More stories

  • in

    The genetic consequences of captive breeding, environmental change and human exploitation in the endangered peninsular pronghorn

    Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328(5982), 1164–1168. https://doi.org/10.1126/science.1187512 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345(6195), 401–406. https://doi.org/10.1126/science.1251817 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bradshaw, C. J. A. et al. Underestimating the challenges of avoiding a ghastly future. Front. Conserv. Sci. https://doi.org/10.3389/fcosc.2020.615419 (2021).Article 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471(7336), 51–57. https://doi.org/10.1038/nature09678 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Raven, P. H. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc. Natl. Acad. Sci. U.S.A. 117(24), 13596–13602. https://doi.org/10.1073/pnas.1922686117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGowan, P. J., Traylor-Holzer, K. & Leus, K. IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conserv. Lett. 10(3), 361–366. https://doi.org/10.1111/conl.12285 (2016).Article 

    Google Scholar 
    Clout, M. N. & Merton, D. V. Saving the Kakapo: The conservation of the world’s most peculiar parrot. Bird Conserv. Int. 8(3), 281–296. https://doi.org/10.1017/s0959270900001933 (1998).Article 

    Google Scholar 
    Milinkovitch, M. C. et al. Genetic analysis of a successful repatriation programme: Giant Galápagos tortoises. Proc. R. Soc. B Biol. Sci. 271(1537), 341–345. https://doi.org/10.1098/rspb.2003.2607 (2004).CAS 
    Article 

    Google Scholar 
    Ryder, O. A. & Wedemeyer, E. A. A cooperative breeding programme for the Mongolian wild horse Equus przewalskii in the United States. Biol. Conserv. 22(4), 259–271. https://doi.org/10.1016/0006-3207(82)90021-0 (1982).Article 

    Google Scholar 
    Mallinson, J. J. C. Conservation breeding programmes: An important ingredient for species survival. Biodivers. Conserv. 4(6), 617–635. https://doi.org/10.1007/bf00222518 (1995).Article 

    Google Scholar 
    Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Developing the science of reintroduction biology. Conserv. Biol. 21(2), 303–312. https://doi.org/10.1111/j.1523-1739.2006.00627.x (2007).Article 
    PubMed 

    Google Scholar 
    Bowkett, A. E. Recent captive-breeding proposals and the return of the ark concept to global species conservation. Conserv. Biol. 23(3), 773–776. https://doi.org/10.1111/j.1523-1739.2008.01157.x (2009).Article 
    PubMed 

    Google Scholar 
    Shan, L. et al. Large-scale genetic survey provides insights into the captive management and reintroduction of giant pandas. Mol. Biol. Evol. 31(10), 2663–2671. https://doi.org/10.1093/molbev/msu210 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fischer, J. & Lindenmayer, D. An assessment of the published results of animal relocations. Biol. Conserv. 96(1), 1–11. https://doi.org/10.1016/s0006-3207(00)00048-3 (2014).Article 

    Google Scholar 
    Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl. Acad. Sci. U.S.A. 109(1), 238–242. https://doi.org/10.1073/pnas.1111073109 (2011).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fraser, D. J. et al. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol. Appl. 12(7), 1305–1317. https://doi.org/10.1111/eva.12649 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ralls, K., Brugger, K. & Ballou, J. Inbreeding and juvenile mortality in small populations of ungulates. Science 206(4422), 1101–1103. https://doi.org/10.1126/science.493997 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Charlesworth, D. & Charlesworth, B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Evol. Syst. 18(1), 237–268. https://doi.org/10.1146/annurev.es.18.110187.001321 (1987).Article 

    Google Scholar 
    Ralls, K., Ballou, J. D. & Templeton, A. Estimates of lethal equivalents and the cost of inbreeding in mammals. Conserv. Biol. 2(2), 185–193. https://doi.org/10.1111/j.1523-1739.1988.tb00169.x (1988).Article 

    Google Scholar 
    Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Evol. Syst. 31(1), 139–162. https://doi.org/10.1146/annurev.ecolsys.31.1.139 (2000).Article 

    Google Scholar 
    Frankham, R. Introduction to Conservation Genetics 2nd edn. (Cambridge University Press, 2010).Book 

    Google Scholar 
    Laikre, L. Conservation genetics of Nordic carnivores: Lessons from zoos. Hereditas 130(3), 203–216. https://doi.org/10.1111/j.1601-5223.1999.00203.x (2004).Article 

    Google Scholar 
    Gomendio, M., Cassinello, J. & Roldan, E. R. S. A comparative study of ejaculate traits in three endangered ungulates with different levels of inbreeding: Fluctuating asymmetry as an indicator of reproductive and genetic stress. Proc. R. Soc. B Biol. Sci. 267(1446), 875–882. https://doi.org/10.1098/rspb.2000.1084 (2000).CAS 
    Article 

    Google Scholar 
    Swinnerton, K. J., Groombridge, J. J., Jones, C. G., Burn, R. W. & Mungroo, Y. Inbreeding depression and founder diversity among captive and free-living populations of the endangered pink pigeon Columba mayeri. Anim. Conserv. 7(4), 353–364. https://doi.org/10.1017/s1367943004001556 (2004).Article 

    Google Scholar 
    Farquharson, K. A., Hogg, C. J. & Grueber, C. E. Offspring survival changes over generations of captive breeding. Nat. Commun. https://doi.org/10.1038/s41467-021-22631-0 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kleiman, D. G., Thompson, K. V. & Baer, C. K. Wild Mammals in Captivity: Principles and Techniques for Zoo Management 2nd edn. (University of Chicago Press, 2021).
    Google Scholar 
    Ralls, K. & Ballou, J. D. Captive breeding and reintroduction. In Encyclopedia of Biodiversity (ed. Levin, S. A.) 662–667 (Academic Press, 2013). https://doi.org/10.1016/b978-0-12-384719-5.00268-9.Chapter 

    Google Scholar 
    Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17(1), 230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x (2003).Article 

    Google Scholar 
    Spielman, D., Brook, B. W. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. U.S.A. 101(42), 15261–15264. https://doi.org/10.1073/pnas.0403809101 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Willi, Y., van Buskirk, J. & Hoffmann, A. A. Limits to the adaptive potential of small populations. Annu. Rev. Ecol. Evol. Syst. 37(1), 433–458. https://doi.org/10.1146/annurev.ecolsys.37.091305.110145 (2006).Article 

    Google Scholar 
    Habel, J. C., Husemann, M., Finger, A., Danley, P. D. & Zachos, F. E. The relevance of time series in molecular ecology and conservation biology. Biol. Rev. 89(2), 484–492. https://doi.org/10.1111/brv.12068 (2013).Article 
    PubMed 

    Google Scholar 
    Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318(5847), 100–103. https://doi.org/10.1126/science.1145621 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Purohit, D. et al. Genetic effects of long-term captive breeding on the endangered pygmy hog. PeerJ 9, e12212. https://doi.org/10.7717/peerj.12212 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hahn, E. E. & Culver, M. Genetic diversity and structure in Arizona pronghorn following conservation efforts. Conserv. Sci. Pract. https://doi.org/10.1111/csp2.498 (2021).Article 

    Google Scholar 
    Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Gen. 10(3), 195–205. https://doi.org/10.1038/nrg2526 (2009).CAS 
    Article 

    Google Scholar 
    Wang, J., Santiago, E. & Caballero, A. Prediction and estimation of effective population size. Heredity 117(4), 193–206. https://doi.org/10.1038/hdy.2016.43 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Gara, W., Yoakum, J. D. & McCabe, R. E. Pronghorn: Ecology and Managment (University Press of Colorado, 2004).
    Google Scholar 
    Janis, C. M., Scott, K. M. & Jacobs, L. L. Evolution of Tertiary Mammals of North America: Terrestrial Carnivores, Ungulates, and Ungulate like Mammals Vol. 1 (Cambridge University Press, 2005).
    Google Scholar 
    Nelson, E. W. Status of the Pronghorn Antelope, 1922–1924 (U.S Department Agriculture Bulletin, 1925).Book 

    Google Scholar 
    O’Gara, B. W. & McCabe, R. E. From exploitation to conservation. In Pronghorn: Ecology and Management (eds O’Gara, B. W. & Yoakum, J. D.) 41–73 (University Press Colorado, 2004).
    Google Scholar 
    Cancino, J., Ortega-Rubio, A. & Sanchez-Pacheco, J. A. Status of an endangered subspecies: The peninsular pronghorn at Baja California. J. Arid Environ. 32(4), 463–467. https://doi.org/10.1006/jare.1996.0039 (1996).ADS 
    Article 

    Google Scholar 
    Laliberte, A. S. & Ripple, W. J. Range contractions of North American carnivores and ungulates. Bioscience 54(2), 123–138. https://doi.org/10.1641/0006-3568 (2004).Article 

    Google Scholar 
    Medellín, R. A. et al. History, ecology, and conservation of the pronghorn antelope, bighorn sheep, and black bear in Mexico. In Biodiversity, Ecosystems, and Conservation in Northern Mexico (eds Cartron, J.-L. et al.) 387–405 (Oxford University Press, 2005).
    Google Scholar 
    Lee, T. E., Bickham, J. W. & Scott, M. D. Mitochondrial DNA and allozyme analysis of North American pronghorn populations. J. Wildl. Manag. 58(2), 307–318. https://doi.org/10.2307/3809396 (1994).Article 

    Google Scholar 
    IUCN SSC Antelope Specialist Group. Antilocapra americana ssp. peninsularis. The IUCN Red List of Threatened Species 2021: e.T1679A200726719. https://doi.org/10.2305/IUCN.UK.2021-2.RLTS.T1679A200726719.en (2021).SEMARNAT. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental– Especies nativas de México de flora y fauna silvestres– Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio– Lista de especies en riesgo. Diario Oficial de la Federación 30 diciembre (2010).U. S. Fish and Wildlife Service. Recovery Plan for the Sonoran pronghorn (Antilocapra americana sonoriensis), Second Revision. (U.S. Fish and Wildlife Service, Southwest Region, Albuquerque, 2016).Cancino, J., Sanchez-Sotomayor, V. & Castellanos, R. From the field: Capture, hand-raising, and captive management of peninsular pronghorn. Wildl. Soc. Bull. 33(1), 61–65. https://doi.org/10.2193/0091-7648 (2005).Article 

    Google Scholar 
    Horne, J. S., Hervert, J. J., Woodruff, S. P. & Mills, L. S. Evaluating the benefit of captive breeding and reintroductions to endangered Sonoran pronghorn. Biol. Conserv. 196, 133–146. https://doi.org/10.1016/j.biocon.2016.02.005 (2016).Article 

    Google Scholar 
    CONANP. Programa de Acción para la Conservación de la Especie: Berrendo (Antilocapra americana), 2009 año del berrendo. Secretaria del Medio Ambiente y Recursos Naturales (SEMARNAT). www.conanp.gob.mx (2009).Cancino, J., Rodríguez-Estrella, R. & Miller, P. Using population viability analysis for management recommendations of the endangered endemic peninsular pronghorn. Acta Zool. Mex. 26(1), 173–189 (2010).
    Google Scholar 
    Danoff-Burg, J. A. & Mulroe, K. Peninsular Pronghorn Species Action Plan (2021) (in press).Stephen, C. L. et al. Population genetic analysis of sonoran pronghorn (Antilocapra americana sonoriensis). J. Mammal. 86(4), 782–792. https://doi.org/10.1644/1545-1542 (2005).Article 

    Google Scholar 
    Stephen, C. L., Whittaker, D. G., Gillis, D., Cox, L. L. & Rhodes, O. E. Genetic consequences of reintroductions: An example from oregon pronghorn antelope (Antilocapra americana). J. Wildl. Manag. 69(4), 1463–1474. https://doi.org/10.2193/0022-541x (2005).Article 

    Google Scholar 
    Barnow-Meyer, K. & Byers, J. Genetic diversity and gene flow in Yellowstone Basin pronghorn (Antilocapra americana). UW Natl. Parks Serv. Res. Station Annu. Rep. 31, 65–72. https://doi.org/10.13001/uwnpsrc.2008.3705 (2008).Article 

    Google Scholar 
    LaCava, M. E. F. et al. Pronghorn population genomics show connectivity in the core of their range. J. Mammal. 101(4), 1061–1071. https://doi.org/10.1093/jmammal/gyaa054 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klimova, A., Munguia-Vega, A., Hoffman, J. I. & Culver, M. Genetic diversity and demography of two endangered captive pronghorn subspecies from the Sonoran Desert. J. Mammal. 95(6), 1263–1277. https://doi.org/10.1644/13-mamm-a-321 (2014).Article 

    Google Scholar 
    Hahn, E. E., Klimova, A., Munguía-Vega, A., Clark, K. B. & Culver, M. Use of museum specimens to refine historical pronghorn subspecies boundaries. J. Wildl. Manag. 84(3), 524–533. https://doi.org/10.1002/jwmg.21810 (2020).Article 

    Google Scholar 
    Axelrod, D. I. The evolution of desert vegetation in western North America. Carnegie Instit. Wash. Publ. 590, 215–306 (1950).
    Google Scholar 
    Dolby, G. A., Bennett, S. E. K., Lira-Noriega, A., Wilder, B. T. & Munguía-Vega, A. Assessing the geological and climatic forcing of biodiversity and evolution Surrounding the Gulf of California. J. Southwest. 57, 391–455. https://doi.org/10.1353/jsw.2015.0005 (2015).Article 

    Google Scholar 
    Gedir, J. V., Cain, J. W., Harris, G. & Turnbull, T. T. Effects of climate change on long-term population growth of pronghorn in an arid environment. Ecosphere 6(10), art189. https://doi.org/10.1890/es15-00266.1 (2015).Article 

    Google Scholar 
    Cornuet, J. M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30(8), 1187–1189. https://doi.org/10.1093/bioinformatics/btt763 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Islas-Espinoza, M. & de las Heras, A. Peninsular pronghorn conservation: Too many paradigms, too few indicators. In Sustainability Indicators in Practice (eds Latawiec, A. & Agol, D.) 126–145 (De Gruyter Open Poland, 2015). https://doi.org/10.1515/9783110450507-012.Chapter 

    Google Scholar 
    Willoughby, J. R. et al. The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Mol. Ecol. 24(1), 98–110. https://doi.org/10.1111/mec.13020 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Crow, J. F. & Kimura, M. An Introduction in Population Genetics Theory (Harper and Row, 1970).MATH 

    Google Scholar 
    Falconer, D. S. Introduction to Quantitative Genetics 3rd edn. (Longman Scientific and Technical, 1989).
    Google Scholar 
    Ballou, J. D. Strategies for maintaining genetic diversity in captive populations through reproductive technology. Zoo Biol. 3(4), 311–323. https://doi.org/10.1002/zoo.1430030404 (1984).Article 

    Google Scholar 
    Ballou, J. D. & Lacy, R. C. Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In Population Management for Survival and Recovery (eds Ballou, J. D. et al.) 76–111 (Columbia Press, 1995).
    Google Scholar 
    Montgomery, M. E. et al. Minimizing kinship in captive breeding programs. Zoo Biol. 16(5), 377–389. https://doi.org/10.1002/(sici)1098-2361 (1997).Article 

    Google Scholar 
    Dunn, S. J., Clancey, E., Waits, L. P. & Byers, J. A. Inbreeding depression in pronghorn (Antilocapra americana) fawns. Mol. Ecol. 20(23), 4889–4898. https://doi.org/10.1111/j.1365-294x.2011.05327.x (2011).Article 
    PubMed 

    Google Scholar 
    Hoffman, J. I. et al. High-throughput sequencing reveals inbreeding depression in a natural population. Proc. Natl. Acad. Sci. U.S.A. 111(10), 3775–3780. https://doi.org/10.1073/pnas.1318945111 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kardos, M. et al. The crucial role of genome-wide genetic variation in conservation. Proc. Natl. Acad. Sci. U.S.A. 118(48), e2104642118. https://doi.org/10.1073/pnas.2104642118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zoonomia Consortium. A comparative genomics multitool for scientific discovery and conservation. Nature 587(7833), 240–245. https://doi.org/10.1038/s41586-020-2876-6 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 19(4), 220–234. https://doi.org/10.1038/nrg.2017.109 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. https://doi.org/10.1186/s13059-018-1520-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hohenlohe, P. A. & Rajora, O. P. Population Genomics: Wildlife (Springer, 2020).
    Google Scholar 
    Chalmers, G. A. & Barrett, M. W. Capture myopathy in pronghorns in Alberta, Canada. J. Am. Vet. Med. Assoc. 171(9), 918–923 (1977).CAS 
    PubMed 

    Google Scholar 
    Sotelo-Gallardo, H., Contreras Balderas, A. J. & Espinosa Treviño, A. Comparación de dos métodos de liberación del berrendo, Antilocapra americana (Artiodactyla: Antilocapridae) en Coahuila, México. Rev. Biol. Trop. 65(3), 1208. https://doi.org/10.15517/rbt.v65i3.29447 (2017).Article 

    Google Scholar 
    Breed, D. et al. Conserving wildlife in a changing world: Understanding capture myopathy—A malignant outcome of stress during capture and translocation. Conserv. Physiol. https://doi.org/10.1093/conphys/coz027 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snyder, N. F. et al. Limitations of captive breeding in endangered species recovery. Conserv. Biol. 10(2), 338–348. https://doi.org/10.1046/j.1523-1739.1996.10020338.x (1996).Article 

    Google Scholar 
    Bonebrake, T. C., Christensen, J., Boggs, C. L. & Ehrlich, P. R. Population decline assessment, historical baselines, and conservation. Conserv. Lett. 3(6), 371–378. https://doi.org/10.1111/j.1755-263x.2010.00139.x (2010).Article 

    Google Scholar 
    Grismer, L. L. & McGuire, J. A. The oases of central Baja California, Mexico. Part I. A preliminary account of the relict mesophilic herpetofauna and the status of the oases. Bull. South. Calif. Acad. Sci. 92, 2–24 (1993).
    Google Scholar 
    Welsh, H. H., Clark, W. H., Franco-Vizcaíno, E. & Valdéz-Villavicencio, J. H. Herpetofauna associated with palm oases across the Californian-Sonoran transition in Northern Baja California, Mexico. Southwest. Nat. 55(4), 581–585. https://doi.org/10.1894/pas-15.1 (2010).Article 

    Google Scholar 
    Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: The Plaids and Stripes Hypothesis. Biol. Rev. 94(1), 328–352. https://doi.org/10.1111/brv.12456 (2018).Article 

    Google Scholar 
    Brown, D. E., Warnecke, D. & McKinney, T. Effects of midsummer drought on mortality of doe pronghorn (Antilocapra americana). Southwest. Nat. 51(2), 220–225. https://doi.org/10.1894/0038-4909 (2006).Article 

    Google Scholar 
    Simpson, D. C., Harveson, L. A., Brewer, C. E., Walser, R. E. & Sides, A. R. Influence of precipitation on pronghorn demography in Texas. J. Wildl. Manag. 71(3), 906–910. https://doi.org/10.2193/2005-753 (2007).Article 

    Google Scholar 
    McKinney, T., Brown, D. E. & Allison, L. Winter precipitation and recruitment of pronghorns in Arizona. Southwest. Nat. 53(3), 319–325. https://doi.org/10.1894/cj-147.1 (2008).Article 

    Google Scholar 
    Otte, A. Partners save the Sonoran pronghorn. Endang. Species Bull. 31, 22–23 (2006).
    Google Scholar 
    McCullough, D. R. & Barrett, R. H. Wildlife 2001: Populations (Springer, 1992).Book 

    Google Scholar 
    Percie Du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 20. PLOS Biol. 18(7), e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carling, M. D., Passavant, C. W. & Byers, J. A. DNA microsatellites of pronghorn (Antilocapra americana). Mol. Ecol. Not. 3(1), 10–11. https://doi.org/10.1046/j.1471-8286.2003.00334.x (2002).Article 

    Google Scholar 
    Dunn, S. J. et al. Ten polymorphic microsatellite markers for pronghorn (Antilocapra americana). Conserv. Genet. Resour. 2(1), 81–84. https://doi.org/10.1007/s12686-009-9166-9 (2010).Article 

    Google Scholar 
    Munguia-Vega, A., Klimova, A. & Culver, M. New microsatellite loci isolated via next-generation sequencing for two endangered pronghorn from the Sonoran Desert. Conserv. Genet. Resour. 5(1), 125–127. https://doi.org/10.1007/s12686-012-9749-8 (2012).Article 

    Google Scholar 
    Boutin-Ganache, I., Raposo, M., Raymond, M. & Deschepper, C. F. M13-Tailed primers improve the readability and usability of microsatellite analyses performed with two different allele-sizing methods. Biotechniques 31(1), 25–28. https://doi.org/10.2144/01311bm02 (2001).Article 

    Google Scholar 
    Amos, W. et al. Automated binning of microsatellite alleles: Problems and solutions. Mol. Ecol. Not. 7(1), 10–14. https://doi.org/10.1111/j.1471-8286.2006.01560.x (2006).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.Jombart, T. & Ahmed, I. Adegenet 1.3–1: New tools for the analysis of genome-wide SNP data. Bioinformatics 27(21), 3070–3071. https://doi.org/10.1093/bioinformatics/btr521 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281. https://doi.org/10.7717/peerj.281 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5(4), 384–387. https://doi.org/10.1111/2041-210x.12158 (2014).Article 

    Google Scholar 
    Agapow, P. M. & Burt, A. Indices of multilocus linkage disequilibrium. Mol. Ecol. Not. 1(1–2), 101–102. https://doi.org/10.1046/j.1471-8278.2000.00014.x (2001).CAS 
    Article 

    Google Scholar 
    Paradis, E. pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26(3), 419–420. https://doi.org/10.1093/bioinformatics/btp696 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Not. 5(1), 184–186. https://doi.org/10.1111/j.1471-8286.2004.00828.x (2005).Article 

    Google Scholar 
    Aparicio, J. M., Ortego, J. & Cordero, P. J. What should we weigh to estimate heterozygosity, alleles or loci?. Mol. Ecol. 15(14), 4659–4665. https://doi.org/10.1111/j.1365-294x.2006.03111.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alho, J. S., Välimäki, K. & Merilä, J. Rhh: An R extension for estimating multilocus heterozygosity and heterozygosity–heterozygosity correlation. Mol. Ecol. Res. 10(4), 720–722. https://doi.org/10.1111/j.1755-0998.2010.02830.x (2010).Article 

    Google Scholar 
    Stoffel, M. A. et al. inbreedR: An R package for the analysis of inbreeding based on genetic markers. Methods Ecol. Evol. 7(11), 1331–1339. https://doi.org/10.1111/2041-210x.12588 (2016).Article 

    Google Scholar 
    Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Res. 11(1), 141–145. https://doi.org/10.1111/j.1755-0998.2010.02885.x (2010).ADS 
    Article 

    Google Scholar 
    Wang, J. Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet. Res. 89(3), 135–153. https://doi.org/10.1017/s0016672307008798 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marshall, T. C. et al. Estimating the prevalence of inbreeding from incomplete pedigrees. Proc. R. Soc. B Biol. Sci. 269(1500), 1533–1539. https://doi.org/10.1098/rspb.2002.2035 (2002).CAS 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population genetics. Genetics 162(4), 2025–2035. https://doi.org/10.1093/genetics/162.4.2025 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertorelle, G., Benazzo, A. & Mona, S. ABC as a flexible framework to estimate demography over space and time: Some cons, many pros. Mol. Ecol. 19(13), 2609–2625. https://doi.org/10.1111/j.1365-294x.2010.04690.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fagundes, N. J. R. et al. Statistical evaluation of alternative models of human evolution. Proc. Natl. Acad. Sci. U.S.A. 104(45), 17614–17619. https://doi.org/10.1073/pnas.0708280104 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Increasing calcium scarcity along Afrotropical forest succession

    Losos, E. & Leigh, E. G. Tropical Forest Diversity and Dynamism: Findings from a Large-Scale Plot Network (Univ. Chicago Press, 2004).Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 

    Google Scholar 
    Hansen, M. C. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–854 (2013).CAS 
    PubMed 

    Google Scholar 
    Chazdon, R. L. Beyond deforestation: restoring degraded lands. Science 1458, 1458–1460 (2008).
    Google Scholar 
    Global Forest Resources Assessment 2010 (FAO, 2010).Rozendaal, D. M. A. & Chazdon, R. L. Demographic drivers of tree biomass change during secondary succession in northeastern Costa Rica. Ecol. Appl. 25, 506–516 (2015).PubMed 

    Google Scholar 
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).CAS 
    PubMed 

    Google Scholar 
    Chazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F. & Al, E. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Sci. Adv. 2, e1501639 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Lohbeck, M. et al. Functional diversity changes during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 14, 89–96 (2012).
    Google Scholar 
    Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed 

    Google Scholar 
    Townsend, A. R., Cleveland, C. C., Houlton, B. Z., Alden, C. B. & White, J. W. Multi-element regulation of the tropical forest carbon cycle. Front. Ecol. Environ. 9, 9–17 (2011).
    Google Scholar 
    Medvigy, D. et al. Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytol. 223, 1820–1833 (2019).Powers, J. S., Mar, E. & Marín-Spiotta, E. Ecosystem processes and biogeochemical cycles during secondary tropical forest succession. Annu. Rev. Ecol. Evol. Syst. 48, 497–519 (2017).
    Google Scholar 
    Davidson, E. A. et al. Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447, 995–998 (2007).CAS 
    PubMed 

    Google Scholar 
    Davidson, E. A. & Martinelli, L. A. in Amazonia and Global Change (eds Keller, M. et al.) 299–309 (American Geophysical Union, 2013).Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13, 87–115 (1991).
    Google Scholar 
    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).CAS 
    PubMed 

    Google Scholar 
    Bauters, M., Mapenzi, N., Kearsley, E., Vanlauwe, B. & Boeckx, P. Facultative nitrogen fixation by legumes in the central Congo basin is downregulated during late successional stages. Biotropica 48, 281–284 (2016).
    Google Scholar 
    Van Langenhove, L. et al. Regulation of nitrogen fixation from free-living organisms in soil and leaf litter of two tropical forests of the Guiana shield. Plant Soil 450, 93–110 (2020).PubMed 

    Google Scholar 
    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).CAS 

    Google Scholar 
    Kaspari, M. et al. Multiple nutrients limit litterfall and decomposition in a tropical forest. Ecol. Lett. 11, 35–43 (2008).PubMed 

    Google Scholar 
    Cleveland, C. C. et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecol. Lett. 14, 939–947 (2011).PubMed 

    Google Scholar 
    Chadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J. & Hedin, L. O. Changing sources of nutrients during four million years of ecosystem development. Nature 397, 491–497 (1999).CAS 

    Google Scholar 
    Hedin, L. O. et al. Nutrient losses over four million years of tropical forest development. Ecology 84, 2231–2255 (2003).
    Google Scholar 
    Sanchez, P. A., Villachica, J. H. & Bandy, D. E. Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Sci. Soc. Am. J. 47, 1171 (1983).CAS 

    Google Scholar 
    Davidson, E. A. et al. Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol. Appl. 14, 150–163 (2004).
    Google Scholar 
    Wardle, D. A., Walker, L. R. & Bardgett, R. D. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305, 509–513 (2004).CAS 
    PubMed 

    Google Scholar 
    Wassen, M. J., Venterink, H. O., Lapshina, E. D. & Tanneberger, F. Endangered plants persist under phosphorus limitation. Nature 437, 547–550 (2005).CAS 
    PubMed 

    Google Scholar 
    Waring, B. G., Becknell, J. M. & Powers, J. S. Nitrogen, phosphorus, and cation use efficiency in stands of regenerating tropical dry forest. Oecologia 178, 887–897 (2015).PubMed 

    Google Scholar 
    De longe, M., D’odorico, P. & Lawrence, D. Feedbacks between phosphorus deposition and canopy cover: the emergence of multiple stable states in tropical dry forests. Glob. Change Biol. 14, 154–160 (2008).
    Google Scholar 
    Bauters, M. et al. Fire-derived phosphorus fertilization of African Tropical Forests. Nat. Commun. 12, 5129 (2021).Vitousek, P. M. & Reiners, W. A. Ecosystem succession and nutrient retention: a hypothesis. Bioscience 25, 376–381 (1975).CAS 

    Google Scholar 
    Gallarotti, N. et al. In-depth analysis of N 2O fluxes in tropical forest soils of the Congo Basin combining isotope and functional gene analysis. ISME J. 15, 3357–3374 (2021).Gorham, E., Vitousek, P. M. & Reiners, W. A. The regulation of chemical budgets over the course of terrestrial ecosystem succession. Annu. Rev. Ecol. Syst. 10, 53–84 (1979).CAS 

    Google Scholar 
    Markewitz, D., Davidson, E., Moutinho, P. & Nepstad, D. Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol. Appl. 14, 177–199 (2004).
    Google Scholar 
    Lawrence, D. et al. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proc. Natl Acad. Sci. USA 104, 20696–20701 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).
    Google Scholar 
    Sanchez, P. A. Properties and Management of Soils in the Tropics (John Wiley and Sons, 1976).Turner, B. L. & Engelbrecht, B. M. J. Soil organic phosphorus in lowland tropical rain forests. Biogeochemistry 103, 297–315 (2011).Sullivan, B. W. et al. Biogeochemical recuperation of lowland tropical forest during succession. Ecology 100, e02641 (2019).Sardans, J. et al. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat. Ecol. Evol. 13, 184–194 (2021).White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).PubMed 

    Google Scholar 
    Huggett, B. A., Schaberg, P. G., Hawley, G. J. & Eagar, C. Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest. Can. J. For. Res. 37, 1692–1700 (2007).CAS 

    Google Scholar 
    Marschner, P. Marschner’s Mineral Nutrition of Higher Plants 3rd edn (Elsevier/Academic Press 2002).Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010).
    Google Scholar 
    Bauters, M. et al. Soil nutrient depletion and tree functional composition shift following repeated clearing in secondary forests of the Congo Basin. Ecosystems 24, 1422–1435 (2021).Turner, B. L., Brenes-arguedas, T. & Condit, R. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555, 367–370 (2018).CAS 
    PubMed 

    Google Scholar 
    Wright, S. J. Plant responses to nutrient addition experiments conducted in tropical forests. Ecol. Monogr. 89, e01382 (2019).Lugli, L. F. et al. Rapid responses of root traits and productivity to phosphorus and cation additions in a tropical lowland forest in Amazonia. New Phytol. 230, 116–128 (2021).Vitousek, P. M. M. & Sanford, R. L. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17, 137–167 (1986).
    Google Scholar 
    Kaspari, M. & Powers, J. S. Biogeochemistry and geographical ecology: embracing all twenty-five elements required to build organisms. Am. Nat. 188, S62–S73 (2016).PubMed 

    Google Scholar 
    Nykvist, N. in Soils of Tropical Forest Ecosystems (eds Schulte, A. & Ruhiyat, D.) 87–91 (Springer, 1998).Bunyavejchewin, S., Sinbumroong, A., Turner, B. L. & Davies, S. J. Natural disturbance and soils drive diversity and dynamics of seasonal dipterocarp forest in Southern Thailand. J. Trop. Ecol. 35, 95–107 (2019).
    Google Scholar 
    Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).CAS 

    Google Scholar 
    Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).Makelele, I. A. et al. Afrotropical secondary forests exhibit fast diversity and functional recovery, but slow compositional and carbon recovery after shifting cultivation. J. Veg. Sci. 32, e13071 (2021).Van Langenhove, L. et al. Atmospheric deposition of elements and its relevance for nutrient budgets of tropical forests. Biogeochemistry 149, 175–193 (2020).
    Google Scholar 
    Staelens, J. et al. Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut. 191, 149–169 (2008).CAS 

    Google Scholar 
    Hofhansl, F. et al. Topography strongly affects atmospheric deposition and canopy exchange processes in different types of wet lowland rainforest, southwest Costa Rica. Biogeochemistry 106, 371–396 (2011).
    Google Scholar 
    Schrijver, A. De, Nachtergale, L. & Staelens, J. Comparison of throughfall and soil solution chemistry between a high-density Corsican pine stand and a naturally regenerated silver birch stand. Environ Pollut. 131, 93–105 (2004).Eriksson, E. & Khunakasem, V. Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in the Israel coastal plain. J. Hydrol. 7, 178–197 (1969).
    Google Scholar 
    Malhi, Y. et al. An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J. Veg. Sci. 13, 439 (2002).
    Google Scholar 
    Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J. & Hérault, B. biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8, 1163–1167 (2017).
    Google Scholar 
    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
    Google Scholar 
    Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).D’Angelo, E., Crutchfield, J. & Vandiviere, M. Rapid, sensitive, microscale determination of phosphate in water and soil. J. Environ. Qual. 30, 2206–2209 (2001).Rowland, A. P. & Haygarth, P. M. Determination of total dissolved phosphorus in soil solutions. J. Environ. Qual. 26, 410–415 (1997).CAS 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 

    Google Scholar 
    Brookes, P. C., Powlson, D. S. & Jenkinson, D. S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 14, 319–329 (1982).CAS 

    Google Scholar 
    Kaiser, C. et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol. 187, 843–858 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Poorter, L. et al. Multidimensional tropical forest recovery. Science 374, 1370–1376 (2021). More

  • in

    Permissive aggregative group formation favors coexistence between cooperators and defectors in yeast

    Szathmáry E. Toward major evolutionary transitions theory 2.0. Proc Natl Acad Sci USA. 2015;112:10104–11. https://doi.org/10.1073/pnas.1421398112CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niklas KJ, Newman SA. The origins of multicellular organisms. Evol Dev. 2013;15:41–52. https://doi.org/10.1111/ede.12013Article 
    PubMed 

    Google Scholar 
    Pfeiffer T, Bonhoeffer S. An evolutionary scenario for the transition to undifferentiated multicellularity. Proc Natl Acad Sci USA. 2003;100:1095–8. https://doi.org/10.1073/pnas.0335420100CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher RM, Regenberg B, Multicellular group formation in Saccharomyces cerevisiae. Proc Royal Soc B: Biol Sci. 2019;286. https://doi.org/10.1098/rspb.2019.1098Umen JG. Green algae and the origins of multicellularity in the plant kingdom. Cold Spring Harb Perspect Biol. 2014;6:a016170 https://doi.org/10.1101/cshperspect.a016170Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knoll AH. The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci. 2011;39:217–39. https://doi.org/10.1146/annurev.earth.031208.100209CAS 
    Article 

    Google Scholar 
    Bonner JT. The origins of multicellularity. Integr Biol Issues N. Rev. 1998;1:27–36.Article 

    Google Scholar 
    Tarnita CE, Taubes CH, Nowak MA. Evolutionary construction by staying together and coming together. J Theor Biol. 2013;320:10–22. https://doi.org/10.1016/j.jtbi.2012.11.022Article 
    PubMed 

    Google Scholar 
    Ratcliff WC, Denison RF, Borrello M, Travisano M. Experimental evolution of multicellularity. Proc Natl Acad Sci USA. 2012;109:1595–1600. https://doi.org/10.1073/pnas.1115323109Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koschwanez JH, Foster KR, Murray AW. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 2011;9:e1001122 https://doi.org/10.1371/journal.pbio.1001122CAS 
    Article 
    PubMed 

    Google Scholar 
    Kuzdzal-Fick JJ, Chen L, Balázsi G. Disadvantages and benefits of evolved unicellularity versus multicellularity in budding yeast. Ecol Evol. 2019;9:8509–23. https://doi.org/10.1002/ece3.5322Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brückner S, Schubert R, Kraushaar T, Hartmann R, Hoffmann D, Jelli E, et al. Kin discrimination in social yeast is mediated by cell surface receptors of the flo11 adhesin family. eLife 2020;9. https://doi.org/10.7554/eLife.55587Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, et al. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell. 2008;135:726–37. https://doi.org/10.1016/j.cell.2008.09.037CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Driscoll WW, Travisano M, Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence. Nat Commun. 2017;8. https://doi.org/10.1038/ncomms15707Pentz JT, Márquez-Zacarías P, Bozdag GO, Burnetti A, Yunker PJ, Libby E, et al. Ecological advantages and evolutionary limitations of aggregative multicellular development. Curr Biol. 2020;30:4155–.e6. https://doi.org/10.1016/j.cub.2020.08.006.CAS 
    Article 
    PubMed 

    Google Scholar 
    Goossens K, Willaert R. Flocculation protein structure and cell-cell adhesion mechanism in Saccharomyces cerevisiae. Biotechnol Lett. 2010;32:1571–85. https://doi.org/10.1007/s10529-010-0352-3CAS 
    Article 
    PubMed 

    Google Scholar 
    Di Gianvito P, Tesnière C, Suzzi G, Blondin B, Tofalo R. FLO5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-09990-9CAS 
    Article 

    Google Scholar 
    Veelders M, Brückner S, Ott D, Unverzagt C, Mösch HU, Essen LO. Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci USA. 2010;107:22511–6. https://doi.org/10.1073/pnas.1013210108Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verstrepen KJ, Jansen A, Lewitter F, Fink GR. Intragenic tandem repeats generate functional variability. Nat Genet. 2005;37:986–90. https://doi.org/10.1038/ng1618CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 2006;60:5–15. https://doi.org/10.1111/j.1365-2958.2006.05072.xCAS 
    Article 
    PubMed 

    Google Scholar 
    Verstrepen KJ, Reynolds TB, Fink GR. Origins of variation in the fungal cell surface. Nat Rev Microbiol. 2004;2:533–40. https://doi.org/10.1038/nrmicro927CAS 
    Article 
    PubMed 

    Google Scholar 
    Kraushaar T, Brückner S, Veelders M, Rhinow D, Schreiner F, Birke R, et al. Interactions by the fungal Flo11 adhesin depend on a fibronectin type III-like adhesin domain girdled by aromatic bands. Structure. 2015;23:1005–17. https://doi.org/10.1016/j.str.2015.03.021CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen L, Noorbakhsh J, Adams RM, Samaniego-Evans J, Agollah G, Nevozhay D, et al. Two-dimensionality of yeast colony expansion accompanied by pattern formation. PLoS Comput Biol. 2014;10. https://doi.org/10.1371/journal.pcbi.1003979Oppler ZJ, Parrish ME, Murphy HA, Variation at an adhesin locus suggests sociality in natural populations of the yeast saccharomyces cerevisiae. Proc Royal Soc B: Biol Sci. 2019;286. https://doi.org/10.1098/rspb.2019.1948Lo WS, Dranginis AM. The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell. 1998;9:161–71. https://doi.org/10.1091/mbc.9.1.161CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    El-Kirat-Chatel S, Beaussart A, Vincent SP, Abellán Flos M, Hols P, Lipke PN, et al. Forces in yeast flocculation. Nanoscale. 2015;7:1760–7. https://doi.org/10.1039/c4nr06315eCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kobayashi O, Hayashi N, Kuroki R, Sone H. Region of Flo1 proteins responsible for sugar recognition. J Bacteriol. 1998;180:6503–10. https://doi.org/10.1128/jb.180.24.6503-6510.1998CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kapsetaki SE, West SA. The costs and benefits of multicellular group formation in algae. Evolution. 2019;73:1296–308. https://doi.org/10.1111/evo.13712Article 
    PubMed 

    Google Scholar 
    Quintero-Galvis JF, Paleo-López R, Solano-Iguaran JJ, Poupin MJ, Ledger T, Gaitan-Espitia JD, et al. Exploring the evolution of multicellularity in Saccharomyces cerevisiae under bacteria environment: An experimental phylogenetics approach. Ecol Evol. 2018;8:4619–30. https://doi.org/10.1002/ece3.3979Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goossens KV, Ielasi FS, Nookaew I, Stals I, Alonso-Sarduy L, Daenen L, et al. Molecular mechanism of flocculation self-recognition in yeast and its role in mating and survival. mBio. 2015;6:1–16. https://doi.org/10.1128/mBio.00427-15CAS 
    Article 

    Google Scholar 
    Hamilton WD. The genetical evolution of social behaviour. I. J Theor Biol. 1964;7:1–16. https://doi.org/10.1016/0022-5193(64)90038-4CAS 
    Article 
    PubMed 

    Google Scholar 
    Queller DC, Ponte E, Bozzaro S, Strassmann JE. Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science. 2003;299:105–6. https://doi.org/10.1126/science.1077742CAS 
    Article 
    PubMed 

    Google Scholar 
    Foty RA, Steinberg MS. The differential adhesion hypothesis: A direct evaluation. Dev Biol. 2005;278:255–63. https://doi.org/10.1016/j.ydbio.2004.11.012CAS 
    Article 
    PubMed 

    Google Scholar 
    Nowak MA. Five rules for the evolution of cooperation. Science. 2006;314:1560–3. https://doi.org/10.1126/science.1133755Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nadell CD, Foster KR, Xavier JB. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput Biol. 2010;6:e1000716 https://doi.org/10.1371/journal.pcbi.1000716CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drescher K, Nadell CD, Stone HA, Wingreen NS, Bassler BL. Solutions to the public goods dilemma in bacterial biofilms. Curr Biol. 2014;24:50–55. https://doi.org/10.1016/j.cub.2013.10.030CAS 
    Article 
    PubMed 

    Google Scholar 
    Liu CG, Li ZY, Hao Y, Xia J, Bai FW, Mehmood MA, Computer simulation elucidates yeast flocculation and sedimentation for efficient industrial fermentation. Biotechnol J. 2018;13. https://doi.org/10.1002/biot.201700697Boraas ME, Seale DB, Boxhorn JE. Phagotrophy by flagellate selects for colonial prey: A possible origin of multicellularity. Evol Ecol. 1998;12:153–64. https://doi.org/10.1023/A:1006527528063Article 

    Google Scholar 
    Staps M, van Gestel J, Tarnita CE. Emergence of diverse life cycles and life histories at the origin of multicellularity. Nat Ecol Evol. 2019;3:1197–205. https://doi.org/10.1038/s41559-019-0940-0Article 
    PubMed 

    Google Scholar 
    De Vargas Roditi L, Boyle KE, Xavier JB. Multilevel selection analysis of a microbial social trait. Mol Syst Biol. 2013;9:684 https://doi.org/10.1038/msb.2013.42Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Damore JA, Gore J. Understanding microbial cooperation. J Theor Biol. 2012;299:31–41. https://doi.org/10.1016/j.jtbi.2011.03.008Article 
    PubMed 

    Google Scholar 
    Denoth Lippuner A, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev. 2014;38:300–25. https://doi.org/10.1111/1574-6976.12060CAS 
    Article 
    PubMed 

    Google Scholar 
    Janssens GE, Veenhoff LM. The natural variation in lifespans of single yeast cells is related to variation in cell size, ribosomal protein, and division time. PLoS ONE. 2016;11:e0167394 https://doi.org/10.1371/journal.pone.0167394CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross-Gillespie A, Gardner A, West SA, Griffin AS. Frequency dependence and cooperation: Theory and a test with bacteria. Am Nat. 2007;170:331–42. https://doi.org/10.1086/519860Article 
    PubMed 

    Google Scholar 
    Healey D, Axelrod K, Gore J. Negative frequency-dependent interactions can underlie phenotypic heterogeneity in a clonal microbial population. Mol Syst Biol. 2016;12:877 https://doi.org/10.15252/msb.20167033CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harrow GL, Lees JA, Hanage WP, Lipsitch M, Corander J, Colijn C, et al. Negative frequency-dependent selection and asymmetrical transformation stabilise multi-strain bacterial population structures. ISME J. 2021;15:1523–38. https://doi.org/10.1038/s41396-020-00867-wCAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avilés L. Solving the freeloaders paradox: Genetic associations and frequency-dependent selection in the evolution of cooperation among nonrelatives. Proc Natl Acad Sci USA. 2002;99:14268–73. https://doi.org/10.1073/pnas.212408299CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher RM, Cornwallis CK, West SA. Group formation, relatedness, and the evolution of multicellularity. Curr Biol. 2013;23:1120–5. https://doi.org/10.1016/j.cub.2013.05.004CAS 
    Article 
    PubMed 

    Google Scholar 
    Pentz JT, Travisano M, Ratcliff WC, Clonal development is evolutionarily superior to aggregation in wild-collected Saccharomyces cerevisiae. In Artificial Life 14 – Proceedings of the 14th International Conference on the Synthesis and Simulation of Living Systems, ALIFE 2014, 2014;550–4. 10.7551/978-0-262-32621-6-ch088.Melbinger A, Cremer J, Frey E, The emergence of cooperation from a single mutant during microbial life cycles. J Royal Soc Interface. 2015;12. https://doi.org/10.1098/rsif.2015.0171 More

  • in

    Individual variability in foraging success of a marine predator informs predator management

    Krause, M. & Robins, K. Charismatic species and beyond: How cultural schemas and organisational routines shape conservation. Conserv. Soc. 15, 313–321 (2017).
    Google Scholar 
    Marshall, K. N., Stier, A. C., Samhouri, J. F., Kelly, R. P. & Ward, E. J. Conservation challenges of predator recovery. Conserv. Lett. 9, 70–78 (2016).
    Google Scholar 
    Bearzi, G., Holcer, D. & Di Sciara, G. N. The role of historical dolphin takes and habitat degradation in shaping the present status of northern Adriatic cetaceans. Aquat. Conserv. Mar. Freshw. Ecosyst. 14, 363–379 (2004).
    Google Scholar 
    Lavigne, D. M. Marine mammals and fisheries: The role of science in the culling debate. In Marine Mammals: Fisheries Tourism and Management Issues (eds Gales, N. et al.) 31–47 (CSIRO Publishing, 2003).
    Google Scholar 
    Bowen, W. D. & Lidgard, D. Marine mammal culling programs: Review of effects on predator and prey populations. Mamm. Rev. 43, 207–220 (2013).
    Google Scholar 
    Svanbäck, R. & Persson, L. Individual diet specialization, niche width and population dynamics: Implications for trophic polymorphisms. J. Anim. Ecol. 73, 973–982 (2004).
    Google Scholar 
    Butler, J. R. A. et al. The Moray Firth Seal Management Plan: An adaptive framework for balancing the conservation of seals, salmon, fisheries and wildlife tourism in the UK. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1025–1038 (2008).
    Google Scholar 
    Graham, I. M., Harris, R. N., Matejusová, I. & Middlemas, S. J. Do ‘rogue’ seals exist? Implications for seal conservation in the UK. Anim. Conserv. 14, 587–598 (2011).
    Google Scholar 
    Linnell, J. D. C., Aanes, R., Swenson, J. E., Odden, J. & Smith, M. E. Large carnivores that kill livestock: Do ‘problem individuals’ really exist?. Wildl. Soc. Bull. 27, 698–705 (1999).
    Google Scholar 
    Tidwell, K. S., van der Leeuw, B. K., Magill, L. N., Carrothers, B. A. & Wertheimer, R. H. Evaluation of pinniped predation on adult salmonids and other fish in the Bonneville Dam tailrace (2017).Guillemette, M. & Brousseau, P. Does culling predatory gulls enhance the productivity of breeding common terns?. J. Appl. Ecol. 38, 1–8 (2001).
    Google Scholar 
    Rudolf, V. H. W. & Rasmussen, N. L. Population structure determines functional differences among species and ecosystem processes. Nat. Commun. 4, 2318 (2013).ADS 
    PubMed 

    Google Scholar 
    Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Adams, J. et al. A century of Chinook salmon consumption by marine mammal predators in the Northeast Pacific Ocean. Ecol. Inform. 34, 44–51 (2016).
    Google Scholar 
    Chasco, B. et al. Competing tradeoffs between increasing marine mammal predation and fisheries harvest of Chinook salmon. Sci. Rep. 7, 1–14 (2017).CAS 

    Google Scholar 
    Bearhop, S. et al. Stable isotopes indicate sex-specific and long-term individual foraging specialisation in diving seabirds. Mar. Ecol. Prog. Ser. 311, 157–164 (2006).ADS 

    Google Scholar 
    Thiemann, G. W., Iverson, S. J., Stirling, I. & Obbard, M. E. Individual patterns of prey selection and dietary specialization in an Arctic marine carnivore. Oikos 120, 1469–1478 (2011).
    Google Scholar 
    Königson, S., Fjälling, A., Berglind, M. & Lunneryd, S. G. Male gray seals specialize in raiding salmon traps. Fish. Res. 148, 117–123 (2013).
    Google Scholar 
    Sih, A., Sinn, D. L. & Patricelli, G. L. On the importance of individual differences in behavioural skill. Anim. Behav. 155, 307–317 (2019).
    Google Scholar 
    Bjorkland, R. H. et al. Stable isotope mixing models elucidate sex and size effects on the diet of a generalist marine predator. Mar. Ecol. Prog. Ser. 526, 213–225 (2015).ADS 

    Google Scholar 
    Schwarz, D. et al. Large-scale molecular diet analysis in a generalist marine mammal reveals male preference for prey of conservation concern. Ecol. Evol. 8, 9889–9905 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tinker, M. T., Costa, D. P., Estes, J. A. & Wieringa, N. Individual dietary specialization and dive behaviour in the California sea otter: Using archival time-depth data to detect alternative foraging strategies. Deep. Res. Part II Top. Stud. Oceanogr. 54, 330–342 (2007).ADS 

    Google Scholar 
    Voelker, M. R., Schwarz, D., Thomas, A., Nelson, B. W. & Acevedo-Gutiérrez, A. Large-scale molecular barcoding of prey DNA reveals predictors of intrapopulation feeding diversity in a marine predator. Ecol. Evol. 10, 9867–9885 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. The ecology of individuals: Incidence and implications of individual specialization. Am. Nat. 161, 1–28 (2003).MathSciNet 
    PubMed 

    Google Scholar 
    Harcourt, R. Individual variation in predation on fur seals by southern sea lions (Otaria byronia) in Peru. Can. J. Zool. 71, 1908–1911 (1993).
    Google Scholar 
    Marine Mammal Commission. Marine Mammal Protection Act. Marine Mammal Protection Act Amendment 1–56 (U.S. Fish and Wildlife Service, 2004). https://doi.org/10.1002/tcr.201190008.Book 

    Google Scholar 
    National Marine Fisheries Service. Willamette Falls Pinniped-Fishery Interaction Task Force Marine Mammal Protection Act, Section 120 (National Marine Fisheries Service, 2018).
    Google Scholar 
    Jefferson, T. A., Smultea, M. A., Ward, E. J. & Berejikian, B. Estimating the stock size of harbor seals (Phoca vitulina richardii) in the inland waters of Washington State using line-transect methods. PLoS ONE 16, e0241254 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jeffries, S., Huber, H., Calambokidis, J. & Laake, J. Trends and status of harbor seals in Washington State: 1978–1999. J. Wildl. Manag. 67, 208–219 (2003).
    Google Scholar 
    Thomas, A. C., Lance, M. M., Jeffries, S. J., Miner, B. G. & Acevedo-Gutiérrez, A. Harbor seal foraging response to a seasonal resource pulse, spawning Pacific herring. Mar. Ecol. Prog. Ser. 441, 225–239 (2011).ADS 

    Google Scholar 
    Chasco, B. et al. Estimates of chinook salmon consumption in Washington State inland waters by four marine mammal predators from 1970 to 2015. Can. J. Fish. Aquat. Sci. 74, 1173–1194 (2017).
    Google Scholar 
    Farrer, J. & Acevedo-Gutiérrez, A. Use of haul-out sites by harbor seals (Phoca vitulina) in Bellingham: Implications for future development. Northwest. Nat. 91, 74–79 (2010).
    Google Scholar 
    Steingass, S., Jeffries, S., Hatch, D. & Dupont, J. Field report: 2020 pinniped research and management activities at Bonneville Dam (2020).Tidwell, K. S., Carrothers, B. A., Blumstein, D. T. & Schakner, Z. A. Steller sea lion (Eumetopias jubatus) response to non-lethal hazing at Bonneville Dam. Front. Conserv. Sci. 2, 1–9 (2021).
    Google Scholar 
    Hiruki, L. M., Schwartz, M. K. & Boveng, P. L. Hunting and social behaviour of leopard seals (Hydrurga leptonyx) at Seal Island, South Shetland Islands, Antarctica. J. Zool. 249, 97–109 (1999).
    Google Scholar 
    Ainley, D. G., Ballard, G., Karl, B. J. & Dugger, K. M. Leopard seal predation rates at penguin colonies of different size. Antarct. Sci. 17, 335–340 (2005).ADS 

    Google Scholar 
    Páez-Rosas, D. et al. Hunting and cooperative foraging behavior of Galapagos sea lion: An attack to large pelagics. Mar. Mammal Sci. 36, 386–391 (2020).
    Google Scholar 
    Macneale, K. H., Kiffney, P. M. & Scholz, N. L. Pesticides, aquatic food webs, and the conservation of Pacific salmon. Front. Ecol. Environ. 8, 475–482 (2010).
    Google Scholar 
    Roni, P., Anders, P. J., Beechie, T. J. & Kaplowe, D. J. Review of tools for identifying, planning, and implementing habitat restoration for Pacific salmon and steelhead. North Am. J. Fish. Manag. 38, 355–376 (2018).
    Google Scholar 
    Morissette, L., Christensen, V. & Pauly, D. Marine mammal impacts in exploited ecosystems: Would large scale culling benefit fisheries?. PLoS ONE 7, 1–18 (2012).
    Google Scholar 
    Thompson, D., Coram, A. J., Harris, R. N. & Sparling, C. E. Review of non-lethal seal control options to limit seal predation on salmonids in rivers and at finfish farms. Scott. Mar. Freshw. Sci. 12, 137 (2021).
    Google Scholar 
    Dickinson, J. L., Zuckerberg, B. & Bonter, D. N. Citizen science as an ecological research tool: Challenges and benefits. Annu. Rev. Ecol. Evol. Syst. 41, 149–172 (2010).
    Google Scholar 
    Fairbanks, C. & Penttila, D. Bellingham Bay Forage Fish Spawning Assessment (2016).Madsen, S. W. & Nightengale, T. Whatcom Creek Ten-Years After: Summary Report (Department of Public Works, 2009). https://doi.org/10.2307/j.ctt20krzd7.7.Book 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour: An Introductory Guide (Cambridge University Press, 2007).
    Google Scholar 
    Bolger, D. T., Morrison, T. A., Vance, B., Lee, D. & Farid, H. A computer-assisted system for photographic mark-recapture analysis. Methods Ecol. Evol. 3, 813–822 (2012).
    Google Scholar 
    Harrison, P. J. et al. Incorporating movement into models of grey seal population dynamics. J. Anim. Ecol. 75, 634–645 (2006).PubMed 

    Google Scholar 
    Thompson, P. M. & Wheeler, H. Photo-ID-based estimates of reproductive patterns in female harbor seals. Mar. Mammal Sci. 24, 138–146 (2008).
    Google Scholar 
    Washington Department of Fish and Wildlife. Whatcom Creek Hatchery (WDFW, 2019).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Core Team, 2020).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Lloyd-Smith, J. O. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE 2, 1–8 (2007).
    Google Scholar 
    Zhang, D. rsq: R-Squared and Related Measures. R package version 2.1 (2020).Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).ADS 

    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar  More

  • in

    Albedo changes caused by future urbanization contribute to global warming

    Land coverUrban landscapes are characterized by small clusters of patches, forming land mosaics that are distinct from natural landscapes. An accurate estimation of climate forcing requires a land cover dataset at high resolutions that does not omit small urban patches. In this study, the RF estimates are based on 500-m and 1-km land cover datasets. This fine resolution is necessary to preserve spatial details of small urban patches while avoiding the large underestimation of urban land areas at coarse resolution (e.g., ~19% underestimation at 10 km compared to that at 1 km)3. We used 500-m resolution MODIS Land Cover product (MCD12Q1v006) for historical land cover changes. For future urban land cover distributions, we used the global urban land expansion products simulated under the SSPs for 2030–2100 (i.e., Chen-2020)4. The simulation performance was tested using historical urban expansion from 2000 to 2015 based on Global Human Settlement Layer51, where the agreement between simulated and observed urban land was evaluated using the Figure of Merit (FoM) indicator52 that has showed similar or better values than those reported in other existing land simulation applications4. The high-resolution Chen-2020 also shows very high spatial consistency with the prominent coarse resolution global urban land projection LUH2 that is recommended in CMIP64. Considering different scenarios is also necessary to account for the uncertainties of future socioeconomic and environmental conditions, so we included simulated urban lands under three scenarios (Supplementary Table 1): Sustainability -SSP1, Middle of the Road – SSP2, and Fossil-fueled Development – SSP553. Within each SSP scenario, the product provides a likelihood map of each grid becoming urban, based on 100 urbanization simulations. We used the likelihood map to account for spatial uncertainties of urban expansion by deriving 90% confidence intervals of projected urban land demand within a SSP scenario. We used the MODIS IGBP Land Cover classes (Supplementary Table 2) and resampled the original 500-m resolution MODIS products in 2018 to 1-km resolution to match the future simulations when it was used as a baseline year. To isolate the independent effect of urbanization (vs other types of land uses) in future estimates, land covers that are not converted to urban are assumed to have the same cover types as in 2018 (i.e., the baseline year). Though there are other global land cover products for current periods, we choose the MODIS IGBP land cover products because the albedo look-up maps (LUMs) were based on IGBP land cover types (see Albedo Look-Up Maps).To further evaluate the uncertainties caused by different projections of future urbanization, we also included the other two SSPs from Chen-2020, and another two 1-km resolution urban land cover products projected for the future for the purpose of comparison. The other two products include four projections of SRES scenarios (i.e., A1, B1, A1B, and B2) (i.e., Li-2017 mentioned above)3 and one without scenario description but assumed historical development would continue (i.e., Zhou-2019 mentioned above)2. These projections of future urban land expansion were calibrated with different historical urban land products and can be regarded as independent.Albedo look-up maps (LUMs)Albedo Look-Up Maps (LUMs)31 were derived from the intersection of MODIS land cover54 and surface albedo55 products, which are used to determine the albedo values for each IGBP land cover type by month and by location. Monthly means of white-sky (i.e., diffuse surface illumination condition) and black sky (i.e., direct surface illumination condition) during 2001–2011 were processed for snow-free and snow-covered periods for each of the 17 IGBP land cover classes at spatial resolutions of 0.05°−1°31. The LUMs have been verified by comparing the reconstructed albedo using the LUMs with the original MODIS albedo, which shows very similar values31. We used the LUMs at a resolution of 1° due to the significantly fewer missing values, to assure the spatial continuity of albedo changes at a global scale while keeping the matches with the 1° resolution of radiation data and RF kernels. The underlying assumption is that albedo of the same land cover type varies insignificantly within a 1° grid.Snow and radiation productSnow cover can significantly change the albedo of land regardless of cover types (Supplementary Fig. 4). In this study, we tally monthly albedo using snow-free and snow-covered categories in estimating RF. Past and present snow-free and snow-covered conditions were derived from level 3 MODIS/Terra Snow Cover (MOD10CM.006)56 at 0.05° spatial resolution and resampled to a 1° spatial resolution. Monthly means of 2001–2005 vs 2015–2019 were used for 2001 and 2018 respectively. For future periods, ensemble mean snow cover for each year and month, projected under the CMIP5 framework for three Representative Concentration Pathway (RCP) scenarios (i.e., RCP2.6, RCP4.5, and RCP8.5) were used (for more details see Supplementary Note 2B). By comparing the model outputs with MODIS observations for a recent decade (2006–2015), we found that the multi-model mean snow cover was systematically biased compared to MODIS observations. Consequently, we calibrated the ensemble mean projections by subtracting the biases for the grids. In each 10th year of the future (e.g., 2030, 2040, etc.), the decadal monthly mean snow cover (e.g., 2026–2035 for 2030, and 2036–2045 for 2040, etc.) was used for the year.We used the long-term monthly averages (1981–2010) of diffuse and direct incoming surface solar radiation reanalysis Gaussian grid product from National Centers for Environmental Prediction (NCEP)57. Visible and near infrared beam downward radiation and diffuse downward radiation from NCEP were used to compute the white-sky and black-sky fractions. As for snow cover, ensemble mean shortwave radiation at surface (SWSF) and at top-of-atmosphere (SWTOA) projected from CMIP5 models (Supplementary Note 3C) for RCP2.6, RCP4.5, and RCP8.5 were collected for empirically computing future albedo kernels (see section 3.4 below).Radiative kernelsRadiative kernels were used to compute top-of-atmosphere RF due to small perturbations of temperature, water vapor, and albedo. We used the latest state-of-the-art albedo kernels calculated with CESM v1.1.258 to compute RF in 2018 relative to 2001. In brief, the albedo kernel is the change in top-of-atmosphere radiative flux for a 0.01 change in surface albedo. The CESM1.1.2 kernels are separated into clear- and all-sky illumination conditions. We used the all-sky kernels because we include both black-sky and white-sky albedos. For future periods, because there are no available radiative kernels produced from general circulation models, we approximated the future kernels using an empirical parameterization following Bright et al.59:$${K}_{m}left(iright)={{SW}}^{{SF}}(i)times {sqrt}left(frac{{{SW}}^{{SF}}(i)}{{{SW}}^{{TOA}}(i)}right)/(-100)$$
    (1)
    where m is the month, i is the location, and SWSF and SWTOA are the surface and top-of-atmosphere shortwave radiation; dividing by −100 is for matching the CESM1.1.2 kernel definition of a 0.01 change in surface albedo.Estimation of albedo change and RFWe analyzed the RF in 2018 due to albedo changes caused by urbanization since 2001 (2018–2001), and in the future from 2030 to 2100 at decadal intervals (i.e., 2030, 2040, 2050, …, and 2100) since 2018 under three illustrative scenarios: SSP1-2.6, SSP2-4.5, and SSP5-8.5, which combine SSP-based urbanization projections and RCP-based climate projections. The three illustrative scenarios were selected following the scenario designation of the latest IPCC report50 and represent low greenhouse gas (GHG) emissions with CO2 emissions declining to net zero around or after 2050, intermediate GHG emissions with CO2 emissions remaining around current levels until the mid-century, and very high CO2 emissions that roughly double from current levels by 2050, respectively. We selected 2018 as the baseline year to divide the past from the future because 2018 was the latest year with available MODIS land cover products at the time of this study. We used ArcGIS 10.6 to produce spatial maps of all variables, including area of each land cover type within a 1° × 1°-grid, snow cover, albedo, radiation, and kernels, and R 3.6.1 to compute the RF.We focused only on albedo changes induced by urbanization, including the conversions from all other 16 IGBP land cover types to urban land. The changes of albedo for each grid (x, y) of a month (m) were obtained by computing the difference between albedo of that grid in the baseline year (t = t0) and in a later year (t = t1) with urban expansion:$${triangle alpha }_{m,t1-t0}(x,y)={alpha }_{m,t=t1}(x,y)-{alpha }_{m,t=t0}(x,y)$$
    (2)
    where αm, t = t1 (x, y) and αm, t = t0) (x, y) is the albedo for each grid (x,y) of a month (m) at the base year and later year respectively; the grid-scale albedo is computed as the weighted sum of albedo by land cover types with the weighing factor corresponding to areal percentage of a land cover within the grid. The albedo for each land cover type of a grid was then obtained by applying the albedo LUMs that provide spatially continuous black-sky, white-sky, snow-covered, and snow-free albedo maps for a given month for each land cover. Firstly, monthly mean albedo is computed as:$${alpha }_{m,t}(x,y)=mathop{sum }limits_{l=1}^{17}mathop{sum }limits_{s=0}^{1}mathop{sum }limits_{r=0}^{1}{{f}_{l,t}(x,y){f}_{s,m,t}(x,y)f}_{r,m,t}(x,y)left({alpha }_{l,s,r,m}(x,y)right)$$
    (3)
    where m is the month, t is the year, l is the land cover type, fl is the proportion of a cover type within the grid, fs,m,t is the fraction for snow-covered (s = 0) and snow-free (s = 1) conditions of the time (m, t), fr,m,t (x, y) is the fraction for white-sky (r = 0) or black-sky (r = 1) conditions of the time, and αl,s,r,m (x, y) is the albedo for land cover type l in month m that is extracted from the albedo LUMs corresponding to snow condition (s) and radiation condition (r). The annual mean albedo change is reported as the mean of monthly albedo change:$${triangle alpha }_{t1-t0}(x,y)=frac{1}{12}mathop{sum }limits_{m=1}^{m=12}({alpha }_{m,t=t1}(x,y)-{alpha }_{m,t=t0}(x,y))$$
    (4)
    The conversion of other land covers to urban land can contribute differently to the global RF, as the total area that is converted into urban land is different among non-urban land covers and the albedo differences between urban land and non-urban land cover types vary. To estimate the proportional contributions of different land conversions, we first decomposed the total albedo of each grid into the proportion of each land cover type:$${alpha }_{l,m,t}(x,y)={f}_{l,m,t}(x,y)mathop{sum }limits_{s=0}^{1}mathop{sum }limits_{r=0}^{1}{f}_{s,m,t}(x,y){f}_{r,m,t}(x,y)left({alpha }_{l,s,r,m}(x,y)right)$$
    (5)
    The global RF due to albedo change caused by conversion from each non-urban land cover type (l ≠ 13) to urban land (l = 13) (see Supplementary Table 2 land cover labels) was calculated as:$${{RF}}_{triangle alpha ,l(lne 13),{global}}=frac{1}{{A}_{{Earth}}}mathop{sum }limits_{i=1}^{n}mathop{sum }limits_{m=1}^{12}{({alpha }_{13,m,t=t1}left(iright)-{alpha }_{l,m,t=t0}left(iright))Delta p}_{lto 13}left(iright){Area}left(iright){K}_{m}(i)$$
    (6)
    where i refers to a grid, n is the total number of pixels on global lands, AEarth is the global surface area (5.1  ×  108 km2), α13,m,t = t1) (i) is the albedo of urban land in month m in the later year with urban expansion, αl,m,t = t0 (i) is the albedo of a targeted non-urban land cover type in the base year t0, Δpl→13 is the percentage of the non-urban land cover type that is converted to urban land in the year t1 compared to year t0, Area(i) is the area of the pixel, and Km (i) is the radiative kernel at the grid.The global RF due to urbanization-induced albedo changes was then calculated as:$${{RF}}_{triangle alpha ,{global}}=mathop{sum }limits_{l=1}^{17}{{RF}}_{triangle alpha ,l,{global}}(l,ne, 13)$$
    (7)
    GWP: CO2-equivalentWe followed GWP calculations by explicitly accounting for the lifetime and dynamic behavior of CO2 to convert RF to CO2 equivalent60,61:$${GWP}[{kg},{of},{{CO}}_{2}-{eq}]=frac{{int }_{t=0}^{{TH}}{{RF}}_{triangle alpha ,{global}}(t)}{{k}_{{CO}_2}{int }_{t=0}^{{TH}}{y}_{{{CO}}_{2}}(t)}$$
    (8)
    where kCO2 is radiative efficiency of CO2 in the atmosphere (W/m2/kg) at a constant background concentration of 389 ppmv, which is taken as 1.76  ×  1015 W/m2/kg62, and RF∆α,global is the global RF caused by albedo changes (W/m2). ({y}_{{{CO}}_{2}}) is the impulse-response function (IRF) for CO2 that ranges from 1 at the time of the emission pulse (t = 0) to 0.41 after 100 years, and here it is set to a mean value of 0.52 over 100 years60. The time horizon (TH) of our GWP calculations was fixed at 100 years following IPCC standards and previous studies60,63,64.Global mean surface air temperature changeWe estimated the 100-year global mean surface temperature change for the estimated RF by adopting an equilibrium climate sensitivity (ECS), defined as the global mean surface air temperature increase that follows a doubling of pre-industrial atmospheric carbon dioxide (RF = 3.7 W/m2). Given a value of RF induced by a forcing agent, the temperature change is estimated as RF/3.7 × ECS. To consider the uncertainties of ECS, we adopted a mean value of 3 °C and a very likely (90% confidence interval) range of 2–5 °C following IPCC AR650. Without knowing the exact distribution shape of ECS and future albedo-change-induced RF, we created a log-normal distribution (Supplementary Note 4) to approximate their asymmetric distribution through numerical simulation. We then conducted Monte Carlo simulations that draw 5000 random samples from each distribution to jointly estimate the uncertainties of global mean surface air temperature changes. We report the mean and 90% interval ranges of the change in temperature. More

  • in

    Sex differences in the winter activity of desert hedgehogs (Paraechinus aethiopicus) in a resource-rich habitat in Qatar

    Nagy, K. A. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57, 111–128 (1987).Article 

    Google Scholar 
    Anderson, K. J. & Jetz, W. The broad-scale ecology of energy expenditure of endotherms. Ecol. Lett. 8, 310–318 (2005).Article 

    Google Scholar 
    Terrien, J., Perret, M. & Aujard, F. Behavioral thermoregulation in mammals: A review. Front. Biosci. 16, 1428–1444 (2011).Article 

    Google Scholar 
    Mery, F. & Burns, J. G. Behavioural plasticity: An interaction between evolution and experience. Evol. Ecol. 24, 571–583 (2010).Article 

    Google Scholar 
    Brockmann, H. J. The evolution of alternative strategies and tactics. Adv. Study Behav. 30, 1–51 (2001).Article 

    Google Scholar 
    Milling, C. R., Rachlow, J. L., Johnson, T. R., Forbey, J. S. & Shipley, L. A. Seasonal variation in behavioral thermoregulation and predator avoidance in a small mammal. Behav. Ecol. 28, 1236–1247 (2017).Article 

    Google Scholar 
    Guiden, P. W. & Orrock, J. L. Seasonal shifts in activity timing reduce heat loss of small mammals during winter. Anim. Behav. 164, 181–192 (2020).Article 

    Google Scholar 
    Cotton, C. L. & Parker, K. L. Winter activity patterns of northern flying squirrels in sub-boreal forests. Can. J. Zool. 78, 1896–1901 (2000).Article 

    Google Scholar 
    Long, R. A., Martin, T. J. & Barnes, B. M. Body temperature and activity patterns in free-living arctic ground squirrels. J. Mammal. 86, 314–322 (2005).Article 

    Google Scholar 
    Zschille, J., Stier, N. & Roth, M. Gender differences in activity patterns of American mink Neovison vison in Germany. Eur. J. Wildl. Res. 56, 187–194 (2010).Article 

    Google Scholar 
    Geiser, F. Hibernation. Curr. Biol. 23, R188–R193 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gür, M. K. & Gür, H. Age and sex differences in hibernation patterns in free-living Anatolian ground squirrels. Mamm. Biol. 80, 265–272 (2015).Article 

    Google Scholar 
    Kisser, B. & Goodwin, H. T. Hibernation and overwinter body temperatures in free-ranging thirteen-lined ground squirrels, Ictidomys tridecemlineatus. Am. Midl. Nat. 167, 396–409 (2012).Article 

    Google Scholar 
    Dmi’el, R. & Schwarz, M. Hibernation patterns and energy expenditure in hedgehogs from semi-arid and temperate habitats. J. Comp. Physiol. B 155, 117–123 (1984).Article 

    Google Scholar 
    Abu Baker, M. A. et al. Caught basking in the winter sun: Preliminary data on winter thermoregulation in the Ethiopian hedgehog, Paraechinus aethiopicus in Qatar. J. Arid Environ. 125, 52–55 (2016).ADS 
    Article 

    Google Scholar 
    McKechnie, A. E. & Mzilikazi, N. Heterothermy in Afrotropical mammals and birds: A review. Integr. Comp. Biol. 51, 349–363 (2011).PubMed 
    Article 

    Google Scholar 
    Wacker, C. B., McAllan, B. M., Körtner, G. & Geiser, F. The role of basking in the development of endothermy and torpor in a marsupial. J. Comp. Physiol. B 187, 1029–1038 (2017).PubMed 
    Article 

    Google Scholar 
    Brown, K. J. & Downs, C. T. Basking behaviour in the rock hyrax (Procavia capensis) during winter. Afr. Zool. 42, 70–79 (2007).Article 

    Google Scholar 
    Humphries, M. M., Thomas, D. W. & Kramer, D. L. The role of energy availability in mammalian hibernation: A cost-benefit approach. Physiol. Biochem. Zool. 76, 165–179 (2003).PubMed 
    Article 

    Google Scholar 
    Field, K. A. et al. Effect of torpor on host transcriptomic responses to a fungal pathogen in hibernating bats. Mol. Ecol. 27, 3727–3743 (2018).CAS 
    Article 

    Google Scholar 
    Bieber, C., Cornils, J. S., Hoelzl, F., Giroud, S. & Ruf, T. The costs of locomotor activity? Maximum body temperatures and the use of torpor during the active season in edible dormice. J. Comp. Physiol. B 187, 803–814 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eto, T. et al. Individual variation of daily torpor and body mass change during winter in the large Japanese field mouse (Apodemus speciosus). J. Comp. Physiol. B 188, 1005–1014 (2018).PubMed 
    Article 

    Google Scholar 
    Zervanos, S. M., Maher, C. R. & Florant, G. L. Effect of body mass on hibernation strategies of woodchucks (Marmota monax). (2014).Ford, R. G. Home range in a patchy environment: Optimal foraging predictions. Am. Zool. 23, 315–326 (1983).Article 

    Google Scholar 
    Czenze, Z. J. & Willis, C. K. R. Warming up and shipping out: Arousal and emergence timing in hibernating little brown bats (Myotis lucifugus). J. Comp. Physiol. B 185, 575–586 (2015).PubMed 
    Article 

    Google Scholar 
    Batavia, M., Nguyen, G., Harman, K. & Zucker, I. Hibernation patterns of Turkish hamsters: Influence of sex and ambient temperature. J. Comp. Physiol. B 183, 269–277 (2013).PubMed 
    Article 

    Google Scholar 
    Kato, G. A. et al. Individual differences in torpor expression in adult mice are related to relative birth mass. J. Exp. Biol. 221, jeb171983 (2018).PubMed 
    Article 

    Google Scholar 
    Williams, C. T. et al. Sex-dependent phenological plasticity in an arctic hibernator. Am. Nat. 190, 854–859 (2017).PubMed 
    Article 

    Google Scholar 
    Healy, J. E., Burdett, K. A., Buck, C. L. & Florant, G. L. Sex differences in torpor patterns during natural hibernation in golden-mantled ground squirrels (Callospermophilus lateralis). J. Mammal. 93, 751–758 (2012).Article 

    Google Scholar 
    Wang, Y., Yuan, L.-L., Peng, X., Wang, Y. & Yang, M. Experimental study on hibernation patterns in different ages and sexes of daurian ground squirrel (Spermophilus Dauricus). Shenyang Shifan Daxue Xuebao (Ziran Kexue Ban) 27, 351–355 (2009).
    Google Scholar 
    Siutz, C., Franceschini, C. & Millesi, E. Sex and age differences in hibernation patterns of common hamsters: Adult females hibernate for shorter periods than males. J. Comp. Physiol. B 186, 801–811 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Michener, G. R. Sexual differences in over-winter torpor patterns of Richardson’s ground squirrels in natural hibernacula. Oecologia 89, 397–406 (1992).ADS 
    PubMed 
    Article 

    Google Scholar 
    Boyles, J. G., Bennett, N. C., Mohammed, O. B. & Alagaili, A. N. Torpor patterns in Desert Hedgehogs (Paraechinus aethiopicus) represent another new point along a thermoregulatory continuum. Physiol. Biochem. Zool. 90, 445–452 (2017).PubMed 
    Article 

    Google Scholar 
    Reeve, N. Hedgehogs (Poyser, 1994).
    Google Scholar 
    He, K. et al. An estimation of erinaceidae phylogeny: A combined analysis approach. PLoS One 7, e39304 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schoenfeld, M. & Yom-Tov, Y. The biology of two species of hedgehogs, Erinaceus europaeus concolor and Hemiechinus auritus aegyptius, Israel. Mammalia 49, 339–356 (1985).Article 

    Google Scholar 
    Haigh, A., O’Riordan, R. M. & Butler, F. Nesting behaviour and seasonal body mass changes in a rural Irish population of the Western hedgehog (Erinaceus europaeus). Acta Theriol. (Warsz) 57, 321–331 (2012).Article 

    Google Scholar 
    Rasmussen, S. L., Berg, T. B., Dabelsteen, T. & Jones, O. R. The ecology of suburban juvenile European hedgehogs (Erinaceus europaeus) in Denmark. Ecol. Evol. 9, 13174–13187 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jensen, A. B. Overwintering of European hedgehogs (Erinaceus europaeus) in a Danish rural area. Acta Theriol. (Warsz) 49, 145–155 (2004).Article 

    Google Scholar 
    Jackson, D. B. The breeding biology of introduced hedgehogs (Erinaceus europaeus) on a Scottish Island: Lessons for population control and bird conservation. J. Zool. 268, 303–314 (2006).Article 

    Google Scholar 
    Rautio, A., Valtonen, A., Auttila, M. & Kunnasranta, M. Nesting patterns of European hedgehogs (Erinaceus europaeus) under northern conditions. Acta Theriol. (Warsz) 59, 173–181 (2014).Article 

    Google Scholar 
    Hallam, S. L. & Mzilikazi, N. Heterothermy in the southern African hedgehog, Atelerix frontalis. J. Comp. Physiol. B 181, 437–445 (2011).PubMed 
    Article 

    Google Scholar 
    South, K. E., Haynes, K. & Jackson, A. C. Hibernation Patterns of the European Hedgehog, Erinaceus europaeus, at a Cornish Rescue Centre. Animals 10, 1418 (2020).PubMed Central 
    Article 

    Google Scholar 
    Gillies, A. C., Ellison, G. T. H. & Skinner, J. D. The effect of seasonal food restriction on activity, metabolism and torpor in the South African hedgehog (Atelerix frontalis). J. Zool. 223, 117–130 (1991).Article 

    Google Scholar 
    Gazzard, A. & Baker, P. J. Patterns of feeding by householders affect activity of hedgehogs (Erinaceus europaeus) during the hibernation period. Animals 10, 1344 (2020).PubMed Central 
    Article 

    Google Scholar 
    Dmiel, R. & Schwarz, M. Hibernation patterns and energy expenditure in hedgehogs from semi-arid and temperate habitats. J. Comp. Physiol. B 155, 117–123 (1984).Article 

    Google Scholar 
    Fowler, P. A. & Racey, P. A. Daily and seasonal cycles of body temperature and aspects of heterothermy in the hedgehog Erinaceus europaeus. J. Comp. Physiol. B 160, 299–307 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutovskaya, M. V. et al. The dynamics of body temperature of the Eastern European hedgehog (Erinaceus roumanicus) during winter hibernation. Biol. Bull. 46, 1136–1145 (2019).Article 

    Google Scholar 
    Harrison, D. L. & Bates, P. J. J. The Mammals of Arabia Vol 354 (Harrison Zoological Museum Sevenoaks, 1991).
    Google Scholar 
    Al-Musfir, H. M. & Yamaguchi, N. Timings of hibernation and breeding of Ethiopian Hedgehogs, Paraechinus aethiopicus in Qatar. Zool. Middle East 45, 3–10 (2008).Article 

    Google Scholar 
    Pettett, C. E., Al-Hajri, A., Al-Jabiry, H., Macdonald, D. W. & Yamaguchi, N. A comparison of the Ranging behaviour and habitat use of the Ethiopian hedgehog (Paraechinus aethiopicus) in Qatar with hedgehog taxa from temperate environments. Sci. Rep. 8, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Abu Baker, M. A., Reeve, N., Conkey, A. A. T., Macdonald, D. W. & Yamaguchi, N. Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs. PLoS One 12, e0180826 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yamaguchi, N., Al-Hajri, A. & Al-Jabiri, H. Timing of breeding in free-ranging Ethiopian hedgehogs, Paraechinus aethiopicus, from Qatar. J. Arid Environ. 99, 1–4 (2013).ADS 
    Article 

    Google Scholar 
    Alagaili, A. N., Bennett, N. C., Mohammed, O. B. & Hart, D. W. The reproductive biology of the Ethiopian hedgehog, Paraechinus aethiopicus, from central Saudi Arabia: The role of rainfall and temperature. J. Arid Environ. 145, 1–9 (2017).ADS 
    Article 

    Google Scholar 
    Pettett, C. E. et al. Daily energy expenditure in the face of predation: Hedgehog energetics in rural landscapes. J. Exp. Biol. 220, 460–468 (2017).PubMed 
    Article 

    Google Scholar 
    Kraus, C., Eberle, M. & Kappeler, P. M. The costs of risky male behaviour: Sex differences in seasonal survival in a small sexually monomorphic primate. Proc. R. Soc. B Biol. Sci. 275, 1635–1644 (2008).Article 

    Google Scholar 
    Mzilikazi, N. & Lovegrove, B. G. Reproductive activity influences thermoregulation and torpor in pouched mice, Saccostomus campestris. J. Comp. Physiol. B 172, 7–16 (2002).PubMed 
    Article 

    Google Scholar 
    Richter, M. M., Barnes, B. M., O’reilly, K. M., Fenn, A. M. & Buck, C. L. The influence of androgens on hibernation phenology of free-living male arctic ground squirrels. Horm. Behav. 89, 92–97 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Haigh, A., Butler, F. & O’Riordan, R. M. Courtship behaviour of western hedgehogs (Erinaceus europaeus) in a rural landscape in Ireland and the first appearance of offspring. Lutra 55, 41–54 (2012).
    Google Scholar 
    Nicol, S. C., Morrow, G. E. & Harris, R. L. Energetics meets sexual conflict: The phenology of hibernation in Tasmanian echidnas. Funct. Ecol. 33, 2150–2160 (2019).Article 

    Google Scholar 
    Pettett, C. W., Macdonald, D., Al-Hajiri, A., Al-Jabiry, H. & Yamaguchi, N. Characteristics and demography of a free-ranging Ethiopian Hedgehog, Paraechinus aethiopicus, population in Qatar. Animals 10, 951 (2020).PubMed Central 
    Article 

    Google Scholar 
    Kenward, R. E. A Manual for Wildlife Radio Tagging (Academic Press, 2000).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2021).
    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
    Google Scholar  More

  • in

    Hydrologic regime alteration and influence factors in the Jialing River of the Yangtze River, China

    Ge, J., Peng, W., Wei, H. W., Qu, X. & Singh, S. Quantitative assessment of flow regime alteration using a revised range of variability methods. Water 10(5), 597 (2018).Article 

    Google Scholar 
    Latrubesse, E. M. et al. Damming the rivers of the Amazon basin. Nature 546(7658), 363–369 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meade, R. H. & Moody, J. A. Causes for the decline of suspended-sediment discharge in the Mississippi River system, 1940–2007. Hydrol. Process 24(1), 35–49 (2010).
    Google Scholar 
    Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M. & Haggag, M. A new Budyko framework extension using time series SARIMAX model. J. Hydrol. 570(2019), 827–838 (2019).ADS 
    Article 

    Google Scholar 
    Wang, H., Liu, J. & Guo, W. The variation and attribution analysis of the runoff and sediment in the lower reach of the Yellow River during the past 60 years. Water Supply 21(6), 3193–3209 (2021).Article 

    Google Scholar 
    Guo, S. L., Guo, J., Hou, Y., Xiong, L. & Hong, X. Prediction of future runoff change based on Budyko hypothesis in Yangtze River basin. Adv. Water Sci. 26(02), 151–160 (2015).
    Google Scholar 
    Zhang, X., Dong, Z., Gupta, H., Wu, G. & Li, D. Impact of the three gorges dam on the hydrology and ecology of the Yangtze River. Water 590(8), 1–18 (2016).ADS 
    CAS 

    Google Scholar 
    Zhang, J., Zhang, M., Song, Y. & Lai, Y. Hydrological simulation of the Jialing River Basin using the MIKE SHE model in changing climate. J. Water Clim. Change 12(6), 1–20 (2021).
    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Powell, J. & Braun, P. D. A method for assessing hydrologic alteration within ecosystems. Conserv. Biol. 10(4), 1163–1174 (1996).Article 

    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Wigington, B. & Braun, D. How much water does a river need?. Freshw. Biol. 37(1), 231–249 (1997).Article 

    Google Scholar 
    Richter, B. D., Baumgartner, J. V., Braun, D. P. & Powell, J. A spatial assessment of hydrologic alteration within a river network. Regul. River Res. Manag. 14(4), 329–340 (1998).Article 

    Google Scholar 
    Guo, W., Xu, G., Shao, J., Bing, J. & Chen, X. Research on the middle and lower reaches of the Yangtze River and lake’s hydrological alterations based on RVA. In IOP Conference Series: Earth and Environmental Science Vol 153, No 6, 062047.1–062047.8 (2018).Guo, W., Li, Y., Wang, H. & Zha, H. Assessment of eco-hydrological regime of lower reaches of Three Gorges Reservoir based on IHA-RVA. Resour. Environ. Yangtze Basin 27(09), 2014–2021 (2018).
    Google Scholar 
    Zuo, Q. & Liang, S. Effects of dams on river flow regime based on IHA/RVA. Proc. Int. Assoc. Hydrol. Sci. 368(368), 275–276 (2015).
    Google Scholar 
    Mwedzi, T., Katiyo, L., Mugabe, F. T., Bere, T. & Kuoika, O. L. A spatial assessment of stream-flow characteristics and hydrologic alterations, post dam construction in the Manyame catchment, Zimbabwe. Water Sa 42(2), 194–202 (2016).CAS 
    Article 

    Google Scholar 
    Liu, J., Chen, J., Xu, J., Lin, Y. & Zhou, M. Attribution of runoff variation in the headwaters of the Yangtze River based on the Budyko hypothesis. Int. J. Environ. Res. Public Health 16(14), 2506.1-2506.15 (2019).
    Google Scholar 
    Yan, D. Using budyko-type equations for separating the impacts of climate and vegetation change on runoff in the source area of the yellow river. Water 12(12), 3418.1-3418.15 (2020).ADS 

    Google Scholar 
    Gunkel, A. & Lange, J. Water scarcity, data scarcity and the Budyko curve—An application in the Lower Jordan River Basin. J. Hydrol. Reg. Stud. 12(C), 136–149 (2017).Article 

    Google Scholar 
    Fathi, M. M., Awadallah, A. G., Abdelbaki, A. M. & Haggag, M. A new Budyko framework extension using time series SARIMAX model. J. Hydrol. 570, 827–838 (2019).ADS 
    Article 

    Google Scholar 
    Li, Y., Fan, J. & Liao, Y. Variation characteristics of streamflow and sediment in the Jialing river basin in the past 60 years. Mt. Res. 38(03), 339–348 (2020).
    Google Scholar 
    Liu, Y., Li, F. & Xu, X. Impacts of hydropower development on hydrological regime in mainstream of mid-lower Jialing River. Yangtze River 45(05), 10–15 (2014).
    Google Scholar 
    Zhou, Y. et al. Distinguishing the multiple controls on the decreased sediment flux in the Jialing River basin of the Yangtze River, Southwestern China. CATENA 193(C), 104593.1-104593.11 (2020).
    Google Scholar 
    Zeng, X. et al. Changes and relationships of climatic and hydrological droughts in the Jialing River Basin, China. PLoS ONE 10(11), e0141648 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yan, M., Fang, G. H., Dai, L. H., Tan, Q. F. & Huang, X. F. Optimizing reservoir operation considering downstream ecological demands of water quantity and fluctuation based on IHA parameters. J. Hydrol. 4(2021), 126647 (2021).Article 

    Google Scholar 
    Wei, R., Liu, J., Zhang, T., Zeng, Q. & Dong, X. Attribution analysis of runoff variation in the upper-middle reaches of Yalong river. Resour. Environ. Yangtze Basin 29(07), 1643–1652 (2020).
    Google Scholar 
    Xie, J. H., Yu, J. H., Chem, H. S. & Hsu, P. C. Sources of subseasonal prediction skill for heatwaves over the Yangtze river basin revealed from three S2S models. Adv. Atmos. Sci. 37(12), 1435–1450 (2020).Article 

    Google Scholar 
    Guo, W., Li, Y., Wang, H. & Cha, H. Temporal variations and influencing factors of river runoff and sediment regimes in the Yangtze River, China. Desalin. Water Treat. 174(2020), 258–270 (2020).Article 

    Google Scholar 
    Tian, X. et al. Hydrologic alteration and possible underlying causes in the Wuding River, China. Sci. Total Environ. 693, 133556.1-133556.9 (2019).Article 
    CAS 

    Google Scholar 
    Tang, B., Wang, W. C. & Fan, X. Study on the influence of reservoir dispatch of the upper Yangtze river on the runoff control. E3S Web Conf. 283(18), 01030 (2021).
    Google Scholar 
    Liu, Y. et al. Characteristics and resource status of main commercial fish in the middle reaches of Jialing River, China. J. Appl. Environ. Biol. 27(04), 837–847 (2021).
    Google Scholar 
    Sun, Z., Zhang, M. & Chen, Y. Protection of the rare and endemic fish in the conservation area located in the upstream of the Yangtze River. Freshw. Fish. 44(06), 3–8 (2014).
    Google Scholar 
    Chen, Q. H. et al. Impacts of climate change and LULC change on runoff in the Jinsha River Basin. J. Geogr. Sci. 30(01), 85–102 (2020).Article 

    Google Scholar 
    Cui, L., Wang, Z. & Deng, L. Vegetation dynamics based on NDVI in Yangtze River Basin (China) during 1982–2015. IOP Conf. Ser. Materials Sci. Eng. 780(2020), 062049 (2020).Article 

    Google Scholar 
    Wang, Y., Wang, S., Wu, M. & Wang, S. Impacts of the land use and climate changes on the hydrological characteristics of Jialing River Basin. Res. Soil Water Conserv. 26(01), 135–142 (2019).
    Google Scholar 
    Wu, Y. L. & Pu, H. W. Y. The influence of hydropower station on sand content detection in Jialing River. Technol. Dev. Enterp. 38(9), 55–58 (2019).
    Google Scholar 
    Zhuo, Z., Qian, Z., Jiang, H., Wang, H. & Guo, W. Evaluation of hydrological regime in Xiangjiang basin on IHA-RVA method. China Rural Water Hydropower 8(2020), 188–192 (2020).
    Google Scholar 
    Chen, L. et al. Temporal characteristics detection and attribution analysis of hydrological time-series variation in the seagoing river of southern China under environmental change. Acta Geophys. 66(5), 1151–1170 (2018).ADS 
    Article 

    Google Scholar 
    Zhang, R., Liu, J., Mao, G. & Wang, L. Flow regime alterations of upper Heihe River based on improved RVA. Arid Zone Res. 38(01), 29–38 (2021).
    Google Scholar 
    Sun, Y. & Wang, X. Changes in runoff and driving force analysis in the key section of the Yellow River diversion project. J. Hydroecol. 41(06), 19–26 (2020).
    Google Scholar 
    Zhang, L., Dawes, W. R. & Walker, G. R. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37(3), 701–708 (2001).ADS 
    Article 

    Google Scholar 
    Fu, B. Calculation of soil evaporation. Acta Meteor. Sin. 02(1981), 226–236 (1981).
    Google Scholar 
    Liu, J., Zhang, Q., Singh, V. P. & Shi, P. Contribution of multiple climatic variables and human activities to streamflow changes across China. J. Hydrol. 545(2016), 145–162 (2016).
    Google Scholar 
    Yang, D., Zhang, S. & Xu, X. Attribution analysis for runoff decline in Yellow River Basin during past fifty years based on Budyko hypothesis. Sci. Sinica 45(10), 1024–1034 (2015).
    Google Scholar 
    Schreiber, P. Ber die Beziehungen zwischen dem Niederschlag und der Wasserführung der Flüsse in Mitteleuropa. Meteorol. Z. 21, 441–452 (1904).Budyko, M. Evaporation under Natural Conditions (Gidrometeorizdat, Leningrad, Russia, 1948).Pike, J. The estimation of annual run-off from meteorological data in a tropical climate. J. Hydrol. 2, 116–123 (1964).Ol’dekop, E. On evaporation from the surface of river basins. Trans. Meteorol. Obs. 4, 200 (1911). More

  • in

    Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet

    Reich, P. B. et al. The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci. 164, S143–S164 (2003).
    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).
    Google Scholar 
    Liu, X. J. & Ma, K. P. Plant functional traits concepts, applications and future directions. Sci. Sin. Vitae 45, 325–339 (2015).
    Google Scholar 
    Diaz, S., Cabido, M. & Casanoves, F. Plant functional traits and environmental filters at a regional scale. J. Veg. Sci. 9, 113–122 (1998).
    Google Scholar 
    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barton, K. E. Tougher and thornier: general patterns in the induction of physical defence traits. Func. Ecol. 30, 181–187 (2016).
    Google Scholar 
    Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).PubMed 

    Google Scholar 
    Wright, S. J. et al. Functional traits and the growth–mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010).PubMed 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ruiz-Jaen, M. C. & Potvin, C. Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189, 978–987 (2011).PubMed 

    Google Scholar 
    Grubb, P. J. A positive distrust in simplicity-lessons from plant defences and from competition among plants and among animals. J. Ecol. 80, 585–610 (1992).
    Google Scholar 
    Hanley, M. E., Lamont, B. B., Fairbanks, M. M. & Rafferty, C. M. Plant structural traits and their role in anti-herbivore defence. Perspect. Plant Ecol. 8, 157–178 (2007).
    Google Scholar 
    Burns, K. C. Spinescence in the New Zealand flora: parallels with Australia. N. Z. J. Bot. 54, 273–289 (2016).
    Google Scholar 
    Goheen, J. R., Young, T. P., Keesing, F. & Palmer, T. M. Consequences of herbivory by native ungulates for the reproduction of a savanna tree. J. Ecol. 95, 129–138 (2007).
    Google Scholar 
    Goldel, B., Kissling, W. D. & Svenning, J.-C. Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Bot. J. Linn. Soc. 179, 602–617 (2015).
    Google Scholar 
    Alves-Silva, E. & Del-Claro, K. Herbivory causes increases in leaf spinescence and fluctuating asymmetry as a mechanism of delayed induced resistance in a tropical savanna tree. Plant Ecol. Evol. 149, 73–80 (2016).
    Google Scholar 
    Cooper, S. M. & Ginnett, T. F. Spines protect plants against browsing by small climbing mammals. Oecologia 113, 219–221 (1998).ADS 
    PubMed 

    Google Scholar 
    Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ratnam, J., Tomlinson, K. W., Rasquinha, D. N. & Sankaran, M. Savannahs of Asia: antiquity, biogeography, and an uncertain future. Philos. Trans. R. Soc. B. 371, 20150305 (2016).
    Google Scholar 
    Scholes, R. & Archer, S. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 28, 517–544 (1997).
    Google Scholar 
    Cerling, T. E. Development of grasslands and savannas in East Africa during the Neogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 97, 241–247 (1992).
    Google Scholar 
    Brown, R. W. Additions to the flora of the Green River formation. U. S. Geol. Surv. Prof. Paper, U. S. Gov. Print. Off. 154-J, 279–292 (1929).Manchester, S. Oligocene fossil plants of the John Day Formation, Oregon. Or. Geol. 49, 115d–127d (1987).
    Google Scholar 
    Meyer, H. W. & Manchester, S. R. Oligocene Bridge Creek flora of the John Day Formation, Oregon (Univ. California Press, 1997).Lancucka-Srodoniowa, M. Tortonian flora from the “Gdow Bay” in the south of Poland. Acta Palaeobot. 7, 1–134 (1966).
    Google Scholar 
    Yuan, J. et al. Rapid drift of the Tethyan Himalaya terrane before two-stage India-Asia collision. Natl Sci. Rev. 8, nwaa173 (2021).PubMed 

    Google Scholar 
    Spicer, R. A. et al. Why the ‘Uplift of the Tibetan Plateau’is a myth. Natl Sci. Rev. 8, nwaa091 (2021).PubMed 

    Google Scholar 
    Spicer, R. A. Tibet, the Himalaya, Asian monsoons and biodiversity–In what ways are they related? Plant Divers. 39, 233–244 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    DeCelles, P. G., Kapp, P., Gehrels, G. E. & Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: implications for the age of initial India-Asia collision. Tectonics 33, 824–849 (2014).ADS 

    Google Scholar 
    Royden, L. H., Burchfiel, B. C. & van der Hilst, R. D. The geological evolution of the Tibetan Plateau. Science 321, 1054–1058 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Deng, T., Wu, F. X., Zhou, Z. K. & Su, T. Tibetan Plateau: an evolutionary junction for the history of modern biodiversity. Sci. China Earth Sci. 63, 172–187 (2020).ADS 

    Google Scholar 
    Favre, A. et al. The role of the uplift of the Qinghai‐Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253 (2015).PubMed 

    Google Scholar 
    Su, T. et al. A Middle Eocene lowland humid subtropical “Shangri-La” ecosystem in central Tibet. Proc. Natl Acad. Sci. USA 117, 32989–32995 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scientific Expedition Team to the Qinghai-Xizang Plateau. Vegetation of Xizang (Tibet) (Sci. Press, 1988).Liu. X. H. Paleoelevation History and Evolution of the Cenozoic Lunpola basin, Central Tibet. Doctoral thesis (Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 2018).Xiong, Z. Y. et al. The rise and demise of the Paleogene Central Tibetan Valley. Sci. Adv. 8, eabj0944 (2022).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reichgelt, T., West, C. K. & Greenwood, D. R. The relation between global palm distribution and climate. Sci. Rep. 8, 4721 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farnsworth, A. et al. Paleoclimate model-derived thermal lapse rates: towards increasing precision in paleoaltimetry studies. Earth Planet. Sci. Lett. 564, 116903 (2021).CAS 

    Google Scholar 
    Spicer, R. A. et al. Why do foliar physiognomic climate estimates sometimes differ from those observed? Insights from taphonomic information loss and a CLAMP case study from the Ganges Delta. Palaeogeogr. Palaeoclimatol. Palaeoecol. 302, 381–395 (2011).
    Google Scholar 
    Walter, H. Vegetation of the Earth and Ecological Systems of the Geo-biosphere (Springer Berlin Heidelb., 1973).Burley, J. Encyclopedia of Forest Sciences (Acad. Press, 2004).Deng, T. et al. A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry. Sci. Bull. 57, 261–269 (2012).CAS 

    Google Scholar 
    Ma, P. F. et al. Late Oligocene-early Miocene evolution of the Lunpola Basin, central Tibetan Plateau, evidences from successive lacustrine records. Gondwana Res. 48, 224–236 (2017).ADS 

    Google Scholar 
    Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Spicer, R. A. The formation and interpretation of plant fossil assemblages. Adv. Bot. Res. 16, 95–191 (1989).
    Google Scholar 
    Gibson, D. J. Grasses and Grassland Ecology (Oxford Univ. Press, 2009).Eltringham, S. K. The Hippos: Natural History and Conservation (Princeton Univ. Press, 1999).Jiang, H. et al. Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. J. Asian Earth Sci. 175, 99–108 (2019).ADS 

    Google Scholar 
    Liu, J. et al. Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 524, 33–40 (2019).
    Google Scholar 
    Jia, L. B. et al. First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai-Tibetan Plateau: implications for morphological evolution and biogeography. J. Syst. Evol. 57, 94–104 (2019).
    Google Scholar 
    Su, T. et al. No high Tibetan Plateau until the Neogene. Sci. Adv. 5, eaav2189 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. L., Li, B. Y. & Zheng, D. A discussion on the boundary and area of the Tibetan Plateau in China. Geol. Res. 21, 1–8 (2002).
    Google Scholar 
    Yao, T. D. et al. From Tibetan Plateau to Third Pole and Pan-Third Pole. Bull. Chin. Acad. Sci. 32, 924–931 (2017).
    Google Scholar 
    Spicer, R. A., Farnsworth, A. & Su, T. Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: an evolving story. Plant Divers. 42, 229–254 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Liu, X. H., Xu, Q. & Ding, L. Differential surface uplift: Cenozoic paleoelevation history of the Tibetan Plateau. Sci. China Earth Sci. 59, 2105–2120 (2016).ADS 
    CAS 

    Google Scholar 
    Ding, L., Li, Z. Y. & Song, P. P. Core fragments of Tibetan Plateau from Gondwanaland united in Northern Hemisphere. Bull. Chin. Acad. Sci. 32, 945–950 (2017).
    Google Scholar 
    Deng, T. & Ding, L. Paleoaltimetry reconstructions of the Tibetan Plateau: progress and contradictions. Natl Sci. Rev. 2, 417–437 (2015).CAS 

    Google Scholar 
    Li, S. F. et al. Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Sci. Adv. 7, eabc7741 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ding, L. et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene–Eocene Linzhou Basin. Earth Planet. Sci. Lett. 392, 250–264 (2014).ADS 
    CAS 

    Google Scholar 
    Deng, T. et al. Review: implications of vertebrate fossils for paleo-elevations of the Tibetan Plateau. Glob. Planet. Change 174, 58–69 (2019).ADS 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hopkins, W. G. Introduction to Plant Physiology (John Wiley & Sons, 1999).Sun, J. M., Liu, W. G., Liu, Z. H. & Fu, B. H. Effects of the uplift of the Tibetan Plateau and retreat of Neotethys ocean on the stepwise aridification of mid-latitude Asian interior. Bull. Chin. Acad. Sci. 32, 951–958 (2017).
    Google Scholar 
    Zong, G. F. Cenezoic Mammals and Environment of Hengduan Mountains Region (China Ocean Press, 1996).Deng, T. et al. An Oligocene giant rhino provides insights into Paraceratherium evolution. Commun. Biol. 4, 639 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Young, T. P., Stanton, M. L. & Christian, C. E. Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos 101, 171–179 (2003).
    Google Scholar 
    Karban, R. & Myers, J. H. Induced plant responses to herbivory. Annu. Rev. Ecol. Syst. 20, 331–348 (1989).
    Google Scholar 
    Huntly, N. Herbivores and the dynamics of communities and ecosystems. Annu. Rev. Ecol. Syst. 22, 477–503 (1991).
    Google Scholar 
    Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl Acad. Sci. USA 106, 4947–4952 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sankaran, M., Augustine, D. J. & Ratnam, J. Native ungulates of diverse body sizes collectively regulate long‐term woody plant demography and structure of a semi‐arid savanna. J. Ecol. 101, 1389–1399 (2013).
    Google Scholar 
    Staver, A. C. & Bond, W. J. Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. J. Ecol. 102, 595–602 (2014).
    Google Scholar 
    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Spicer, R. A. et al. The topographic evolution of the Tibetan Region as revealed by palaeontology. Palaeobio. Palaeoenv. 101, 213–243 (2021).
    Google Scholar 
    Rowley, D. B. & Currie, B. S. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sun, J. M. et al. Palynological evidence for the latest Oligocene-early Miocene paleoelevation estimate in the Lunpola Basin, central Tibet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 399, 21–30 (2014).
    Google Scholar 
    DeCelles, P. G., Kapp, P., Ding, L. & Gehrels, G. E. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain. Geol. Soc. Am. Bull. 119, 654–680 (2007).ADS 

    Google Scholar 
    Tang, H. et al. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene. J. Syst. Evol. 57, 670–677 (2019).
    Google Scholar 
    Wang, T. X. et al. Fossil fruits of Illigera (Hernandiaceae) from the Eocene of central Tibetan Plateau. J. Syst. Evol. 59, 1276–1286 (2021).
    Google Scholar 
    Del Rio, C. et al. Asclepiadospermum gen. nov., the earliest fossil record of Asclepiadoideae (Apocynaceae) from the early Eocene of central Qinghai-Tibetan Plateau, and its biogeographic implications. Am. J. Bot. 107, 126–138 (2020).PubMed 

    Google Scholar 
    Xu, Z. Y. The Tertiary and its petroleum potential in the Lunpola Basin, Tibet. Oil Gas. Geol. 1, 153–158 (1980).
    Google Scholar 
    Zhang, K. X. et al. Paleogene-Neogene stratigraphic realm and sedimentary sequence of the Qinghai-Tibet Plateau and their response to uplift of the plateau. Sci. China Earth Sci. 53, 1271–1294 (2010).ADS 

    Google Scholar 
    Wu, Y. F. & Chen, Y. Y. Fossil cyprinid fishes from the late Tertiary of north Xizang, China. Vertebrata Palasiat. 18, 15–20 (1980).
    Google Scholar 
    Wu, F. X., Miao, D. S., Chang, M. M., Shi, G. L. & Wang, N. Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Sci. Rep. 7, 878 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai, C. Y., Huang, D. Y., Wu, F. X., Zhao, M. & Wang, N. Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. J. Asian Earth Sci. 175, 121–127 (2017).ADS 

    Google Scholar 
    Low, S. L. et al. Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. J. Syst. Palaeontol. 18, 415–431 (2020).
    Google Scholar 
    Bell, A. D. & Bryan, A. Plant Form: An Illustrated Guide to Flowering Plant Morphology (Timber Press, 2008).Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics. 24, 129–131 (2008).CAS 
    PubMed 

    Google Scholar 
    Maddison, W. P. Confounding asymmetries in evolutionary diversification and character change. Evolution 60, 1743–1746 (2006).PubMed 

    Google Scholar 
    Forest, C. E., Molnar, P. & Emanuel, K. A. Palaeoaltimetry from energy conservation principles. Nature 374, 347–350 (1995).ADS 
    CAS 

    Google Scholar 
    Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@ Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).ADS 
    CAS 

    Google Scholar 
    Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).ADS 
    CAS 

    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, P. M. Description of the “TRIFFID” Dynamic Global Vegetation Model. 1–16 (Met Office Hadley Centre, 2001).Cox, P., Huntingford, C. & Harding, R. A canopy conductance and photosynthesis model for use in a GCM land surface scheme. J. Hydrol. 212, 79–94 (1998).ADS 

    Google Scholar 
    McInerney, F. A., Strömberg, C. A. E. & White, J. W. C. The Neogene transition from C3 to C4 grasslands in North America stable carbon isotope ratios of fossil phytoliths. Paleobiology 37, 23–49 (2011).
    Google Scholar 
    Lu, H. Y. et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China II: palaeoenvironmental reconstruction in the Loess Plateau. Quat. Sci. Rev. 25, 945–959 (2006).ADS 

    Google Scholar  More