More stories

  • in

    Regenerative living cities and the urban climate–biodiversity–wellbeing nexus

    CIAT Global Rural-Urban Mapping Project, v1 (GRUMPv1): Urban Extents Grid (NASA SEDAC, 2011).Global Status Report for Buildings and Construction: Towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector (UNEP, 2020).Harris, N. L. et al. Nat. Clim. Change 11, 234–240 (2021).Article 

    Google Scholar 
    Reid, W. V. et al. Ecosystems and Human Well-being: Biodiversity Synthesis (Millenium Ecosystem Assessment, World Resources Institute, 2005).Xu, C. et al. Resour. Conserv. Recycl. 151, 104478 (2019).Article 

    Google Scholar 
    Su, J., Friess, D. A. & Gasparatos, A. Nat. Commun. 12, 5050 (2021).CAS 
    Article 

    Google Scholar 
    van den Berg, M. et al. Urban For. Urban Green. 14, 806–816 (2015).Article 

    Google Scholar 
    Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Br. Med. Bull. 127, 5–22 (2018).Article 

    Google Scholar 
    Lindenmayer, D. et al. Ecol. Lett. 11, 78–91 (2008).
    Google Scholar 
    Knapp, S., Jaganmohan, M. & Schwarz, N. in Atlas of Ecosystem Services: Drivers, Risks, and Societal Responses (eds Schröter, M. et al.) 167–172 (Springer, 2019).Kim, H. Y. Geomat. Nat. Hazards Risk 12, 1181–1194 (2021).Article 

    Google Scholar 
    Vargas-Hernández, J. G., Pallagst, K. & Zdunek-Wielgołaska, J. in Handbook of Engaged Sustainability (ed. Marques, J.) 885–916 (Springer, 2018).Manso, M. et al. Renew. Sustain. Energy Rev. 135, 110111 (2021).Article 

    Google Scholar 
    Assimakopoulos, M.-N. et al. Sustainability 12, 3772 (2020).CAS 
    Article 

    Google Scholar 
    Mora-Melià, D. et al. Sustainability 10, 1130 (2018).Article 

    Google Scholar 
    IPBES. Curr. Opin. Environ. Sustain. 26, 7–16 (2017).
    Google Scholar 
    Schröpfer, T. & Menz, S. in Dense and Green Building Typologies: Research, Policy and Practice Perspectives (eds Schröpfer, T. & Menz, S.) 1–4 (Springer, 2019).Pedersen Zari, M. & Hecht, K. Biomimetics 5, 18 (2020).Article 

    Google Scholar  More

  • in

    Accounting for ecosystem service values in climate policy

    IPCC Climate Change 2007: Synthesis Report (eds Pachauri, R. K. & Reisinger, A.) (IPCC, 2007).Boyd, J. & Banzhaf, S. Ecol. Econ. 63, 616–626 (2007).Article 

    Google Scholar 
    Ruhl, J. B. et al. Front. Ecol. Environ. 19, 519–525 (2021).Article 

    Google Scholar 
    Carleton, T. & Greenstone, M. Updating the United States Government’s Social Cost of Carbon Working Paper 2021-04 (Univ. Chicago, Becker Friedman Institute for Economics, 2021).Mandle, L. et al. Nat. Sustain. 4, 161–169 (2021).Article 

    Google Scholar 
    Druckenmiller, H. Estimating an Economic and Social Value of Forests: Evidence from Tree Mortality in the American West (Univ. California Berkeley, 2021).Burkett, V. R. et al. Ecol. Complexity 2, 357–394 (2005).Article 

    Google Scholar 
    Hanley, N. & Czajkowski, M. Rev. Environ. Econ. Policy 13, 248–266 (2019).Article 

    Google Scholar 
    Mendelsohn, R. Rev. Environ. Econ. Policy 13, 267–282 (2019).Article 

    Google Scholar 
    Fenichel, E. P. et al. Proc. Natl Acad. Sci. USA 113, 2382–2387 (2016).CAS 
    Article 

    Google Scholar 
    Martin-Ortega, J. et al. Ecosyst. Serv. 50, 101327 (2021).Article 

    Google Scholar 
    Borrelli, P. et al. Proc. Natl Acad. Sci. USA 117, 21994–22001 (2020).CAS 
    Article 

    Google Scholar 
    Tropek, R. et al. Science 344, 981–981 (2014).CAS 
    Article 

    Google Scholar 
    Vardon, M., Burnett, P. & Dovers, S. Ecol. Econ. 124, 145–152 (2016).Article 

    Google Scholar 
    Bastien-Olvera, B. A. & Moore, F. C. Nat. Sustain. 4, 101–108 (2021).Article 

    Google Scholar 
    Beland, M. et al. For. Ecol. Manage. 450, 117484 (2019).Article 

    Google Scholar 
    Vargas, L., Willemen, L. & Hein, L. Environ. Manage. 63, 1–15 (2019).Article 

    Google Scholar 
    Hallgren, W. et al. Environ. Model. Softw. 76, 182–186 (2016).Article 

    Google Scholar 
    Rolf, E. et al. Nat. Commun. 12, 4392 (2021).CAS 
    Article 

    Google Scholar 
    Chernozhukov, V. et al. NBER Working Paper 24678 (National Bureau of Economic Research, 2018). More

  • in

    Network analysis suggests changes in food web stability produced by bottom trawl fishery in Patagonia

    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals. (2018).Teh, L. C. L. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).
    Google Scholar 
    Halpern, B. S., Selkoe, K. A., Micheli, F. & Kappel, C. V. Evaluating and ranking the vulnerability of global marine ecosystems to anthropogenic threats. Conserv. Biol. 21, 1301–1315 (2007).PubMed 

    Google Scholar 
    Kaiser, M. J., Collie, J. S., Hall, S. J., Jennings, S. & Poiner, I. R. Modification of marine habitats by trawling activities: Prognosis and solutions. Fish Fish. 3, 114–136 (2002).
    Google Scholar 
    Hiddink, J. G. et al. Selection of indicators for assessing and managing the impacts of bottom trawling on seabed habitats. J. Appl. Ecol. 57, 1199–1209 (2020).
    Google Scholar 
    Funes, M., Marinao, C. & Galván, D. E. Does trawl fisheries affect the diet of fishes? A stable isotope analysis approach. Isotop. Environ. Health Stud. 10, 1–17 (2019).
    Google Scholar 
    Preciado, I. et al. Small-scale spatial variations of trawling impact on food web structure. Ecol. Ind. 98, 442–452 (2019).
    Google Scholar 
    Su, L. et al. Decadal-scale variation in mean trophic level in Beibu Gulf based on bottom-trawl survey data. Mar. Coast. Fish. 13, 174–182 (2021).
    Google Scholar 
    Jennings, S., van Hal, R., Hiddink, J. G. & Maxwell, T. A. D. Fishing effects on energy use by North Sea fishes. J. Sea Res. 60, 74–88 (2008).ADS 

    Google Scholar 
    de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).ADS 
    PubMed 

    Google Scholar 
    Bascompte, J. Disentangling the web of life. Science 325, 416–419 (2009).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Wootton, K. L. Omnivory and stability in freshwater habitats: Does theory match reality?. Freshw. Biol. 62, 821–832 (2017).
    Google Scholar 
    Borrelli, J. J. & Ginzburg, L. R. Why there are so few trophic levels: Selection against instability explains the pattern. Food Webs 1, 10–17 (2014).
    Google Scholar 
    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. USA 108, 3648–52 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Márquez-Velásquez, V., Raimundo, R. L. G., de Souza Rosa, R. & Navia, A. F. The use of ecological networks as tools for understanding and conserving marine biodiversity. In Marine Coastal Ecosystems Modelling and Conservation: Latin American Experiences, pp 179–202 (eds Ortiz, M. & Jordán, F.) (Springer, 2021). https://doi.org/10.1007/978-3-030-58211-1_9.Chapter 

    Google Scholar 
    Neutel, A.-M. & Thorne, M. A. S. Interaction strengths in balanced carbon cycles and the absence of a relation between ecosystem complexity and stability. Ecol. Lett. 17, 651–661 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Neutel, A.-M. & Thorne, M. A. S. Beyond connectedness: Why pairwise metrics cannot capture community stability. Ecol. Evol. 6, 7199–7206 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Saravia, L. A., Marina, T. I., Kristensen, N. P., De Troch, M. & Momo, F. R. Ecological network assembly: How the regional metaweb influences local food webs. J. Anim. Ecol. 3, 25 (2021).
    Google Scholar 
    Góngora, M. E., GonzalezZevallos, D., Pettovello, A. & Mendia, L. Caracterizacion de las principales pesquerias del golfo San Jorge Patagonia, Argentina. Latin Am. J. Aquat. Res. 40, 1–11 (2012).
    Google Scholar 
    Yorio, P. Marine protected areas, spatial scales, and governance: Implications for the conservation of breeding seabirds. Conserv. Lett. 2, 171–178 (2009).
    Google Scholar 
    Rincón-Díaz, M. P., Bovcon, N. D., Cochia, P. D., Góngora, M. E. & Galván, D. E. Fish functional diversity as an indicator of resilience to industrial fishing in Patagonia Argentina. J. Fish Biol. 99, 1650–1667 (2021).PubMed 

    Google Scholar 
    González-Zevallos, D. & Yorio, P. Consumption of discards and interactions between Black-browed Albatrosses (Thalassarche melanophrys) and Kelp Gulls (Larus dominicanus) at trawl fisheries in Golfo San Jorge, Argentina. J. Ornithol. 152, 827–838 (2011).
    Google Scholar 
    Vinuesa, J. H. & Varisco, M. Trophic ecology of the lobster krill Munida gregaria in San Jorge Gulf, Argentina. Investig. Mar. 35, 25–34 (2007).
    Google Scholar 
    Belleggia, M. et al. Trophic ecology of yellownose skate Zearaja chilensis, a top predator in the south-western Atlantic Ocean. J. Fish Biol. 88, 1070–1087 (2016).CAS 
    PubMed 

    Google Scholar 
    Pasti, A. T. et al. The diet of Mustelus schmitti in areas with and without commercial bottom trawling (Central Patagonia, Southwestern Atlantic): Is it evidence of trophic interaction with the Patagonian shrimp fishery?. Food Webs 29, e00214 (2021).
    Google Scholar 
    Yorio, P., Bertellotti, M., Gandini, P. & Frere, E. Kelp gulls Larus dominicanus breeding on the argentine coast: Population status and relationship with coastal management and conservation. Mar. Ornithol. 26, 11–18 (1998).
    Google Scholar 
    Dans, S. et al. El golfo san jorge como área prioritaria de investigación, manejo y conservación en el marco de la iniciativa pampa azul. Rev. Cie. Investig. 71, 21–43 (2021).
    Google Scholar 
    de la Garza, J. M., Ferníndez, M. & Ravalli, C. Langostino patagónico (Pleoticus muelleri). Inf. Campa 20, 20 (2013).
    Google Scholar 
    Varisco, M. & La Vinuesa, J. H. Alimentación de Munida gregaria (Fabricius, 1793) (Crustacea:Anomura:Galatheidae) en fondos de pesca del Golfo San Jorge, Argentina. Rev. Biol. Mar. Oceanogr. 42, 221–229 (2007).
    Google Scholar 
    Tschopp, A., Cristiani, F., García, N. A., Crespo, E. A. & Coscarella, M. A. Trophic niche partitioning of five skate species of genus Bathyraja in northern and central Patagonia, Argentina. J. Fish. Biol. 97, 656–667 (2020).PubMed 

    Google Scholar 
    Kasinsky, T., Yorio, P., Dell’Arciprete, P., Marinao, C. & Suárez, N. Geographical differences in sex-specific foraging behaviour and diet during the breeding season in the opportunistic Kelp Gull (Larus dominicanus). Mar. Biol. 168, 14 (2021).CAS 

    Google Scholar 
    González-Zevallos, D. & Yorio, P. Seabird use of discards and incidental captures at the Argentine hake trawl fishery in the Golfo San Jorge, Argentina. Mar. Ecol. Progress Ser. 316, 175–183 (2006).ADS 

    Google Scholar 
    Crespo, E. A. et al. Direct and indirect effects of the Highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J. Northw. Atl. Fish. Sci. 22, 189–207 (1997).
    Google Scholar 
    Gandini, P. A., Frere, E., Pettovello, A. D. & Cedrola, P. V. Interaction between Magellanic Penguins and Shrimp Fisheries in Patagonia, Argentina. Condor 101, 783–789 (1999).
    Google Scholar 
    Fu, C. et al. Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Ind. 105, 16–28 (2019).
    Google Scholar 
    Olivier, P. et al. Exploring the temporal variability of a food web using long-term biomonitoring data. Ecography 42, 2107–2121 (2019).
    Google Scholar 
    Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).MATH 

    Google Scholar 
    Gellner, G. & McCann, K. Reconciling the omnivory-stability debate. Am. Nat. 179, 22–37 (2012).PubMed 

    Google Scholar 
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 26113 (2004).ADS 
    CAS 

    Google Scholar 
    Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74, 16110 (2006).ADS 
    MathSciNet 

    Google Scholar 
    Allesina, S. & Pascual, M. Network structure, predator-prey modules, and stability in large food webs. Theor. Ecol. 1, 55–64 (2008).
    Google Scholar 
    Strona, G., Nappo, D., Boccacci, F., Fattorini, S. & San-Miguel-Ayanz, J. A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nat. Commun. 5, 4114 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Scholz, F. W. & Stephens, M. A. K-sample Anderson–Darling tests. J. Am. Stat. Assoc. 82, 918–924 (1987).MathSciNet 

    Google Scholar 
    Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 4, 863 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Saravia, L. A. Multiweb: An R Package for Multiple Interaction Ecological Networks (Zenodo, 2019). https://doi.org/10.5281/zenodo.3370397.Book 

    Google Scholar 
    Kortsch, S. et al. Disentangling temporal food web dynamics facilitates understanding of ecosystem functioning. J. Anim. Ecol. 20, 20 (2021).
    Google Scholar 
    Marina, T. I. et al. Architecture of marine food webs: To be or not be a “small-world’’. PLoS One 13, 1–13 (2018).
    Google Scholar 
    Panel, E. P. A. Ecosystem-based Fishery Management: A Report to Congress by the Ecosystem Principles Advisory Panel. https://repository.library.noaa.gov/view/noaa/23730 (1998)Armoškaitė, A. et al. Establishing the links between marine ecosystem components, functions and services: An ecosystem service assessment tool. Ocean Coast. Manage. 193, 105229 (2020).
    Google Scholar 
    Navia, A. F., Cruz-Escalona, V. H., Giraldo, A. & Barausse, A. The structure of a marine tropical food web, and its implications for ecosystem-based fisheries management. Ecol. Model. 328, 23–33 (2016).
    Google Scholar 
    Agnetta, D. et al. Benthic-pelagic coupling mediates interactions in Mediterranean mixed fisheries: An ecosystem modeling approach. PLoS One 14, e0210659 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baum, J. K. et al. Collapse and conservation of shark populations in the Northwest Atlantic. Sciencehttps://doi.org/10.1126/science.1079777 (2003).Article 
    PubMed 

    Google Scholar 
    Bearzi, G. et al. Overfishing and the disappearance of short-beaked common dolphins from western Greece. Endang. Species Res. 5, 1–12 (2008).
    Google Scholar 
    Lotze, H. K., Coll, M., Magera, A. M., Ward-Paige, C. & Airoldi, L. Recovery of marine animal populations and ecosystems. Trends Ecol. Evol. 26, 595–605 (2011).PubMed 

    Google Scholar 
    Reyes, L. M. Cetaceans of Central Patagonia, Argentina. Aquat. Mammals 32, 20–30 (2006).
    Google Scholar 
    Lisnizer, N., Garcia-Borboroglu, P. & Yorio, P. Spatial and temporal variation in population trends of Kelp Gulls in northern Patagonia, Argentina. Emu Austral Ornithol. 111, 259–267 (2011).
    Google Scholar 
    Yorio, P. et al. Population trends of Imperial Cormorants (Leucocarbo atriceps) in northern coastal Argentine Patagonia over 26 years. Emu Austral Ornithol. 120, 114–122 (2020).
    Google Scholar 
    Irigoyen, A. & Trobbiani, G. Depletion of trophy large-sized sharks populations of the Argentinean coast, south-western Atlantic: Insights from fishers’ knowledge. Neotrop. Ichthyol. 14, 20 (2016).
    Google Scholar 
    Vasas, V., Lancelot, C., Rousseau, V. & Jordán, F. Eutrophication and overfishing in temperate nearshore pelagic food webs: A network perspective. Mar. Ecol. Prog. Ser. 336, 1–14 (2007).ADS 
    CAS 

    Google Scholar 
    Gilarranz, L. J., Mora, C. & Bascompte, J. Anthropogenic effects are associated with a lower persistence of marine food webs. Nat. Commun. 7, 10737 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).PubMed 

    Google Scholar 
    May, R. M. Stability and Complexity in Model Ecosystems Vol. 6 (Princeton University Press, 1974).
    Google Scholar 
    McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).CAS 
    PubMed 

    Google Scholar 
    van Altena, C., Hemerik, L. & de Ruiter, P. C. Food web stability and weighted connectance: The complexity-stability debate revisited. Theor. Ecol. 9, 49–58 (2016).
    Google Scholar 
    Dougoud, M., Vinckenbosch, L., Rohr, R. P., Bersier, L.-F. & Mazza, C. The feasibility of equilibria in large ecosystems: A primary but neglected concept in the complexity-stability debate. PLoS Comput. Biol. 14, e1005988 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    McCann, K. & Hastings, A. Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. B 264, 1249–1254 (1997).ADS 

    Google Scholar 
    Pimm, S. L. & Lawton, J. H. On feeding on more than one trophic level. Nature 275, 542–544 (1978).ADS 

    Google Scholar 
    Link, J. Does food web theory work for marine ecosystems?. Mar. Ecol. Prog. Ser. 230, 1–9 (2002).ADS 

    Google Scholar 
    Bieg, C. et al. Linking humans to food webs: A framework for the classification of global fisheries. Front. Ecol. Environ. 16, 412–420 (2018).
    Google Scholar 
    Shephard, S. et al. Scavenging on trawled seabeds can modify trophic size structure of bottom-dwelling fish. ICES J. Mar. Sci. 71, 398–405 (2014).
    Google Scholar 
    Gilarranz, L. J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A. Effects of network modularity on the spread of perturbation impact in experimental metapopulations. Science 357, 199–201 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Danet, A., Mouchet, M., Bonnaffé, W., Thébault, E. & Fontaine, C. Species richness and food-web structure jointly drive community biomass and its temporal stability in fish communities. Ecol. Lett. 24, 2364–2377 (2021).PubMed 

    Google Scholar 
    Shanafelt, D. W. & Loreau, M. Stability trophic cascades in food chains. R. Soc. Open Sci. 5, 180995 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbier, M. & Loreau, M. Pyramids and cascades: A synthesis of food chain functioning and stability. Ecol. Lett. 22, 405–419 (2019).PubMed 

    Google Scholar 
    Sánchez, M. F. et al. Caracterización ecológica del Golfo San Jorge (Argentina) mediante modelación ecotrófica multiespecífica. 30 https://www.inidep.edu.ar/wordpress/?page_id=1959 (2009)Gaitán, E. N. Tramas Tróficas en Sistemas Frontales del Mar Argentino: Estructura, Dinámica y Complejidad Analizada Mediante Isótopos Estables (Universidad Nacional de Mar del Plata, Facultad de Ciencias Exactas y Naturales, 2012).
    Google Scholar 
    Pinnegar, J. K. & Polunin, N. V. C. Differential fractionation of 13C and 15N among fish tissues: Implications for the study of trophic interactions. Funct. Ecol. 13, 225–231 (1999).
    Google Scholar 
    Philippsen, J. S. & Benedito, E. Discrimination factor in the trophic ecology of fishes: A review about sources of variation and methods to obtain it. Oecol. Aust. 17, 205–2016 (2013).
    Google Scholar 
    Hussey, N. E. et al. Rescaling the trophic structure of marine food webs. Ecol. Lett. 17, 239–250 (2014).PubMed 

    Google Scholar 
    Lefebvre, S. & Dubois, S. The stony road to understand isotopic enrichment and turnover rates: Insight into the metabolic part. Vie Milieu-life Environ. 66, 305–314 (2016).
    Google Scholar 
    Funes, M., Irigoyen, A. J., Trobbiani, G. A. & Galván, D. E. Stable isotopes reveal different dependencies on benthic and pelagic pathways between Munida gregaria ecotypes. Food Webs 17, e00101 (2018).
    Google Scholar 
    Santos, B. & Villarino, M. F. Evaluación del Estado de Explotación del Efectivo sur de 41 S de la Merluza (Merluccius hubbsi) y Estimación de la Captura Biológicamente Aceptable Para 2014. Informe Técnico Oficial INIDEP. 1–30 (2013).Belleggia, M., Giberto, D. & Bremec, C. Adaptation of diet in a changed environment: Increased consumption of lobster krill Munida gregaria (Fabricius, 1793) by Argentine hake. Mar. Ecol. 38, e12445 (2017).ADS 

    Google Scholar 
    Diez, M. J., Cabreira, A. G., Madirolas, A. & Lovrich, G. A. Hydroacoustical evidence of the expansion of pelagic swarms of Munida gregaria (Decapoda, Munididae) in the Beagle Channel and the Argentine Patagonian Shelf, and its relationship with habitat features. J. Sea Res. 114, 1–12 (2016).ADS 

    Google Scholar 
    Ravalli, C., De La Garza, J. & Greco, L. L. Distribución de los morfotipos gregaria y subrugosa de la langostilla Munida gregaria (Decapoda, Galatheidae) en el Golfo San Jorge en la campaña de verano AE-01/2011. Integración de resultados con las campañas 2009 y 2010. Rev. Invest. Desarr. Pesq. 22, 29–41 (2013).
    Google Scholar 
    Belleggia, M. et al. Are hakes truly opportunistic feeders? A case of prey selection by the Argentine hake Merluccius hubbsi off southwestern Atlantic. Fish. Res. 214, 166–174 (2019).
    Google Scholar 
    Roux, A., Piñero, R., Moriondo, P. & Fernández, M. Diet of the red shrimp Pleoticus muelleri (Bate, 1888) in Patagonian fishing grounds, Argentine. Rev. Biol. Mar. Oceanogr. 44, 25 (2009).
    Google Scholar 
    de la Garza, J. et al. An Overview of the Argentine Red Shrimp (Pleoticus muelleri, Decapoda, Solenoceridae) Fishery in Argentina: Biology, Fishing, Management and Ecological Interactions (Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), 2017).
    Google Scholar 
    Sánchez, M. F. & Prenski, L. B. Ecología trófica de peces demersales en el Golfo San Jorge. Trophic Ecol. Demersal Fish San Jorge Gulf 10, 57–71 (1996).
    Google Scholar 
    Copello, S., Quintana, F. & Pérez, F. Diet of the southern giant petrel in Patagonia: Fishery-related items and natural prey. Endang. Species Res. 6, 15–23 (2008).
    Google Scholar 
    Alonso, R. B. et al. The opportunistic sense: The diet of Argentine hake Merluccius hubbsi reflects changes in prey availability. Region. Stud. Mar. Sci. 27, 100540 (2019).
    Google Scholar 
    Marón, C. F. et al. Increased wounding of southern right whale (Eubalaena australis) calves by kelp gulls (Larus dominicanus) at Península Valdés, Argentina. PLoS One 10, e0139291 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Fazio, A., Argüelles, M. B. & Bertellotti, M. Change in southern right whale breathing behavior in response to gull attacks. Mar. Biol. 162, 267–273 (2015).
    Google Scholar 
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kéfi, S. et al. Network structure beyond food webs: Mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96, 291–303 (2015).
    Google Scholar 
    Mougi, A. The roles of amensalistic and commensalistic interactions in large ecological network stability. Sci. Rep. 6, 29929 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Kéfi, S., Miele, V., Wieters, E. A., Navarrete, S. A. & Berlow, E. L. How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol. 14, e1002527 (2016).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Chaos is not rare in natural ecosystems

    May, R. M. Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beddington, J. R., Free, C. A. & Lawton, J. H. Dynamic complexity in predator–prey models framed in difference equations. Nature 255, 58–60 (1975).Article 

    Google Scholar 
    Hastings, A., Hom, C. L., Ellner, S., Turchin, P. & Godfray, H. C. J. Chaos in ecology: is Mother Nature a strange attractor? Annu. Rev. Ecol. Syst. 24, 1–33 (1993).Article 

    Google Scholar 
    Cressie, N. & Wikle, C. K. Statistics for Spatio-Temporal Data (John Wiley & Sons, 2011).The State of World Fisheries and Aquaculture 2020 (FAO, 2020).Hastings, A. & Powell, T. Chaos in a three-species food chain. Ecology 72, 896–903 (1991).Article 

    Google Scholar 
    Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).Article 

    Google Scholar 
    Doebeli, M. & Ispolatov, I. Chaos and unpredictability in evolution. Evolution 68, 1365–1373 (2014).PubMed 
    Article 

    Google Scholar 
    Pearce, M. T., Agarwala, A. & Fisher, D. S. Stabilization of extensive fine-scale diversity by ecologically driven spatiotemporal chaos. Proc. Natl Acad. Sci. USA 117, 14572–14583 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costantino, R. F., Desharnais, R. A., Cushing, J. M. & Dennis, B. Chaotic dynamics in an insect population. Science 275, 389–391 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Becks, L., Hilker, F. M., Malchow, H., Jürgens, K. & Arndt, H. Experimental demonstration of chaos in a microbial food web. Nature 435, 1226–1229 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benincá, E. et al. Chaos in a long-term experiment with a plankton community. Nature 451, 822–825 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    Tilman, D. & Wedin, D. Oscillations and chaos in the dynamics of a perennial grass. Nature 353, 653–655 (1991).Article 

    Google Scholar 
    Turchin, P. & Ellner, S. P. Living on the edge of chaos: population dynamics of fennoscandian voles. Ecology 81, 3099–3116 (2000).Article 

    Google Scholar 
    Ferrari, M. J. et al. The dynamics of measles in sub-Saharan Africa. Nature 451, 679–684 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benincà, E., Ballantine, B., Ellner, S. P. & Huisman, J. Species fluctuations sustained by a cyclic succession at the edge of chaos. Proc. Natl Acad. Sci. USA 112, 6389–6394 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hassell, M. P., Lawton, J. H. & May, R. M. Patterns of dynamical behaviour in single-species populations. J. Anim. Ecol. 45, 471–486 (1976).Article 

    Google Scholar 
    Sibly, R. M., Barker, D., Hone, J. & Pagel, M. On the stability of populations of mammals, birds, fish and insects. Ecol. Lett. 10, 970–976 (2007).PubMed 
    Article 

    Google Scholar 
    Shelton, A. O. & Mangel, M. Fluctuations of fish populations and the magnifying effects of fishing. Proc. Natl Acad. Sci USA. 108, 7075–7080 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salvidio, S. Stability and annual return rates in amphibian populations. Amphib. Reptil. 32, 119–124 (2011).Article 

    Google Scholar 
    Snell, T. W. & Serra, M. Dynamics of natural rotifer populations. Hydrobiologia 368, 29–35 (1998).Article 

    Google Scholar 
    Gross, T., Ebenhöh, W. & Feudel, U. Long food chains are in general chaotic. Oikos 109, 135–144 (2005).Article 

    Google Scholar 
    Ispolatov, I., Madhok, V., Allende, S. & Doebeli, M. Chaos in high-dimensional dissipative dynamical systems. Sci. Rep. 5, 12506 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clark, T. J. & Luis, A. D. Nonlinear population dynamics are ubiquitous in animals. Nat. Ecol. Evol. 4, 75–81 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sivakumar, B., Berndtsson, R., Olsson, J. & Jinno, K. Evidence of chaos in the rainfall-runoff process. Hydrol. Sci. J. 46, 131–145 (2001).CAS 
    Article 

    Google Scholar 
    Hanski, I., Turchin, P., Korpimäki, E. & Henttonen, H. Population oscillations of boreal rodents: regulation by mustelid predators leads to chaos. Nature 364, 232–235 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turchin, P. & Taylor, A. D. Complex dynamics in ecological time series. Ecology 73, 289–305 (1992).Article 

    Google Scholar 
    Munch, S. B., Brias, A., Sugihara, G. & Rogers, T. L. Frequently asked questions about nonlinear dynamics and empirical dynamic modelling. ICES J. Mar. Sci. 77, 1463–1479 (2020).Article 

    Google Scholar 
    Sugihara, G. & May, R. M. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellner, S. P. & Turchin, P. Chaos in a noisy world: new methods and evidence from time-series analysis. Am. Nat. 145, 343–375 (1995).Article 

    Google Scholar 
    Nychka, D., Ellner, S., Gallant, A. R. & McCaffrey, D. Finding chaos in noisy systems. J. R. Stat. Soc. B 54, 399–426 (1992).
    Google Scholar 
    Webber, C. L. & Zbilut, J. P. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol. 76, 965–973 (1994).PubMed 
    Article 

    Google Scholar 
    Bandt, C. & Pompe, B. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88, 174102 (2002).PubMed 
    Article 
    CAS 

    Google Scholar 
    Luque, B., Lacasa, L., Ballesteros, F. & Luque, J. Horizontal visibility graphs: exact results for random time series. Phys. Rev. E 80, 46103 (2009).CAS 
    Article 

    Google Scholar 
    Toker, D., Sommer, F. T. & D’Esposito, M. A simple method for detecting chaos in nature. Commun. Biol. 3, 11 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pikovsky, A. & Politi, A. Lyapunov Exponents: A Tool to Explore Complex Dynamics (Cambridge Univ. Press, 2016).Rosenstein, M. T., Collins, J. J. & De Luca, C. J. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993).Article 

    Google Scholar 
    Dämmig, M. & Mitschke, F. Estimation of Lyapunov exponents from time series: the stochastic case. Phys. Lett. A 178, 385–394 (1993).Article 

    Google Scholar 
    Prendergast, J., Bazeley-White, E., Smith, O., Lawton, J. & Inchausti, P. The Global Population Dynamics Database (KNB, 2010); https://doi.org/10.5063/F1BZ63Z8Thibaut, L. M. & Connolly, S. R. Hierarchical modeling strengthens evidence for density dependence in observational time series of population dynamics. Ecology 101, e02893 (2020).PubMed 
    Article 

    Google Scholar 
    Knape, J. & de Valpine, P. Are patterns of density dependence in the Global Population Dynamics Database driven by uncertainty about population abundance? Ecol. Lett. 15, 17–23 (2012).PubMed 
    Article 

    Google Scholar 
    Takens, F. in Dynamical Systems and Turbulence (eds Rand, D. A. & Young, L. S.) 366–381 (Springer, 1981).Sugihara, G. Nonlinear forecasting for the classification of natural time series. Philos. Trans. R. Soc. A 348, 477–495 (1994).
    Google Scholar 
    Loh, J. et al. The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 360, 289–295 (2005).Article 

    Google Scholar 
    Kendall, B. E. Cycles chaos, and noise in predator–prey dynamics. Chaos Solitons Fractals 12, 321–332 (2001).Article 

    Google Scholar 
    Anderson, C. N. K. et al. Why fishing magnifies fluctuations in fish abundance. Nature 452, 835–839 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, D. M. & Gillooly, J. F. Allometric scaling of Lyapunov exponents in chaotic populations. Popul. Ecol. 62, 364–369 (2020).Article 

    Google Scholar 
    Graham, D. W. et al. Experimental demonstration of chaotic instability in biological nitrification. ISME J. 1, 385–393 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turchin, P. Nonlinear time-series modeling of vole population fluctuations. Res. Popul. Ecol. 38, 121–132 (1996).Article 

    Google Scholar 
    Becks, L. & Arndt, H. Different types of synchrony in chaotic and cyclic communities. Nat. Commun. 4, 1359 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Becks, L. & Arndt, H. Transitions from stable equilibria to chaos, and back, in an experimental food web. Ecology 89, 3222–3226 (2008).PubMed 
    Article 

    Google Scholar 
    Rezende, E. L., Albert, E. M., Fortuna, M. A. & Bascompte, J. Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecol. Lett. 12, 779–788 (2009).PubMed 
    Article 

    Google Scholar 
    Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    The IUCN Red List of Threatened Species Version 2020-2 (IUCN, 2020); https://www.iucnredlist.orgFreckleton, R. P. & Watkinson, A. R. Are weed population dynamics chaotic? J. Appl. Ecol. 39, 699–707 (2002).Article 

    Google Scholar 
    May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B. & Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 9, e1001127 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Munch, S. B., Giron-Nava, A. & Sugihara, G. Nonlinear dynamics and noise in fisheries recruitment: a global meta-analysis. Fish Fish. 19, 964–973 (2018).Article 

    Google Scholar 
    Boettiger, C., Harte, T., Chamberlain, S. & Ram, K. rgpdd: R Interface to the Global Population Dynamics Database. https://docs.ropensci.org/rgpdd, https://github.com/ropensci/rgpdd (2019).Brook, B. W., Traill, L. W. & Bradshaw, C. J. A. Minimum viable population sizes and global extinction risk are unrelated. Ecol. Lett. 9, 375–382 (2006).PubMed 
    Article 

    Google Scholar 
    Baars, J. W. M. Autecological investigations of marine diatoms, 2. Generation times of 50 species. Hydrobiol. Bull. 15, 137–151 (1981).Article 

    Google Scholar 
    Lavigne, A. S., Sunesen, I. & Sar, E. A. Morphological, taxonomic and nomenclatural analysis of species of Odontella, Trieres and Zygoceros (Triceratiaceae, Bacillariophyta) from Anegada Bay (Province of Buenos Aires, Argentina). Diatom Res. 30, 307–331 (2015).Article 

    Google Scholar 
    Anderson, D. M. & Gillooly, J. F. Physiological constraints on long-term population cycles: a broad-scale view. Evol. Ecol. Res. 18, 693–707 (2017).
    Google Scholar 
    Janes, M. J. Oviposition studies on the chinch bug, Blissus leucopterus (Say). Ann. Entomol. Soc. Am. 28, 109–120 (1935).Article 

    Google Scholar 
    Cook, L. M. Food-plant specialization in the moth Panaxia dominula L. Evolution 15, 478–485 (1961).Article 

    Google Scholar 
    Casey, T. M. Flight energetics of sphinx moths: power input during hovering flight. J. Exp. Biol. 64, 529–543 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kobayashi, A., Tanaka, Y. & Shimada, M. Genetic variation of sex allocation in the parasitoid wasp Heterospilus prosopidis. Evolution 57, 2659–2664 (2003).PubMed 
    Article 

    Google Scholar 
    Hozumi, N. & Miyatake, T. Body-size dependent difference in death-feigning behavior of adult Callosobruchus chinensis. J. Insect Behav. 18, 557–566 (2005).Article 

    Google Scholar 
    Huntley, M. E. & Lopez, M. D. G. Temperature-dependent production of marine copepods: a global synthesis. Am. Nat. 140, 201–242 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohen, R. E. & Lough, R. G. Length–weight relationships for several copepods dominant in the Georges Bank–Gulf of Maine area. J. Northwest Atl. Fish. Sci. 2, 47–52 (1981).Article 

    Google Scholar 
    World Register of Marine Species (WoRMS, accessed 1 November 2020); https://doi.org/10.14284/170Nakamura, Y. Growth and grazing of a large heterotrophic dinoflagellate, Noctiluca scintillans, in laboratory cultures. J. Plankton Res. 20, 1711–1720 (1998).Article 

    Google Scholar 
    Boulding, E. G. & Platt, T. Variation in photosynthetic rates among individual cells of a marine dinoflagellate. Mar. Ecol. Prog. Ser. 29, 199–203 (1986).CAS 
    Article 

    Google Scholar 
    Rimet, F. et al. The Observatory on LAkes (OLA) database: sixty years of environmental data accessible to the public. J. Limnol. https://doi.org/10.4081/jlimnol.2020.1944 (2020).Rudstam, L. Zooplankton Survey of Oneida Lake, New York, 1964 to Present (KNB, 2020); https://knb.ecoinformatics.org/view/kgordon.17.99https://knb.ecoinformatics.org/knb/metacat/kgordon.17.67/defaultDumont, H. J., Van de Velde, I. & Dumont, S. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19, 75–97 (1975).PubMed 
    Article 

    Google Scholar 
    Geller, W. & Müller, H. Seasonal variability in the relationship between body length and individual dry weight as related to food abundance and clutch size in two coexisting Daphnia species. J. Plankton Res. 7, 1–18 (1985).Article 

    Google Scholar 
    Branstrator, D. K. Contrasting life histories of the predatory cladocerans Leptodora kindtii and Bythotrephes longimanus. J. Plankton Res. 27, 569–585 (2005).Article 

    Google Scholar 
    Rosen, R. A. Length–dry weight relationships of some freshwater zooplankton. J. Freshw. Ecol. 1, 225–229 (1981).Article 

    Google Scholar 
    Peters, R. H. & Downing, J. A. Empirical analysis of zooplankton filtering and feeding rates. Limnol. Oceanogr. 29, 763–784 (1984).Article 

    Google Scholar 
    Eckmann, J. P., Kamphorst, S. O. & Ruelle, D. Recurrence plots of dynamical systems. Europhys. Lett. 4, 973–977 (1987).Article 

    Google Scholar 
    Luque, B., Lacasa, L., Ballesteros, F. J. & Robledo, A. Analytical properties of horizontal visibility graphs in the Feigenbaum scenario. Chaos 22, 013109 (2012).PubMed 
    Article 

    Google Scholar 
    McCaffrey, D. F., Ellner, S., Gallant, A. R. & Nychka, D. W. Estimating the Lyapunov exponent of a chaotic system with nonparametric regression. J. Am. Stat. Assoc. 87, 682–695 (1992).Article 

    Google Scholar 
    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Ricker, W. E. Stock and recruitment. J. Fish. Board Can. 11, 559–623 (1954).Article 

    Google Scholar  More

  • in

    Tree-ring data set for dendroclimatic reconstructions and dendrochronological dating in European Russia

    The data set consists of tree-ring width measurements in Decadal/Tuscon RWL format24, COFECHA25 listings for every RWL file, online-only Tables 1 and 2 with the description for every living-tree and historical chronology. In each RWL file the measurements for each tree denoted by a number are usually represented by several cores denoted by the letters a,b,c, etc., e.g. T15S1a and T15S1b are two cores for the first tree at the site T15S, T15S15a and T15S15b are two cores for the 15th tree at the site. The historical chronologies usually contain several codes referring to different sources of materials, but the numbering is the same – numbers denote different beams from each source and letters a-d denote the measurements along different radii from each beam.Missing values in RWL files are denoted either by zeroes in the case of missing rings or by −888 in the case of missing core segments. The description of each site contains the information on the location, geographical coordinates, number of trees and samples, information on series intercorrelation, average mean sensitivity, quality of the cross-dating, and related publications (online-only Tables 1, 2). Some sites also have descriptions of vegetation and soils. The RWL files of the measurements and the related COFECHA quality control listings are publicly available in ITRDB. The ITRDB codes and links are provided in the online-only Tables 1 and 2. The whole data set is also available as a standalone set of files26 in Figshare repository, where RWL files are named as the site code plus ‘.rwl’ extension, the COFECHA listings are named as the site code plus ‘COF.txt’. For example, the site T15S is represented by the files ‘T15S.rwl’ and ‘T15SCOF.txt’. Supplementary Tables 1 and 2 represent printable versions of Online-only Tables 1 and 2, respectively.Below we describe the sources of material for each historical chronology.KirillovMaterials for the Kirillov chronology were collected over many years from archaeological excavations in the town of Kirillov, Vologda region. They include wood samples obtained from architectural buildings and various small archaeological excavations in the vicinity of the Kirillo-Belozersky monastery (59.86°N, 38.37°E). During restoration work in 1969, 1971, 1985, and 1987, samples of wooden ties and piles of foundations from brick defensive walls and monastery buildings were collected. The archaeological part of the collection also contains samples from wooden log cabins, wells, and log heaps (remnants of buildings demolished during renovation) and discovered during rescue excavations in 1994, 1998–2000, 2007, 2008, 2011, 2015, 2016, and 2018. The samples were processed in the Laboratory of Natural Science Methods in Archaeology, Institute of Archaeology RAS. Unfortunately, most of the original material has not been archived after the measurements were made. The Kirillov chronology was calendar dated with living trees from the Vologda region (sites KOV and SHBO) and materials from the Museum of Wooden Architecture of the Vologda Region “Semyonkovo”27.VologdaThe collection consists of materials from wooden buildings in the city of Vologda (59.22°N, 39.89°E). The data was assembled by D. Kats in the 1990s and later archived at the Institute of Plant and Animal Ecology in Ekaterinburg. In 2009 the collection was transferred again, and now resides at the Institute of Geography RAS, where ring-widths were measured a second time. The data set includes the samples from 19th century wooden houses on Gogol Street, numbers 3 and 5 (codes AU and AV), from Gertsen Street number 58 (code BA), from the Spaso-Prilutskiy Monastery in the northern outskirts of Vologda (code BB), and from samples of unknown origin from the 18th century (code M). The Vologda chronology was calendar dated with the Kirillov chronology.NovgorodMaterials in the Novgorod chronology are derived from archaeological excavations in the city of Velikiy Novgorod (58.52°N, 31.27°E), in addition to samples from wooden buildings of the Novgorod Region. The latter include materials from building transferred to the Museum of Wooden Architecture “Vitoslavlitsy” from the Novgorod region. These include the Chapel of Magdalena (code N04A), the Church of St. Nicolay from the village of Visokiy Ostrov (code N09A), and a church from the village of Tukholi (code N11A). Archaeological materials come from the city of Novgorod, from the excavation of Yaroslavovo Dvorische (archaeologist A.V. Andrienko, code N02A28), as well as excavations on Telegina-Redyatina Street (code ‘tere’), Posolskaya Street (code ‘posol’), Znamenskaya Street (code ‘znam’), Troitskaya Street (codes ‘35a-1-b1’ and ‘16a-1-v2’), and B. Konyushennaya Street (code ‘kon’), which were directed by archaeologist O.I. Oleynikov. The Novgorod chronology was calendar dated using the russ1 chronology from the ITRDB (with a correction for the known error of 1 year29), and by crossdating with the Kirillov and Vologda chronologies.ArkhangelskThe Arkhangelsk chronology includes samples from houses and churches from the northwestern part of the Arkhangelsk region (63.4–64.7°N, 37.4–43.4°E). These include wooden houses from the town of Pinega, Kudrina Street 45 and 55 (codes I15A and I14A, 64.70°N, 43.39°E), the house of the Bazheniny family in the village of Vavchuga, Kholmogorskoye district (code I21A, 64.23°N, 41.92°E), the Church of Introduction in the village of Vorzogory (code I02A, 63.89°N, 37.67°E), the Church of Vladimir in the village of Medvedevskaya (code I04A, 63.81°N, 38.32°E), and from the the Ensemble of the Church in the village of Piyala (codes I08A, I09A, P, 63.43°N, 39.08°E), all located in the Onezhskiy District. The chronology was calendar dated using a living pine tree-ring series (code I24S, 64.11°N, 38.03°E) in addition to crossdating with the Solovki chronology30.KareliaThis chronology includes materials from eight churches in the Republic of Karelia, all located along the shores of Onega Lake (60.80–62.72°N, 33.06–35.27°E)31. Most of these measurements are of lower precision than of the other data in this study (0.05 mm versus 0.001 mm) however, they are vital to the dendrochronological dating in the region. The Karelia chronology was calendar dated using the Solovki and Arkhangelsk chronologies.Zapadnaya Dvina (ZD1, ZD2)Tree-ring chronologies ZD1 and ZD2 were constructed with subfossil oak trees sampled in the alluvial deposits of the Zapadnaya Dvina River and its tributary, the Velesa River. The sample sites include reaches of both rivers upstream of their confluence (56.06°N, 31.97°E). Subfossil oak tree trunks were discovered in the riverbed as well as in riverbank alluvial deposits and oxbow lakes. The ZD1 and ZD2 chronologies do not overlap with the living oak tree-ring series from the region, but were crossdated with chronologies from Belarus and from the Baltic region. ZD1 (CE 572–1382) was calendar dated with oak samples from the Church of the Saviour’s Transfiguration in Polotsk (Belarus) which spans CE 869-112232; it also crossdates with subfossil oak series from Smarhon, Belarus33 and the Baltic 1 chronology34. A detailed report was previously published elsewhere14. The calendar age of the ZD2 chronology (CE 1346–1762) was established by comparison with the 2021BLT3 chronology35.KostromaMaterials for the Kostroma chronology come from archaeological excavations in the City of Kostroma and from the wooden buildings from the surrounding Kostroma Region. They include materials from a church in the Andreevskoye village (code K2A, 58.16°N, 41.30°E), two buildings from the Museum of Wooden Architecture in the Kostroma region, which include the house of Skobyolkin (code K13A), and the Church of Ilijah the Prophet (code K14A). The other materials come from the ‘Melochniye Ryady’ excavations in the center of Kostroma, (archaeologist A.Lazarev, code K09A). The chronology was calendar dated using the Kirillov and Vologda chronologies.SmolenskSeven beams of pine come from archaeological excavations at Pobedy Square in the city of Smolensk (54.78°N, 32.05°E)36. They were crossdated using the chronology from the Dannenshtern House in Riga37. The material of the Dannenshtern House likely comes from near the headwaters of the Kasplya tributary of the Daugava River (Zapadnaya Dvina River) located near Smolensk.SolovkiThe Solovki chronology consists of measurements from living trees (pines PDB and spruce PDEL; 65.12°N, 35.57°E), beams in a church on Malaya Muksalma Island (code MMCH; 65.01°N, 36.00°E), a building built for resin extraction (code SMOL), a barn (code SOLAM), and from a monastery outbuilding (or skit) on Sekirnaya Hill (code SLKL; 64.08°N, 35.57°E). Also included in the chronology are series from a satellite monastery building on Bolshaya Muksalma Island (code BMSK; 65.03°N, 35.90°E), series from a bathhouse nearby (code BMBN), samples from the Church of Andrew the First-Called on Zayatskiy Island (code B24A; 64.97°N, 35.65°E), series from a 19th century building (code SOLIZ), along with archaeological materials from the monastery (codes B27A, B28A), and a barn on Anzer Island (codes B39A, B38A; 65.19°N, 35.98°E). The earliest part of the chronology consists of ring-width series from beams from the 16th century Spaso-Preobrazhenskiy Cathedral (code SP; 65.02°N, 35.71°E). More

  • in

    Genetic disruption of Arabidopsis secondary metabolite synthesis leads to microbiome-mediated modulation of nematode invasion

    van den Hoogen J, Geisen S, Routh D. Soil nematode abundance and functional group composition at a global scale. Nature 2019;572:194–98.PubMed 

    Google Scholar 
    Yeates GW, Bongers T, Degoede RGM, Freckman DW, Georgieva SS. Feeding habits in soil nematode families and genera – an outline for soil ecologists. J Nematol. 1993;25:315–31.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nicol JM, Turner SJ, Coyne DL, Nijs Ld, Hockland S, Maafi ZT. Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C, editors. Genomics and Molecular Genetics of Plant-Nematode Interactions. Dordrecht: Springer; 2011. p. 21–43.Decraemer W, Hunt D. Structure and Classification. In: R. N. Perry, M. Moens, Eds. Plant Nematology. CABI, Wallingford, Oxfordshire, UK and Boston, USA, 2005, pp. 26–27.Fleming TR, Maule AG, Fleming CC. Chemosensory responses of plant parasitic nematodes to selected phytochemicals reveal long-term habituation traits. J Nematol. 2017;49:462–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murungi LK, Kirwa H, Coyne D, Teal PEA, Beck JJ, Torto B. Identification of key root volatiles signaling preference of tomato over spinach by the root knot nematode Meloidogyne incognita. J AgricFood Chem. 2018;66:7328–36.CAS 

    Google Scholar 
    Wang CL, Masler EP, Rogers ST. Responses of Heterodera glycines and Meloidogyne incognita infective juveniles to root tissues, root exudates, and root extracts from three plant species. Plant Dis. 2018;102:1733–40.CAS 
    PubMed 

    Google Scholar 
    Sikder MM, Vestergård M. Impacts of root metabolites on soil nematodes. Front Plant Sci. 2020;10:1792.PubMed 
    PubMed Central 

    Google Scholar 
    van Dam NM, Tytgat TOG, Kirkegaard JA. Root and shoot glucosinolates: A comparison of their diversity, function and interactions in natural and managed ecosystems. Phytochem Rev. 2009;8:171–86.CAS 

    Google Scholar 
    Bressan M, Roncato MA, Bellvert F, et al. Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J. 2009;3:1243–57.CAS 
    PubMed 

    Google Scholar 
    Mucha S, Heinzlmeir S, Kriechbaumer V, Strickland B, Kirchhelle C, Choudhary M, et al. The formation of a camalexin biosynthetic metabolon. Plant Cell. 2019;31:2697–710.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kettles GJ, Drurey C, Schoonbeek HJ, Maule AJ, Hogenhout SA. Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs. N. Phytol. 2013;198:1178–90.CAS 

    Google Scholar 
    Tsuji J, Jackson EP, Gage DA, Hammerschmidt R, Somerville SC. Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv. syringae. Plant Physiol. 1992;98:1304–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 1999;19:163–71.CAS 
    PubMed 

    Google Scholar 
    Teixeira MA, Wei LH, Kaloshian I. Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. N Phytol. 2016;211:276–87.CAS 

    Google Scholar 
    Shah SJ, Anjam MS, Mendy B, Anwer MA, Habash SS, Lozano-Torres JL, et al. Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. J Exp Bot. 2017;68:5949–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ali MA, Wieczorek K, Kreil DP, Bohlmann H. The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLoS One. 2014;9:e102360.PubMed 
    PubMed Central 

    Google Scholar 
    Lazzeri L, Curto G, Leoni O, Dallavalle E. Effects of glucosinolates and their enzymatic hydrolysis products via myrosinase on the root-knot nematode Meloidogyne incognita (Kofoid et White) Chitw. J Agric Food Chem. 2004;52:6703–07.CAS 
    PubMed 

    Google Scholar 
    Avato P, D’Addabbo T, Leonetti P, Argentieri MP. Nematicidal potential of Brassicaceae. Phytochem Rev. 2013;12:791–802.CAS 

    Google Scholar 
    Mathesius U. Flavonoid functions in plants and their interactions with other organisms. Plants (Basel) 2018;7:30.
    Google Scholar 
    Weston LA, Mathesius U. Flavonoids: Their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol. 2013;39:283–97.CAS 
    PubMed 

    Google Scholar 
    Badri DV, Loyola-Vargas VM, Broeckling CD, De-la-Pena C, Jasinski M, Santelia D, et al. Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol. 2008;146:762–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil. 2010;329:1–25.CAS 

    Google Scholar 
    Drewnowski A, Gomez-Carneros C. Bitter taste, phytonutrients, and the consumer: A review. Am J Clin Nutr. 2000;72:1424–35.CAS 
    PubMed 

    Google Scholar 
    Chin S, Behm CA, Mathesius U. Functions of flavonoids in plant-nematode interactions. Plants (Basel) 2018;7:1–17.
    Google Scholar 
    Kaplan DT, Keen NT, Thomason IJ. Association of glyceollin with the incompatible response of soybean roots to Meloidogyne incognita. Physiol Plant Pathol. 1980;16:309–18.CAS 

    Google Scholar 
    Aoudia H, Ntalli N, Aissani N, Yahiaoui-Zaidi R, Caboni P. Nematotoxic phenolic compounds from Melia azedarach against Meloidogyne incognita. J AgricFood Chem. 2012;60:11675–80.CAS 

    Google Scholar 
    Kennedy MJ, Niblack TL, Krishnan HB. Infection by Heterodera glycines elevates isoflavonoid production and influences soybean nodulation. J Nematol. 1999;31:341–47.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collingborn FMB, Gowen SR, Mueller-Harvey I. Investigations into the biochemical basis for nematode resistance in roots of three Musa cultivars in response to Radopholus similis infection. J Agric Food Chem. 2000;48:5297–301.CAS 
    PubMed 

    Google Scholar 
    Cook R, Tiller SA, Mizen KA, Edwards R. Isoflavonoid metabolism in resistant and susceptible cultivars of white clover infected with the stem nematode Ditylenchus dipsaci. J Plant Physiol. 1995;146:348–54.CAS 

    Google Scholar 
    Kirwa HK, Murungi LK, Beck JJ, Torto B. Elicitation of differential responses in the root-knot nematode Meloidogyne incognita to tomato root exudate cytokinin, flavonoids, and alkaloids. J AgricFood Chem. 2018;66:11291–300.CAS 

    Google Scholar 
    Wuyts N, Swennen R, De, Waele D. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis. Pratylenchus penetrans Meloidogyne Incogn Nematol. 2006;8:89–101.CAS 

    Google Scholar 
    Hartwig UA, Joseph CM, Phillips DA. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 1991;95:797–803.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassan S, Mathesius U. The role of flavonoids in root-rhizosphere signalling: Opportunities and challenges for improving plant-microbe interactions. J Exp Bot. 2012;63:3429–44.CAS 
    PubMed 

    Google Scholar 
    Kudjordjie EN, Sapkota R, Nicolaisen M. Arabidopsis assemble distinct root-associated microbiomes through the synthesis of an array of defense metabolites. PLoS One. 2021;10:e0259171.
    Google Scholar 
    Rønn R, Vestergård M, Ekelund F. Interactions between bacteria, protozoa and nematodes in soil. Acta Protozool. 2012;51:223–35.
    Google Scholar 
    Thakur MP, Geisen S. Trophic regulations of the soil microbiome. Trends Microbiol. 2019;27:771–80.CAS 
    PubMed 

    Google Scholar 
    Elhady A, Gine A, Topalovic O, Jacquiod S, Sorensen SJ, Sorribas FJ, et al. Microbiomes associated with infective stages of root-knot and lesion nematodes in soil. PLoS One. 2017;12:e0177145.PubMed 
    PubMed Central 

    Google Scholar 
    Toju H, Tanaka Y. Consortia of anti-nematode fungi and bacteria in the rhizosphere of soybean plants attacked by root-knot nematodes. R Soc Open Sci. 2019;6:181693.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Topalović O, Bredenbruch S, Schleker ASS, Heuer H. Microbes attaching to endoparasitic phytonematodes in soil trigger plant defense upon root penetration by the nematode. Front Plant Sci 2020;11:138.PubMed 
    PubMed Central 

    Google Scholar 
    Schaad NW, Walker JT. The use of density-gradient centrifugation for the purification of eggs of Meloidogyne spp. J Nematol. 1975;7:203–04.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hooper DJ, Hallmann J, Subbotin SA. Methods for extraction, processing and detection of plant and soil nematodes. In: Luc M, Sikora RA, Bridge J, editors. Plant parasitic nematodes in subtropical and tropical agriculture. Second ed. Wallingford, UK: CABI Publishing; 2005. p. 53.Topalovic O, Elhady A, Hallmann J, Richert-Poggeler KR, Heuer H. Bacteria isolated from the cuticle of plant-parasitic nematodes attached to and antagonized the root-knot nematode Meloidogyne hapla. Sci Rep. 2019;9:11477.PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.Porazinska DL, Giblin-Davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resour. 2009;9:1439–50.CAS 
    PubMed 

    Google Scholar 
    Sapkota R, Nicolaisen M. High-throughput sequencing of nematode communities from total soil DNA extractions. BMC Ecol. 2015;15:3.PubMed 
    PubMed Central 

    Google Scholar 
    Sikder MM, Vestergård M, Sapkota R, Kyndt T, Nicolaisen M. Evaluation of metabarcoding primers for analysis of soil nematode communities. Diversity (Basel) 2020;12:388.CAS 

    Google Scholar 
    Ihrmark K, Bodeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, et al. New primers to amplify the fungal ITS2 region – evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–77.CAS 
    PubMed 

    Google Scholar 
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013;41:e1.CAS 
    PubMed 

    Google Scholar 
    Sapkota R, Skantar AM, Nicolaisen M. A TaqMan real-time PCR assay for detection of Meloidogyne hapla in root galls and in soil. Nematol. 2016;18:147–54.CAS 

    Google Scholar 
    Rognes T, Flouri T, Nichols B, Quince C, Mahe F. VSEARCH: A versatile open source tool for metagenomics. Peer J. 2016;4:e2584.PubMed 
    PubMed Central 

    Google Scholar 
    Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4:914–19.
    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–D6.CAS 
    PubMed 

    Google Scholar 
    Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014;42:D643–D8.CAS 
    PubMed 

    Google Scholar 
    UNITE. UNITE QIIME release for Fungi [Internet]. UNITE Community. 2020.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Friendly M, Legendre P, McGlinn D, et al. Vegan: Community Ecology Package. Ordination methods, diversity analysis and other functions for community and vegetation ecologists. R Package Version 2.5-5 ed: The Comprehensive R Archive Network; 2019.Love MI, Huber W, Anders S. Moderated estimation of fold change anddispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics 2014;30:3123–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 2019;7:59.PubMed 
    PubMed Central 

    Google Scholar 
    McCarthy DJ, Chen YS, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–40.CAS 
    PubMed 

    Google Scholar 
    Frerigmann H, Gigolashvili T. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol Plant. 2014;7:814–28.CAS 
    PubMed 

    Google Scholar 
    Schulz E, Tohge T, Zuther E, Fernie AR, Hincha DK. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci Rep. 2016;6:34027.Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell. 2000;12:2383–94.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du SS, Zhang HM, Bai CQ, Wang CF, Liu QZ, Liu ZL, et al. Nematocidal flavone-C-glycosides against the root-knot nematode (Meloidogyne incognita) from Arisaema erubescens tubers. Molecules 2011;16:5079–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou DM, Feng H, Schuelke T, De Santiago A, Zhang QM, Zhang JF, et al. Rhizosphere microbiomes from root knot nematode non-infested plants suppress nematode Infection. Micro Ecol. 2019;78:470–81.CAS 

    Google Scholar 
    Topalović O, Vestergård M. Can microorganisms assist the survival and parasitism of plant-parasitic nematodes? Trends Parasitol. 2021;37:947–58.PubMed 

    Google Scholar 
    De Mesel I, Derycke S, Moens T, Van der Gucht K, Vincx M, Swings J. Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol. 2004;6:733–44.PubMed 

    Google Scholar 
    Adam M, Westphal A, Hallmann J, Heuer H. Specific microbial attachment to root knot nematodes in suppressive soil. Appl Environ Microbiol. 2014;80:2679–86.PubMed 
    PubMed Central 

    Google Scholar 
    Ramyabharathi S, Sankari Meena K, Rajendran L, Karthikeyan G, Jonathan EI, Raguchander T. Biocontrol of wilt-nematode complex infecting gerbera by Bacillus subtilis under protected cultivation. Egypt J Biol Pest Co. 2018;28:21.
    Google Scholar 
    Jamal Q, Cho JY, Moon JH, Munir S, Anees M, Kim KY. Identification for the first time of cyclo (D-Pro-L-Leu) produced by Bacillus amyloliquefaciens y1 as a nematocide for control of Meloidogyne incognita. Molecules 2017;22:1839.PubMed Central 

    Google Scholar 
    Moosavi MR, Zare R. Fungi as biological control agents of plant-parasitic nematodes. In: Mérillon J-M, Ramawat KG, editors. Plant Defence: Biological Control. Progress in Biological Control 22. 2nd Edition ed. Switzerland: Springer; 2020. p. 333–84.Ashrafi S, Stadler M, Dababat AA, Richert-Poggeler KR, Finckh MR, Maier W. Monocillium gamsii sp nov and Monocillium bulbillosum: two nematode-associated fungi parasitising the eggs of Heterodera filipjevi. Mycokeys. 2017;27:21–38.
    Google Scholar 
    Nuaima RH, Ashrafi S, Maier W, Heuer H. Fungi isolated from cysts of the beet cyst nematode parasitized its eggs and counterbalanced root damages. J Pest Sci. 2021;94:563–72.
    Google Scholar 
    Iqbal M, Dubey M, McEwan K, Menzel U, Franko MA, Viketoft M, et al. Evaluation of Clonostachys rosea for control of plant parasitic nematodes in soil and in roots of carrot and wheat. Phytopathology 2018;108:52–59.CAS 
    PubMed 

    Google Scholar 
    DiLegge MJ, Manter DK, Vivanco JM. A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against Meloidogyne spp. nematodes. Sci Rep. 2019;9:7521.PubMed 
    PubMed Central 

    Google Scholar 
    Goswami J, Pandey RK, Tewari JP, Goswami BK. Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health. 2008;43:237–40.CAS 

    Google Scholar 
    Chen Q, Peng D. Nematode chitin and application. In: Yang Q, Fukamizo T, editors. Targeting Chitin-containing Organisms. Advances in Experimental Medicine and Biology. 1142. Singapore: Springer; 2019. pp. 209–219.Zhou WQ, Verma VC, Wheeler TA, Woodward JE, Starr JL, Sword GA. Tapping into the cotton fungal phytobiome for novel nematode biological control tools. Phytobiomes J 2020;4:19–26.
    Google Scholar 
    Alcazar R, von Reth M, Bautor J, Chae E, Weigel D, Koornneef M, et al. Analysis of a plant complex resistance gene locus underlying immune-related hybrid incompatibility and its occurrence in nature. PLoS Genet. 2014;10:e1004848.PubMed 
    PubMed Central 

    Google Scholar 
    Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA. Cytochrome P450CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem. 2000;275:33712–17.CAS 
    PubMed 

    Google Scholar 
    Hull AK, Vij R, Celenza JL. Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA. 2000;97:2379–84.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao YD, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, et al. Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. GenesDev. 2002;16:3100–12.CAS 

    Google Scholar 
    Schlaeppi K, Bodenhausen N, Buchala A, Mauch F, Reymond P. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 2008;55:774–86.CAS 
    PubMed 

    Google Scholar 
    Schuhegger R, Nafisi M, Mansourova M, Petersen BL, et al. CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol. 2006;141:1248–54.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Glawischnig E. The role of cytochrome P450 enzymes in the biosynthesis of camalexin. Biochem Soc Trans. 2006;34:1206–8.CAS 
    PubMed 

    Google Scholar 
    Haughn GW, Davin L, Giblin M, Underhill EW. Biochemical genetics of plant secondary metabolites in Arabidopsis thaliana: The glucosinolates. Plant Physiol. 1991;97:217–26.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kroymann J, Textor S, Tokuhisa JG, Falk KL, Bartram S, Gershenzon J, et al. A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway. Plant Physiol. 2001;127:1077–88.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Textor S, de Kraker JW, Hause B, Gershenzon J, Tokuhisa JG. MAM3 catalyzes the formation of all aliphatic glucosinolate chain lengths in Arabidopsis. Plant Physiol. 2007;144:60–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barth C, Jander G. Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J. 2006;46:549–62.CAS 
    PubMed 

    Google Scholar 
    Dong XY, Braun EL, Grotewold E. Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes. Plant Physiol. 2001;127:46–57.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peer WA, Brown DE, Tague BW, Muday GK, Taiz L, Murphy AS. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol. 2001;126:536–48.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez A, Brown M, Hatlestad G, Akhavan N, Smith T, Hembd A, et al. TTG2 controls the developmental regulation of seed coat tannins in Arabidopsis by regulating vacuolar transport steps in the proanthocyanidin pathway. Dev Biol. 2016;419:54–63.CAS 
    PubMed 

    Google Scholar 
    Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 1999;11:1337–49.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Biodiversity mediates ecosystem sensitivity to climate variability

    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).PubMed 

    Google Scholar 
    IPBES. Global Assessment Report on Biodiversity and Ecosystem Service. Debating Nature’s Value (IPBES, 2019).Harrison, S. Plant community diversity will decline more than increase under climatic warming. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190106 (2020).
    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science (80-.). 1327, eaax3100 (2019).Chapin, F. S. et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).CAS 
    PubMed 

    Google Scholar 
    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).PubMed 

    Google Scholar 
    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science (80-.). 348, 336–340 (2015).CAS 

    Google Scholar 
    Díaz, S., Fargione, J., Chapin, F. S. & Tilman, D. Biodiversity loss threatens human well-being. PLoS Biol. 4, e277 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Pennekamp, F. et al. Biodiversity increases and decreases ecosystem stability. Nature 563, 109–112 (2018).CAS 
    PubMed 

    Google Scholar 
    Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl Acad. Sci. USA 117, 24345–24351 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y. et al. Global evidence of positive biodiversity effects on spatial ecosystem stability in natural grasslands. Nat. Commun. 10, 1–9 (2019).
    Google Scholar 
    Poorter, L. et al. Diversity enhances carbon storage in tropical forests. Glob. Ecol. Biogeogr. 24, 1314–1328 (2015).
    Google Scholar 
    Schnabel, F. et al. Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Glob. Chang. Biol. 25, 4257–4272 (2019).PubMed 

    Google Scholar 
    Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl Acad. Sci. USA 111, 13697–13702 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mori, A. S. Advancing nature-based approaches to address the biodiversity and climate emergency. Ecol. Lett. 23, 1729–1732 (2020).PubMed 

    Google Scholar 
    Mazzochini, G. G. et al. Plant phylogenetic diversity stabilizes large-scale ecosystem productivity. Glob. Ecol. Biogeogr. 28, 1430–1439 (2019).
    Google Scholar 
    Manhães, A. P., Mazzochini, G. G., Oliveira-Filho, A. T., Ganade, G. & Carvalho, A. R. Spatial associations of ecosystem services and biodiversity as a baseline for systematic conservation planning. Divers. Distrib. 22, 932–943 (2016).
    Google Scholar 
    García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    De Keersmaecker, W. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).
    Google Scholar 
    Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).CAS 
    PubMed 

    Google Scholar 
    Linscheid, N. et al. Towards a global understanding of vegetation-climate dynamics at multiple timescales. Biogeosciences 17, 945–962 (2020).
    Google Scholar 
    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science (80-.). 300, 1560–1563 (2003).CAS 

    Google Scholar 
    Quetin, G. R. & Swann, A. L. S. Empirically derived sensitivity of vegetation to climate across global gradients of temperature and precipitation. J. Clim. 30, 5835–5849 (2017).
    Google Scholar 
    Cavender-bares, J. et al. The role of diversification in community assembly of the oaks (Quercus L.) across the continental U. S. Am. J. Bot. 105, 565–586 (2018).PubMed 

    Google Scholar 
    Woodward, F. I., Lomas, M. R. & Kelly, C. K. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 359, 1465–1476 (2004).CAS 

    Google Scholar 
    Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D. D., Hobbie, S. E. & Townsend, P. A. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433–462 (2016).
    Google Scholar 
    Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Šímová, I. et al. Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. J. Biogeogr. 45, 895–916 (2018).
    Google Scholar 
    Lamanna, C. et al. Functional trait space and the latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 111, 13745–13750 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).
    Google Scholar 
    White, H. J. et al. Ecosystem stability at the landscape scale is primarily associated with climatic history. Funct. Ecol. 1–13 https://doi.org/10.1111/1365-2435.13957 (2021).Enquist, B. J. et al. Scaling from Traits to Ecosystems: Developing a General Trait Driver Theory via Integrating Trait-Based and Metabolic Scaling Theories. Advances in Ecological Research. Vol. 52 (Elsevier Ltd., 2015).Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Barry, K. E. et al. A graphical null model for scaling biodiversity–ecosystem functioning relationships. J. Ecol. 109, 1549–1560 (2021).
    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).PubMed 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 

    Google Scholar 
    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bond, E. M. & Chase, J. M. Biodiversity and ecosystem functioning at local and regional spatial scales. Ecol. Lett. 5, 467–470 (2002).
    Google Scholar 
    Delsol, R., Loreau, M. & Haegeman, B. The relationship between the spatial scaling of biodiversity and ecosystem stability. Glob. Ecol. Biogeogr. 27, 439–449 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Price, G. R. The nature of selection. J. Theor. Biol. 175, 389-396 (1995).Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).
    Google Scholar 
    Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Cadotte, M., Dinnage, R. & Tilman, D. Phylogenetic diversity promotes ecosytem stability. Ecology 93, S223–S233 (2012).
    Google Scholar 
    Veron, S., Davies, T. J., Cadotte, M. W., Clergeau, P. & Pavoine, S. Predicting loss of evolutionary history: Where are we? Biol. Rev. 92, 271–291 (2017).PubMed 

    Google Scholar 
    Tucker, C. M., Davies, T. J., Cadotte, M. W. & Pearse, W. D. On the relationship between phylogenetic diversity and trait diversity. Ecology 99, 1473–1479 (2018).PubMed 

    Google Scholar 
    Faith, D. P. Systematics and conservation: on predicting the feature diversity of subsets of taxa. Cladistics 8, 361–373 (1992).PubMed 

    Google Scholar 
    Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).PubMed 

    Google Scholar 
    Flynn, D. F. B., Mirotchnick, N., Jain, M., Palmer, M. I. & Naeem, S. Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92, 1573–1581 (2011).PubMed 

    Google Scholar 
    Cadotte, M. W., Cardinale, B. J. & Oakley, T. H. Evolutionary history and the effect of biodiversity on plant productivity. Proc. Natl Acad. Sci. USA 105, 17012–17017 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Venail, P. et al. Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct. Ecol. 29, 615–626 (2015).
    Google Scholar 
    Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ Prepr. 4, e2615v2 (2016).Maitner, B. S. et al. The bien R package: a tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).
    Google Scholar 
    Mori, A. S. Resilience in the studies of biodiversity–ecosystem functioning. Trends Ecol. Evol. 31, 87–89 (2016).PubMed 

    Google Scholar 
    Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4, 1–23 (1973).
    Google Scholar 
    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 

    Google Scholar 
    Huete, A., Chris, J. & Leeuwen, W. Van. MODIS vegetation index (MOD 13). Algorithm theoretical basis document vol. 3 https://modis.gsfc.nasa.gov/data/atbd/atbd_mod13.pdf (1999).Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    MacIas-Fauria, M., Forbes, B. C., Zetterberg, P. & Kumpula, T. Eurasian Arctic greening reveals teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Chang. 2, 613–618 (2012).
    Google Scholar 
    Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science (80-.). 344, 1247579 (2014).Zhang, Y. et al. Precipitation and carbon-water coupling jointly control the interannual variability of global land gross primary production. Sci. Rep. 6, 39748 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).CAS 
    PubMed 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51, 933 (2001).
    Google Scholar 
    Srivastava, D. S. et al. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).PubMed 

    Google Scholar 
    Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542–544 (2015).CAS 
    PubMed 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).PubMed 

    Google Scholar 
    Brun, P. et al. Plant community impact on productivity: Trait diversity or key(stone) species effects? Ecol. Lett. 25, 913–925 (2022).PubMed 

    Google Scholar 
    Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ. Rev. 24, 164–186 (2016).
    Google Scholar 
    Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1216065111 (2014).Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
    Google Scholar 
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS 
    PubMed 

    Google Scholar 
    Ye, J. S., Pei, J. Y. & Fang, C. Under which climate and soil conditions the plant productivity–precipitation relationship is linear or nonlinear? Sci. Total Environ. 616–617, 1174–1180 (2018).PubMed 

    Google Scholar 
    Allan, E. et al. More diverse plant communities have higher functioning over time due to turnover in complementary dominant species. Proc. Natl Acad. Sci. U. S. A. 108, 17034–17039 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. 104, 13384–13389 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mori, A. S. et al. Biodiversity–productivity relationships are key to nature-based climate solutions. Nat. Clim. Chang. 11, 543–550 (2021).
    Google Scholar 
    Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).PubMed 

    Google Scholar 
    Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 10, 965–970 (2020).CAS 

    Google Scholar 
    Li, D., Miller, J. E. D. & Harrison, S. Climate drives loss of phylogenetic diversity in a grassland community. Proc. Natl Acad. Sci. USA 116, 19989–19994 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep. 8, 2870 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing Version 3.5.2. (R Core Team, 2018).Ammer, C. Diversity and forest productivity in a changing climate. N. Phytol. 221, 50–66 (2019).
    Google Scholar 
    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).CAS 
    PubMed 

    Google Scholar 
    Larue, E. A., Hardiman, B. S., Elliott, J. M. & Fei, S. Structural diversity as a predictor of ecosystem function. Environ. Res. Lett. 14, 114011 (2019).Phillips, S. J. & Dudìk, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.). 31, 161–175 (2008).
    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 
    Diniz-Filho, J. A. F. & Bini, L. M. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Glob. Ecol. Biogeogr. 14, 177–185 (2005).
    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. a. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–1069 (2013).
    Google Scholar 
    Merow, C. BIEN range methods description. http://bien.nceas.ucsb.edu/bien/wp-content/uploads/2017/06/BIEN3RangeMethodsSummary.pdf (2017).Schrodt, F. et al. BHPMF-a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
    Google Scholar 
    Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).PubMed 

    Google Scholar 
    Guo, W. Y. et al. Half of the world’s tree biodiversity is unprotected and is increasingly threatened by human activities. Preprint at bioRxiv https://doi.org/10.1101/2020.04.21.052464 (2020).Guo, W., Serra-diaz, J. M., Schrodt, F. & Eiserhardt, W. L. Paleoclimate and current climate collectively shape the phylogenetic and functional diversity of trees worldwide. Preprint at bioRxiv https://doi.org/10.1101/2020.06.02.128975 (2020).Diniz-Filho, J. A. F. et al. On the selection of phylogenetic eigenvectors for ecological analyses. Ecography (Cop.). 35, 239–249 (2012).
    Google Scholar 
    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).
    Google Scholar 
    Santos, T. PVR: Phylogenetic eigenvectors regression and phylogentic signal-representation curve. R package version 0.3. Available at: http://CRAN.R-project.org/package=PVR (2018).Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600–614 (2015).
    Google Scholar 
    Kendall, M. & Stuart, A. The Advanced Theory of Statistics (Macmillan, 1983).Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. Camb. Philos. Soc. 86, 792–812 (2011).CAS 
    PubMed 

    Google Scholar 
    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).PubMed 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
    PubMed 

    Google Scholar 
    Cornwell, W. K., Schwilk, L. D. W. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006).PubMed 

    Google Scholar 
    Villéger, S., Maire, E. & Leprieur, F. On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: a comment on Sobral et al. (2016). Ecol. Lett. 20, 554–557 (2017).PubMed 

    Google Scholar 
    Laliberté, E., Legendre, P. & Shipley, B. FD: measuring functional diversity from multiple traits, an other tools for functional ecology. R package version 1.0-12 (Comprehensive R Archive Network, Vienna, Austria, 2015).Podani, J. & Schmera, D. On dendrogram-based measures of functional diversity. Oikos 115, 179–185 (2006).
    Google Scholar 
    Poos, M. S., Walker, S. C. & Jackson, D. A. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90, 341–347 (2009).PubMed 

    Google Scholar 
    Gotelli, N. J. & Graves, G. R. Null Models in Ecology (Smithsonian Institution Press, 1996).Swenson, N. G. Functional and Phylogenetic Ecology in R. (Springer, 2014).Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography (Cop.). 30, 609–628 (2007).
    Google Scholar 
    Kissling, W. D. & Carl, G. Spatial autocorrelation and the selection of simultaneous autoregressive models. Glob. Ecol. Biogeogr. 17, 59–71 (2008).
    Google Scholar 
    Bivand, R. spatialreg: Spatial Regression Analysis (R package version 1.1-5, 2019). More

  • in

    Meta-analysis shows that plant mixtures increase soil phosphorus availability and plant productivity in diverse ecosystems

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 
    Article 

    Google Scholar 
    Hou, E. Q. et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat. Commun. 11, 637 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordell, D., Drangert, J.-O. & White, S. The story of phosphorus: global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, X. L., Chen, H. Y. H., Searle, E. B., Chen, C. & Reich, P. B. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 4, 225–234 (2021).Article 

    Google Scholar 
    Oelmann, Y. et al. Plant diversity effects on aboveground and belowground N pools in temperate grassland ecosystems: development in the first 5 years after establishment. Glob. Biogeochem. Cy. 25, GB2014 (2011).Article 
    CAS 

    Google Scholar 
    Fornara, D. A. et al. Plant effects on soil N mineralization are mediated by the composition of multiple soil organic fractions. Ecol. Res. 26, 201–208 (2011).CAS 
    Article 

    Google Scholar 
    Wright, A. J., Wardle, D. A., Callaway, R. & Gaxiola, A. The overlooked role of facilitation in biodiversity experiments. Trends Ecol. Evol. 32, 383–390 (2017).PubMed 
    Article 

    Google Scholar 
    Oelmann, Y. et al. Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nat. Commun. 12, 4431 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, L. et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl Acad. Sci. USA 104, 11192–11196 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, L., Tilman, D., Lambers, H. & Zhang, F. S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203, 63–69 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hacker, N. et al. Plant diversity shapes microbe–rhizosphere effects on P mobilisation from organic matter in soil. Ecol. Lett. 18, 1356–1365 (2015).PubMed 
    Article 

    Google Scholar 
    Vance, C. P., Uhde-Stone, C. & Allan, D. L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157, 423–447 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, J. et al. Long-term nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Glob. Change Biol. 26, 5077–5086 (2020).Article 

    Google Scholar 
    Hinsinger, P. et al. P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol. 156, 1078–1086 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, X. J. et al. Plant diversity and species turnover co-regulate soil nitrogen and phosphorus availability in Dinghushan forests, southern China. Plant Soil 464, 257–272 (2021).CAS 
    Article 

    Google Scholar 
    Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).Article 

    Google Scholar 
    Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).Article 

    Google Scholar 
    Maddhesiya, P. K., Singh, K. & Singh, R. P. Effects of perennial aromatic grass species richness and microbial consortium on soil properties of marginal lands and on biomass production. Land Degrad. Dev. 32, 1008–1021 (2021).Article 

    Google Scholar 
    Zhang, C. B. et al. Effects of plant diversity on nutrient retention and enzyme activities in a full-scale constructed wetland. Bioresour. Technol. 101, 1686–1692 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Štursová, M. & Baldrian, P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity. Plant Soil 338, 99–110 (2011).Article 
    CAS 

    Google Scholar 
    Wu, H. et al. Linkage between tree species richness and soil microbial diversity improves phosphorus bioavailability. Funct. Ecol. 33, 1549–1560 (2019).Article 

    Google Scholar 
    Steinauer, K. et al. Plant diversity effects on soil microbial functions and enzymes are stronger than warming in a grassland experiment. Ecology 96, 99–112 (2015).PubMed 
    Article 

    Google Scholar 
    Zhang, D. S. et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol. 209, 823–831 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berendse, F., van Ruijven, J., Jongejans, E. & Keesstra, S. Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18, 881–888 (2015).CAS 
    Article 

    Google Scholar 
    Forrester, D. I. & Bauhus, J. A review of processes behind diversity–productivity relationships in forests. Curr. Rep. 2, 45–61 (2016).Article 
    CAS 

    Google Scholar 
    Batterman, S. A. et al. Phosphatase activity and nitrogen fixation reflect species differences, not nutrient trading or nutrient balance, across tropical rainforest trees. Ecol. Lett. 21, 1486–1495 (2018).PubMed 
    Article 

    Google Scholar 
    Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1332 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hisano, M., Chen, H. Y. H., Searle, E. B. & Reich, P. B. Species-rich boreal forests grew more and suffered less mortality than species-poor forests under the environmental change of the past half-century. Ecol. Lett. 22, 999–1008 (2019).PubMed 
    Article 

    Google Scholar 
    Chen, X. & Chen, H. Y. H. Plant diversity loss reduces soil respiration across terrestrial ecosystems. Glob. Change Biol. 25, 1482–1492 (2019).Article 

    Google Scholar 
    Chen, X. & Chen, H. Y. H. Plant mixture balances terrestrial ecosystem C:N:P stoichiometry. Nat. Commun. 12, 4562 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reich, P. B. et al. Species and functional group diversity independently influence biomass accumulation and its response to CO2 and N. Proc. Natl Acad. Sci. USA 101, 10101–10106 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta-analysis. Biol. Rev. 95, 167–183 (2020).Article 

    Google Scholar 
    Zhang, Y., Chen, H. Y. H. & Reich, P. B. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. J. Ecol. 100, 742–749 (2012).Article 

    Google Scholar 
    Alewell, C. et al. Global phosphorus shortage will be aggravated by soil erosion. Nat. Commun. 11, 4546 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).Article 

    Google Scholar 
    Tang, X. Y. et al. Intercropping legumes and cereals increases phosphorus use efficiency; a meta-analysis. Plant Soil 460, 89–104 (2021).CAS 
    Article 

    Google Scholar 
    Karanika, E. D., Alifragis, D. A., Mamolos, A. P. & Veresoglou, D. S. Differentiation between responses of primary productivity and phosphorus exploitation to species richness. Plant Soil 297, 69–81 (2007).CAS 
    Article 

    Google Scholar 
    Bünemann, E. K., Prusisz, B. & Ehlers, K. in Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling (eds Bünemann, E. et al.) 37–57 (Springer, 2011).Ma, Z. L. & Chen, H. Y. H. Effects of species diversity on fine root productivity in diverse ecosystems: a global meta-analysis. Glob. Ecol. Biogeogr. 25, 1387–1396 (2016).Article 

    Google Scholar 
    Mellado-Vazquez, P. G. et al. Plant diversity generates enhanced soil microbial access to recently photosynthesized carbon in the rhizosphere. Soil Biol. Biochem. 94, 122–132 (2016).CAS 
    Article 

    Google Scholar 
    Qin, Y. et al. Arbuscular mycorrhizal fungus differentially regulates P mobilizing bacterial community and abundance in rhizosphere and hyphosphere. Appl. Soil Ecol. 170, 104294 (2022).Article 

    Google Scholar 
    Rojo, M. J., Carcedo, S. G. & Mateos, M. P. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol. Biochem. 22, 169–174 (1990).CAS 
    Article 

    Google Scholar 
    Barrow, N. The effects of pH on phosphate uptake from the soil. Plant Soil 410, 401–410 (2017).CAS 
    Article 

    Google Scholar 
    Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yu, R. P., Li, X. X., Xiao, Z. H., Lambers, H. & Li, L. Phosphorus facilitation and covariation of root traits in steppe species. New Phytol. 226, 1285–1298 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 6, e1000097 (2009).Jenkins, D. G. & Quintana-Ascencio, P. F. A solution to minimum sample size for regressions. PLoS ONE 15, e0229345 (2020)..Rohatgi, A. WebPlotDigitizer v.4.5 (Automeris, 2021); https://automeris.io/WebPlotDigitizerJobbagy, E. G. & Jackson, R. B. The distribution of soil nutrients with depth:global patterns and the imprint of plants. Biogeochemistry 53, 51–77 (2001).CAS 
    Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database (CGIAR, 2009); http://www.cgiar-csi.org/data/global-aridity-and-pet-databaseBridgham, S. D., Pastor, J., Mcclaugherty, C. A. & Richardson, C. J. Nutrient-use efficiency: a litterfall index, a model, and a test along a nutrient-availability gradient in North Carolina peatlands. Am. Nat. 145, 1–21 (1995).Article 

    Google Scholar 
    Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).Article 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pittelkow, C. M. et al. Productivity limits and potentials of the principles of conservation agriculture. Nature 517, 365–368 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-10 https://cran.r-project.org/web/packages/lme4/index.html (2017).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 

    Google Scholar 
    MuMIn: Multi-model inference. R package version 1.42.1 (2018).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Koricheva, J., Gurevitch, J. & Mengersen, K. Handbook of Meta-analysis in Ecology and Evolution (Princeton Univ. Press, 2013).Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Long, J. A. Interactions: comprehensive, user-friendly toolkit for probing interactions. R package version 1.1.5 https://cran.r-project.org/package=interactions (2021).Adams, D. C., Gurevitch, J. & Rosenberg, M. S. Resampling tests for meta-analysis of ecological data. Ecology 78, 1277–1283 (1997).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More