The effects of protected areas on the ecological niches of birds and mammals
Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28. https://doi.org/10.1086/343878 (2003).MathSciNet
Article
PubMed
Google Scholar
Peterson, A. T., Soberón, J. & Sánchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).CAS
Article
Google Scholar
Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article
Google Scholar
Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192. https://doi.org/10.1016/j.tree.2011.01.009 (2011).Article
PubMed
PubMed Central
Google Scholar
Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2021).Article
Google Scholar
Ortego, J., Calabuig, G., Cordero, P. J. & Aparicio, J. M. Egg production and individual genetic diversity in lesser kestrels. Mol. Ecol. 16, 2383–2392 (2007).CAS
Article
Google Scholar
Peacor, S. D., Schiesari, L. & Werner, E. E. Mechanisms of nonlethal predator effect on cohort size variation: Ecological and evolutionary implications. Ecology 88, 1536–1547 (2007).Article
Google Scholar
Smith, A. B., Godsoe, W., Rodríguez-Sánchez, F., Wang, H.-H. & Warren, D. Niche estimation above and below the species level. Trends Ecol. Evol. 34, 260–273 (2019).Article
Google Scholar
Carlson, B. S., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Individual environmental niches in mobile organisms. Nat. Commun. 12, 4572. https://doi.org/10.1038/s41467-021-24826-x (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Hutchinson, G. E. Population studies: Animal ecology and demography. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article
Google Scholar
Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article
Google Scholar
Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).ADS
CAS
Article
Google Scholar
Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103 (2022).CAS
Article
Google Scholar
Lowry, H., Lill, A. & Wong, B. B. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).Article
Google Scholar
Hällfors, M. H. et al. Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecol. Lett. 24, 1619–1632 (2021).Article
Google Scholar
Joppa, L. N. & Pfaff, A. Global protected area impacts. Proc. R. Soc. B Biol. Sci. 278, 1633–1638. https://doi.org/10.1098/rspb.2010.1713 (2011).Article
Google Scholar
Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).ADS
CAS
Article
Google Scholar
Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. 116, 23209–23215. https://doi.org/10.1073/pnas.1908221116 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455 (2018).Article
Google Scholar
Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995. https://doi.org/10.1111/2041-210X.13424 (2020).Article
Google Scholar
Mammola, S. Assessing similarity of n-dimensional hypervolumes: Which metric to use? J. Biogeogr. 46, 2012 (2019).Article
Google Scholar
Carvalho, J. C. & Cardoso, P. Decomposing the causes for niche differentiation between species using hypervolumes. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.00243 (2020).Article
Google Scholar
Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133. https://doi.org/10.1111/jbi.13987 (2021).Article
Google Scholar
Wang, X. et al. Exploring ecological specialization in pipefish using genomic, morphometric and ecological evidence. Divers. Distrib. 27, 1393–1406. https://doi.org/10.1111/ddi.13286 (2021).Article
Google Scholar
Jaturapruek, R., Fontaneto, D., Mammola, S. & Maiphae, S. Potential niche displacement in species of aquatic bdelloid rotifers between temperate and tropical areas. Hydrobiologia. https://doi.org/10.1007/s10750-021-04681-z (2021).Article
Google Scholar
Hu, Z. M. et al. Intraspecific genetic variation matters when predicting seagrass distribution under climate change. Mol. Ecol. 30, 3840–3855. https://doi.org/10.1111/mec.15996 (2021).Article
PubMed
Google Scholar
Ho, D. E., Imai, K., King, G. & Stuart, E. A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 15, 199–236 (2007).Article
Google Scholar
Terraube, J., Van Doninck, J., Helle, P. & Cabeza, M. Assessing the effectiveness of a national protected area network for carnivore conservation. Nat. Commun. 11, 2957. https://doi.org/10.1038/s41467-020-16792-7 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article
Google Scholar
Pearman, P. B., Guisan, A., Broennimann, O. & Randin, C. F. Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–158 (2008).Article
Google Scholar
Santangeli, A., Högmander, J. & Laaksonen, T. Returning white-tailed eagles breed as successfully in landscapes under intensive forestry regimes as in protected areas. Anim. Conserv. 16, 500–508. https://doi.org/10.1111/acv.12017 (2013).Article
Google Scholar
Broennimann, O. et al. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 10, 701–709 (2007).CAS
Article
Google Scholar
Fitzpatrick, M. C., Weltzin, J. F., Sanders, N. J. & Dunn, R. R. The biogeography of prediction error: Why does the introduced range of the fire ant over-predict its native range? Glob. Ecol. Biogeogr. 16, 24–33 (2007).Article
Google Scholar
Dietz, H. & Edwards, P. J. Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87, 1359–1367 (2006).Article
Google Scholar
Holt, R. D., Keitt, T. H., Lewis, M. A., Maurer, B. A. & Taper, M. L. Theoretical models of species’ borders: Single species approaches. Oikos 108, 18–27 (2005).Article
Google Scholar
Zhang, Z., Mammola, S., McLay, C. L., Capinha, C. & Yokota, M. To invade or not to invade? Exploring the niche-based processes underlying the failure of a biological invasion using the invasive Chinese mitten crab. Sci. Total Environ. 728, 138815. https://doi.org/10.1016/j.scitotenv.2020.138815 (2020).ADS
CAS
Article
PubMed
Google Scholar
Liu, C., Wolter, C., Xian, W. & Jeschke, J. M. Most invasive species largely conserve their climatic niche. Proc. Natl. Acad. Sci. 117, 23643–23651 (2020).CAS
Article
Google Scholar
Sarasola, J. H., Grande, J. M. & Negro, J. J. Birds of Prey: Biology and Conservation in the XXI Century 63–94 (Springer, 2018).Book
Google Scholar
Reif, J., Hořák, D., Krištín, A., Kopsová, L. & Devictor, V. Linking habitat specialization with species’ traits in European birds. Oikos 125, 405–413. https://doi.org/10.1111/oik.02276 (2016).Article
Google Scholar
Thornton, D., Branch, L. & Sunquist, M. Passive sampling effects and landscape location alter associations between species traits and response to fragmentation. Ecol. Appl. 21, 817–829. https://doi.org/10.1890/10-0549.1 (2011).Article
PubMed
Google Scholar
Hatfield, J. H., Orme, C. D. L., Tobias, J. A. & Banks-Leite, C. Trait-based indicators of bird species sensitivity to habitat loss are effective within but not across data sets. Ecol. Appl. 28, 28–34. https://doi.org/10.1002/eap.1646 (2018).Article
PubMed
Google Scholar
Kuuluvainen, T. Forest management and biodiversity conservation based on natural ecosystem dynamics in Northern Europe: The complexity challenge. Ambio 38, 309–315 (2009).Article
Google Scholar
Niemi, J. & Ahlstedt, J. Finnish Agriculture and Rural Industries 2011 (MTT Economic Research, Agrifood Research Finland, 2011).
Google Scholar
Lehikoinen, P. et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Cons. 253, 108892. https://doi.org/10.1016/j.biocon.2020.108892 (2021).Article
Google Scholar
Virkkala, R. & Lehikoinen, A. Patterns of climate-induced density shifts of species: Poleward shifts faster in northern boreal birds than in southern birds. Glob. Change Biol. 20, 2995–3003. https://doi.org/10.1111/gcb.12573 (2014).ADS
Article
Google Scholar
Lehikoinen, A. & Virkkala, R. North by north-west: Climate change and directions of density shifts in birds. Glob. Change Biol. 22, 1121–1129. https://doi.org/10.1111/gcb.13150 (2016).ADS
Article
Google Scholar
Santangeli, A., Rajasärkkä, A. & Lehikoinen, A. Effects of high latitude protected areas on bird communities under rapid climate change. Glob. Change Biol. 23, 2241–2249. https://doi.org/10.1111/gcb.13518 (2017).ADS
Article
Google Scholar
Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change—Evidence from large-scale, long-term abundance data. Glob. Change Biol. 25, 304–313. https://doi.org/10.1111/gcb.14461 (2019).ADS
Article
Google Scholar
Santangeli, A. & Lehikoinen, A. Are winter and breeding bird communities able to track rapid climate change? Lessons from the high North. Divers. Distrib. 23, 308–316. https://doi.org/10.1111/ddi.12529 (2017).Article
Google Scholar
Lindén, H., Helle, E., Helle, P. & Wikman, M. Wildlife triangle scheme in Finland: Methods and aims for monitoring wildlife populations. Finnish Game Res. 49, 4–11 (1996).
Google Scholar
Blonder, B. Do hypervolumes have holes? Am. Nat. 187, E93–E105. https://doi.org/10.1086/685444 (2016).Article
PubMed
Google Scholar
Fuller, C., Ondei, S., Brook, B. W. & Buettel, J. C. First, do no harm: A systematic review of deforestation spillovers from protected areas. Glob. Ecol. Conserv. 18, e00591. https://doi.org/10.1016/j.gecco.2019.e00591 (2019).Article
Google Scholar
Hyvärinen, E., Juslén, A., Kemppainen, E., Uddström, A. & Liukko, U.-M. Suomen lajien uhanalaisuus–Punainen kirja 2019 (2019).Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027. https://doi.org/10.1890/13-1917.1 (2014).Article
Google Scholar
Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386 (2019).Article
Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444 (2012).ADS
CAS
Article
Google Scholar
Cimatti, M. et al. Large carnivore expansion in Europe is associated with human population density and land cover changes. Divers. Distrib. 27, 602–617. https://doi.org/10.1111/ddi.13219 (2021).Article
Google Scholar
Laaksonen, T. & Lehikoinen, A. Population trends in boreal birds: Continuing declines in agricultural, northern, and long-distance migrant species. Biol. Conserv. 168, 99–107. https://doi.org/10.1016/j.biocon.2013.09.007 (2013).Article
Google Scholar
Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609. https://doi.org/10.1111/geb.12146 (2014).Article
Google Scholar
Cardoso, P. M., Rigal, F. & Carvalho, J. BAT-Biodiversity Assessment Tools (2014).Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article
Google Scholar
Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article
Google Scholar
Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article
Google Scholar
Sokal, R. R., Rohlf, F. J. & Rohlf, J. F. Biometry (Macmillan, 1995).MATH
Google Scholar
Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).Article
Google Scholar
Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. https://doi.org/10.21105/joss.03139 (2021).Article
Google Scholar
Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article
Google Scholar
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R 1–552 (Springer, 2009).Book
Google Scholar
R Core Development Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. More