Ristaino, J. B. et al. The persistent threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. Sci. USA 118, e2022239118 (2021).Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed
Article
Google Scholar
Chapman, D., Purse, B. V., Roy, H. E. & Bullock, J. M. Global trade networks determine the distribution of invasive non-native species. Glob. Ecol. Biogeogr. 26, 907–917 (2017).Article
Google Scholar
Liebhold, A. M. et al. Plant diversity drives global patterns of insect invasions. Sci. Rep. 8, 1–5 (2018).CAS
Article
Google Scholar
Bradshaw, C. J. A. et al. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 1–8 (2016).Article
CAS
Google Scholar
Wyckhuys, K. A. G. et al. Biological control of an invasive pest eases pressures on global commodity markets. Environ. Res. Lett. 13, 094005 (2018).Article
CAS
Google Scholar
Leung, B., Finnoff, D., Shogren, J. F. & Lodge, D. Managing invasive species: rules of thumb for rapid assessment. Ecol. Econ. 55, 24–36 (2005).Article
Google Scholar
Reed, C. et al. Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics. Emerg. Infect. Dis. 19, 85 (2013).PubMed
PubMed Central
Article
Google Scholar
Qualls, N. et al. Community mitigation guidelines to prevent pandemic influenza—United States, 2017. MMWR Recomm. Rep. 66, 1 (2017).PubMed
PubMed Central
Article
Google Scholar
Grarock, K., Lindenmayer, D. B., Wood, J. T. & Tidemann, C. R. Using invasion process theory to enhance the understanding and management of introduced species: a case study reconstructing the invasion sequence of the common myna (Acridotheres tristis). J. Environ. Manag. 129, 398–409 (2013).Article
Google Scholar
Nuñez, M. A., Pauchard, A. & Ricciardi, A. Invasion science and the global spread of SARS-CoV-2. Trends Ecol. Evol. 35, 642–645 (2020).PubMed
PubMed Central
Article
Google Scholar
Ogden, N. H. et al. Emerging infectious diseases and biological invasions: a call for a one health collaboration in science and management. R. Soc. Open Sci. 6, 181577 (2019).PubMed
PubMed Central
Article
Google Scholar
Hatcher, M. J., Dick, J. T. A. & Dunn, A. M. Disease emergence and invasions. J. Ecol. 26, 1275–1287 (2016).
Google Scholar
Bright, C. Invasive species: pathogens of globalization. Foreign Policy 1, 50–64 (1999).Article
Google Scholar
Simberloff, D., Meyerson, L. & Fefferman, N. Invasive species policy and COVID-19. The Ecological Society of America https://www.esa.org/about/esa-covid-19/invasive-species-policy-and-covid-19/ (2020).Comizzoli, P., Pagenkopp Lohan, K. M., Muletz-Wolz, C., Hassell, J. & Coyle, B. The interconnected health initiative: a Smithsonian framework to extend one health research and education. Front. Vet. Sci. 8, 629410 (2021).Katella, K. Our new COVID-19 vocabulary—what does it all mean? Stories at Yale Medicine. Yale Medicine https://www.yalemedicine.org/stories/covid-19-glossary/ (2020).Parra, G., Moylett, H. & Bulluck, R. USDA-APHIS-PPQ-CPHST Technical working group summary report spotted lanternfly, Lycorma delicatula (White, 1845) (2018).Floerl, O., Inglis, G. J., Dey, K. & Smith, A. The importance of transport hubs in stepping-stone invasions. J. Appl. Ecol. 46, 37–45 (2009).Article
Google Scholar
Barringer, L. E., Donovall, L. R., Spichiger, S.-E., Lynch, D. & Henry, D. The first New World record of Lycorma delicatula (Insecta: Hemiptera: Fulgoridae). Entomol. N. 125, 20–23 (2015).Article
Google Scholar
Urban, J. M. Perspective: shedding light on spotted lanternfly impacts in the USA. Pest Manag. Sci. 76, 10–17 (2020).CAS
PubMed
Article
Google Scholar
Nixon, L. J. et al. Survivorship and development of the invasive Lycorma delicatula (Hemiptera: Fulgoridae) on wild and cultivated temperate host plants. Environ. Entomol. 51, 222–228 https://doi.org/10.1093/ee/nvab137 (2022).Urban, J. M., Calvin, D. & Hills-Stevenson, J. Early response (2018–2020) to the threat of spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae) in Pennsylvania. Ann. Entomol. Soc. Am. 114, 709–718 (2021).Article
Google Scholar
Du, Z. et al. Global phylogeography and invasion history of the spotted lanternfly revealed by mitochondrial phylogenomics. Evol. Appl. 14, 915–930 https://doi.org/10.1111/eva.13170 (2020).Lee, J.-E. et al. Feeding behavior of Lycorma delicatula (Hemiptera: Fulgoridae) and response on feeding stimulants of some plants. Korean. J. Appl. Entomol. 48, 467–477 (2009).Article
Google Scholar
Lee, D.-H., Park, Y.-L. & Leskey, T. C. A review of biology and management of Lycorma delicatula (Hemiptera: Fulgoridae), an emerging global invasive species. J. Asia-Pac. Entomol. 22, 589–596 (2019).Article
Google Scholar
Roush, R. How we can contain the spotted lanternfly—maybe the worst invasive pest in generations | Opinion https://www.inquirer.com (2018).Imbler, S. The dreaded lanternfly, scourge of agriculture, spreads in New Jersey. The New York Times (2020).Morrison, R. Invasive insects: The top 4 ‘most wanted’ list. Entomology Today https://entomologytoday.org/2018/06/21/invasive-insects-the-top-4-most-wanted-list/ (2018).Murman, K. et al. Distribution, survival, and development of spotted lanternfly on host plants found in North America. Environ. Entomol. 49, 1270–1281 (2020).PubMed
Article
Google Scholar
Derstine, N. T. et al. Plant volatiles help mediate host plant selection and attraction of the spotted lanternfly (Hemiptera: Fulgoridae): a generalist with a preferred host. Environ. Entomol. 49, 1049–1062 (2020).PubMed
Article
Google Scholar
Dechaine, A. C. et al. Phenology of Lycorma delicatula (Hemiptera: Fulgoridae) in Virginia, USA. Environ. Entomol. 50, 1267–1275 https://doi.org/10.1093/ee/nvab107 (2021).Uyi, O. et al. Spotted lanternfly (Hemiptera: Fulgoridae) can complete development and reproduce without access to the Ppreferred host, Ailanthus altissima. Environ. Entomol. 49, 1185–1190 https://doi.org/10.1093/ee/nvaa083 (2020).Park, M., Kim, K.-S. & Lee, J.-H. Genetic structure of Lycorma delicatula (Hemiptera: Fulgoridae) populations in Korea: Implication for invasion processes in heterogeneous landscapes. Bull. Entomol. Res. 103, 414–424 (2013).CAS
PubMed
Article
Google Scholar
Dara, S. K., Barringer, L. & Arthurs, S. P. Lycorma delicatula (Hemiptera: Fulgoridae): a new invasive pest in the United States. J. Integr. Pest Manag. 6, 1–6 (2015).Article
Google Scholar
Leach, H. & Leach, A. Seasonal phenology and activity of spotted lanternfly (Lycorma delicatula) in Eastern U.S. vineyards. J. Pest Sci. 93, 1215–1224 (2020).Article
Google Scholar
International Organisation of Vine and Wine. 2019 Statistical Report on World Vitiviniculture. 23 (2019).California Department of Food and Agriculture. Pest Detection Advisory No. PD17-2020 Spotted Lanternfly PD/EP Activity Summary 2020. 1–7 (2020).Oak Ridge National Lab. Freight analysis framework version 4. http://faf.ornl.gov/fafweb/ (2017).U.S. Census Bureau. U.S.A. Trade Online. https://usatrade.census.gov/index.php?do=login (2019).Derived dataset GBIF.org. Filtered export of GBIF occurrence data. https://doi.org/10.15468/DD.KS6ACS (2021).Jung, J.-M., Jung, S., Byeon, D. & Lee, W.-H. Model-based prediction of potential distribution of the invasive insect pest, spotted lanternfly Lycorma delicatula (Hemiptera: Fulgoridae), by using CLIMEX. J. Asia-Pac. Biodivers. 10, 532–538 (2017).Article
Google Scholar
Wakie, T. T., Neven, L. G., Yee, W. L. & Lu, Z. The establishment risk of Lycorma delicatula (Hemiptera: Fulgoridae) in the United States and globally. J. Econ. Entomol. 113, 306–314 (2020).PubMed
Google Scholar
Lewkiewicz, S. M., De Bona, S., Helmus, M. R. & Seibold, B. Temperature sensitivity of pest reproductive numbers in age-structured PDE models, with a focus on the invasive spotted lanternfly. Preprint at ArXiv211211448 Q-Bio (2021).Maino, J. L., Schouten, R., Lye, J. C., Umina, P. A. & Reynolds, O. L. Mapping the life-history, development, and survival of spotted lantern fly in occupied and uninvaded ranges. InReview 1–18 https://doi.org/10.21203/rs.3.rs-400798/v1 (2021).FAOSTAT. FAOSTAT statistical database. http://www.fao.org/faostat/en/#data/QC (2019).USDA National Agricultural Statistics Service. National agricultural statistics service – quick stats. https://quickstats.nass.usda.gov/ (2019).U.S. Alcohol and Tobacco Tax and Trade Bureau. Wine statistics. https://www.ttb.gov/wine/wine-stats.shtml (2019).Crowe, J. Spotted lanternfly control program in the Mid-Atlantic region environmental assessment. USDA APHIS Rep. 46 (2018).US Animal and Plant Health Inspection Service. USDA provides $7.1 million to Pennsylvania to support projects that protect agriculture and natural resources. https://www.aphis.usda.gov/wcm/connect/APHIS_Content_Library/SA_Newsroom/SA_News/SA_By_Date/SA-2019/pennsylvania-funding?presentationtemplate=APHIS_Design_Library%2FPT_Print_Friendly_News_release (2019).Jones, C. M. et al. Iteratively forecasting biological invasions with PoPS and a little help from our friends. Front. Ecol. Environ. 19, 411–418 https://doi.org/10.1002/fee.2357 (2021).Smyers, E. C. et al. Spatio-temporal model for predicting spring hatch of the spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 50, 126–137 (2021).CAS
PubMed
Article
Google Scholar
Brooks, R. K., Wickert, K. L., Baudoin, A., Kasson, M. T. & Salom, S. Field-inoculated Ailanthus altissima stands reveal the biological control potential of Verticillium nonalfalfae in the Mid-Atlantic region of the United States. Biol. Control 148, 104298 (2020).CAS
Article
Google Scholar
Commonwealth of Pennsylvania. Pennsylvania Bulletin. 49, 2705–2902 (2019).Barringer, L. & Ciafré, C. M. Worldwide feeding host plants of spotted lanternfly, with significant additions from North America. Environ. Entomol. 49, 999–1011 (2020).PubMed
Article
Google Scholar
Leach, H., Biddinger, D. J., Krawczyk, G., Smyers, E. & Urban, J. M. Evaluation of insecticides for control of the spotted lanternfly, Lycorma delicatula, (Hemiptera: Fulgoridae), a new pest of fruit in the Northeastern U.S. Crop Prot. 124, 104833 (2019).CAS
Article
Google Scholar
Francese, J. A. et al. Developing traps for the spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Environ. Entomol. 49, 269–276 (2020).PubMed
Article
Google Scholar
Penn State Extension. Spotted lanternfly management in vineyards. https://extension.psu.edu/spotted-lanternfly-management-in-vineyards (2021).Nixon, L. J. et al. Development of behaviorally based monitoring and biosurveillance tools for the invasive spotted lanternfly (Hemiptera: Fulgoridae). Environ. Entomol. 49, 1117–1126 (2020).PubMed
Article
Google Scholar
Liu, H. & Mottern, J. An old remedy for a new problem? Identification of Ooencyrtus kuvanae (Hymenoptera: Encyrtidae), an egg parasitoid of Lycorma delicatula (Hemiptera: Fulgoridae) in North America. J. Insect Sci. 17, 1–6 (2017).Article
Google Scholar
Yang, Z.-Q., Choi, W.-Y., Cao, L.-M., Wang, X.-Y. & Hou, Z.-R. A new species of Anastatus (Hymenoptera: Eulpelmidae) from China, parasitizing eggs of Lycorma delicatula (Homoptera: Fulgoridae). Zool. Syst. 40, 290–302 (2015).
Google Scholar
Clifton, E. H. et al. Applications of Beauveria bassiana (Hypocreales: Cordycipitaceae) to control populations of spotted lanternfly (Hemiptera: Fulgoridae), in semi-natural landscapes and on grapevines. Environ. Entomol. 49, 854–864 (2020).PubMed
Article
Google Scholar
Hogan, M. J. & Pardi, N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu. Rev. Med. 73, 17–39 (2022).PubMed
Article
CAS
Google Scholar
Whyard, S., Singh, A. D. & Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 39, 824–832 (2009).CAS
PubMed
Article
Google Scholar
Ordish, G. The Great Wine Blight (Charles Scribner’s Sons, 1972).About the Council. https://www.doi.gov/invasivespecies/about-nisc (2016).Invasive Species Advisory Committee Products. https://www.doi.gov/invasivespecies/isac-resources (2015).Simberloff, D. et al. U.S. action lowers barriers to invasive species. Science 367, 636–636 (2020).PubMed
Article
CAS
Google Scholar
Exec. Order No. 14048, A. of J. R. B., Jr. Executive Order on Continuance or Reestablishment of Certain Federal Advisory Committees and Amendments to Other Executive Orders (2021).Zhu, G., Illan, J. G., Looney, C. & Crowder, D. W. Assessing the ecological niche and invasion potential of the Asian giant hornet. Proc. Natl Acad. Sci. USA 117, 24646–24648 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Freitas, A. R. R. et al. Assessing the severity of COVID-19. Epidemiol. E Serviços. Saúde. 29, 1–5 (2020).
Google Scholar
Prevent Epidemics. COVID-19 Key COVID-19 Metrics Based on the Latest Available Science. https://preventepidemics.org/wp-content/uploads/2020/09/COVID-19-Science-Metrics_2020Sept18.pdf (2020).Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology (Wiley-Blackwell, 2013).Ehler, L. E. Invasion biology and biological control. Biol. Control 13, 127–133 (1998).Article
Google Scholar
Ludsin, S. A. & Wolfe, A. D. Biological invasion theory: Darwin’s contributions from The Origin of Species. BioScience 51, 780 (2001).Article
Google Scholar
Schulz, A. N., Lucardi, R. D. & Marsico, T. D. Strengthening the ties that bind: an evaluation of cross-disciplinary communication between invasion ecologists and biological control researchers in entomology. Ann. Entomol. Soc. Am. 114, 163–174 (2021).CAS
Article
Google Scholar
Lockwood, J. L., Cassey, P. & Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 20, 223–228 (2005).PubMed
Article
Google Scholar
Liu, H. Oviposition substrate selection, egg mass characteristics, host preference, and life history of the spotted lanternfly (Hemiptera: Fulgoridae) in North America. Environ. Entomol. 48, 1452–1468 (2019).PubMed
Article
CAS
Google Scholar
Liu, H. Seasonal development, cumulative growing degree-days, and population density of spotted lanternfly (Hemiptera: Fulgoridae) on selected hosts and substrates. Environ. Entomol. 49, 1171–1184 (2020).PubMed
Article
Google Scholar
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open‐source release of Maxent. Ecography 40, 887–893 (2017).Article
Google Scholar
Araújo, M. B. & New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 22, 42–47 (2007).PubMed
Article
Google Scholar
Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).PubMed
PubMed Central
Article
Google Scholar
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
Weiss, D. J. et al. A global map of travel time to cities to assess inequalities in accessibility in 2015. Nature 553, 333–336 (2018).CAS
PubMed
Article
Google Scholar
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosciences 116 (2011).Sladonja, B., Sušek, M. & Guillermic, J. Review on invasive tree of heaven (Ailanthus altissima (Mill.) Swingle) conflicting values: assessment of its ecosystem services and potential biological threat. Environ. Manag. 56, 1009–1034 (2015).Article
Google Scholar
Fielding, A. H. & Bell, J. F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 24, 38–49 (1997).Article
Google Scholar
Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Peterson, A. T. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2007).Article
Google Scholar
Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Model. 222, 2796–2811 (2011).Article
Google Scholar
AVCALC. Density of alcoholic beverage, wine, table, all (food). https://www.aqua-calc.com/page/density-table/substance/alcoholic-blank-beverage-coma-and-blank-wine-coma-and-blank-table-coma-and-blank-all (2019).U.S. Alcohol and Tobacco Tax and Trade Bureau. Established AVAs. https://www.ttb.gov/wine/established-avas (2019).Wikipedia. https://en.wikipedia.org/wiki/List_of_wine-producing_regions. (2020).Allison, P. D. Multiple Regression: A Primer (Pine Forge Press, 1999).Ponti, L. et al. Biological invasion risk assessment of Tuta absoluta: Mechanistic versus correlative methods. Biol. Invasions 23, 3809–3829 (2021).Article
Google Scholar
Briscoe, N. J. et al. Forecasting species range dynamics with process-explicit models: matching methods to applications. Ecol. Lett. 22, 1940–1956 (2019).PubMed
Article
Google Scholar
Wang, C.-J. et al. Risk assessment of insect pest expansion in alpine ecosystems under climate change. Pest Manag. Sci. 77, 3165–3178 (2021).CAS
PubMed
Article
Google Scholar
Keena, M. A. & Nielsen, A. L. Comparison of the hatch of newly laid Lycorma delicatula (Hemiptera: Fulgoridae) eggs from the United States after exposure to different temperatures and durations of low temperature. Environ. Entomol. 50, 410–417 https://doi.org/10.1093/ee/nvaa177 (2021).Xin, B. et al. Exploratory survey of spotted lanternfly (Hemiptera: Fulgoridae) and its natural enemies in China. Environ. Entomol. 50, 36–45 (2020).Article
CAS
Google Scholar
Leach, A. & Leach, H. Characterizing the spatial distributions of spotted lanternfly (Hemiptera: Fulgoridae) in Pennsylvania vineyards. Sci. Rep. 10, 1–9 (2020).Article
CAS
Google Scholar
Granett, J., Walker, M. A., Kocsis, L. & Omer, A. D. Biology and management of grape phylloxera. Annu. Rev. Entomol. 46, 387–412 (2001).CAS
PubMed
Article
Google Scholar More