Epidemiologically-based strategies for the detection of emerging plant pathogens
Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535â544 (2004).PubMedÂ
Google ScholarÂ
Brasier, C. M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57, 792â808 (2008).
Google ScholarÂ
Waage, J. K. & Mumford, J. D. Agricultural biosecurity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 863â876 (2008).CASÂ
PubMedÂ
Google ScholarÂ
IPPC. Surveillance guideâA guide to understand the principal requirements of surveillance programmes for national plant protection organizations. Second edition. http://www.fao.org/documents/card/en/c/cb7139en (2021) https://doi.org/10.4060/cb7139en.Parnell, S., van den Bosch, F., Gottwald, T. & Gilligan, C. A. Surveillance to inform control of emerging plant diseases: An epidemiological perspective. Annu. Rev. Phytopathol. 55, 591â610 (2017).CASÂ
PubMedÂ
Google ScholarÂ
Cunniffe, N. J., Cobb, R. C., Meentemeyer, R. K., Rizzo, D. M. & Gilligan, C. A. Modeling when, where, and how to manage a forest epidemic, motivated by sudden oak death in California. Proc. Natl. Acad. Sci. 113, 5640â5645 (2016).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Gottwald, T. R., Dixon, W., Parnell, S. & Riley, T. Huanglongbing: The dragon arrives in the USA. In Huanglongbing-Greening International Workshop, July 14â21 13â14 (2006).Herms, D. A., Stone, A. K. & Chatfield, J. A. Emerald ash borer: The beginning of the end of ash in North America?. Ornam. Plants Annu. Rep. Res. Rev. 2003, 62â71 (2004).
Google ScholarÂ
Sansford, C. E. Pest Risk Analysis for Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea) for the UK and the Republic of Ireland. https://webarchive.nationalarchives.gov.uk/ukgwa/20140904094312mp_/http://www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/documents/hymenoscyphusPseudoalbidusPRA.pdf (2013).Alonso Chavez, V., Parnell, S. & van den Bosch, F. Monitoring invasive pathogens in plant nurseries for early-detection and to minimise the probability of escape. J. Theor. Biol. 407, 290â302 (2016).ADSÂ
MathSciNetÂ
PubMedÂ
MATHÂ
Google ScholarÂ
Bourhis, Y., Gottwald, T. R., Lopez-Ruiz, F. J., Patarapuwadol, S. & van den Bosch, F. Sampling for disease absence-deriving informed monitoring from epidemic traits. J. Theor. Biol. 461, 8â16 (2019).ADSÂ
MathSciNetÂ
PubMedÂ
MATHÂ
Google ScholarÂ
Mastin, A. J., van den Bosch, F., van den Berg, F. & Parnell, S. Quantifying the hidden costs of imperfect detection for early detection surveillance. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180261 (2019).
Google ScholarÂ
Mastin, A. J., van den Bosch, F., Gottwald, T. R., Alonso Chavez, V. & Parnell, S. R. A method of determining where to target surveillance efforts in heterogeneous epidemiological systems. PLoS Comput. Biol. 13, e1005712 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Parnell, S., Gottwald, T. R., Gilks, W. R. & van den Bosch, F. Estimating the incidence of an epidemic when it is first discovered and the design of early detection monitoring. J. Theor. Biol. 305, 30â36 (2012).ADSÂ
MathSciNetÂ
CASÂ
PubMedÂ
MATHÂ
Google ScholarÂ
Parnell, S., Gottwald, T. R., Cunniffe, N. J., Alonso Chavez, V. & van den Bosch, F. Early detection surveillance for an emerging plant pathogen: A rule of thumb to predict prevalence at first discovery. Proc. R. Soc. B Biol. Sci. 282, 20151478 (2015).
Google ScholarÂ
Silva, G. et al. Plant pest surveillance: From satellites to molecules. Emerg. Top. Life Sci. 5, 275â287 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Mastin, A. J., Gottwald, T. R., van den Bosch, F., Cunniffe, N. J. & Parnell, S. Optimising risk-based surveillance for early detection of invasive plant pathogens. PLoS Biol. 18, e3000863 (2020).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Martelli, G. P., Boscia, D., Porcelli, F. & Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol. 144, 235â243 (2015).
Google ScholarÂ
Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95, 668 (2013).
Google ScholarÂ
Ben Moussa, I. E. et al. Seasonal fluctuations of sap-feeding insect species infected by Xylella fastidiosa in Apulian olive groves of southern Italy. J. Econ. Entomol. 109, 1512â1518 (2016).PubMedÂ
Google ScholarÂ
Cornara, D. et al. Transmission of Xylella fastidiosa to grapevine by the meadow spittlebug. Phytopathology 106, 1285â1290 (2016).CASÂ
PubMedÂ
Google ScholarÂ
Cornara, D. et al. Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J. Appl. Entomol. 141, 80â87 (2017).
Google ScholarÂ
Saponari, M. et al. Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 107, 1316â1319 (2014).PubMedÂ
Google ScholarÂ
European Commission. Commission Implementing Regulation (EU) 2020/1201 of 14 August 2020 as regards measures to prevent the introduction into and the spread within the Union of Xylella fastidiosa (Wells et al.). (2021).EFSA et al. Guidelines for statistically sound and risk-based surveys of Xylella fastidiosa. EFSA. Support. Publ. 17, 1873 (2020).EFSA et al. General guidelines for statistically sound and risk-based surveys of plant pests. EFSA Support. Publ. 17, 1919E (2020).Bourhis, Y., Gottwald, T. & van den Bosch, F. Translating surveillance data into incidence estimates. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180262 (2019).CASÂ
Google ScholarÂ
Cornara, D. et al. Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. J. Pest Sci. 90, 521â530 (2017).
Google ScholarÂ
Cornara, D., Bosco, D. & Fereres, A. Philaenus spumarius: when an old acquaintance becomes a new threat to European agriculture. J. Pest Sci. 91, 957â972 (2018).
Google ScholarÂ
Almeida, R. P. P., Blua, M. J., Lopes, J. R. S. & Purcell, A. H. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Ann. Entomol. Soc. Am. 98, 775â786 (2005).
Google ScholarÂ
Purcell, A. H. & Finlay, A. H. Evidence for noncirculative transmission of Pierceâs disease bacterium by sharpshooter leafhoppers. Phytopathology 69, 393â395 (1979).
Google ScholarÂ
Hill, B. & Purcell, A. H. Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology 85, 209 (1995).
Google ScholarÂ
Hill, B. L. & Purcell, A. H. Multiplication and movement of Xylella fastidiosa within grapevine and four other plants. Phytopathology 85, 1368 (1995).
Google ScholarÂ
Huang, Q., Bentz, J. & Sherald, J. L. Fast, easy and efficient DNA extraction and one-step polymerase chain reaction for the detection of Xylella fastidiosa in potential insect vectors. J. Plant Pathol. 88, 77â81 (2006).CASÂ
Google ScholarÂ
Harper, S. J., Ward, L. I. & Clover, G. R. G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100, 1282â1288 (2010).CASÂ
PubMedÂ
Google ScholarÂ
EFSA et al. Pest survey card on Xylella fastidiosa. EFSA Support. Publ. 16, (2019).Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 8723 (2019).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
EPPO. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 49, 175â227 (2019).Landa, B. B. et al. Emergence of a plant pathogen in Europe associated with multiple intercontinental introductions. Appl. Environ. Microbiol. 86, 1â15 (2019).
Google ScholarÂ
Castro, C., DiSalvo, B. & Roper, M. C. Xylella fastidiosa: A reemerging plant pathogen that threatens crops globally. PLoS Pathog. 17, e1009813 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 109, 175â186 (2019).CASÂ
PubMedÂ
Google ScholarÂ
Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432â439 (2018).CASÂ
PubMedÂ
Google ScholarÂ
Gottwald, T. et al. Canine olfactory detection of a vectored phytobacterial pathogen, Liberibacter asiaticus, and integration with disease control. Proc. Natl. Acad. Sci. 117, 3492â3501 (2020).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Mendel, J., Furton, K. G. & Mills, D. An Evaluation of scent-discriminating canines for rapid response to agricultural diseases. HortTechnology 28, 102â108 (2018).
Google ScholarÂ
ECDC. Guidelines for the Surveillance of Invasive Mosquitoes in Europe. (2012).Kading, R. C., Golnar, A. J., Hamer, S. A. & Hamer, G. L. Advanced surveillance and preparedness to meet a new era of invasive vectors and emerging vector-borne diseases. PLoS Negl. Trop. Dis. 12, e0006761 (2018).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kumagai, L. B. et al. First report of Candidatus Liberibacter asiaticus associated with citrus huanglongbing in California. Plant Dis. 97, 283 (2013).CASÂ
PubMedÂ
Google ScholarÂ
Ben Moussa, I. E. et al. Evaluation of âSpy Insectâ approach for monitoring Xylella fastidiosa in symptomless olive orchards in the Salento peninsula (Southern Italy). IOBC WPRS Bull. 121, 77â84 (2017).
Google ScholarÂ
Cruaud, A. et al. Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: A case study in Corsica. Sci. Rep. 8, 15628 (2018).ADSÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Yaseen, T. et al. On-site detection of Xylella fastidiosa in host plants and in âspy insectsâ using the real-time loop-mediated isothermal amplification method. Phytopathol. Mediterr. https://doi.org/10.14601/Phytopathol_Mediterr-15250 (2015).ArticleÂ
Google ScholarÂ
LĂłpez-Mercadal, J. et al. Collection of data and information in Balearic Islands on biology of vectors and potential vectors of Xylella fastidiosa (GP/EFSA/ALPHA/017/01). EFSA Support. Publ. 18, 6925E (2021).
Google ScholarÂ
Cunty, A. Detection, identification and surveillance of Xylella fastidiosa on vectors in France https://zenodo.org/record/3551122#.XjGqBs77SUl. (2019) https://doi.org/10.5281/zenodo.3551122.Kottelenberg, D., Hemerik, L., Saponari, M. & van der Werf, W. Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia. Sci. Rep. 11, 1061 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
Google Scholar More