More stories

  • in

    Morphological variability of Carex buekii (Cyperaceae) as a function of soil conditions: a case study of the Central European populations

    Mal, T. K. & Lovett-Doust, J. Phenotypic plasticity in vegetative and reproductive traits in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. Am. J. Bot. 92, 819–825 (2005).PubMed 
    Article 

    Google Scholar 
    Wang, S., Li, L. & Zhou, D.-W. Morphological plasticity in response to population density varies with soil conditions and growth stage in Abutilon theophrasti (Malvaceae). Plant Ecol. 218, 785–797 (2017).Article 

    Google Scholar 
    Eid, E. M., Shaltout, K. H., Al-Sodany, Y. M., Haroun, S. A. & Jensen, K. A comparison of the functional traits of Phragmites australis in Lake Burullus (a Ramsar site in Egypt): Young vs. old populations over the nutrient availability gradient. Ecol. Eng. 166, 106244 (2021).Article 

    Google Scholar 
    Hassan, M. O. et al. Habitat variations affect morphological, reproductive and some metabolic traits of Mediterranean Centaurea glomerata Vahl populations. Heliyon 6, e04173 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Więcław, H. Within-species variation among populations of the Carex flava complex as a function of habitat conditions. Plant Ecol. Divers. 10, 443–451 (2017).Article 

    Google Scholar 
    MacLeod, N. Phylogenetic signals in morphometric data. In Morphology, Shape and Phylogeny (eds MacLeod, N. & Forey, P.) 100–138 (Taylor & Francis, Routledge, 2002).Chapter 

    Google Scholar 
    Gratani, L. Plant phenotypic plasticity in response to environmental factors. Adv. Bot. 2014, 208747 (2014).
    Google Scholar 
    Koopman, J. et al. Global distribution of Carex buekii (Cyperaceae) reappraised. Phytotaxa 358, 139–161 (2018).Article 

    Google Scholar 
    Egorova, T. V. The Sedges (Carex L.) of Russia and Adjacent States (Within the Limits of the Former USSR) (St.-Petersburg State Chemical-Pharmaceutical Academy, St.-Petersburg, 1999).
    Google Scholar 
    Burkart, M. River corridor plants (Stromtalpflanzen) in Central European lowland: A review of a poorly understood plant distribution pattern: River corridor plants. Glob. Ecol. Biogeogr. 10, 449–468 (2001).Article 

    Google Scholar 
    Więcław, H. et al. Ecology, threats and conservation status of Carex buekii (Cyperaceae) in Central Europe. Sci. Rep. 9, 11162 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nobis, A. & Skórka, P. River corridor plants revisited: What drives their unique distribution patterns?. Plant Biosyst. 150, 244–253 (2016).Article 

    Google Scholar 
    Spink, A., Sparks, R. E., Van Oorschot, M. & Verhoeven, J. T. A. Nutrient dynamics of large river floodplains. Regul. Rivers. Res. Manag. 14, 203–216 (1998).Article 

    Google Scholar 
    Myśliwy, M. Diversity and environmental variability of riparian tall herb fringe communities of the order Convolvuletalia sepium in Polish river valleys. Monographiae Botaniceae 108, 1–129 (2019).Article 

    Google Scholar 
    Fischer, W. Die Stromtalpflanzen Brandenburgs. Unter Havel. Naturkundliche Berichte 5, 4–13 (1996).
    Google Scholar 
    Thiers, B. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. Available from: http://sweetgum.nybg.org/science/ih/ (assessed: 08 March 2022).Methods of Soil Analysis: Part 3 Chemical Methods. (Soil Science Society of America, American Society of Agronomy, 1996). https://doi.org/10.2136/sssabookser5.3.StatSoft Inc. Electronic Statistics Textbook. (Tulsa, OK: StatSoft, 2013).ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). (Ithaca NY, 2002).Xu, X. et al. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Front. Plant Sci. 11, 904 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sardans, J. & Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 10, 419 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Broadley, M. R. et al. Phylogenetic variation in the shoot mineral concentration of angiosperms. J. Exp. Bot. 55, 321–336 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Watanabe, T. et al. Evolutionary control of leaf element composition in plants. New Phytol. 174, 516–523 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Konings, H., Koot, E. & Wolf, A. T. Growth characteristics, nutrient allocation and photosynthesis of Carex species from floating fens. Oecologia 80, 111–121 (1989).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Busch, J. Characteristic values of key ecophysiological parameters in the genus Carex. Flora 196, 405–430 (2001).Article 

    Google Scholar 
    Zhang, D. et al. Effect of hydrological fluctuation on nutrient stoichiometry and trade-offs of Carex schmidtii. Ecol. Ind. 120, 106924 (2021).Article 
    CAS 

    Google Scholar 
    Zhang, D. et al. Growth and physiological responses of Carex schmidtii to water-level fluctuation. Hydrobiologia 847(3), 967–981 (2020).CAS 
    Article 

    Google Scholar 
    Yan, H. et al. Growth and physiological responses to water depths in Carex schmidtii Meinsh. PLoS ONE 10(5), e0128176 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Luo, W. & Xie, Y. Growth and morphological responses to water level and nutrient supply in three emergent macrophyte species. Hydrobiologia 624(1), 151–160 (2009).CAS 
    Article 

    Google Scholar 
    Lu, Y. Growth and morphological responses to water level variations in two Carex species from Sanjiang Plain, China. Afr. J. Agric. Res. 6, 28–34 (2011).
    Google Scholar 
    Cao, Y. et al. Flooding influences on the C, N and P stoichiometry in terrestrial ecosystems: A meta-analysis. CATENA 215, 106287 (2022).CAS 
    Article 

    Google Scholar 
    Sardans, T., Peñuelas, T., Prieto, P. & Estiarte, M. Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland. Plant Soil 306, 261–271 (2007).Article 
    CAS 

    Google Scholar 
    Flórez-Flórez, C. P., León-Peláez, J. D., Osorio-Vega, N. W. & Restrepo-Llano, M. F. Nutrient dynamics in forest plantations of Azadirachta indica (Meliaceae) established for restoration of degraded lands in Colombia. Rev. Biol. Trop. 61, 515–529 (2013).PubMed 
    Article 

    Google Scholar 
    Jordan-Meille, L. & Pellerin, S. Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 265, 75–92 (2004).CAS 
    Article 

    Google Scholar 
    Gerardeaux, E., Jordan-Meille, L., Constantin, J., Pellerin, S. & Dingkuhn, M. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum L. Environ. Exp. Bot. 67, 451–459 (2010).CAS 
    Article 

    Google Scholar 
    Bailey, J. S. & Laidlaw, A. S. Growth and development of white clover (Trifolium repens L.) as influenced by P and K nutrition. Ann. Bot. 81, 783–786 (1998).Article 

    Google Scholar 
    White, P. Relationship between the development and growth of rye (Secale cereale L.) and the potassium concentration in solution. Ann. Bot. 72, 349–358 (1993).CAS 
    Article 

    Google Scholar 
    Pujos, A. & Morard, P. Effects of potassium deficiency on tomato growth and mineral nutrition at the early production stage. Plant Soil 189, 189–196 (1997).CAS 
    Article 

    Google Scholar 
    Osakabe, Y. et al. Osmotic stress responses and plant growth controlled by potassium transporters in Arabidopsis. Plant Cell 25, 609–624 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lebaudy, A. et al. Plant adaptation to fluctuating environment and biomass production are strongly dependent on guard cell potassium channels. Proc. Natl. Acad. Sci. 105, 5271–5276 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tränkner, M., Tavakol, E. & Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plantarum 163, 414–431 (2018).Article 
    CAS 

    Google Scholar 
    Du, Q. et al. Effect of potassium deficiency on root growth and nutrient uptake in maize (Zea mays L.). Agric. Sci. 8, 1263–1277 (2017).CAS 

    Google Scholar 
    Hu, W., Coomer, T. D., Loka, D. A., Oosterhuis, D. M. & Zhou, Z. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiol. Biochem. 115, 408–417 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reisch, C., Meier, S., Schmid, C. & Bartelheimer, M. Clonal diversity and genetic variation of the sedge Carex nigra in an alpine fen depend on soil nutrients. PeerJ 8, e8887 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lenssen, J. P. M., Menting, F. B. J. & Van der Putten, W. H. Plant responses to simultaneous stress of waterlogging and shade: Amplified or hierarchical effects?. New Phytol. 157, 281–290 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Z. G. & Li, Z. Q. Effects of different grazing regimes on the morphological traits of Carex duriuscula on the Inner Mongolia steppe, China. N. Z. J. Agric. Res. 53(1), 5–12 (2010).Article 

    Google Scholar 
    Więcław, H. et al. Morphological variability and genetic diversity in Carex buxbaumii and Carex hartmaniorum (Cyperaceae) populations. PeerJ 9, e11372 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Więcław, H., Kurnicki, B., Bihun, M., Białecka, B. & Koopman, J. Carex section Racemosae (Cyperaceae) in Europe: Morphological diversity, taxonomy and phylogenetic relationships. Bot. J. Linn. Soc. 183, 124–145 (2017).
    Google Scholar 
    Jiménez-Mejías, P., Benítez-Benítez, C., Fernández-Mazuecos, M. & Martín-Bravo, S. Cut from the same cloth: The convergent evolution of dwarf morphotypes of the Carex flava group (Cyperaceae) in Circum-Mediterranean mountains. PLoS ONE 12(12), e0189769 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Więcław, H. Carex flava agg. (section Ceratocystis, Cyperaceae) in Poland: taxonomy, morphological variation, and soil conditions. Biodivers. Res. Conserv. 33, 3–51 (2014).Article 

    Google Scholar 
    Kalela, A. Systematische und Pflanzengeographische Studien an der Carex-Subsektion Alpinae Kalela. Annales Botanici Societatis Zoologicae-Botanicae Fennicae 19, 1–218 (1944).
    Google Scholar 
    Wallnöfer, B. Uber Carex melanostachya, C. norvegica, C. cespitosa und C. hartmanii in Südtirol. Gredleriana 4, 413–418 (2004).
    Google Scholar 
    Gebauer, S., Röser, M. & Hoffmann, M. H. Molecular phylogeny of the species-rich Carex sect. Racemosae (Cyperaceae) based on four nuclear and chloroplast markers. Syst. Bot. 40, 433–447 (2015).Article 

    Google Scholar 
    Molina, A., Acedo, C. & Llamas, F. Taxonomy and new taxa in Eurasian Carex (Section Phaestoglochin, Cyperaceae). Syst. Bot. 33, 237–250 (2008).Article 

    Google Scholar 
    Molina, A., Acedo, C. & Llamas, F. Taxonomy and new taxa of the Carex divulsa aggregate in Eurasia (section Phaestoglochin, Cyperaceae). Botan. J. Linn. Soc. 156, 385–409 (2008).Article 

    Google Scholar 
    Jiménez-Mejías, P. & Luceño, M. Cyperaceae. in Euro+Med. etc. Plantbase – the information resource for Euro-Mediterranean plant diversity. Available from: http://www.emplantbase.org/home.html (accessed 07 January 2022). (eds Greuter, W. & Raab-Straube, E. von) (2011).Míguez, M., Martín-Bravo, S. & Jiménez-Mejías, P. Reconciling morphology and phylogeny allows an integrative taxonomic revision of the giant sedges of Carex section Rhynchocystis (Cyperaceae). Botan. J. Linn. Soc. 188, 34–58 (2018).Article 

    Google Scholar 
    Kaplan, Z. et al. Distributions of vascular plants in the Czech Republic. Preslia 93, 255–304 (2021).Article 

    Google Scholar  More

  • in

    Neuron numbers link innovativeness with both absolute and relative brain size in birds

    Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proc. Natl Acad. Sci. USA 107, 21582–21586 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jerison, H. J. Animal intelligence as encephalization. Phil. Trans. R. Soc. Lond. B 308, 21–35 (1985).CAS 
    Article 

    Google Scholar 
    Roth, G. & Dicke, U. Evolution of the brain and intelligence. Trends Cogn. Sci. 9, 250–257 (2005).PubMed 
    Article 

    Google Scholar 
    Lefebvre, L., Whitle, P., Lascaris, E. & Finkelstein, A. Feeding innovations and forebrain size in birds. Anim. Behav. 53, 549–560 (1997).Article 

    Google Scholar 
    Overington, S. E., Morand-Ferron, J., Boogert, N. J. & Lefebvre, L. Technical innovations drive the relationship between innovativeness and residual brain size in birds. Anim. Behav. 78, 1001–1010 (2009).Article 

    Google Scholar 
    Reader, S. M., Hager, Y. & Laland, K. N. The evolution of primate general and cultural intelligence. Phil. Trans. R. Soc. B 366, 1017–1027 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E. M. & Holekamp, K. E. Brain size predicts problem-solving ability in mammalian carnivores. Proc Natl Acad. Sci. USA 113, 2532–2537 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).PubMed 
    Article 

    Google Scholar 
    van Woerden, J. T., van Schaik, C. P. & Isler, K. Effects of seasonality on brain size evolution: evidence from Strepsirrhine primates. Am. Nat. 176, 758–767 (2010).PubMed 
    Article 

    Google Scholar 
    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).PubMed 
    Article 

    Google Scholar 
    Herculano-Houzel, S. Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Ann. NY Acad. Sci. 1225, 191–199 (2011).PubMed 
    Article 

    Google Scholar 
    Logan, C. J. et al. Beyond brain size: uncovering the neural correlates of behavioral and cognitive specialization. Comp. Cogn. Behav. Rev. 13, 55–89 (2018).Article 

    Google Scholar 
    Jerison, H. Evolution of the Brain and Intelligence (Academic Press, 1973).Herculano-Houzel, S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 16, 1–7 (2017).Article 

    Google Scholar 
    Van Schaik, C. P., Triki, Z., Bshary, R. & Heldstab, S. A. A farewell to the encephalization quotient: a new brain size measure for comparative primate cognition. Brain Behav. Evol. 96, 1–12 (2021).PubMed 
    Article 

    Google Scholar 
    Striedter, G. F. Principles of Brain Evolution (Sinauer Associates, 2005).
    Google Scholar 
    MacLean, E. L. et al. The evolution of self-control. Proc. Natl Acad. Sci. USA 111, E2140–E2148 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matějů, J. et al. Absolute, not relative brain size correlates with sociality in ground squirrels. Proc. R. Soc. B 283, 20152725 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Deaner, R. O., Isler, K., Burkart, J. & Van Schaik, C. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol. 70, 115–124 (2007).PubMed 
    Article 

    Google Scholar 
    Smaers, J. B., Dechmann, D. K. N., Goswami, A., Soligo, C. & Safi, K. Comparative analyses of evolutionary rates reveal different pathways to encephalization in bats, carnivorans, and primates. Proc. Natl Acad. Sci. USA 109, 18006–18011 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, eabe2101 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Němec, P. & Osten, P. The evolution of brain structure captured in stereotyped cell count and cell type distributions. Curr. Opin. Neurobiol. 60, 176–183 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kverková, K. et al. The evolution of brain neuron numbers in amniotes. Proc. Natl Acad. Sci. USA 119, e2121624119 (2022).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Iwaniuk, A. N. & Hurd, P. L. The evolution of cerebrotypes in birds. Brain Behav. Evol. 65, 215–230 (2005).PubMed 
    Article 

    Google Scholar 
    Timmermans, S., Lefebvre, L., Boire, D. & Basu, P. Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain Behav. Evol. 56, 196–203 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sayol, F., Lefebvre, L. & Sol, D. Relative brain size and its relation with the associative pallium in birds. Brain Behav. Evol. 87, 69–77 (2016).PubMed 
    Article 

    Google Scholar 
    Healy, K. et al. Ecology and mode-of-life explain lifespan variation in birds and mammals. Proc. R. Soc. B 281, 20140298 (2014).Deaner, R. O., Barton, R. A. & van Schaik, C. P. in Primate Life Histories and Socioecology (eds Kappeler, P. M. & Pereira, M. E.) 233–265 (Univ. of Chicago Press, 2003).Sol, D., Sayol, F., Ducatez, S. & Lefebvre, L. The life-history basis of behavioural innovations. Phil. Trans. R. Soc. B 371, 20150187 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dukas, R. Evolutionary biology of animal cognition. Ann. Rev. Ecol. Evol. Syst. 35, 347–374 (2004).Article 

    Google Scholar 
    Ricklefs, R. E. The cognitive face of life histories. Wilson Bull. 116, 119–133 (2004).Article 

    Google Scholar 
    Martin, T. E., Oteyza, J. C., Boyce, A. J., Lloyd, P. & Ton, R. Adult mortality probability and nest predation rates explain parental effort in warming eggs with consequences for embryonic development time. Am. Nat. 186, 223–236 (2015).PubMed 
    Article 

    Google Scholar 
    Unzeta, M., Martin, T. E. & Sol, D. Daily nest predation rates decrease with body size in passerine birds. Am. Nat. 196, 743–754 (2020).PubMed 
    Article 

    Google Scholar 
    Charvet, C. J. & Striedter, G. F. Developmental modes and developmental mechanisms can channel brain evolution. Front. Neuroanat. 5, 4 (2011).Finlay, B. L. & Darlington, R. B. Linked regularities in the development and evolution of mammalian brains. Science 268, 1578–1584 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herculano-Houzel, S. Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 25, 2518–2521 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massen, J. J. M. et al. Brain size and neuron numbers drive differences in yawn duration across mammals and birds. Commun. Biol. 4, 1–10 (2021).Article 

    Google Scholar 
    Ramsey, G., Bastian, M. L. & Schaik, C. Van Animal innovation defined and operationalized. Behav. Brain Sci. 30, 393–437 (2007).PubMed 
    Article 

    Google Scholar 
    Lefebvre, L. A global database of feeding innovations in birds. Wilson J. Ornithol. 132, 803–809 (2021).Article 

    Google Scholar 
    Barton, R. A. Embodied cognitive evolution and the cerebellum. Phil. Trans. R. Soc. B 367, 2097–2107 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez-Ibáñez, C., Iwaniuk, A. N. & Wylie, D. R. Parrots have evolved a primate-like telencephalic–midbrain–cerebellar circuit. Sci. Rep. 8, 9960 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brieuc, M. S. O. O., Waters, C. D., Drinan, D. P. & Naish, K. A. A practical introduction to random forest for genetic association studies in ecology and evolution. Mol. Ecol. Res. 18, 755–766 (2018).Article 

    Google Scholar 
    Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Güntürkün, O., Ströckens, F., Scarf, D. & Colombo, M. Apes, feathered apes, and pigeons: differences and similarities. Curr. Opin. Behav. Sci. 16, 35–40 (2017).Article 

    Google Scholar 
    Ströckens, F. et al. High associative neuron numbers could drive cognitive performance in corvid species. J. Comp. Neurol. 530, 1588–1605 (2022).PubMed 
    Article 

    Google Scholar 
    Shanahan, M., Bingman, V. P., Shimizu, T., Wild, M. & Güntürkün, O. Large-scale network organisation in the avian forebrain: a connectivity matrix and theoretical analysis. Front. Comput. Neurosci. 7, 89 (2013).Emery, N. J. Cognitive ornithology: the evolution of avian intelligence. Phil. Trans. R. Soc. B 361, 23–43 (2006).PubMed 
    Article 

    Google Scholar 
    Lambert, M. L., Jacobs, I., Osvath, M. & von Bayern, A. M. P. Birds of a feather? Parrot and corvid cognition compared. Behaviour 156, 505–594 (2019).Article 

    Google Scholar 
    Ksepka, D. T. et al. Tempo and pattern of avian brain size evolution. Curr. Biol. 30, 2026–2036 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herculano-Houzel, S., Manger, P. R. & Kaas, J. H. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front. Neuroanat. 8, 77 (2014).Smaers, J. B., Mongle, C. S., Safi, K. & Dechmann, D. K. N. Allometry, evolution and development of neocortex size in mammals. Prog. Brain Res. 250, 83–107 (2019).PubMed 
    Article 

    Google Scholar 
    Cárdenas, A. & Borrell, V. Molecular and cellular evolution of corticogenesis in amniotes. Cell Mol. Life Sci. 77, 435–1460 (2020).Article 
    CAS 

    Google Scholar 
    García-Moreno, F. & Molnár, Z. Variations of telencephalic development that paved the way for neocortical evolution. Prog. Neurobiol. 194, 101865 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Charvet, C. J. & Striedter, G. F. Developmental basis for telencephalon expansion in waterfowl: enlargement prior to neurogenesis. Proc. R. Soc. B 276, 3421–3427 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Striedter, G. F. & Charvet, C. J. Developmental origins of species differences in telencephalon and tectum size: morphometric comparisons between a parakeet (Melopsittacus undulatus) and a quail (Colinus virgianus). J. Comp. Neurol. 507, 1663–1675 (2008).PubMed 
    Article 

    Google Scholar 
    Sibly, R. M. & Brown, J. H. Effects of body size and lifestyle on evolution of mammal life histories. Proc. Natl Acad. Sci. USA 104, 17707–17712 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uomini, N., Fairlie, J., Gray, R. D. & Griesser, M. Extended parenting and the evolution of cognition. Phil. Trans. R. Soc. Lond. B 375, 20190495 (2020).Article 

    Google Scholar 
    Reiner, A. et al. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473, 377–414 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mullen, R. J., Buck, C. R. & Smith, A. M. NeuN, a neuronal specific nuclear protein in vertebrates. Development 116, 201–211 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mezey, S. et al. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J. Comp. Neurol. 520, 100–116 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Ducatez, S. & Lefebvre, L. Patterns of research effort in birds. PLoS ONE 9, e89955 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 2463 (2020).Cooney, C. R. et al. Ecology and allometry predict the evolution of avian developmental durations. Nat. Commun. 11, 2383 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Botelho, J. F. & Faunes, M. The evolution of developmental modes in the new avian phylogenetic tree. Evol. Dev. 17, 221–223 (2015).PubMed 
    Article 

    Google Scholar 
    Bürkner, P.-C. Brms: an R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berk, R. A. Statistical Learning from a Regression Perspective (Springer International, 2017).Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).
    Google Scholar 
    Lleonart, J., Salat, J. & Torres, G. J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 205, 85–93 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Torres, C. R., Norell, M. A. & Clarke, J. A. Bird neurocranial and body mass evolution across the end-Cretaceous mass extinction: the avian brain shape left other dinosaurs behind. Sci. Adv. 7, eabg7099 (2021). More

  • in

    First tagging data on large Atlantic bluefin tuna returning to Nordic waters suggest repeated behaviour and skipped spawning

    Satellite tracking has yielded key information about the movements and behaviour of marine vertebrates in ways that were previously logistically impossible34. In the current study, we tagged the first 18 angler-caught ABFT in Skagerrak, and tracked their movements for up to one year. Despite the majority of tags detaching prematurely, our data provides new insights regarding the migration behaviour and habitat use of this species, both locally within the Nordic region and more widely throughout the northeast Atlantic and western Mediterranean Sea. Most fish (N = 9) left Skagerrak via the Norwegian Trench, heading north before exiting into the Atlantic. In addition, the two tags which remained deployed for approximately one full year showed a return migration into the Skagerrak from the northern North Sea and southern Norwegian Sea regions, re-entering north of the British Isles and through the Norwegian Trench. No fish exited or re-entered through the English Channel or the southern North Sea. These observations of entry/exit from the Skagerrak are similar to migration behaviour inferred from historical commercial fishery data in the region during the 1950s–1960s16,19. These historical records also demonstrated that some individuals migrated from the southern Norwegian Sea into the Skagerrak, Kattegat and Øresund, before leaving the area several weeks later, potentially indicating exploratory feeding on herring and mackerel, abundant in the area during this time of year. Our new tagging results confirm this behaviour among at least some of the ABFT migrating to these areas.The migration patterns revealed by our tagging study exposes tuna entering and exiting the Skagerrak, Kattegat and Øresund to targeted exploitation by regional commercial fishing vessels. Presently, these vessels catch ABFT under a Norwegian quota (315 tonnes in 2021) but additional countries in the region may acquire a quota in the future. Moreover, the relatively narrow size distribution of tunas caught indicates that this migratory behaviour may only be performed by a limited number of year classes35, meaning that the continued long-term migration of ABFT to these waters is highly dependent on recruitment and survival of younger year classes. These younger year classes, perhaps once they reach a certain size, could then also undertake a migration to Skagerrak–Kattegat–Øresund. However, the combination of local exploitation pressures, and the presently limited number of year classes found in Skagerrak could result in ABFT migrating into Skagerrak–Kattegat–Øresund being a short-lived phenomenon if those year classes are subject to a large yearly fishing mortality (both regionally within the Nordic region, and more generally throughout the population range) and no younger year classes appear. Additionally, currently there is no scientifically-derived estimates of ABFT abundance for this region. We suggest to monitor the size distribution and abundance of ABFT in Scandinavian waters in the coming years to (1) confirm that visiting ABFT consist of only a few year classes, and clarify if younger year classes begin to appear, (2) evaluate how the numbers migrating to the region annually may change over time (e.g., under different levels of exploitation, or in relation to environmental factors).While most of our tagged ABFT went north after exiting the Skagerrak, one individual turned south into the south-central North Sea before eventually leaving through the northern part of the North Sea. The region to which it migrated in the North Sea is congruent with earlier commercial catches and sightings in this region, including the Dogger Bank vicinity15,16. Although the exact routes that tagged individuals followed were not identical, no individuals used the shortest route to reach the Atlantic: from the Skagerrak through the North Sea to the English Channel, and further south to the Bay of Biscay and other southern regions. Migration along a northerly route probably reflects a trade-off between the potential for higher energetic gain from more abundant food and higher energy resources, and the longer migration distance. This could suggest that ABFT either follow the food, or simply follow the same route by which they came through learned behaviour.Three tags remained attached long enough to explore long-term migration patterns and showed widely different behaviours. One fish crossed the Atlantic and utilized areas near the Grand Banks, crossing the ICCAT management boundary between the Western and Eastern stocks of ABFT (the 45° meridian), while the other two fish remained in the eastern Atlantic. The area west of Ireland, the Bay of Biscay and the area west of Portugal appear to be important feeding areas when the fish are not in Skagerrak or the Norwegian Sea. These results reflect interconnected seascapes for foraging through the NE Atlantic. Connecting foraging grounds off Ireland and the Bay of Biscay, which was previously suggested by Ref.24 is further corroborated by one of the fish tagged in this study, which passed over the Irish continental shelf when returning to Skagerrak in 2018.Depth and temperature useWithin ICES Area 3a, ABFT were predominantly roaming the upper water column, with most observations in the upper 100 m. However, some ABFT did dive to much deeper depths, with the maximum depth recorded being 520 m, showing that they can use the majority of the depth range available in the area (max. depth in the Norwegian Trench is app. 725 m, but represents a relatively small area). The behaviour likely reflects foraging, as ABFT were also observed by both the scientific tagging crews and the anglers to actively chase prey fish, like garfish and mackerel, at the surface during the tagging operations. The temperature ranges recorded varied between 7 and 17 °C. Both the depths and temperatures recorded are well within the thermal and depth limits reported in the literature for ABFT36.SpawningABFT have been shown to successfully spawn at temperatures above 20 °C at night30,31, and to display a distinct dive pattern thought to represent courtship and spawning behaviour29. When matching this described behaviour with the data from fish 34859 in the Mediterranean Sea, almost identical behavioural patterns were detected on specific days (Fig. 4). In total, seven days aligned with temperatures above 20 °C and oscillatory movement past the thermocline. All detected spawning events occurred west of Sardinia, where fishing for mature ABFT has been conducted for centuries37.In light of the recently proposed third spawning area in the Slope Sea of northeast United States38 and other proposed areas outside the Mediterranean19, it is relevant to look for similar temperature and behavioural patterns for fish 34840, which did not enter the Mediterranean Sea, and instead stayed in the eastern Atlantic. We found that this fish did not display a similar oscillatory behaviour, and the temperature experienced during the alleged spawning period (June–July) was above 20 °C only once (20.4 °C on 11 July). In this period, the fish was on the continental shelf west of Ireland, likely feeding and not spawning. Due to the size of the fish (247 cm CFL), reflecting a likely age of 14–16 years (matching the strong 2003 cohort), and the assumption that all eastern ABFT above five years and western ABFT above eight years are mature, we find it unlikely that this fish was immature. As such, these observations may suggest that this fish skipped spawning in 2018. Fish 34861 surfaced on 25 April and the tag was not recovered. The transmitted data does not allow for a detailed analysis of potential spawning behaviour for this fish. It did however, display 6 days where maximum temperatures from the transmitted dataset reached 20 °C (observations from 15. March to 20 April, with temperatures ranging from 20 to 20.6 °C). Given the lack of detailed behaviour and the fact that this time is well outside the normal spawning time for Mediterranean ABFT, we propose that this ABFT did not spawn in that period. However, the documentation of spawning depends on the general applicability of the temperature limits and nightly spawning behaviour30,31. More studies documenting spawning behaviour will be needed to corroborate if this pattern is consistent among locations and stocks. We also suggest more studies with longer lasting tags to elucidate if skipped spawning is a common behaviour and if fish skip one or more consecutive spawning seasons. Skipped spawning has been demonstrated in many fish species, including both freshwater and marine fish39, and likely reflects physiological condition40. If a considerable proportion of the adult population skips spawning every season, current population models, which assume annual spawning by all adult fish, should be modified to more accurately reflect population egg production and reproductive output. Current population modelling may be even further challenged if the proportion of adults that skip spawning varies over time, perhaps depending on environmental conditions. However, we acknowledge that only one of two fish followed through the spawning season appeared to skip spawning, and therefore caution against broad general interpretations. More studies are needed to verify that skipped spawning is a common behaviour, and if so, to estimate just how common that behaviour is.
    Return migrationIn exploited fish populations, large adults are hypothesized to be important components of the spawning population because they contribute more to recruitment than smaller individuals due to a variety of maternal effects including higher fecundity, better quality of eggs and differences in spawning behaviour (e.g. time, location)41. Although such effects remain to be documented for ABFT, it may be prudent to conserve these large individuals as a precautionary measure, to maximize their potential contributions to reproduction and recruitment.In order to protect these fish, new knowledge about their movements and distribution is required. Data from ABFT deployed with long-term electronic tags suggests that after spawning in the Gulf of Mexico, the fish return to the feeding grounds where they were initially tagged, indicating a return feeding migration7. The same has been observed more recently from ABFT tagged in Ireland24, and other large highly migratory fish species (e.g., swordfish, Xiphias gladius42). In the current study, both ABFT that retained the tag for one year also returned to the same area, suggesting a similar seasonal return feeding migration. We also note that ABFT appeared to perform recurrent visits to the Norwegian Sea, Ireland and the Bay of Biscay on their way from Nordic waters and upon their return to the latter. Hence, we hypothesize that large ABFT in Nordic waters generally return to the same feeding area the following year, given suitable habitat features (e.g., food and temperature conditions), and follow a similar migration route as they do so. More studies are nonetheless needed to confirm this hypothesis, given few long-term deployments in the current study. For a deeper understanding of behavioural repeatability, and if/when shifts in the behaviour occur, it will be necessary to follow the same fish over multiple years. Such studies would also act as a highly valuable indicator of survival, independent of stock assessment-derived mortality estimates, and could be used to estimate the local abundance of larger ABFT43. Thus, a promising avenue for future research would be to deploy long-lasting ( > 5 to 10 years) acoustic tags and use existing infrastructure from networks such as the European Tracking Network to track these large fish over the next decade44. Given that ABFT appear to return to the area annually, we suggest that Skagerrak is a promising area for the future deployment and retrieval of PSATs and other long-lasting tags, because of the relatively easy access to locate and recover detached floating tags, given that the area is reachable from land within a few hours by boat. Retrieving PSATs that have detached from animals enables scientists to access full datasets (in the present case with 5 s resolution, rather than the much coarser and variable resolution typically transmitted). This much higher resolution enables much more detailed analysis, as shown in our analysis of spawning behaviour. Additionally, floating Pop-off Data Storage Tags (PDST) tags may also be a prominent and less costly avenue forward as the geographical region is densely populated and contains many sandy beaches and highly visited coastal areas, giving ample opportunity for tag recovery. Previous studies with floating DSTs in this area have shown remarkably high return rates45.The evidence that ABFT have returned to Nordic waters following many years of rarity or absence, and our findings that at least some individuals return to the same site for feeding in consecutive years, raises new questions about the mechanisms that underlie habitat discovery—or the return to previously used habitats—by highly migratory fish species. How individuals or entire schools have discovered this region again as a suitable feeding area after an absence of more than 50 years is unclear. In light of the positive stock development in the last 1–2 decades22 and modelling studies showing suitable habitat in the area46, density-dependent foraging and exploratory behaviour for new feeding areas may be a prominent hypothesis for their return, potentially accompanied by complex social learning interactions among individuals within the population47,48. New tagging data which documents the use of new or formerly occupied habitats will be essential for understanding these processes and how they might be affected by human pressures (e.g., exploitation, climate change). Such data can help to parameterize and validate advanced conceptual models of group movement behaviour, collective memory and habitat use49,50,51, as well as to inform modern stock assessment models used for management.
    Tag deploymentFollowing recommendations from experienced taggers previously operating in the Mediterranean, most fish were tagged in the water alongside the boat. All these tags surfaced prematurely, while two (out of three) tags deployed on tunas brought on board the tagging boat surfaced after approximately one year. Depending on the conditions at sea, tagging along the side of the boat may not be as precise as on-board tagging, and the quality of the tag anchoring cannot be properly assessed. We therefore suggest that tagging on-board a boat is superior to tagging in the water alongside the boat for the deployment of long-lasting tags. This was also suggested in Ref.24. Furthermore, on-board tagging makes biological sampling fast and feasible, as opposed to tagging in the water alongside the boat. However, our advice is limited by a small sample size, making it difficult to draw formal conclusions; more studies are necessary to assess the best method to tag large ABFT. More

  • in

    Enhanced leaf turnover and nitrogen recycling sustain CO2 fertilization effect on tree-ring growth

    Cole, C. T., Anderson, J. E., Lindroth, R. L. & Waller, D. M. Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides). Glob. Change Biol. 16, 2186–2197 (2010).Article 

    Google Scholar 
    Urrutia-Jalabert, R. et al. Increased water use efficiency but contrasting tree growth patterns in Fitzroya cupressoides forests of southern Chile during recent decades. J. Geophys. Res. Biogeosci. 120, 2505–2524 (2015).Article 

    Google Scholar 
    Cienciala, E. et al. Increased spruce tree growth in Central Europe since 1960s. Sci. Total Environ. 619–620, 1637–1647 (2018).PubMed 
    Article 

    Google Scholar 
    Mathias, J. M. & Thomas, R. B. Disentangling the effects of acidic air pollution, atmospheric CO2, and climate change on recent growth of red spruce trees in the Central Appalachian Mountains. Glob. Change Biol. 24, 3938–3953 (2018).Article 

    Google Scholar 
    Körner, C. et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309, 1360–1362 (2005).PubMed 
    Article 

    Google Scholar 
    Klein, T. et al. Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J. Ecol. 104, 1720–1733 (2016).CAS 
    Article 

    Google Scholar 
    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).Article 

    Google Scholar 
    Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20, 597–608 (2011).Article 

    Google Scholar 
    IPCC. Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Dong, N. et al. Rising CO2 and warming reduce global canopy demand for nitrogen. New Phytol. https://doi.org/10.1111/nph.18076 (2022).Finzi, A. C., Allen, A. S., DeLucia, E. H., Ellsworth, D. S. & Schlesinger, W. H. Forest litter production, chemistry, and decomposition following two years of free-air CO2 enrichment. Ecology 82, 470–484 (2001).
    Google Scholar 
    Liberloo, M. et al. Elevated CO2 concentration, fertilization and their interaction: growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiol. 25, 179–189 (2005).PubMed 
    Article 

    Google Scholar 
    Hungate, B. A. et al. Nitrogen cycling during seven years of atmospheric CO2 enrichment in a scrub oak woodland. Ecology 87, 26–40 (2006).PubMed 
    Article 

    Google Scholar 
    Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).PubMed 
    Article 

    Google Scholar 
    Liberloo, M. et al. Coppicing shifts CO2 stimulation of poplar productivity to above-ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytol. 182, 331–346 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCarthy, H. R. et al. Re-assessment of plant carbon dynamics at the Duke free-air CO2 enrichment site: interactions of atmospheric [CO2] with nitrogen and water availability over stand development. New Phytol. 185, 514–528 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dawes, M. A. et al. Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. J. Ecol. 99, 383–394 (2011).
    Google Scholar 
    Luo, Y. Q. et al. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54, 731–739 (2004).Article 

    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luo, Y. Q., Hui, D. F. & Zhang, D. Q. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87, 53–63 (2006).PubMed 
    Article 

    Google Scholar 
    Kikuzawa, K. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am. Nat. 138, 1250–1263 (1991).Article 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luo, T. X. et al. Summer solstice marks a seasonal shift in temperature sensitivity of stem growth and nitrogen-use efficiency in cold-limited forests. Agric. For. Meteorol. 248, 469–478 (2018).Article 

    Google Scholar 
    Rossi, S. et al. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol. 170, 301–310 (2006).PubMed 
    Article 

    Google Scholar 
    Bauerle, W. L. et al. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proc. Natl Acad. Sci. USA 109, 8612–8617 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jarvis, P. & Linder, S. Constraints to growth of boreal forests. Nature 405, 904–905 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sullivan, P. F., Ellison, S. B., McNown, R. W., Brownlee, A. H. & Sveinbjörnsson, B. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska. Ecology 96, 716–727 (2015).PubMed 
    Article 

    Google Scholar 
    Dodd, A. N. et al. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309, 630–633 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, S. D. Plant responses to photoperiod. New Phytol. 181, 517–531 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chapin III, F. S., Matson, P. A. & Mooney, H. A. Principles of Terrestrial Ecosystem Ecology (Springer-Verlag, 2002).Hikosaka, K. Leaf canopy as a dynamic system: ecophysiology and optimality in leaf turnover. Ann. Bot. 95, 521–533 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, M. K. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerrieri, R. et al. Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency. Proc. Natl Acad. Sci. USA 116, 16909–16914 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mathias, J. M. & Thomas, R. B. Global tree intrinsic water use efficiency is enhanced by increased atmospheric CO2 and modulated by climate and plant functional types. Proc. Natl Acad. Sci. USA 118, e2014286118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Finzi, A. C. et al. Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc. Natl Acad. Sci. USA 104, 14014–14019 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soulé, P. T. & Knapp, P. A. Radial growth rate increases in naturally occurring ponderosa pine trees: a late-20th century CO2 fertilization effect? New Phytol. 171, 379–390 (2006).PubMed 
    Article 

    Google Scholar 
    Linares, J. C. & Camarero, J. J. From pattern to process: linking intrinsic water-use efficiency to drought-induced forest decline. Glob. Change Biol. 18, 1000–1015 (2012).Article 

    Google Scholar 
    Kagawa, A., Sugimoto, A. & Maximov, T. C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29, 1571–1584 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Epron, D. et al. Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol. 32, 776–798 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wiley, E. & Helliker, B. A re-evaluation of carbon storage in trees lends greater support for carbon limitation to growth. New Phytol. 195, 285–289 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rocha, A. V., Goulden, M. L., Dunn, A. L. & Wofsy, S. C. On linking interannual tree ring variability with observations of whole-forest CO2 flux. Glob. Change Biol. 12, 1378–1389 (2006).Article 

    Google Scholar 
    Zweifel, R. et al. Link between continuous stem radius changes and net ecosystem productivity of a subalpine Norway spruce forest in the Swiss Alps. New Phytol. 187, 819–830 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kong, G. Q., Luo, T. X., Liu, X. S., Zhang, L. & Liang, E. Y. Annual ring widths are good predictors of changes in net primary productivity of alpine Rhododendron shrubs in the Sergyemla Mountains, southeast Tibet. Plant Ecol. 213, 1843–1855 (2012).Article 

    Google Scholar 
    Teets, A. et al. Linking annual tree growth with eddy-flux measures of net ecosystem productivity across twenty years of observation in a mixed conifer forest. Agric. For. Meteorol. 249, 479–487 (2018).Article 

    Google Scholar 
    Luo, T. X., Li, M. C. & Luo, J. Seasonal variations in leaf δ13C and nitrogen associated with foliage turnover and carbon gain for a wet subalpine fir forest in the Gongga Mountains, eastern Tibetan Plateau. Ecol. Res. 26, 253–263 (2011).CAS 
    Article 

    Google Scholar 
    Kobe, R. K., Lepczyk, C. A. & Iyer, M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86, 2780–2792 (2005).Article 

    Google Scholar 
    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 82, 205–220 (2012).Article 

    Google Scholar 
    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
    Google Scholar 
    Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology: Applications in the Environmental Sciences (Kluwer Academic Publishers, 1990).Editorial Board of Vegetation Map of China, Chinese Academy of Sciences. Vegetation Atlas of China (Science Press, 2001). More

  • in

    A 26-year time series of mortality and growth of the Pacific oyster C. gigas recorded along French coasts

    Experimental designData collection took place in different sites disseminated along the mainland French coastline in sectors dedicated to Pacific oyster farming. Over the years, the number of sites monitored varied from 43 sites until 2009, to 13 between 2009 and 2013, and finally to 8 sites since 2015. Here, we focus on 13 sites (Fig. 1 & Table 1) that were almost continuously monitored since 1993. All these sites stand in tidal areas except Marseillan, located in the Mediterranean Thau lagoon, for which tidal variations are only tenuous and Men-er-Roué which is in subtidal deep-water oyster culture area in the Bay of Quiberon. Sentinel oysters were reared in plastic meshed bags fixed on iron tables, mimicking the oyster farmers practices. In Marseillan, half-grown oysters were cemented onto vertical ropes (from 1993 to 2007 and from 2015 to 2018), reared in Australian baskets (from 2008 to 2011), or put in bags fixed on iron tables (2012, 2013, 2014). As for spat oysters, they were reared in pearl-nets between 2008 and 2011 or put in bags since 2012.Fig. 1Site locations (coordinates in WGS84) along the French coastline. The site numbers refer to Table 1.Full size imageTable 1 Site identification and coordinates in WGS84.Full size tableDuring the 1993–2013 period, at the beginning of each annual campaign, one batch of diploid spat (three in 2012 and 2013) and one batch of diploid half-grown oysters were bought from an oyster farmer (i.e., wild-caught individuals) and then deployed simultaneously on all sites of the monitoring network. Here, the term “batch” designates a group of oysters born from the same reproductive event (spatfall or hatchery cohort), having experienced strictly the same zootechnical route. One batch could eventually be reared in several different bags (up to 3) deployed in the same site. Different batches were never mixed in the same bag.During the 2009–2013 period, up to three additional batches of triploid spat were bought in commercial hatcheries and included in the survey strategy (for a maximum of 6 batches of spat per site in 2012 and 2013). In 2009, the batches that were bought had already been exposed to a first wave of mortality before being followed by the network. Thus, the data collected this year should be interpreted with caution. Since 2014, the origin of spat and half-grown oysters has changed notably to better control the initial health status of oysters (no contact with the natural environment before deployment in all sites). The hatchery facility of Ifremer-Argenton now produces the sentinel diploid spat used in the monitoring network (one batch for all sites per campaign), whereas, the half-grown oysters was composed of spat reared on the same location the previous year but not monitored.Data collectionAfter the deployment of the different batches at the beginning of the campaign (seeding dates from February to April depending on the year), growth and mortality were longitudinally monitored yearly. Until 1999, annual campaigns usually ended in the winter of the year the monitoring began (i.e. in December), whereas, during the period 2000–2018, all sites frequently extended the campaign to end in the winter (February to March) of the following year.Observations were collected on each site quarterly until 2008 but then monthly to bimonthly depending on the season. At each sampling date, local operators carefully emptied each bag in separate baskets, counted the dead individuals (those with open or empty shells) and alive ones, and removed the dead individuals. Then local operators weighed all alive individuals in each basket (mass taken at the bag level, protocol mainly used between 1993 and 1998 and since 2004) and/or collected 30 individuals to individually weigh them in the laboratory (mass taken at the individual level, protocol used between 1995 and 2010 for spat and since 1996 for half-grown oysters).Data cleaningDuring the 2009–2013 period, several batches of spat were monitored per site and campaign. Some had a similar background to the batches monitored before 2009 (i.e., wild-caught spat from natural spatfall collected in the bay of Arcachon). To ensure the continuity of the time-series, we thus decided to remove all mass and mortality data of spat that did not originate from natural spatfall in the Bay of Arcachon, as well as triploid spat bought in hatcheries (see Table 2 for the origin and number of batches kept per site and campaign). To ensure that the life-cycle indicators are as comparable as possible between campaign and site (i.e. estimated in a common restricted time window), we removed data collected after December 31 of the year the monitoring began, as well as the site × campaign combinations when monitoring ended before October because the growth or mortality could still be in the exponential phase during this end-of-follow-up periods26. As the protocol of mass data collection changed over the years, we could not only use the mass data taken at the bag level or that at the individual level without greatly breaking the continuity of the time-series. We thus kept data taken at the individual level until 2008 and those taken at the bag level since 2009. We then checked for nonsense or missing data (e.g., the mass of a bag was equal to 0 or missing although they were still alive oysters in the bag), duplicated values and removed data for bags not part of the protocols or incorrectly identified. Finally, we removed site × campaign combinations for which we had fewer than four mass or mortality data because more data is necessary to study the temporal pattern of growth and mortality.Table 2 Origins of the different oyster batches retained after data cleaning.Full size tableData processing and analysisAt this point, the available data were, therefore, the number of living individuals per bag, the number of dead individuals since the last visit, the individual mass (g) of oysters (until 2008) and the total mass (g) of the living individuals per bag (since 2009).For mass data collected until 2008, we calculated the mean of the individual mass per date × site × age class combination by averaging the mass of the individuals. In other cases (mass data collected since 2009), we calculated the mean mass of individuals for each bag × date × site × age class combination by dividing the total mass of living oysters by the number of living individuals and then averaged data by date × site × age class combination. Our mass data, hereafter called mean mass data, is thus composed of the mean of the individual mass until 2008 and the mean mass of individuals since 2009.For mortality data, we could not calculate a cumulative mortality per bag × date × site × age class combination as (1-frac{number;of;alive;oysters;at;sampling;date}{number;of;oysters;at;previous;sampling;date}) because the total number of oysters (dead and alive) on a specific date often differed from the number of alive oysters at the previous date (e.g., because oysters were lost from the bags, or were sampled for complementary analyses such as pathogen detection). We thus took into account changes in oyster numbers between visits and calculated cumulative mortality using the following formula: CMt = 1 − ((1 − CMt-1) × (1 − IMt)). CMt = Cumulative mortality at time t; CMt-1 = Cumulative mortality at time t-1; IMt = Mortality rate at time t. IMt was obtained by dividing the number of dead oysters by the sum of alive and dead oysters at time t. When several bags were followed, we then averaged the cumulative mortality per date × site × age class combinations.We modeled the evolution of the mean mass and cumulative mortality data as a function of time to cope with changes in data frequency acquisition during annual monitoring campaigns. According to previous studies, annual mortality and growth curves in C. gigas follow a sigmoid curve11,26. Therefore, we fitted a logistic model, Eq. (1), and a Gompertz model, Eq. (2), which correspond to the most commonly used sigmoid models for growth and other data27, to describe Yt = mean mass (in grams) and cumulative mortality at time t.$${Y}_{t}=frac{a}{left(1+{e}^{left(-btimes left(t-cright)right)}right)}$$
    (1)
    $${Y}_{t}=atimes {e}^{left(-eleft(-btimes left(t-cright)right)right)}$$
    (2)
    These equations estimate three parameters: the upper asymptote (a), the slope at inflection (b), and the time of inflection (c).As the mean mass of half-grown individuals at the beginning of the campaign was higher than 0, we also fitted a four-parameter version of the logistic model, Eq. (3), and Gompertz model, Eq. (4), which is commonplace in the growth-curve analysis of bacterial counts27, and estimated (d) which represents the lowest asymptote of the curve. This parameter also moves the model curve vertically without changing its shape. The upper asymptote thus becomes equal to d + a.$${Y}_{t}=d+frac{a}{left(1+{e}^{left(-btimes left(t-cright)right)}right)}$$
    (3)
    $${Y}_{t}=d+atimes {e}^{left(-eleft(-btimes left(t-cright)right)right)}$$
    (4)
    Model fitting was carried out using non-linear least squares regressions (R package nls.multstrat28). This method allows running 5000 iterations of the fitting process with start parameters drawn from a uniform distribution and retaining the fit with the lowest score of Akaike Information Criterion (AIC). The sigmoid curve (i.e. logistic or Gompertz) with the lowest mean AIC of all models was selected as the best curve describing the data (see technical validation section). More

  • in

    Syntrichia caninervis adapt to mercury stress by altering submicrostructure and physiological properties in the Gurbantünggüt Desert

    Chibuike, G. U. & Obiora, S. C. Heavy metal polluted soils: Effect on plants and bioremediation methods. Appl. Environ. Soil Sci. 2014, 1–12. https://doi.org/10.1155/2014/752708 (2014).CAS 
    Article 

    Google Scholar 
    Baek, S. A. et al. Effects of heavy metals on plant growths and pigment contents in Arabidopsis thaliana. Plant Pathol. J. 28, 446–452. https://doi.org/10.5423/PPJ.NT.01.2012.0006 (2012).CAS 
    Article 

    Google Scholar 
    Gong, Z. Z. et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 63, 635–674. https://doi.org/10.1007/s11427-020-1683-x (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    Pravin, U. S., Manisha, P. T. & Ravindra, M. M. Sediment heavy metal contaminants in Vasai Creek of Mumbai: Pollution impacts. Am. Chem. Soc. 2(3), 171–180. https://doi.org/10.5923/j.chemistry.20120203.13 (2012).CAS 
    Article 

    Google Scholar 
    Kim, Y. H. et al. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Biol. 14, 1–13. https://doi.org/10.1186/1471-2229-14-13 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Mao, F. et al. The metal distribution and the change of physiological and biochemical process in soybean and mung bean plants under heavy metal stress. Int. J. Phytoremed. 20, 1113–1120. https://doi.org/10.1080/15226514.2017.1365346 (2018).CAS 
    Article 

    Google Scholar 
    Reichman, S. M., Menzies, N. W., Asher, C. J. & Mulligan, D. R. Seedling responses of four Australian tree species to toxic concentrations of manganese in solution culture. Plant Soil. 258, 341–350. https://doi.org/10.1023/B:PLSO.0000016564.14512.eb (2004).CAS 
    Article 

    Google Scholar 
    Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983. https://doi.org/10.1021/es305071v (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Z. C. et al. Effects of different concentrations of mercury on accumulation of mercury by five plant species. Ecol. Eng. 106, 273–278. https://doi.org/10.1016/j.ecoleng.2017.05.051 (2017).Article 

    Google Scholar 
    Hassan, M. J. et al. Effect of cadmium toxicity on growth, oxidative damage, antioxidant defense system and cadmium accumulation in two sorghum cultivars. Plants 9, 1575. https://doi.org/10.3390/plants9111575 (2020).CAS 
    Article 

    Google Scholar 
    Patra, M., Bhowmik, N., Bandopadhyay, B. & Sharma, A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot. 52, 199–223. https://doi.org/10.1016/j.envexpbot.2004.02.009 (2004).CAS 
    Article 

    Google Scholar 
    Zhou, Z. S., Wang, S. J. & Yang, Z. M. Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere 70, 1500–1509. https://doi.org/10.1016/j.chemosphere.2007.08.028 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Biczak, R. Quaternary ammonium salts with tetrafluoroborate anion: Phytotoxicity and oxidative stress in terrestrial plants. J. Hazard. Mater. 304, 173–185. https://doi.org/10.1016/j.jhazmat.2015.10.055 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Elbaz, A., Wei, Y. Y., Meng, Q., Zheng, Q. & Yang, Z. M. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii. Ecotoxicology 19, 1285–1293. https://doi.org/10.1007/s10646-010-0514-z (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gao, S. et al. Growth and antioxidant responses in Jatropha curcas seedling exposed to mercury toxicity. J. Hazard. Mater. 182, 591–597. https://doi.org/10.1016/j.jhazmat.2010.06.073 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Warren, S. D. et al. Reproduction and dispersal of biological soil crust organisms. Front. Ecol. Evol. 7, 1–17. https://doi.org/10.3389/FEVO.2019.00344 (2019).MathSciNet 
    Article 

    Google Scholar 
    Wu, L. & Zhang, Y. Precipitation and soil particle size co-determine spatial distribution of biological soil crusts in the Gurbantunggut Desert, China. J. Arid. Land. 10, 701–711. https://doi.org/10.1007/s40333-018-0065-3 (2018).Article 

    Google Scholar 
    Hu, R. et al. The mechanism of soil nitrogen transformation under different biocrusts to warming and reduced precipitation: From microbial functional genes to enzyme activity. Sci. Total Environ. 722, 137849. https://doi.org/10.1016/j.scitotenv.2020.137849 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pan, Z. et al. The upside-down water collection system of Syntrichia caninervis. Nat. Plants. 2(7), 16076. https://doi.org/10.1038/nplants.2016.76 (2016).Article 
    PubMed 

    Google Scholar 
    Coe, K. K. et al. Strategies of desiccation tolerance vary across life phases in the moss Syntrichia caninervis. Am. J. Bot. 108, 249–262. https://doi.org/10.1002/ajb2.1571 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Silva, A. T. et al. To dry perchance to live: Insights from the genome of the desiccation-tolerant biocrust moss Syntrichia caninervis. Plant J. 105, 1339–1356. https://doi.org/10.1111/tpj.15116 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Young, K. & Reed, S. Spectrally monitoring the response of the biocrust moss Syntrichia caninervis to altered precipitation regimes. Sci. Rep. 7, 41793. https://doi.org/10.1038/srep41793 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. & Zhang, Y. M. Ecophysiological responses of the biocrust moss Syntrichia caninervis to experimental snow cover manipulations in a temperate desert of central Asia. Ecol. Res. 35, 198–207. https://doi.org/10.1111/1440-1703.12072 (2019).CAS 
    Article 

    Google Scholar 
    Zheng, Y. P., Zhao, J. C., Zhang, B. C., Li, L. & Zhang, Y. M. Advances on ecological studies of algae and mosses in biological soil crusts. Chin. J. Bot. 44, 371–378 (2009).CAS 

    Google Scholar 
    Mei, L. et al. Mercury-induced phytotoxicity and responses in upland cotton (Gossypium hirsutum L.) seedlings. Plants 10, 1494. https://doi.org/10.3390/plants10081494 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, Z. S. et al. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J. Inorg. Biochem. 101, 1–9. https://doi.org/10.1016/j.jinorgbio.2006.05.011 (2007).CAS 
    Article 

    Google Scholar 
    Yuniarti, R. & Yuniati, R. Mercury effects on the early seedling of Paraserianthes falcataria (L.) Nielsen grew in hydroponic culture. IOP Conf. Ser. Mater. Sci. Eng. 902, 012073. https://doi.org/10.1088/1757-899X/902/1/012073 (2020).CAS 
    Article 

    Google Scholar 
    Li, Y. et al. Reorganization of photosystem II is involved in the rapid photosynthetic recovery of desert moss Syntrichia caninervis upon rehydration. J. Plant Physiol. 167, 1390–1397. https://doi.org/10.1016/j.jplph.2010.05.028 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Deng, B. L., Yang, K. J., Zhang, Y. F. & Li, Z. T. Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu2+, Cd2+ and Hg2+) on maize seed germination under high temperature. Environ. Pollut. 216, 46–52. https://doi.org/10.1016/j.envpol.2016.05.050 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Khan, K. Y. et al. Study amino acid contents, plant growth variables and cell ultrastructural changes induced by cadmium stress between two contrasting cadmiums accumulating cultivars of Brassica rapa ssp. chinensis L. (pak choi). Ecotoxicol. Environ. Saf. 200, 110748. https://doi.org/10.1016/j.ecoenv.2020.110748 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arnon, D. L. Copper enzymes in isolated chloroplasts.Polyphenoloxidases in Beta vulgaris. Plant Physiol. 24, 1–15 (1949).CAS 
    Article 

    Google Scholar 
    Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil. 39, 205–207. https://doi.org/10.1007/BF00018060 (1973).CAS 
    Article 

    Google Scholar 
    Luo, X. L. & Huang, Q. F. Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in Cassava. J. Agric. Sci. 3, 64–72. https://doi.org/10.5539/jas.v3n2p64 (2011).Article 

    Google Scholar 
    Choudhury, S. & Panda, S. K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) broth under chromium and lead phytotoxicity. Water Air Soil Pollut. 167, 73–90. https://doi.org/10.1007/s11270-005-8682-9 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kumar, A., Dutt, S., Bagler, G., Ahuja, P. S. & Kumar, S. Engineering a thermo-stable superoxide dismutase functional at sub-zero to >50°C, which also tolerates autoclaving. Sci. Rep. 2, 347–351. https://doi.org/10.1038/srep00387 (2012).CAS 
    Article 

    Google Scholar 
    Pasquariello, M. S. et al. Influence of postharvest chitosan treatment on enzymatic browning and antioxidant enzyme activity in sweet cherry fruit. Postharvest. Biol. Technol. 109, 45–46. https://doi.org/10.1016/j.postharvbio.2015.06.007 (2015).CAS 
    Article 

    Google Scholar 
    Emamverdian, A., Ding, Y. L., Mokhberdoran, F. & Xie, Y. F. Growth responses and photosynthetic indices of bamboo plant (Indocalamus latifolius) under heavy metal stress. Sci. World J. 2018, 1–6. https://doi.org/10.1155/2018/1219364 (2018).CAS 
    Article 

    Google Scholar 
    Sahu, G. K., Upadhyay, S. & Sahoo, B. B. Mercury induced phytotoxicity and oxidative stress in wheat (Triticum aestivum L.) plants. Physiol. Mol. Biol. Plants 18, 21–31. https://doi.org/10.1007/s12298-011-0090-6 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, R. Y. et al. Effect of amendments on contaminated soil of multiple heavy metals and accumulation of heavy metals in plants. Environ. Sci. Pollut. Res. 25, 28695–28704. https://doi.org/10.1007/s11356-018-2918-x (2018).CAS 
    Article 

    Google Scholar 
    Esposito, S. et al. In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment: Ultrastructural damage, oxidative stress and HSP70 induction. PLoS ONE 13, 1–16. https://doi.org/10.1371/journal.pone.0195717 (2018).CAS 
    Article 

    Google Scholar 
    Qureshi, S. et al. Effect of microbial activity on trace element release from sewage sludge. Environ. Sci. Technol. 37, 3361–3366. https://doi.org/10.1021/es020970h (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lebeau, T., Bagot, D., Jézéquel, K. & Fabre, B. Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: Effects of Cd, pH and techniques of culture. Sci. Total Environ. 291, 73–83. https://doi.org/10.1016/S0048-9697(01)01093-2 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cho, U. H. & Park, J. O. Mercury-induced oxidative stress in tomato seedlings. Plant Sci. 156, 1–9. https://doi.org/10.1016/S0168-9452(00)00227-2 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, J. et al. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicology 18, 110–121. https://doi.org/10.1007/s10646-008-0264-3 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bellini, E. et al. The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins. Int. J. Mol. Sci. 21, 1583. https://doi.org/10.3390/ijms21051583 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Altaf, M. A. et al. Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J. Soil Sci. Plant Nutr. 21, 1842–1855. https://doi.org/10.1007/s42729-021-00484-2 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, H. H. et al. Toxic effects of heavy metals Pb and Cd on mulberry (Morus alba L.) seedling leaves: Photosynthetic function and reactive oxygen species (ROS) metabolism responses. Ecotoxicol. Environ. Saf. 195, 110469. https://doi.org/10.1016/j.ecoenv.2020.110469 (2020).CAS 
    Article 

    Google Scholar 
    Hoekstra, F. A., Golovina, E. A. & Buitink, J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431–438. https://doi.org/10.1016/S1360-1385(01)02052-0 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xiong, A. S. et al. Expression and function of a modified AP2/ERF transcription factor from Brassica napus enhances cold tolerance in transgenic Arabidopsis. Mol. Biotechnol. 53, 198–206. https://doi.org/10.1007/s12033-012-9515-x (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hare, P. D., Cress, W. A. & Staden, J. V. Proline synthesis and degradation: A model system for elucidating stress-related signal transduction. J. Exp. Bot. 50, 413–434. https://doi.org/10.1093/jxb/50.333.413 (1999).CAS 
    Article 

    Google Scholar 
    Székely, G. et al. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J. 53, 11–28. https://doi.org/10.1111/j.1365-313X.2007.03318.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mishra, P., Bhoomika, K. & Dubey, R. S. Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings. Protoplasma 250, 3–19. https://doi.org/10.1007/s00709-011-0365-3 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mittler, R. ROS are good. Trends Plant Sci. 22, 11–19. https://doi.org/10.1016/j.tplants.2016.08.002 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909–930. https://doi.org/10.1016/j.plaphy.2010.08.016 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kolahi, M., Kazemi, E. M., Yazdi, M. & Barnaby, A. G. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. Plant Physiol. Biochem. 146, 71–89. https://doi.org/10.1016/j.plaphy.2019.10.032 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Merwald, H. et al. UVA-induced oxidative damage and cytotoxicity depend on the mode of exposure. J. Photochem. Photobiol. B Biol. 79, 197–207. https://doi.org/10.1016/j.jphotobiol.2005.01.002 (2005).CAS 
    Article 

    Google Scholar 
    Pazmiño, D. M. et al. Differential response of young and adult leaves to herbicide 2,4-dichlorophenoxyacetic acid in pea plants: Role of reactive oxygen species. Plant Cell Environ. 34, 1874–1889. https://doi.org/10.1111/j.1365-3040.2011.02383.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ghori, N. H. et al. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. (Tehran) 16, 1807–1828. https://doi.org/10.1007/s13762-019-02215-8 (2019).CAS 
    Article 

    Google Scholar 
    Vezza, M. E., Llanes, A., Travaglia, C., Agostini, E. & Talano, M. A. Arsenic stress effects on root water absorption in soybean plants: Physiological and morphological aspects. Plant Physiol. Biochem. 123, 8–17. https://doi.org/10.1016/j.plaphy.2017.11.020 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    C, A., Tasdighi, H. & Gholamhoseini, M.,. Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pac. J. Trop. Biomed. 6(10), 886–891. https://doi.org/10.1016/j.apjtb.2016.08.009 (2016).CAS 
    Article 

    Google Scholar 
    Sharma, A. et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7), 285. https://doi.org/10.3390/biom9070285 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Zhang, S. S., Zhang, H. M., Qin, R., Jiang, W. S. & Liu, D. H. Cadmium induction of lipid peroxidation and effects on root tip cells and antioxidant enzyme activities in Vicia faba L. Ecotoxicology 18, 814–823. https://doi.org/10.1007/s10646-009-0324-3 (2009).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Global warming leads to larger bats with a faster life history pace in the long-lived Bechstein’s bat (Myotis bechsteinii)

    Isaac, J. L. Effects of climate change on life history: Implications for extinction risk in mammals. Endanger. Species Res. 7, 115–123 (2009).Article 

    Google Scholar 
    Tseng, M. et al. Decreases in beetle body size linked to climate change and warming temperatures. J. Anim. Ecol. 87, 647–659 (2018).PubMed 
    Article 

    Google Scholar 
    Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).PubMed 
    Article 

    Google Scholar 
    Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Sci. (80-.). 370, 712–715 (2020).CAS 
    Article 

    Google Scholar 
    Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA. 117, 18557–18565 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl Acad. Sci. USA. 100, 12219–12222 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Chang. 10, 63–68 (2020).Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180174 (2019).Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 1–12 (2017).CAS 
    Article 

    Google Scholar 
    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).Article 

    Google Scholar 
    Stearns, S. C. Life history evolution: Successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roff, D. Life History,Evolution of. In Encyclopedia of Biodiversity 3, 631–641 (Oxford University Press, Incorporated, 2002).Williams, J. B., Miller, R. A., Harper, J. M. & Wiersma, P. Functional linkages for the pace of life, life-history, and environment in birds. Integr. Comp. Biol. 50, 855–868 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gaillard, J. M. et al. Generation time: A reliable metric to measure life-history variation among mammalian populations. Am. Naturalist 166, 119–123 (2005).Article 

    Google Scholar 
    Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).PubMed 
    Article 

    Google Scholar 
    Araya-Ajoy, Y. G. et al. Demographic measures of an individual’s “pace of life”: fecundity rate, lifespan, generation time, or a composite variable? Behav. Ecol. Sociobiol. 72, (2018).Krebs, C. J., Boonstra, R., Boutin, S. & Sinclair, A. R. E. What drives the 10-year cycle of snowshoe hares? Bioscience 51, 25–35 (2001).Article 

    Google Scholar 
    Sand, H. Life History Patterns in Female Moose (Alces alces): The Relationship between Age, Body Size, Fecundity and Environmental Conditions. Oecologia 106, 212–220 (1996).Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).PubMed 
    Article 

    Google Scholar 
    Forchhammer, M. C., Clutton-Brock, T. H., Lindstrom, J. & Albon, S. D. Climate and Population Density Induce Long-Term Cohort Variation in a Northern Ungulate. J. Anim. Ecol. 70, 721–729 (2001).Article 

    Google Scholar 
    Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    Dietz, C., Nill, D. & Kiefer, A. Handbuch der Fledermäuse Europa und Nordwestafrika. (Franckh Kosmos Verlag, 2016).Mundinger, C., Scheuerlein, A. & Kerth, G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc. R. Soc. B Biol. Sci. 288, 20210508 (2021).Article 

    Google Scholar 
    Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci. Rep. 7, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    Working Group I. Climate Change 2021: The Physical Science Basis. Ipcc (2021).Bercovitch, F. B. & Berry, P. S. M. Life expectancy, maximum longevity and lifetime reproductive success in female Thornicroft’s giraffe in Zambia. Afr. J. Ecol. 55, 443–450 (2017).Article 

    Google Scholar 
    Rhine, R. J., Norton, G. W. & Wasser, S. K. Lifetime reproductive success, longevity, and reproductive life history of female yellow baboons (Papio cynocephalus) of Mikumi National Park, Tanzania. Am. J. Primatol. 51, 229–241 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ransome, R. D. Earlier breeding shortens life in female greater horseshoe bats. Philos. Trans. R. Soc. B Biol. Sci. 350, 153–161 (1995).Article 

    Google Scholar 
    IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press. Cambridge, United Kingdom New York, NY, USA https://doi.org/10.1017/9781009157896 (2021).Green, W. C. H. & Rothstein, A. Trade-offs between growth and reproduction in female bison. Oecologia 86, 521–527 (1991).PubMed 
    Article 

    Google Scholar 
    Jorgenson, J. T., Festa-Bianchet, M., Lucherini, M. & Wishart, W. D. Effects of body size, population density, and maternal characteristics on age at first reproduction in bighorn ewes. Can. J. Zool. 71, 2509–2517 (1993).Article 

    Google Scholar 
    Williams, D. F. & Findley, J. S. Sexual size dimorphism in vespertilionid bats. Am. Midl. Nat. 102, 113–126 (1979).Article 

    Google Scholar 
    Myers, P. Sexual dimorphism in size of vespertilionid bats. Am. Nat. 112, 701–711 (1978).Article 

    Google Scholar 
    Jonasson, K. A. & Willis, C. K. R. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS One 6, e21061 (2011).Kunz, T. H., Wrazen, J. A. & Burnett, C. D. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Écoscience 5, 8–17 (1998).Article 

    Google Scholar 
    Pretzlaff, I., Kerth, G. & Dausmann, K. H. Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure. Naturwissenschaften 97, 353–363 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kuepper, N. D., Melber, M. & Kerth, G. Nightly clustering in communal roosts and the regular presence of adult females at night provide thermal benefits for juvenile Bechstein’s bats. Mamm. Biol. 81, 201–204 (2016).Article 

    Google Scholar 
    Willis, C. K. R. & Brigham, R. M. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behav. Ecol. Sociobiol. 62, 97–108 (2007).Article 

    Google Scholar 
    Lemaître, J. F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 282, 20150209 (2015).Wilkinson, G. S. & South, J. M. Life history, ecology and longevity in bats. Aging Cell 1, 124–131 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saino, N. et al. A trade-off between reproduction and feather growth in the barn swallow (Hirundo rustica). PLoS One 9, e96428 (2014).Folkvord, A. et al. Trade-offs between growth and reproduction in wild Atlantic cod. Can. J. Fish. Aquat. Sci. 71, 1106–1112 (2014).Article 

    Google Scholar 
    Culina, A., Linton, D. M., Pradel, R., Bouwhuis, S. & Macdonald, D. W. Live fast, don’t die young: Survival–reproduction trade‐offs in long‐lived income breeders. J. Anim. Ecol. 88, 746–756 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lansing, A. I. A transmissible, cumulative, and reversible factor in aging. J. Gerontol. 2, 228–239 (1947).CAS 
    PubMed 
    Article 

    Google Scholar 
    Monaghan, P., Maklakov, A. A. & Metcalfe, N. B. Intergenerational Transfer of Ageing: Parental Age and Offspring Lifespan. Trends Ecol. Evol. 35, 927–937 (2020).PubMed 
    Article 

    Google Scholar 
    Sharpe, D. M. T. & Hendry, A. P. Life history change in commercially exploited fish stocks: An analysis of trends across studies. Evol. Appl. 2, 260–275 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kuparinen, A., Boit, A., Valdovinos, F. S., Lassaux, H. & Martinez, N. D. Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Kuparinen, A. & Festa-Bianchet, M. Harvest-induced evolution: Insights from aquatic and terrestrial systems. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160036 (2017).Ghazy, N. A., Gotoh, T. & Suzuki, T. Impact of global warming scenarios on life-history traits of Tetranychus evansi (Acari: Tetranychidae). BMC Ecol. 19, 1–12 (2019).Article 

    Google Scholar 
    Wang, H. Y., Shen, S. F., Chen, Y. S., Kiang, Y. K. & Heino, M. Life histories determine divergent population trends for fishes under climate warming. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Adamo, S. A. & Lovett, M. M. E. Some like it hot: The effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J. Exp. Biol. 214, 1997–2004 (2011).PubMed 
    Article 

    Google Scholar 
    Kerth, G., Safi, K. & König, B. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav. Ecol. Sociobiol. 52, 203–210 (2002).Article 

    Google Scholar 
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B Biol. Sci. 278, 2761–2767 (2011).Article 

    Google Scholar 
    Fleming, T. H. The relationship between body size, diet, and habitat use in frugivorous bats, genus Carollia (Phyllostomidae). J. Mammal. 72, 493–501 (1991).Article 

    Google Scholar 
    Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF). Data base for meteorological data, individual values averaged.DWD Climate Data Center (CDC). Historische und aktuelle 10-minütige Stationsmessungen: 1) der mittleren Windgeschwindigkeit und Windrichtung in Deutschland (Version recent, 2019); 2) des Luftdrucks, der Lufttemperatur (in 5cm und 2m Höhe), der Luftfeuchte.Kerth, G., Mayer, F. & Petit, E. Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol. Ecol. 11, 1491–1498 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Schaik, J., Dekeukeleire, D., Gazaryan, S., Natradze, I. & Kerth, G. Comparative phylogeography of a vulnerable bat and its ectoparasite reveals dispersal of a non-mobile parasite among distinct evolutionarily significant units of the host. Conserv. Genet. 19, 481–494 (2018).Article 

    Google Scholar 
    Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed 
    Article 

    Google Scholar 
    Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).PubMed 
    Article 

    Google Scholar 
    Gotelli, N. J. A Primer of Ecology. (Sinauer Associates, 2008).Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Van De Pol, M. & Verhulst, S. Age ‐ Dependent Traits: A New Statistical Model to Separate Within ‐ and Between ‐ Individual Effects. Am. Nat. 167, 766–773 (2006).PubMed 
    Article 

    Google Scholar 
    Core Development Team, R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 2, https://www.R-project.org (2021).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).Article 

    Google Scholar 
    Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).Article 

    Google Scholar 
    Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).Article 

    Google Scholar 
    Bonenfant, C. et al. Empirical Evidence of Density-Dependence in Populations of Large Herbivores. Adv. Ecol. Res. 41, 313–357 (2009).Article 

    Google Scholar 
    Mundinger, C., Scheuerlein, A., Kerth, G. & Fleischer, T. Code and source data for the paper: Global warming leads to larger bats with a faster life history pace in the long-lived Bechstein’s bat (Myotis bechsteinii). https://doi.org/10.5281/zenodo.6543599 (2022). More

  • in

    Diminished carbon and nitrate assimilation drive changes in diatom elemental stoichiometry independent of silicification in an iron-limited assemblage

    Tréguer PJ, Sutton JN, Brzezinski MA, Charette MA, Devries T, Dutkiewicz S, et al. Reviews and syntheses: the biogeochemical cycle of silicon in the modern ocean. Biogeosciences. 2021;18:1269–89.Article 
    CAS 

    Google Scholar 
    Hutchins DA, Bruland KW. Iron-limited diatom growth and Si:N uptake ratios in a coastal upwelling regime. Nature. 1998;393:561–4.CAS 
    Article 

    Google Scholar 
    King AL, Barbeau KA. Evidence for phytoplankton iron limitation in the southern California Current System. Mar Ecol Prog Ser. 2007;342:91–103.CAS 
    Article 

    Google Scholar 
    Pichevin LE, Ganeshram RS, Geibert W, Thunell R, Hinton R. Silica burial enhanced by iron limitation in oceanic upwelling margins. Nat Geosci. 2014;7:541–6.CAS 
    Article 

    Google Scholar 
    Brzezinski MA, Krause JW, Bundy RM, Barbeau M, Franks KA, Goericke RP, et al. Enhanced silica ballasting from iron stress sustains carbon export in a frontal zone within the California Current. J Geophys Res Ocean. 2015;120:4654–69.Article 

    Google Scholar 
    Baines SB, Twining BS, Vogt S, Balch WM, Fisher NS, Nelson DM. Elemental composition of equatorial Pacific diatoms exposed to additions of silicic acid and iron. Deep Res Part II Top Stud Oceanogr. 2011;58:512–23.CAS 
    Article 

    Google Scholar 
    de Baar HJW, van Heuven SMAC, Middag R. Biochemical cycling and trace elements. Encycl Earth Sci Ser. 2017;14:1–21.Assmy P, Smetacek V, Montresor M, Klaas C, Henjes J, Strass VH, et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc Natl Acad Sci. 2013;110:20633–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leynaert A, Bucciarelli E, Claquin P, Dugdale RC, Martin-jézéquel V, Pondaven P, et al. Effect of iron deficiency on diatom cell size and silicic acid uptake kinetics. Limnol Oceanogr. 2004;49:1134–43.CAS 
    Article 

    Google Scholar 
    Marchetti A, Harrison PJ. Coupled changes in the cell morphology and the elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnol Oceanogr. 2007;52:2270–84.CAS 
    Article 

    Google Scholar 
    McNair HM, Brzezinski MA, Krause JW. Diatom populations in an upwelling environment decrease silica content to avoid growth limitation. Environ Microbiol. 2018;20:4184–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Glibert PM, McCarthy JK. Uptake and assimilation of ammonium and nitrate by phytoplankton: Indices of nutritional status for natural assemblages. J Plankton Res. 1984;6:677–97.CAS 
    Article 

    Google Scholar 
    Takeda S. Influence of iron availability on nutrient consumption ratio of diatoms in oceanic waters. Nature. 1998;393:774–7.CAS 
    Article 

    Google Scholar 
    Timmermans KR, Van Der Wagt B, De Baar HJW. Growth rates, half-saturation constants, and silicate, nitrate, and phosphate depletion in relation to iron availability of four large, open-ocean diatoms from the Southern Ocean. Limnol Oceanogr. 2004;49:2141–51.CAS 
    Article 

    Google Scholar 
    Brzezinski MA, Olson R, Chisholm SW. Silicon availability and cell-cycle progression in marine diatoms. Mar Ecol Prog Ser. 1990;67:83–96.CAS 
    Article 

    Google Scholar 
    Hildebrand M, Volcani BE, Gassmann W, Schroeder JI. A gene family of silicon transporters. Nature. 1997;385:688–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Durkin CA, Marchetti A, Bender SJ, Truong T, Morales RL, Mock T, et al. Frustule-related gene transcription and the influence of diatom community composition on silica precipitation in an iron-limited environment. Limnol Oceanogr. 2012;57:1619–33.CAS 
    Article 

    Google Scholar 
    Allen AE, LaRoche J, Maheswari U, Lommer M, Schauer N, Lopez PJ, et al. Whole-cell response of the pennate diatom Phaeodactylum tricornutum to iron starvation. Proc Natl Acad Sci. 2008;105:10438–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meyerink SW, Ellwood MJ, Maher WA, Dean Price G, Strzepek RF. Effects of iron limitation on silicon uptake kinetics and elemental stoichiometry in two Southern Ocean diatoms, Eucampia antarctica and Proboscia inermis, and the temperate diatom Thalassiosira pseudonana. Limnol Oceanogr. 2017;62:2445–62.CAS 
    Article 

    Google Scholar 
    Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB, Berthiaume CT, et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc Natl Acad Sci USA. 2012;109:E317–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyd PW, Muggli DL, Varela DE, Goldblatt RH, Chretien R, Orians KJ, et al. In vitro iron enrichment experiments in the NE subarctic pacific. Mar Ecol Prog Ser. 1996;136:179–93.CAS 
    Article 

    Google Scholar 
    Marchetti A, Sherry ND, Kiyosawa H, Tsuda A, Harrison PJ. Phytoplankton processes during a mesoscale iron enrichment in the NE subarctic Pacific: Part I-Biomass and assemblage. Deep Res Part II Top Stud Oceanogr. 2006;53:2095–113.Article 

    Google Scholar 
    La Roche J, Geider RJ, Graziano LM, Murray H, Lewis K. Induction of specific proteins in eukaryotic algae grown under iron-, phosphorus-, or nitrogen-deficient conditions. J Phycol. 1993;29:767–77.Article 

    Google Scholar 
    Peers G, Price NM. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature. 2006;441:341–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyd PW, Berges JA, Harrison PJ. In vitro iron enrichment experiments at iron-rich and -poor sites in the NE subarctic Pacific. J Exp Mar Bio Ecol. 1998;227:133–51.CAS 
    Article 

    Google Scholar 
    Timmermans KR, Stolte W, de Baar HJW. Iron-mediated effects on nitrate reductase in marine phytoplankton. Mar Biol. 1994;121:389–96.CAS 
    Article 

    Google Scholar 
    Jin X, Gruber N, Dune JP, Sarmiento JL, Armstrong RA. Diagnosing the contributions of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochem Cycles. 2006;20:1–17.Article 
    CAS 

    Google Scholar 
    McNair HM, Brzezinski MA, Till CP, Krause JW. Taxon-specific contributions to silica production in natural diatom assemblages. Limnol Oceanogr. 2018;63:1056–75.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lampe RH, Cohen NR, Ellis KA, Bruland KW, Maldonado MT, Peterson TD, et al. Divergent gene expression among phytoplankton taxa in response to upwelling. Environ Microbiol. 2018;20:3069–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lampe RH, Mann EL, Cohen NR, Till CP, Thamatrakoln K, Brzezinski MA, et al. Different iron storage strategies among bloom-forming diatoms. Proc Natl Acad Sci. 2018;115:E12275–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brembu T, Chauton MS, Winge P, Bones AM, Vadstein O. Dynamic responses to silicon in Thalasiossira pseudonana—identification, characterisation and classification of signature genes and their corresponding protein motifs. Sci Rep. 2017;7:4865.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kotzsch A, Gröger P, Pawolski D, Bomans PHH, Sommerdijk NAJM, Schlierf M, et al. Silicanin-1 is a conserved diatom membrane protein involved in silica biomineralization. BMC Biol. 2017;15:9–11.Fawcett SE, Ward BB. Phytoplankton succession and nitrogen utilization during the development of an upwelling bloom. Mar Ecol Prog Ser. 2011;428:13–31.CAS 
    Article 

    Google Scholar 
    Lampe RH, Hernandez G, Lin YY, Marchetti A. Representative diatom and coccolithophore species exhibit divergent responses throughout simulated upwelling cycles. mSystems. 2021;6:e00188–21.Bruland KW, Rue EL, Smith GJ. Iron and macronutrients in California coastal upwelling regimes: Implications for diatom blooms. Limnol Oceanogr. 2001;46:1661–74.CAS 
    Article 

    Google Scholar 
    Redfield AC, Ketchum BH, Richards FA. The influence of organisms on the composition of seawater. The Sea. 1963;2:26–77.White KK, Dugdale RC. Silicate and nitrate uptake in the Monterey Bay upwelling system. Cont Shelf Res. 1997;17:455–72.Article 

    Google Scholar 
    Chappell PD, Whitney LP, Wallace JR, Darer AI, Jean-Charles S, Jenkins BD. Genetic indicators of iron limitation in wild populations of Thalassiosira oceanica from the northeast Pacific Ocean. ISME J. 2015;9:592–602.CAS 
    PubMed 
    Article 

    Google Scholar 
    Marchetti A, Moreno CM, Cohen NR, Oleinikov I, deLong K, Twining BS, et al. Development of a molecular-based index for assessing iron status in bloom-forming pennate diatoms. J Phycol. 2017;53:820–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Thamatrakoln K, Korenovska O, Niheu AK, Bidle KD. Whole-genome expression analysis reveals a role for death-related genes in stress acclimation of the diatom Thalassiosira pseudonana. Environ Microbiol. 2012;14:67–81.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen NR, Ellis KA, Lampe RH, McNair HM, Twining BS, Maldonado MT, et al. Diatom transcriptional and physiological responses to changes in iron bioavailability across ocean provinces. Front Mar Sci. 2017;4:1–20.CAS 
    Article 

    Google Scholar 
    La Roche J, Boyd PW, McKay RML, Geider RJ. Flavodoxin as an in situ marker for iron stress in phytoplankton. Nature. 1996;382:802–5.Article 

    Google Scholar 
    Hervás M, Navarro JAJa, Diaz A, Bottin HH, De la Rosa MA, Díaz A, et al. Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c6 to photosystem I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry. 1995;34:11321–6.PubMed 
    Article 

    Google Scholar 
    Franck VM, Bruland KW, Hutchins DA, Brzezinski MA. Iron and zinc effects on silicic acid and nitrate uptake kinetics in three high-nutrient, low-chlorophyll (HNLC) regions. Mar Ecol Prog Ser. 2003;252:15–33.CAS 
    Article 

    Google Scholar 
    Brown KL, Twing KI, Robertson DL. Unraveling the regulation of nitrogen assimilation in the marine diatom Thalassiosira pseudonana (bacillariophyceae): Diurnal variations in transcript levels for five genes involved in nitrogen assimilation. J Phycol. 2009;45:413–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen AE, Dupont CL, Oborník M, Horák A, Nunes-Nesi A, McCrow JP, et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature. 2011;473:203–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Görlich S, Pawolski D, Zlotnikov I, Kröger N. Control of biosilica morphology and mechanical performance by the conserved diatom gene Silicanin-1. Commun Biol. 2019;2:245.Durkin CA, Koester JA, Bender SJ, Armbrust VE. The evolution of silicon transporters in diatoms. J Phycol. 2016;52:716–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    King AL, Barbeau KA. Dissolved iron and macronutrient distributions in the southern California Current System. J Geophys Res Ocean. 2011;116:1–18.
    Google Scholar 
    Hoffmann LJ, Peeken I, Lochte K. Effects of iron on the elemental stoichiometry during EIFEX and in the diatoms Fragilariopsis kerguelensis and Chaetoceros dichaeta. Biogeosciences. 2007;4:569–79.CAS 
    Article 

    Google Scholar 
    Matsumoto K, Sarmiento JL, Brzezinski MA. Silicic acid leakage from the Southern Ocean: a possible explanation for glacial atmospheric pCO2. Global Biogeochem Cycles. 2002;16:1–23.Geider RJ, Greene RM, Kolber ZS, MacIntyre HL, Falkowski PG. Fluorescence assessment of the maximum quantum efficiency of photosynthesis in the western North. Atlantic. Deep Res Part I. 1993;40:1205–24.CAS 
    Article 

    Google Scholar 
    Durkin CA, Bender SJ, Chan KYK, Gaessner K, Grünbaum D, Armbrust VE. Silicic acid supplied to coastal diatom communities influences cellular silicification and the potential export of carbon. Limnol Oceanogr. 2013;58:1707–26.CAS 
    Article 

    Google Scholar 
    Kudo I, Miyamoto M, Noiri Y, Maita Y. Combined effects of temperature and iron on the growth and physiology of the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J Phycol. 2000;36:1096–102.CAS 
    Article 

    Google Scholar 
    Eldridge ML, Trick CG, Alm MB, DiTullio GR, Rue EL, Bruland KW, et al. Phytoplankton community response to a manipulation of bioavailable iron in HNLC waters of the subtropical Pacific Ocean. Aquat Microb Ecol. 2004;35:79–91.Article 

    Google Scholar 
    Sunda WG, Huntsman SA. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar Chem. 1995;50:189–206.CAS 
    Article 

    Google Scholar 
    Morel FMM, Rueter JG, Price NM. Iron nutrition of phytoplankton and its possible importance in the ecology of ocean regions with high nutrient and low biomass. Oceanography. 1991;4:56–61.Article 

    Google Scholar 
    Coale TH, Moosburner M, Horák A, Oborník M, Barbeau KA, Allen AE. Reduction-dependent siderophore assimilation in a model pennate diatom. Proc Natl Acad Sci USA. 2019;116:23609–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De La Rocha CL, Hutchins DA, Brzezinski MA, Zhang Y. Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Mar Ecol Prog Ser. 2000;195:71–9.Article 

    Google Scholar 
    Claquin P, Martin-Jézéquel V, Kromkamp JC, Veldhuis MJW, Kraay GW. Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen, and phosphorus control. J Phycol. 2002;38:922–30.CAS 
    Article 

    Google Scholar 
    Wang WX, Dei RCH. Biological uptake and assimilation of iron by marine plankton: influences of macronutrients. Mar Chem. 2001;74:213–26.CAS 
    Article 

    Google Scholar 
    Sapriel G, Quinet M, Heijde M, Jourdren L, Tanty V, Luo G, et al. Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS ONE. 2009;4:e7458–14.Kröger N, Deutzmann R, Sumper M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science. 1999;286:1129–32.PubMed 
    Article 

    Google Scholar 
    Scheffel A, Poulsen N, Shian S, Kröger N. Nanopatterned protein microrings from a diatom that direct silica morphogenesis. Proc Natl Acad Sci USA. 2011;108:3175–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Knight MJ, Senior L, Nancolas B, Ratcliffe S, Curnow P. Direct evidence of the molecular basis for biological silicon transport. Nat Commun. 2016;7:1–11.Article 
    CAS 

    Google Scholar 
    Shrestha RP, Hildebrand M. Evidence for a regulatory role of diatom silicon transporters in cellular silicon responses. Eukaryot Cell. 2015;14:29.PubMed 
    Article 
    CAS 

    Google Scholar 
    Thamatrakoln K, Hildebrand M. Silicon uptake in diatoms revisited: A model for saturable and nonsaturable uptake kinetics and the role of silicon transporters. Plant Physiol. 2008;146:1397–407.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Conway HL, Harrison PJ. Marine diatoms grown in chemostats under silicate or ammonium limitation. IV. Transient response of Chaetoceros debilis, Skeletonema costatum, and Thalassiosira gravida to a single addition of the limiting nutrient. Mar Biol. 1977;43:33–43.CAS 
    Article 

    Google Scholar 
    Thamatrakoln K, Hildebrand M. Analysis of Thalassiosira pseudonana silicon transporters indicates distinct regulatory levels and transport activity through the cell cycle. Eukaryot Cell. 2007;6:271–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ashworth J, Coesel SN, Lee A, Armbrust VE, Orellana MV, Baliga NS. Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana. Proc Natl Acad Sci USA. 2013;110:7518–23.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chauton MS, Winge P, Brembu T, Vadstein O, Bones AM. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles. Plant Physiol. 2013;161:1034–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chisholm SW, Costello JC. Influence of environmental factors and population composition on the timing of cell division in Thalassiosira fluviatilis (Bacillariophyceae) grown on light/dark cycles. J Phycol. 1980;16:375–83.Article 

    Google Scholar 
    Smith SR, Glé C, Abbriano RM, Traller JC, Davis AK, Trentacoste E, et al. Transcript level coordination of carbon pathways during silicon starvation-induced lipid accumulation in the diatom Thalassiosira pseudonana. New Phytol. 2016;210:890–904.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaulot D, Olson RJ, Chisholm SW. Light and dark control of the cell cycle in two marine phytoplankton species. Exp Cell Res. 1986;167:38–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Marchetti A, Parker MS, Moccia LP, Lin EO, Arrieta AL, Ribalet FF, et al. Ferritin is used for iron storage in bloom-forming marine pennate diatoms. Nature. 2009;457:467–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldman JAL, Schatz MJ, Berthiaume CT, Coesel SN, Orellana MV, Armbrust VE. Fe limitation decreases transcriptional regulation over the diel cycle in the model diatom Thalassiosira pseudonana. PLoS ONE. 2019;14:1–25.Article 
    CAS 

    Google Scholar 
    Assmy P, Smetacek V, Montresor M, Klaas C, Henjes J, Strass VH, et al. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current. Proc Natl Acad Sci USA. 2013;110:20633–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kranzler CF, Brzezinski MA, Cohen NR, Lampe RH, Maniscalco M, Till CP, et al. Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nat Geosci. 2021;14:231–7.CAS 
    Article 

    Google Scholar 
    Hutchins DA, Franck VM, Brzezinski MA, Bruland KW. Inducing phytoplankton iron limitation in iron-replete coastal waters with a strong chelating ligand. Limnol Oceanogr. 1999;44:1009–18.CAS 
    Article 

    Google Scholar 
    Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo assembly and analysis of RNA-seq data. Nat Methods. 2010;7:909–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, Horák A, et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat Commun. 2019;10:4552.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Morrissey J, Sutak R, Paz-Yepes J, Tanaka A, Moustafa A, Veluchamy A, et al. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake. Curr Biol. 2015;25:364–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    Matsen FA, Kodner RB, Armbrust VE. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.Article 

    Google Scholar 
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995;57:289–300. More