Complex extracellular biology drives surface competition during colony expansion in Bacillus subtilis
Riley M, Gordon D. The ecological role of bacteriocins in bacterial competition. Trends Microbiol. 1999;7:129–33.CAS
PubMed
Article
Google Scholar
Griffin A, West S, Buckling A. Cooperation and competition in pathogenic bacteria. Nature. 2004;430:1024–7.CAS
PubMed
Article
Google Scholar
Velicer G, Vos M. Sociobiology of the myxobacteria. Annu Rev Microbiol. 2009;63:599–623.CAS
PubMed
Article
Google Scholar
Brockhurst M, Habets M, Libberton B, Buckling A, Gardner A. Ecological drivers of the evolution of public-goods cooperation in bacteria. Ecology. 2010;91:334–40.PubMed
Article
Google Scholar
Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–55.CAS
PubMed
Article
Google Scholar
van Gestel J, Weissing FJ, Kuipers OP, Kovács ÁT. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms. ISME J. 2014;8:2069–79.PubMed
PubMed Central
Article
CAS
Google Scholar
Henrichsen J. Bacterial surface translocation: a survey and a classification. Bacteriol Rev. 1972;36:478–503.CAS
PubMed
PubMed Central
Article
Google Scholar
van Gestel J, Vlamakis H, Kolter R. From cell differentiation to cell collectives: Bacillus subtilis uses division of labor to migrate. PLoS Biol. 2015;13:e1002141.PubMed
PubMed Central
Article
CAS
Google Scholar
Hölscher T, Kovács ÁT. Sliding on the surface: bacterial spreading without an active motor. Environ Microbiol. 2017;19:2537–45.PubMed
Article
Google Scholar
Kearns D. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.CAS
PubMed
PubMed Central
Article
Google Scholar
Nogales J, Bernabéu-Roda L, Cuéllar V, Soto M. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol. 2012;194:2027–35.CAS
PubMed
PubMed Central
Article
Google Scholar
Murray T, Kazmierczak B. Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol. 2008;190:2700–8.CAS
PubMed
Article
Google Scholar
Kinsinger R, Shirk M, Fall R. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol. 2003;185:5627–31.CAS
PubMed
PubMed Central
Article
Google Scholar
Grau RR, De Oña P, Kunert M, Leñini C, Gallegos-Monterrosa R, Mhatre E, et al. A duo of potassium-responsive histidine kinases govern the multicellular destiny of Bacillus subtilis. MBio. 2015;6:e00581–15.CAS
PubMed
PubMed Central
Article
Google Scholar
Kobayashi K, Iwano M. BslA(YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol Microbiol. 2012;85:51–66.CAS
PubMed
Article
Google Scholar
Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, et al. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA. 2013;110:13600–5.CAS
PubMed
PubMed Central
Article
Google Scholar
Seminara A, Angelini T, Wilking J, Vlamakis H, Ebrahim S, Kolter R, et al. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc Natl Acad Sci USA. 2012;109:1116–21.CAS
PubMed
PubMed Central
Article
Google Scholar
Kafri M, Metzl-Raz E, Jona G, Barkai N. The cost of protein production. Cell Rep. 2016;14:22–31.CAS
PubMed
Article
Google Scholar
Sexton D, Schuster M. Nutrient limitation determines the fitness of cheaters in bacterial siderophore cooperation. Nat Commun. 2017;8:230.PubMed
PubMed Central
Article
CAS
Google Scholar
Xavier J, Kim W, Foster K. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol. 2011;79:166–79.CAS
PubMed
Article
Google Scholar
Tai JSB, Mukherjee S, Nero T, Olson R, Tithof J, Nadell CD, et al. Social evolution of shared biofilm matrix components. Proc Natl Acad Sci USA. 2022;119:e2123469119.PubMed
Article
Google Scholar
Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol. 2006;59:1229–38.CAS
PubMed
Article
Google Scholar
Martin M, Dragoš A, Hölscher T, Maróti G, Bálint B, Westermann M, et al. De novo evolved interference competition promotes the spread of biofilm defectors. Nat Commun. 2017;8:15127.PubMed
PubMed Central
Article
Google Scholar
Dragoš A, Kiesewalter H, Martin M, Hsu C-Y, Hartmann R, Wechsler T, et al. Division of labor during biofilm matrix production. Curr Biol. 2018;28:1903–13.PubMed
PubMed Central
Article
CAS
Google Scholar
Martin M, Dragoš A, Schäfer D, Maróti G, Kovács ÁT. Cheaters shape the evolution of phenotypic heterogeneity in Bacillus subtilis biofilms. ISME J. 2020;14:2302–12.CAS
PubMed
PubMed Central
Article
Google Scholar
Otto SB, Martin M, Schäfer D, Hartmann R, Drescher K, Brix S, et al. Privatization of biofilm matrix in structurally heterogeneous biofilms. mSystems. 2020;5:e00425–20.CAS
PubMed
PubMed Central
Article
Google Scholar
Arnaouteli S, Bamford NC, Stanley-Wall NR, Kovács ÁT. Bacillus subtilis biofilm formation and social interactions. Nat Rev Microbiol. 2021;19:600–14.CAS
PubMed
Article
Google Scholar
Kovács ÁT, Dragoš A. Evolved Biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles. J Mol Biol. 2019;431:4749–59.Dragos A, Lakshmanan N, Martin M, Horvath B, Maroti G, Falcon Garcia C, et al. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol Ecol. 2018;94:fix155.Article
CAS
Google Scholar
Dragoš A, Martin M, Garcia CF, Kricks L, Pausch P, Heimerl T, et al. Collapse of genetic division of labour and evolution of autonomy in pellicle biofilms. Nat Microbiol. 2018;3:1451–60.PubMed
Article
CAS
Google Scholar
van Gestel J, Bareia T, Tenennbaum B, Dal Co A, Guler P, Aframian N, et al. Short-range quorum sensing controls horizontal gene transfer at micron scale in bacterial communities. Nat Commun. 2021;12:2324.PubMed
PubMed Central
Article
CAS
Google Scholar
Gore J, Youk H, Van Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature. 2009;459:253–6.CAS
PubMed
PubMed Central
Article
Google Scholar
Konkol MA, Blair KM, Kearns DB. Plasmid-encoded comI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol. 2013;195:4085–93.CAS
PubMed
PubMed Central
Article
Google Scholar
Hölscher T, Dragoš A, Gallegos-Monterrosa R, Martin M, Mhatre E, Richter A, et al. Monitoring spatial segregation in surface colonizing microbial populations. J Vis Exp. 2016;2016:e54752.
Google Scholar
Morris R, Schor M, Gillespie R, Ferreira A, Baldauf L, Earl C, et al. Natural variations in the biofilm-associated protein BslA from the genus Bacillus. Sci Rep. 2017;7:6730.PubMed
PubMed Central
Article
CAS
Google Scholar
Dogsa I, Brloznik M, Stopar D, Mandic-Mulec I. Exopolymer diversity and the role of levan in Bacillus subtilis biofilms. PLoS One. 2013;8:e62044.CAS
PubMed
PubMed Central
Article
Google Scholar
Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–6.CAS
PubMed
PubMed Central
Article
Google Scholar
Lenski RE, Rose M, Simpson S, Tadler S. Long-term experimental evolution in Escherichia coli. I Adaptation and divergence during 2,000 generations. Am Nat. 1991;138:1315–41.Article
Google Scholar
Hallatschek O, Hersen P, Ramanathan S, Nelson DR. Genetic drift at expanding frontiers promotes gene segregation. Proc Natl Acad Sci USA. 2007;104:19926–30.CAS
PubMed
PubMed Central
Article
Google Scholar
Slatkin M, Excoffier L. Serial founder effects during range expansion: a spatial analog of genetic drift. Genetics. 2012;191:171–81.CAS
PubMed
PubMed Central
Article
Google Scholar
MacLean R, Fuentes-Hernandez A, Greig D, Hurst L, Gudelj I. A mixture of ‘cheats’ and ‘co-operators’ can enable maximal group benefit. PLoS Biol. 2010;8:e1000486.PubMed
PubMed Central
Article
CAS
Google Scholar
Kearns DB. Division of labour during Bacillus subtilis biofilm formation. Mol Microbiol. 2008;67:229–31.CAS
PubMed
Article
Google Scholar
Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maróti G, Snyder D, et al. Genomic and chemical diversity of Bacillus subtilis secondary metabolites against plant pathogenic fungi. mSystems. 2021;6:e00770–20.CAS
PubMed
PubMed Central
Article
Google Scholar
Stefanic P, Mandic-Mulec I. Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J Bacteriol. 2009;191:1756–64.CAS
PubMed
Article
Google Scholar
Even-Tov E, Omer Bendori S, Valastyan J, Ke X, Pollak S, Bareia T, et al. Social evolution selects for redundancy in bacterial quorum sensing. PLoS Biol. 2016;14:e1002386.PubMed
PubMed Central
Article
CAS
Google Scholar
Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall N. Social behaviours by Bacillus subtilis: quorum sensing, kin discrimination and beyond. Mol Microbiol. 2018;110:863–78.CAS
PubMed
PubMed Central
Article
Google Scholar
Aframian N, Eldar A. A bacterial tower of Babel: Quorum-Sensing signaling diversity and its evolution. Annu Rev Microbiol. 2020;74:587–606.CAS
PubMed
PubMed Central
Article
Google Scholar
Kiesewalter HT, Lozano-Andrade CN, Strube ML, Kovács ÁT. Secondary metabolites of Bacillus subtilis impact the assembly of soil-derived semisynthetic bacterial communities. Beilstein J Org Chem. 2020;16:2983–98.CAS
PubMed
PubMed Central
Article
Google Scholar
Dragoš A, Kovács ÁT. The peculiar functions of the bacterial extracellular matrix. Trends Microbiol. 2017;25:257–66.PubMed
Article
CAS
Google Scholar
Kovács ÁT. Impact of spatial distribution on the development of mutualism in microbes. Front Microbiol. 2014;5:649.PubMed
PubMed Central
Article
Google Scholar
Zhang F, Kwan A, Xu A, Süel G. A synthetic quorum sensing system reveals a potential private benefit for public good production in a biofilm. PLoS One. 2015;10:e0132948.PubMed
PubMed Central
Article
CAS
Google Scholar
Bruce J, West S, Griffin A. Functional amyloids promote retention of public goods in bacteria. Proc Biol Sci. 2019;286:20190709.CAS
PubMed
PubMed Central
Google Scholar
Ma L, Conover M, Lu H, Parsek M, Bayles K, Wozniak D. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 2009;5:e1000354.PubMed
PubMed Central
Article
CAS
Google Scholar
Hartmann R, Jeckel H, Jelli E, Singh PK, Vaidya S, Bayer M, et al. Quantitative image analysis of microbial communities with BiofilmQ. Nat Microbiol. 2021;6:151–6.CAS
PubMed
PubMed Central
Article
Google Scholar
Dar D, Dar N, Cai L, Newman DK. Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution. Science. 2021;373:eabi4882.CAS
PubMed
Article
Google Scholar
Lozano-Andrade CN, Nogueira CG, Wibowo M, Kovács ÁT. Establishment of a transparent soil system to study Bacillus subtilis chemical ecology. bioRxiv. 2022. https://doi.org/10.1101/2022.01.10.475645.Article
Google Scholar More