Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects
Chileshe, M. N. et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. J. For. Res. https://doi.org/10.1007/s11676-019-00921-0 (2019).Article
Google Scholar
Sracek, O. Formation of secondary hematite and its role in attenuation of contaminants at mine tailings: Review and comparison of sites in Zambia and Namibia. Front. Environ. Sci. 2, 1–11 (2015).ADS
Article
Google Scholar
Kayika, P., Siachoono, S., Kalinda, C. & Kwenye, J. An investigation of concentrations of copper, cobalt and cadmium minerals in soils and mango fruits growing on Konkola copper mine tailings dam in Chingola, Zambia. Arch. Sci. 1, 2–5 (2017).
Google Scholar
Nazir, R. et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 7, 89–97 (2015).CAS
Google Scholar
Surbakti, E. P., Iswantari, A., Effendi, H. & Sulistiono. Distribution of dissolved heavy metals Hg, Pb, Cd, and As in Bojonegara Coastal Waters, Banten Bay. IOP Conf. Ser. Earth Environ. Sci. 744, 012085 (2021).Article
Google Scholar
Van Nguyen, T. et al. Arsenic and heavy metal contamination in soils under different land use in an estuary in northern Vietnam. Int. J. Environ. Res. Public Health 13, 1091 (2016).Article
CAS
Google Scholar
Yabe, J. et al. Uptake of lead, cadmium, and other metals in the liver and kidneys of cattle near a lead-zinc mine in Kabwe, Zambia. Environ. Toxicol. Chem. 30, 1892–1897 (2011).CAS
PubMed
Article
Google Scholar
Salem, M. A., Bedade, D. K., Al-ethawi, L. & Al-waleed, S. M. Heliyon Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 6, e05224 (2020).PubMed
PubMed Central
Article
Google Scholar
Tuakuila, J. et al. Worrying exposure to trace elements in the population of Kinshasa, Democratic Republic of Congo (DRC). Int. Arch. Occup. Environ. Health 85, 927–939 (2012).CAS
PubMed
Article
Google Scholar
Setia, R. et al. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 263, 128321 (2021).ADS
CAS
PubMed
Article
Google Scholar
Burga, D. & Saunders, K. Understanding and Mitigating Lead Exposure in Kabwe: A One Health Approach (S. Afr. Inst. Policy Res, 2019).
Google Scholar
Ikenaka, Y., Nakayama, S. M. M., Muzandu, K. & Choongo, K. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. https://doi.org/10.4314/ajest.v4i11.71339 (2010).Article
Google Scholar
Taylor, A. A. et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 65, 131–159 (2020).Article
Google Scholar
Gummow, B., Botha, C. J., Basson, A. T. & Bastianello, S. S. Copper toxicity in ruminants: Air pollution as a possible cause. Onderstepoort J. Vet. Res. 58, 33–39 (1991).CAS
PubMed
Google Scholar
Cheng, S. Effects of heavy metals on plants and resistance mechanisms. Environ. Sci. Pollut. Res. 10, 256–264 (2003).CAS
Article
Google Scholar
Olobatoke, R. & Mathuthu, M. Heavy metal concentration in soil in the tailing dam vicinity of an old gold mine in Johannesburg, South Africa. Can. J. Soil Sci. 96, 299–304 (2008).Article
CAS
Google Scholar
Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.08.004 (2020).Article
Google Scholar
Trevor, M. et al. Statistical and spatial analysis of heavy metals in soils of residential areas surrounding the Nkana Copper Mine Site in Kitwe District, Zambia. Am. J. Environ. Sustain. Dev. 4, 26–37 (2019).
Google Scholar
Nalishuwa, L. Investigation on Copper Levels in and Around Fish Farms in Kitwe, Copperbelt Province, Zambia (Sokoine University of Agriculture, 2015).
Google Scholar
Ikenaka, Y. et al. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. 4, 109–128 (2014).
Google Scholar
Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V. & Veselovský, F. Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. J. Afr. Earth Sci. 57, 14–30 (2010).ADS
CAS
Article
Google Scholar
Manchisi, J. et al. Potential for bioleaching copper sulphide rougher concentrates of Nchanga Mine, Chingola, Zambia. J. S. Afr. Inst. Min. Metall. 112, 1051–1058 (2012).
Google Scholar
Fernández-Caliani, J. C., Barba-Brioso, C., González, I. & Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 200, 211–226 (2009).ADS
Article
CAS
Google Scholar
Prasad, R. & Chakraborty, D. Phosphorus Basics: Understanding Phosphorus Forms and Their Cycling in the Soil 1–4 (Alabama Coop. Ext. Syst, 2019).
Google Scholar
Verma, F. et al. Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon 7, e08122 (2021).PubMed
PubMed Central
Article
Google Scholar
Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F. & Taylor, M. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, 1–13 (2017).Article
Google Scholar
Ndeddy Aka, R. J. & Babalola, O. O. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat. J. 21, 1–19 (2017).Article
CAS
Google Scholar
Hassan, A., Pariatamby, A., Ahmed, A., Auta, H. S. & Hamid, F. S. Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: A demonstration of bioaugmentation potential. Water Air Soil Pollut. 230, 1–20 (2019).Article
CAS
Google Scholar
Zhou, L. et al. Restoration of rare earth mine areas: organic amendments and phytoremediation. Environ. Sci. Pollut. Res. 22, 17151–17160 (2015).CAS
Article
Google Scholar
Kapungwe, E. M. Heavy metal contaminated water, soils and crops in peri urban wastewater irrigation farming in Mufulira and Kafue towns in Zambia. J. Geogr. Geol. 5, 55–72 (2013).
Google Scholar
Sandell, E. Post-Mining Restoration in Zambia (Swedish University of Agricultural Sciences, 2020).
Google Scholar
Kumar, V., Pandita, S. & Setia, R. A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res. 103, 487–501 (2022).ADS
CAS
Article
Google Scholar
Kumar, V., Sihag, P., Keshavarzi, A., Pandita, S. & Rodríguez-Seijo, A. Soft computing techniques for appraisal of potentially toxic elements from Jalandhar (Punjab), India. Appl. Sci. 11, 8362 (2021).CAS
Article
Google Scholar
Setia, R. et al. Assessment of metal contamination in sediments of a perennial river in India using pollution indices and multivariate statistics. Arab. J. Geosci. 14, 1–9 (2021).Article
CAS
Google Scholar
Kumar, V. et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 216, 449–462 (2019).ADS
CAS
PubMed
Article
Google Scholar
Environmental Council of Zambia. Environment Outlook Report in Zambia (2008).Kasali, G. Clacc Capacity Strengthening in the Least Developed Countries. CLACC Working Paper (2008).Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V. & Šebek, O. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164, 73–84 (2011).ADS
CAS
Article
Google Scholar
Cook, J. M. et al. The comparability of sample digestion techniques for the determination of metals in sediments. Mar. Pollut. Bull. 34, 637–644 (1997).CAS
Article
Google Scholar
Güven, D. E. & Akinci, G. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi Univ. J. Sci. 24, 29–34 (2011).
Google Scholar
Jha, P. et al. Predicting total organic carbon content of soils from Walkley and Black analysis. Commun. Soil Sci. Plant Anal. 45, 713–725 (2014).CAS
Article
Google Scholar
Walkley, A. & Black, I. A. A critical examination of rapid method for determining organic carbon in soil. Soil Sci. 63, 251–254 (1974).ADS
Article
Google Scholar
Ure, A. M. Methods of analysis for heavy metals in soils. In Heavy Metals Soils (ed. Alloway, B. J.) 58–102 (Springer, 1995).Chapter
Google Scholar
Staniland, S. et al. Cobalt uptake and resistance to trace metals in comamonas testosteroni isolated from a heavy-metal contaminated site in the Zambian Copperbelt. Geomicrobiol. J. 27, 656–668 (2010).CAS
Article
Google Scholar
Ajmone-Marsan, F. & Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 213, 121–143 (2010).ADS
CAS
Article
Google Scholar
Adriano, D. C. Trace elements in terrestrial environments. J. Environ. Qual. 32, 374 (2003).
Google Scholar
Adriano, D. C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals (Springer, 2001).Book
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY, USA, (2009).Hakanson, L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, 975–1001 (1980).Article
Google Scholar
Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 2, 108–118. (1969).
Google Scholar
Usero, J., A. Garcia and J. Fraidias, 2000. Andalicia Board, Environmental Counseling. 1st Edn., Seville, Editorial, pp: 164.Sikamo, J., Mwanza, A. & Mweemba, C. Copper mining in Zambia—history and future. J. S. Afr. Inst. Min. Metall. 116, 6–8 (2016).Article
CAS
Google Scholar
DR Congo: copper production 2010–2020|Statista. https://www.statista.com/statistics/1276790/copper-production-in-democratic-republic-of-the-congo/.Lydall, M. I. & Auchterlonie, A. The Southern African Institute of Mining and Metallurgy 6th Southern Africa base metals conference 2011. The Democratic Republic of Congo and Zambia: A growing global ‘Hotspot’ for copper-cobalt mineral investment and explo. In The Southern African Institute of Mining and Metallurgy 25–38 (2011).Worlanyo, A. S. & Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 279, 111623 (2021).CAS
Article
Google Scholar
Shengo, M. L., Kime, M. B., Mambwe, M. P. & Nyembo, T. K. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 18, 226–246 (2019).Article
Google Scholar
Tembo, B. D., Sichilongo, K. & Cernak, J. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere 63, 497–501 (2006).ADS
CAS
PubMed
Article
Google Scholar
Tveitnes, S. Soil productivity research programme in the high rainfall areas in Zambia. Agricultural University of Norway (1981).Esshaimi, M., El Gharmali, A., Berkhis, F., Valiente, M. & Mandi, L. Speciation of heavy metals in the soil and the mining residues, in the Zinclead Sidi Bou Othmane Abandoned mine in Marrakech area. Linnaeus Eco-Tech https://doi.org/10.15626/eco-tech.2010.102 (2017).Article
Google Scholar
Vítková, M. et al. Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral. Mag. 74, 581–600 (2010).Article
CAS
Google Scholar
Van Brusselen, D. et al. Metal mining and birth defects: A case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet. Health 4, e158–e167 (2020).PubMed
Article
Google Scholar
Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. 8, 100793 (2021).
Google Scholar
Muleya, F. et al. Investigating the suitability and cost-benefit of copper tailings as partial replacement of sand in concrete in Zambia: An exploratory study. J. Eng. Des. Technol. 19, 828–849 (2020).
Google Scholar
Namweemba, M. G. Mining Induced Heavy Metal Soil and Crop Contamination in Chililabombwe on the Copperbelt of Zambia (University of Zambia, 2017).
Google Scholar
Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548 (2014).CAS
Article
Google Scholar
Barsova, N., Yakimenko, O., Tolpeshta, I. & Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 249, 200–207 (2019).CAS
PubMed
Article
Google Scholar
WHO/FAO. Food additives and contaminants. Joint FAO. WHO Food Stand. Program. ALINORM 1, 1–289 (2001).
Google Scholar
Sracek, O. et al. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 112, 174–188 (2012).CAS
Article
Google Scholar
Hasimuna, O. J., Chibesa, M., Ellender, B. R. & Maulu, S. Variability of selected heavy metals in surface sediments and ecological risks in the Solwezi and Kifubwa Rivers, Northwestern province, Zambia. Sci. Afr. 12, e00822 (2021).
Google Scholar
Kříbek, B. Mining and the environment in Africa. Conserv. Lett. 7, 302–311 (2011).
Google Scholar
Crommentuijn, T., M.D.Polder & Plassche, E. J. van de. Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account. National Institute of Public Health and the Environment Bilthoven, The Netherlands (1997).Maboeta, M. S., Oladipo, O. G. & Botha, S. M. Ecotoxicity of mine tailings: Unrehabilitated versus rehabilitated. Bull. Environ. Contam. Toxicol. 100, 702–707 (2018).CAS
PubMed
Article
Google Scholar
Festin, E. S., Tigabu, M., Chileshe, M. N., Syampungani, S. & Odén, P. C. Progresses in restoration of post-mining landscape in Africa. J. For. Res. 30, 381–396 (2019).Article
Google Scholar
Volk, J. & Yerokun, O. Effect of application of increasing concentrations of contaminated water on the different fractions of Cu and Co in sandy loam and clay loam soils. Agriculture 6, 64 (2016).Article
CAS
Google Scholar
Pietrini, F. et al. Effect of different copper levels on growth and morpho-physiological parameters in giant reed (Arundo donax L.) in semi-hydroponic mesocosm experiment. Water (Switzerland) 11, 1837 (2019).CAS
Google Scholar
EPA. Ecological Soil Screening Level for Iron Interim Final 211 (US Environ. Prot. Agency – Off. Solid Waste Emerg., 2005).
Google Scholar More