Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert
Chibuike, G. U. & Obiora, S. C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 1–12. https://doi.org/10.1155/2014/752708 (2014).CAS
Article
Google Scholar
Baek, S. A. et al. Effects of heavy metals on plant growths and pigment contents in Arabidopsis thaliana. Plant Pathol. J. 28, 446–452. https://doi.org/10.5423/PPJ.NT.01.2012.0006 (2012).CAS
Article
Google Scholar
Gong, Z. Z. et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 63, 635–674. https://doi.org/10.1007/s11427-020-1683-x (2020).ADS
Article
PubMed
Google Scholar
Pravin, U. S., Manisha, P. T. & Ravindra, M. M. Sediment heavy metal contaminants in Vasai Creek of Mumbai: Pollution impacts. Am. Chem. Soc. 2(3), 171–180. https://doi.org/10.5923/j.chemistry.20120203.13 (2012).CAS
Article
Google Scholar
Kim, Y. H. et al. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 14, 1–13. https://doi.org/10.1186/1471-2229-14-13 (2014).ADS
CAS
Article
Google Scholar
Mao, F. et al. The metal distribution and the change of physiological and biochemical process in soybean and mung bean plants under heavy metal stress. Int. J. Phytoremed. 20, 1113–1120. https://doi.org/10.1080/15226514.2017.1365346 (2018).CAS
Article
Google Scholar
Reichman, S. M., Menzies, N. W., Asher, C. J. & Mulligan, D. R. Seedling responses of four Australian tree species to toxic concentrations of manganese in solution culture. Plant Soil. 258, 341–350. https://doi.org/10.1023/B:PLSO.0000016564.14512.eb (2004).CAS
Article
Google Scholar
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983. https://doi.org/10.1021/es305071v (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Liu, Z. C. et al. Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol. Eng. 106, 273–278. https://doi.org/10.1016/j.ecoleng.2017.05.051 (2017).Article
Google Scholar
Hassan, M. J. et al. Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9, 1575. https://doi.org/10.3390/plants9111575 (2020).CAS
Article
Google Scholar
Patra, M., Bhowmik, N., Bandopadhyay, B. & Sharma, A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot. 52, 199–223. https://doi.org/10.1016/j.envexpbot.2004.02.009 (2004).CAS
Article
Google Scholar
Zhou, Z. S., Wang, S. J. & Yang, Z. M. Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70, 1500–1509. https://doi.org/10.1016/j.chemosphere.2007.08.028 (2008).ADS
CAS
Article
PubMed
Google Scholar
Biczak, R. Quaternary ammonium salts with tetrafluoroborate anion: Phytotoxicity and oxidative stress in terrestrial plants. J. Hazard. Mater. 304, 173–185. https://doi.org/10.1016/j.jhazmat.2015.10.055 (2016).CAS
Article
PubMed
Google Scholar
Elbaz, A., Wei, Y. Y., Meng, Q., Zheng, Q. & Yang, Z. M. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19, 1285–1293. https://doi.org/10.1007/s10646-010-0514-z (2010).CAS
Article
PubMed
Google Scholar
Gao, S. et al. Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. J. Hazard. Mater. 182, 591–597. https://doi.org/10.1016/j.jhazmat.2010.06.073 (2010).CAS
Article
PubMed
Google Scholar
Warren, S. D. et al. Reproduction and dispersal of biological soil crust organisms. Front. Ecol. Evol. 7, 1–17. https://doi.org/10.3389/FEVO.2019.00344 (2019).MathSciNet
Article
Google Scholar
Wu, L. & Zhang, Y. Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China. J. Arid. Land. 10, 701–711. https://doi.org/10.1007/s40333-018-0065-3 (2018).Article
Google Scholar
Hu, R. et al. The mechanism of soil nitrogen transformation under different biocrusts to warming and reduced precipitation: From microbial functional genes to enzyme activity. Sci. Total Environ. 722, 137849. https://doi.org/10.1016/j.scitotenv.2020.137849 (2020).ADS
CAS
Article
PubMed
Google Scholar
Pan, Z. et al. The upside-down water collection system of Syntrichia caninervis. Nat. Plants. 2(7), 16076. https://doi.org/10.1038/nplants.2016.76 (2016).Article
PubMed
Google Scholar
Coe, K. K. et al. Strategies of desiccation tolerance vary across life phases in the moss Syntrichia caninervis. Am. J. Bot. 108, 249–262. https://doi.org/10.1002/ajb2.1571 (2020).CAS
Article
PubMed
Google Scholar
Silva, A. T. et al. To dry perchance to live: Insights from the genome of the desiccation-tolerant biocrust moss Syntrichia caninervis. Plant J. 105, 1339–1356. https://doi.org/10.1111/tpj.15116 (2021).CAS
Article
PubMed
Google Scholar
Young, K. & Reed, S. Spectrally monitoring the response of the biocrust moss Syntrichia caninervis to altered precipitation regimes. Sci. Rep. 7, 41793. https://doi.org/10.1038/srep41793 (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang, J. & Zhang, Y. M. Ecophysiological responses of the biocrust moss Syntrichia caninervis to experimental snow cover manipulations in a temperate desert of central Asia. Ecol. Res. 35, 198–207. https://doi.org/10.1111/1440-1703.12072 (2019).CAS
Article
Google Scholar
Zheng, Y. P., Zhao, J. C., Zhang, B. C., Li, L. & Zhang, Y. M. Advances on ecological studies of algae and mosses in biological soil crusts. Chin. J. Bot. 44, 371–378 (2009).CAS
Google Scholar
Mei, L. et al. Mercury-induced phytotoxicity and responses in upland cotton (Gossypium hirsutum L.) seedlings. Plants 10, 1494. https://doi.org/10.3390/plants10081494 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao, Z. S. et al. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J. Inorg. Biochem. 101, 1–9. https://doi.org/10.1016/j.jinorgbio.2006.05.011 (2007).CAS
Article
Google Scholar
Yuniarti, R. & Yuniati, R. Mercury effects on the early seedling of Paraserianthes falcataria (L.) Nielsen grew in hydroponic culture. IOP Conf. Ser. Mater. Sci. Eng. 902, 012073. https://doi.org/10.1088/1757-899X/902/1/012073 (2020).CAS
Article
Google Scholar
Li, Y. et al. Reorganization of photosystem II is involved in the rapid photosynthetic recovery of desert moss Syntrichia caninervis upon rehydration. J. Plant Physiol. 167, 1390–1397. https://doi.org/10.1016/j.jplph.2010.05.028 (2010).CAS
Article
PubMed
Google Scholar
Deng, B. L., Yang, K. J., Zhang, Y. F. & Li, Z. T. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu2+, Cd2+ and Hg2+) on maize seed germination under high temperature. Environ. Pollut. 216, 46–52. https://doi.org/10.1016/j.envpol.2016.05.050 (2016).CAS
Article
PubMed
Google Scholar
Khan, K. Y. et al. Study amino acid contents, plant growth variables and cell ultrastructural changes induced by cadmium stress between two contrasting cadmiums accumulating cultivars of Brassica rapa ssp. chinensis L. (pak choi). Ecotoxicol. Environ. Saf. 200, 110748. https://doi.org/10.1016/j.ecoenv.2020.110748 (2020).CAS
Article
PubMed
Google Scholar
Arnon, D. L. Copper enzymes in isolated chloroplasts.Polyphenoloxidases in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).CAS
Article
Google Scholar
Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil. 39, 205–207. https://doi.org/10.1007/BF00018060 (1973).CAS
Article
Google Scholar
Luo, X. L. & Huang, Q. F. Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in Cassava. J. Agric. Sci. 3, 64–72. https://doi.org/10.5539/jas.v3n2p64 (2011).Article
Google Scholar
Choudhury, S. & Panda, S. K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) broth under chromium and lead phytotoxicity. Water Air Soil Pollut. 167, 73–90. https://doi.org/10.1007/s11270-005-8682-9 (2005).ADS
CAS
Article
Google Scholar
Kumar, A., Dutt, S., Bagler, G., Ahuja, P. S. & Kumar, S. Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50°C, which also tolerates autoclaving. Sci. Rep. 2, 347–351. https://doi.org/10.1038/srep00387 (2012).CAS
Article
Google Scholar
Pasquariello, M. S. et al. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest. Biol. Technol. 109, 45–46. https://doi.org/10.1016/j.postharvbio.2015.06.007 (2015).CAS
Article
Google Scholar
Emamverdian, A., Ding, Y. L., Mokhberdoran, F. & Xie, Y. F. Growth responses and photosynthetic indices of bamboo plant (Indocalamus latifolius) under heavy metal stress. Sci. World J. 2018, 1–6. https://doi.org/10.1155/2018/1219364 (2018).CAS
Article
Google Scholar
Sahu, G. K., Upadhyay, S. & Sahoo, B. B. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol. Mol. Biol. Plants 18, 21–31. https://doi.org/10.1007/s12298-011-0090-6 (2012).CAS
Article
PubMed
Google Scholar
Wang, R. Y. et al. Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants. Environ. Sci. Pollut. Res. 25, 28695–28704. https://doi.org/10.1007/s11356-018-2918-x (2018).CAS
Article
Google Scholar
Esposito, S. et al. In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction. PLoS ONE 13, 1–16. https://doi.org/10.1371/journal.pone.0195717 (2018).CAS
Article
Google Scholar
Qureshi, S. et al. Effect of microbial activity on trace element release from sewage sludge. Environ. Sci. Technol. 37, 3361–3366. https://doi.org/10.1021/es020970h (2003).ADS
CAS
Article
PubMed
Google Scholar
Lebeau, T., Bagot, D., Jézéquel, K. & Fabre, B. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: Effects of Cd, pH and techniques of culture. Sci. Total Environ. 291, 73–83. https://doi.org/10.1016/S0048-9697(01)01093-2 (2002).ADS
CAS
Article
PubMed
Google Scholar
Cho, U. H. & Park, J. O. Mercury-induced oxidative stress in tomato seedlings. Plant Sci. 156, 1–9. https://doi.org/10.1016/S0168-9452(00)00227-2 (2000).CAS
Article
PubMed
Google Scholar
Chen, J. et al. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18, 110–121. https://doi.org/10.1007/s10646-008-0264-3 (2009).CAS
Article
PubMed
Google Scholar
Bellini, E. et al. The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins. Int. J. Mol. Sci. 21, 1583. https://doi.org/10.3390/ijms21051583 (2020).CAS
Article
PubMed Central
Google Scholar
Altaf, M. A. et al. Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J. Soil Sci. Plant Nutr. 21, 1842–1855. https://doi.org/10.1007/s42729-021-00484-2 (2021).CAS
Article
Google Scholar
Zhang, H. H. et al. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicol. Environ. Saf. 195, 110469. https://doi.org/10.1016/j.ecoenv.2020.110469 (2020).CAS
Article
Google Scholar
Hoekstra, F. A., Golovina, E. A. & Buitink, J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431–438. https://doi.org/10.1016/S1360-1385(01)02052-0 (2001).CAS
Article
PubMed
Google Scholar
Xiong, A. S. et al. Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis. Mol. Biotechnol. 53, 198–206. https://doi.org/10.1007/s12033-012-9515-x (2013).CAS
Article
PubMed
Google Scholar
Hare, P. D., Cress, W. A. & Staden, J. V. Proline synthesis and degradation: A model system for elucidating stress-related signal transduction. J. Exp. Bot. 50, 413–434. https://doi.org/10.1093/jxb/50.333.413 (1999).CAS
Article
Google Scholar
Székely, G. et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53, 11–28. https://doi.org/10.1111/j.1365-313X.2007.03318.x (2008).CAS
Article
PubMed
Google Scholar
Mishra, P., Bhoomika, K. & Dubey, R. S. Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250, 3–19. https://doi.org/10.1007/s00709-011-0365-3 (2013).CAS
Article
PubMed
Google Scholar
Mittler, R. ROS are good. Trends Plant Sci. 22, 11–19. https://doi.org/10.1016/j.tplants.2016.08.002 (2017).CAS
Article
PubMed
Google Scholar
Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016 (2010).CAS
Article
PubMed
Google Scholar
Kolahi, M., Kazemi, E. M., Yazdi, M. & Barnaby, A. G. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiol. Biochem. 146, 71–89. https://doi.org/10.1016/j.plaphy.2019.10.032 (2020).CAS
Article
PubMed
Google Scholar
Merwald, H. et al. UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J. Photochem. Photobiol. B Biol. 79, 197–207. https://doi.org/10.1016/j.jphotobiol.2005.01.002 (2005).CAS
Article
Google Scholar
Pazmiño, D. M. et al. Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: Role of reactive oxygen species. Plant Cell Environ. 34, 1874–1889. https://doi.org/10.1111/j.1365-3040.2011.02383.x (2011).CAS
Article
PubMed
Google Scholar
Ghori, N. H. et al. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. (Tehran) 16, 1807–1828. https://doi.org/10.1007/s13762-019-02215-8 (2019).CAS
Article
Google Scholar
Vezza, M. E., Llanes, A., Travaglia, C., Agostini, E. & Talano, M. A. Arsenic stress effects on root water absorption in soybean plants: Physiological and morphological aspects. Plant Physiol. Biochem. 123, 8–17. https://doi.org/10.1016/j.plaphy.2017.11.020 (2018).CAS
Article
PubMed
Google Scholar
C, A., Tasdighi, H. & Gholamhoseini, M.,. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed. 6(10), 886–891. https://doi.org/10.1016/j.apjtb.2016.08.009 (2016).CAS
Article
Google Scholar
Sharma, A. et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7), 285. https://doi.org/10.3390/biom9070285 (2019).CAS
Article
PubMed Central
Google Scholar
Zhang, S. S., Zhang, H. M., Qin, R., Jiang, W. S. & Liu, D. H. Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18, 814–823. https://doi.org/10.1007/s10646-009-0324-3 (2009).CAS
Article
PubMed
Google Scholar More