More stories

  • in

    A dynamically structured matrix population model for insect life histories observed under variable environmental conditions

    Renewal processes represent development under variable conditionsThe consequence of a drastic environmental change can be demonstrated by introducing a shift in development time during the process. For demonstration, we consider a scenario where a group of individuals enter into a favourable environment reducing development time from (40pm 5) time units to (20pm 5).We show, in Fig. 1, that our dynamic pseudo-stage-structured MPM yields a gradual stage completion with an average development time of approximately (30pm 5) steps (solid dark lines) when conditions shift at ({tau }=20) (each step corresponds to 1 time unit). The target Erlang-distributed development trajectories without the shift are shown as dashed gray lines. The snapshots of the population structure, represented by the development indicator q, taken at each time step, show that half of the development is complete at the time of the switch and the switch accelerates the accumulation of q (Fig. S1).Figure 1Response to change in development time. The number of developing individuals is simulated by using the cumulative development process and compared to (a) the age-dependent development process, (b) an ODE representation, (c) an LCT representation, and (d) a DDE representation. Solid dark lines show the cumulative development and thick blue lines show the alternative models. Dashed gray lines mark the two target trajectories before and after the shift in development time (marked with red crosses).Full size imageIn age-dependent development, a sharp transition, instead of a gradual one, is observed at the (20^{th}) step (Fig. 1a). The switch results in the majority of individuals reaching target development age immediately at the time of switch. Previous work, reported in Erguler et al.59 and Erguler et al.55, aimed at modelling population dynamics under variable conditions, based on this dynamic age-dependent framework. Our results suggest that cumulative development might improve the fit to the data, prediction accuracy, and applicable geospatial range of these models.We see in Fig. 1b that the canonical ODE framework represents an exponentially distributed development time and a shift in rate at (t=20). The LCT extension to the framework helps to incorporate time dependence and represent the long and short development time distributions (Fig. 1c). The resulting model accommodates change in the rate parameter (gamma ) (Eq. 8), e.g doubling of (gamma ) changes development time from (40pm 5) to (20pm 2.5). However, to accommodate the required shift, the model needs to be transformed from a 66-dimensional system to an 18-dimensional one, which is beyond the scope of this work. We argue that in cases where development time distribution is fixed a priori (excluded from model calibration), the LCT framework provides a significant advantage over canonical ODEs. Although the framework has been used in the field of infectious disease epidemiology64,65, it has recently been applied to the modelling of vector population dynamics30.The DDE framework also yields a gradual development trajectory with an intermediate duration (Fig. 1d). However, the distribution tends towards the longer development trajectory compared to the one achieved with cumulative development. The canonical DDE framework assumes a homogenous cohort, where all individuals react in the same way to variations in development rate. The assumption gives rise to sharp stage transitions within a single generation if all individuals are introduced at the same time. As a potential workaround, it has been proposed to generate a plausible population history, through variable entry times, until the required (or observed) developmental variation builds up31,32. Variation in development rates then acts upon the population and results in the modification of the existing age-structure. It is worthwhile to mention that a recent extension to the DDE framework to accommodate trait variation in population dynamics34 might also accommodate changing development rates within a single stage; however, it has not yet been employed at this scale.Cumulative development is in agreement with the widely known degree-day (DD) framework, where development time is predicted by the heat accumulating in organisms46. Although the rate of accumulation in response to environmental conditions varies considerably, the DD framework implies that the combination of two different rates yields an average development time (also seen with cumulative development in Fig. 1). Experimental evaluation of this will be the topic of future research.It is worth mentioning that our dynamically structured renewal process-based MPM follows the assumption of random population heterogeneity9,11; namely, at the individual level, the future behaviour of an organism is not affected by its historical behaviour. However, trait variation within a population is prevalent in many species, and is known to impact population dynamics and species interactions34,66,67. Future development of our framework will consider improving upon this limitation.Environmental variation transformed into development timesSeveral non-linear relationships have been proposed to represent the temperature dependence of insect development68. A common feature is the presence of low and high temperature thresholds beyond which development is prohibitively slow. Often, there exists an optimum between the thresholds where the process is most efficient. A typical relationship between temperature and development rate, reported in Briere et al.50, is seen in Fig. 2a. Mean development time, given by the reciprocal of rate in Fig. 2b, exhibits the two thresholds and the optimum.Figure 2Development under environmental variation. In (a), development rate (Eq. 9) is shown with (alpha =1.5times 10^{-5}), (T_L=0^oC), and (T_H=50^oC). In (b), mean development time is shown together with the probability densities of three temperature regimes ((rho _L), (rho _M), and (rho _H)). In (c), the number of individuals completing development at each step are shown with respect to the three temperature regimes. Solid lines indicate the median, shaded areas indicate the (90%) range of 1000 simulations, and thick lines indicate simulations with the expected values of each regime.Full size imageTo investigate how temperature variation is transformed into cumulative development time, we assumed three variation regimes at relatively low, medium, and high temperatures ((rho _L), (rho _M), and (rho _H), respectively). Densities of the corresponding Gaussian probability distributions are plotted in Fig. 2b. Accordingly, each variation is transformed by a slightly different region of the rate function (Eq. 9). Eventually, the three development time distributions emerge as shown in Fig. 2c.We found that the output of (rho _H) is skewed towards longer durations compared to what we would otherwise obtain if we simulated the process under constant conditions with the mean of (rho _H). The impact of variation in the middle range, (rho _M), is similar to that of (rho _H), but less pronounced. Conversely, the output of (rho _L) is skewed towards shorter durations. Our results suggest that, when development is already highly efficient, variation in temperature causes frequent encounters of longer (but not shorter) development durations, eventually extending the overall duration of the process. In the low efficiency range, development takes long to complete, but frequent encounters of relatively short durations—especially as the process approaches its optimum duration—triggers completion earlier than in the case of no variation.Overall, our model predictions are in agreement with the rate summation effect, which states that the different outcomes obtained under constant and varying temperatures is due to the non-linear relationship between temperature and development rate (the Kaufmann effect)16. Furthermore, acceleration of development in insects subjected to varying high temperatures, its retardation at varying low temperatures, and low variability of development time in the linear range of the rate curve have been widely discussed69. Several groups have reported evidence in support of this effect, which is also in agreement with our results. For instance, Vangansbeke et al. (2015) reported for three insect species, Phytoseiulus persimilis, Neoseiulus californicus, and Tetranychus urticae, that varying temperatures with a lower mean yields faster development compared to the yield at mean constant temperatures70. However, observations of this phenomenon might result in different responses for different species at similar temperatures due to the difference in rate curves. Identification of the optimum temperature range may facilitate comparison. For instance, Carrington et al. (2013) assumed (26^oC) as optimum based on the high dengue incidence in Thailand, and showed that large variations around (26^oC) increases development time for the dengue vector, Aedes aegypti71. Wu et al. (2015) demonstrated that development is faster at around (26^oC) compared to (23^oC) for the fly, Megaselia scalaris, and found that varying temperatures at around (23^oC) accelerates the process47. Finally, in a modelling study employing DDs, Chen et al. (2013) reported that larger diurnal temperature ranges relate to additional DD accumulation and faster development in grape berry moth, Paralobesia viteana72. Under the realistic non-optimum field conditions, where these simulations had been performed, a decrease in development time is expected in response to varying temperatures according to our results.We note that the variation in development times is due to temperature since we ignore intrinsic stochasticity to demonstrate the impact of (rho ) in isolation. The deterministic setup removes the upper limit in the number of distinct pseudo-stage indicators: a different q emerges from each k, and a different k emerges from each (rho ). Since the number of pseudo-stages quickly exhausts the computational resources, we set the precision of q to the nearest 100(^{th}) decimal point, effectively capping the number of pseudo-stages at 100 (see Accuracy of the pseudo-stage approximation). As shown in Fig. S2, the approximation has a negligible impact on accuracy.Environmental dependency extracted from life tables under constant conditionsHaving discussed the importance of environmental variability in development, in this section, we employ a well-established experimental method to unravel the relationship between temperature and development time in a common mosquito species. In contrast to invasive vectors, which effectively render new territories suitable for disease transmission, Culex species pose an imminent threat with their wide distribution and ornitophilic (Cx. pipiens biotype pipiens), mamophilic (Cx. pipiens biotype molestus), and intermixed (their hybrids) blood feeding behaviour. Here, we investigate the temperature dependencies of mortality and development of Cx. quinquefasciatus, the southern house mosquito, which is an important disease vector, widely distributed across the tropics and sub-tropics73,74.To infer the dependencies, we used a generic temperature-driven insect development model, described in Methods, and the life history observations performed at five constant temperatures (15, 20, 23, 27, and (30,^{circ })C) under laboratory conditions60,61. As a result of the inverse modelling procedure, detailed in Methods, we found that the generic model yields an overall match between the simulations and observations. In Fig. 3a, we present a comparison of observed and simulated maximum production and the stage-emergence times for pupae and adults. Here, we define the stage-emergence time as the time taken from the beginning of an experiment to the time when half of the maximum production of a stage (pupa or adult) is observed. In addition, in Fig. S3, we present the comparison of time trajectories separately for each temperature.Figure 3Inverse modelling of Cx. quinquefasciatus environmental dependency. The comparison of observed and simulated maximum pupa (P) and adult (A) production and the corresponding stage-emergence times is given in (a). Observations are represented with dots and simulations with box plots. The environmental dependency of larva and pupa development time (b) and mortality (c), derived by the posterior mode sample (Theta _q), is shown in (b,c). Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the generic model faithfully replicates the observed development times of larvae and pupae. On the other hand, stage mortalities are predicted well at three temperatures, but are overestimated at 20 or (27,^{circ })C. The impact of temperature on mortality might be more complex than it is captured by the quartic equation (Eq. 11). Optimum survival seen at (27,^{circ })C suggests that the relationship might be non-symmetrical or multimodal. In addition, the observed variability in mortality suggests that the mismatch could also be due to experimental error or the intrinsic stochasticity of the biological processes.We extracted the functional forms of temperature dependence from the posterior samples, shown in Fig. 3b, c, and found that the data inform the model as expected within the temperature range of the experiments ((15{-}30,^{circ })C). Stage durations are well informed, and reflect the low variability seen in the data (the standard deviation is less than 1.5 days at all temperatures for both stages). Accordingly, pupae develop in less than 4 days, which is much shorter than the larva development time (between 10 and 20 days above (20,^{circ })C). The model predicts that the minimum temperature at which development occurs (from the larva stage) is (10.5,^{circ })C, which is close to (10.9,^{circ })C, reported in Grech et al.75.The observed variability in pupa and adult production suggests that survival is a highly stochastic process regardless of the controlled laboratory conditions. A deterministic model, such as the one used in this context, represents the mean of such processes but does not capture their variability. The simulated variability is a result of the uncertainty in parameter estimates. Model parameters contribute unequally to the output as a result of the model structure and the functional forms of temperature dependence, and the data inform certain parameters better than others76,77. For instance, daily mortality, shown in Fig. 3c, is more constrained for larva than pupa, which is likely due to the short duration of the pupa stage—changes in daily mortality have larger consequences as development time increases.We note that a well-informed model yields predictions in the form of verifiable hypotheses; however, these are not necessarily accurate predictions. Model accuracy is assessed when such hypotheses are experimentally tested as part of the cyclic process of model development78. Here, we demonstrated that our modelling framework can be used to derive biologically meaningful inferences and to help improve the understanding of the temperature dependence of Cx. quinquefasciatus.Greater information content of semi-field experimentsThe number of experiments required to test a range of conditions, including different combinations of multiple drivers, may quickly exhaust available resources. Moreover, variable conditions may have a previously unaccounted impact on development and mortality. In this section, we demonstrate that observations performed under variable conditions are valuable sources of information for our modelling framework, which is capable of representing the dynamics under such conditions.Cx. pipiens, the northern house mosquito, is a competent disease vector, widely distributed across the temperate countries in North America, Europe, Asia, and North and East Africa74,79. Unlike Cx. quinquefasciatus, Cx. pipiens biotype pipiens is known to enter a reproductive diapause phase, where adult females arrest oogenesis during harsh winter conditions80,81. When larvae are exposed to short photoperiods and low temperatures during development, they emerge as adults destined to diapause. Although Cx. pipiens biotype molestus has lost the ability to diapause, its immature stages have been reported to retain metabolic sensitivity to photoperiod82,83.To reveal the environmental dependence of the molestus biotype, we exposed its eggs to variable temperatures in semi-field conditions until adult emergence (or loss of cohort). The numbers of viable larvae, pupae, and adults observed in different experimental batches are given in Fig. S4. We employed the extended model with both temperature and photoperiod dependence (see Methods), and calibrated the model against seven of the semi-field experiments, performed in March, May, June, July, August, and September (Fig. S4(a), (b), (d), (f), (g), (i) and (j)).As a result, we found that the model replicates the patterns of abundance emerging in the observations, e.g. stage timing and maximum adult production, reasonably well in most of the experiments, regardless of the times during which they were performed (Figs. S5 and S6). Quantitative evaluation of the agreement reveals that the observed and simulated adult emergence times are less than a week apart (Table 1).Table 1 Comparison of observed and simulated adult emergence time and the total number of adults produced. Simulation output is given in terms of the median and (90%) range.Full size tableOn the other hand, we found that egg and larva mortalities, and also, pupa and adult production are highly variable in the observations (see Fig. S4(c), (f), and (g)). Spikes of larva mortality are seen in Spring and Autumn (especially in May, September, and October). Despite this variability, the difference between the predicted and observed adult production was around 11 or less, except in the case of the experiment E7, which unexpectedly yielded only one pupa and no adults.We obtain relatively large mismatches when predicting larva abundances, specifically where egg mortality is not predicted well (E5, E7, E8, E10, E11, E12). We hypothesise that the stress associated with rearing lab-grown specimens under variable conditions might elevate egg mortality, induce premature hatching, or affect the survival of the larvae produced. Since egg development starts inside gravid females, i.e. under the optimum conditions of the laboratory, the observable part of development subjected to variable conditions remains mainly the hatching behaviour. Consequently, we observed rapid and synchronous completion of the egg stage in all experiments (see Figs. S5 and S6). Being exposed to a narrow range of temperatures, relatively less information can be obtained on the environmental dependency of the egg stage. As a potential improvement, we recommend that future adaptations of the semi-field experiments consider using field-captured adult female mosquitoes as the source of eggs.In addition to egg mortality, we observed spikes of larva mortality in May (E3), July (E8), and in Autumn (E14, E15, and E16). A likely cause of such transient high mortality is brief temperature shifts towards the extremes. However, the rarity of such events prevents the inverse modelling procedure from adequately capturing their impacts on life processes. As a potential improvement, we recommend that the experiments are performed in overlapping time frames, increasing the likelihood of observing the impact of an extreme event at different times during development. We note that the early decline in larva abundance seen in Autumn could be a result of insufficient food supply due to the increased nutritional requirements. According to the proposed metabolic response to short photoperiods, larvae would require additional food to accumulate fat reserves in preparation for diapause, the state where adult females endure several months without feeding. This implies that development takes longer than it would at long photoperiods when subjected to similar temperature regimes.Using the extended model and the semi-field data, we identified the environmental dependencies shown in Fig. 4. The data informed about the temperature dependency of each life stage as well as the photoperiod dependency of larvae. As expected, the overall variability in the inferred dependencies is higher for Cx. pipiens compared to Cx. quinquefasciatus (Fig. 3). We found that the larva and pupa development times closely match the observations reported by Spanoudis et al.62 at long photoperiods (see Fig. S7). However, the development times reported in Kiarie-Makara et al.84 at short photoperiods and moderate temperatures do not suggest a significant impact of daylight, which could be due to the particular strain of Cx. pipiens used in these experiments. As expected, the temperature dependency of egg development was not well informed by the data in the current configuration of the model and the functional forms of environmental dependence.Figure 4Environmental dependency of Cx. pipiens development and mortality inferred from semi-field life table experiments. Solid lines represent the median and shaded areas represent the (90%) range.Full size imageWe found that the photoperiod dependency is significantly non-linear with an average threshold of 13.7 hours of daylight (Fig. 4c). Photoperiod-driven extension in development time (about 1.7 times more at 13:11 h L:D than at 15:9 h L:D) contributes to improving the accuracy of predictions at the end of the high season (Fig. S8). The critical photoperiod (CPP) agrees well with the ones identified for Cx. pipiens biotype pipiens85,86. For instance, Sanburg and Larsen reported that there is an exponential relationship between follicle sizes in adult females (signifying commitment to diapause) and the photoperiods they were exposed to during immature stages85. We inferred a similar (but reverse) gradient between photoperiod and the extension of larva development time from 15 to 12 hours of daylight (Fig. 4c).Risk assessment with annual development profilesWe extrapolated the development dynamics of Cx. pipiens over the calendar year by setting up a hypothetical experiment at the beginning of each week. We simulated the subsequent development dynamics and obtained the annual development profile as shown in Fig. 5. Accordingly, the immature stages begin development from late February and the first adults emerge in May (adults emerging late in May start developing in the experiments set up late in March). The profile is consistent with the regular Cx. pipiens high season in the region.Figure 5Annual development profile of Cx. pipiens in Petrovaradin, Serbia, in 2017. The outcome of each hypothetical semi-field experiment is plotted vertically along the y-axis at the date when the experiment is initiated. The maximum number of adults produced is given in blue, and the time it takes (from the date indicated on the x-axis) to produce half of the maximum is given in green. Solid lines represent the median and shaded areas represent the 90% range of model predictions. Outcomes of the semi-field experiments (dots) are plotted together with the model predictions. The time points marked with circles indicate the experiments used to calibrate the model. Estimated time of first adult emergence is given in the inset.Full size imageAs seen in Fig. 5, predicted adult emergence times agree well with the observations throughout the high season. However, there is a greater variation in the maximum number of adults than the times of emergence (extending to almost (40%) of the possible outcomes in early August). A greater variability (almost (80%) in August) is seen in the corresponding observations, which we transformed into the percentage of eggs emerging as adults (where available) to facilitate comparison. According to the model, variation in adult production is associated with the variation in both development times and mortality during immature stages. We recall that the uncertainty in the informed environmental dependencies is high around relatively less frequently encountered values—especially the lower and higher temperature extremes (Fig. 4). Specifically, egg development times cannot be identified precisely, but immediate hatching of the larvae is predicted between 20 and 25 °C. Consequently, we found that frequent exposure to temperatures outside the well-informed range have a significant impact on the variation in adult production (Fig. S9).We adopt the time of first adult emergence as a proxy of the first generation of adults in the season. According to our model, early adult emergence is a result of shorter development times and higher success rates, which indicates that the temperature conditions allow for an early first generation of adults. An early first generation greatly contributes to an early peak of adult abundance, which may increase the risk of vector-borne disease transmission in humans. For instance, an early peak of abundance may cause an early start of West Nile virus circulation and amplification in Culex pipiens and their avian hosts, which increases the likelihood of virus spillover to humans51,87. Anecdotal evidence shows that the anomalously hot April and May that occurred in 2018 in Serbia shifted the peak of Cx. pipiens abundance forward by more than one month (Petrić et al., unpublished). Similarly, 2018 was the year with the largest number of autochthonous West Nile virus infections throughout Europe (more than the total of the previous seven years together)88,89.In summary, our results showed that the semi-field experiments, when used in combination with our dynamic pseudo-stage-structured MPM, help to develop predictive models and inform over a wide range of environmental conditions. We developed a predictive model of Cx. pipiens biotype molestus development and gained insights into the specifics of temperature and photoperiod dependencies by reducing the need of extensive laboratory data. We used life history observations from 7 experiments performed under semi-field conditions and employed a generic model structure, largely uninformed on the specific environmental dependencies of the species. The cumulative development framework we introduced applies broadly to poikilotherms subjected to highly variable environmental conditions. Although the generic model structure helps to develop exploratory models and identify potential environmental dependencies, accuracy can be improved by customising the models for the known dependencies of particular species. With a straightforward extension of the development model to cover the complete life cycle (with egg laying and density dependence), it is possible to incorporate field observations of eggs or adult mosquitoes, and develop an environment-driven population dynamics model. More

  • in

    Late quaternary biotic homogenization of North American mammalian faunas

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Marlon, J. R. et al. Global biomass burning: a synthesis and review of Holocene paleofire records and their controls. Quat. Sci. Rev. 65, 5–25 (2013).ADS 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 52, 52–58 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    Boivin, N. L. et al. Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proc. Natl Acad. Sci. USA 113, 6388–6396 (2016).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Petrozzi, F. et al. Surveys of mammal communities in a system of five forest reserves suggest an ongoing biotic homogenization process for the Niger Delta (Nigeria). Trop. Zool. 28, 95–113 (2015).Article 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Sax, D. F. & Gaines, S. D. Species diversity: from global decreases to local increases. Trends Ecol. Evol. 18, 561–566 (2003).Article 

    Google Scholar 
    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Finderup Nielsen, T., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).Article 
    PubMed 

    Google Scholar 
    Baiser, B., Olden, J. D., Record, S., Lockwood, J. L. & McKinney, M. L. Pattern and process of biotic homogenization in the New Pangaea. Proc. R. Soc. Lond. B: Biol. Sci. 279, 4772–4777 (2012).
    Google Scholar 
    Longman, E. K., Rosenblad, K. & Sax, D. F. Extreme homogenization: the past, present and future of mammal assemblages on islands. Glob. Ecol. Biogeogr. 27, 77–95 (2018).Article 

    Google Scholar 
    Spear, D. & Chown, S. L. Taxonomic homogenization in ungulates: patterns and mechanisms at local and global scales. J. Biogeogr. 35, 1962–1975 (2008).Article 

    Google Scholar 
    Tóth, A. B., Lyons, S. K. & Behrensmeyer, A. K. A century of change in Kenya’s mammal communities: increased richness and decreased uniqueness in six protected areas. PLoS ONE 9, e93092 (2014).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Qian, H. & Ricklefs, R. E. The role of exotic species in homogenizing the North American flora. Ecol. Lett. 9, 1293–1298 (2006).Article 
    PubMed 

    Google Scholar 
    Muthukrishnan, R. & Larkin, D. J. Invasive species and biotic homogenization in temperate aquatic plant communities. Glob. Ecol. Biogeogr. 29, 656–667 (2020).Article 

    Google Scholar 
    Early, R. et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7 1–9 (2016).Olden, J. D. & Poff, N. L. Toward a mechanistic understanding and prediction of biotic homogenization. Am. Naturalist 162, 442–460 (2003).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vellend, M. et al. Homogenization of forest plant communities and weakening of species–environment relationships via agricultural land use. J. Ecol. 95, 565–573 (2007).Article 

    Google Scholar 
    Byers, J. E., Wright, J. T. & Gribben, P. E. Variable direct and indirect effects of a habitat‐modifying invasive species on mortality of native fauna. Ecology 91, 1787–1798 (2010).Article 
    PubMed 

    Google Scholar 
    Didham, R. K., Tylianakis, J. M., Gemmell, N. J., Rand, T. A. & Ewers, R. M. Interactive effects of habitat modification and species invasion on native species decline. Trends Ecol. Evol. 22, 489–496 (2007).Article 
    PubMed 

    Google Scholar 
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).CAS 
    Article 

    Google Scholar 
    Lavery, T. H., Posala, C. K., Tasker, E. M. & Fisher, D. O. Ecological generalism and resilience of tropical island mammals to logging: a 23 year test. Glob. Change Biol. 26, 3285–3293 (2020).ADS 
    Article 

    Google Scholar 
    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinclair, A. Mammal population regulation, keystone processes and ecosystem dynamics. Philos. Trans. R. Soc. B: Biol. Sci. 358, 1729–1740 (2003).CAS 
    Article 

    Google Scholar 
    Ellison, A. M. et al. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3, 479–486 (2005).Article 

    Google Scholar 
    O’Connor, N. E. & Crowe, T. P. Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86, 1783–1796 (2005).Article 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mihoub, J.-B. et al. Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci. Rep. 7, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    Beller, E. et al. Toward principles of historical ecology. Am. J. Bot. 104, 645–648 (2017).Article 
    PubMed 

    Google Scholar 
    Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79–103 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Stephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl Acad. Sci. USA 118 e2023483118 (2021).Waters, M. R. Late Pleistocene exploration and settlement of the Americas by modern humans. Science 365 https://doi.org/10.1126/science.aat5447 (2019).Bennett, M. R. et al. Evidence of humans in North America during the last glacial maximum. Science 373, 1528–1531 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quat. Sci. Rev. 26, 56–69 (2007).ADS 
    Article 

    Google Scholar 
    Lyons, S. K., Smith, F. A. & Brown, J. H. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6, 339–358 (2004).
    Google Scholar 
    Barnosky, A. D. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions. Proc. Natl Acad. Sci. USA 105, 11543–11548 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Ann. Rev. Ecol. Evol. Syst. 37 215–250 (2006).Faith, J. T. & Surovell, T. A. Synchronous extinction of North America’s Pleistocene mammals. Proc. Natl Acad. Sci. USA 106, 20641–20645 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Pineda-Munoz, S., Wang, Y., Lyons, S. K., Tóth, A. B. & McGuire, J. L. Mammal species occupy different climates following the expansion of human impacts. Proc. Natl Acad. Sci. USA 118, e1922859118 (2021).Graham, R. W. et al. Spatial response of mammals to late quaternary environmental fluctuations. Science 272, 1601–1606 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Blois, J. L., McGuire, J. L. & Hadly, E. A. Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465, 771–775 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stewart, J. R., Lister, A. M., Barnes, I. & Dalén, L. Refugia revisited: individualistic responses of species in space and time. Proc. R. Soc. B: Biol. Sci. 277, 661 (2010).Article 

    Google Scholar 
    Lyons, S. K., Wagner, P. J. & Dzikiewicz, K. Ecological correlates of range shifts of Late Pleistocene mammals. Philos. Trans. R. Soc. B: Biol. Sci. 365, 3681–3693 (2010).Article 

    Google Scholar 
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, https://doi.org/10.1098/rsbl.2016.0342 (2016).Pineda‐Munoz, S. et al. Body mass‐related changes in mammal community assembly patterns during the late Quaternary of North America. Ecography 44, 56–66 (2021).Article 

    Google Scholar 
    Lyons, S. K. A quantitative model for assessing community dynamics of Pleistocene mammals. Am. Naturalist 165, E168–E185 (2005).Article 

    Google Scholar 
    Lyons, S. K. et al. Holocene shifts in the assembly of plant and animal communities implicate human impacts. Nature 529, 80–83 (2016).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Pires, M. M. et al. Pleistocene megafaunal interaction networks became more vulnerable after human arrival. Proc. R. Soc. B: Biol. Sci. 282, 20151367 (2015).Article 

    Google Scholar 
    Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long‐distance seed‐dispersal services. Ecography 41, 153–163 (2018).Article 

    Google Scholar 
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).Article 
    PubMed 

    Google Scholar 
    Olden, J. D., Lockwood, J. L. & Parr, C. L. In Conservation biogeography (eds. Ladle, R. & Whittaker, R. J.) Ch. 9, 224–243 (John Wiley & Songs, 2011).Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence-absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    Alroy, J. A new twist on a very old binary similarity coefficient. Ecology 96, 575–586 (2015).Article 
    PubMed 

    Google Scholar 
    Ulrich, W. & Gotelli, N. J. Null model analysis of species nestedness patterns. Ecology 88, 1824–1831 (2007).Article 
    PubMed 

    Google Scholar 
    Behrensmeyer, A. K., Western, D. & Boaz, D. E. D. New perspectives in vertebrate paleoecology from a recent bone assemblage. Paleobiology 5, 12–21 (1979).Article 

    Google Scholar 
    Behrensmeyer, A. K. & Dechant Boaz, D. E. In Fossils in the Making (ed. Behrensmeyer, A.K.) 72–92 (University of Chicago Press, 1980).Andrews, P. Owls, caves and fossils: predation, preservation and accumulation of small mammal bones in caves, with an analysis of the Pleistocene cave faunas from Westbury-sub-Mendip, Somerset, UK (University of Chicago Press, 1990).Badgley, C. Tectonics, topography, and mammalian diversity. Ecography 33, 220–231 (2010).
    Google Scholar 
    Buckley, L. B. & Jetz, W. Linking global turnover of species and environments. Proc. Natl Acad. Sci. USA 105, 17836–17841 (2008).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Qian, H., Badgley, C. & Fox, D. L. The latitudinal gradient of beta diversity in relation to climate and topography for mammals in North America. Glob. Ecol. Biogeogr. 18, 111–122 (2009).Article 

    Google Scholar 
    Lorenz, D. J., Nieto-Lugilde, D., Blois, J. L., Fitzpatrick, M. C. & Williams, J. W. J. S. d. Downscaled and debiased climate simulations for North America from 21,000 years ago to 2100AD. 3, 160048 (2016).Rosenblad, K. C. & Sax, D. F. A new framework for investigating biotic homogenization and exploring future trajectories: Oceanic island plant and bird assemblages as a case study. Ecography 40, 1040–1049 (2017).Article 

    Google Scholar 
    Kortz, A. R. & Magurran, A. E. Increases in local richness (α-diversity) following invasion are offset by biotic homogenization in a biodiversity hotspot. Biol. Lett. 15, 20190133 (2019).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Castro, S. A. et al. Partitioning β-diversity reveals that invasions and extinctions promote the biotic homogenization of Chilean freshwater fish fauna. PLoS ONE 15, e0238767 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Peoples, B. K., Davis, A. J., Midway, S. R., Olden, J. D. & Stoczynski, L. Landscape-scale drivers of fish faunal homogenization and differentiation in the eastern United States. Hydrobiologia 847, 3727–3741 (2020).Article 

    Google Scholar 
    Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Natl Acad. Sci. USA 110, 9374–9379 (2013).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Qian, H. & Xiao, M. Global patterns of the beta diversity energy relationship in terrestrial vertebrates. Acta Oecol 39, 67–71 (2012).ADS 
    Article 

    Google Scholar 
    Fritz, S. A. et al. Twenty-million-year relationship between mammalian diversity and primary productivity. Proc. Natl Acad. Sci. USA 113, 10908–10913 (2016).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Figueirido, B., Janis, C. M., Pérez-Claros, J. A., Renzi, M. D. & Palmqvist, P. Cenozoic climate change influences mammalian evolutionary dynamics. Proc. Natl Acad. Sci. USA 109, 722–727 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnosky, A. D., Hadly, E. A. & Bell, C. J. Mammalian response to global warming on varied temporal scales. J. Mammal. 84, 354–368 (2003).Article 

    Google Scholar 
    Fraser, D., Hassall, C., Gorelick, R. & Rybczynski, N. Mean annual precipitation explains spatiotemporal patterns of Cenozoic mammal beta diversity and latitudinal diversity gradients in North America. PloS ONE 9, e106499 (2014).ADS 
    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Darroch, S. A. F., Webb, A. E., Longrich, N. & Belmaker, J. Palaeocene–Eocene evolution of beta diversity among ungulate mammals in North America. Glob. Ecol. Biogeogr. 23, 757–768 (2014).Article 

    Google Scholar 
    Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl Acad. Sci. USA 109, E1134–E1142 (2012).CAS 
    PubMed Central 
    PubMed 

    Google Scholar 
    Andersen, K. K. et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).ADS 
    Article 

    Google Scholar 
    McManus, J. F., Francois, R., Gherardi, J.-M., Keigwin, L. D. & Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thiagarajan, N., Subhas, A. V., Southon, J. R., Eiler, J. M. & Adkins, J. F. Abrupt pre-Bølling–Allerød warming and circulation changes in the deep ocean. Nature 511, 75–78 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Alley, R. B. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev. 19, 213–226 (2000).ADS 
    Article 

    Google Scholar 
    Lyons, S. K. A quantitative assessment of the range shifts of Pleistocene mammals. J. Mammal. 84, 385–402 (2003).Article 

    Google Scholar 
    Davis, M. What North America’s skeleton crew of megafauna tells us about community disassembly. Proc. R. Soc. B. 284, 20162116 (2017).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Tóth, A. B. et al. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 365, 1305–1308 (2019).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).ADS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Owen-Smith, R. N. Megaherbivores: the influence of very large body size on ecology (Cambridge university press, 1992).Doughty, C. E. et al. Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences USA (2015).Araujo, B. B., Oliveira-Santos, L. G. R., Lima-Ribeiro, M. S., Diniz-Filho, J. A. F. & Fernandez, F. A. Bigger kill than chill: the uneven roles of humans and climate on late Quaternary megafaunal extinctions. Quat. Int. 431, 216–222 (2017).Article 

    Google Scholar 
    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. Lond. B: Biol. Sci., rspb 2008, 1921 (2009).
    Google Scholar 
    Barnosky, A. D. et al. Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl Acad. Sci. USA 113, 856–861 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kelt, D. A. & Van Vuren, D. Energetic constraints and the relationship between body size and home range area in mammals. Ecology 80, 337–340 (1999).Article 

    Google Scholar 
    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    Arnan, X., Cerdá, X. & Rodrigo, A. Do Forest Fires Make Biotic Communities Homogeneous or Heterogeneous? Patterns of taxonomic, functional, and phylogenetic ant beta diversity at local and regional landscape scales. Front. Forests Glob. Change 3, https://doi.org/10.3389/ffgc.2020.00067 (2020).Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).Article 

    Google Scholar 
    Clavel, J., Julliard, R. & Devictor, V. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228 (2011).Article 

    Google Scholar 
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non‐random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).Article 

    Google Scholar 
    Tilman, D. et al. Forecasting agriculturally driven global environmental change. science 292, 281–284 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Price, T. D. Ancient farming in eastern North America. Proc. Natl Acad. Sci. USA 106, 6427–6428 (2009).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Smith, B. D. The origins of agriculture in the Americas. Evolut. Anthropol.: Issues, N., Rev. 3, 174–184 (1994).Article 

    Google Scholar 
    Olden, J. D., Poff, N. L. & McKinney, M. L. Forecasting faunal and floral homogenization associated with human population geography in North America. Biol. Conserv. 127, 261–271 (2006).Article 

    Google Scholar 
    Olden, J. D., LeRoy Poff, N., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24 (2004).Article 
    PubMed 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 
    PubMed 

    Google Scholar 
    Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article 

    Google Scholar 
    Toivanen, T. et al. The many Anthropocenes: a transdisciplinary challenge for the Anthropocene research. Anthropocene Rev. 4, 183–198 (2017).Article 

    Google Scholar 
    Biotic homogenization (Github, 2022).Brown, J. H. & Nicoletto, P. F. Spatial scaling of species composition: body masses of North American Land Mammals. Am. Naturalist 138, 1478–1512 (1991).Article 

    Google Scholar 
    Lyons, S. K. & Smith, F. A. In Animal body size: linking pattern and process across space, time, and taxonomic group (eds. Smith & S. Kathleen Lyons) (University of Chicago Press, 2013).Graham, R. W. & E. L. Lundelius, J. FAUNMAP II: New data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0., 2010).Haslett, J. & Parnell, A. A simple monotone process with application to radiocarbon-dated depth chronologies. J. Roy. Stat. Soc. Ser. C. (Appl. Stat.) 57, 399–418 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5 (2005).raster: Geographic data analysis and modeling version 3.4-10 (2021).mapdata: Extra Map Database. R package version 2.3.0. (2018).maps: Draw Geographical Maps version 3.4.0 (2021).Wickham, H. ggplot2: elegant graphics for data analysis (Springer-Verlag, 2016).Grimm, E. C., Maher, L. J. Jr & Nelson, D. M. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quatern. Res 72, 301–308 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).Baselga, A. & Orme, D. Package ‘betapart’. (2012).Package vegan version 2.5-7 (2012).Vavrek, M. J. fossil: palaeoecological and palaeogeographical analysis tools. Palaeontologia Electron. 14, 1T (2011).
    Google Scholar 
    Marschner, I. C. glm2: Fitting generalized linear models with convergence problems. R. J. 3, 12–15 (2011).Article 

    Google Scholar 
    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).Article 
    PubMed 

    Google Scholar 
    Nekola, J. C. & McGill, B. J. Scale dependency in the functional form of the distance decay relationship. Ecography 37, 309–320 (2014).Article 

    Google Scholar 
    Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).Article 
    PubMed 

    Google Scholar 
    Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).Article 
    PubMed 

    Google Scholar 
    Calenge, C. A collection of tools for the estimation of animals home range. (2017).Ulrich, W. et al. Species richness correlates of raw and standardized co‐occurrence metrics. Glob. Ecol. Biogeogr. 27, 395–399 (2018).Article 

    Google Scholar 
    Gotelli, N. J. Null model analysis of species co-occurrence patterns. Ecology 81, 2606–2621 (2000).Article 

    Google Scholar 
    Newell, N. D. Adequacy of the fossil record. J. Paleontol. 33, 488–499 (1959).
    Google Scholar 
    Raup, D. M. Biases in the fossil record of species and genera. Bull. Carnegie Mus. Nat. Hist. 13, 85–91 (1979).
    Google Scholar 
    Kidwell, S. M. & Holland, S. M. The quality of the fossil record: implications for evolutionary analyses. Annu. Rev. Ecol. Syst. 33, 561–588 (2002).Article 

    Google Scholar 
    Benton, M. J., Dunhill, A. M., Lolyd, G. T. & Marx, F. G. In Comparing the geological and fossil records: implications for biodiversity studies Vol. 358 (eds. McGowan, A. J. & A. B. Smith, A. B.) 63–94 (Geological Society of London, 2011).Graham, C. H. & Fine, P. V. A. Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol. Lett. 1265–1277 (2008).Patterson, B. D. et al. Digital Distribution Maps of the Mammals of the Western Hemisphere, version 3.0. NatureServe, (Arlington, Virginia, USA, 2007).Wilson, D. E. & Reeder, D. M. Mammal species of the world:ataxonomic and geographic reference. 3rd edition. (Johns Hopkins University Press,Baltimore, Maryland, 2,142 pp 2005).Fraser, D. & Lyons, S. K. Biotic interchange has structured Western Hemisphere mammal communities. Glob. Ecol. Biogeogr. 26, 1408–1422 (2017).Article 

    Google Scholar 
    Bivand, R. & Lewin-Koh, N. J. Maptools: Tools for Reading and Handling Spatial Objects R package (2021).Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    Bivand, R. S., Pebesma, E. J. & Gomez-Rubio, V. Applied spatial data analysis with R. (Springer, 2008).Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).Article 

    Google Scholar  More

  • in

    Effects of cavity orientation on nesting success inferred from long-term monitoring of the endangered red-cockaded woodpecker

    Biere, J. M. & Uetz, G. W. Web orientation in the spider Micrathena gracilis (Araneae: Araneidae). Ecology 62(2), 336–344 (1981).Article 

    Google Scholar 
    Korb, J. & Linsenmair, K. E. The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange? Behav. Ecol. 10(3), 312–316 (1999).Article 

    Google Scholar 
    Hansell, M. H. Bird nests and construction behaviour (Cambridge University Press, 2000).Book 

    Google Scholar 
    Kawase, H., Okata, Y. & Ito, K. Role of huge geometric circular structures in the reproduction of a Marine Pufferfish. Sci. Rep. 3, 1–5 (2013).Article 

    Google Scholar 
    Dawkins, R. The extended phenotype 295 (Oxford University Press, 1982).
    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction. Am. Nat. 147(4), 641–648 (1996).Article 

    Google Scholar 
    Odling-Smee, F. J., Laland, K. N. & Feldman, M. W. Niche construction: the Neglected process in evolution (Princeton University Press, 2003).
    Google Scholar 
    Short, L. L. Burdens of the picid hole-excavating habit. Wilson Bull. 91(1), 16–28 (1979).
    Google Scholar 
    Wiebe, K. L., Koenig, W. D. & Martin, K. Costs and benefits of nest reuse versus excavation in cavity-nesting birds. Ann. Zool. Fenn. 44(3), 209–217 (2007).
    Google Scholar 
    Landler, L. et al. Global trends in woodpecker cavity orientation: latitudinal and continental effects suggest regional climate influence. Acta Ornithol. 49(2), 257–266 (2014).Article 

    Google Scholar 
    Ojeda, V. et al. Latitude does not influence cavity entrance orientation of South American avian excavators. Auk 138(1), ukaa064 (2021).Article 

    Google Scholar 
    Wiebe, K. L. Microclimate of tree cavity nests: is it important for reproductive success in Northern Flickers? Auk 118(2), 412–421 (2001).Article 

    Google Scholar 
    Schaaf, A. A. Effects of sun exposure and vegetation cover on Woodpecker nest orientation in subtropical forests of South America. J. Ethol. 38, 117–120 (2019).Article 

    Google Scholar 
    Hooge, P. N., Stanback, M. T. & Koenig, W. D. Nest-site selection in the acorn woodpecker. Auk 116(1), 45–54 (1999).Article 

    Google Scholar 
    Schaaf, A. A. & de la Pena, M. R. Bird nest orientation and local temperature: an analysis over three decades. Ecology 20, e03042 (2020).
    Google Scholar 
    Charter, M. et al. Does nest box location and orientation affect occupation rate and breeding success of barn owls Tyto alba in a semi-arid environment? Acta Ornithol. 45(1), 115–119 (2010).Article 

    Google Scholar 
    Butler, M. W., Whitman, B. A. & Dufty, A. M. Nest box temperature and hatching success of American kestrels varies with nest box orientation. Wilson J. Ornithol. 121(4), 778–782 (2009).Article 

    Google Scholar 
    Goodenough, A. E. et al. Nestbox orientation: a species-specific influence on occupation and breeding success in woodland passerines. Bird Study 55(2), 222–232 (2008).Article 

    Google Scholar 
    Viñuela, J. & Sunyer, C. Nest orientation and hatching success of black kites milvus migrans in Spain. Ibis 134(4), 340–345 (1992).Article 

    Google Scholar 
    Larson, E. R. et al. How does nest box temperature affect nestling growth rate and breeding success in a parrot?. Emu 115(3), 247–255 (2015).Article 

    Google Scholar 
    Austin, G. T. Nesting success of the cactus wren in relation to nest orientation. Condor 76(2), 216–217 (1974).Article 

    Google Scholar 
    Verbeek, N. A. Nesting success and orientation of water pipit Anthus spinoletta nests. Ornis Scand. 25, 37–39 (1981).Article 

    Google Scholar 
    Conner, R. N. & Rudolph, D. C. Excavation dynamics and use patterns of red-cockaded woodpecker cavities: relationships with cooperative breeding. Red cockaded Woodpecker: recovery, ecology, and management. Center for Applied Studies in Forestry, College of Forestry, Stephen F. Austin State University, Nacogdoches, TX, 1995: 343–352.Harding, S. R. & Walters, J. R. Dynamics of cavity excavation by red-cockaded woodpeckers. In Red-Cockaded Woodpecker: Road to Recovery (eds Costa, R. & Daniels, S.) 412–422 (Hancock House, 2004).
    Google Scholar 
    Harding, S. R. & Walters, J. R. Processes regulating the population dynamics of red-cockaded woodpecker cavities. J. Wildl. Manage. 66(4), 1083–1095 (2002).Article 

    Google Scholar 
    Dennis, J. V. The yellow-shafted flicker (Colaptes Auratus) on Nantucket Island, Massachusetts. Bird Banding 40(4), 290–308 (1969).Article 

    Google Scholar 
    Baker, W. W. Progress report on life history studies of the red-cockaded woodpecker at Tall Timbers Research Station. Ecology and Management of the Redcockaded Woodpecker 44–59 (US Bureau of Sport Fisheries and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Dennis, J. V. Species using red-cockaded woodpecker holes in Northeastern South Carolina. Bird-Banding 42(2), 79–87 (1971).Article 

    Google Scholar 
    Conner, R. N. et al. Red-cockaded woodpecker nest-cavity selection: relationships with cavity age and resin production. Auk 115(2), 447–454 (1998).Article 

    Google Scholar 
    Conner, R. N. Orientation of entrances to woodpecker nest cavities. Auk 92(2), 371–374 (1975).Article 

    Google Scholar 
    Copeyon, C. K., Walters, J. R. & Carter, J. III. Induction of red-cockaded woodpecker group formation by artificial cavity construction. J. Wildl. Manage. 55(4), 549–556 (1991).Article 

    Google Scholar 
    Locke, B. A. & Conner, R. N. A statistical analysis of the orientation of entrances to redcockaded woodpecker cavities. In Red-Cockaded Woodpecker Symposium II (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Lay, D. W., Red-cockaded woodpecker study. Texas Parks and Wildlife Department. Project W-80-R-16. 1973. p. 33.Jones, H. K. & Ott, F. T. Some characteristics of red-cockaded woodpecker cavity trees in Georgia. Oriole 38, 33–39 (1973).
    Google Scholar 
    Hopkins, M. L. & Lynn, T. E. Jr. Some characteristics of red-cockaded woodpecker cavity trees and management implications in South Carolina. Ecology and Management of The Red-Cockaded Woodpecker 140–169 (US Bureau of Sport Fishing and Wildlife and Tall Timbers Research Station, 1971).
    Google Scholar 
    Wood, D. A. Foraging and colony habitat characteristics of the red-cockaded woodpecker in Oklahoma. In Red-Cockaded Woodpecker Symposium II 51–58 (Florida Game and Fresh Water Fish Commission, 1983).
    Google Scholar 
    Kalisz, P. J. & Boettcher, S. E. Active and abandoned red-cockaded woodpecker habitat in Kentucky. J. Wildl. Manage. 25, 146–154 (1991).Article 

    Google Scholar 
    Walters, J. R., Doerr, P. D. & J. H. Carter, III. The cooperative breeding system of the red cockaded woodpecker. Ethology 78, 275–305 (1988).Article 

    Google Scholar 
    Batschelet, E. Circular statistics in biology (Academic Press, 1981).MATH 

    Google Scholar 
    Agostinelli, C. & U. Lund, R package “circular”: circular statistics. R package version 0.4-7. https://r-forge.r-project.org/projects/circular (2013).Hijmans, R. J. & Etten, J. V. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12 (2012).R Development Core Team R. A language and environment for statistical computing (R Foundation for Statistical Computing, 2012).
    Google Scholar 
    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22(7), 1–19 (2007).Article 

    Google Scholar 
    Cox, N. J. Speaking Stata: In praise of trigonometric predictors. Stand. Genomic Sci. 6(4), 561–579 (2006).
    Google Scholar 
    Smith, J. A. et al. How effective is the Safe Harbor program for the conservation of Red-cockaded Woodpeckers? Condor Ornithol. Appl. 120(1), 223–233 (2018).
    Google Scholar 
    Zuur, A. et al. Mixed effects models and extensions in ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Bates, D., et al., lme4: Linear mixed-effects models using Eigen and S4. 2014: http://CRAN.R-project.org/package=lme4.Conner, R. N., Rudolph, D. C. & Walters, J. R. The red-cockaded woodpecker: surviving in a fire-maintained ecosystem (University of Texas Press, 2001).Book 

    Google Scholar 
    Rudolph, D. C., Kyle, H. & Conner, R. N. Red-cockaded woodpeckers vs rat snakes: the effectiveness of the resin barrier. Wilson Bull. 102(1), 14–22 (1990).
    Google Scholar 
    Conner, R. N. The effect of tree hardness on woodpecker nest entrance orientation. Auk 94(2), 369–370 (1977).Article 

    Google Scholar 
    Jackson, J. A. & Jackson, B. J. Ecological relationships between fungi and woodpecker cavity sites. Condor 106(1), 37–49 (2004).Article 

    Google Scholar 
    Jusino, M. A. et al. Experimental evidence of a symbiosis between red-cockaded woodpeckers and fungi. Proc. R. Soc. B Biol. Sci. 2016(283), 20160106 (1827).
    Google Scholar 
    Losin, N. et al. Relationship between aspen heartwood rot and the location of cavity excavation by a primary cavity-nester, the Red-naped Sapsucker. Condor 108(3), 706–710 (2006).Article 

    Google Scholar 
    Williamson, L., Garcia, V. & Walters, J. R. Life history trait differences in isolated populations of the endangered Red-cockaded Woodpecker. Ornis Hungar. 24(1), 55–68 (2016).Article 

    Google Scholar 
    DeMay, S. M. & Walters, J. R. Variable effects of a changing climate on lay dates and productivity across the range of the Red-cockaded Woodpecker. Condor 20, 20 (2019).
    Google Scholar 
    Garcia, V. Lifetime fitness and changing life history traits in red-cockaded woodpeckers (Virginia Tech, 2014).
    Google Scholar 
    Delmore, K. E. & Irwin, D. E. Hybrid songbirds employ intermediate routes in a migratory divide. Ecol. Lett. 17(10), 1211–1218 (2014).PubMed 
    Article 

    Google Scholar 
    Helbig, A. J. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE-and SW-migrating blackcaps (Sylvia atricapilla). Behav. Ecol. Sociobiol. 28(1), 9–12 (1991).Article 

    Google Scholar  More

  • in

    First identification of bovine hepacivirus in wild boars

    Trinchet, J. C. et al. Complications and competing risks of death in compensated viral cirrhosis (ANRS CO12 CirVir prospective cohort). Hepatology 62, 737–750 (2015).Article 

    Google Scholar 
    Stanaway, J. D. et al. The global burden of viral hepatitis from 1990 to 2013: Findings from the Global Burden of Disease Study 2013. Lancet 388, 1081–1088 (2016).Article 

    Google Scholar 
    World Health Organization (WHO). Web Annex B. WHO estimates of the prevalence and incidence of hepatitis C virus infection by WHO region, 2015. In Global Hepatitis Report 2017. https://apps.who.int/iris/bitstream/handle/10665/277005/WHO-CDS-HIV-18.46-eng.pdf?ua=1. Accessed 01 Feb 2021.Smith, D. B. et al. Proposed update to the taxonomy of the genera Hepacivirus and Pegivirus within the Flaviviridae family. J. Gen. Virol. 97(11), 2894–2907 (2016).CAS 
    Article 

    Google Scholar 
    Kapoor, A. et al. Characterization of a canine homolog of hepatitis C virus. Proc Natl Acad Sci USA 108, 11608–11613 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Quan, P. L. et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. Proc Natl Acad Sci USA 110, 8194–8199 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Burbelo, P. D. et al. Serology-enabled discovery of genetically diverse hepaciviruses in a new host. J Virol 86, 6171–6178 (2012).CAS 
    Article 

    Google Scholar 
    Drexler, J. F. et al. Evidence for novel hepaciviruses in rodents. PLoS Pathog 9, e1003438 (2013).CAS 
    Article 

    Google Scholar 
    Shi, Y. New virus, new challenge. Innovation (NY) 1(1), 100005 (2020).
    Google Scholar 
    Shi, M. et al. The evolutionary history of vertebrate RNA viruses. Nature 556, 197–202 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Baechlein, C. et al. Identification of a novel hepacivirus in domestic cattle from Germany. J Virol 89, 7007–7015 (2015).CAS 
    Article 

    Google Scholar 
    Corman, V. M. et al. Highly divergent hepaciviruses from African cattle. J Virol. 89, 5876–5882 (2015).CAS 
    Article 

    Google Scholar 
    Simmonds, P. et al. ICTV virus taxonomy profile: Flaviviridae. J Gen Virol 98, 2–3 (2017).CAS 
    Article 

    Google Scholar 
    Elia, G. et al. Genetic heterogeneity of bovine hepacivirus in Italy. Transbound Emerg Dis. 67, 2731–2740 (2020).CAS 
    Article 

    Google Scholar 
    Li, L. L. et al. Detection and characterization of a novel hepacivirus in long-tailed ground squirrels (Spermophilus undulatus) in China. Arch Virol 164(9), 2401–2410 (2019).CAS 
    Article 

    Google Scholar 
    Zhang, X. L. et al. A highly divergent hepacivirus identified in domestic ducks further reveals the genetic diversity of hepaciviruses. Viruses 14(2), 371 (2022).Article 

    Google Scholar 
    Lu, G., Ou, J., Zhao, J. & Li, S. Presence of a novel subtype of bovine hepacivirus in China and expanded classification of bovine hepacivirus strains worldwide into 7 subtypes. Viruses 11, 843 (2019).CAS 
    Article 

    Google Scholar 
    da Silva, M. S. et al. Comprehensive evolutionary and phylogenetic analysis of Hepacivirus N (HNV). J Gen Virol. 99, 890–896 (2018).Article 

    Google Scholar 
    Shao, J. W. et al. A novel subtype of bovine hepacivirus identified in ticks reveals the genetic diversity and evolution of bovine hepacivirus. Viruses 13(11), 2206 (2021).CAS 
    Article 

    Google Scholar 
    Baechlein, C. et al. Further characterization of bovine hepacivirus: Antibody response, course of infection, and host tropism. Transbound. Emerg. Dis. 66, 195–206 (2019).CAS 
    Article 

    Google Scholar 
    Varela-Castro, L., Alvarez, V., Sevilla, I. A. & Barral, M. Risk factors associated to a high Mycobacterium tuberculosis complex seroprevalence in wild boar (Sus scrofa) from a low bovine tuberculosis prevalence area. PLoS ONE 15, e0231559 (2020).CAS 
    Article 

    Google Scholar 
    Palombieri, A. et al. Surveillance study of Hepatitis E Virus (HEV) in domestic and wild ruminants in Northwestern Italy. Animals 10(12), 2351 (2020).Article 

    Google Scholar 
    Bukh, J. Hepatitis C homolog in dogs with respiratory illness. Proc Natl Acad Sci U S A. 108, 12563–12564 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Elia, G. et al. Identification and genetic characterization of equine hepaciviruses in Italy. Vet. Microbiol. 207, 239–247 (2017).CAS 
    Article 

    Google Scholar 
    Hartlage, A. S., Cullen, J. M. & Kapoor, A. The strange, expanding world of animal hepaciviruses. Annu Rev Virol. 3, 53–75 (2016).CAS 
    Article 

    Google Scholar 
    Canal, C. W. et al. A novel genetic group of bovine hepacivirus in archival serum samples from Brazilian cattle. Biomed Res Int. 2017, 4732520 (2017).Article 

    Google Scholar 
    Deng, Y., Guan, S. H., Wang, S., Hao, G. & Rasmussen, T. B. The detection and phylogenetic analysis of Bovine Hepacivirus in China. Biomed Res Int. 2018, 6216853 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yeşilbağ, K. et al. Presence of bovine hepacivirus in Turkish cattle. Vet. Microbiol. 225, 1–5 (2018).Article 

    Google Scholar 
    Anggakusuma, et al. Hepacivirus NS3/4A proteases interfere with MAVS signaling in both their cognate animal hosts and humans: Implications for zoonotic transmission. J Virol. 90(23), 10670–10681 (2016).CAS 
    Article 

    Google Scholar 
    El-Attar, L. M. R., Mitchell, J. A., BrooksBrownlie, H., Priestnall, S. L. & Brownlie, J. Detection of non-primate hepaciviruses in UK dogs. Virology 484, 93–102 (2015).CAS 
    Article 

    Google Scholar 
    Thézé, J., Lowes, S., Parker, J. & Pybus, O. G. Evolutionary and phylogenetic analysis of the Hepaciviruses and Pegiviruses. Genome Biol Evol. 7(11), 2996–3008 (2015).Article 

    Google Scholar 
    Charrel, R. N., de Chesse, R., Decaudin, A., De Micco, P. & de Lamballerie, X. Evaluation of disinfectant efficacy against hepatitis C virus using a RT-PCR-based method. J. Hosp. Infect. 49(2), 129–134 (2001).CAS 
    Article 

    Google Scholar 
    Pavio, N., Doceul, V., Bagdassarian, E. & Johne, R. Recent knowledge on hepatitis E virus in Suidae reservoirs and transmission routes to human. Vet Res. 48(1), 78 (2017).Article 

    Google Scholar 
    Scherer, C. et al. Moving infections: Individual movement decisions drive disease persistence in spatially structured landscapes. Oikos 129, 651–667 (2020).Article 

    Google Scholar 
    Tamura, K. & Nei, M. Estimation of the number of nucleotide substitution in the control region of mitochondrial DNA in human and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).CAS 
    PubMed 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Biophysical impacts of northern vegetation changes on seasonal warming patterns

    Coupled model experiments for detecting vegetation-climate feedbackWe quantified changes of near-surface (2-m) air temperature (Ta) in response to the observed NH greening for all active growing seasons during 1982–2014 using IPSL-CM. We defined the three growing seasons (spring, summer, and autumn) across the entire NH domain as periods of March-April-May (MAM), June-July-August (JJA), and September-October-November (SON), respectively. For each season, a pair of transient numerical experiments was performed by modifying LAI: a dynamic vegetation experiment (SCE) forced by annually and seasonally varying LAI from satellite observations36, and three seasonal control experiments (({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{MAM}}}}}}}), ({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{JJA}}}}}}}), and ({{{{{{rm{LAI}}}}}}}_{{{{{{rm{CTL}}}}}}}^{{{{{{rm{SON}}}}}}}) for MAM, JJA, and SON, respectively) forced by annually varying LAI for all seasons, except in the season of interest when the LAI was fixed to the climatological conditions observed during 1982–2014 (Fig. S1). For all experiments, other boundary conditions, including sea surface temperature (SST), sea ice fraction (SIC), and atmospheric CO2 concentrations, were kept consistent (Methods). Therefore, differences between SCE and the control experiments characterized the effects of the observed LAI changes on Ta (hereafter denoted as ΔTa), both intra- and inter-seasonally. Multimember paired ensembles were generated for each coupled model experiment by performing 30 repeated runs but with different initial conditions (see Methods).The capacity of the IPSL-CM GCM for simulating the seasonal variations and spatial patterns of Ta was assessed by comparing the SCE simulation results with the observation-based Ta data (Methods). Throughout most of the growing season (May to October), the SCE simulation well reproduced the increasing trend and interannual variability of the NH land mean Ta observed during 1982–2014 (Fig. S2). Observational data showed that the strongest NH warming occurred in early spring (March and April) and late autumn (November). However, the SCE simulation failed to capture the exceptionally strong warming during the transitional seasons, leading to the underestimation of the annual mean warming trend (SCE: 0.237 ± 0.024 °C decade−1; observed: 0.362 ± 0.048 °C decade−1). This underestimation stemmed from a negative bias in the increase of downwelling shortwave radiation, possibly due to an absence of short-lived forcing and bias in the cloud systems37. Overall, the SCE reproduced the geographical patterns of seasonal warming reasonably well (Fig. S3), which strengthened our confidence in the model projections. Notably, it successfully captured the observed amplified warming over pan-arctic and semi-arid regions, as well as the few cases of regional cooling, such as that over northwestern North America during MAM (Fig. S3).Intra-seasonal temperature responses to NH LAI changesFor the period from 1982 to 2014, satellite-retrieved LAI showed statistically significant increasing trends (p  0.1), strong and significant JJA cooling (−0.044 ± 0.008 °C decade−1, p  0.1) (intra-seasonal feedbacks shown in Fig. 1b). The LAI-induced JJA Ta trend was equivalent to cooling of −0.15 ± 0.03 °C in JJA over the study period, offsetting the overall SCE-simulated near-surface air warming over this period by ~12.5%. This strong JJA cooling was further supported by a significant negative correlation (r = −0.64, p  0.1) or SON (r = 0.07, p  > 0.1) (Fig. S4a, c), during which the LAI-induced changes accounted for only 1.3% (MAM) and −3.2% (SON) of the concurrent greenhouse warming. We also verified the robustness of our results by performing equilibrium experiments with an independent model, the NCAR Community Atmosphere Model coupled with Community Land Model (CAM-CLM, Methods). Indeed, this model generated a similarly strong LAI-induced cooling in JJA (−0.18 °C, p  0.1) and SON (−0.05 °C, p  > 0.1) (Fig. S5).Fig. 1: Intra- and inter-seasonal temperature responses to leaf area index (LAI) changes.a Monthly trends (shadings) of Northern Hemisphere (NH) mean LAI during 1982–2014 used as input to the seasonal simulations. The dashed curve and transparent bars indicate trends of monthly LAI and seasonally aggregated LAI values, respectively. b Linear trends of Ta driven by LAI changes within the same season (intra-seasonal) and other growing seasons (inter-seasonal). Error bars in a, b indicate uncertainty ranges [1 – standard deviation (SD)]. c Monthly trends of LAI-induced air temperature changes (ΔTa), with red and blue shadings representing positive and negative trends, respectively. The bottom panel shows the overall ΔTa trends induced by LAI changes in all growing seasons, calculated as the sum of ΔTa trends from the three seasonal runs shown separately in the above panels. ***p  More

  • in

    Return of large fin whale feeding aggregations to historical whaling grounds in the Southern Ocean

    Scott Baker, C. & Clapham, P. J. Modelling the past and future of whales and whaling. Trends Ecol. Evol. 19, 365–371. https://doi.org/10.1016/j.tree.2004.05.005 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Clapham, P. J. & Baker, C. S. in Encyclopedia of Marine Mammals (eds W. F. Perrin, B. Würsig, & J. G. M. Thewissen) Ch. Modern Whaling, 1328–1332 (Academic Press, 2002).International Whaling Commission. Twenty-Eighth Report of the International Whaling Commission. (International Whaling Commission, Cambridge, 1978).International Whaling Commission. Thirty-Sixth Report of the International Whaling Commission. (International Whaling Commission, Cambridge, 1986).Leaper, R. & Miller, C. Management of Antarctic baleen whales amid past exploitation, current threats and complex marine ecosystems. Antarct. Sci. 23, 503–529. https://doi.org/10.1017/s0954102011000708 (2011).ADS 
    Article 

    Google Scholar 
    Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137. https://doi.org/10.1111/faf.12241 (2018).Article 

    Google Scholar 
    Kemp, S. & Bennett, A. G. On the distribution and movements of whales on the South Georgia and South Shetland whaling grounds. Discov. Rep. 6, 165–190 (1932).
    Google Scholar 
    Branch, T. A. & Butterworth, D. S. Estimates of abundance south of 60°S for cetacean species sighted frequently on the 1978/79 to 1997/98 IWC/IDCR-SOWER sighting surveys. J. Cetac. Res. Manag. 3, 251–270 (2001).
    Google Scholar 
    Reilly, S. et al. Biomass and energy transfer to baleen whales in the South Atlantic sector of the Southern Ocean. Deep Sea Res. Part II 51, 1397–1409. https://doi.org/10.1016/s0967-0645(04)00087-6 (2004).ADS 
    Article 

    Google Scholar 
    Cooke, J. G. Balaenoptera physalus. The IUCN Red List of Threatened Species 2018, e.T2478A50349982. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T2478A50349982.en (2018).Santora, J. A., Schroeder, I. D. & Loeb, V. J. Spatial assessment of fin whale hotspots and their association with krill within an important Antarctic feeding and fishing ground. Mar. Biol. 161, 2293–2305. https://doi.org/10.1007/s00227-014-2506-7 (2014).Article 

    Google Scholar 
    Santora, J. A., Reiss, C. S., Loeb, V. J. & Veit, R. R. Spatial association between hotspots of baleen whales and demographic patterns of Antarctic krill Euphausia superba suggests size-dependent predation. Mar. Ecol. Prog. Ser. 405, 255–269. https://doi.org/10.3354/meps08513 (2010).ADS 
    Article 

    Google Scholar 
    Burkhardt, E. et al. Seasonal and diel cycles of fin whale acoustic occurrence near Elephant Island, Antarctica. R Soc. Open Sci. 8, 201142. https://doi.org/10.1098/rsos.201142 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joiris, C. R. & Dochy, O. A major autumn feeding ground for fin whales, southern fulmars and grey-headed albatrosses around the South Shetland Islands, Antarctica. Polar Biol. 36, 1649–1658. https://doi.org/10.1007/s00300-013-1383-8 (2013).Article 

    Google Scholar 
    Herr, H. et al. Horizontal niche partitioning of humpback and fin whales around the West Antarctic Peninsula: Evidence from a concurrent whale and krill survey. Polar Biol. 39, 799–818. https://doi.org/10.1007/s00300-016-1927-9 (2016).Article 

    Google Scholar 
    Viquerat, S. & Herr, H. Mid-summer abundance estimates of fin whales Balaenoptera physalus around the South Orkney Islands and Elephant Island. Endanger. Spec. Res. 32, 515–524. https://doi.org/10.3354/esr00832 (2017).Article 

    Google Scholar 
    Meyer, B. & Wessels, W. The Expedition PS112 of the Research Vessel POLARSTERN to the Antarctic Peninsula Region in 2018. 125 p. (Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 2018). https://doi.org/10.2312/BzPM_0722_2018Knust, R. Polar research and supply vessel POLARSTERN operated by the Alfred-Wegener-Institute. J. Large-Scale Res. Facil. JLSRF 3, A119. https://doi.org/10.17815/jlsrf-3-163 (2017).Article 

    Google Scholar 
    Buckland, S. T. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).MATH 

    Google Scholar 
    Herr, H. et al. Aerial surveys for Antarctic minke whales (Balaenoptera bonaerensis) reveal sea ice dependent distribution patterns. Ecol Evol 9, 5664–5682. https://doi.org/10.1002/ece3.5149 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dorschel, B. et al. Environmental information for a marine ecosystem research approach for the northern Antarctic Peninsula (RV Polarstern expedition PS81, ANT-XXIX/3). Polar Biol. 39, 765–787. https://doi.org/10.1007/s00300-015-1861-2 (2015).Article 

    Google Scholar 
    Miller, D. L., Burt, M. L., Rexstad, E. A., Thomas, L. & Gimenez, O. Spatial models for distance sampling data: recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010. https://doi.org/10.1111/2041-210x.12105 (2013).Article 

    Google Scholar 
    Hedley, S. L. & Buckland, S. T. Spatial models for line transect sampling. J. Agric. Biol. Environ. Stat. 9, 181–199. https://doi.org/10.1198/1085711043578 (2004).Article 

    Google Scholar 
    Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.735770 (2021).Article 

    Google Scholar 
    Buckland, S. T. et al. Advanced Distance Sampling (Oxford University Press, 2007).
    Google Scholar 
    Miller, D. L., Rexstad, E., Thomas, L., Marshall, L. & Laake, J. L. Distance sampling in R. J. Stat. Softw. 89, 1–28. https://doi.org/10.18637/jss.v089.i01 (2019).Article 

    Google Scholar 
    Marques, F. F. C. & Buckland, S. T. in Advanced Distance Sampling (eds S. T. Buckland et al.) 31–47 (Oxford University Press, 2004).Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semparametric generalized linear models. J. R. Stat. Soc. (B) 73, 3–36. https://doi.org/10.1111/j.1467-9868.2010.00749.x (2011).Article 
    MATH 

    Google Scholar 
    Wood, S. N., Pya, N. & Saefken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 111, 1548–1575. https://doi.org/10.1080/01621459.2016.1180986 (2016).CAS 
    Article 

    Google Scholar 
    Dorschel, B. et al. The International Bathymetric Chart of the Southern Ocean Version 2 (IBCSO v2). Scientific Data. https://doi.org/10.1038/s41597-022-01366-7 (2022).Article 

    Google Scholar 
    Wilson, M. F. J., O’Connell, B., Brown, C., Guinan, J. C. & Grehan, A. J. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar. Geod. 30, 3–35. https://doi.org/10.1080/01490410701295962 (2007).Article 

    Google Scholar 
    raster: Geographic Data Analysis and Modelling. R package version 3.4–5 (2020).Shelton, A. O., Thorson, J. T., Ward, E. J., Feist, B. E. & Cooper, A. Spatial semiparametric models improve estimates of species abundance and distribution. Can. J. Fish. Aquat. Sci. 71, 1655–1666. https://doi.org/10.1139/cjfas-2013-0508 (2014).CAS 
    Article 

    Google Scholar 
    Dunn, P. K. & Smyth, G. K. Series evaluation of Tweedie exponential dispersion model densities. Statiustics Comput. 15, 267–280 (2005).MathSciNet 
    Article 

    Google Scholar 
    Gu, C. & Wahba, G. Minimizing GCV/GML scores with multiple smoothing parameters via the newton method. SIAM J. Sci. Stat. Comput. 12, 383–398. https://doi.org/10.1137/0912021 (1991).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Hobson, E. S. Feeding behaviour in three species of sharks. Pac. Sci. 17, 171–194 (1963).
    Google Scholar 
    Weeks, S., Magno-Canto, M., Jaine, F., Brodie, J. & Richardson, A. Unique sequence of events triggers manta ray feeding frenzy in the Southern Great Barrier Reef, Australia. Remote Sens. 7, 3138–3152. https://doi.org/10.3390/rs70303138 (2015).ADS 
    Article 

    Google Scholar 
    Montero-Quintana, A. N., Ocampo-Valdez, C. F., Vázquez-Haikin, J. A., Sosa-Nishizaki, O. & Osorio-Beristain, M. Whale shark (Rhincodon typus) predatory flexible feeding behaviors on schooling fish. J. Ethol. 39, 399–410. https://doi.org/10.1007/s10164-021-00717-y (2021).Article 

    Google Scholar 
    Findlay, K. P. et al. Humpback whale “super-groups”—A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLoS ONE 12, e0172002. https://doi.org/10.1371/journal.pone.0172002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. Mar. Freshwat. Ecosyst. 31, 2412–2419. https://doi.org/10.1002/aqc.3621 (2021).Article 

    Google Scholar 
    Baines, M., Reichelt, M. & Griffin, D. An autumn aggregation of fin (Balaenoptera physalus) and blue whales (B. musculus) in the Porcupine Seabight, southwest of Ireland. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 168–177, https://doi.org/10.1016/j.dsr2.2017.03.007 (2017).Ladrón de Guevara P., P., Lavaniegos, B. E. & Heckel, G. Fin whales (Balaenoptera physalus) foraging on daytime surface swarms of the euphausiid Nyctiphanes simplex in Ballenas Channel, Gulf of California, Mexico. J. Mammal. 89, 559–566 (2008).Bruce, W. S. Some observations on Antarctic cetacea. In: Report on the Scientific results of the voyage of S.Y. ‘Scotia’ during the years 1902, 1903, and 1904, under the leadership of William S. Bruce, 491–505 (1915).Mackintosh, N. A. & Wheeler, J. F. G. Southern blue and fin whales. Discov. Rep. I, 257–540 (1929).Jackson, J. A. et al. Have whales returned to a historical hotspot of industrial whaling? The pattern of southern right whale Eubalaena australis recovery at South Georgia. Endang. Spec. Res. 43, 323–339. https://doi.org/10.3354/esr01072 (2020).Article 

    Google Scholar 
    Goldbogen, J. A., Pyenson, N. D. & Shadwick, R. E. Big gulps require high drag for fin whale lunge feeding. Mar. Ecol. Prog. Ser. 349, 289–301. https://doi.org/10.3354/meps07066 (2007).ADS 
    Article 

    Google Scholar 
    Goldbogen, J. A. et al. Scaling of lunge-feeding performance in rorqual whales: mass-specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216–226. https://doi.org/10.1111/j.1365-2435.2011.01905.x (2012).Article 

    Google Scholar 
    Acevedo-Gutierrez, A., Croll, D. A. & Tershy, B. R. High feeding costs limit dive time in the largest whales. J Exp Biol 205, 1747–1753. https://doi.org/10.1242/jeb.205.12.1747 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Keen, E. M. Aggregative and feeding thresholds of sympatric rorqual whales within a fjord system. Ecosphere 8, e01702. https://doi.org/10.1002/ecs2.1702 (2017).Article 

    Google Scholar 
    Veit, R. R. & Harrison, N. M. Positive interactions among foraging seabirds, marine mammals and fishes and implications for their conservation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00121 (2017).Article 

    Google Scholar 
    Laran, S. et al. A comprehensive survey of pelagic megafauna: their distribution, densities, and taxonomic richness in the tropical Southwest Indian Ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00139 (2017).Article 

    Google Scholar 
    Campbell, G. S. et al. Inter-annual and seasonal trends in cetacean distribution, density and abundance off southern California. Deep Sea Res. Part II Top. Stud. Oceanogr. 112, 143–157. https://doi.org/10.1016/j.dsr2.2014.10.008 (2015).ADS 
    Article 

    Google Scholar 
    Heide-Jørgensen, M. P. et al. Estimates of large whale abundance in West Greenland waters from an aerial survey in 2005. J. Cetac. Res. Manag. 10, 119–129 (2008).
    Google Scholar 
    Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for management. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 41–58. https://doi.org/10.1016/j.dsr2.2017.04.018 (2017).ADS 
    Article 

    Google Scholar 
    Forcada, J., Aguilar, A., Hammond, P., Pastor, X. & Aguilar, R. Distribution and abundance of fin whales (Balaenoptera physalus) in the western Mediterranean sea during the summer. J. Zool. 238, 23–34. https://doi.org/10.1111/j.1469-7998.1996.tb05377.x (2009).Article 

    Google Scholar 
    Clapham, P. J., Aguilar, A. & Hatch, L. T. Determining spatial and temporal scales for management: lessons from whaling. Mar. Mamm. Sci. 24, 183–201. https://doi.org/10.1111/j.1748-7692.2007.00175.x (2008).Article 

    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306. https://doi.org/10.3354/meps10508 (2013).ADS 
    Article 

    Google Scholar 
    Carroll, E. L. et al. Cultural traditions across a migratory network shape the genetic structure of southern right whales around Australia and New Zealand. Sci. Rep. 5, 16182. https://doi.org/10.1038/srep16182 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, L. O., Sironi, M., Rowntree, V. J. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791. https://doi.org/10.1111/j.1365-294X.2008.04069.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barendse, J., Best, P. B., Carvalho, I. & Pomilla, C. Mother knows best: occurrence and associations of resighted humpback whales suggest maternally derived fidelity to a Southern Hemisphere coastal feeding ground. PLoS ONE 8, e81238. https://doi.org/10.1371/journal.pone.0081238 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richard, G. et al. Cultural transmission of fine-scale fidelity to feeding sites may shape humpback whale genetic diversity in Russian Pacific waters. J. Hered. 109, 724–734. https://doi.org/10.1093/jhered/esy033 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carroll, E. L. et al. Reestablishment of former wintering grounds by New Zealand southern right whales. Mar. Mamm. Sci. 30, 206–220. https://doi.org/10.1111/mms.12031 (2014).Article 

    Google Scholar 
    Calderan, S. V. et al. South Georgia blue whales five decades after the end of whaling. Endang. Spec. Res. 43, 359–373. https://doi.org/10.3354/esr01077 (2020).Article 

    Google Scholar 
    Santora, J. A. & Veit, R. R. Spatio-temporal persistence of top predator hotspots near the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 487, 287–304. https://doi.org/10.3354/meps10350 (2013).ADS 
    Article 

    Google Scholar 
    Scheidat, M. et al. Cetacean surveys in the Southern Ocean using icebreaker-supported helicopters. Polar Biol. 34, 1513–1522. https://doi.org/10.1007/s00300-011-1010-5 (2011).Article 

    Google Scholar 
    Williams, R., Hedley, S. L. & Hammond, P. S. Modeling distribution and abundance of Antarctic baleen whales using ships of opportunity. Ecol. Soc. 11, [online] http://www.ecologyandsociety.org/vol11/iss11/art11/ (2006).Secchi, E. et al. Encounter rates of whales around the Antarctic peninsula with special reference to humpback whales, Megaptera novaeangliae, in the Gerlache Strait 1997–98 to 1999–2000. Mem. Qld. Mus. 47, 571–578 (2001).
    Google Scholar 
    Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Res. Part II Top. Stud. Oceanogr. 51, 2311–2325. https://doi.org/10.1016/j.dsr2.2004.07.007 (2004).ADS 
    Article 

    Google Scholar 
    Johnston, D. W., Friedlaender, A. S., Read, A. J. & Nowacek, D. P. Initial density estimates of humpback whales Megaptera novaeangliae in the inshore waters of the western Antarctic Peninsula during the late autumn. Endang. Spec. Res. 18, 63–71. https://doi.org/10.3354/esr00395 (2012).Article 

    Google Scholar 
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R Soc Open Sci 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mackintosh, N. A. The distribution of southern blue and fin whales, in Whales, dolphins, and porpoises. (ed K. S. Norris) Ch. 8, 125–144 (University of California Press, 1966).Schmitt, N. et al. Mixed-stock analysis of humpback whales (Megaptera novaeangliae) on Antarctic feeding grounds. J. Cetac. Res. Manag. 14, 141–157 (2014).
    Google Scholar 
    Schall, E. et al. Humpback whale song recordings suggest common feeding ground occupation by multiple populations. Sci. Rep. 11, 18806. https://doi.org/10.1038/s41598-021-98295-z (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archer, F. I. et al. Revision of fin whale Balaenoptera physalus (Linnaeus, 1758) subspecies using genetics. J. Mammal. 100, 1653–1670. https://doi.org/10.1093/jmammal/gyz121 (2019).Article 

    Google Scholar 
    Archer, F. I. et al. Mitogenomic phylogenetics of fin whales (Balaenoptera physalus spp.): Genetic evidence for revision of subspecies. PLoS ONE 8, e63396. https://doi.org/10.1371/journal.pone.0063396 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cabrera, A. A. et al. Fin whale (Balaenoptera physalus) mitogenomics: A cautionary tale of defining sub-species from mitochondrial sequence monophyly. Mol. Phylogenet. Evol. 135, 86–97. https://doi.org/10.1016/j.ympev.2019.02.003 (2019).Article 
    PubMed 

    Google Scholar 
    Edwards, E. F., Hall, C., Moore, T. J., Sheredy, C. & Redfern, J. V. Global distribution of fin whales Balaenoptera physalus in the post-whaling era (1980–2012). Mammal. Rev. 45, 197–214. https://doi.org/10.1111/mam.12048 (2015).Article 

    Google Scholar 
    Knox, G. A. The key role of krill in the ecosystem of the Southern Ocean with special reference to the Convention on the Conservation of Antarctic Marine Living Resources. Ocean Manag. 9, 113–156 (1984).Article 

    Google Scholar 
    Ducklow, H. W. et al. Marine pelagic ecosystems: the west Antarctic Peninsula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 67–94. https://doi.org/10.1098/rstb.2006.1955 (2007).Article 
    PubMed 

    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).ADS 
    Article 

    Google Scholar 
    Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian-Triassic boundary in Russia. Nature 432, 97–100. https://doi.org/10.1038/nature02950 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Siegel, V., Reiss, C. S., Dietrich, K. S., Haraldsson, M. & Rohardt, G. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula. Deep Sea Res. Part I Oceanogr. Res. Pap. 77, 63–74. https://doi.org/10.1016/j.dsr.2013.02.005 (2013).ADS 
    Article 

    Google Scholar 
    Siegel, V. & Watkins, L. Distribution, Biomass and Demography of Antarctic Krill, Euphausia superba, in Biology and Ecology of Antarctic Krill Advances in Polar Ecology (ed Volker Siegel) Ch. 2, 21–101 (Springer, 2016).Roman, J. et al. Whales as marine ecosystem engineers. Front. Ecol. Environ. 12, 377–385. https://doi.org/10.1890/130220 (2014).Article 

    Google Scholar 
    Savoca, M. S. et al. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599, 85–90. https://doi.org/10.1038/s41586-021-03991-5 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res. Part I Oceangr. Res. Pap. 56, 727–740. https://doi.org/10.1016/j.dsr.2008.12.007 (2009).ADS 
    Article 

    Google Scholar 
    Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish Fish. 11, 203–209. https://doi.org/10.1111/j.1467-2979.2010.00356.x (2010).Article 

    Google Scholar 
    Lavery, T. J. et al. Whales sustain fisheries: Blue whales stimulate primary production in the Southern Ocean. Mar. Mamm. Sci. 30, 888–904. https://doi.org/10.1111/mms.12108 (2014).CAS 
    Article 

    Google Scholar 
    Smetacek, V. Are declining Antarctic krill stocks a result of global warming or of the decimation of the whales? in Effects of global warming on polar ecosystems (ed Carlos M. Duarte) (Fundación BBVA, 2008).Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255. https://doi.org/10.1371/journal.pone.0013255 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smetacek, V. A whale of an appetite revealed by analysis of prey consumption. Nature 599, 33–34. https://doi.org/10.1038/d41586-021-02951-3 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Laws, R. M. Seals and whales of the Southern Ocean. Philios. Trans. R. Soc. Lond. B 279, 81–96 (1977).ADS 
    Article 

    Google Scholar 
    Lavery, T. J. et al. Iron defecation by sperm whales stimulates carbon export in the Southern Ocean. Proc. Biol. Sci. 277, 3527–3531. https://doi.org/10.1098/rspb.2010.0863 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cunningham, S. A. Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res. https://doi.org/10.1029/2001jc001147 (2003).Article 

    Google Scholar 
    Frölicher, T. L. et al. Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. J. Clim. 28, 862–886. https://doi.org/10.1175/jcli-d-14-00117.1 (2015).ADS 
    Article 

    Google Scholar 
    Landschutzer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224. https://doi.org/10.1126/science.aab2620 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Warmth worries workers

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Novel form of collective movement by soil bacteria

    Kuzyakov Y, Razavi BS. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol Biochem. 2019;135:343–60.CAS 
    Article 

    Google Scholar 
    Teixeira PJ, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: Microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alirezaeizanjani Z, Großmann R, Pfeifer V, Hintsche M, Beta C. Chemotaxis strategies of bacteria with multiple run modes. Sci Adv. 2020;6:eaaz6153.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao S, Wu H, Yu X, Qian L, Gao X. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control. 2016;98:11–17.CAS 
    Article 

    Google Scholar 
    Mitchell JG, Kogure K. Bacterial Motility: Links to the environment and a driving force for microbial physics. FEMS Microbiol Ecol. 2006;55:3–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall NR. Social behaviours by Bacillus subtilis: Quorum sensing, kin discrimination and beyond. Mol Microbiol. 2018;110:863–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Posada LF, Álvarez JC, Romero-Tabarez M, de-Bashan L, Villegas-Escobar V. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol Res. 2018;217:69–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beauregard PB, Yunrong C, Vlamakis H, Losick R, Kolter R. Bacillus subtilis Biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA. 2013;110:1621–30.Article 

    Google Scholar 
    Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier J. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. mBio 2016;7:1–10.Article 

    Google Scholar 
    Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A. Live imaging of root-bacteria interactions in a microfluidics setup. Proc Natl Acad Sci USA. 2017;114:4549–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koch DL, Subramanian G. Collective hydrodynamics of swimming microorganisms: Living fluids. Annu Rev Fluid Mech. 2011;43:637–59.Article 

    Google Scholar 
    Wioland H, Lushi E, Goldstein RE. Directed collective motion of bacteria under channel confinement. New J Phys. 2016;18:eaaz6153.Article 

    Google Scholar 
    Petroff A, Libchaber A. Erratum: Hydrodynamics and collective behavior of the tethered bacterium Thiovulum majus. Proc Natl Acad Sci USA. 2016;111:5. E537-E545
    Google Scholar 
    Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 2004;134:307–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Souza R, Ambrosini A, Passaglia LMP. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol. 2015;38:401–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front Microbiol. 2020;11:1–13.Article 

    Google Scholar 
    Liu Y, Patko D, Engelhardt IC, George TS, Stanley-Wall NP, Ladmiral V. et al. Whole plant-environment microscopy reveals how Bacillus subtilis utilises the soil pore space to colonise plant roots. Proc Natl Acad Sci USA. 2021;118:e2109176118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Einstein A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann Phys. 1905;17:549–60.CAS 
    Article 

    Google Scholar 
    Shellard A, Mayor R. Rules of Collective Migration: From the wildebeest to the neural crest: Rules of neural crest migration. Philos Trans R Soc B Biol Sci. 2020;375:1–9.Article 

    Google Scholar 
    Torney CJ, Lamont M, Debell L, Angohiatok RJ, Leclerc LM, Berdahl AM. Inferring the rules of social interaction in migrating caribou. Philos Trans R Soc B Biol Sci. 2018;373:20170385.Article 

    Google Scholar 
    Ballerini MN, Cabibbo R, Candelier A, Cavagna E, Cisbani I, Giardina V, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc Natl Acad Sci USA. 2008;105:1232–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, et al. Scale-free correlations in starling flocks. Proc Natl Acad Sci USA. 2010;107:11865–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katz Y, Tunstrøm C, Ioannou CC, Huepe C, Couzin ID. Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci USA. 2011;108:18720–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buhl JD, Sumpter JT, Couzin ID, Hale JJ, Despland E, Miller ER, et al. From disorder to order in marching locusts. Science 2006;312:1402–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seeley TD, Visscher PK. Quorum Sensing during nest-site selection by honeybee swarms. Behav Ecol Sociobiol. 2004;56:594–601.Article 

    Google Scholar 
    Zhang HP, Be’er A, Florin EL, Swinney HL. Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci USA. 2010;107:13626–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hughey LF, Hein AM, Strandburg-Peshkin A, Jensen FH. Challenges and solutions for studying collective animal behaviour in the wild. Philos Trans R Soc B Biol Sci. 2018;373:1–13.Article 

    Google Scholar 
    Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33:206–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Velicer GJ, Vos M. Sociobiology of the myxobacteria. Ann Rev Microbiol. 2009;63:599–623.CAS 
    Article 

    Google Scholar 
    Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–26.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Antibiotic production and resistance. Sci Rep. 2012;337:1228–31.CAS 

    Google Scholar 
    Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: Moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:1–18.Article 

    Google Scholar 
    Li C, Hurley A, Hu W, Warrick JW, Lozano GL, Ayuso JM, et al. Social motility of biofilm-like microcolonies in a gliding bacterium. Nat Commun. 2021;12:1–12.Article 
    CAS 

    Google Scholar 
    Sokolov A, Aranson IS, Kessler JO, Goldstein RE. Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett. 2007;98:158102.PubMed 
    Article 
    CAS 

    Google Scholar 
    Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO. Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids. 2007;43:737–53.Article 

    Google Scholar 
    Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler JO, Goldstein RE. Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci USA. 2005;102:2277–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li G, Tam L, Tang JX. Amplified effect of brownian motion in bacterial near-surface swimming. Proc Natl Acad Sci USA. 2008;105:18355–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lushi E, Wioland H, Goldstein RE. Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc Natl Acad Sci USA. 2014;111:9733–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryan SD, Sokolov A, Berlyand L, Aranson IS. Correlation properties of collective motion in bacterial suspensions. New J Phys. 2013;15:105021.Article 

    Google Scholar 
    Damton NC, Turner L, Rojevsky S, Berg HC. Dynamics of bacterial swarming. Biophys J. 2010;98:2082–90.Article 
    CAS 

    Google Scholar 
    Ingham CJ, Jacob EB. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiol. 2008;8:1–16.Article 
    CAS 

    Google Scholar 
    Ariel G, Rabani A, Benisty S, Partridge JD, Harshey RM, Be’Er A. Swarming bacteria migrate by lévy walk. Nat Commun. 2015;6:8396.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamze K, Autret S, Hinc K, Laalami S, Julkowska D, Briandet R, et al. Single-cell analysis in situ in a Bacillus subtilis swarming community identifies distinct spatially separated subpopulations differentially expressing Hag (Flagellin), including specialized swarmers. Microbiol. 2011;157:2456–69.CAS 
    Article 

    Google Scholar 
    Ghelardi E, Salvetti S, Ceragioli M, Gueye SA, Celandroni F, Senesi S. Contribution of surfactin and swrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Appl Environ Microbiol. 2012;78:6540–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev. 2017;41:900–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang J, Luo Y, Poh CL. Blue light-directed cell migration, aggregation, and patterning. J Mol Biol. 2020;432:3137–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian T, Sun B, Shi H, Gao T, He Y, Li Y, et al. Sucrose triggers a novel signalling cascade promoting Bacillus subtilis rhizosphere colonization. ISME J 2021;15:2723–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harshey RM, Partridge JD. Shelter in a swarm. J Mol Biol. 2015;427:3683–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burdett IDJ, Kirkwood TBL, Whalley JB. Growth kinetics of individual Bacillus subtilis cells and correlation with nucleoid extension. J Bacteriol. 1986;167:219–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sharpe ME, Hauser PM, Sharpe RG, Errington J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: Constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol. 1998;180:547–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rousk J, Bååth E. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol Ecol. 2011;78:17–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett RA, Lynch JM. Bacterial growth and development in the rhizosphere of gnotobiotic cereal plants. Microbiol. 1981;125:95–102.Article 

    Google Scholar 
    Felici C, Vettori L, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, et al. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon Esculentum: Effects on plant growth and rhizosphere microbial community. Appl Soil Ecol. 2008;40:260–70.Article 

    Google Scholar 
    Arkhipova TN, Galimsyanova NF, Kuzmina LY, Vysotskaya LB, Sidorova LV, Gabbasova IM, et al. Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity and phosphorus mobility in the rhizosphere. Plant Soil Environ. 2019;65:313–19.CAS 
    Article 

    Google Scholar 
    Marschner P, Crowley D, Rengel Z. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biol Biochem. 2011;43:883–94.CAS 
    Article 

    Google Scholar 
    Lagos ML, Maruyama F, Nannipieri P, Mora ML, Jorquera MA. Current Overview on the study of bacteria in the rhizosphere by modern molecular techniques: A Mini-Review. J Soil Sci Plant Nutr. 2015;15:504–23.
    Google Scholar 
    Gerwig J, Kiley TB, Gunka K, Stanley-Wall N, Stülke J. The protein tyrosine kinases epsB and ptkA differentially affect biofilm formation in Bacillus Subtilis. Microbiol. 2014;160:682–91.CAS 
    Article 

    Google Scholar 
    Shoesmith JG. The measurement of bacterial motility. J Gen Microbiol. 1960;22:528–35.Article 

    Google Scholar 
    Schneider WR, Doetsch RN. Effect of viscosity on bacterial motility. J Bacteriol. 1974;117:696–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaiser GE, Doetsch RN. Enhanced translational motion of Leptospira in viscous environments. Nature 1975;255:656–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ryan SD, Haines BM, Berlyand L, Ziebert F, Aranson IS. Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;E83:050904.Article 
    CAS 

    Google Scholar 
    López HM, Gachelin J, Douarche C, Auradou H, Clément E. Turning bacteria suspensions into superfluids. Phys Rev Lett. 2015;115:028301.PubMed 
    Article 
    CAS 

    Google Scholar 
    Butler MT, Wang Q, Harshey RM. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA. 2010;107:3776–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erktan A, Or D, Scheu S. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol Biochem. 2020;148:107876.CAS 
    Article 

    Google Scholar 
    Rønn R, Thomsen IK, Jensen B. Naked amoebae, flagellates and nematodes in soil of different texture. Eur J Soil Biol. 1995;31:135–41.
    Google Scholar 
    Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX. Transparent soil for imaging the rhizosphere. PLoS ONE. 2012;7:1–6.Article 
    CAS 

    Google Scholar 
    Mills AL. Keeping in Touch: Microbial life on soil particle surfaces. Adv Agron. 2003;78:1–43.Article 

    Google Scholar 
    Downie HF, Valentine TA, Otten W, Spiers AJ, Dupuy LX. Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo. Plant Signal Behav. 2014;9:e970421.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    O’Callaghan FE, Braga RA, Neilson R, MacFarlane SA, Dupuy LX. New live screening of plant-nematode interactions in the rhizosphere. Sci Rep. 2018;8:1–17.Article 
    CAS 

    Google Scholar 
    Sharma K, Palatinszky M, Nikolov G, Berry D, Shank EA. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. ELife 2020;9:1–28.
    Google Scholar 
    Bickel S, Or D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nat Commun. 2020;11:1–9.Article 
    CAS 

    Google Scholar 
    Farré M, Sanchís J, Barceló D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem. 2011;30:517–27.Article 
    CAS 

    Google Scholar 
    Verhamme DT, Kiley TB, Stanley-Wall NR. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol. 2007;65:554–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Konkol MA, Blair KM, Kearns DB. Plasmid-encoded comi inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol. 2013;195:4085–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley NR, Lazazzera BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation. Mol Microbiol. 2005;57:1143–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. URL https://www.R-project.org/.Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.CAS 
    PubMed 
    Article 

    Google Scholar  More