 0.69 and 0.68 cm year−1, respectively (Table 1). However, under RCP 4.5 (8.5), by 2030, 2050, and 2100, the rate of RSLR will reach 0.72 (0.72), 0.73 (0.80), and 0.79 (10.1) cm year−1, respectively. By 2100, some mangroves in the northern part of Tashi village, the eastern part of Yanfeng, the northern part of Daoxue Village, and the northeastern part of the Sanjiang farm will likely be lost owing to SLR, and other coastal wetlands will also be impacted. Since the rate of RSLR around Dongzhaigang is higher than the global average survival threshold for mangroves (i.e., the SLR rate exceeds 7.0 mm year−1), the Dongzhaigang mangrove will be significantly affected by SLR, with a potential loss of 31–32%; however, the survival threshold will not increase (Table 2, Fig. 6). More