More stories

  • in

    Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects

    Chileshe, M. N. et al. Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: Implications for pollution risk and restoration. J. For. Res. https://doi.org/10.1007/s11676-019-00921-0 (2019).Article 

    Google Scholar 
    Sracek, O. Formation of secondary hematite and its role in attenuation of contaminants at mine tailings: Review and comparison of sites in Zambia and Namibia. Front. Environ. Sci. 2, 1–11 (2015).ADS 
    Article 

    Google Scholar 
    Kayika, P., Siachoono, S., Kalinda, C. & Kwenye, J. An investigation of concentrations of copper, cobalt and cadmium minerals in soils and mango fruits growing on Konkola copper mine tailings dam in Chingola, Zambia. Arch. Sci. 1, 2–5 (2017).
    Google Scholar 
    Nazir, R. et al. Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam Kohat. J. Pharm. Sci. Res. 7, 89–97 (2015).CAS 

    Google Scholar 
    Surbakti, E. P., Iswantari, A., Effendi, H. & Sulistiono. Distribution of dissolved heavy metals Hg, Pb, Cd, and As in Bojonegara Coastal Waters, Banten Bay. IOP Conf. Ser. Earth Environ. Sci. 744, 012085 (2021).Article 

    Google Scholar 
    Van Nguyen, T. et al. Arsenic and heavy metal contamination in soils under different land use in an estuary in northern Vietnam. Int. J. Environ. Res. Public Health 13, 1091 (2016).Article 
    CAS 

    Google Scholar 
    Yabe, J. et al. Uptake of lead, cadmium, and other metals in the liver and kidneys of cattle near a lead-zinc mine in Kabwe, Zambia. Environ. Toxicol. Chem. 30, 1892–1897 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Salem, M. A., Bedade, D. K., Al-ethawi, L. & Al-waleed, S. M. Heliyon Assessment of physiochemical properties and concentration of heavy metals in agricultural soils fertilized with chemical fertilizers. Heliyon 6, e05224 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuakuila, J. et al. Worrying exposure to trace elements in the population of Kinshasa, Democratic Republic of Congo (DRC). Int. Arch. Occup. Environ. Health 85, 927–939 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Setia, R. et al. Phytoavailability and human risk assessment of heavy metals in soils and food crops around Sutlej river, India. Chemosphere 263, 128321 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Burga, D. & Saunders, K. Understanding and Mitigating Lead Exposure in Kabwe: A One Health Approach (S. Afr. Inst. Policy Res, 2019).
    Google Scholar 
    Ikenaka, Y., Nakayama, S. M. M., Muzandu, K. & Choongo, K. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. https://doi.org/10.4314/ajest.v4i11.71339 (2010).Article 

    Google Scholar 
    Taylor, A. A. et al. Critical review of exposure and effects: Implications for setting regulatory health criteria for ingested copper. Environ. Manag. 65, 131–159 (2020).Article 

    Google Scholar 
    Gummow, B., Botha, C. J., Basson, A. T. & Bastianello, S. S. Copper toxicity in ruminants: Air pollution as a possible cause. Onderstepoort J. Vet. Res. 58, 33–39 (1991).CAS 
    PubMed 

    Google Scholar 
    Cheng, S. Effects of heavy metals on plants and resistance mechanisms. Environ. Sci. Pollut. Res. 10, 256–264 (2003).CAS 
    Article 

    Google Scholar 
    Olobatoke, R. & Mathuthu, M. Heavy metal concentration in soil in the tailing dam vicinity of an old gold mine in Johannesburg, South Africa. Can. J. Soil Sci. 96, 299–304 (2008).Article 
    CAS 

    Google Scholar 
    Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. https://doi.org/10.1016/j.exis.2020.08.004 (2020).Article 

    Google Scholar 
    Trevor, M. et al. Statistical and spatial analysis of heavy metals in soils of residential areas surrounding the Nkana Copper Mine Site in Kitwe District, Zambia. Am. J. Environ. Sustain. Dev. 4, 26–37 (2019).
    Google Scholar 
    Nalishuwa, L. Investigation on Copper Levels in and Around Fish Farms in Kitwe, Copperbelt Province, Zambia (Sokoine University of Agriculture, 2015).
    Google Scholar 
    Ikenaka, Y. et al. Heavy metal contamination of soil and sediment in Zambia. Afr. J. Environ. Sci. Technol. 4, 109–128 (2014).
    Google Scholar 
    Sracek, O., Mihaljevič, M., Kříbek, B., Majer, V. & Veselovský, F. Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. J. Afr. Earth Sci. 57, 14–30 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Manchisi, J. et al. Potential for bioleaching copper sulphide rougher concentrates of Nchanga Mine, Chingola, Zambia. J. S. Afr. Inst. Min. Metall. 112, 1051–1058 (2012).
    Google Scholar 
    Fernández-Caliani, J. C., Barba-Brioso, C., González, I. & Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 200, 211–226 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Prasad, R. & Chakraborty, D. Phosphorus Basics: Understanding Phosphorus Forms and Their Cycling in the Soil 1–4 (Alabama Coop. Ext. Syst, 2019).
    Google Scholar 
    Verma, F. et al. Appraisal of pollution of potentially toxic elements in different soils collected around the industrial area. Heliyon 7, e08122 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hermans, S. M., Buckley, H. L., Case, B. S., Curran-cournane, F. & Taylor, M. Bacteria as emerging indicators of soil condition. Appl. Environ. Microbiol. 83, 1–13 (2017).Article 

    Google Scholar 
    Ndeddy Aka, R. J. & Babalola, O. O. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremediat. J. 21, 1–19 (2017).Article 
    CAS 

    Google Scholar 
    Hassan, A., Pariatamby, A., Ahmed, A., Auta, H. S. & Hamid, F. S. Enhanced bioremediation of heavy metal contaminated landfill soil using filamentous fungi consortia: A demonstration of bioaugmentation potential. Water Air Soil Pollut. 230, 1–20 (2019).Article 
    CAS 

    Google Scholar 
    Zhou, L. et al. Restoration of rare earth mine areas: organic amendments and phytoremediation. Environ. Sci. Pollut. Res. 22, 17151–17160 (2015).CAS 
    Article 

    Google Scholar 
    Kapungwe, E. M. Heavy metal contaminated water, soils and crops in peri urban wastewater irrigation farming in Mufulira and Kafue towns in Zambia. J. Geogr. Geol. 5, 55–72 (2013).
    Google Scholar 
    Sandell, E. Post-Mining Restoration in Zambia (Swedish University of Agricultural Sciences, 2020).
    Google Scholar 
    Kumar, V., Pandita, S. & Setia, R. A meta-analysis of potential ecological risk evaluation of heavy metals in sediments and soils. Gondwana Res. 103, 487–501 (2022).ADS 
    CAS 
    Article 

    Google Scholar 
    Kumar, V., Sihag, P., Keshavarzi, A., Pandita, S. & Rodríguez-Seijo, A. Soft computing techniques for appraisal of potentially toxic elements from Jalandhar (Punjab), India. Appl. Sci. 11, 8362 (2021).CAS 
    Article 

    Google Scholar 
    Setia, R. et al. Assessment of metal contamination in sediments of a perennial river in India using pollution indices and multivariate statistics. Arab. J. Geosci. 14, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    Kumar, V. et al. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 216, 449–462 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Environmental Council of Zambia. Environment Outlook Report in Zambia (2008).Kasali, G. Clacc Capacity Strengthening in the Least Developed Countries. CLACC Working Paper (2008).Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V. & Šebek, O. Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma 164, 73–84 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Cook, J. M. et al. The comparability of sample digestion techniques for the determination of metals in sediments. Mar. Pollut. Bull. 34, 637–644 (1997).CAS 
    Article 

    Google Scholar 
    Güven, D. E. & Akinci, G. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. Gazi Univ. J. Sci. 24, 29–34 (2011).
    Google Scholar 
    Jha, P. et al. Predicting total organic carbon content of soils from Walkley and Black analysis. Commun. Soil Sci. Plant Anal. 45, 713–725 (2014).CAS 
    Article 

    Google Scholar 
    Walkley, A. & Black, I. A. A critical examination of rapid method for determining organic carbon in soil. Soil Sci. 63, 251–254 (1974).ADS 
    Article 

    Google Scholar 
    Ure, A. M. Methods of analysis for heavy metals in soils. In Heavy Metals Soils (ed. Alloway, B. J.) 58–102 (Springer, 1995).Chapter 

    Google Scholar 
    Staniland, S. et al. Cobalt uptake and resistance to trace metals in comamonas testosteroni isolated from a heavy-metal contaminated site in the Zambian Copperbelt. Geomicrobiol. J. 27, 656–668 (2010).CAS 
    Article 

    Google Scholar 
    Ajmone-Marsan, F. & Biasioli, M. Trace elements in soils of urban areas. Water Air Soil Pollut. 213, 121–143 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Adriano, D. C. Trace elements in terrestrial environments. J. Environ. Qual. 32, 374 (2003).
    Google Scholar 
    Adriano, D. C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability and Risks of Metals (Springer, 2001).Book 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Wickham, H. Ggplot2: Elegant Graphics for Data Analysis. Springer, New York, NY, USA, (2009).Hakanson, L. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 14, 975–1001 (1980).Article 

    Google Scholar 
    Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 2, 108–118. (1969).
    Google Scholar 
    Usero, J., A. Garcia and J. Fraidias, 2000. Andalicia Board, Environmental Counseling. 1st Edn., Seville, Editorial, pp: 164.Sikamo, J., Mwanza, A. & Mweemba, C. Copper mining in Zambia—history and future. J. S. Afr. Inst. Min. Metall. 116, 6–8 (2016).Article 
    CAS 

    Google Scholar 
    DR Congo: copper production 2010–2020|Statista. https://www.statista.com/statistics/1276790/copper-production-in-democratic-republic-of-the-congo/.Lydall, M. I. & Auchterlonie, A. The Southern African Institute of Mining and Metallurgy 6th Southern Africa base metals conference 2011. The Democratic Republic of Congo and Zambia: A growing global ‘Hotspot’ for copper-cobalt mineral investment and explo. In The Southern African Institute of Mining and Metallurgy 25–38 (2011).Worlanyo, A. S. & Jiangfeng, L. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. J. Environ. Manag. 279, 111623 (2021).CAS 
    Article 

    Google Scholar 
    Shengo, M. L., Kime, M. B., Mambwe, M. P. & Nyembo, T. K. A review of the beneficiation of copper-cobalt-bearing minerals in the Democratic Republic of Congo. J. Sustain. Min. 18, 226–246 (2019).Article 

    Google Scholar 
    Tembo, B. D., Sichilongo, K. & Cernak, J. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere 63, 497–501 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tveitnes, S. Soil productivity research programme in the high rainfall areas in Zambia. Agricultural University of Norway (1981).Esshaimi, M., El Gharmali, A., Berkhis, F., Valiente, M. & Mandi, L. Speciation of heavy metals in the soil and the mining residues, in the Zinclead Sidi Bou Othmane Abandoned mine in Marrakech area. Linnaeus Eco-Tech https://doi.org/10.15626/eco-tech.2010.102 (2017).Article 

    Google Scholar 
    Vítková, M. et al. Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral. Mag. 74, 581–600 (2010).Article 
    CAS 

    Google Scholar 
    Van Brusselen, D. et al. Metal mining and birth defects: A case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet. Health 4, e158–e167 (2020).PubMed 
    Article 

    Google Scholar 
    Peša, I. Between waste and profit: Environmental values on the Central African Copperbelt. Extr. Ind. Soc. 8, 100793 (2021).
    Google Scholar 
    Muleya, F. et al. Investigating the suitability and cost-benefit of copper tailings as partial replacement of sand in concrete in Zambia: An exploratory study. J. Eng. Des. Technol. 19, 828–849 (2020).
    Google Scholar 
    Namweemba, M. G. Mining Induced Heavy Metal Soil and Crop Contamination in Chililabombwe on the Copperbelt of Zambia (University of Zambia, 2017).
    Google Scholar 
    Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: Interaction of Fe minerals, plants, and microbes. J. Soils Sediments 14, 538–548 (2014).CAS 
    Article 

    Google Scholar 
    Barsova, N., Yakimenko, O., Tolpeshta, I. & Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 249, 200–207 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    WHO/FAO. Food additives and contaminants. Joint FAO. WHO Food Stand. Program. ALINORM 1, 1–289 (2001).
    Google Scholar 
    Sracek, O. et al. Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: An example of a high neutralization capacity system. J. Geochem. Explor. 112, 174–188 (2012).CAS 
    Article 

    Google Scholar 
    Hasimuna, O. J., Chibesa, M., Ellender, B. R. & Maulu, S. Variability of selected heavy metals in surface sediments and ecological risks in the Solwezi and Kifubwa Rivers, Northwestern province, Zambia. Sci. Afr. 12, e00822 (2021).
    Google Scholar 
    Kříbek, B. Mining and the environment in Africa. Conserv. Lett. 7, 302–311 (2011).
    Google Scholar 
    Crommentuijn, T., M.D.Polder & Plassche, E. J. van de. Maximum Permissible Concentrations and Negligible Concentrations for metals, taking background concentrations into account. National Institute of Public Health and the Environment Bilthoven, The Netherlands (1997).Maboeta, M. S., Oladipo, O. G. & Botha, S. M. Ecotoxicity of mine tailings: Unrehabilitated versus rehabilitated. Bull. Environ. Contam. Toxicol. 100, 702–707 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Festin, E. S., Tigabu, M., Chileshe, M. N., Syampungani, S. & Odén, P. C. Progresses in restoration of post-mining landscape in Africa. J. For. Res. 30, 381–396 (2019).Article 

    Google Scholar 
    Volk, J. & Yerokun, O. Effect of application of increasing concentrations of contaminated water on the different fractions of Cu and Co in sandy loam and clay loam soils. Agriculture 6, 64 (2016).Article 
    CAS 

    Google Scholar 
    Pietrini, F. et al. Effect of different copper levels on growth and morpho-physiological parameters in giant reed (Arundo donax L.) in semi-hydroponic mesocosm experiment. Water (Switzerland) 11, 1837 (2019).CAS 

    Google Scholar 
    EPA. Ecological Soil Screening Level for Iron Interim Final 211 (US Environ. Prot. Agency – Off. Solid Waste Emerg., 2005).
    Google Scholar  More

  • in

    Paninvasion severity assessment of a U.S. grape pest to disrupt the global wine market

    Ristaino, J. B. et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 118, e2022239118 (2021).Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 
    Article 

    Google Scholar 
    Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).Article 

    Google Scholar 
    Liebhold, A. M. et al. Plant diversity drives global patterns of insect invasions. Sci. Rep. 8, 1–5 (2018).CAS 
    Article 

    Google Scholar 
    Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Wyckhuys, K. A. G. et al. Biological control of an invasive pest eases pressures on global commodity markets. Environ. Res. Lett. 13, 094005 (2018).Article 
    CAS 

    Google Scholar 
    Leung, B., Finnoff, D., Shogren, J. F. & Lodge, D. Managing invasive species: rules of thumb for rapid assessment. Ecol. Econ. 55, 24–36 (2005).Article 

    Google Scholar 
    Reed, C. et al. Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics. Emerg. Infect. Dis. 19, 85 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qualls, N. et al. Community mitigation guidelines to prevent pandemic influenza—United States, 2017. MMWR Recomm. Rep. 66, 1 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grarock, K., Lindenmayer, D. B., Wood, J. T. & Tidemann, C. R. Using invasion process theory to enhance the understanding and management of introduced species: a case study reconstructing the invasion sequence of the common myna (Acridotheres tristis). J. Environ. Manag. 129, 398–409 (2013).Article 

    Google Scholar 
    Nuñez, M. A., Pauchard, A. & Ricciardi, A. Invasion science and the global spread of SARS-CoV-2. Trends Ecol. Evol. 35, 642–645 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ogden, N. H. et al. Emerging infectious diseases and biological invasions: a call for a one health collaboration in science and management. R. Soc. Open Sci. 6, 181577 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hatcher, M. J., Dick, J. T. A. & Dunn, A. M. Disease emergence and invasions. J. Ecol. 26, 1275–1287 (2016).
    Google Scholar 
    Bright, C. Invasive species: pathogens of globalization. Foreign Policy 1, 50–64 (1999).Article 

    Google Scholar 
    Simberloff, D., Meyerson, L. & Fefferman, N. Invasive species policy and COVID-19. The Ecological Society of America https://www.esa.org/about/esa-covid-19/invasive-species-policy-and-covid-19/ (2020).Comizzoli, P., Pagenkopp Lohan, K. M., Muletz-Wolz, C., Hassell, J. & Coyle, B. The interconnected health initiative: a Smithsonian framework to extend one health research and education. Front. Vet. Sci. 8, 629410 (2021).Katella, K. Our new COVID-19 vocabulary—what does it all mean? Stories at Yale Medicine. Yale Medicine https://www.yalemedicine.org/stories/covid-19-glossary/ (2020).Parra, G., Moylett, H. & Bulluck, R. USDA-APHIS-PPQ-CPHST Technical working group summary report spotted lanternfly, Lycorma delicatula (White, 1845) (2018).Floerl, O., Inglis, G. J., Dey, K. & Smith, A. The importance of transport hubs in stepping-stone invasions. J. Appl. Ecol. 46, 37–45 (2009).Article 

    Google Scholar 
    Barringer, L. E., Donovall, L. R., Spichiger, S.-E., Lynch, D. & Henry, D. The first New World record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. N. 125, 20–23 (2015).Article 

    Google Scholar 
    Urban, J. M. Perspective: shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nixon, L. J. et al. Survivorship and development of the invasive Lycorma delicatula (Hemiptera: Fulgoridae) on wild and cultivated temperate host plants. Environ. Entomol. 51, 222–228 https://doi.org/10.1093/ee/nvab137 (2022).Urban, J. M., Calvin, D. & Hills-Stevenson, J. Early response (2018–2020) to the threat of spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae) in Pennsylvania. Ann. Entomol. Soc. Am. 114, 709–718 (2021).Article 

    Google Scholar 
    Du, Z. et al. Global phylogeography and invasion history of the spotted lanternfly revealed by mitochondrial phylogenomics. Evol. Appl. 14, 915–930 https://doi.org/10.1111/eva.13170 (2020).Lee, J.-E. et al. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Korean. J. Appl. Entomol. 48, 467–477 (2009).Article 

    Google Scholar 
    Lee, D.-H., Park, Y.-L. & Leskey, T. C. A review of biology and management of Lycorma delicatula (Hemiptera: Fulgoridae), an emerging global invasive species. J. Asia-Pac. Entomol. 22, 589–596 (2019).Article 

    Google Scholar 
    Roush, R. How we can contain the spotted lanternfly—maybe the worst invasive pest in generations | Opinion https://www.inquirer.com (2018).Imbler, S. The dreaded lanternfly, scourge of agriculture, spreads in New Jersey. The New York Times (2020).Morrison, R. Invasive insects: The top 4 ‘most wanted’ list. Entomology Today https://entomologytoday.org/2018/06/21/invasive-insects-the-top-4-most-wanted-list/ (2018).Murman, K. et al. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 49, 1270–1281 (2020).PubMed 
    Article 

    Google Scholar 
    Derstine, N. T. et al. Plant volatiles help mediate host plant selection and attraction of the spotted lanternfly (Hemiptera: Fulgoridae): a generalist with a preferred host. Environ. Entomol. 49, 1049–1062 (2020).PubMed 
    Article 

    Google Scholar 
    Dechaine, A. C. et al. Phenology of Lycorma delicatula (Hemiptera: Fulgoridae) in Virginia, USA. Environ. Entomol. 50, 1267–1275 https://doi.org/10.1093/ee/nvab107 (2021).Uyi, O. et al. Spotted lanternfly (Hemiptera: Fulgoridae) can complete development and reproduce without access to the Ppreferred host, Ailanthus altissima. Environ. Entomol. 49, 1185–1190 https://doi.org/10.1093/ee/nvaa083 (2020).Park, M., Kim, K.-S. & Lee, J.-H. Genetic structure of Lycorma delicatula (Hemiptera: Fulgoridae) populations in Korea: Implication for invasion processes in heterogeneous landscapes. Bull. Entomol. Res. 103, 414–424 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (Hemiptera: Fulgoridae): a new invasive pest in the United States. J. Integr. Pest Manag. 6, 1–6 (2015).Article 

    Google Scholar 
    Leach, H. & Leach, A. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in Eastern U.S. vineyards. J. Pest Sci. 93, 1215–1224 (2020).Article 

    Google Scholar 
    International Organisation of Vine and Wine. 2019 Statistical Report on World Vitiviniculture. 23 (2019).California Department of Food and Agriculture. Pest Detection Advisory No. PD17-2020 Spotted Lanternfly PD/EP Activity Summary 2020. 1–7 (2020).Oak Ridge National Lab. Freight analysis framework version 4. http://faf.ornl.gov/fafweb/ (2017).U.S. Census Bureau. U.S.A. Trade Online. https://usatrade.census.gov/index.php?do=login (2019).Derived dataset GBIF.org. Filtered export of GBIF occurrence data. https://doi.org/10.15468/DD.KS6ACS (2021).Jung, J.-M., Jung, S., Byeon, D. & Lee, W.-H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 10, 532–538 (2017).Article 

    Google Scholar 
    Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (Hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2020).PubMed 

    Google Scholar 
    Lewkiewicz, S. M., De Bona, S., Helmus, M. R. & Seibold, B. Temperature sensitivity of pest reproductive numbers in age-structured PDE models, with a focus on the invasive spotted lanternfly. Preprint at ArXiv211211448 Q-Bio (2021).Maino, J. L., Schouten, R., Lye, J. C., Umina, P. A. & Reynolds, O. L. Mapping the life-history, development, and survival of spotted lantern fly in occupied and uninvaded ranges. InReview 1–18 https://doi.org/10.21203/rs.3.rs-400798/v1 (2021).FAOSTAT. FAOSTAT statistical database. http://www.fao.org/faostat/en/#data/QC (2019).USDA National Agricultural Statistics Service. National agricultural statistics service – quick stats. https://quickstats.nass.usda.gov/ (2019).U.S. Alcohol and Tobacco Tax and Trade Bureau. Wine statistics. https://www.ttb.gov/wine/wine-stats.shtml (2019).Crowe, J. Spotted lanternfly control program in the Mid-Atlantic region environmental assessment. USDA APHIS Rep. 46 (2018).US Animal and Plant Health Inspection Service. USDA provides $7.1 million to Pennsylvania to support projects that protect agriculture and natural resources. https://www.aphis.usda.gov/wcm/connect/APHIS_Content_Library/SA_Newsroom/SA_News/SA_By_Date/SA-2019/pennsylvania-funding?presentationtemplate=APHIS_Design_Library%2FPT_Print_Friendly_News_release (2019).Jones, C. M. et al. Iteratively forecasting biological invasions with PoPS and a little help from our friends. Front. Ecol. Environ. 19, 411–418 https://doi.org/10.1002/fee.2357 (2021).Smyers, E. C. et al. Spatio-temporal model for predicting spring hatch of the spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 50, 126–137 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooks, R. K., Wickert, K. L., Baudoin, A., Kasson, M. T. & Salom, S. Field-inoculated Ailanthus altissima stands reveal the biological control potential of Verticillium nonalfalfae in the Mid-Atlantic region of the United States. Biol. Control 148, 104298 (2020).CAS 
    Article 

    Google Scholar 
    Commonwealth of Pennsylvania. Pennsylvania Bulletin. 49, 2705–2902 (2019).Barringer, L. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).PubMed 
    Article 

    Google Scholar 
    Leach, H., Biddinger, D. J., Krawczyk, G., Smyers, E. & Urban, J. M. Evaluation of insecticides for control of the spotted lanternfly, Lycorma delicatula, (Hemiptera: Fulgoridae), a new pest of fruit in the Northeastern U.S. Crop Prot. 124, 104833 (2019).CAS 
    Article 

    Google Scholar 
    Francese, J. A. et al. Developing traps for the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Environ. Entomol. 49, 269–276 (2020).PubMed 
    Article 

    Google Scholar 
    Penn State Extension. Spotted lanternfly management in vineyards. https://extension.psu.edu/spotted-lanternfly-management-in-vineyards (2021).Nixon, L. J. et al. Development of behaviorally based monitoring and biosurveillance tools for the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 49, 1117–1126 (2020).PubMed 
    Article 

    Google Scholar 
    Liu, H. & Mottern, J. An old remedy for a new problem? Identification of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae), an egg parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae) in North America. J. Insect Sci. 17, 1–6 (2017).Article 

    Google Scholar 
    Yang, Z.-Q., Choi, W.-Y., Cao, L.-M., Wang, X.-Y. & Hou, Z.-R. A new species of Anastatus (Hymenoptera: Eulpelmidae) from China, parasitizing eggs of Lycorma delicatula (Homoptera: Fulgoridae). Zool. Syst. 40, 290–302 (2015).
    Google Scholar 
    Clifton, E. H. et al. Applications of Beauveria bassiana (Hypocreales: Cordycipitaceae) to control populations of spotted lanternfly (Hemiptera: Fulgoridae), in semi-natural landscapes and on grapevines. Environ. Entomol. 49, 854–864 (2020).PubMed 
    Article 

    Google Scholar 
    Hogan, M. J. & Pardi, N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu. Rev. Med. 73, 17–39 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Whyard, S., Singh, A. D. & Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39, 824–832 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ordish, G. The Great Wine Blight (Charles Scribner’s Sons, 1972).About the Council. https://www.doi.gov/invasivespecies/about-nisc (2016).Invasive Species Advisory Committee Products. https://www.doi.gov/invasivespecies/isac-resources (2015).Simberloff, D. et al. U.S. action lowers barriers to invasive species. Science 367, 636–636 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Exec. Order No. 14048, A. of J. R. B., Jr. Executive Order on Continuance or Reestablishment of Certain Federal Advisory Committees and Amendments to Other Executive Orders (2021).Zhu, G., Illan, J. G., Looney, C. & Crowder, D. W. Assessing the ecological niche and invasion potential of the Asian giant hornet. Proc. Natl Acad. Sci. USA 117, 24646–24648 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freitas, A. R. R. et al. Assessing the severity of COVID-19. Epidemiol. E Serviços. Saúde. 29, 1–5 (2020).
    Google Scholar 
    Prevent Epidemics. COVID-19 Key COVID-19 Metrics Based on the Latest Available Science. https://preventepidemics.org/wp-content/uploads/2020/09/COVID-19-Science-Metrics_2020Sept18.pdf (2020).Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology (Wiley-Blackwell, 2013).Ehler, L. E. Invasion biology and biological control. Biol. Control 13, 127–133 (1998).Article 

    Google Scholar 
    Ludsin, S. A. & Wolfe, A. D. Biological invasion theory: Darwin’s contributions from The Origin of Species. BioScience 51, 780 (2001).Article 

    Google Scholar 
    Schulz, A. N., Lucardi, R. D. & Marsico, T. D. Strengthening the ties that bind: an evaluation of cross-disciplinary communication between invasion ecologists and biological control researchers in entomology. Ann. Entomol. Soc. Am. 114, 163–174 (2021).CAS 
    Article 

    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).PubMed 
    Article 

    Google Scholar 
    Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (Hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Liu, H. Seasonal development, cumulative growing degree-days, and population density of spotted lanternfly (Hemiptera: Fulgoridae) on selected hosts and substrates. Environ. Entomol. 49, 1171–1184 (2020).PubMed 
    Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open‐source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed 
    Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosciences 116 (2011).Sladonja, B., Sušek, M. & Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: assessment of its ecosystem services and potential biological threat. Environ. Manag. 56, 1009–1034 (2015).Article 

    Google Scholar 
    Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article 

    Google Scholar 
    Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).Article 

    Google Scholar 
    AVCALC. Density of alcoholic beverage, wine, table, all (food). https://www.aqua-calc.com/page/density-table/substance/alcoholic-blank-beverage-coma-and-blank-wine-coma-and-blank-table-coma-and-blank-all (2019).U.S. Alcohol and Tobacco Tax and Trade Bureau. Established AVAs. https://www.ttb.gov/wine/established-avas (2019).Wikipedia. https://en.wikipedia.org/wiki/List_of_wine-producing_regions. (2020).Allison, P. D. Multiple Regression: A Primer (Pine Forge Press, 1999).Ponti, L. et al. Biological invasion risk assessment of Tuta absoluta: Mechanistic versus correlative methods. Biol. Invasions 23, 3809–3829 (2021).Article 

    Google Scholar 
    Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).PubMed 
    Article 

    Google Scholar 
    Wang, C.-J. et al. Risk assessment of insect pest expansion in alpine ecosystems under climate change. Pest Manag. Sci. 77, 3165–3178 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Keena, M. A. & Nielsen, A. L. Comparison of the hatch of newly laid Lycorma delicatula (Hemiptera: Fulgoridae) eggs from the United States after exposure to different temperatures and durations of low temperature. Environ. Entomol. 50, 410–417 https://doi.org/10.1093/ee/nvaa177 (2021).Xin, B. et al. Exploratory survey of spotted lanternfly (Hemiptera: Fulgoridae) and its natural enemies in China. Environ. Entomol. 50, 36–45 (2020).Article 
    CAS 

    Google Scholar 
    Leach, A. & Leach, H. Characterizing the spatial distributions of spotted lanternfly (Hemiptera: Fulgoridae) in Pennsylvania vineyards. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Granett, J., Walker, M. A., Kocsis, L. & Omer, A. D. Biology and management of grape phylloxera. Annu. Rev. Entomol. 46, 387–412 (2001).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Routes and rates of bacterial dispersal impact surface soil microbiome composition and functioning

    Ronce O. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst. 2007;38:231–53.Article 

    Google Scholar 
    Shmida A, Wilson MV. Biological determinants of species diversity. J Biogeogr. 1985;12:1–20.Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.PubMed 
    Article 

    Google Scholar 
    Slatkin M. Gene flow and the geographic structure of natural populations. Science. 1987;236:787–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baas-Becking, LGM. Geobiology or introduction to environmental science (Translated from Dutch). The Hague: W.P. Van Stockum & Zoon; 1934.Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Peay KG, Schubert MG, Nguyen NH, Bruns TD. Measuring ectomycorrhizal fungal dispersal: macroecological patterns driven by microscopic propagules. Mol Ecol. 2012;21:4122–36.PubMed 
    Article 

    Google Scholar 
    Andam CP, Doroghazi JR, Campbell AN, Kelly PJ, Choudoir MJ, Buckley DH. A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces. mBio. 2016;7:e02200–15.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Choudoir MJ, Barberán A, Menninger HL, Dunn RR, Fierer N. Variation in range size and dispersal capabilities of microbial taxa. Ecology. 2018;99:322–34.PubMed 
    Article 

    Google Scholar 
    Hanson CA, Müller AL, Loy A, Dona C, Appel R, Jørgensen BB, et al. Historical factors associated with past environments influence the biogeography of thermophilic endospores in Arctic marine sediments. Front Microbiol. 2019;10:245.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albright MBN, Martiny JBH. Dispersal alters bacterial diversity and composition in a natural community. ISME J. 2018;12:296–9.PubMed 
    Article 

    Google Scholar 
    Evans SE, Bell-Dereske LP, Dougherty KM, Kittredge HA. Dispersal alters soil microbial community response to drought. Environ Microbiol. 2020;22:905–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.PubMed 
    Article 

    Google Scholar 
    Cevallos-Cevallos JM, Danyluk MD, Gu G, Vallad GE, van Bruggen AHC. Dispersal of Salmonella typhimurium by rain splash onto tomato plants. J Food Prot. 2012;75:472–9.PubMed 
    Article 

    Google Scholar 
    Lindström ES, Langenheder S. Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep. 2012;4:1–9.PubMed 
    Article 

    Google Scholar 
    Rime T, Hartmann M, Frey B. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier. ISME J. 2016;10:1625–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lindström ES, Östman Ö. The importance of dispersal for bacterial community composition and functioning. PLoS ONE. 2011;6:e25883.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Declerck SAJ, Winter C, Shurin JB, Suttle CA, Matthews B. Effects of patch connectivity and heterogeneity on metacommunity structure of planktonic bacteria and viruses. ISME J. 2013;7:533–42.PubMed 
    Article 

    Google Scholar 
    Souffreau C, Pecceu B, Denis C, Rummens K, De Meester L. An experimental analysis of species sorting and mass effects in freshwater bacterioplankton. Freshw Biol. 2014;59:2081–95.Article 

    Google Scholar 
    Comte J, Langenheder S, Berga M, Lindström ES. Contribution of different dispersal sources to the metabolic response of lake bacterioplankton following a salinity change. Environ Microbiol. 2017;19:251–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Albright MBN, Sevanto S, Gallegos-Graves LV, Dunbar J. Biotic interactions are more important than propagule pressure in microbial community invasions. mBio. 2020;11:e02089–20.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Galès A, Latrille E, Wéry N, Steyer JP, Godon JJ. Needles of Pinus halepensis as biomonitors of bioaerosol emissions. PLoS ONE. 2014;9:e112182.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bell E, Blake LI, Sherry A, Head IM, Hubert CRJ. Distribution of thermophilic endospores in a temperate estuary indicate that dispersal history structures sediment microbial communities. Environ Microbiol. 2018;20:1134–47.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leung MHY, Wilkins D, Li EKT, Kong FKF, Lee PKH. Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol. 2014;80:6760–70.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Maignien L, DeForce EA, Chafee ME, Murat Eren A, Simmons SL. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio. 2014;5:e00682–13.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bell T. Experimental tests of the bacterial distance-decay relationship. ISME J. 2010;4:1357–65.PubMed 
    Article 

    Google Scholar 
    Kaneko R, Kaneko S. The effect of bagging branches on levels of endophytic fungal infection in Japanese beech leaves. For Pathol. 2004;34:65–78.Article 

    Google Scholar 
    Vannette RL, Fukami T. Dispersal enhances beta diversity in nectar microbes. Ecol Lett. 2017;20:901–10.PubMed 
    Article 

    Google Scholar 
    Satou M, Kubota M, Nishi K. Measurement of horizontal and vertical movement of Ralstonia solanacearum in soil. J Phytopathol. 2006;154:592–7.CAS 
    Article 

    Google Scholar 
    Veen GF, Snoek BL, Bakx-Schotman T, Wardle DA, van der Putten WH. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct Ecol. 2019;33:1524–35.Article 

    Google Scholar 
    Liu G, Cornwell WK, Pan X, Ye D, Liu F, Huang Z, et al. Decomposition of 51 semidesert species from wide-ranging phylogeny is faster in standing and sand-buried than in surface leaf litters: implications for carbon and nutrient dynamics. Plant Soil. 2015;396:175–87.CAS 
    Article 

    Google Scholar 
    Kimball S, Goulden ML, Suding KN, Parker S. Altered water and nitrogen input shifts succession in a southern California coastal sage community. Ecol Appl. 2014;24:1390–404.PubMed 
    Article 

    Google Scholar 
    Finks SS, Weihe C, Kimball S, Allison SD, Martiny AC, Treseder KK, et al. Microbial community response to a decade of simulated global changes depends on the plant community. Elementa. 2021;9:124.
    Google Scholar 
    Khalili B, Weihe C, Kimball S, Schmidt KT, Martiny JBH. Optimization of a method to quantify soil bacterial abundance by flow cytometry. mSphere. 2019;4:e00435–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA. 1985;82:6955–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Looby CI, Maltz MR, Treseder KK. Belowground responses to elevation in a changing cloud forest. Ecol Evol. 2016;6:1996–2009.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:D259–D264.CAS 
    PubMed 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D596.CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith DJ, Ravichandar JD, Jain S, Griffin DW, Yu H, Tan Q, et al. Airborne bacteria in Earth’s lower stratosphere resemble taxa detected in the troposphere: results from a new NASA Aircraft Bioaerosol Collector (ABC). Front Microbiol. 2018;9:1752.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bryan NC, Christner BC, Guzik TG, Granger DJ, Stewart MF. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J. 2019;13:2789–99.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matulich KL, Weihe C, Allison SD, Amend AS, Berlemont R, Goulden ML, et al. Temporal variation overshadows the response of leaf litter microbial communities to simulated global change. ISME J. 2015;9:2477–89.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim N, Zabaloy MC, Villamil MB, Riggins CW, Rodríguez-Zas S. Microbial shifts following five years of cover cropping and tillage practices in fertile agroecosystems. Microorganisms. 2020;8:1773.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Gurfield N, Grewal S, Cua LS, Torres PJ, Kelley ST. Endosymbiont interference and microbial diversity of the Pacific coast tick, Dermacentor occidentalis, in San Diego County, California. PeerJ. 2017;5:e3202.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC, Collman RG, et al. Bayesian community-wide culture-independent microbial source tracking. Nat Methods. 2011;8:761–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bertolini V, Gandolfi I, Ambrosini R, Bestetti G, Innocente E, Rampazzo G, et al. Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of Northern Italy. Appl Microbiol Biotechnol. 2013;97:6561–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Voříšková J, Baldrian P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 2013;7:477–86.PubMed 
    Article 
    CAS 

    Google Scholar 
    Rastogi G, Coaker GL, Leveau JHJ. New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett. 2013;348:1–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lindow SE, Leveau JHJ. Phyllosphere microbiology. Curr Opin Biotechnol. 2002;13:238–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Purahong W, Wubet T, Lentendu G, Schloter M, Pecyna MJ, Kapturska D, et al. Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Mol Ecol. 2016;25:4059–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Austin AT, Vivanco L. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature. 2006;442:555–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Glassman SI, Weihe C, Li J, Albright MBN, Looby CI, Martiny AC, et al. Decomposition responses to climate depend on microbial community composition. Proc Natl Acad Sci USA. 2018;115:11994–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Punnapayak H, Sudhadham M, Prasongsuk S, Pichayangkura S. Characterization of Aureobasidium pullulans isolated from airborne spores in Thailand. J Ind Microbiol Biotechnol. 2003;30:89–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    Elmassry MM, Ray N, Sorge S, Webster J, Merry K, Caserio A, et al. Investigating the culturable atmospheric fungal and bacterial microbiome in West Texas: implication of dust storms and origins of the air parcels. FEMS Microbes. 2020;1:xtaa009.Article 

    Google Scholar 
    Van Diepen LTA, Frey SD, Landis EA, Morrison EW, Pringle A. Fungi exposed to chronic nitrogen enrichment are less able to decay leaf litter. Ecology. 2017;98:5–11.PubMed 
    Article 

    Google Scholar 
    Du X, Guo Q, Gao X, Ma K. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest. Ecol Manag. 2007;238:212–9.Article 

    Google Scholar 
    Work TT, Buddle CM, Korinus LM, Spence JR. Pitfall trap size and capture of three taxa of litter-dwelling arthropods: implications for biodiversity studies. Environ Entomol. 2002;31:438–48.Article 

    Google Scholar 
    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett. 2004;7:601–13.Article 

    Google Scholar 
    Evans S, Martiny JBH, Allison SD. Effects of dispersal and selection on stochastic assembly in microbial communities. ISME J. 2017;11:176–85.PubMed 
    Article 

    Google Scholar 
    Cadotte MW. Dispersal and species diversity: a meta-analysis. Am Nat. 2006;167:913–24.PubMed 
    Article 

    Google Scholar 
    Schmidt SK, Nemergut DR, Darcy JL, Lynch R. Do bacterial and fungal communities assemble differently during primary succession? Mol Ecol. 2014;23:254–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker NR, Khalili B, Martiny JBH, Allison SD. Microbial decomposers not constrained by climate history along a Mediterranean climate gradient in southern California. Ecology. 2018;99:1441–52.PubMed 
    Article 

    Google Scholar 
    Martiny JBH, Martiny AC, Weihe C, Lu Y, Berlemont R, Brodie EL, et al. Microbial legacies alter decomposition in response to simulated global change. ISME J. 2017;11:490–9.PubMed 
    Article 

    Google Scholar 
    Santander MV, Mitts BA, Pendergraft MA, Dinasquet J, Lee C, Moore AN, et al. Tandem fluorescence measurements of organic matter and bacteria released in sea spray aerosols. Environ Sci Technol. 2021;55:5171–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hobbie SE. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol Evol. 2015;30:357–63.PubMed 
    Article 

    Google Scholar  More

  • in

    Permissive aggregative group formation favors coexistence between cooperators and defectors in yeast

    Szathmáry E. Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci USA. 2015;112:10104–11. https://doi.org/10.1073/pnas.1421398112CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niklas KJ, Newman SA. The origins of multicellular organisms. Evol Dev. 2013;15:41–52. https://doi.org/10.1111/ede.12013Article 
    PubMed 

    Google Scholar 
    Pfeiffer T, Bonhoeffer S. An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci USA. 2003;100:1095–8. https://doi.org/10.1073/pnas.0335420100CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher RM, Regenberg B, Multicellular group formation in Saccharomyces cerevisiae. Proc Royal Soc B: Biol Sci. 2019;286. https://doi.org/10.1098/rspb.2019.1098Umen JG. Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harb Perspect Biol. 2014;6:a016170 https://doi.org/10.1101/cshperspect.a016170Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knoll AH. The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci. 2011;39:217–39. https://doi.org/10.1146/annurev.earth.031208.100209CAS 
    Article 

    Google Scholar 
    Bonner JT. The origins of multicellularity. Integr Biol Issues N. Rev. 1998;1:27–36.Article 

    Google Scholar 
    Tarnita CE, Taubes CH, Nowak MA. Evolutionary construction by staying together and coming together. J Theor Biol. 2013;320:10–22. https://doi.org/10.1016/j.jtbi.2012.11.022Article 
    PubMed 

    Google Scholar 
    Ratcliff WC, Denison RF, Borrello M, Travisano M. Experimental evolution of multicellularity. Proc Natl Acad Sci USA. 2012;109:1595–1600. https://doi.org/10.1073/pnas.1115323109Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koschwanez JH, Foster KR, Murray AW. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 2011;9:e1001122 https://doi.org/10.1371/journal.pbio.1001122CAS 
    Article 
    PubMed 

    Google Scholar 
    Kuzdzal-Fick JJ, Chen L, Balázsi G. Disadvantages and benefits of evolved unicellularity versus multicellularity in budding yeast. Ecol Evol. 2019;9:8509–23. https://doi.org/10.1002/ece3.5322Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brückner S, Schubert R, Kraushaar T, Hartmann R, Hoffmann D, Jelli E, et al. Kin discrimination in social yeast is mediated by cell surface receptors of the flo11 adhesin family. eLife 2020;9. https://doi.org/10.7554/eLife.55587Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell. 2008;135:726–37. https://doi.org/10.1016/j.cell.2008.09.037CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Driscoll WW, Travisano M, Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence. Nat Commun. 2017;8. https://doi.org/10.1038/ncomms15707Pentz JT, Márquez-Zacarías P, Bozdag GO, Burnetti A, Yunker PJ, Libby E, et al. Ecological advantages and evolutionary limitations of aggregative multicellular development. Curr Biol. 2020;30:4155–.e6. https://doi.org/10.1016/j.cub.2020.08.006.CAS 
    Article 
    PubMed 

    Google Scholar 
    Goossens K, Willaert R. Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett. 2010;32:1571–85. https://doi.org/10.1007/s10529-010-0352-3CAS 
    Article 
    PubMed 

    Google Scholar 
    Di Gianvito P, Tesnière C, Suzzi G, Blondin B, Tofalo R. FLO5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-09990-9CAS 
    Article 

    Google Scholar 
    Veelders M, Brückner S, Ott D, Unverzagt C, Mösch HU, Essen LO. Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci USA. 2010;107:22511–6. https://doi.org/10.1073/pnas.1013210108Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verstrepen KJ, Jansen A, Lewitter F, Fink GR. Intragenic tandem repeats generate functional variability. Nat Genet. 2005;37:986–90. https://doi.org/10.1038/ng1618CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 2006;60:5–15. https://doi.org/10.1111/j.1365-2958.2006.05072.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Verstrepen KJ, Reynolds TB, Fink GR. Origins of variation in the fungal cell surface. Nat Rev Microbiol. 2004;2:533–40. https://doi.org/10.1038/nrmicro927CAS 
    Article 
    PubMed 

    Google Scholar 
    Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R, et al. Interactions by the fungal Flo11 adhesin depend on a fibronectin type III-like adhesin domain girdled by aromatic bands. Structure. 2015;23:1005–17. https://doi.org/10.1016/j.str.2015.03.021CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, et al. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol. 2014;10. https://doi.org/10.1371/journal.pcbi.1003979Oppler ZJ, Parrish ME, Murphy HA, Variation at an adhesin locus suggests sociality in natural populations of the yeast saccharomyces cerevisiae. Proc Royal Soc B: Biol Sci. 2019;286. https://doi.org/10.1098/rspb.2019.1948Lo WS, Dranginis AM. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. 1998;9:161–71. https://doi.org/10.1091/mbc.9.1.161CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    El-Kirat-Chatel S, Beaussart A, Vincent SP, Abellán Flos M, Hols P, Lipke PN, et al. Forces in yeast flocculation. Nanoscale. 2015;7:1760–7. https://doi.org/10.1039/c4nr06315eCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kobayashi O, Hayashi N, Kuroki R, Sone H. Region of Flo1 proteins responsible for sugar recognition. J Bacteriol. 1998;180:6503–10. https://doi.org/10.1128/jb.180.24.6503-6510.1998CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kapsetaki SE, West SA. The costs and benefits of multicellular group formation in algae. Evolution. 2019;73:1296–308. https://doi.org/10.1111/evo.13712Article 
    PubMed 

    Google Scholar 
    Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, et al. Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecol Evol. 2018;8:4619–30. https://doi.org/10.1002/ece3.3979Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goossens KV, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen L, et al. Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. mBio. 2015;6:1–16. https://doi.org/10.1128/mBio.00427-15CAS 
    Article 

    Google Scholar 
    Hamilton WD. The genetical evolution of social behaviour. I. J Theor Biol. 1964;7:1–16. https://doi.org/10.1016/0022-5193(64)90038-4CAS 
    Article 
    PubMed 

    Google Scholar 
    Queller DC, Ponte E, Bozzaro S, Strassmann JE. Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science. 2003;299:105–6. https://doi.org/10.1126/science.1077742CAS 
    Article 
    PubMed 

    Google Scholar 
    Foty RA, Steinberg MS. The differential adhesion hypothesis: A direct evaluation. Dev Biol. 2005;278:255–63. https://doi.org/10.1016/j.ydbio.2004.11.012CAS 
    Article 
    PubMed 

    Google Scholar 
    Nowak MA. Five rules for the evolution of cooperation. Science. 2006;314:1560–3. https://doi.org/10.1126/science.1133755Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nadell CD, Foster KR, Xavier JB. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol. 2010;6:e1000716 https://doi.org/10.1371/journal.pcbi.1000716CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–55. https://doi.org/10.1016/j.cub.2013.10.030CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu CG, Li ZY, Hao Y, Xia J, Bai FW, Mehmood MA, Computer simulation elucidates yeast flocculation and sedimentation for efficient industrial fermentation. Biotechnol J. 2018;13. https://doi.org/10.1002/biot.201700697Boraas ME, Seale DB, Boxhorn JE. Phagotrophy by flagellate selects for colonial prey: A possible origin of multicellularity. Evol Ecol. 1998;12:153–64. https://doi.org/10.1023/A:1006527528063Article 

    Google Scholar 
    Staps M, van Gestel J, Tarnita CE. Emergence of diverse life cycles and life histories at the origin of multicellularity. Nat Ecol Evol. 2019;3:1197–205. https://doi.org/10.1038/s41559-019-0940-0Article 
    PubMed 

    Google Scholar 
    De Vargas Roditi L, Boyle KE, Xavier JB. Multilevel selection analysis of a microbial social trait. Mol Syst Biol. 2013;9:684 https://doi.org/10.1038/msb.2013.42Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Damore JA, Gore J. Understanding microbial cooperation. J Theor Biol. 2012;299:31–41. https://doi.org/10.1016/j.jtbi.2011.03.008Article 
    PubMed 

    Google Scholar 
    Denoth Lippuner A, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev. 2014;38:300–25. https://doi.org/10.1111/1574-6976.12060CAS 
    Article 
    PubMed 

    Google Scholar 
    Janssens GE, Veenhoff LM. The natural variation in lifespans of single yeast cells is related to variation in cell size, ribosomal protein, and division time. PLoS ONE. 2016;11:e0167394 https://doi.org/10.1371/journal.pone.0167394CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross-Gillespie A, Gardner A, West SA, Griffin AS. Frequency dependence and cooperation: Theory and a test with bacteria. Am Nat. 2007;170:331–42. https://doi.org/10.1086/519860Article 
    PubMed 

    Google Scholar 
    Healey D, Axelrod K, Gore J. Negative frequency-dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population. Mol Syst Biol. 2016;12:877 https://doi.org/10.15252/msb.20167033CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harrow GL, Lees JA, Hanage WP, Lipsitch M, Corander J, Colijn C, et al. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures. ISME J. 2021;15:1523–38. https://doi.org/10.1038/s41396-020-00867-wCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avilés L. Solving the freeloaders paradox: Genetic associations and frequency-dependent selection in the evolution of cooperation among nonrelatives. Proc Natl Acad Sci USA. 2002;99:14268–73. https://doi.org/10.1073/pnas.212408299CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher RM, Cornwallis CK, West SA. Group formation, relatedness, and the evolution of multicellularity. Curr Biol. 2013;23:1120–5. https://doi.org/10.1016/j.cub.2013.05.004CAS 
    Article 
    PubMed 

    Google Scholar 
    Pentz JT, Travisano M, Ratcliff WC, Clonal development is evolutionarily superior to aggregation in wild-collected Saccharomyces cerevisiae. In Artificial Life 14 – Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, ALIFE 2014, 2014;550–4. 10.7551/978-0-262-32621-6-ch088.Melbinger A, Cremer J, Frey E, The emergence of cooperation from a single mutant during microbial life cycles. J Royal Soc Interface. 2015;12. https://doi.org/10.1098/rsif.2015.0171 More

  • in

    Individual variability in foraging success of a marine predator informs predator management

    Krause, M. & Robins, K. Charismatic species and beyond: How cultural schemas and organisational routines shape conservation. Conserv. Soc. 15, 313–321 (2017).
    Google Scholar 
    Marshall, K. N., Stier, A. C., Samhouri, J. F., Kelly, R. P. & Ward, E. J. Conservation challenges of predator recovery. Conserv. Lett. 9, 70–78 (2016).
    Google Scholar 
    Bearzi, G., Holcer, D. & Di Sciara, G. N. The role of historical dolphin takes and habitat degradation in shaping the present status of northern Adriatic cetaceans. Aquat. Conserv. Mar. Freshw. Ecosyst. 14, 363–379 (2004).
    Google Scholar 
    Lavigne, D. M. Marine mammals and fisheries: The role of science in the culling debate. In Marine Mammals: Fisheries Tourism and Management Issues (eds Gales, N. et al.) 31–47 (CSIRO Publishing, 2003).
    Google Scholar 
    Bowen, W. D. & Lidgard, D. Marine mammal culling programs: Review of effects on predator and prey populations. Mamm. Rev. 43, 207–220 (2013).
    Google Scholar 
    Svanbäck, R. & Persson, L. Individual diet specialization, niche width and population dynamics: Implications for trophic polymorphisms. J. Anim. Ecol. 73, 973–982 (2004).
    Google Scholar 
    Butler, J. R. A. et al. The Moray Firth Seal Management Plan: An adaptive framework for balancing the conservation of seals, salmon, fisheries and wildlife tourism in the UK. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1025–1038 (2008).
    Google Scholar 
    Graham, I. M., Harris, R. N., Matejusová, I. & Middlemas, S. J. Do ‘rogue’ seals exist? Implications for seal conservation in the UK. Anim. Conserv. 14, 587–598 (2011).
    Google Scholar 
    Linnell, J. D. C., Aanes, R., Swenson, J. E., Odden, J. & Smith, M. E. Large carnivores that kill livestock: Do ‘problem individuals’ really exist?. Wildl. Soc. Bull. 27, 698–705 (1999).
    Google Scholar 
    Tidwell, K. S., van der Leeuw, B. K., Magill, L. N., Carrothers, B. A. & Wertheimer, R. H. Evaluation of pinniped predation on adult salmonids and other fish in the Bonneville Dam tailrace (2017).Guillemette, M. & Brousseau, P. Does culling predatory gulls enhance the productivity of breeding common terns?. J. Appl. Ecol. 38, 1–8 (2001).
    Google Scholar 
    Rudolf, V. H. W. & Rasmussen, N. L. Population structure determines functional differences among species and ecosystem processes. Nat. Commun. 4, 2318 (2013).ADS 
    PubMed 

    Google Scholar 
    Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Adams, J. et al. A century of Chinook salmon consumption by marine mammal predators in the Northeast Pacific Ocean. Ecol. Inform. 34, 44–51 (2016).
    Google Scholar 
    Chasco, B. et al. Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon. Sci. Rep. 7, 1–14 (2017).CAS 

    Google Scholar 
    Bearhop, S. et al. Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).ADS 

    Google Scholar 
    Thiemann, G. W., Iverson, S. J., Stirling, I. & Obbard, M. E. Individual patterns of prey selection and dietary specialization in an Arctic marine carnivore. Oikos 120, 1469–1478 (2011).
    Google Scholar 
    Königson, S., Fjälling, A., Berglind, M. & Lunneryd, S. G. Male gray seals specialize in raiding salmon traps. Fish. Res. 148, 117–123 (2013).
    Google Scholar 
    Sih, A., Sinn, D. L. & Patricelli, G. L. On the importance of individual differences in behavioural skill. Anim. Behav. 155, 307–317 (2019).
    Google Scholar 
    Bjorkland, R. H. et al. Stable isotope mixing models elucidate sex and size effects on the diet of a generalist marine predator. Mar. Ecol. Prog. Ser. 526, 213–225 (2015).ADS 

    Google Scholar 
    Schwarz, D. et al. Large-scale molecular diet analysis in a generalist marine mammal reveals male preference for prey of conservation concern. Ecol. Evol. 8, 9889–9905 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tinker, M. T., Costa, D. P., Estes, J. A. & Wieringa, N. Individual dietary specialization and dive behaviour in the California sea otter: Using archival time-depth data to detect alternative foraging strategies. Deep. Res. Part II Top. Stud. Oceanogr. 54, 330–342 (2007).ADS 

    Google Scholar 
    Voelker, M. R., Schwarz, D., Thomas, A., Nelson, B. W. & Acevedo-Gutiérrez, A. Large-scale molecular barcoding of prey DNA reveals predictors of intrapopulation feeding diversity in a marine predator. Ecol. Evol. 10, 9867–9885 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).MathSciNet 
    PubMed 

    Google Scholar 
    Harcourt, R. Individual variation in predation on fur seals by southern sea lions (Otaria byronia) in Peru. Can. J. Zool. 71, 1908–1911 (1993).
    Google Scholar 
    Marine Mammal Commission. Marine Mammal Protection Act. Marine Mammal Protection Act Amendment 1–56 (U.S. Fish and Wildlife Service, 2004). https://doi.org/10.1002/tcr.201190008.Book 

    Google Scholar 
    National Marine Fisheries Service. Willamette Falls Pinniped-Fishery Interaction Task Force Marine Mammal Protection Act, Section 120 (National Marine Fisheries Service, 2018).
    Google Scholar 
    Jefferson, T. A., Smultea, M. A., Ward, E. J. & Berejikian, B. Estimating the stock size of harbor seals (Phoca vitulina richardii) in the inland waters of Washington State using line-transect methods. PLoS ONE 16, e0241254 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jeffries, S., Huber, H., Calambokidis, J. & Laake, J. Trends and status of harbor seals in Washington State: 1978–1999. J. Wildl. Manag. 67, 208–219 (2003).
    Google Scholar 
    Thomas, A. C., Lance, M. M., Jeffries, S. J., Miner, B. G. & Acevedo-Gutiérrez, A. Harbor seal foraging response to a seasonal resource pulse, spawning Pacific herring. Mar. Ecol. Prog. Ser. 441, 225–239 (2011).ADS 

    Google Scholar 
    Chasco, B. et al. Estimates of chinook salmon consumption in Washington State inland waters by four marine mammal predators from 1970 to 2015. Can. J. Fish. Aquat. Sci. 74, 1173–1194 (2017).
    Google Scholar 
    Farrer, J. & Acevedo-Gutiérrez, A. Use of haul-out sites by harbor seals (Phoca vitulina) in Bellingham: Implications for future development. Northwest. Nat. 91, 74–79 (2010).
    Google Scholar 
    Steingass, S., Jeffries, S., Hatch, D. & Dupont, J. Field report: 2020 pinniped research and management activities at Bonneville Dam (2020).Tidwell, K. S., Carrothers, B. A., Blumstein, D. T. & Schakner, Z. A. Steller sea lion (Eumetopias jubatus) response to non-lethal hazing at Bonneville Dam. Front. Conserv. Sci. 2, 1–9 (2021).
    Google Scholar 
    Hiruki, L. M., Schwartz, M. K. & Boveng, P. L. Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica. J. Zool. 249, 97–109 (1999).
    Google Scholar 
    Ainley, D. G., Ballard, G., Karl, B. J. & Dugger, K. M. Leopard seal predation rates at penguin colonies of different size. Antarct. Sci. 17, 335–340 (2005).ADS 

    Google Scholar 
    Páez-Rosas, D. et al. Hunting and cooperative foraging behavior of Galapagos sea lion: An attack to large pelagics. Mar. Mammal Sci. 36, 386–391 (2020).
    Google Scholar 
    Macneale, K. H., Kiffney, P. M. & Scholz, N. L. Pesticides, aquatic food webs, and the conservation of Pacific salmon. Front. Ecol. Environ. 8, 475–482 (2010).
    Google Scholar 
    Roni, P., Anders, P. J., Beechie, T. J. & Kaplowe, D. J. Review of tools for identifying, planning, and implementing habitat restoration for Pacific salmon and steelhead. North Am. J. Fish. Manag. 38, 355–376 (2018).
    Google Scholar 
    Morissette, L., Christensen, V. & Pauly, D. Marine mammal impacts in exploited ecosystems: Would large scale culling benefit fisheries?. PLoS ONE 7, 1–18 (2012).
    Google Scholar 
    Thompson, D., Coram, A. J., Harris, R. N. & Sparling, C. E. Review of non-lethal seal control options to limit seal predation on salmonids in rivers and at finfish farms. Scott. Mar. Freshw. Sci. 12, 137 (2021).
    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
    Google Scholar 
    Fairbanks, C. & Penttila, D. Bellingham Bay Forage Fish Spawning Assessment (2016).Madsen, S. W. & Nightengale, T. Whatcom Creek Ten-Years After: Summary Report (Department of Public Works, 2009). https://doi.org/10.2307/j.ctt20krzd7.7.Book 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour: An Introductory Guide (Cambridge University Press, 2007).
    Google Scholar 
    Bolger, D. T., Morrison, T. A., Vance, B., Lee, D. & Farid, H. A computer-assisted system for photographic mark-recapture analysis. Methods Ecol. Evol. 3, 813–822 (2012).
    Google Scholar 
    Harrison, P. J. et al. Incorporating movement into models of grey seal population dynamics. J. Anim. Ecol. 75, 634–645 (2006).PubMed 

    Google Scholar 
    Thompson, P. M. & Wheeler, H. Photo-ID-based estimates of reproductive patterns in female harbor seals. Mar. Mammal Sci. 24, 138–146 (2008).
    Google Scholar 
    Washington Department of Fish and Wildlife. Whatcom Creek Hatchery (WDFW, 2019).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Core Team, 2020).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Lloyd-Smith, J. O. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE 2, 1–8 (2007).
    Google Scholar 
    Zhang, D. rsq: R-Squared and Related Measures. R package version 2.1 (2020).Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).ADS 

    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar  More

  • in

    Albedo changes caused by future urbanization contribute to global warming

    Land coverUrban landscapes are characterized by small clusters of patches, forming land mosaics that are distinct from natural landscapes. An accurate estimation of climate forcing requires a land cover dataset at high resolutions that does not omit small urban patches. In this study, the RF estimates are based on 500-m and 1-km land cover datasets. This fine resolution is necessary to preserve spatial details of small urban patches while avoiding the large underestimation of urban land areas at coarse resolution (e.g., ~19% underestimation at 10 km compared to that at 1 km)3. We used 500-m resolution MODIS Land Cover product (MCD12Q1v006) for historical land cover changes. For future urban land cover distributions, we used the global urban land expansion products simulated under the SSPs for 2030–2100 (i.e., Chen-2020)4. The simulation performance was tested using historical urban expansion from 2000 to 2015 based on Global Human Settlement Layer51, where the agreement between simulated and observed urban land was evaluated using the Figure of Merit (FoM) indicator52 that has showed similar or better values than those reported in other existing land simulation applications4. The high-resolution Chen-2020 also shows very high spatial consistency with the prominent coarse resolution global urban land projection LUH2 that is recommended in CMIP64. Considering different scenarios is also necessary to account for the uncertainties of future socioeconomic and environmental conditions, so we included simulated urban lands under three scenarios (Supplementary Table 1): Sustainability -SSP1, Middle of the Road – SSP2, and Fossil-fueled Development – SSP553. Within each SSP scenario, the product provides a likelihood map of each grid becoming urban, based on 100 urbanization simulations. We used the likelihood map to account for spatial uncertainties of urban expansion by deriving 90% confidence intervals of projected urban land demand within a SSP scenario. We used the MODIS IGBP Land Cover classes (Supplementary Table 2) and resampled the original 500-m resolution MODIS products in 2018 to 1-km resolution to match the future simulations when it was used as a baseline year. To isolate the independent effect of urbanization (vs other types of land uses) in future estimates, land covers that are not converted to urban are assumed to have the same cover types as in 2018 (i.e., the baseline year). Though there are other global land cover products for current periods, we choose the MODIS IGBP land cover products because the albedo look-up maps (LUMs) were based on IGBP land cover types (see Albedo Look-Up Maps).To further evaluate the uncertainties caused by different projections of future urbanization, we also included the other two SSPs from Chen-2020, and another two 1-km resolution urban land cover products projected for the future for the purpose of comparison. The other two products include four projections of SRES scenarios (i.e., A1, B1, A1B, and B2) (i.e., Li-2017 mentioned above)3 and one without scenario description but assumed historical development would continue (i.e., Zhou-2019 mentioned above)2. These projections of future urban land expansion were calibrated with different historical urban land products and can be regarded as independent.Albedo look-up maps (LUMs)Albedo Look-Up Maps (LUMs)31 were derived from the intersection of MODIS land cover54 and surface albedo55 products, which are used to determine the albedo values for each IGBP land cover type by month and by location. Monthly means of white-sky (i.e., diffuse surface illumination condition) and black sky (i.e., direct surface illumination condition) during 2001–2011 were processed for snow-free and snow-covered periods for each of the 17 IGBP land cover classes at spatial resolutions of 0.05°−1°31. The LUMs have been verified by comparing the reconstructed albedo using the LUMs with the original MODIS albedo, which shows very similar values31. We used the LUMs at a resolution of 1° due to the significantly fewer missing values, to assure the spatial continuity of albedo changes at a global scale while keeping the matches with the 1° resolution of radiation data and RF kernels. The underlying assumption is that albedo of the same land cover type varies insignificantly within a 1° grid.Snow and radiation productSnow cover can significantly change the albedo of land regardless of cover types (Supplementary Fig. 4). In this study, we tally monthly albedo using snow-free and snow-covered categories in estimating RF. Past and present snow-free and snow-covered conditions were derived from level 3 MODIS/Terra Snow Cover (MOD10CM.006)56 at 0.05° spatial resolution and resampled to a 1° spatial resolution. Monthly means of 2001–2005 vs 2015–2019 were used for 2001 and 2018 respectively. For future periods, ensemble mean snow cover for each year and month, projected under the CMIP5 framework for three Representative Concentration Pathway (RCP) scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5) were used (for more details see Supplementary Note 2B). By comparing the model outputs with MODIS observations for a recent decade (2006–2015), we found that the multi-model mean snow cover was systematically biased compared to MODIS observations. Consequently, we calibrated the ensemble mean projections by subtracting the biases for the grids. In each 10th year of the future (e.g., 2030, 2040, etc.), the decadal monthly mean snow cover (e.g., 2026–2035 for 2030, and 2036–2045 for 2040, etc.) was used for the year.We used the long-term monthly averages (1981–2010) of diffuse and direct incoming surface solar radiation reanalysis Gaussian grid product from National Centers for Environmental Prediction (NCEP)57. Visible and near infrared beam downward radiation and diffuse downward radiation from NCEP were used to compute the white-sky and black-sky fractions. As for snow cover, ensemble mean shortwave radiation at surface (SWSF) and at top-of-atmosphere (SWTOA) projected from CMIP5 models (Supplementary Note 3C) for RCP2.6, RCP4.5, and RCP8.5 were collected for empirically computing future albedo kernels (see section 3.4 below).Radiative kernelsRadiative kernels were used to compute top-of-atmosphere RF due to small perturbations of temperature, water vapor, and albedo. We used the latest state-of-the-art albedo kernels calculated with CESM v1.1.258 to compute RF in 2018 relative to 2001. In brief, the albedo kernel is the change in top-of-atmosphere radiative flux for a 0.01 change in surface albedo. The CESM1.1.2 kernels are separated into clear- and all-sky illumination conditions. We used the all-sky kernels because we include both black-sky and white-sky albedos. For future periods, because there are no available radiative kernels produced from general circulation models, we approximated the future kernels using an empirical parameterization following Bright et al.59:$${K}_{m}left(iright)={{SW}}^{{SF}}(i)times {sqrt}left(frac{{{SW}}^{{SF}}(i)}{{{SW}}^{{TOA}}(i)}right)/(-100)$$
    (1)
    where m is the month, i is the location, and SWSF and SWTOA are the surface and top-of-atmosphere shortwave radiation; dividing by −100 is for matching the CESM1.1.2 kernel definition of a 0.01 change in surface albedo.Estimation of albedo change and RFWe analyzed the RF in 2018 due to albedo changes caused by urbanization since 2001 (2018–2001), and in the future from 2030 to 2100 at decadal intervals (i.e., 2030, 2040, 2050, …, and 2100) since 2018 under three illustrative scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5, which combine SSP-based urbanization projections and RCP-based climate projections. The three illustrative scenarios were selected following the scenario designation of the latest IPCC report50 and represent low greenhouse gas (GHG) emissions with CO2 emissions declining to net zero around or after 2050, intermediate GHG emissions with CO2 emissions remaining around current levels until the mid-century, and very high CO2 emissions that roughly double from current levels by 2050, respectively. We selected 2018 as the baseline year to divide the past from the future because 2018 was the latest year with available MODIS land cover products at the time of this study. We used ArcGIS 10.6 to produce spatial maps of all variables, including area of each land cover type within a 1° × 1°-grid, snow cover, albedo, radiation, and kernels, and R 3.6.1 to compute the RF.We focused only on albedo changes induced by urbanization, including the conversions from all other 16 IGBP land cover types to urban land. The changes of albedo for each grid (x, y) of a month (m) were obtained by computing the difference between albedo of that grid in the baseline year (t = t0) and in a later year (t = t1) with urban expansion:$${triangle alpha }_{m,t1-t0}(x,y)={alpha }_{m,t=t1}(x,y)-{alpha }_{m,t=t0}(x,y)$$
    (2)
    where αm, t = t1 (x, y) and αm, t = t0) (x, y) is the albedo for each grid (x,y) of a month (m) at the base year and later year respectively; the grid-scale albedo is computed as the weighted sum of albedo by land cover types with the weighing factor corresponding to areal percentage of a land cover within the grid. The albedo for each land cover type of a grid was then obtained by applying the albedo LUMs that provide spatially continuous black-sky, white-sky, snow-covered, and snow-free albedo maps for a given month for each land cover. Firstly, monthly mean albedo is computed as:$${alpha }_{m,t}(x,y)=mathop{sum }limits_{l=1}^{17}mathop{sum }limits_{s=0}^{1}mathop{sum }limits_{r=0}^{1}{{f}_{l,t}(x,y){f}_{s,m,t}(x,y)f}_{r,m,t}(x,y)left({alpha }_{l,s,r,m}(x,y)right)$$
    (3)
    where m is the month, t is the year, l is the land cover type, fl is the proportion of a cover type within the grid, fs,m,t is the fraction for snow-covered (s = 0) and snow-free (s = 1) conditions of the time (m, t), fr,m,t (x, y) is the fraction for white-sky (r = 0) or black-sky (r = 1) conditions of the time, and αl,s,r,m (x, y) is the albedo for land cover type l in month m that is extracted from the albedo LUMs corresponding to snow condition (s) and radiation condition (r). The annual mean albedo change is reported as the mean of monthly albedo change:$${triangle alpha }_{t1-t0}(x,y)=frac{1}{12}mathop{sum }limits_{m=1}^{m=12}({alpha }_{m,t=t1}(x,y)-{alpha }_{m,t=t0}(x,y))$$
    (4)
    The conversion of other land covers to urban land can contribute differently to the global RF, as the total area that is converted into urban land is different among non-urban land covers and the albedo differences between urban land and non-urban land cover types vary. To estimate the proportional contributions of different land conversions, we first decomposed the total albedo of each grid into the proportion of each land cover type:$${alpha }_{l,m,t}(x,y)={f}_{l,m,t}(x,y)mathop{sum }limits_{s=0}^{1}mathop{sum }limits_{r=0}^{1}{f}_{s,m,t}(x,y){f}_{r,m,t}(x,y)left({alpha }_{l,s,r,m}(x,y)right)$$
    (5)
    The global RF due to albedo change caused by conversion from each non-urban land cover type (l ≠ 13) to urban land (l = 13) (see Supplementary Table 2 land cover labels) was calculated as:$${{RF}}_{triangle alpha ,l(lne 13),{global}}=frac{1}{{A}_{{Earth}}}mathop{sum }limits_{i=1}^{n}mathop{sum }limits_{m=1}^{12}{({alpha }_{13,m,t=t1}left(iright)-{alpha }_{l,m,t=t0}left(iright))Delta p}_{lto 13}left(iright){Area}left(iright){K}_{m}(i)$$
    (6)
    where i refers to a grid, n is the total number of pixels on global lands, AEarth is the global surface area (5.1  ×  108 km2), α13,m,t = t1) (i) is the albedo of urban land in month m in the later year with urban expansion, αl,m,t = t0 (i) is the albedo of a targeted non-urban land cover type in the base year t0, Δpl→13 is the percentage of the non-urban land cover type that is converted to urban land in the year t1 compared to year t0, Area(i) is the area of the pixel, and Km (i) is the radiative kernel at the grid.The global RF due to urbanization-induced albedo changes was then calculated as:$${{RF}}_{triangle alpha ,{global}}=mathop{sum }limits_{l=1}^{17}{{RF}}_{triangle alpha ,l,{global}}(l,ne, 13)$$
    (7)
    GWP: CO2-equivalentWe followed GWP calculations by explicitly accounting for the lifetime and dynamic behavior of CO2 to convert RF to CO2 equivalent60,61:$${GWP}[{kg},{of},{{CO}}_{2}-{eq}]=frac{{int }_{t=0}^{{TH}}{{RF}}_{triangle alpha ,{global}}(t)}{{k}_{{CO}_2}{int }_{t=0}^{{TH}}{y}_{{{CO}}_{2}}(t)}$$
    (8)
    where kCO2 is radiative efficiency of CO2 in the atmosphere (W/m2/kg) at a constant background concentration of 389 ppmv, which is taken as 1.76  ×  1015 W/m2/kg62, and RF∆α,global is the global RF caused by albedo changes (W/m2). ({y}_{{{CO}}_{2}}) is the impulse-response function (IRF) for CO2 that ranges from 1 at the time of the emission pulse (t = 0) to 0.41 after 100 years, and here it is set to a mean value of 0.52 over 100 years60. The time horizon (TH) of our GWP calculations was fixed at 100 years following IPCC standards and previous studies60,63,64.Global mean surface air temperature changeWe estimated the 100-year global mean surface temperature change for the estimated RF by adopting an equilibrium climate sensitivity (ECS), defined as the global mean surface air temperature increase that follows a doubling of pre-industrial atmospheric carbon dioxide (RF = 3.7 W/m2). Given a value of RF induced by a forcing agent, the temperature change is estimated as RF/3.7 × ECS. To consider the uncertainties of ECS, we adopted a mean value of 3 °C and a very likely (90% confidence interval) range of 2–5 °C following IPCC AR650. Without knowing the exact distribution shape of ECS and future albedo-change-induced RF, we created a log-normal distribution (Supplementary Note 4) to approximate their asymmetric distribution through numerical simulation. We then conducted Monte Carlo simulations that draw 5000 random samples from each distribution to jointly estimate the uncertainties of global mean surface air temperature changes. We report the mean and 90% interval ranges of the change in temperature. More

  • in

    Sex differences in the winter activity of desert hedgehogs (Paraechinus aethiopicus) in a resource-rich habitat in Qatar

    Nagy, K. A. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57, 111–128 (1987).Article 

    Google Scholar 
    Anderson, K. J. & Jetz, W. The broad-scale ecology of energy expenditure of endotherms. Ecol. Lett. 8, 310–318 (2005).Article 

    Google Scholar 
    Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: A review. Front. Biosci. 16, 1428–1444 (2011).Article 

    Google Scholar 
    Mery, F. & Burns, J. G. Behavioural plasticity: An interaction between evolution and experience. Evol. Ecol. 24, 571–583 (2010).Article 

    Google Scholar 
    Brockmann, H. J. The evolution of alternative strategies and tactics. Adv. Study Behav. 30, 1–51 (2001).Article 

    Google Scholar 
    Milling, C. R., Rachlow, J. L., Johnson, T. R., Forbey, J. S. & Shipley, L. A. Seasonal variation in behavioral thermoregulation and predator avoidance in a small mammal. Behav. Ecol. 28, 1236–1247 (2017).Article 

    Google Scholar 
    Guiden, P. W. & Orrock, J. L. Seasonal shifts in activity timing reduce heat loss of small mammals during winter. Anim. Behav. 164, 181–192 (2020).Article 

    Google Scholar 
    Cotton, C. L. & Parker, K. L. Winter activity patterns of northern flying squirrels in sub-boreal forests. Can. J. Zool. 78, 1896–1901 (2000).Article 

    Google Scholar 
    Long, R. A., Martin, T. J. & Barnes, B. M. Body temperature and activity patterns in free-living arctic ground squirrels. J. Mammal. 86, 314–322 (2005).Article 

    Google Scholar 
    Zschille, J., Stier, N. & Roth, M. Gender differences in activity patterns of American mink Neovison vison in Germany. Eur. J. Wildl. Res. 56, 187–194 (2010).Article 

    Google Scholar 
    Geiser, F. Hibernation. Curr. Biol. 23, R188–R193 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gür, M. K. & Gür, H. Age and sex differences in hibernation patterns in free-living Anatolian ground squirrels. Mamm. Biol. 80, 265–272 (2015).Article 

    Google Scholar 
    Kisser, B. & Goodwin, H. T. Hibernation and overwinter body temperatures in free-ranging thirteen-lined ground squirrels, Ictidomys tridecemlineatus. Am. Midl. Nat. 167, 396–409 (2012).Article 

    Google Scholar 
    Dmi’el, R. & Schwarz, M. Hibernation patterns and energy expenditure in hedgehogs from semi-arid and temperate habitats. J. Comp. Physiol. B 155, 117–123 (1984).Article 

    Google Scholar 
    Abu Baker, M. A. et al. Caught basking in the winter sun: Preliminary data on winter thermoregulation in the Ethiopian hedgehog, Paraechinus aethiopicus in Qatar. J. Arid Environ. 125, 52–55 (2016).ADS 
    Article 

    Google Scholar 
    McKechnie, A. E. & Mzilikazi, N. Heterothermy in Afrotropical mammals and birds: A review. Integr. Comp. Biol. 51, 349–363 (2011).PubMed 
    Article 

    Google Scholar 
    Wacker, C. B., McAllan, B. M., Körtner, G. & Geiser, F. The role of basking in the development of endothermy and torpor in a marsupial. J. Comp. Physiol. B 187, 1029–1038 (2017).PubMed 
    Article 

    Google Scholar 
    Brown, K. J. & Downs, C. T. Basking behaviour in the rock hyrax (Procavia capensis) during winter. Afr. Zool. 42, 70–79 (2007).Article 

    Google Scholar 
    Humphries, M. M., Thomas, D. W. & Kramer, D. L. The role of energy availability in mammalian hibernation: A cost-benefit approach. Physiol. Biochem. Zool. 76, 165–179 (2003).PubMed 
    Article 

    Google Scholar 
    Field, K. A. et al. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol. Ecol. 27, 3727–3743 (2018).CAS 
    Article 

    Google Scholar 
    Bieber, C., Cornils, J. S., Hoelzl, F., Giroud, S. & Ruf, T. The costs of locomotor activity? Maximum body temperatures and the use of torpor during the active season in edible dormice. J. Comp. Physiol. B 187, 803–814 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eto, T. et al. Individual variation of daily torpor and body mass change during winter in the large Japanese field mouse (Apodemus speciosus). J. Comp. Physiol. B 188, 1005–1014 (2018).PubMed 
    Article 

    Google Scholar 
    Zervanos, S. M., Maher, C. R. & Florant, G. L. Effect of body mass on hibernation strategies of woodchucks (Marmota monax). (2014).Ford, R. G. Home range in a patchy environment: Optimal foraging predictions. Am. Zool. 23, 315–326 (1983).Article 

    Google Scholar 
    Czenze, Z. J. & Willis, C. K. R. Warming up and shipping out: Arousal and emergence timing in hibernating little brown bats (Myotis lucifugus). J. Comp. Physiol. B 185, 575–586 (2015).PubMed 
    Article 

    Google Scholar 
    Batavia, M., Nguyen, G., Harman, K. & Zucker, I. Hibernation patterns of Turkish hamsters: Influence of sex and ambient temperature. J. Comp. Physiol. B 183, 269–277 (2013).PubMed 
    Article 

    Google Scholar 
    Kato, G. A. et al. Individual differences in torpor expression in adult mice are related to relative birth mass. J. Exp. Biol. 221, jeb171983 (2018).PubMed 
    Article 

    Google Scholar 
    Williams, C. T. et al. Sex-dependent phenological plasticity in an arctic hibernator. Am. Nat. 190, 854–859 (2017).PubMed 
    Article 

    Google Scholar 
    Healy, J. E., Burdett, K. A., Buck, C. L. & Florant, G. L. Sex differences in torpor patterns during natural hibernation in golden-mantled ground squirrels (Callospermophilus lateralis). J. Mammal. 93, 751–758 (2012).Article 

    Google Scholar 
    Wang, Y., Yuan, L.-L., Peng, X., Wang, Y. & Yang, M. Experimental study on hibernation patterns in different ages and sexes of daurian ground squirrel (Spermophilus Dauricus). Shenyang Shifan Daxue Xuebao (Ziran Kexue Ban) 27, 351–355 (2009).
    Google Scholar 
    Siutz, C., Franceschini, C. & Millesi, E. Sex and age differences in hibernation patterns of common hamsters: Adult females hibernate for shorter periods than males. J. Comp. Physiol. B 186, 801–811 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Michener, G. R. Sexual differences in over-winter torpor patterns of Richardson’s ground squirrels in natural hibernacula. Oecologia 89, 397–406 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Boyles, J. G., Bennett, N. C., Mohammed, O. B. & Alagaili, A. N. Torpor patterns in Desert Hedgehogs (Paraechinus aethiopicus) represent another new point along a thermoregulatory continuum. Physiol. Biochem. Zool. 90, 445–452 (2017).PubMed 
    Article 

    Google Scholar 
    Reeve, N. Hedgehogs (Poyser, 1994).
    Google Scholar 
    He, K. et al. An estimation of erinaceidae phylogeny: A combined analysis approach. PLoS One 7, e39304 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schoenfeld, M. & Yom-Tov, Y. The biology of two species of hedgehogs, Erinaceus europaeus concolor and Hemiechinus auritus aegyptius, Israel. Mammalia 49, 339–356 (1985).Article 

    Google Scholar 
    Haigh, A., O’Riordan, R. M. & Butler, F. Nesting behaviour and seasonal body mass changes in a rural Irish population of the Western hedgehog (Erinaceus europaeus). Acta Theriol. (Warsz) 57, 321–331 (2012).Article 

    Google Scholar 
    Rasmussen, S. L., Berg, T. B., Dabelsteen, T. & Jones, O. R. The ecology of suburban juvenile European hedgehogs (Erinaceus europaeus) in Denmark. Ecol. Evol. 9, 13174–13187 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jensen, A. B. Overwintering of European hedgehogs (Erinaceus europaeus) in a Danish rural area. Acta Theriol. (Warsz) 49, 145–155 (2004).Article 

    Google Scholar 
    Jackson, D. B. The breeding biology of introduced hedgehogs (Erinaceus europaeus) on a Scottish Island: Lessons for population control and bird conservation. J. Zool. 268, 303–314 (2006).Article 

    Google Scholar 
    Rautio, A., Valtonen, A., Auttila, M. & Kunnasranta, M. Nesting patterns of European hedgehogs (Erinaceus europaeus) under northern conditions. Acta Theriol. (Warsz) 59, 173–181 (2014).Article 

    Google Scholar 
    Hallam, S. L. & Mzilikazi, N. Heterothermy in the southern African hedgehog, Atelerix frontalis. J. Comp. Physiol. B 181, 437–445 (2011).PubMed 
    Article 

    Google Scholar 
    South, K. E., Haynes, K. & Jackson, A. C. Hibernation Patterns of the European Hedgehog, Erinaceus europaeus, at a Cornish Rescue Centre. Animals 10, 1418 (2020).PubMed Central 
    Article 

    Google Scholar 
    Gillies, A. C., Ellison, G. T. H. & Skinner, J. D. The effect of seasonal food restriction on activity, metabolism and torpor in the South African hedgehog (Atelerix frontalis). J. Zool. 223, 117–130 (1991).Article 

    Google Scholar 
    Gazzard, A. & Baker, P. J. Patterns of feeding by householders affect activity of hedgehogs (Erinaceus europaeus) during the hibernation period. Animals 10, 1344 (2020).PubMed Central 
    Article 

    Google Scholar 
    Dmiel, R. & Schwarz, M. Hibernation patterns and energy expenditure in hedgehogs from semi-arid and temperate habitats. J. Comp. Physiol. B 155, 117–123 (1984).Article 

    Google Scholar 
    Fowler, P. A. & Racey, P. A. Daily and seasonal cycles of body temperature and aspects of heterothermy in the hedgehog Erinaceus europaeus. J. Comp. Physiol. B 160, 299–307 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutovskaya, M. V. et al. The dynamics of body temperature of the Eastern European hedgehog (Erinaceus roumanicus) during winter hibernation. Biol. Bull. 46, 1136–1145 (2019).Article 

    Google Scholar 
    Harrison, D. L. & Bates, P. J. J. The Mammals of Arabia Vol 354 (Harrison Zoological Museum Sevenoaks, 1991).
    Google Scholar 
    Al-Musfir, H. M. & Yamaguchi, N. Timings of hibernation and breeding of Ethiopian Hedgehogs, Paraechinus aethiopicus in Qatar. Zool. Middle East 45, 3–10 (2008).Article 

    Google Scholar 
    Pettett, C. E., Al-Hajri, A., Al-Jabiry, H., Macdonald, D. W. & Yamaguchi, N. A comparison of the Ranging behaviour and habitat use of the Ethiopian hedgehog (Paraechinus aethiopicus) in Qatar with hedgehog taxa from temperate environments. Sci. Rep. 8, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Abu Baker, M. A., Reeve, N., Conkey, A. A. T., Macdonald, D. W. & Yamaguchi, N. Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs. PLoS One 12, e0180826 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yamaguchi, N., Al-Hajri, A. & Al-Jabiri, H. Timing of breeding in free-ranging Ethiopian hedgehogs, Paraechinus aethiopicus, from Qatar. J. Arid Environ. 99, 1–4 (2013).ADS 
    Article 

    Google Scholar 
    Alagaili, A. N., Bennett, N. C., Mohammed, O. B. & Hart, D. W. The reproductive biology of the Ethiopian hedgehog, Paraechinus aethiopicus, from central Saudi Arabia: The role of rainfall and temperature. J. Arid Environ. 145, 1–9 (2017).ADS 
    Article 

    Google Scholar 
    Pettett, C. E. et al. Daily energy expenditure in the face of predation: Hedgehog energetics in rural landscapes. J. Exp. Biol. 220, 460–468 (2017).PubMed 
    Article 

    Google Scholar 
    Kraus, C., Eberle, M. & Kappeler, P. M. The costs of risky male behaviour: Sex differences in seasonal survival in a small sexually monomorphic primate. Proc. R. Soc. B Biol. Sci. 275, 1635–1644 (2008).Article 

    Google Scholar 
    Mzilikazi, N. & Lovegrove, B. G. Reproductive activity influences thermoregulation and torpor in pouched mice, Saccostomus campestris. J. Comp. Physiol. B 172, 7–16 (2002).PubMed 
    Article 

    Google Scholar 
    Richter, M. M., Barnes, B. M., O’reilly, K. M., Fenn, A. M. & Buck, C. L. The influence of androgens on hibernation phenology of free-living male arctic ground squirrels. Horm. Behav. 89, 92–97 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haigh, A., Butler, F. & O’Riordan, R. M. Courtship behaviour of western hedgehogs (Erinaceus europaeus) in a rural landscape in Ireland and the first appearance of offspring. Lutra 55, 41–54 (2012).
    Google Scholar 
    Nicol, S. C., Morrow, G. E. & Harris, R. L. Energetics meets sexual conflict: The phenology of hibernation in Tasmanian echidnas. Funct. Ecol. 33, 2150–2160 (2019).Article 

    Google Scholar 
    Pettett, C. W., Macdonald, D., Al-Hajiri, A., Al-Jabiry, H. & Yamaguchi, N. Characteristics and demography of a free-ranging Ethiopian Hedgehog, Paraechinus aethiopicus, population in Qatar. Animals 10, 951 (2020).PubMed Central 
    Article 

    Google Scholar 
    Kenward, R. E. A Manual for Wildlife Radio Tagging (Academic Press, 2000).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2021).
    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
    Google Scholar  More

  • in

    Hydrologic regime alteration and influence factors in the Jialing River of the Yangtze River, China

    Ge, J., Peng, W., Wei, H. W., Qu, X. & Singh, S. Quantitative assessment of flow regime alteration using a revised range of variability methods. Water 10(5), 597 (2018).Article 

    Google Scholar 
    Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546(7658), 363–369 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meade, R. H. & Moody, J. A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process 24(1), 35–49 (2010).
    Google Scholar 
    Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M. & Haggag, M. A new Budyko framework extension using time series SARIMAX model. J. Hydrol. 570(2019), 827–838 (2019).ADS 
    Article 

    Google Scholar 
    Wang, H., Liu, J. & Guo, W. The variation and attribution analysis of the runoff and sediment in the lower reach of the Yellow River during the past 60 years. Water Supply 21(6), 3193–3209 (2021).Article 

    Google Scholar 
    Guo, S. L., Guo, J., Hou, Y., Xiong, L. & Hong, X. Prediction of future runoff change based on Budyko hypothesis in Yangtze River basin. Adv. Water Sci. 26(02), 151–160 (2015).
    Google Scholar 
    Zhang, X., Dong, Z., Gupta, H., Wu, G. & Li, D. Impact of the three gorges dam on the hydrology and ecology of the Yangtze River. Water 590(8), 1–18 (2016).ADS 
    CAS 

    Google Scholar 
    Zhang, J., Zhang, M., Song, Y. & Lai, Y. Hydrological simulation of the Jialing River Basin using the MIKE SHE model in changing climate. J. Water Clim. Change 12(6), 1–20 (2021).
    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, P. D. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10(4), 1163–1174 (1996).Article 

    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Wigington, B. & Braun, D. How much water does a river need?. Freshw. Biol. 37(1), 231–249 (1997).Article 

    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Braun, D. P. & Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. River Res. Manag. 14(4), 329–340 (1998).Article 

    Google Scholar 
    Guo, W., Xu, G., Shao, J., Bing, J. & Chen, X. Research on the middle and lower reaches of the Yangtze River and lake’s hydrological alterations based on RVA. In IOP Conference Series: Earth and Environmental Science Vol 153, No 6, 062047.1–062047.8 (2018).Guo, W., Li, Y., Wang, H. & Zha, H. Assessment of eco-hydrological regime of lower reaches of Three Gorges Reservoir based on IHA-RVA. Resour. Environ. Yangtze Basin 27(09), 2014–2021 (2018).
    Google Scholar 
    Zuo, Q. & Liang, S. Effects of dams on river flow regime based on IHA/RVA. Proc. Int. Assoc. Hydrol. Sci. 368(368), 275–276 (2015).
    Google Scholar 
    Mwedzi, T., Katiyo, L., Mugabe, F. T., Bere, T. & Kuoika, O. L. A spatial assessment of stream-flow characteristics and hydrologic alterations, post dam construction in the Manyame catchment, Zimbabwe. Water Sa 42(2), 194–202 (2016).CAS 
    Article 

    Google Scholar 
    Liu, J., Chen, J., Xu, J., Lin, Y. & Zhou, M. Attribution of runoff variation in the headwaters of the Yangtze River based on the Budyko hypothesis. Int. J. Environ. Res. Public Health 16(14), 2506.1-2506.15 (2019).
    Google Scholar 
    Yan, D. Using budyko-type equations for separating the impacts of climate and vegetation change on runoff in the source area of the yellow river. Water 12(12), 3418.1-3418.15 (2020).ADS 

    Google Scholar 
    Gunkel, A. & Lange, J. Water scarcity, data scarcity and the Budyko curve—An application in the Lower Jordan River Basin. J. Hydrol. Reg. Stud. 12(C), 136–149 (2017).Article 

    Google Scholar 
    Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M. & Haggag, M. A new Budyko framework extension using time series SARIMAX model. J. Hydrol. 570, 827–838 (2019).ADS 
    Article 

    Google Scholar 
    Li, Y., Fan, J. & Liao, Y. Variation characteristics of streamflow and sediment in the Jialing river basin in the past 60 years. Mt. Res. 38(03), 339–348 (2020).
    Google Scholar 
    Liu, Y., Li, F. & Xu, X. Impacts of hydropower development on hydrological regime in mainstream of mid-lower Jialing River. Yangtze River 45(05), 10–15 (2014).
    Google Scholar 
    Zhou, Y. et al. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River basin of the Yangtze River, Southwestern China. CATENA 193(C), 104593.1-104593.11 (2020).
    Google Scholar 
    Zeng, X. et al. Changes and relationships of climatic and hydrological droughts in the Jialing River Basin, China. PLoS ONE 10(11), e0141648 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yan, M., Fang, G. H., Dai, L. H., Tan, Q. F. & Huang, X. F. Optimizing reservoir operation considering downstream ecological demands of water quantity and fluctuation based on IHA parameters. J. Hydrol. 4(2021), 126647 (2021).Article 

    Google Scholar 
    Wei, R., Liu, J., Zhang, T., Zeng, Q. & Dong, X. Attribution analysis of runoff variation in the upper-middle reaches of Yalong river. Resour. Environ. Yangtze Basin 29(07), 1643–1652 (2020).
    Google Scholar 
    Xie, J. H., Yu, J. H., Chem, H. S. & Hsu, P. C. Sources of subseasonal prediction skill for heatwaves over the Yangtze river basin revealed from three S2S models. Adv. Atmos. Sci. 37(12), 1435–1450 (2020).Article 

    Google Scholar 
    Guo, W., Li, Y., Wang, H. & Cha, H. Temporal variations and influencing factors of river runoff and sediment regimes in the Yangtze River, China. Desalin. Water Treat. 174(2020), 258–270 (2020).Article 

    Google Scholar 
    Tian, X. et al. Hydrologic alteration and possible underlying causes in the Wuding River, China. Sci. Total Environ. 693, 133556.1-133556.9 (2019).Article 
    CAS 

    Google Scholar 
    Tang, B., Wang, W. C. & Fan, X. Study on the influence of reservoir dispatch of the upper Yangtze river on the runoff control. E3S Web Conf. 283(18), 01030 (2021).
    Google Scholar 
    Liu, Y. et al. Characteristics and resource status of main commercial fish in the middle reaches of Jialing River, China. J. Appl. Environ. Biol. 27(04), 837–847 (2021).
    Google Scholar 
    Sun, Z., Zhang, M. & Chen, Y. Protection of the rare and endemic fish in the conservation area located in the upstream of the Yangtze River. Freshw. Fish. 44(06), 3–8 (2014).
    Google Scholar 
    Chen, Q. H. et al. Impacts of climate change and LULC change on runoff in the Jinsha River Basin. J. Geogr. Sci. 30(01), 85–102 (2020).Article 

    Google Scholar 
    Cui, L., Wang, Z. & Deng, L. Vegetation dynamics based on NDVI in Yangtze River Basin (China) during 1982–2015. IOP Conf. Ser. Materials Sci. Eng. 780(2020), 062049 (2020).Article 

    Google Scholar 
    Wang, Y., Wang, S., Wu, M. & Wang, S. Impacts of the land use and climate changes on the hydrological characteristics of Jialing River Basin. Res. Soil Water Conserv. 26(01), 135–142 (2019).
    Google Scholar 
    Wu, Y. L. & Pu, H. W. Y. The influence of hydropower station on sand content detection in Jialing River. Technol. Dev. Enterp. 38(9), 55–58 (2019).
    Google Scholar 
    Zhuo, Z., Qian, Z., Jiang, H., Wang, H. & Guo, W. Evaluation of hydrological regime in Xiangjiang basin on IHA-RVA method. China Rural Water Hydropower 8(2020), 188–192 (2020).
    Google Scholar 
    Chen, L. et al. Temporal characteristics detection and attribution analysis of hydrological time-series variation in the seagoing river of southern China under environmental change. Acta Geophys. 66(5), 1151–1170 (2018).ADS 
    Article 

    Google Scholar 
    Zhang, R., Liu, J., Mao, G. & Wang, L. Flow regime alterations of upper Heihe River based on improved RVA. Arid Zone Res. 38(01), 29–38 (2021).
    Google Scholar 
    Sun, Y. & Wang, X. Changes in runoff and driving force analysis in the key section of the Yellow River diversion project. J. Hydroecol. 41(06), 19–26 (2020).
    Google Scholar 
    Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37(3), 701–708 (2001).ADS 
    Article 

    Google Scholar 
    Fu, B. Calculation of soil evaporation. Acta Meteor. Sin. 02(1981), 226–236 (1981).
    Google Scholar 
    Liu, J., Zhang, Q., Singh, V. P. & Shi, P. Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol. 545(2016), 145–162 (2016).
    Google Scholar 
    Yang, D., Zhang, S. & Xu, X. Attribution analysis for runoff decline in Yellow River Basin during past fifty years based on Budyko hypothesis. Sci. Sinica 45(10), 1024–1034 (2015).
    Google Scholar 
    Schreiber, P. Ber die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Meteorol. Z. 21, 441–452 (1904).Budyko, M. Evaporation under Natural Conditions (Gidrometeorizdat, Leningrad, Russia, 1948).Pike, J. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 2, 116–123 (1964).Ol’dekop, E. On evaporation from the surface of river basins. Trans. Meteorol. Obs. 4, 200 (1911). More