More stories

  • in

    Effects of cavity orientation on nesting success inferred from long-term monitoring of the endangered red-cockaded woodpecker

    Biere, J. M. & Uetz, G. W. Web orientation in the spider Micrathena gracilis (Araneae: Araneidae). Ecology 62(2), 336–344 (1981).Article 

    Google Scholar 
    Korb, J. & Linsenmair, K. E. The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav. Ecol. 10(3), 312–316 (1999).Article 

    Google Scholar 
    Hansell, M. H. Bird nests and construction behaviour (Cambridge University Press, 2000).Book 

    Google Scholar 
    Kawase, H., Okata, Y. & Ito, K. Role of huge geometric circular structures in the reproduction of a Marine Pufferfish. Sci. Rep. 3, 1–5 (2013).Article 

    Google Scholar 
    Dawkins, R. The extended phenotype 295 (Oxford University Press, 1982).
    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction. Am. Nat. 147(4), 641–648 (1996).Article 

    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction: the Neglected process in evolution (Princeton University Press, 2003).
    Google Scholar 
    Short, L. L. Burdens of the picid hole-excavating habit. Wilson Bull. 91(1), 16–28 (1979).
    Google Scholar 
    Wiebe, K. L., Koenig, W. D. & Martin, K. Costs and benefits of nest reuse versus excavation in cavity-nesting birds. Ann. Zool. Fenn. 44(3), 209–217 (2007).
    Google Scholar 
    Landler, L. et al. Global trends in woodpecker cavity orientation: latitudinal and continental effects suggest regional climate influence. Acta Ornithol. 49(2), 257–266 (2014).Article 

    Google Scholar 
    Ojeda, V. et al. Latitude does not influence cavity entrance orientation of South American avian excavators. Auk 138(1), ukaa064 (2021).Article 

    Google Scholar 
    Wiebe, K. L. Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? Auk 118(2), 412–421 (2001).Article 

    Google Scholar 
    Schaaf, A. A. Effects of sun exposure and vegetation cover on Woodpecker nest orientation in subtropical forests of South America. J. Ethol. 38, 117–120 (2019).Article 

    Google Scholar 
    Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the acorn woodpecker. Auk 116(1), 45–54 (1999).Article 

    Google Scholar 
    Schaaf, A. A. & de la Pena, M. R. Bird nest orientation and local temperature: an analysis over three decades. Ecology 20, e03042 (2020).
    Google Scholar 
    Charter, M. et al. Does nest box location and orientation affect occupation rate and breeding success of barn owls Tyto alba in a semi-arid environment? Acta Ornithol. 45(1), 115–119 (2010).Article 

    Google Scholar 
    Butler, M. W., Whitman, B. A. & Dufty, A. M. Nest box temperature and hatching success of American kestrels varies with nest box orientation. Wilson J. Ornithol. 121(4), 778–782 (2009).Article 

    Google Scholar 
    Goodenough, A. E. et al. Nestbox orientation: a species-specific influence on occupation and breeding success in woodland passerines. Bird Study 55(2), 222–232 (2008).Article 

    Google Scholar 
    Viñuela, J. & Sunyer, C. Nest orientation and hatching success of black kites milvus migrans in Spain. Ibis 134(4), 340–345 (1992).Article 

    Google Scholar 
    Larson, E. R. et al. How does nest box temperature affect nestling growth rate and breeding success in a parrot?. Emu 115(3), 247–255 (2015).Article 

    Google Scholar 
    Austin, G. T. Nesting success of the cactus wren in relation to nest orientation. Condor 76(2), 216–217 (1974).Article 

    Google Scholar 
    Verbeek, N. A. Nesting success and orientation of water pipit Anthus spinoletta nests. Ornis Scand. 25, 37–39 (1981).Article 

    Google Scholar 
    Conner, R. N. & Rudolph, D. C. Excavation dynamics and use patterns of red-cockaded woodpecker cavities: relationships with cooperative breeding. Red cockaded Woodpecker: recovery, ecology, and management. Center for Applied Studies in Forestry, College of Forestry, Stephen F. Austin State University, Nacogdoches, TX, 1995: 343–352.Harding, S. R. & Walters, J. R. Dynamics of cavity excavation by red-cockaded woodpeckers. In Red-Cockaded Woodpecker: Road to Recovery (eds Costa, R. & Daniels, S.) 412–422 (Hancock House, 2004).
    Google Scholar 
    Harding, S. R. & Walters, J. R. Processes regulating the population dynamics of red-cockaded woodpecker cavities. J. Wildl. Manage. 66(4), 1083–1095 (2002).Article 

    Google Scholar 
    Dennis, J. V. The yellow-shafted flicker (Colaptes Auratus) on Nantucket Island, Massachusetts. Bird Banding 40(4), 290–308 (1969).Article 

    Google Scholar 
    Baker, W. W. Progress report on life history studies of the red-cockaded woodpecker at Tall Timbers Research Station. Ecology and Management of the Redcockaded Woodpecker 44–59 (US Bureau of Sport Fisheries and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Dennis, J. V. Species using red-cockaded woodpecker holes in Northeastern South Carolina. Bird-Banding 42(2), 79–87 (1971).Article 

    Google Scholar 
    Conner, R. N. et al. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production. Auk 115(2), 447–454 (1998).Article 

    Google Scholar 
    Conner, R. N. Orientation of entrances to woodpecker nest cavities. Auk 92(2), 371–374 (1975).Article 

    Google Scholar 
    Copeyon, C. K., Walters, J. R. & Carter, J. III. Induction of red-cockaded woodpecker group formation by artificial cavity construction. J. Wildl. Manage. 55(4), 549–556 (1991).Article 

    Google Scholar 
    Locke, B. A. & Conner, R. N. A statistical analysis of the orientation of entrances to redcockaded woodpecker cavities. In Red-Cockaded Woodpecker Symposium II (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Lay, D. W., Red-cockaded woodpecker study. Texas Parks and Wildlife Department. Project W-80-R-16. 1973. p. 33.Jones, H. K. & Ott, F. T. Some characteristics of red-cockaded woodpecker cavity trees in Georgia. Oriole 38, 33–39 (1973).
    Google Scholar 
    Hopkins, M. L. & Lynn, T. E. Jr. Some characteristics of red-cockaded woodpecker cavity trees and management implications in South Carolina. Ecology and Management of The Red-Cockaded Woodpecker 140–169 (US Bureau of Sport Fishing and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Wood, D. A. Foraging and colony habitat characteristics of the red-cockaded woodpecker in Oklahoma. In Red-Cockaded Woodpecker Symposium II 51–58 (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Kalisz, P. J. & Boettcher, S. E. Active and abandoned red-cockaded woodpecker habitat in Kentucky. J. Wildl. Manage. 25, 146–154 (1991).Article 

    Google Scholar 
    Walters, J. R., Doerr, P. D. & J. H. Carter, III. The cooperative breeding system of the red cockaded woodpecker. Ethology 78, 275–305 (1988).Article 

    Google Scholar 
    Batschelet, E. Circular statistics in biology (Academic Press, 1981).MATH 

    Google Scholar 
    Agostinelli, C. & U. Lund, R package “circular”: circular statistics. R package version 0.4-7. https://r-forge.r-project.org/projects/circular (2013).Hijmans, R. J. & Etten, J. V. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12 (2012).R Development Core Team R. A language and environment for statistical computing (R Foundation for Statistical Computing, 2012).
    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19 (2007).Article 

    Google Scholar 
    Cox, N. J. Speaking Stata: In praise of trigonometric predictors. Stand. Genomic Sci. 6(4), 561–579 (2006).
    Google Scholar 
    Smith, J. A. et al. How effective is the Safe Harbor program for the conservation of Red-cockaded Woodpeckers? Condor Ornithol. Appl. 120(1), 223–233 (2018).
    Google Scholar 
    Zuur, A. et al. Mixed effects models and extensions in ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Bates, D., et al., lme4: Linear mixed-effects models using Eigen and S4. 2014: http://CRAN.R-project.org/package=lme4.Conner, R. N., Rudolph, D. C. & Walters, J. R. The red-cockaded woodpecker: surviving in a fire-maintained ecosystem (University of Texas Press, 2001).Book 

    Google Scholar 
    Rudolph, D. C., Kyle, H. & Conner, R. N. Red-cockaded woodpeckers vs rat snakes: the effectiveness of the resin barrier. Wilson Bull. 102(1), 14–22 (1990).
    Google Scholar 
    Conner, R. N. The effect of tree hardness on woodpecker nest entrance orientation. Auk 94(2), 369–370 (1977).Article 

    Google Scholar 
    Jackson, J. A. & Jackson, B. J. Ecological relationships between fungi and woodpecker cavity sites. Condor 106(1), 37–49 (2004).Article 

    Google Scholar 
    Jusino, M. A. et al. Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proc. R. Soc. B Biol. Sci. 2016(283), 20160106 (1827).
    Google Scholar 
    Losin, N. et al. Relationship between aspen heartwood rot and the location of cavity excavation by a primary cavity-nester, the Red-naped Sapsucker. Condor 108(3), 706–710 (2006).Article 

    Google Scholar 
    Williamson, L., Garcia, V. & Walters, J. R. Life history trait differences in isolated populations of the endangered Red-cockaded Woodpecker. Ornis Hungar. 24(1), 55–68 (2016).Article 

    Google Scholar 
    DeMay, S. M. & Walters, J. R. Variable effects of a changing climate on lay dates and productivity across the range of the Red-cockaded Woodpecker. Condor 20, 20 (2019).
    Google Scholar 
    Garcia, V. Lifetime fitness and changing life history traits in red-cockaded woodpeckers (Virginia Tech, 2014).
    Google Scholar 
    Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17(10), 1211–1218 (2014).PubMed 
    Article 

    Google Scholar 
    Helbig, A. J. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE-and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28(1), 9–12 (1991).Article 

    Google Scholar  More

  • in

    First identification of bovine hepacivirus in wild boars

    Trinchet, J. C. et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort). Hepatology 62, 737–750 (2015).Article 

    Google Scholar 
    Stanaway, J. D. et al. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. Lancet 388, 1081–1088 (2016).Article 

    Google Scholar 
    World Health Organization (WHO). Web Annex B. WHO estimates of the prevalence and incidence of hepatitis C virus infection by WHO region, 2015. In Global Hepatitis Report 2017. https://apps.who.int/iris/bitstream/handle/10665/277005/WHO-CDS-HIV-18.46-eng.pdf?ua=1. Accessed 01 Feb 2021.Smith, D. B. et al. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J. Gen. Virol. 97(11), 2894–2907 (2016).CAS 
    Article 

    Google Scholar 
    Kapoor, A. et al. Characterization of a canine homolog of hepatitis C virus. Proc Natl Acad Sci USA 108, 11608–11613 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Quan, P. L. et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natl Acad Sci USA 110, 8194–8199 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Burbelo, P. D. et al. Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 86, 6171–6178 (2012).CAS 
    Article 

    Google Scholar 
    Drexler, J. F. et al. Evidence for novel hepaciviruses in rodents. PLoS Pathog 9, e1003438 (2013).CAS 
    Article 

    Google Scholar 
    Shi, Y. New virus, new challenge. Innovation (NY) 1(1), 100005 (2020).
    Google Scholar 
    Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Baechlein, C. et al. Identification of a novel hepacivirus in domestic cattle from Germany. J Virol 89, 7007–7015 (2015).CAS 
    Article 

    Google Scholar 
    Corman, V. M. et al. Highly divergent hepaciviruses from African cattle. J Virol. 89, 5876–5882 (2015).CAS 
    Article 

    Google Scholar 
    Simmonds, P. et al. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98, 2–3 (2017).CAS 
    Article 

    Google Scholar 
    Elia, G. et al. Genetic heterogeneity of bovine hepacivirus in Italy. Transbound Emerg Dis. 67, 2731–2740 (2020).CAS 
    Article 

    Google Scholar 
    Li, L. L. et al. Detection and characterization of a novel hepacivirus in long-tailed ground squirrels (Spermophilus undulatus) in China. Arch Virol 164(9), 2401–2410 (2019).CAS 
    Article 

    Google Scholar 
    Zhang, X. L. et al. A highly divergent hepacivirus identified in domestic ducks further reveals the genetic diversity of hepaciviruses. Viruses 14(2), 371 (2022).Article 

    Google Scholar 
    Lu, G., Ou, J., Zhao, J. & Li, S. Presence of a novel subtype of bovine hepacivirus in China and expanded classification of bovine hepacivirus strains worldwide into 7 subtypes. Viruses 11, 843 (2019).CAS 
    Article 

    Google Scholar 
    da Silva, M. S. et al. Comprehensive evolutionary and phylogenetic analysis of Hepacivirus N (HNV). J Gen Virol. 99, 890–896 (2018).Article 

    Google Scholar 
    Shao, J. W. et al. A novel subtype of bovine hepacivirus identified in ticks reveals the genetic diversity and evolution of bovine hepacivirus. Viruses 13(11), 2206 (2021).CAS 
    Article 

    Google Scholar 
    Baechlein, C. et al. Further characterization of bovine hepacivirus: Antibody response, course of infection, and host tropism. Transbound. Emerg. Dis. 66, 195–206 (2019).CAS 
    Article 

    Google Scholar 
    Varela-Castro, L., Alvarez, V., Sevilla, I. A. & Barral, M. Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area. PLoS ONE 15, e0231559 (2020).CAS 
    Article 

    Google Scholar 
    Palombieri, A. et al. Surveillance study of Hepatitis E Virus (HEV) in domestic and wild ruminants in Northwestern Italy. Animals 10(12), 2351 (2020).Article 

    Google Scholar 
    Bukh, J. Hepatitis C homolog in dogs with respiratory illness. Proc Natl Acad Sci U S A. 108, 12563–12564 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Elia, G. et al. Identification and genetic characterization of equine hepaciviruses in Italy. Vet. Microbiol. 207, 239–247 (2017).CAS 
    Article 

    Google Scholar 
    Hartlage, A. S., Cullen, J. M. & Kapoor, A. The strange, expanding world of animal hepaciviruses. Annu Rev Virol. 3, 53–75 (2016).CAS 
    Article 

    Google Scholar 
    Canal, C. W. et al. A novel genetic group of bovine hepacivirus in archival serum samples from Brazilian cattle. Biomed Res Int. 2017, 4732520 (2017).Article 

    Google Scholar 
    Deng, Y., Guan, S. H., Wang, S., Hao, G. & Rasmussen, T. B. The detection and phylogenetic analysis of Bovine Hepacivirus in China. Biomed Res Int. 2018, 6216853 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yeşilbağ, K. et al. Presence of bovine hepacivirus in Turkish cattle. Vet. Microbiol. 225, 1–5 (2018).Article 

    Google Scholar 
    Anggakusuma, et al. Hepacivirus NS3/4A proteases interfere with MAVS signaling in both their cognate animal hosts and humans: Implications for zoonotic transmission. J Virol. 90(23), 10670–10681 (2016).CAS 
    Article 

    Google Scholar 
    El-Attar, L. M. R., Mitchell, J. A., BrooksBrownlie, H., Priestnall, S. L. & Brownlie, J. Detection of non-primate hepaciviruses in UK dogs. Virology 484, 93–102 (2015).CAS 
    Article 

    Google Scholar 
    Thézé, J., Lowes, S., Parker, J. & Pybus, O. G. Evolutionary and phylogenetic analysis of the Hepaciviruses and Pegiviruses. Genome Biol Evol. 7(11), 2996–3008 (2015).Article 

    Google Scholar 
    Charrel, R. N., de Chesse, R., Decaudin, A., De Micco, P. & de Lamballerie, X. Evaluation of disinfectant efficacy against hepatitis C virus using a RT-PCR-based method. J. Hosp. Infect. 49(2), 129–134 (2001).CAS 
    Article 

    Google Scholar 
    Pavio, N., Doceul, V., Bagdassarian, E. & Johne, R. Recent knowledge on hepatitis E virus in Suidae reservoirs and transmission routes to human. Vet Res. 48(1), 78 (2017).Article 

    Google Scholar 
    Scherer, C. et al. Moving infections: Individual movement decisions drive disease persistence in spatially structured landscapes. Oikos 129, 651–667 (2020).Article 

    Google Scholar 
    Tamura, K. & Nei, M. Estimation of the number of nucleotide substitution in the control region of mitochondrial DNA in human and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host

    Worden AZ, Follows MJ, Giovannoni SJ, Wilken S, Zimmerman AE, Keeling PJ. Rethinking the marine carbon cycle: Factoring in the multifarious lifestyles of microbes. Science. 2015;347:1257594–1257594.PubMed 
    Article 
    CAS 

    Google Scholar 
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, et al. Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol. 2008;10:3349–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jephcott TG, Alves-de-Souza C, Gleason FH, van Ogtrop FF, Sime-Ngando T, Karpov SA, et al. Ecological impacts of parasitic chytrids, syndiniales and perkinsids on populations of marine photosynthetic dinoflagellates. Fungal Ecol. 2016;19:47–58.Article 

    Google Scholar 
    Alacid E, Reñé A, Garcés E. New Insights into the Parasitoid Parvilucifera sinerae Life Cycle: The Development and Kinetics of Infection of a Bloom-forming Dinoflagellate Host. Protist. 2015;166:677–99.PubMed 
    Article 

    Google Scholar 
    Not F, Gausling R, Azam F, Heidelberg JF, Worden AZ. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol. 2007;9:1233–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Determinants of community structure in the global plankton interactome. Science 2015;348:1262073.de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605.PubMed 
    Article 
    CAS 

    Google Scholar 
    Siano R, Alves-De-Souza C, Foulon E, Bendif M, Simon E, Guillou NL. et al. Distribution and host diversity of Amoebophryidae parasites across oligotrophic waters of the Mediterranean Sea. Biogeosciences. 2011;8:267–78.Article 

    Google Scholar 
    Coats DW. Parasitic life styles of marine dinoflagellates. J Eukaryot Microbiol. 1999;46:402–9.Article 

    Google Scholar 
    Farhat S, Le P, Kayal E, Noel B, Bigeard E, Corre E, et al. Rapid protein evolution, organellar reductions, and invasive intronic elements in the marine aerobic parasite dinoflagellate Amoebophrya spp. BMC Biol. 2021;19:1–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gornik SG, Febrimarsa, Cassin AM, MacRae JI, Ramaprasad A, Rchiad Z, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA. 2015;112:5767–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    John U, Lu Y, Wohlrab S, Groth M, Janouškovec J, Kohli GS, et al. An aerobic eukaryotic parasite with functional mitochondria that likely lacks a mitochondrial genome. Sci Adv. 2019;5:1–12.Article 
    CAS 

    Google Scholar 
    McFadden GI, Reith ME, Munholland J, Lang-Unnasch N. Plastid in human parasites. Nature. 1996;381:482.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sibbald SJ, Archibald JM. Genomic Insights into Plastid Evolution. Genome Biol Evol. 2020;12:978–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Not F, Probert I, Ribeiro CG, Crenn K, Guillou L, Jeanthon C, et al. Photosymbiosis in Marine Pelagic Environments. In: M. S. Cretoiu (ed). The Marine Microbiome. 2016. New York, NY: Springer International Publishing, pp 305–32.Cai R, Kayal E, Alves-de-Souza C, Bigeard E, Corre E, Jeanthon C, et al. Cryptic species in the parasitic Amoebophrya species complex revealed by a polyphasic approach. Sci Rep. 2020;10:1–11.Article 
    CAS 

    Google Scholar 
    Coats DW, Park MG. Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity. J Phycol. 2002;38:520–8.Article 

    Google Scholar 
    Kayal E, Alves-de-Souza C, Farhat S, Velo-Suarez L, Monjol J, Szymczak J, et al. Dinoflagellate Host Chloroplasts and Mitochondria Remain Functional During Amoebophrya Infection. Front Microbiol. 2020;11:1–11.Article 

    Google Scholar 
    Miller JJ, Delwiche CF, Coats DW. Ultrastructure of Amoebophrya sp. and its Changes during the Course of Infection. Protist. 2012;163:720–45.PubMed 
    Article 

    Google Scholar 
    Decelle J, Stryhanyuk H, Gallet B, Veronesi G, Schmidt M, Balzano S, et al. Algal Remodeling in a Ubiquitous Planktonic Photosymbiosis. Curr Biol. 2019;29:968–978.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Uwizeye C, Mars Brisbin M, Gallet B, Chevalier F, LeKieffre C, Schieber NL, et al. Cytoklepty in the plankton: A host strategy to optimize the bioenergetic machinery of endosymbiotic algae. Proc Natl Acad Sci USA 2021;118.Uwizeye C, Decelle J, Jouneau P, Flori S, Gallet B, Keck J, et al. Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging. Nat Commun. 2021;12:1049.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lowe DG. Distinctive Image Features from Scale-Invariant Keypoints. Int J Comput Vis. 2004;60:91–110.Article 

    Google Scholar 
    Hennies J, Lleti JMS, Schieber NL, Templin RM, Steyer AM, Schwab Y. AMST: alignment to median smoothed template for focused ion beam scanning electron microscopy image stacks. Sci Rep. 2020;10:1–10.Article 
    CAS 

    Google Scholar 
    Kikinis R, Pieper SD, Vosburgh KG. 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support. Intraoperative Imaging and Image-Guided Therapy. 2014. Springer New York, New York, NY, pp 277–89.Polerecky L, Adam B, Milucka J, Musat N, Vagner T, Kuypers MMM. Look@NanoSIMS – a tool for the analysis of nanoSIMS data in environmental microbiology. Environ Microbiol. 2012;14:1009–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jia B, Zhu XF, Pu ZJ, Duan YX, Hao LJ, Zhang J, et al. Integrative view of the diversity and evolution of SWEET and semiSWEET sugar transporters. Front Plant Sci. 2017;8:1–18.
    Google Scholar 
    Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019;20:1160–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Castresana J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol Biol Evol. 2000;17:540–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494–512.CAS 
    PubMed 
    Article 

    Google Scholar 
    Farhat S, Florent I, Noel B, Kayal E, Da Silva C, Bigeard E, et al. Comparative time-scale gene expression analysis highlights the infection processes of two amoebophrya strains. Front Microbiol. 2018;9:1–19.Article 

    Google Scholar 
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.CAS 
    Article 

    Google Scholar 
    Cachon J. Contribution à l’étude des péridiniens parasites. Cytologie, cycles évolutifs Ann Sci Nat Zool. 1964;6:1–158.
    Google Scholar 
    Van Dooren GG, Marti M, Tonkin CJ, Stimmler LM, Cowman AF, McFadden GI. Development of the endoplasmic reticulum, mitochondrion and apicoplast during the asexual life cycle of Plasmodium falciparum. Mol Microbiol. 2005;57:405–19.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tyler KM, Matthews KR, Gull K. Anisomorphic cell division by African trypanosomes. Protist. 2001;152:367–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jakob M, Hoffmann A, Amodeo S, Peitsch C, Zuber B, Ochsenreiter T. Mitochondrial growth during the cell cycle of Trypanosoma brucei bloodstream forms. Sci Rep. 2016;6:1–13.Article 
    CAS 

    Google Scholar 
    Hughes L, Borrett S, Towers K, Starborg T, Vaughan S. Patterns of organelle ontogeny through a cell cycle revealed by whole-cell reconstructions using 3D electron microscopy. J Cell Sci. 2017;130:637–47.CAS 
    PubMed 

    Google Scholar 
    Ovciarikova J, Lemgruber L, Stilger KL, Sullivan WJ, Sheiner L. Mitochondrial behaviour throughout the lytic cycle of Toxoplasma gondii. Sci Rep. 2017;7:1–13.Article 
    CAS 

    Google Scholar 
    Nishi M, Hu K, Murray JM, Roos DS. Organellar dynamics during the cell cycle of Toxoplasma gondii. J Cell Sci. 2008;121:1559–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Long M, Marie D, Szymczak J, Toullec J, Bigeard E, Sourisseau M, et al. Dinophyceae can use exudates as weapons against the parasite Amoebophrya sp. (Syndiniales). ISME Commun. 2021;1:34.Article 

    Google Scholar 
    Harris E, Yoshida K, Cardelli J, Bush J. Rab11-like GTPase associates with and regulates the structure and function of the contractile vacuole system in. Dictyostelium J Cell Sci. 2001;114:3035–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Marshansky V, Rubinstein JL, Grüber G. Eukaryotic V-ATPase: Novel structural findings and functional insights. Biochim Biophys Acta – Bioenerg. 2014;1837:857–79.CAS 
    Article 

    Google Scholar 
    Cox D, Lee DJ, Dale BM, Calafat J, Greenberg S. A Rab11-containing rapidly recycling compartment in macrophages that promotes phagocytosis. Proc Natl Acad Sci USA. 2000;97:680–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vines JH, King JS. The endocytic pathways of Dictyostelium discoideum. Int J Dev Biol. 2019;63:461–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Decelle J, Veronesi G, LeKieffre C, Gallet B, Chevalier F, Stryhanyuk H, et al. Subcellular architecture and metabolic connection in the planktonic photosymbiosis between Collodaria (radiolarians) and their microalgae. Environ Microbiol. 2021;23:6569–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sigee DC, Kearns LP. Levels of dinoflagellate chromosome-bound metals in conditions of low external ion availability: An X-ray microanalytical study. Tissue Cell. 1981;13:441–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinchuk GE, Ammons C, Culley DE, Li SMW, McLean JS, Romine MF, et al. Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: Ecological and physiological implications for dissimilatory metal reduction. Appl Environ Microbiol. 2008;74:1198–208.CAS 
    PubMed 
    Article 

    Google Scholar 
    Caffaro CE, Boothroyd JC. Evidence for Host Cells as the Major Contributor of Lipids in the Intravacuolar Network of Toxoplasma-Infected Cells. Eukaryot Cell. 2011;10:1095–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez J, Bittame A, Massera C, Vasseur V, Effantin G, Valat A, et al. Intravacuolar membranes regulate CD8 T cell recognition of membrane-bound Toxoplasma gondii protective antigen. Cell Rep. 2015;13:2273–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pszenny V, Ehrenman K, Romano JD, Kennard A, Schultz A, Roos DS, et al. A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. J Biol Chem. 2016;291:3725–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nolan SJ, Romano JD, Coppens I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 2017;13:e1006362.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fox BA, Guevara RB, Rommereim LM, Falla A, Bellini V, Pètre G, et al. Toxoplasma gondii parasitophorous vacuole membrane-associated dense granule proteins orchestrate chronic infection and GRA12 underpins resistance to host gamma interferon. MBio. 2019; 10:e00589-19.Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M, et al. The eukaryotic CO2-concentrating organelle is liquid-like and exhibits dynamic reorganization. Cell. 2017;171:148–162.e19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeeman SC, Kossmann J, Smith AM. Starch: Its metabolism, evolution, and biotechnological modification in plants. Annu Rev Plant Biol. 2010;61:209–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    Qureshi AA, Suades A, Matsuoka R, Brock J, McComas SE, Nji E, et al. The molecular basis for sugar import in malaria parasites. Nature. 2020;578:321–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blume M, Rodriguez-Contreras D, Landfear S, Fleige T, Soldati-Favre D, Lucius R, et al. Host-derived glucose and its transporter in the obligate intracellular pathogen Toxoplasma gondii are dispensable by glutaminolysis. Proc Natl Acad Sci USA. 2009;106:12998–3003.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science (80-). 2012;335:207–11.CAS 
    Article 

    Google Scholar 
    Latorraca NR, Fastman NM, Venkatakrishnan AJ, Frommer WB, Dror RO, Feng L. Mechanism of substrate translocation in an alternating access transporter. Cell. 2017;169:96–107.e12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amiar S, Katris NJ, Berry L, Dass S, Duley S, Arnold CS, et al. Division and adaptation to host environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling. Cell Rep. 2020;30:3778–3792.e9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem. 2017;292:11009–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gomes AF, Magalhães KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, et al. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasit Vectors. 2014;7:47.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI. Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol. 2016;32:56–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Salcedo-Sora JE, Caamano-Gutierrez E, Ward SA, Biagini GA. The proliferating cell hypothesis: a metabolic framework for Plasmodium growth and development. Trends Parasitol. 2014;30:170–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz-Gómez SA, Wideman JG, Roger AJ, Slamovits CH, Agashe D. The origin of mitochondrial cristae from alphaproteobacteria. Mol Biol Evol. 2017;34:943–56.PubMed 

    Google Scholar 
    Evers F, Cabrera-Orefice A, Elurbe DM, Kea-te Lindert M, Boltryk SD, Voss TS, et al. Composition and stage dynamics of mitochondrial complexes in Plasmodium falciparum. Nat Commun. 2021;12:1–17.Article 
    CAS 

    Google Scholar 
    Krungkrai J, Prapunwattana P, Krungkrai SR. Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite. 2000;7:19–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Krungkrai J. The multiple roles of the mitochondrion of the malarial parasite. Parasitology 2004;129:511–524. https://doi.org/10.1017/S0031182004005888.Lee JW. Protonic capacitor: elucidating the biological significance of mitochondrial cristae formation. Sci Rep. 2020;10:1–14.Article 
    CAS 

    Google Scholar 
    Stephan T, Brüser C, Deckers M, Steyer AM, Balzarotti F, Barbot M, et al. MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation. EMBO J. 2020;39:1–24.Article 
    CAS 

    Google Scholar 
    Pánek T, Eliáš M, Vancová M, Lukeš J, Hashimi H. Returning to the Fold for Lessons in Mitochondrial Crista Diversity and Evolution. Curr Biol. 2020;30:R575–R588.PubMed 
    Article 
    CAS 

    Google Scholar 
    Wideman JG, Muñoz-Gómez SA. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology. Biochim Biophys Acta – Mol Cell Biol Lipids. 2016. Elsevier B.V., 1861: 900-12.Mühleip A, Kock Flygaard R, Ovciarikova J, Lacombe A, Fernandes P, Sheiner L, et al. ATP synthase hexamer assemblies shape cristae of Toxoplasma mitochondria. Nat Commun. 2021;12:120.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Flegontov P, Michálek J, Janouškovec J, Lai DH, Jirků M, Hajdušková E, et al. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol Biol Evol. 2015;32:1115–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Painter HJ, Morrisey JM, Mather MW, Vaidya AB. Specific role of mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature. 2007;446:88–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishida T, Hatama S, Ishikawa Y, Kadota K. Intranuclear coccidiosis in a calf. J Vet Med Sci. 2009;71:1109–13.PubMed 
    Article 

    Google Scholar 
    Pecka Z. Life cycle and ultrastructure of Eimeria stigmosa, the intranuclear coccidian of the goose (Anser anser domesticus). Folia Parasitol (Praha). 1992;39:105–14.CAS 

    Google Scholar 
    Voleman L, Doležal P. Mitochondrial dynamics in parasitic protists. PLoS Pathog. 2019;15:e1008008.Bílý T, Sheikh S, Mallet A, Bastin P, Pérez‐Morga D, Lukeš J, et al. Ultrastructural changes of the mitochondrion during the life cycle of Trypanosoma brucei. J Eukaryot Microbiol. 2021;68:e12846.Elliott DA, McIntosh MT, Hosgood HD, Chen S, Zhang G, Baevova P, et al. Four distinct pathways of hemoglobin uptake in the malaria parasite Plasmodium falciparum. Proc Natl Acad Sci USA. 2008;105:2463–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Counteracting forces of introgressive hybridization and interspecific competition shape the morphological traits of cryptic Iberian Eptesicus bats

    Ottenburghs, J. et al. A history of hybrids? Genomic patterns of introgression in the True Geese. BMC Evol. Biol. 17, 14 (2017).Article 

    Google Scholar 
    Baiz, M. D., Tucker, P. K. & Cortés-Ortiz, L. Multiple forms of selection shape reproductive isolation in a primate hybrid zone. Mol. Ecol. 28, 1056–1069 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Slager, D. L. et al. Cryptic and extensive hybridization between ancient lineages of American crows. Mol. Ecol. 29, 956–969 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Introgressive hybridization and natural selection in Darwin’s finches. Biol. J. Linnean Soc. 117, 812–822 (2016).Article 

    Google Scholar 
    Pauquet, G., Salzburger, W. & Egger, B. The puzzling phylogeography of the haplochromine cichlid fish Astatotilapia burtoni. Ecol. Evol. 8, 5637–5648 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schluter, D. Ecological character displacement in adaptive radiation. Am. Nat. 156, S4–S16 (2000).Article 

    Google Scholar 
    Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anderson, R. P., Peterson, A. T. & Gómez-Laverde, M. Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16 (2002).Article 

    Google Scholar 
    Gramlich, S., Wagner, N. D. & Horandl, E. RAD-seq reveals genetic structure of the F-2-generation of natural willow hybrids (Salix L.) and a great potential for interspecific introgression. BMC Plant Biol. 18, 12 (2018).Article 

    Google Scholar 
    Mavárez, J. et al. Speciation by hybridization in Heliconius butterflies. Nature 441, 868–871 (2006).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Djogbénou, L. et al. Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s. s. PLoS ONE 3, e2172 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Enciso-Romero, J. et al. Evolution of novel mimicry rings facilitated by adaptive introgression in tropical butterflies. Mol. Ecol. 26, 5160–5172 (2017).PubMed 
    Article 

    Google Scholar 
    Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Latch, E. K., Harveson, L. A., King, J. S., Hobson, M. D. & Rhodes, J. R. Assessing hybridization in wildlife populations using molecular markers: a case study in wild turkeys. J. Wildl. Manag. 70, 485–492 (2006).Article 

    Google Scholar 
    Oliveira, R., Godinho, R., Randi, E. & Alves, P. C. Hybridization versus conservation: are domestic cats threatening the genetic integrity of wildcats (Felis silvestris silvestris) in Iberian Peninsula?. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 363, 2953–2961 (2008).Article 

    Google Scholar 
    Nichols, P. et al. Secondary contact seeds phenotypic novelty in cichlid fishes. Proc. R. Soc. B Biol. Sci. 282, 8 (2015).
    Google Scholar 
    Yang, W. Z. et al. Genomic evidence for asymmetric introgression by sexual selection in the common wall lizard. Mol. Ecol. 27, 4213–4224 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boratyński, Z. et al. Introgression of mitochondrial DNA among Myodes voles: consequences for energetics?. BMC Evol. Biol. 11, 355 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mondal, M. et al. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nat. Genet. 48, 1066–1070 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Melo-Ferreira, J., Seixas, F. A., Cheng, E., Mills, L. S. & Alves, P. C. The hidden history of the snowshoe hare, Lepus americanus: extensive mitochondrial DNA introgression inferred from multilocus genetic variation. Mol. Ecol. 23, 4617–4630 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mims, M. C., Hulsey, C. D., Fitzpatrick, B. M. & Streelman, J. T. Geography disentangles introgression from ancestral polymorphism in Lake Malawi cichlids. Mol. Ecol. 19, 940–951 (2010).PubMed 
    Article 

    Google Scholar 
    Salazar, C. et al. Genetic evidence for hybrid trait speciation in heliconius butterflies. PLoS Genet. 6, e1000930 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Naisbit, R. E., Jiggins, C. D. & Mallet, J. Mimicry: developmental genes that contribute to speciation. Evol. Dev. 5, 269–280 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, W., Dasmahapatra, K. K., Mallet, J., Moreira, G. R. P. & Kronforst, M. R. Genome-wide introgression among distantly related Heliconius butterfly species. Genome Biol. 17, 15 (2016).Article 
    CAS 

    Google Scholar 
    Zhang, W., Kunte, K. & Kronforst, M. R. Genome-wide characterization of adaptation and speciation in tiger swallowtail butterflies using De Novo transcriptome assemblies. Genome Biol. Evol. 5, 1233–1245 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jones, M. R. et al. Adaptive introgression underlies polymorphic seasonal camouflage in snowshoe hares. Science (New York, NY). 360, 1355–1358 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Melville, J. Competition and character displacement in two species of scincid lizards. Ecol. Lett. 5, 386–393 (2002).Article 

    Google Scholar 
    Pfennig, D. W. & Pfennig, K. S. Character displacement and the origins of diversity. Am. Nat. 176, S26–S44 (2010).PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    Kooyers, N. J., James, B. & Blackman, B. K. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evol. Int. J. Org. Evol. 71, 1205–1221 (2017).CAS 
    Article 

    Google Scholar 
    Adams, D. C. & Rohlf, F. J. Ecological character displacement in Plethodon: Biomechanical differences found from a geometric morphometric study. Proc. Natl. Acad. Sci. 97, 4106–4111 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Evolution of character displacement in Darwin’s finches. Science (New York, NY) 313, 224–226 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Pfennig, D. W. & Murphy, P. J. Character displacement in polyphenic tadpoles. Evol. Int. J. Org. Evol. 54, 1738–1749 (2000).CAS 
    Article 

    Google Scholar 
    Jones, G. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species. Adv. Study Behav. 26, 317–354 (1997).Article 

    Google Scholar 
    Marsteller, S., Adams, D. C., Collyer, M. L. & Condon, M. Six cryptic species on a single species of host plant: morphometric evidence for possible reproductive character displacement. Ecol. Entomol. 34, 66–73 (2009).Article 

    Google Scholar 
    Tene Fossog, B. et al. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol. Appl. 8, 326–345 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ibáñez, C., García-Mudarra, J. L., Ruedi, M., Stadelmann, B. & Juste, J. The Iberian contribution to cryptic diversity in European bats. Acta Chiropterol. 8, 277–297 (2006).Article 

    Google Scholar 
    Juste, J. et al. Mitochondrial phylogeography of the long-eared bats (Plecotus) in the Mediterranean Palaearctic and Atlantic Islands. Mol. Phylogenet. Evol. 31, 1114–1126 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schreber J. Die Säugthiere in Abbildungen nach der Natur, mit Beschreibungen. Erlangen – Expedition des Schreber’schen säugthier- und des Esper’schen Schmetterlingswerkes. Ernst Mayr Library of the MCZ, 1774–1855 (Harvard, 1774).Temminck, C. J. Monographies de Mammologie, ou description de quelques genres de Mammifères, dont les espèces ont été observes dans les différens Musées de l’Europe, Vol. 2, No. 302, 26–70 (G. Dufour et Ed. D’Ocagne, 1840).Centeno-Cuadros, A. et al. Comparative phylogeography and asymmetric hybridization between cryptic bat species. J. Zool. Syst. Evol. Res. 57, 1004–1018 (2019).Article 

    Google Scholar 
    Santos, H. et al. Shaping of bat cryptic distribution in Iberia. Biol. J. Linnean Soc. 112, 150–162 (2014).Article 

    Google Scholar 
    Novella-Fernandez, R. et al. Broad-scale patterns of geographic avoidance between species emerge in the absence of fine-scale mechanisms of coexistence. Divers. Distrib. 27, 1606–1618 (2021).Article 

    Google Scholar 
    Neubaum, M. A., Douglas, M. R., Douglas, M. E. & O’Shea, T. J. Molecular ecology of the big brown bat (Eptesicus fuscus): genetic and natural history variation in a hybrid zone. J. Mammal. 88, 1230–1238 (2007).Article 

    Google Scholar 
    Worthington-Wilmer, J. & Barratt, E. A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res. News 37(1), 1–4 (1996).
    Google Scholar 
    Illumination, I.C.o. A colour appearance model for colour management systems: CIECAM02. Technical Report No CIE 159, 2004 (2004).Maroco, J. Análise estatística com utilização do SPSS. 3ª edição. Edições Silabo (2010).Wickham, H. et al. Welcome to the tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. Kernlab: an S4 package for kernel methods in R. J. Stat. Softw. 11(9), 1–20 (2004).Article 

    Google Scholar 
    Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A. & Leisch, F. e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. https://cran.r-project.org/web/packages/e1071/index.html (2012).Redgwell, R. D., Szewczak, J. M., Jones, G. & Parsons, S. Classification of echolocation calls from 14 species of bat by support vector machines and ensembles of neural networks. Algorithms 2, 907–924 (2009).Article 

    Google Scholar 
    Ochoa-López, S. et al. Ontogenetic changes in the targets of natural selection in three plant defenses. New Phytol. 226, 1480–1491 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Grant, P. R. & Grant, B. R. Phenotypic and genetics effects of hybridization in Darwin’s finches. Evol. Int. J. Org. Evol. 48, 297–316 (1994).Article 

    Google Scholar 
    Abzhanov, A., Protas, M., Grant, B. R., Grant, P. R. & Tabin, C. J. Bmp4 and morphological variation of beaks in Darwin’s finches. Science (New York, NY). 305, 1462–1465 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    von Holdt, B. M., Kays, R., Pollinger, J. P. & Wayne, R. K. Admixture mapping identifies introgressed genomic regions in North American canids. Mol. Ecol. 25, 2443–2453 (2016).Article 

    Google Scholar 
    Santana, S. E., Strait, S. & Dumont, E. R. The better to eat you with: functional correlates of tooth structure in bats. Funct. Ecol. 25, 839–847 (2011).Article 

    Google Scholar 
    Kalcounis, M. C. & Brigham, R. M. Intraspecific variation in wing loading affects habitat use by little brown bats (Myotis lucifugus). Can. J. Zool. 73, 89–95 (1995).Article 

    Google Scholar 
    Muijres, F. T., Johansson, L. C., Winter, Y. & Anders, H. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization. J. R. Soc. Interface 8, 1418–1428 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley, B. J. & Mundy, N. I. The primate palette: the evolution of primate coloration. Evol. Anthropolo. Issues News Rev. 17, 97–111 (2008).Article 

    Google Scholar 
    Müller, B. & Peichl, L. Retinal cone photoreceptors in microchiropteran bats. Investig. Ophthalmol. Vis. Sci. 46, 2259–2259 (2005).
    Google Scholar 
    Winter, Y., López, J. & von Helversen, O. Ultraviolet vision in a bat. Nature 425, 612–614 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Caro, T. The adaptive significance of coloration in mammals. Bioscience 55, 125–136 (2005).Article 

    Google Scholar 
    Chaverri, G., Ancillotto, L. & Russo, D. Social communication in bats. Biol. Rev. 93, 1938–1954 (2018).PubMed 
    Article 

    Google Scholar 
    Dietz, C., Von Helversen, O. & Nill, D. Bats of Britain, Europe and Northwest Africa 320–333 (A&C Black Publishers Ltd, 2009).
    Google Scholar 
    Martinoli, A., Mazzamuto, M.V. & Spada, M. Serotine Eptesicus serotinus (Schreber, 1774). In Handbook of the Mammals of Europe, 1–17 (2020).Dinger, G. Winternachweise von Breitflügelfledermaus (Eptesicus serotinus) in Kirchen. Nyctalus (N.F.) 7, 614–616 (1991).
    Google Scholar 
    Kowalski, K. & Rzebik-Kowalska, B. Mammals of algeria (1991).Novella-Fernandez, R. et al. Trophic resource partitioning drives fine-scale coexistence in cryptic bat species. Ecol. Evol. 10(24), 14122–14136 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galván, I., Vargas-Mena, J. C. & Rodríguez-Herrera, B. Tent-roosting may have driven the evolution of yellow skin coloration in Stenodermatinae bats. J. Zool. Syst. Evol. Res. 58, 519–527 (2020).Article 

    Google Scholar 
    Wang, Z. L., Zhang, D. Y. & Wang, G. Does spatial structure facilitate coexistence of identical competitors. Ecol. Model. 181, 17–23 (2005).Article 

    Google Scholar 
    Anderson, T. M. et al. Molecular and evolutionary history of melanism in North American gray wolves. Science (New York, NY). 323, 1339–1343 (2009).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mingo-Casas, P. et al. First cases of European bat lyssavirus type 1 in Iberian serotine bats: implications for the molecular epidemiology of bat rabies in Europe. PLoS Negl. Trop. Dis. 12(4), e0006290 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vázquez-Moron, S., Juste, J., Ibáñez, C., Berciano, J. M. & Echevarria, J. E. Phylogeny of European bat Lyssavirus 1 in Eptesicus isabellinus bats, Spain. Emerg. Infect. Dis. 17, 520–523 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burgarella, C. et al. Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102, 442–452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abrams, P. A. Character displacement and niche shift analyzed using consumer-resource models of competition. Theor. Popul. Biol. 29, 107–160 (1986).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar  More

  • in

    Cumulative effects of widespread landscape change alter predator–prey dynamics

    Dickie, M., Serrouya, R., McNay, R. S. & Boutin, S. Faster and farther: wolf movement on linear features and implications for hunting behaviour. J. Appl. Ecol. 54, 253–263 (2017).Article 

    Google Scholar 
    Owen-Smith, N., Fryxell, J. M. & Merrill, E. H. Foraging theory upscaled: The behavioural ecology of herbivore movement. Philos. Trans. R. Soc. B Biol. Sci. 365, 2267–2278. https://doi.org/10.1098/rstb.2010.0095 (2010).CAS 
    Article 

    Google Scholar 
    Holling, C. S. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97, 5–60 (1965).Article 

    Google Scholar 
    Holling, C. The components of predation as revealed by a study of small-mammal predation of the European pine sawfly (1959).Dickie, M., McNay, S. R., Sutherland, G. D., Cody, M. & Avgar, T. Corridors or risk? Movement along, and use of, linear features varies predictably among large mammal predator and prey species. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13130 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    DeCesare, N. J. Separating spatial search and efficiency rates as components of predation risk. Proc. Biol. Sci. 279, 4626–4633. https://doi.org/10.1098/rspb.2012.1698 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muhly, T. B., Semeniuk, C., Massolo, A., Hickman, L. & Musiani, M. Human activity helps prey win the predator-prey space race. PLoS ONE 6, e17050. https://doi.org/10.1371/journal.pone.0017050 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fleming, P. A. & Bateman, P. W. Novel predation opportunities in anthropogenic landscapes. Anim. Behav. 138, 145–155. https://doi.org/10.1016/j.anbehav.2018.02.011 (2018).Article 

    Google Scholar 
    Whittington, J. et al. Caribou encounters with wolves increase near roads and trails: A time-to-event approach. J. Appl. Ecol. 48, 1535–1542. https://doi.org/10.1111/j.1365-2664.2011.02043.x (2011).Article 

    Google Scholar 
    Larivière, S. & Messier, F. Effect of density and nearest neighbours on simulated waterfowl nests: Can predators recognize high-density nesting patches?. Oikos 83, 12–20. https://doi.org/10.2307/3546541 (1998).Article 

    Google Scholar 
    Taitt, M. J. & Krebs, C. J. Predation, cover, and food manipulations during a spring decline of Microtus townsendii. J. Anim. Ecol. 52, 837–848. https://doi.org/10.2307/4458 (1983).Article 

    Google Scholar 
    Fisher, J. T. & Wilkinson, L. The response of mammals to forest fire and timber harvest in the North American boreal forest. Mammal. Rev. 35, 51–81 (2005).Article 

    Google Scholar 
    Fisher, J. T. & Burton, A. C. Wildlife winners and losers in an oil sands landscape. Front. Ecol. Environ. 16, 323–328. https://doi.org/10.1002/fee.1807 (2018).Article 

    Google Scholar 
    Francis, A. L., Procter, C., Kuzyk, G. & Fisher, J. T. Female Moose Prioritize Forage Over Mortality Risk in Harvested Landscapes. J. Wildl. Manag. (2021).Hebblewhite, M., Munro, R. H. & Merrill, E. H. Trophic consequences of postfire logging in a wolf–ungulate system. For. Ecol. Manag. 257, 1053–1062. https://doi.org/10.1016/j.foreco.2008.11.009 (2009).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Battin, J. When good animals love bad habitats: Ecological traps and the conservation of animal populations. Conserv. Biol. 18, 1482–1491 (2004).Article 

    Google Scholar 
    Nielsen, S. E., Stenhouse, G. B. & Boyce, M. S. A habitat-based framework for grizzly bear conservation in Alberta. Biol. Conserv. 130, 217–229 (2006).Article 

    Google Scholar 
    Bentz, B. et al. Salt Lake City 42 (University of Utah Press, 2005).
    Google Scholar 
    Carroll, A. L., Taylor, S. W., Régnière, J. & Safranyik, L. in Mountain pine beetle symposium: challenges and solutions. 223–232 (Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre).Lindenmayer, D. B. & Noss, R. F. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv. Biol. 20, 949–958. https://doi.org/10.1111/j.1523-1739.2006.00497.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Leverkus, A. B., Lindenmayer, D. B., Thorn, S. & Gustafsson, L. Salvage logging in the world’s forests: Interactions between natural disturbance and logging need recognition. Glob. Ecol. Biogeogr. 27, 1140–1154. https://doi.org/10.1111/geb.12772 (2018).Article 

    Google Scholar 
    Kuzyk, G. et al. Moose population dynamics during 20 years of declining harvest in British Columbia. Alces 54, 101–119 (2018).
    Google Scholar 
    Kuzyk, G. W. Provincial population and harvest estimates of moose in British Columbia. Alces J. Devot. Biol. Manag. Moose 52, 1–11 (2016).Procter, C. et al. Factors affecting moose population declines in British Columbia. 2020 Progress Report: February 2012-May 2020. B.C. Ministry of Forests, Lands, Natural Resource Operations and Rural Development, Victoria, B.C., Wildlife Working Report No. WR-128. Pp. 89. https://www2.gov.bc.ca/gov/content/environment/plants-animals-ecosystems/wildlife/wildlife-conservation/moose/moose-conservation/moose-research. (2020).Wittmer, H. U., Sinclair, A. R. E. & McLellan, B. N. The role of predation in the decline and extirpation of woodland caribou. Oecologia 144, 257–267. https://doi.org/10.1007/s00442-005-0055-y (2005).ADS 
    Article 
    PubMed 

    Google Scholar 
    Latham, A. D. M., Latham, M. C., Boyce, M. S. & Boutin, S. Movement responses by wolves to industrial linear features and their effect on woodland caribou in northeastern Alberta. Ecol. Appl. 21, 2854–2865 (2011).Article 

    Google Scholar 
    James, A. R. C. & Stuart-Smith, A. K. Distribution of caribou and wolves in relation to linear corridors. J. Wildl. Manag. 64, 154–159. https://doi.org/10.2307/3802985 (2000).Article 

    Google Scholar 
    DeMars, C. A. & Boutin, S. Nowhere to hide: Effects of linear features on predator–prey dynamics in a large mammal system. J. Anim. Ecol. 87, 274–284. https://doi.org/10.1111/1365-2656.12760 (2018).Article 
    PubMed 

    Google Scholar 
    McKenzie, H. W., Merrill, E. H., Spiteri, R. J. & Lewis, M. A. How linear features alter predator movement and the functional response. Interface Focus 2, 205–216. https://doi.org/10.1098/rsfs.2011.0086 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Houle, M., Fortin, D., Dussault, C., Courtois, R. & Ouellet, J.-P. Cumulative effects of forestry on habitat use by gray wolf (Canis lupus) in the boreal forest. Landsc. Ecol. 25, 419–433. https://doi.org/10.1007/s10980-009-9420-2 (2010).Article 

    Google Scholar 
    Kuzyk, G. W., Kneteman, J. & Schmiegelow, F. K. Winter habitat use by wolves, Canis lupus, in relation to forest harvesting in west-central Alberta. Can. Field Nat. 118, 368–375 (2004).Article 

    Google Scholar 
    Mumma, M. A. et al. Regional moose (Alces alces) responses to forestry cutblocks are driven by landscape-scale patterns of vegetation composition and regrowth. For. Ecol. Manag. 481, 118763 (2021).Article 

    Google Scholar 
    Scheideman, M. Use and selection at two spatial scales by female moose (Alces alces) across central British Columbia following a mountain pine beetle outbreak MSc thesis, University of Northern British Columbia (2018).Alfaro, R. I., van Akker, L. & Hawkes, B. Characteristics of forest legacies following two mountain pine beetle outbreaks in British Columbia Canada. Can. J. For. Res. 45, 1387–1396 (2015).Article 

    Google Scholar 
    Dhar, A., Parrott, L. & Hawkins, C. D. B. Aftermath of mountain pine beetle outbreak in British Columbia: Stand dynamics, management response and ecosystem resilience. Forests 7, 171 (2016).Article 

    Google Scholar 
    Shackelford, N., Standish, R. J., Ripple, W. & Starzomski, B. M. Threats to biodiversity from cumulative human impacts in one of North America’s last wildlife frontiers. Conserv. Biol. 32, 672–684 (2018).Article 

    Google Scholar 
    Corbett, L. J., Withey, P., Lantz, V. A. & Ochuodho, T. O. The economic impact of the mountain pine beetle infestation in British Columbia: Provincial estimates from a CGE analysis. For. Int. J. For. Res. 89, 100–105. https://doi.org/10.1093/forestry/cpv042 (2015).Latham, A. D. M. Wolf ecology and caribou-primary prey-wolf spatial relationships in low productivity peatland complexes in northeastern Alberta PhD thesis, University of Alberta, (2009).Person, D. K. & Russell, A. L. Reproduction and den site selection by wolves in a disturbed landscape. Northw. Sci. 83, 211–224. https://doi.org/10.3955/046.083.0305 (2009).Article 

    Google Scholar 
    Gillingham, M. Documentation for using Find Points Cluster Identification Program (Version 2) (University of Northern British Columbia, 2009).
    Google Scholar 
    Avgar, T., Potts, J. R., Lewis, M. A. & Boyce, M. S. Integrated step selection analysis: Bridging the gap between resource selection and animal movement. Methods Ecol. Evol. 7, 619–630. https://doi.org/10.1111/2041-210X.12528 (2016).Article 

    Google Scholar 
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).Article 

    Google Scholar 
    Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4. https://doi.org/10.1186/2051-3933-2-4 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benson, J. F. & Patterson, B. R. Spatial overlap, proximity, and habitat use of individual wolves within the same packs. Wildl. Soc. Bull. (2011-) 39, 31–40 (2015).Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. B Biol. Sci. 365, 2233–2244 (2010).Article 

    Google Scholar 
    Ladle, A. et al. Grizzly bear response to spatio-temporal variability in human recreational activity. J. Appl. Ecol. 56, 375–386. https://doi.org/10.1111/1365-2664.13277 (2019).Article 

    Google Scholar 
    Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 638–652 (2018).Article 

    Google Scholar 
    Scrafford, M. A., Avgar, T., Heeres, R. & Boyce, M. S. Roads elicit negative movement and habitat-selection responses by wolverines (Gulo gulo luscus). Behav. Ecol. 29, 534–542. https://doi.org/10.1093/beheco/arx182 (2018).Article 

    Google Scholar 
    Prokopenko, C. M., Boyce, M. S. & Avgar, T. Characterizing wildlife behavioural responses to roads using integrated step selection analysis. J. Appl. Ecol. 54, 470–479. https://doi.org/10.1111/1365-2664.12768 (2017).Article 

    Google Scholar 
    Avgar, T., Lele, S. R., Keim, J. L. & Boyce, M. S. Relative selection strength: Quantifying effect size in habitat- and step-selection inference. Ecol. Evol. 7, 5322–5330. https://doi.org/10.1002/ece3.3122 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4 (2002).Article 

    Google Scholar 
    Visscher, D. R. & Merrill, E. H. Temporal dynamics of forage succession for elk at two scales: Implications of forest management. For. Ecol. Manag. 257, 96–106. https://doi.org/10.1016/j.foreco.2008.08.018 (2009).Article 

    Google Scholar 
    Stelfox, J. G., Lynch, G. M. & McGillis, J. R. Effects of clearcut logging on wild ungulates in the Central Albertan foothills. For. Chron. 52, 65–70. https://doi.org/10.5558/tfc52065-2 (1976).Article 

    Google Scholar 
    Gagné, C., Mainguy, J. & Fortin, D. The impact of forest harvesting on caribou–moose–wolf interactions decreases along a latitudinal gradient. Biol. Conserv. 197, 215–222. https://doi.org/10.1016/j.biocon.2016.03.015 (2016).Article 

    Google Scholar 
    Potvin, F., Breton, L. & Courtois, R. Response of beaver, moose, and snowshoe hare to clear-cutting in a Quebec boreal forest: a reassessment 10 years after cut. Can. J. For. Res. 35, 151–160 (2005).Article 

    Google Scholar 
    Rempel, R. S., Elkie, P. C., Rodgers, A. R. & Gluck, M. J. Timber-management and natural-disturbance effects on moose habitat: landscape evaluation. J. Wildl. Manag. 61, 517–524. https://doi.org/10.2307/3802610 (1997).Article 

    Google Scholar 
    Kunkel, K. E. & Pletscher, D. H. Habitat factors affecting vulnerability of moose to predation by wolves in southeastern British Columbia. Can. J. Zool. 78, 150–157. https://doi.org/10.1139/z99-181 (2000).Article 

    Google Scholar 
    Mech, L. D. & Boitani, L. Wolves: behavior, ecology, and conservation. (University of Chicago Press, 2007).Charnov, E. L. Optimal foraging, the marginal value theorem. (1976).Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454. https://doi.org/10.1890/08-2090.1 (2009).Article 
    PubMed 

    Google Scholar 
    Lendrum, P. E., Anderson Jr, C. R., Long, R. A., Kie, J. G. & Bowyer, R. T. Habitat selection by mule deer during migration: effects of landscape structure and natural-gas development. Ecosphere 3, art82. https://doi.org/10.1890/ES12-00165.1 (2012).Mumma, M. & Gillingham, M. Determining factors that affect survival of moose in Central British Columbia. Technical report to the Habitat Conservation Trust Foundation for Grant Agreement CAT19-0-522 (1 April 2017 through 31 March 2019). 56 (2019).Roffler, G. H., Gregovich, D. P. & Larson, K. R. Resource selection by coastal wolves reveals the seasonal importance of seral forest and suitable prey habitat. For. Ecol. Manag. 409, 190–201. https://doi.org/10.1016/j.foreco.2017.11.025 (2018).Article 

    Google Scholar 
    Lesmerises, F., Dussault, C. & St-Laurent, M.-H. Wolf habitat selection is shaped by human activities in a highly managed boreal forest. For. Ecol. Manag. 276, 125–131. https://doi.org/10.1016/j.foreco.2012.03.025 (2012).Article 

    Google Scholar 
    Muhly, T. B. et al. Functional response of wolves to human development across boreal North America. Ecol. Evol. 9, 10801–10815. https://doi.org/10.1002/ece3.5600 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mladenoff, D. J., Sickley, T. A. & Wydeven, A. P. Predicting gray wolf landscape recolonization: logistic regression models vs. new field data. Ecol. Appl. 9, 37–44. https://doi.org/10.1890/1051-0761(1999)009[0037:PGWLRL]2.0.CO;2 (1999).Rogala, J. K. et al. Human activity differentially redistributes large mammals in the Canadian Rockies National Parks. Ecol. Soc. 16 (2011).Robertson, B. A. & Hutto, R. L. A framework for understanding ecological traps and an evaluation of existing evidence. Ecology 87, 1075–1085. https://doi.org/10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Finnegan, L. et al. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears. PLoS ONE 13, e0195480. https://doi.org/10.1371/journal.pone.0195480 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dickie, M., Serrouya, R., DeMars, C., Cranston, J. & Boutin, S. Evaluating functional recovery of habitat for threatened woodland caribou. Ecosphere 8, e01936. https://doi.org/10.1002/ecs2.1936 (2017).Article 

    Google Scholar  More

  • in

    Rapid bacterioplankton transcription cascades regulate organic matter utilization during phytoplankton bloom progression in a coastal upwelling system

    Gattuso JP, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Syst. 1998;29:405–34.Article 

    Google Scholar 
    Arnosti C, Wietz M, Brinkhoff T, Hehemann JH, Probandt D, Zeugner L, et al. The biogeochemistry of marine polysaccharides: sources, inventories, and bacterial drivers of the carbohydrate cycle. Ann Rev Mar Sci. 2021;13:81–108.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci USA. 2016;113:3143–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12:616–27.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Azam F. Microbial control of oceanic carbon flux: The plot thickens. Science.1998;280:694–96.CAS 
    Article 

    Google Scholar 
    Buchan A, LeCleir GR, Gulvik CA, González JM. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat Rev Microbiol. 2014;12:686–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bunse C, Bertos-Fortis M, Sassenhagen I, Sildever S, Sjoqvist C, Godhe A, et al. Spatio-temporal interdependence of bacteria and phytoplankton during a baltic sea spring bloom. Front Microbiol. 2016;7:517.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cram JA, Chow CE, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed 
    Article 

    Google Scholar 
    Seymour JR, Amin SA, Raina JB, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat Microbiol. 2017;2:17065.CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor JD, Cottingham SD, Billinge J, Cunliffe M. Seasonal microbial community dynamics correlate with phytoplankton-derived polysaccharides in surface coastal waters. ISME J. 2014;8:245–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science.2012;336:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hernando-Morales V, Varela MM, Needham DM, Cram J, Fuhrman JA, Teira E. Vertical and seasonal patterns control bacterioplankton communities at two horizontally coherent coastal upwelling sites off galicia (NW Spain). Microb Ecol. 2018;76:866–84.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.Tada Y, Taniguchi A, Nagao I, Miki T, Uematsu M, Tsuda A, et al. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol. 2011;77:4055–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams TJ, Wilkins D, Long E, Evans F, DeMaere MZ, Raftery MJ, et al. The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environ Microbiol. 2013;15:1302–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Natl Acad Sci USA. 2013;110:E488–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ottesen EA, Young CR, Gifford SM, Eppley JM, Marin R 3rd, Schuster SC, et al. Ocean microbes. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science. 2014;345:207–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beier S, Rivers AR, Moran MA, Obernosterer I. The transcriptional response of prokaryotes to phytoplankton-derived dissolved organic matter in seawater. Environ Microbiol. 2015;17:3466–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarmento H, Gasol JM. Use of phytoplankton-derived dissolved organic carbon by different types of bacterioplankton. Environ Microbiol. 2012;14:2348–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shi Y, McCarren J, DeLong EF. Transcriptional responses of surface water marine microbial assemblages to deep-sea water amendment. Environ Microbiol. 2012;14:191–206.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vorobev A, Sharma S, Yu M, Lee J, Washington BJ, Whitman WB, et al. Identifying labile DOM components in a coastal ocean through depleted bacterial transcripts and chemical signals. Environ Microbiol. 2018;20:3012–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran MA, Belas R, Schell MA, González JM, Sun F, Sun S, et al. Ecological genomics of marine Roseobacters. Appl Environ Microbiol. 2007;73:4559–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nowinski B, Moran MA. Niche dimensions of a marine bacterium are identified using invasion studies in coastal seawater. Nat Microbiol. 2021;6:524–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rinta-Kanto JM, Sun S, Sharma S, Kiene RP, Moran MA. Bacterial community transcription patterns during a marine phytoplankton bloom. Environ Microbiol. 2012;14:228–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma AK, Becker JW, Ottesen EA, Bryant JA, Duhamel S, Karl DM, et al. Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of Prochlorococcus, Pelagibacter and the OM60 clade. Environ Microbiol. 2013;16:2815–30.PubMed 
    Article 
    CAS 

    Google Scholar 
    Kieft B, Li Z, Bryson S, Hettich RL, Pan C, Mayali X, et al. Phytoplankton exudates and lysates support distinct microbial consortia with specialized metabolic and ecophysiological traits. Proc Natl Acad Sci USA. 2021;118:e2101178118.McCarren J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci USA. 2010;107:16420–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sosa OA, Gifford SM, Repeta DJ, DeLong EF. High molecular weight dissolved organic matter enrichment selects for methylotrophs in dilution to extinction cultures. ISME J. 2015;9:2725–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pontiller B, Martínez-García S, Lundin D, Pinhassi J. Labile dissolved organic matter compound characteristics select for divergence in marine bacterial activity and transcription. Front Microbiol. 2020;11:588778.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryson S, Li Z, Chavez F, Weber PK, Pett-Ridge J, Hettich RL, et al. Phylogenetically conserved resource partitioning in the coastal microbial loop. ISME J. 2017;11:2781–92.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joglar V, Prieto A, Barber-Lluch E, Hernández-Ruiz M, Fernández E, Teira E. Spatial and temporal variability in the response of phytoplankton and prokaryotes to B-vitamin amendments in an upwelling system. Biogeosciences.2020;17:2807–23.Article 

    Google Scholar 
    Martínez-García S, Fernández E, Álvarez-Salgado XA, González J, Lønborg C, Marañón E, et al. Differential responses of phytoplankton and heterotrophic bacteria to organic and inorganic nutrient additions in coastal waters off the NW Iberian Peninsula. Mar Ecol Prog Ser. 2010;416:17–33.Article 
    CAS 

    Google Scholar 
    Welschmeyer NA. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol Oceanogr. 1994;39:1985–92.CAS 
    Article 

    Google Scholar 
    Parsons TR, Maita Y, Lalli CM. Fluorometric determination of chlorophylls. A manual of chemical & biological methods for seawater analysis: Oxford, UK: Pergamon Press; 1984. p. 107–09.Hansen H, Grasshoff K. Automated chemical analysis. Methods of seawater analysis. 2nd ed: Verlag Chemie, Weinheim; 1983. p. 347–95.Álvarez-Salgado XA, Miller AEJ. Simultaneous determination of dissolved organic carbon and total dissolved nitrogen in seawater by high temperature catalytic oxidation: conditions for precise shipboard measurements. Mar Chem. 1998;62:325–33.Article 

    Google Scholar 
    Calvo-Díaz A, Morán XAG. Seasonal dynamics of picoplankton in shelf waters of the southern Bay of Biscay. Aquat Micro Ecol. 2006;42:159–74.Article 

    Google Scholar 
    Smith DC, Farooq A. A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Micro Food Webs. 1992;6:107–14.
    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo-Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (Gene) amplicon sequencing pipeline. Front Microbiol. 2020;11:1–18.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Poretsky RS, Gifford S, Rinta-Kanto J, Vila-Costa M, Moran MA. Analyzing gene expression from marine microbial communities using environmental transcriptomics. J Vis Exp. 2009;24:1–6.
    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. 2011. https://github.com/najoshi/sickle.Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM. An extensive evaluation of read trimming effects on Illumina NGS data analysis. PLoS One. 2013;8:1–13.
    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics.2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.Article 
    CAS 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: a versatile open source tool for metagenomics. PeerJ.2016;4:e2584.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:1–12.Article 
    CAS 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: A meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ. It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol. 2016;26:322–9.PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 4.1.0 ed. Vienna, Austria: R Foundation for Statistical Computing; 2021.Cottrell MT, Kirchman DL. Transcriptional control in marine copiotrophic and oligotrophic bacteria with streamlined genomes. Appl Environ Microbiol. 2016;82:6010–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Giovannoni SJ. SAR11 bacteria: The most abundant plankton in the oceans. Ann Rev Mar Sci. 2017;9:231–55.PubMed 
    Article 

    Google Scholar 
    Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Allers E, Gomez-Consarnau L, Pinhassi J, Gasol JM, Simek K, Pernthaler J. Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol. 2007;9:2417–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alonso C, Pernthaler J. Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters. Environ Microbiol. 2006;8:2022–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noell SE, Giovannoni SJ. SAR11 bacteria have a high affinity and multifunctional glycine betaine transporter. Environ Microbiol. 2019;21:2559–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sowell SM, Wilhelm LJ, Norbeck AD, Lipton MS, Nicora CD, Barofsky DF, et al. Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J. 2009;3:93–105.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chenard C, Wijaya W, Vaulot D, Lopes Dos Santos A, Martin P, Kaur A, et al. Temporal and spatial dynamics of bacteria, archaea and protists in equatorial coastal waters. Sci Rep. 2019;9:16390.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pajares S, Varona-Cordero F, Hernández-Becerril DU. Spatial distribution patterns of bacterioplankton in the oxygen minimum zone of the tropical mexican pacific. Micro Ecol. 2020;80:519–36.CAS 
    Article 

    Google Scholar 
    Signori CN, Pellizari VH, Enrich-Prast A, Sievert SM. Spatiotemporal dynamics of marine bacterial and archaeal communities in surface waters off the northern Antarctic Peninsula. Deep-Sea Res Pt Ii. 2018;149:150–60.Article 

    Google Scholar 
    Ling SK, Xia J, Liu Y, Chen GJ, Du ZJ. Agarilytica rhodophyticola gen. nov., sp. nov., isolated from Gracilaria blodgettii. Int J Syst Evol Microbiol. 2017;67:3778–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng H, Zhang S, Huo YY, Jiang XW, Zhang XQ, Pan J, et al. Gilvimarinus polysaccharolyticus sp. nov., an agar-digesting bacterium isolated from seaweed, and emended description of the genus Gilvimarinus. Int J Syst Evol Microbiol. 2015;65:562–69.CAS 
    PubMed 
    Article 

    Google Scholar 
    Malmstrom RR, Kiene RP, Cottrell MT, Kirchman DL. Contribution of SAR11 bacteria to dissolved dimethylsulfoniopropionate and amino acid uptake in the North Atlantic ocean. Appl Environ Microbiol. 2004;70:4129–35.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kirchman DL. Growth rates of microbes in the oceans. Ann Rev Mar Sci. 2016;8:285–309.PubMed 
    Article 

    Google Scholar 
    Durham BP, Dearth SP, Sharma S, Amin SA, Smith CB, Campagna SR, et al. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system. Environ Microbiol. 2017;19:3500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ferrer-González FX, Widner B, Holderman NR, Glushka J, Edison AS, Kujawinski EB, et al. Resource partitioning of phytoplankton metabolites that support bacterial heterotrophy. ISME J. 2021;15:762–73.PubMed 
    Article 
    CAS 

    Google Scholar 
    Landa M, Burns AS, Roth SJ, Moran MA. Bacterial transcriptome remodeling during sequential co-culture with a marine dinoflagellate and diatom. ISME J. 2017;11:2677–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Natl Acad Sci USA. 2014;111:7202–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koch H, Dürwald A, Schweder T, Noriega-Ortega B, Vidal-Melgosa S, Hehemann JH, et al. Biphasic cellular adaptations and ecological implications of Alteromonas macleodii degrading a mixture of algal polysaccharides. ISME J. 2019;13:92–103.CAS 
    PubMed 
    Article 

    Google Scholar 
    López-Pérez M, Gonzaga A, Martin-Cuadrado AB, Onyshchenko O, Ghavidel A, Ghai R, et al. Genomes of surface isolates of Alteromonas macleodii: the life of a widespread marine opportunistic copiotroph. Sci Rep. 2012;2:696.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bergauer K, Fernandez-Guerra A, Garcia JAL, Sprenger RR, Stepanauskas R, Pachiadaki MG, et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc Natl Acad Sci USA. 2018;115:E400–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hou S, López-Pérez M, Pfreundt U, Belkin N, Stüber K, Huettel B, et al. Benefit from decline: the primary transcriptome of Alteromonas macleodii str. Te101 during Trichodesmium demise. ISME J. 2018;12:981–96.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, et al. Changes in bacterioplankton composition under different phytoplankton regimens. Appl Environ Microbiol. 2004;70:6753–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Riemann L, Steward GF, Azam F. Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl Environ Microbiol. 2000;66:578–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Glavina Del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ben Hania W, Joseph M, Bunk B, Spröer C, Klenk HP, Fardeau ML, et al. Characterization of the first cultured representative of a Bacteroidetes clade specialized on the scavenging of cyanobacteria. Environ Microbiol. 2017;19:1134–48.PubMed 
    Article 
    CAS 

    Google Scholar 
    Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xing P, Hahnke RL, Unfried F, Markert S, Huang S, Barbeyron T, et al. Niches of two polysaccharide-degrading Polaribacter isolates from the North Sea during a spring diatom bloom. ISME J. 2015;9:1410–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.Ivanova AA, Naumoff DG, Miroshnikov KK, Liesack W, Dedysh SN. Comparative genomics of four Isosphaeraceae Planctomycetes: a common pool of plasmids and glycoside hydrolase genes shared by Paludisphaera borealis PX4(T), Isosphaera pallida IS1B(T), Singulisphaera acidiphila DSM 18658(T), and Strain SH-PL62. Front Microbiol. 2017;8:412.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vidal-Melgosa S, Sichert A, Francis TB, Bartosik D, Niggemann J, Wichels A, et al. Diatom fucan polysaccharide precipitates carbon during algal blooms. Nat Commun. 2021;12:1150.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Le Costaouëc T, Unamunzaga C, Mantecon L, Helbert W. New structural insights into the cell-wall polysaccharide of the diatom Phaeodactylum tricornutum. Algal Res. 2017;26:172–9.Article 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann JH, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.Bode A, Estévez MG, Varela M, Vilar JA. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling. Mar Environ Res. 2015;110:81–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cermeño P, Marañón E, Pérez V, Serret P, Fernández E, Castro CG. Phytoplankton size structure and primary production in a highly dynamic coastal ecosystem (Ría de Vigo, NW-Spain): Seasonal and short-time scale variability. Estuar Coast Shelf Sci. 2006;67:251–66.Article 

    Google Scholar 
    Nogueira E, Pérez FF, Rı́os AF. Modelling thermohaline properties in an estuarine upwelling ecosystem (Rı́a de Vigo: NW Spain) using box-jenkins transfer function models. Estuar Coast Shelf Sci. 1997;44:685–702.Article 

    Google Scholar 
    Broullón E, López-Mozos M, Reguera B, Chouciño P, Doval MD, Fernández-Castro B, et al. Thin layers of phytoplankton and harmful algae events in a coastal upwelling system. Prog Oceanogr. 2020;189:102449.Fraga F. Upwelling off the Galician Coast, Northwest Spain. In: Richards FA, editor. Coastal Upwelling. Washington: American Geophysical Union; 1981. p. 176–82.Nogueira E, Figueiras FG. The microplankton succession in the Ría de Vigo revisited: species assemblages and the role of weather-induced, hydrodynamic variability. J Mar Syst. 2005;54:139–55.Article 

    Google Scholar 
    Pitcher GC, Walker DR, Mitchellinnes BA, Moloney CL. Short-term variability during an anchor station study in the southern Benguela Upwelling System – phytoplankton dynamics. Prog Oceanogr. 1991;28:39–64.Article 

    Google Scholar 
    Smayda TJ, Trainer VL. Dinoflagellate blooms in upwelling systems: Seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr. 2010;85:92–107.Article 

    Google Scholar 
    Wilkerson FP, Lassiter AM, Dugdale RC, Marchi A, Hogue VE. The phytoplankton bloom response to wind events and upwelled nutrients during the CoOP WEST study. Deep-Sea Res Pt Ii. 2006;53:3023–48.Article 

    Google Scholar 
    Reintjes G, Arnosti C, Fuchs B, Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mayali X, Weber PK, Pett-Ridge J. Taxon-specific C/N relative use efficiency for amino acids in an estuarine community. FEMS Microbiol Ecol. 2013;83:402–12.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    A global horizon scan of issues impacting marine and coastal biodiversity conservation

    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. & Woodroof, H. J. The need for environmental horizon scanning. Trends Ecol. Evol. 24, 523–527 (2009).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. Ten years on: a review of the first global conservation horizon scan. Trends Ecol. Evol. 34, 139–153 (2019).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scan of global conservation issues for 2010. Trends Ecol. Evol. 25, 1–7 (2010).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scan of global conservation issues for 2016. Trends Ecol. Evol. 31, 44–53 (2016).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scanning assessment of current and potential future threats facing migratory shorebirds. Ibis 154, 663–679 (2012).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, L. G. M. et al. Mortality events resulting from Australia’s catastrophic fires threaten aquatic biota. Glob. Change Biol. 26, 5345–5350 (2020).Article 

    Google Scholar 
    Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Solomon, C. T. et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18, 376–389 (2015).Article 

    Google Scholar 
    Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate related temperature stress. Glob. Change Biol. 26, 1367–1373 (2021).Article 

    Google Scholar 
    Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Change Biol. 27, 5547–5563 (2021).Article 

    Google Scholar 
    Stewart, B. D. et al. Metal pollution as a potential threat to shell strength and survival in marine bivalves. Sci. Total Environ. 755, 143019 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, D. A. et al. Ocean acidification increases the toxicity of contaminated sediments. Glob. Change Biol. 19, 340–351 (2013).Article 

    Google Scholar 
    Hauton, C. et al. Identifying toxic impact of metals potentially released during deep-sea mining—a synthesis of the challenges to quantifying risk. Front. Mar. Sci. 4, 368 (2017).Chaudhary, C. et al. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime? Science 307, 1725–1726 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).Article 

    Google Scholar 
    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colombo, S. M. et al. Projected declines in global DHA availability for human consumption as a result of global warming. Ambio 49, 865–880 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).Article 

    Google Scholar 
    Antacli, J. C. et al. Increase in unsaturated fatty acids in Antarctic phytoplankton under ocean warming and glacial melting scenarios. Sci. Total Environ. 790, 147879 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 18, 4132–4138 (2021).Article 
    CAS 

    Google Scholar 
    Lim, Y. S., Ok, Y. J., Hwang, S. Y., Kwak, J. Y. & Yoon, S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 17, 467 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, N. et al. Marine-derived collagen as biomaterials for human health. Front. Nutr. 8, 702108 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vieira, H., Leal, M. C. & Calado, R. Fifty shades of blue: how blue biotechnology is shaping the bioeconomy. Trends Biotechnol. 38, 940–943 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Hasan, A. et al. China’s fish maw demand and its implications for fisheries in source countries. Mar. Policy 132, 104696 (2021).Article 

    Google Scholar 
    Sadovy de Mitcheson, Y., To, A. W. L., Wong, N. W., Kwan, H. Y. & Bud, W. S. Emerging from the murk: threats, challenges and opportunities for the global swim bladder trade. Rev. Fish. Biol. Fish. 29, 809–835 (2019).Article 

    Google Scholar 
    Brownell, R. L. Jr et al. Bycatch in gillnet fisheries threatens critically endangered small cetaceans and other aquatic megafauna. Endang. Species Res. 40, 285–296 (2019).Article 

    Google Scholar 
    Webb, T. J., Vanden Berghe, E. & O’Dor, R. K. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, e10223 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3, 31 (2016).
    Google Scholar 
    Thomsen, L. et al. The oceanic biological pump: rapid carbon transfer to depth at continental margins during winter. Sci. Rep. 7, 10763 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roberts, C. M., Hawkins, J. P., Hindle, K., Wilson, R. W. & O’Leary, B. C. Entering the Twilight Zone: The Ecological Role and Importance of Mesopelagic Fishes (Blue Marine Foundation, 2020)Cavan, E. L., Laurenceau-Cornec, E. C., Bressac, M. & Boyd, P. W. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 176, 102125 (2019).Article 

    Google Scholar 
    Levin, L. A. et al. Climate change considerations are fundamental to management of deep‐sea resource extraction. Glob. Change Biol. 26, 4664–4678 (2020).Article 

    Google Scholar 
    Li, Z. et al. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14, 3152–3159 (2021).CAS 
    Article 

    Google Scholar 
    Jin, M., Gai, Y., Guo, X., Hou, Y. & Zeng, R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: a mini review. Mar. Drugs 17, 656 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mbow, C. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P.R. et al.) 437–550 (IPCC, 2019).Christie, N., Smyth, K., Barnes, R. & Elliott, M. Co-location of activities and designations: a means of solving or creating problems in marine spatial planning? Mar. Pol. 43, 254–261 (2014).Article 

    Google Scholar 
    Mayer-Pinto, M., Dafforn, K. A. & Johnston, E. L. A decision framework for coastal infrastructure to optimize biotic resistance and resilience in a changing climate. BioScience 69, 833–843 (2019).Article 

    Google Scholar 
    Wang, C. M. & Wang, B. T. in ICSCEA 2019 (eds Reddy, J. N. et al.) 3–29 (Springer, 2020).Ross, C. T. F. & McCullough, R. R. Conceptual design of a floating island city. J. Ocean Technol. 5, 120–121 (2010).
    Google Scholar 
    Dong, Y.-w, Huang, X.-w, Wang, W., Li, Y. & Wang, J. The marine ‘great wall’ of China: local- and broad-scale ecological impacts of coastal infrastructure on intertidal macrobenthic communities. Divers. Distrib. 22, 731–744 (2016).Article 

    Google Scholar 
    Flikkema, M. M. B., Lin, F.-Y., van der Plank, P. P. J., Koning, J. & Waals, O. Legal issues for artificial floating islands. Front. Mar. Sci. 8, 619462 (2021).Article 

    Google Scholar 
    Richir, J., Bray, S., McAleese, T. & Watson, G. J. Three decades of trace element sediment contamination: the mining of governmental databases and the need to address hidden sources for clean and healthy seas. Environ. Int. 149, 106362 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).CAS 
    Article 

    Google Scholar 
    Li, W., Lee, S. & Manthiram, A. High‐Nickel NMA: a cobalt‐free alternative to NMC and NCA cathodes for lithium‐ion batteries. Adv. Mater. 32, 2002718 (2020).CAS 
    Article 

    Google Scholar 
    Ghaffarivardavagh, R., Afzal, S. S., Rodriguez, O. & Adib, F. in SIGCOMM ’20 Proc. 19th ACM Workshop on Hot Topics in Networks 125–131 (Association for Computing Machinery, 2020).Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).Article 

    Google Scholar 
    Davies, T. E. et al. Tracking data and the conservation of the high seas: opportunities and challenges. J. Appl. Ecol. 58, 2703–2710 (2021).Aracri, S. et al. Soft robots for ocean exploration and offshore operations: a perspective. Soft Robot. https://doi.org/10.1089/soro.2020.0011 (2021).Li, G. et al. Self-powered soft robot in the Mariana Trench. Nature 591, 66–71 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Philamore, H., Ieropoulos, I., Stinchcombe, A. & Rossiter, J. Toward energetically autonomous foraging soft robots. Soft Robot. 3, 186–197 (2016).Article 

    Google Scholar 
    Manfra, L. et al. Biodegradable polymers: a real opportunity to solve marine plastic pollution? J. Hazard. Mater. 416, 125763 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Kim, H. & An, Y. J. Effects of synthetic and natural microfibers on Daphnia magna: are they dependent on microfiber type? Aquat. Toxicol. 240, 105968 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Degli-Innocenti, F., Bellia, G., Tosin, M., Kapanen, A. & Itävaara, M. Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym. Degrad. Stab. 73, 101–106 (2001).CAS 
    Article 

    Google Scholar 
    Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).Short, R. E. et al. Harnessing the diversity of small-scale actors is key to the future of aquatic food systems. Nat. Food 2, 733–741 (2021).Article 

    Google Scholar 
    Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Obura, D. O. et al. Integrate biodiversity targets from local to global levels. Science 373, 746 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).PubMed 
    Article 

    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jefferson, R. L., McKinley, E., Griffin, H., Nimmo, A. & Fletcher, S. Public perceptions of the ocean: lessons for marine conservation from a global research review. Front. Mar. Sci. 8, 711245 (2021).Potts, T., Pita, C., O’Higgins, T. & Mee, L. Who cares? European attitudes towards marine and coastal environments. Mar. Pol. 72, 59–66 (2016).Article 

    Google Scholar 
    Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).Article 

    Google Scholar 
    Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article 

    Google Scholar 
    Zheng, Y. & Walsham, G. Inequality of what? An intersectional approach to digital inequality under Covid-19. Inf. Organ. 31, 100341 (2021).Article 

    Google Scholar 
    Blythe, J. L., Armitage, D., Bennett, N. J., Silver, J. J. & Song, A. M. The politics of ocean governance transformations. Front. Mar. Sci. 8, 634718 (2021).Article 

    Google Scholar 
    Brennan, C., Ashley, M. & Molloy, O. A system dynamics approach to increasing ocean literacy. Front. Mar. Sci. 6, 360 (2019).Article 

    Google Scholar 
    Stoll-Kleemann, S. Feasible options for behavior change toward more effective ocean literacy: a systematic review. Front. Mar. Sci. 6, 273 (2019).Article 

    Google Scholar 
    Bennett, N. J. et al. Advancing social equity in and through marine conservation. Front. Mar. Sci. 8, 711538 (2021).Article 

    Google Scholar 
    Short, R. E. et al. Review of the evidence for oceans and human health relationships in Europe: a systematic map. Environ. Int. 146, 106275 (2021).PubMed 
    Article 

    Google Scholar 
    Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).Article 

    Google Scholar 
    Sutherland, W. J. et al. A 2021 horizon scan of emerging global biological conservation issues. Trends Ecol. Evol. 36, 87–97 (2021).PubMed 
    Article 

    Google Scholar  More

  • in

    Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, S. & Read, D. Mycorrhizal Symbiosis (Elsevier, 2008).Soudzilovskaia, N. A. et al. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob. Ecol. Biogeogr. 24, 371–382 (2015).Article 

    Google Scholar 
    Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 
    Article 

    Google Scholar 
    Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51, 227–234 (2001).Article 

    Google Scholar 
    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).PubMed 
    Article 

    Google Scholar 
    Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. New Phytol. 171, 41–53 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bender, S. F. & van der Heijden, M. G. A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52, 228–239 (2015).CAS 
    Article 

    Google Scholar 
    Rodriguez, A. & Sanders, I. R. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 9, 1053–1061 (2015).PubMed 
    Article 

    Google Scholar 
    Oviatt, P. & Rillig, M. C. Mycorrhizal technologies for an agriculture of the middle. Plants, People, Planet. https://doi.org/10.1002/ppp3.10177 (2020).Ryan, M. H. & Graham, J. H. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220, 1092–1107 (2018).PubMed 
    Article 

    Google Scholar 
    Rillig, M. C. et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222, 1171–1175 (2019).PubMed 
    Article 

    Google Scholar 
    Zhang, S., Lehmann, A., Zheng, W., You, Z. & Rillig, M. C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol. 222, 543–555 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M. & Field, K. J. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J. Ecol. 105, 921–929 (2017).CAS 
    Article 

    Google Scholar 
    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pringle, A. & Bever, J. D. Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytol. 180, 162–175 (2008).PubMed 
    Article 

    Google Scholar 
    Francis, R. & Read, D. J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can. J. Bot. 73, 1301–1309 (1995).Article 

    Google Scholar 
    Thirkell, T. J., Pastok, D. & Field, K. J. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Change Biol. 26, 1725–1738 (2020).Article 

    Google Scholar 
    Lehmann, A., Barto, E. K., Powell, J. R. & Rillig, M. C. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355, 231–250 (2012).CAS 
    Article 

    Google Scholar 
    Martín-Robles, N. et al. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 218, 322–334 (2018).PubMed 
    Article 

    Google Scholar 
    Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).Article 

    Google Scholar 
    Oehl, F. et al. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69, 2816–2824 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiang, D. et al. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol. 204, 968–978 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bainard, L. D. et al. Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the Mixed Prairie ecoregion of the North American Great Plains. Agric. Ecosyst. Environ. 249, 187–195 (2017).Article 

    Google Scholar 
    Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W. Ploughing up the wood-wide web? Nature 394, 431–431 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 
    CAS 

    Google Scholar 
    Vogelsang, K. M., Reynolds, H. L. & Bever, J. D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172, 554–562 (2006).PubMed 
    Article 

    Google Scholar 
    Scheublin, T. R., Ridgway, K. P., Young, J. P. W. & van der Heijden, M. G. A. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 70, 6240–6246 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oehl, F. et al. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 42, 724–738 (2010).CAS 
    Article 

    Google Scholar 
    De Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verbruggen, E., Xiang, D., Chen, B., Xu, T. & Rillig, M. C. Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biol. Biochem. 86, 1–4 (2015).CAS 
    Article 

    Google Scholar 
    Balami, S., Vašutová, M., Godbold, D., Kotas, P. & Cudlín, P. Soil fungal communities across land use types. iForest 13, 548–558 (2020).Article 

    Google Scholar 
    Öpik, M., Mari, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Jansa, J. et al. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Groenigen, K. J. et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42, 48–55 (2010).Article 
    CAS 

    Google Scholar 
    Sallach, J. B., Thirkell, T. J., Field, K. J. & Carter, L. J. The emerging threat of human‐use antifungals in sustainable and circular agriculture schemes. Plants People Planet 3, 685–693 (2021).Article 

    Google Scholar 
    Meyer, A. et al. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 8, e73536 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).Article 

    Google Scholar 
    Tardy, V. et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol. Biochem. 90, 204–213 (2015).CAS 
    Article 

    Google Scholar 
    Sawers, R. J. H. et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol. 214, 632–643 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svenningsen, N. B. et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schweiger, P. F., Thingstrup, I. & Jakobsen, I. Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8, 207–213 (1999).CAS 
    Article 

    Google Scholar 
    Emmett, B. D., Lévesque-Tremblay, V. & Harrison, M. J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 15, 2276–2288 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, F., Zhang, L., Zhou, J., George, T. S. & Feng, G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230, 304–315 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thonar, C., Schnepf, A., Frossard, E., Roose, T. & Jansa, J. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231–245 (2011).CAS 
    Article 

    Google Scholar 
    Cavagnaro, T. R., Smith, F. A., Smith, S. E. & Jakobsen, I. Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ. 28, 642–650 (2005).CAS 
    Article 

    Google Scholar 
    Jakobsen, I., Gazey, C. & Abbott, L. K. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol. 149, 95–103 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, J. N. & Jakobsen, I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol. 124, 489–494 (1993).CAS 
    Article 

    Google Scholar 
    Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I. & Bucher, M. Erratum: mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol. 184, 1029 (2009).Article 

    Google Scholar 
    Smith, S. E., Jakobsen, I., Grønlund, M. & Smith, F. A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156, 1050–1057 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A., Manoharan, L., Rosenstock, N. P., Olsson, P. A. & Hedlund, K. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 213, 874–885 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The Vegetation N:P Ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441 (1996).Article 

    Google Scholar 
    Van Aarle, I. M., Olsson, P. A. & Söderström, B. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol. 155, 173–182 (2002).PubMed 
    Article 

    Google Scholar 
    Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).Article 

    Google Scholar 
    Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).Article 

    Google Scholar 
    Peat, H. J. & Fitter, A. H. The distribution of arbuscular mycorrhizas in the British flora. New Phytol. 125, 845–854 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cruz-Paredes, C. et al. Suppression of arbuscular mycorrhizal fungal activity in a diverse collection of non-cultivated soils. FEMS Microbiol. Ecol. 95, fiz020 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jansa, J., Erb, A., Oberholzer, H.-R., Šmilauer, P. & Egli, S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 23, 2118–2135 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, H. et al. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 87, 70–77 (2011).CAS 
    Article 

    Google Scholar 
    Riedo, J. et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c06405 (2021).Pánková, H., Dostálek, T., Vazačová, K. & Münzbergová, Z. Slow recovery of arbuscular mycorrhizal fungi and plant community after fungicide application: an eight-year experiment. J. Veg. Sci. 29, 695–703 (2018).Article 

    Google Scholar 
    Ipsilantis, I., Samourelis, C. & Karpouzas, D. G. The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2011.08.007 (2012).Buysens, C., Dupré de Boulois, H. & Declerck, S. Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza. https://doi.org/10.1007/s00572-014-0610-7 (2015).Lekberg, Y., Wagner, V., Rummel, A., McLeod, M. & Ramsey, P. W. Strong indirect herbicide effects on mycorrhizal associations through plant community shifts and secondary invasions. Ecol. Appl. 27, 2359–2368 (2017).PubMed 
    Article 

    Google Scholar 
    Hage-Ahmed, K., Rosner, K. & Steinkellner, S. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag. Sci. 75, 583–590 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kjøller, R. & Rosendahl, S. Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fertil. Soils 31, 361–365 (2000).Article 

    Google Scholar 
    Gange, A. C., Brown, V. K. & Sinclair, G. S. Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct. Ecol. 7, 616 (1993).Article 

    Google Scholar 
    Hartnett, D. C. & Wilson, G. W. T. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244, 319–331 (2002).CAS 
    Article 

    Google Scholar 
    Guzman, A. et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytol. https://doi.org/10.1111/nph.17306 (2021).LUCAS 2018 Technical Reference Document C3 Classification (Land Cover and Land Use) (Eurostat, 2018).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinnott, R. W. Virtues of the Haversine. Sky Telescope 68, 158–159 (1984).
    Google Scholar 
    Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).Article 

    Google Scholar 
    Boden‐und Substratuntersuchungen zur Düngeberatung (Schweizerische Referenzmethoden der Eidgenössischen Forschungsanstalten, 1996).Berry, D., Mahfoudh, K., Ben, Wagner, M. & Loy, A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846–7849 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D. & Taylor, J. W. Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can. J. Bot. 69, 180–190 (1991).CAS 
    Article 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiore-Donno, A. M. et al. New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts. Mol. Ecol. Resour. 18, 229–239 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helfenstein, J., Jegminat, J., McLaren, T. I. & Frossard, E. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies. Biogeosciences 15, 105–114 (2018).CAS 
    Article 

    Google Scholar 
    Thirkell, T. J. et al. Cultivar‐dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2. Plants People Planet 3, 553–566 (2021).Article 

    Google Scholar 
    Rodushkin, I., Ruth, T. & Huhtasaari, Å. Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Anal. Chim. Acta 378, 191–200 (1999).CAS 
    Article 

    Google Scholar 
    Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).CAS 
    Article 

    Google Scholar 
    Frossard, E. et al. in Phosphorus in Action (eds Bünemann, E. et al.) 59–91 (Springer, 2011).Sato, K., Suyama, Y., Saito, M. & Sugawara, K. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl. Sci. 51, 179–181 (2005).CAS 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Calcagno, V. glmulti: Model Selection and Multimodel Inference Made Easy. R version 1.0.8 https://CRAN.R-project.org/package=glmulti (2020).Cade, B. S. Model averaging and muddled multimodel inferences. Ecology. https://doi.org/10.1890/14-1639.1 (2015).Barton, K. MuMIn: Multi-Model Inference. R version 1.43.17 https://CRAN.R-project.org/package=MuMIn (2020).Burnham, K. P. & Anderson, D. R. (eds) Model Selection and Multimodel Inference (Springer, 2002).Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012). More