More stories

  • in

    Warmth worries workers

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Novel form of collective movement by soil bacteria

    Kuzyakov Y, Razavi BS. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol Biochem. 2019;135:343–60.CAS 
    Article 

    Google Scholar 
    Teixeira PJ, Colaianni NR, Fitzpatrick CR, Dangl JL. Beyond pathogens: Microbiota interactions with the plant immune system. Curr Opin Microbiol. 2019;49:7–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alirezaeizanjani Z, Großmann R, Pfeifer V, Hintsche M, Beta C. Chemotaxis strategies of bacteria with multiple run modes. Sci Adv. 2020;6:eaaz6153.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao S, Wu H, Yu X, Qian L, Gao X. Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control. 2016;98:11–17.CAS 
    Article 

    Google Scholar 
    Mitchell JG, Kogure K. Bacterial Motility: Links to the environment and a driving force for microbial physics. FEMS Microbiol Ecol. 2006;55:3–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kalamara M, Spacapan M, Mandic-Mulec I, Stanley-Wall NR. Social behaviours by Bacillus subtilis: Quorum sensing, kin discrimination and beyond. Mol Microbiol. 2018;110:863–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Posada LF, Álvarez JC, Romero-Tabarez M, de-Bashan L, Villegas-Escobar V. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems. Microbiol Res. 2018;217:69–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Beauregard PB, Yunrong C, Vlamakis H, Losick R, Kolter R. Bacillus subtilis Biofilm induction by plant polysaccharides. Proc Natl Acad Sci USA. 2013;110:1621–30.Article 

    Google Scholar 
    Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier J. Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. mBio 2016;7:1–10.Article 

    Google Scholar 
    Massalha H, Korenblum E, Malitsky S, Shapiro OH, Aharoni A. Live imaging of root-bacteria interactions in a microfluidics setup. Proc Natl Acad Sci USA. 2017;114:4549–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koch DL, Subramanian G. Collective hydrodynamics of swimming microorganisms: Living fluids. Annu Rev Fluid Mech. 2011;43:637–59.Article 

    Google Scholar 
    Wioland H, Lushi E, Goldstein RE. Directed collective motion of bacteria under channel confinement. New J Phys. 2016;18:eaaz6153.Article 

    Google Scholar 
    Petroff A, Libchaber A. Erratum: Hydrodynamics and collective behavior of the tethered bacterium Thiovulum majus. Proc Natl Acad Sci USA. 2016;111:5. E537-E545
    Google Scholar 
    Kearns DB. A field guide to bacterial swarming motility. Nat Rev Microbiol. 2010;8:634–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bais HP, Fall R, Vivanco JM. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 2004;134:307–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Souza R, Ambrosini A, Passaglia LMP. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol. 2015;38:401–19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roy K, Ghosh D, DeBruyn JM, Dasgupta T, Wommack KE, Liang X, et al. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils. Front Microbiol. 2020;11:1–13.Article 

    Google Scholar 
    Liu Y, Patko D, Engelhardt IC, George TS, Stanley-Wall NP, Ladmiral V. et al. Whole plant-environment microscopy reveals how Bacillus subtilis utilises the soil pore space to colonise plant roots. Proc Natl Acad Sci USA. 2021;118:e2109176118.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Einstein A. On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann Phys. 1905;17:549–60.CAS 
    Article 

    Google Scholar 
    Shellard A, Mayor R. Rules of Collective Migration: From the wildebeest to the neural crest: Rules of neural crest migration. Philos Trans R Soc B Biol Sci. 2020;375:1–9.Article 

    Google Scholar 
    Torney CJ, Lamont M, Debell L, Angohiatok RJ, Leclerc LM, Berdahl AM. Inferring the rules of social interaction in migrating caribou. Philos Trans R Soc B Biol Sci. 2018;373:20170385.Article 

    Google Scholar 
    Ballerini MN, Cabibbo R, Candelier A, Cavagna E, Cisbani I, Giardina V, et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc Natl Acad Sci USA. 2008;105:1232–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cavagna A, Cimarelli A, Giardina I, Parisi G, Santagati R, Stefanini F, et al. Scale-free correlations in starling flocks. Proc Natl Acad Sci USA. 2010;107:11865–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katz Y, Tunstrøm C, Ioannou CC, Huepe C, Couzin ID. Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci USA. 2011;108:18720–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buhl JD, Sumpter JT, Couzin ID, Hale JJ, Despland E, Miller ER, et al. From disorder to order in marching locusts. Science 2006;312:1402–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Seeley TD, Visscher PK. Quorum Sensing during nest-site selection by honeybee swarms. Behav Ecol Sociobiol. 2004;56:594–601.Article 

    Google Scholar 
    Zhang HP, Be’er A, Florin EL, Swinney HL. Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci USA. 2010;107:13626–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hughey LF, Hein AM, Strandburg-Peshkin A, Jensen FH. Challenges and solutions for studying collective animal behaviour in the wild. Philos Trans R Soc B Biol Sci. 2018;373:1–13.Article 

    Google Scholar 
    Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009;33:206–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Velicer GJ, Vos M. Sociobiology of the myxobacteria. Ann Rev Microbiol. 2009;63:599–623.CAS 
    Article 

    Google Scholar 
    Branda SS, González-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 2001;98:11621–26.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Antibiotic production and resistance. Sci Rep. 2012;337:1228–31.CAS 

    Google Scholar 
    Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: Moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:1–18.Article 

    Google Scholar 
    Li C, Hurley A, Hu W, Warrick JW, Lozano GL, Ayuso JM, et al. Social motility of biofilm-like microcolonies in a gliding bacterium. Nat Commun. 2021;12:1–12.Article 
    CAS 

    Google Scholar 
    Sokolov A, Aranson IS, Kessler JO, Goldstein RE. Concentration dependence of the collective dynamics of swimming bacteria. Phys Rev Lett. 2007;98:158102.PubMed 
    Article 
    CAS 

    Google Scholar 
    Cisneros LH, Cortez R, Dombrowski C, Goldstein RE, Kessler JO. Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids. 2007;43:737–53.Article 

    Google Scholar 
    Tuval I, Cisneros L, Dombrowski C, Wolgemuth CW, Kessler JO, Goldstein RE. Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci USA. 2005;102:2277–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li G, Tam L, Tang JX. Amplified effect of brownian motion in bacterial near-surface swimming. Proc Natl Acad Sci USA. 2008;105:18355–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lushi E, Wioland H, Goldstein RE. Fluid flows created by swimming bacteria drive self-organization in confined suspensions. Proc Natl Acad Sci USA. 2014;111:9733–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ryan SD, Sokolov A, Berlyand L, Aranson IS. Correlation properties of collective motion in bacterial suspensions. New J Phys. 2013;15:105021.Article 

    Google Scholar 
    Damton NC, Turner L, Rojevsky S, Berg HC. Dynamics of bacterial swarming. Biophys J. 2010;98:2082–90.Article 
    CAS 

    Google Scholar 
    Ingham CJ, Jacob EB. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells. BMC Microbiol. 2008;8:1–16.Article 
    CAS 

    Google Scholar 
    Ariel G, Rabani A, Benisty S, Partridge JD, Harshey RM, Be’Er A. Swarming bacteria migrate by lévy walk. Nat Commun. 2015;6:8396.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hamze K, Autret S, Hinc K, Laalami S, Julkowska D, Briandet R, et al. Single-cell analysis in situ in a Bacillus subtilis swarming community identifies distinct spatially separated subpopulations differentially expressing Hag (Flagellin), including specialized swarmers. Microbiol. 2011;157:2456–69.CAS 
    Article 

    Google Scholar 
    Ghelardi E, Salvetti S, Ceragioli M, Gueye SA, Celandroni F, Senesi S. Contribution of surfactin and swrA to flagellin expression, swimming, and surface motility in Bacillus subtilis. Appl Environ Microbiol. 2012;78:6540–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilde A, Mullineaux CW. Light-controlled motility in prokaryotes and the problem of directional light perception. FEMS Microbiol Rev. 2017;41:900–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang J, Luo Y, Poh CL. Blue light-directed cell migration, aggregation, and patterning. J Mol Biol. 2020;432:3137–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tian T, Sun B, Shi H, Gao T, He Y, Li Y, et al. Sucrose triggers a novel signalling cascade promoting Bacillus subtilis rhizosphere colonization. ISME J 2021;15:2723–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harshey RM, Partridge JD. Shelter in a swarm. J Mol Biol. 2015;427:3683–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burdett IDJ, Kirkwood TBL, Whalley JB. Growth kinetics of individual Bacillus subtilis cells and correlation with nucleoid extension. J Bacteriol. 1986;167:219–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sharpe ME, Hauser PM, Sharpe RG, Errington J. Bacillus subtilis cell cycle as studied by fluorescence microscopy: Constancy of cell length at initiation of DNA replication and evidence for active nucleoid partitioning. J Bacteriol. 1998;180:547–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rousk J, Bååth E. Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiol Ecol. 2011;78:17–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett RA, Lynch JM. Bacterial growth and development in the rhizosphere of gnotobiotic cereal plants. Microbiol. 1981;125:95–102.Article 

    Google Scholar 
    Felici C, Vettori L, Giraldi E, Forino LMC, Toffanin A, Tagliasacchi AM, et al. Single and co-inoculation of Bacillus subtilis and Azospirillum brasilense on Lycopersicon Esculentum: Effects on plant growth and rhizosphere microbial community. Appl Soil Ecol. 2008;40:260–70.Article 

    Google Scholar 
    Arkhipova TN, Galimsyanova NF, Kuzmina LY, Vysotskaya LB, Sidorova LV, Gabbasova IM, et al. Effect of seed bacterization with plant growth-promoting bacteria on wheat productivity and phosphorus mobility in the rhizosphere. Plant Soil Environ. 2019;65:313–19.CAS 
    Article 

    Google Scholar 
    Marschner P, Crowley D, Rengel Z. Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis – model and research methods. Soil Biol Biochem. 2011;43:883–94.CAS 
    Article 

    Google Scholar 
    Lagos ML, Maruyama F, Nannipieri P, Mora ML, Jorquera MA. Current Overview on the study of bacteria in the rhizosphere by modern molecular techniques: A Mini-Review. J Soil Sci Plant Nutr. 2015;15:504–23.
    Google Scholar 
    Gerwig J, Kiley TB, Gunka K, Stanley-Wall N, Stülke J. The protein tyrosine kinases epsB and ptkA differentially affect biofilm formation in Bacillus Subtilis. Microbiol. 2014;160:682–91.CAS 
    Article 

    Google Scholar 
    Shoesmith JG. The measurement of bacterial motility. J Gen Microbiol. 1960;22:528–35.Article 

    Google Scholar 
    Schneider WR, Doetsch RN. Effect of viscosity on bacterial motility. J Bacteriol. 1974;117:696–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaiser GE, Doetsch RN. Enhanced translational motion of Leptospira in viscous environments. Nature 1975;255:656–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ryan SD, Haines BM, Berlyand L, Ziebert F, Aranson IS. Viscosity of bacterial suspensions: Hydrodynamic interactions and self-induced noise. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;E83:050904.Article 
    CAS 

    Google Scholar 
    López HM, Gachelin J, Douarche C, Auradou H, Clément E. Turning bacteria suspensions into superfluids. Phys Rev Lett. 2015;115:028301.PubMed 
    Article 
    CAS 

    Google Scholar 
    Butler MT, Wang Q, Harshey RM. Cell density and mobility protect swarming bacteria against antibiotics. Proc Natl Acad Sci USA. 2010;107:3776–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erktan A, Or D, Scheu S. The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biol Biochem. 2020;148:107876.CAS 
    Article 

    Google Scholar 
    Rønn R, Thomsen IK, Jensen B. Naked amoebae, flagellates and nematodes in soil of different texture. Eur J Soil Biol. 1995;31:135–41.
    Google Scholar 
    Downie H, Holden N, Otten W, Spiers AJ, Valentine TA, Dupuy LX. Transparent soil for imaging the rhizosphere. PLoS ONE. 2012;7:1–6.Article 
    CAS 

    Google Scholar 
    Mills AL. Keeping in Touch: Microbial life on soil particle surfaces. Adv Agron. 2003;78:1–43.Article 

    Google Scholar 
    Downie HF, Valentine TA, Otten W, Spiers AJ, Dupuy LX. Transparent soil microcosms allow 3D spatial quantification of soil microbiological processes in vivo. Plant Signal Behav. 2014;9:e970421.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    O’Callaghan FE, Braga RA, Neilson R, MacFarlane SA, Dupuy LX. New live screening of plant-nematode interactions in the rhizosphere. Sci Rep. 2018;8:1–17.Article 
    CAS 

    Google Scholar 
    Sharma K, Palatinszky M, Nikolov G, Berry D, Shank EA. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. ELife 2020;9:1–28.
    Google Scholar 
    Bickel S, Or D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nat Commun. 2020;11:1–9.Article 
    CAS 

    Google Scholar 
    Farré M, Sanchís J, Barceló D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem. 2011;30:517–27.Article 
    CAS 

    Google Scholar 
    Verhamme DT, Kiley TB, Stanley-Wall NR. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol. 2007;65:554–68.CAS 
    PubMed 
    Article 

    Google Scholar 
    Konkol MA, Blair KM, Kearns DB. Plasmid-encoded comi inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol. 2013;195:4085–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley NR, Lazazzera BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation. Mol Microbiol. 2005;57:1143–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. URL https://www.R-project.org/.Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    A global horizon scan of issues impacting marine and coastal biodiversity conservation

    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411–413 (2020).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. & Woodroof, H. J. The need for environmental horizon scanning. Trends Ecol. Evol. 24, 523–527 (2009).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. Ten years on: a review of the first global conservation horizon scan. Trends Ecol. Evol. 34, 139–153 (2019).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scan of global conservation issues for 2010. Trends Ecol. Evol. 25, 1–7 (2010).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scan of global conservation issues for 2016. Trends Ecol. Evol. 31, 44–53 (2016).PubMed 
    Article 

    Google Scholar 
    Sutherland, W. J. et al. A horizon scanning assessment of current and potential future threats facing migratory shorebirds. Ibis 154, 663–679 (2012).Article 

    Google Scholar 
    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).Article 

    Google Scholar 
    Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, L. G. M. et al. Mortality events resulting from Australia’s catastrophic fires threaten aquatic biota. Glob. Change Biol. 26, 5345–5350 (2020).Article 

    Google Scholar 
    Abram, N. J., Gagan, M. K., McCulloch, M. T., Chappell, J. & Hantoro, W. S. Coral reef death during the 1997 Indian Ocean Dipole linked to Indonesian wildfires. Science 301, 952–955 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Solomon, C. T. et al. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems 18, 376–389 (2015).Article 

    Google Scholar 
    Sully, S. & van Woesik, R. Turbid reefs moderate coral bleaching under climate related temperature stress. Glob. Change Biol. 26, 1367–1373 (2021).Article 

    Google Scholar 
    Blain, C. O., Hansen, S. C. & Shears, N. T. Coastal darkening substantially limits the contribution of kelp to coastal carbon cycles. Glob. Change Biol. 27, 5547–5563 (2021).Article 

    Google Scholar 
    Stewart, B. D. et al. Metal pollution as a potential threat to shell strength and survival in marine bivalves. Sci. Total Environ. 755, 143019 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, D. A. et al. Ocean acidification increases the toxicity of contaminated sediments. Glob. Change Biol. 19, 340–351 (2013).Article 

    Google Scholar 
    Hauton, C. et al. Identifying toxic impact of metals potentially released during deep-sea mining—a synthesis of the challenges to quantifying risk. Front. Mar. Sci. 4, 368 (2017).Chaudhary, C. et al. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pandolfi, J. M. et al. Are U.S. coral reefs on the slippery slope to slime? Science 307, 1725–1726 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hixson, S. M. & Arts, M. T. Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton. Glob. Change Biol. 22, 2744–2755 (2016).Article 

    Google Scholar 
    Hicks, C. C. et al. Harnessing global fisheries to tackle micronutrient deficiencies. Nature 574, 95–98 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Colombo, S. M. et al. Projected declines in global DHA availability for human consumption as a result of global warming. Ambio 49, 865–880 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).Article 

    Google Scholar 
    Antacli, J. C. et al. Increase in unsaturated fatty acids in Antarctic phytoplankton under ocean warming and glacial melting scenarios. Sci. Total Environ. 790, 147879 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maire, E. et al. Micronutrient supply from global marine fisheries under climate change and overfishing. Curr. Biol. 18, 4132–4138 (2021).Article 
    CAS 

    Google Scholar 
    Lim, Y. S., Ok, Y. J., Hwang, S. Y., Kwak, J. Y. & Yoon, S. Marine collagen as a promising biomaterial for biomedical applications. Mar. Drugs 17, 467 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, N. et al. Marine-derived collagen as biomaterials for human health. Front. Nutr. 8, 702108 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vieira, H., Leal, M. C. & Calado, R. Fifty shades of blue: how blue biotechnology is shaping the bioeconomy. Trends Biotechnol. 38, 940–943 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Hasan, A. et al. China’s fish maw demand and its implications for fisheries in source countries. Mar. Policy 132, 104696 (2021).Article 

    Google Scholar 
    Sadovy de Mitcheson, Y., To, A. W. L., Wong, N. W., Kwan, H. Y. & Bud, W. S. Emerging from the murk: threats, challenges and opportunities for the global swim bladder trade. Rev. Fish. Biol. Fish. 29, 809–835 (2019).Article 

    Google Scholar 
    Brownell, R. L. Jr et al. Bycatch in gillnet fisheries threatens critically endangered small cetaceans and other aquatic megafauna. Endang. Species Res. 40, 285–296 (2019).Article 

    Google Scholar 
    Webb, T. J., Vanden Berghe, E. & O’Dor, R. K. Biodiversity’s big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean. PLoS ONE 5, e10223 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    St. John, M. A. et al. A dark hole in our understanding of marine ecosystems and their services: perspectives from the mesopelagic community. Front. Mar. Sci. 3, 31 (2016).
    Google Scholar 
    Thomsen, L. et al. The oceanic biological pump: rapid carbon transfer to depth at continental margins during winter. Sci. Rep. 7, 10763 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roberts, C. M., Hawkins, J. P., Hindle, K., Wilson, R. W. & O’Leary, B. C. Entering the Twilight Zone: The Ecological Role and Importance of Mesopelagic Fishes (Blue Marine Foundation, 2020)Cavan, E. L., Laurenceau-Cornec, E. C., Bressac, M. & Boyd, P. W. Exploring the ecology of the mesopelagic biological pump. Prog. Oceanogr. 176, 102125 (2019).Article 

    Google Scholar 
    Levin, L. A. et al. Climate change considerations are fundamental to management of deep‐sea resource extraction. Glob. Change Biol. 26, 4664–4678 (2020).Article 

    Google Scholar 
    Li, Z. et al. Continuous electrical pumping membrane process for seawater lithium mining. Energy Environ. Sci. 14, 3152–3159 (2021).CAS 
    Article 

    Google Scholar 
    Jin, M., Gai, Y., Guo, X., Hou, Y. & Zeng, R. Properties and applications of extremozymes from deep-sea extremophilic microorganisms: a mini review. Mar. Drugs 17, 656 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mbow, C. et al. in IPCC Special Report on Climate Change and Land (eds Shukla, P.R. et al.) 437–550 (IPCC, 2019).Christie, N., Smyth, K., Barnes, R. & Elliott, M. Co-location of activities and designations: a means of solving or creating problems in marine spatial planning? Mar. Pol. 43, 254–261 (2014).Article 

    Google Scholar 
    Mayer-Pinto, M., Dafforn, K. A. & Johnston, E. L. A decision framework for coastal infrastructure to optimize biotic resistance and resilience in a changing climate. BioScience 69, 833–843 (2019).Article 

    Google Scholar 
    Wang, C. M. & Wang, B. T. in ICSCEA 2019 (eds Reddy, J. N. et al.) 3–29 (Springer, 2020).Ross, C. T. F. & McCullough, R. R. Conceptual design of a floating island city. J. Ocean Technol. 5, 120–121 (2010).
    Google Scholar 
    Dong, Y.-w, Huang, X.-w, Wang, W., Li, Y. & Wang, J. The marine ‘great wall’ of China: local- and broad-scale ecological impacts of coastal infrastructure on intertidal macrobenthic communities. Divers. Distrib. 22, 731–744 (2016).Article 

    Google Scholar 
    Flikkema, M. M. B., Lin, F.-Y., van der Plank, P. P. J., Koning, J. & Waals, O. Legal issues for artificial floating islands. Front. Mar. Sci. 8, 619462 (2021).Article 

    Google Scholar 
    Richir, J., Bray, S., McAleese, T. & Watson, G. J. Three decades of trace element sediment contamination: the mining of governmental databases and the need to address hidden sources for clean and healthy seas. Environ. Int. 149, 106362 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao, Y. et al. A review on battery market trends, second-life reuse, and recycling. Sustain. Chem. 2, 167–205 (2021).CAS 
    Article 

    Google Scholar 
    Li, W., Lee, S. & Manthiram, A. High‐Nickel NMA: a cobalt‐free alternative to NMC and NCA cathodes for lithium‐ion batteries. Adv. Mater. 32, 2002718 (2020).CAS 
    Article 

    Google Scholar 
    Ghaffarivardavagh, R., Afzal, S. S., Rodriguez, O. & Adib, F. in SIGCOMM ’20 Proc. 19th ACM Workshop on Hot Topics in Networks 125–131 (Association for Computing Machinery, 2020).Hazen, E. L. et al. Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar. Ecol. Prog. Ser. 457, 221–240 (2012).Article 

    Google Scholar 
    Davies, T. E. et al. Tracking data and the conservation of the high seas: opportunities and challenges. J. Appl. Ecol. 58, 2703–2710 (2021).Aracri, S. et al. Soft robots for ocean exploration and offshore operations: a perspective. Soft Robot. https://doi.org/10.1089/soro.2020.0011 (2021).Li, G. et al. Self-powered soft robot in the Mariana Trench. Nature 591, 66–71 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Philamore, H., Ieropoulos, I., Stinchcombe, A. & Rossiter, J. Toward energetically autonomous foraging soft robots. Soft Robot. 3, 186–197 (2016).Article 

    Google Scholar 
    Manfra, L. et al. Biodegradable polymers: a real opportunity to solve marine plastic pollution? J. Hazard. Mater. 416, 125763 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, D., Kim, H. & An, Y. J. Effects of synthetic and natural microfibers on Daphnia magna: are they dependent on microfiber type? Aquat. Toxicol. 240, 105968 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Degli-Innocenti, F., Bellia, G., Tosin, M., Kapanen, A. & Itävaara, M. Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym. Degrad. Stab. 73, 101–106 (2001).CAS 
    Article 

    Google Scholar 
    Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).Short, R. E. et al. Harnessing the diversity of small-scale actors is key to the future of aquatic food systems. Nat. Food 2, 733–741 (2021).Article 

    Google Scholar 
    Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Obura, D. O. et al. Integrate biodiversity targets from local to global levels. Science 373, 746 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).PubMed 
    Article 

    Google Scholar 
    Grorud-Colvert, K. et al. The MPA Guide: a framework to achieve global goals for the ocean. Science 373, eabf0861 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jefferson, R. L., McKinley, E., Griffin, H., Nimmo, A. & Fletcher, S. Public perceptions of the ocean: lessons for marine conservation from a global research review. Front. Mar. Sci. 8, 711245 (2021).Potts, T., Pita, C., O’Higgins, T. & Mee, L. Who cares? European attitudes towards marine and coastal environments. Mar. Pol. 72, 59–66 (2016).Article 

    Google Scholar 
    Bennett, N. J. et al. Towards a sustainable and equitable blue economy. Nat. Sustain. 2, 991–993 (2019).Article 

    Google Scholar 
    Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article 

    Google Scholar 
    Zheng, Y. & Walsham, G. Inequality of what? An intersectional approach to digital inequality under Covid-19. Inf. Organ. 31, 100341 (2021).Article 

    Google Scholar 
    Blythe, J. L., Armitage, D., Bennett, N. J., Silver, J. J. & Song, A. M. The politics of ocean governance transformations. Front. Mar. Sci. 8, 634718 (2021).Article 

    Google Scholar 
    Brennan, C., Ashley, M. & Molloy, O. A system dynamics approach to increasing ocean literacy. Front. Mar. Sci. 6, 360 (2019).Article 

    Google Scholar 
    Stoll-Kleemann, S. Feasible options for behavior change toward more effective ocean literacy: a systematic review. Front. Mar. Sci. 6, 273 (2019).Article 

    Google Scholar 
    Bennett, N. J. et al. Advancing social equity in and through marine conservation. Front. Mar. Sci. 8, 711538 (2021).Article 

    Google Scholar 
    Short, R. E. et al. Review of the evidence for oceans and human health relationships in Europe: a systematic map. Environ. Int. 146, 106275 (2021).PubMed 
    Article 

    Google Scholar 
    Mukherjee, N. et al. The Delphi technique in ecology and biological conservation: applications and guidelines. Methods Ecol. Evol. 6, 1097–1109 (2015).Article 

    Google Scholar 
    Sutherland, W. J. et al. A 2021 horizon scan of emerging global biological conservation issues. Trends Ecol. Evol. 36, 87–97 (2021).PubMed 
    Article 

    Google Scholar  More

  • in

    Agricultural management and pesticide use reduce the functioning of beneficial plant symbionts

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    Tamburini, G. et al. Agricultural diversification promotes multiple ecosystem services without compromising yield. Sci. Adv. 6, eaba1715 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, S. & Read, D. Mycorrhizal Symbiosis (Elsevier, 2008).Soudzilovskaia, N. A. et al. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Glob. Ecol. Biogeogr. 24, 371–382 (2015).Article 

    Google Scholar 
    Van Der Heijden, M. G. A., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310 (2008).PubMed 
    Article 

    Google Scholar 
    Bennett, E. M., Carpenter, S. R. & Caraco, N. F. Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51, 227–234 (2001).Article 

    Google Scholar 
    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here? Trends Ecol. Evol. 24, 201–207 (2009).PubMed 
    Article 

    Google Scholar 
    Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. New Phytol. 171, 41–53 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bender, S. F. & van der Heijden, M. G. A. Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. J. Appl. Ecol. 52, 228–239 (2015).CAS 
    Article 

    Google Scholar 
    Rodriguez, A. & Sanders, I. R. The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J. 9, 1053–1061 (2015).PubMed 
    Article 

    Google Scholar 
    Oviatt, P. & Rillig, M. C. Mycorrhizal technologies for an agriculture of the middle. Plants, People, Planet. https://doi.org/10.1002/ppp3.10177 (2020).Ryan, M. H. & Graham, J. H. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220, 1092–1107 (2018).PubMed 
    Article 

    Google Scholar 
    Rillig, M. C. et al. Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222, 1171–1175 (2019).PubMed 
    Article 

    Google Scholar 
    Zhang, S., Lehmann, A., Zheng, W., You, Z. & Rillig, M. C. Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol. 222, 543–555 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thirkell, T. J., Charters, M. D., Elliott, A. J., Sait, S. M. & Field, K. J. Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J. Ecol. 105, 921–929 (2017).CAS 
    Article 

    Google Scholar 
    Davison, J. et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349, 970–973 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pringle, A. & Bever, J. D. Analogous effects of arbuscular mycorrhizal fungi in the laboratory and a North Carolina field. New Phytol. 180, 162–175 (2008).PubMed 
    Article 

    Google Scholar 
    Francis, R. & Read, D. J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can. J. Bot. 73, 1301–1309 (1995).Article 

    Google Scholar 
    Thirkell, T. J., Pastok, D. & Field, K. J. Carbon for nutrient exchange between arbuscular mycorrhizal fungi and wheat varies according to cultivar and changes in atmospheric carbon dioxide concentration. Glob. Change Biol. 26, 1725–1738 (2020).Article 

    Google Scholar 
    Lehmann, A., Barto, E. K., Powell, J. R. & Rillig, M. C. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives—a meta-analysis on studies from 1981 to 2010. Plant Soil 355, 231–250 (2012).CAS 
    Article 

    Google Scholar 
    Martín-Robles, N. et al. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol. 218, 322–334 (2018).PubMed 
    Article 

    Google Scholar 
    Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).Article 

    Google Scholar 
    Oehl, F. et al. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl. Environ. Microbiol. 69, 2816–2824 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xiang, D. et al. Land use influences arbuscular mycorrhizal fungal communities in the farming-pastoral ecotone of northern China. New Phytol. 204, 968–978 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bainard, L. D. et al. Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the Mixed Prairie ecoregion of the North American Great Plains. Agric. Ecosyst. Environ. 249, 187–195 (2017).Article 

    Google Scholar 
    Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H. & Young, J. P. W. Ploughing up the wood-wide web? Nature 394, 431–431 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 
    CAS 

    Google Scholar 
    Vogelsang, K. M., Reynolds, H. L. & Bever, J. D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol. 172, 554–562 (2006).PubMed 
    Article 

    Google Scholar 
    Scheublin, T. R., Ridgway, K. P., Young, J. P. W. & van der Heijden, M. G. A. Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl. Environ. Microbiol. 70, 6240–6246 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oehl, F. et al. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol. Biochem. 42, 724–738 (2010).CAS 
    Article 

    Google Scholar 
    De Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verbruggen, E., Xiang, D., Chen, B., Xu, T. & Rillig, M. C. Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture. Soil Biol. Biochem. 86, 1–4 (2015).CAS 
    Article 

    Google Scholar 
    Balami, S., Vašutová, M., Godbold, D., Kotas, P. & Cudlín, P. Soil fungal communities across land use types. iForest 13, 548–558 (2020).Article 

    Google Scholar 
    Öpik, M., Mari, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006).Article 

    Google Scholar 
    Jansa, J. et al. Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12, 225–234 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Groenigen, K. J. et al. Abundance, production and stabilization of microbial biomass under conventional and reduced tillage. Soil Biol. Biochem. 42, 48–55 (2010).Article 
    CAS 

    Google Scholar 
    Sallach, J. B., Thirkell, T. J., Field, K. J. & Carter, L. J. The emerging threat of human‐use antifungals in sustainable and circular agriculture schemes. Plants People Planet 3, 685–693 (2021).Article 

    Google Scholar 
    Meyer, A. et al. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 8, e73536 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).Article 

    Google Scholar 
    Tardy, V. et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol. Biochem. 90, 204–213 (2015).CAS 
    Article 

    Google Scholar 
    Sawers, R. J. H. et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. New Phytol. 214, 632–643 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svenningsen, N. B. et al. Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 12, 1296–1307 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schweiger, P. F., Thingstrup, I. & Jakobsen, I. Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza 8, 207–213 (1999).CAS 
    Article 

    Google Scholar 
    Emmett, B. D., Lévesque-Tremblay, V. & Harrison, M. J. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 15, 2276–2288 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jiang, F., Zhang, L., Zhou, J., George, T. S. & Feng, G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230, 304–315 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thonar, C., Schnepf, A., Frossard, E., Roose, T. & Jansa, J. Traits related to differences in function among three arbuscular mycorrhizal fungi. Plant Soil 339, 231–245 (2011).CAS 
    Article 

    Google Scholar 
    Cavagnaro, T. R., Smith, F. A., Smith, S. E. & Jakobsen, I. Functional diversity in arbuscular mycorrhizas: exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ. 28, 642–650 (2005).CAS 
    Article 

    Google Scholar 
    Jakobsen, I., Gazey, C. & Abbott, L. K. Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. New Phytol. 149, 95–103 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, J. N. & Jakobsen, I. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 32P and 33P. New Phytol. 124, 489–494 (1993).CAS 
    Article 

    Google Scholar 
    Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I. & Bucher, M. Erratum: mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol. 184, 1029 (2009).Article 

    Google Scholar 
    Smith, S. E., Jakobsen, I., Grønlund, M. & Smith, F. A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156, 1050–1057 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, A., Manoharan, L., Rosenstock, N. P., Olsson, P. A. & Hedlund, K. Long-term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (Hordeum vulgare) mycorrhizal carbon and phosphorus exchange. New Phytol. 213, 874–885 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koerselman, W. & Meuleman, A. F. M. The Vegetation N:P Ratio: a new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441 (1996).Article 

    Google Scholar 
    Van Aarle, I. M., Olsson, P. A. & Söderström, B. Arbuscular mycorrhizal fungi respond to the substrate pH of their extraradical mycelium by altered growth and root colonization. New Phytol. 155, 173–182 (2002).PubMed 
    Article 

    Google Scholar 
    Staddon, P. L. et al. Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field. Glob. Change Biol. 9, 186–194 (2003).Article 

    Google Scholar 
    Weber, S. E. et al. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 40, 62–71 (2019).Article 

    Google Scholar 
    Peat, H. J. & Fitter, A. H. The distribution of arbuscular mycorrhizas in the British flora. New Phytol. 125, 845–854 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cruz-Paredes, C. et al. Suppression of arbuscular mycorrhizal fungal activity in a diverse collection of non-cultivated soils. FEMS Microbiol. Ecol. 95, fiz020 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jansa, J., Erb, A., Oberholzer, H.-R., Šmilauer, P. & Egli, S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 23, 2118–2135 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davison, J. et al. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytol. 231, 763–776 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, H. et al. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena 87, 70–77 (2011).CAS 
    Article 

    Google Scholar 
    Riedo, J. et al. Widespread occurrence of pesticides in organically managed agricultural soils—the ghost of a conventional agricultural past? Environ. Sci. Technol. https://doi.org/10.1021/acs.est.0c06405 (2021).Pánková, H., Dostálek, T., Vazačová, K. & Münzbergová, Z. Slow recovery of arbuscular mycorrhizal fungi and plant community after fungicide application: an eight-year experiment. J. Veg. Sci. 29, 695–703 (2018).Article 

    Google Scholar 
    Ipsilantis, I., Samourelis, C. & Karpouzas, D. G. The impact of biological pesticides on arbuscular mycorrhizal fungi. Soil Biol. Biochem. https://doi.org/10.1016/j.soilbio.2011.08.007 (2012).Buysens, C., Dupré de Boulois, H. & Declerck, S. Do fungicides used to control Rhizoctonia solani impact the non-target arbuscular mycorrhizal fungus Rhizophagus irregularis? Mycorrhiza. https://doi.org/10.1007/s00572-014-0610-7 (2015).Lekberg, Y., Wagner, V., Rummel, A., McLeod, M. & Ramsey, P. W. Strong indirect herbicide effects on mycorrhizal associations through plant community shifts and secondary invasions. Ecol. Appl. 27, 2359–2368 (2017).PubMed 
    Article 

    Google Scholar 
    Hage-Ahmed, K., Rosner, K. & Steinkellner, S. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag. Sci. 75, 583–590 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kjøller, R. & Rosendahl, S. Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fertil. Soils 31, 361–365 (2000).Article 

    Google Scholar 
    Gange, A. C., Brown, V. K. & Sinclair, G. S. Vesicular-arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct. Ecol. 7, 616 (1993).Article 

    Google Scholar 
    Hartnett, D. C. & Wilson, G. W. T. The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244, 319–331 (2002).CAS 
    Article 

    Google Scholar 
    Guzman, A. et al. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytol. https://doi.org/10.1111/nph.17306 (2021).LUCAS 2018 Technical Reference Document C3 Classification (Land Cover and Land Use) (Eurostat, 2018).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v.2. figshare https://doi.org/10.6084/m9.figshare.7504448.v3 (2019).García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sinnott, R. W. Virtues of the Haversine. Sky Telescope 68, 158–159 (1984).
    Google Scholar 
    Garland, G. et al. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems. Nat. Food 2, 28–37 (2021).Article 

    Google Scholar 
    Boden‐und Substratuntersuchungen zur Düngeberatung (Schweizerische Referenzmethoden der Eidgenössischen Forschungsanstalten, 1996).Berry, D., Mahfoudh, K., Ben, Wagner, M. & Loy, A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl. Environ. Microbiol. 77, 7846–7849 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gardes, M., White, T. J., Fortin, J. A., Bruns, T. D. & Taylor, J. W. Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can. J. Bot. 69, 180–190 (1991).CAS 
    Article 

    Google Scholar 
    Gardes, M. & Bruns, T. D. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiore-Donno, A. M. et al. New barcoded primers for efficient retrieval of cercozoan sequences in high-throughput environmental diversity surveys, with emphasis on worldwide biological soil crusts. Mol. Ecol. Resour. 18, 229–239 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Helfenstein, J., Jegminat, J., McLaren, T. I. & Frossard, E. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies. Biogeosciences 15, 105–114 (2018).CAS 
    Article 

    Google Scholar 
    Thirkell, T. J. et al. Cultivar‐dependent increases in mycorrhizal nutrient acquisition by barley in response to elevated CO2. Plants People Planet 3, 553–566 (2021).Article 

    Google Scholar 
    Rodushkin, I., Ruth, T. & Huhtasaari, Å. Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Anal. Chim. Acta 378, 191–200 (1999).CAS 
    Article 

    Google Scholar 
    Ohno, T. & Zibilske, L. M. Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55, 892–895 (1991).CAS 
    Article 

    Google Scholar 
    Frossard, E. et al. in Phosphorus in Action (eds Bünemann, E. et al.) 59–91 (Springer, 2011).Sato, K., Suyama, Y., Saito, M. & Sugawara, K. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl. Sci. 51, 179–181 (2005).CAS 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Öpik, M. et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 188, 223–241 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Calcagno, V. glmulti: Model Selection and Multimodel Inference Made Easy. R version 1.0.8 https://CRAN.R-project.org/package=glmulti (2020).Cade, B. S. Model averaging and muddled multimodel inferences. Ecology. https://doi.org/10.1890/14-1639.1 (2015).Barton, K. MuMIn: Multi-Model Inference. R version 1.43.17 https://CRAN.R-project.org/package=MuMIn (2020).Burnham, K. P. & Anderson, D. R. (eds) Model Selection and Multimodel Inference (Springer, 2002).Rosseel, Y. Lavaan: an R package for structural equation modeling. J. Stat. Softw. https://doi.org/10.18637/jss.v048.i02 (2012). More

  • in

    Phycosphere pH of unicellular nano- and micro- phytoplankton cells and consequences for iron speciation

    Phycosphere pH of single phytoplankton cellsThe pH in the phycosphere of a single cell Chlamydomonas concordia (~5 µm diameter) exposed to 140 μmol photons m−2 s−1 was 8.27 ± 0.01 (179 measurements), while the pH of bulk seawater was 8.01 ± 0.01 (160 measurements) (Fig. 1c). The observed pH variation near the cell surface was 150 µmol m−2 s−1 [33]. At light intensities More

  • in

    Fisheries dataset on moulting patterns and shell quality of American lobsters H. americanus in Atlantic Canada

    Data collectionThe present dataset was collected within the framework of the Atlantic Lobster Moult and Quality (ALMQ) project originally managed and implemented by the Atlantic Veterinary College Lobster Science Centre at the University of Prince Edward Island in collaboration with the Fishermen and Scientists Research Society. The Atlantic Lobster Moult and Quality project was initially funded through the Atlantic Innovation Fund program from the Atlantic Canada Opportunities Agency (ACOA) and transferred to the Fishermen and Scientists Research Society (FSRS) in 2012.Sampling took place every 2–3 weeks in eight lobster fishing areas (LFA) in Atlantic Canada from 2004 to 2014 (see Fig. 1, Table 1). The sampling followed the FSRS Lobster Moult and Quality sampling protocol and was conducted by technicians from the Atlantic Veterinary College and the Fishermen and Scientists Research Society in fixed locations from traps set the day before2. Locations based on targeted sampling (LFA 33 and 34) were chosen according to the fishing efforts in the respective areas and selected by a lobster science committee consisting of members from industry, academia, research and federal and provincial representatives. Other locations (LFA 24, 25, 26A, 35) were chosen based on proximity to the Atlantic Veterinary College and other projects with commercial fishers which allowed sampling.Table 1 Overview of sampling locations, surface areas (km2) and number of lobsters (N) sampled for the Atlantic Lobster Moult and Quality Project by AVC Lobster Science Centre from 2004–2015 in Atlantic Canada. (PEI = Prince Edward Island, NS = Nova Scotia).Full size tableFig. 1(a) Map of the lobster fishing areas (LFAs) in the Maritime Provinces in eastern Canada with the sampling locations (red) recorded by the AVC Lobster Science Centre for the Atlantic Lobster Moult and Quality project. (b) Enlarged map of LFA 33. (c) Enlarged map of LFAs on Prince Edward Island. The maps were created using QGIS (v. 3.18; https://qgis.org). Contours depict water depths in meters.Full size imageFor each sampling event, 40 commercial lobster traps with escape vents for lobsters below the minimum legal size were used. Legal sizes depend on size-at-maturity (size at which 50% of the population reach maturity) which differs between LFAs due to regional differences in water temperature that influence lobster growth. There were some differences in sampling procedure between lobster fishing season and off-season. During lobster fishing season sampling took place within 48 h post landing and only legal-sized lobsters were assessed. During off season, lobsters were sampled directly on board chartered boats and were returned to sea immediately after sampling. During non-fishing season sampling, lobsters below minimum legal size were also sampled but no egg-bearing females were targeted to minimize negative handling effects. Targeted sample size was 200 lobsters per sampling event before 2009 and 125 lobsters after 2009 due to budget constraints.On average, 3–4 lobsters of each sex were sampled in every 2 mm lobster size grouping. Lobster size was recorded as the carapace length in mm and determined using calipers rounding down to the nearest mm. The size distribution of sampled lobsters is presented in Fig. 2. Lobsters were assessed for general health (lesions, shell damage, liveliness/vigour) and shell hardness. Shell hardness was recorded as soft, medium or hard. A carapace of a soft-shelled lobster would be compressible at the ventral and dorsal (anterior and posterior) carapace, a medium-shelled lobster would only be compressible at the ventral carapace and a hard-shelled lobster would not be compressible at any carapace location.Fig. 2Lobster size (as carapace length in mm) distribution for all lobsters sampled during the sampling period (15 missing values).Full size imageTo estimate hemolymph protein levels, the ventral abdomen between the first pair of walking legs was sprayed with 70% ethanol and 3 ml of hemolymph were extracted with a 22 gauge needle and a 3 ml syringe. A few drops of hemolymph were placed on a handheld refractometer and the refractive index (“°Brix” value) was recorded and used as a proxy for total hemolymph levels. The distribution of hemolymph protein level is shown in Fig. 3. The moult stages were determined by pleopod stages under a stereomicroscope and recorded in pleopod stages (see Table 2). The stage determinations are shown in Table 2 and Fig. 46.Fig. 3Distribution of hemolymph protein level (measured in °Brix) for all lobsters sampled in the dataset (892 missing values).Full size imageTable 2 Description of premoult stages and pleopod stages in adult American lobster based on Aiken6. C: Intermoult, D: Premoult.Full size tableFig. 4Pleopod stages of lobsters at different times in their moult cycle. Illustrations by Lavallée et al.2.Full size imageIn total, 141,659 lobsters were sampled from 2004–2015 over 1,195 sampling events. Data were recorded manually on data sheets and re-checked before being entered into an Excel data sheet (Excel, Microsoft). More

  • in

    The qualitative analysis of the nexus dynamics in the Pekalongan coastal area, Indonesia

    Hauer, M. E. et al. Sea-level rise and human migration. Nat. Rev. Earth Environ. 1, 28–39 (2020).ADS 
    Article 

    Google Scholar 
    Duy, P., Chapman, L., Tight, M., Thuong, L. & Linh, P. Urban resilience to floods in coastal cities: Challenges and opportunities for Ho Chi Minh city and other emerging cities in southeast Asia. J. Urban Plan. Dev. 144, 05017018 (2018).Article 

    Google Scholar 
    Magno, R. et al. Semi-automatic operational service for drought monitoring and forecasting in the Tuscany region. Geosciences 8, 49 (2018).ADS 
    Article 

    Google Scholar 
    Rico, A., Olcina, J., Baños, C., Garcia, X. & Sauri, D. Declining water consumption in the hotel industry of mass tourism resorts: Contrasting evidence for Benidorm, Spain. Curr. Issues Tour. 23, 770–783 (2020).Article 

    Google Scholar 
    Hasnat, G. T., Kabir, M. A. & Hossain, M. A. Major environmental issues and problems of South Asia, particularly Bangladesh. Handb. Environ. Mater. Manag., 1–40 (2018).Neumann, B., Vafeidis, A. T., Zimmermann, J. & Nicholls, R. J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS One 10, e0118571 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cao, A. et al. Future of Asian Deltaic Megacities under sea level rise and land subsidence: Current adaptation pathways for Tokyo, Jakarta, Manila, and Ho Chi Minh City. Curr. Opin. Environ. Sustain. 50, 87–97 (2021).Article 

    Google Scholar 
    Rahmasary, A. N. et al. Overcoming the challenges of water, waste and climate change in Asian cities. Environ. Manag. 63, 520–535 (2019).ADS 
    Article 

    Google Scholar 
    Smol, M., Adam, C. & Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag. 22, 682–697 (2020).Article 

    Google Scholar 
    Islam, M. F., Bhattacharya, B. & Popescu, I. Flood risk assessment due to cyclone-induced dike breaching in coastal areas of Bangladesh. Nat. Hazards Earth Syst. Sci. 19, 353–368 (2019).ADS 
    Article 

    Google Scholar 
    Salim, M. A. & Siswanto, A. B. Kajian Penanganan Dampak Banjir Kabupaten Pekalongan. Rang Tek. J. 4, 295–303 (2021).Article 

    Google Scholar 
    Endo, A. et al. Describing and visualizing a water–energy–food nexus system. Water 10, 1245 (2018).Article 

    Google Scholar 
    Gurdak, J. J., Geyer, G. E., Nanus, L., Taniguchi, M. & Corona, C. R. Scale dependence of controls on groundwater vulnerability in the water–energy–food nexus, California Coastal Basin aquifer system. J. Hydrol. Reg. Stud. 11, 126–138 (2017).Article 

    Google Scholar 
    Lu, J., Lin, Y., Wu, J. & Zhang, C. Continental-scale spatial distribution, sources, and health risks of heavy metals in seafood: Challenge for the water-food-energy nexus sustainability in coastal regions?. Environ. Sci. Pollut. Res. 28, 63815–63828 (2021).CAS 
    Article 

    Google Scholar 
    Miller-Robbie, L., Ramaswami, A. & Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 12, 075005 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Taniguchi, M., Endo, A., Gurdak, J. J. & Swarzenski, P. Water-energy-food nexus in the Asia-Pacific region. J. Hydrol. 11, 1–8 (2017).
    Google Scholar 
    Bahri, M. Analysis of the water, energy, food and land nexus using the system archetypes: A case study in the Jatiluhur reservoir, West Java, Indonesia. Sci. Total Environ. 716, 137025 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lubis, R., Delinom, R., Martosuparno, S. & Bakti, H. Water-Food Nexus in Citarum Watershed, Indonesia Vol. 118, 012023 (IOP Publishing, 2018).
    Google Scholar 
    Pawitan, H., Delinom, R. & Taniguchi, M. The human–environment sustainability in Indonesia: The case of the Citarum basin Vol. 23 (UNESCO-IHP, 2015).Carmichael, L. et al. Urban planning as an enabler of urban health: Challenges and good practice in England following the 2012 planning and public health reforms. Land Use Policy 84, 154–162 (2019).Article 

    Google Scholar 
    World Health Organization. Addressing the Social Determinants of Health: The Urban Dimension and the Role of Local Government (World Health Organization, 2012).
    Google Scholar 
    Trencher, G. & Karvonen, A. Stretching, “smart”: Advancing health and well-being through the smart city agenda. Local Environ. 24, 610–627 (2019).Article 

    Google Scholar 
    Yang, L. et al. Can an island economy be more sustainable? A comparative study of Indonesia, Malaysia, and the Philippines. J. Clean. Prod. 242, 118572 (2020).Article 

    Google Scholar 
    Choirunisa, A. K. & Giyarsih, S. R. Kajian Kerentanan Fisik, Sosial, dan Ekonomi Pesisir Samas Kabupaten Bantul Terhadap Erosi Pantai. J. Bumi Indones. 5 (2016).Gumay, A. Validity and reliability maritime English seafarers proficiency test. INFERENCE J. Engl. Lang. Teach. 3, 64–69 (2021).Article 

    Google Scholar 
    Tarigan, M. S. Perubahan garis pantai di wilayah pesisir perairan Cisadane, Provinsi Banten. Makara J. Sci. (2010).Pruss-Ustun, A., Corvalán, C. F., World Health Organization. Preventing Disease Through Healthy Environments: Towards an Estimate of the Environmental Burden of Disease (World Health Organization, 2006).
    Google Scholar 
    Baasanjargal, T., Soon-Joo, A. & Mi-Jeong, K. Comparative analysis of Indonesian Batik traditional patterns: Focused on patterns of Yogyakarta and Pekalongan in Java Island. 한복문화 22, 75–91 (2019).Rismawati, S. D., Sofiani, T. & Rahmawati, D. R. Legal culture of religious capitalism on Batik business (a case study in Pekalongan Indonesia). JL Pol. Glob. 33, 107 (2015).
    Google Scholar 
    Pekalongan, B. K. Kota Pekalongan dalam Angka 2021 (2021).Google Maps. Pekalongan, Central Java (2022).Sunarjo, W. A., Ilmiani, A. & Ardianingsih, A. Analisis SWOT Sebagai Pengembangan UMKM Berbasis Ekonomi Kreatif Destinasi Pariwisata Batik Kota Pekalongan. Pena J. Ilmu Pengetah. Dan Teknol. 33, 34–43 (2019).Article 

    Google Scholar 
    Perpustakaan Provinsi Jawa Tengah. Museum Batik Pekalongan (2017).Brzezina, N. et al. Development of organic farming in Europe at the crossroads: Looking for the way forward through system archetypes lenses. Sustainability 9, 821 (2017).Article 

    Google Scholar 
    Gillies, A. & Maliapen, M. Using healthcare system archetypes to help hospitals become learning organisations. J. Model. Manag. (2008).Braun, W. The System Archetypes. The Systems Modeling Workbook, 1–26 (2002).Sterman, J. System Dynamics: Systems thinking and modeling for a complex world (2002).Islam, M. & Raja, D. R. Waterlogging risk assessment: An undervalued disaster risk in coastal urban community of Chattogram, Bangladesh. Earth 2, 151–173 (2021).Article 

    Google Scholar 
    Brzezina, N., Kopainsky, B. & Mathijs, E. Can organic farming reduce vulnerabilities and enhance the resilience of the European food system? A critical assessment using system dynamics structural thinking tools. Sustainability 8, 971 (2016).Article 

    Google Scholar 
    Nguyen, N. C. & Bosch, O. J. A systems thinking approach to identify leverage points for sustainability: A case study in the Cat Ba Biosphere Reserve, Vietnam. Syst. Res. Behav. Sci. 30, 104–115 (2013).Article 

    Google Scholar 
    Maani, K. E. & Cavana, R. Y. Systems Thinking, System Dynamics: Managing Change and Complexity (Pearson Prentice Hall, 2007).
    Google Scholar 
    Braun, W. The System Archetypes-the Systems Modeling Workbook. Available Wwwu Uniklu Ac Atgossimitpapsdwbsysarch Pdf (2002).Senge, P. M. The Fifth Discipline: The Art and Practice of the Learning Organization (Currency, 2006).
    Google Scholar 
    Bahri, M. et al. Deliverable 3.3: Integrated model with ad-hoc systems model of urban water supply (2018).Pekalongan, B. P. P. D. K. Pekalongan dalam Angka (2021).Fajar, M., Mediani, A. & Finesa, Y. Analisis Peranan IPAL dalam Strategi Penanganan Limbah Industri Batik di Kota Pekalongan. in Prosiding Seminar Nasional Geografi UMS X 2019 (2019).Kartika, F. D. S. & Helmi, M. Meta-analysis of Community’s Adaptation Pattern with Tidal Flood in Pekalongan City, Central Java, Indonesia Vol. 125, 09001 (EDP Sciences, 2019).
    Google Scholar 
    Kartika, F. D. S., Helmi, M. & Amirudin, A. Analisis Perubahan Penggunaan Lahan di Wilayah Pesisir Kota Pekalongan Menggunakan Citra Lansat 8, vol. 1 (2019).Damayanti, M. & Latifah, L. Strategi Kota Pekalongan dalam pengembangan wisata kreatif berbasis industri batik. J. Pengemb. Kota 3, 100–111 (2017).Article 

    Google Scholar 
    Pekalongan, B. K. Kota Pekalongan dalam Angka 2002 (2002).Andreas, H., Abidin, H. Z., Sarsito, D. A. & Pradipta, D. Adaptation of ‘early climate change disaster’ to the Northern coast of Java Island Indonesia. Eng. J. 22, 207–219 (2018).Article 

    Google Scholar 
    Marfai, M. A. et al. The impact of tidal flooding on a coastal community in Semarang, Indonesia. Environmentalist 28, 237–248 (2008).Article 

    Google Scholar 
    Chaussard, E., Amelung, F., Abidin, H. & Hong, S.-H. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 128, 150–161 (2013).ADS 
    Article 

    Google Scholar 
    Andreas, H., Abidin, H. Z., Sarsito, D. A. & Pradipta, D. Remotes Sensing Capabilities on Land Subsidence and Coastal Water Hazard and Disaster Studies Vol. 500, 012036 (IOP Publishing, 2020).
    Google Scholar 
    Shofiana, R., Subardjo, P. & Pratikto, I. Analisis perubahan penggunaan lahan di wilayah pesisir Kota pekalongan menggunakan data landsat 7 etm+. J. Mar. Res. 2, 35–43 (2013).
    Google Scholar 
    Wijaya, A. Analisis Dinamika Pola Spasial Penggunaan Lahan Pada Wilayah Terdampak Kenaikan Muka Air Laut di Kota Pekalongan (2017).El-Fath, D. D. I., Atmodjo, W., Helmi, M., Widada, S. & Rochaddi, B. Analisis Spasial Area Genangan Banjir Rob Setelah Pembangunan Tanggul di Kabupaten Pekalongan, Jawa Tengah. Indones. J. Oceanogr. 4, 96–110 (2022).
    Google Scholar 
    Novita, M. G., Helmi, M., Widiaratih, R., Hariyadi, H. & Wirasatriya, A. Mengkaji Area Genangan Banjir Pasang Terhadap Penggunaan Lahan Pesisir Tahun 2020 Menggunakan Metode Geospasial di Kabupaten Pekalongan, Provinsi Ja. Indones. J. Oceanogr. 3, 14–26 (2021).Article 

    Google Scholar 
    Salim, M. A. Penanganan Banjir dan Rob di Wilayah Pekalongan. J. Tek. Sipil 11, 15–23 (2018).
    Google Scholar 
    Jumatiningrum, N. & Indrayati, A. Strategi Adaptasi Masyarakat Kelurahan Bandengan Kecamatan Pekalongan Utara dalam Menghadapi Banjir Pasang Air Laut (Rob). Edu Geogr. 9, 136–143 (2021).
    Google Scholar 
    BNPB. Data Kebencanaan Nasional (BNPB, 2021).
    Google Scholar 
    Giampietro, M., Aspinall, R. J., Ramos-Martin, J. & Bukkens, S. G. Resource Accounting for Sustainability Assessment: The Nexus Between Energy, Food, Water and Land Use (Routledge, 2014).Book 

    Google Scholar 
    Meadows, D. H., Randers, J. & Meadows, D. L. The Limits to Growth (1972) (Yale University Press, 2013).MATH 

    Google Scholar 
    Albrecht, T., Crootof, A. & Scott, C. Trends in the development of water–energy–food nexus methods (2017).Leck, H., Fitzpatrick, D. & Burchell, K. Energy, water and food: Towards a critical nexus approach. in Handbook on the Geographies of Energy (Edward Elgar Publishing, 2017).Scott, C. A., Kurian, M. & Wescoat, J. L. The water–energy–food nexus: Enhancing adaptive capacity to complex global challenges. in Governing the Nexus 15–38 (Springer, 2015).Wanty, E. E. Analisis Produksi Batik Cap Dari UKM Batik Kota Pekalongan (Studi Pada Sentra Batik Kota Pekalongan-Jawa Tengah, 2006).
    Google Scholar 
    Mankiw, N. G. Macroeconomics Vol. 41 (Worth Publishers, 2003).
    Google Scholar 
    Shen, J. & Kee, G. Development and Planning in Seven Major Coastal Cities in Southern and Eastern China (Springer, 2017).Book 

    Google Scholar 
    Xu, C., Haase, D., Su, M. & Yang, Z. The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness. Appl. Energy 254, 113671 (2019).Article 

    Google Scholar 
    Marfai, M. A. & Cahyadi, A. Dampak bencana banjir pesisir dan adaptasi masyarakat terhadapnya di kabupaten Pekalongan (2017).Wartadesa.net. Tiga hari banjir rendam Pekalongan (2018).Google Maps. A dike in Pekalongan (n.d).Anindita, R. M., Susilowati, I. & Muhammad, F. Analisis Efektifitas Tanggul Laut di Pesisir Pekalongan Terhadap Penurunan Intensitas Banjir, vol. 2 80–88 (2020).Taniguchi, M. Groundwater and Subsurface Environments: Human Impacts in Asian Coastal Cities (Springer Science & Business Media, 2011).Book 

    Google Scholar 
    Baños, C. J., Hernández, M., Rico, A. M. & Olcina, J. The hydrosocial cycle in coastal tourist destinations in Alicante, Spain: Increasing resilience to drought. Sustainability 11, 4494 (2019).Article 

    Google Scholar 
    Sauda, R. H. & Nugraha, A. L. Kajian pemetaan kerentanan banjir rob di kabupaten pekalongan. J. Geod. Undip 8, 466–474 (2019).
    Google Scholar 
    Wartadesa.net. Ratusan warga Sragi masih mengungsi (2022).Buchori, I. et al. Adaptation to coastal flooding and inundation: Mitigations and migration pattern in Semarang City, Indonesia. Ocean Coast. Manag. 163, 445–455 (2018).Article 

    Google Scholar 
    Setiadi, R. & Nalau, J. Can urban regeneration improve health resilience in a changing climate? (2015).Isham, A., Mair, S. & Jackson, T. Wellbeing and productivity: A review of the literature (2020).Banson, K. E., Nguyen, N. C. & Bosch, O. J. Using system archetypes to identify drivers and barriers for sustainable agriculture in Africa: A case study in Ghana. Syst. Res. Behav. Sci. 33, 79–99 (2016).Article 

    Google Scholar 
    Lavrnić, S., Zapater-Pereyra, M. & Mancini, M. Water scarcity and wastewater reuse standards in Southern Europe: Focus on agriculture. Water. Air Soil Pollut. 228, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    Tortajada, C. & Nam Ong, C. Reused water policies for potable use (2016).Murali, R. M., Riyas, M., Reshma, K. & Kumar, S. S. Climate change impact and vulnerability assessment of Mumbai city, India. Nat. Hazards 102, 575–589 (2020).Article 

    Google Scholar 
    Abdullah, A. Y. M. et al. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sens. 11, 790 (2019).ADS 
    Article 

    Google Scholar 
    Ginanjar, A., Rezagama, A. & Handayani, D. S. Rencana Induk Sistem Penyediaan Air Minum Kota Pekalongan (2015).Reiblich, J., Hartge, E., Wedding, L., Killian, S. & Verutes, G. Bridging climate science, law, and policy to advance coastal adaptation planning. Mar. Policy 104, 125–134 (2019).Article 

    Google Scholar 
    Cook, B. I. et al. Revisiting the leading drivers of Pacific coastal drought variability in the contiguous United States. J. Clim. 31, 25–43 (2018).ADS 
    Article 

    Google Scholar 
    Jodar-Abellan, A., Valdes-Abellan, J., Pla, C. & Gomariz-Castillo, F. Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). Sci. Total Environ. 657, 1578–1591 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thanvisitthpon, N., Shrestha, S. & Pal, I. Urban flooding and climate change: A case study of Bangkok, Thailand. Environ. Urban. Asia 9, 86–100 (2018).Article 

    Google Scholar 
    Laksmi, G. S. Dampak Alih Fungsi Lahan dan Curah Hujan terhadap Banjir di Kota Pekalongan, Jawa Tengah, 382–391 (2020).Dhiman, R., VishnuRadhan, R., Eldho, T. & Inamdar, A. Flood risk and adaptation in Indian coastal cities: Recent scenarios. Appl. Water Sci. 9, 1–16 (2019).ADS 
    Article 

    Google Scholar 
    Bahri, M. & Cremades, R. The Urban Drought Nexus Tool. Zenodo (2021). More

  • in

    Eco-evolutionary model on spatial graphs reveals how habitat structure affects phenotypic differentiation

    Eco-evolutionary model on spatial graphsWe establish an individual-based model (IBM) where individuals are structured over a trait space and a graph representing a landscape. For the sake of simplicity, we consider the case of asexual reproduction and haploid genetics29. Individuals die, reproduce, mutate and migrate in a stochastic fashion, which together results in macroscopic properties. The formulation of the stochastic IBM allows an analytical description of the dynamics at the population level, which links emergent properties to the elementary processes that generate them.The trait space ({{{{{{{mathcal{X}}}}}}}}subseteq {{mathbb{R}}}^{d}) is continuous and can be split into a neutral trait space ({{{{{{{mathcal{U}}}}}}}}) and an adaptive trait space ({{{{{{{mathcal{S}}}}}}}}). We refer to neutral traits (uin {{{{{{{mathcal{U}}}}}}}}) as traits that are not under selection, in contrast to adaptive traits (sin {{{{{{{mathcal{S}}}}}}}}), which experience selection. The graph denoted by G is composed of a set of vertices {v1,v2,…,vM} that correspond to habitat patches (suitable geographical areas), and a set of edges that constrain the movement of individuals between the habitat patches. We use the original measure of genetic differentiation for quantitative traits QST (standing for Q-statistics) in the case of haploid populations45,46. We denote the neutral trait value of the kth individual on vi as ({u}_{k}^{(i)}), the number of individuals on vi as N(i), the mean neutral trait on vi as ({overline{u}}^{(i)}), and the mean neutral trait in the metapopulation as (overline{u}). It follows that we quantify neutral differentiation QST,u as$${Q}_{ST,u}={sigma }_{B,u}^{2}/({sigma }_{B,u}^{2}+{sigma }_{W,u}^{2})$$
    (1)
    where ({sigma }_{B,u}^{2}={mathbb{E}}[frac{1}{M}{sum }_{i}{left({overline{u}}^{(i)}-overline{u}right)}^{2}]) denotes the expected neutral trait variance between the vertices and ({sigma }_{W,u}^{2}=frac{1}{M}mathop{sum }nolimits_{i}^{M}{mathbb{E}}left[frac{1}{{N}^{(i)}}{sum }_{k}{left({u}_{k}^{(i)}-{overline{u}}^{(i)}right)}^{2}right]) denotes the average expected neutral trait variance within vertices. We similarly quantify adaptive differentiation QST,s.Following the Gillespie update rule47, individuals with trait ({x}_{k}in {{{{{{{mathcal{X}}}}}}}}) on vertex vi are randomly selected to give birth at rate b(i)(xk) and die at rate d(N(i)) = N(i)/K, where K is the local carrying capacity. The definition of d therefore captures competition, which is proportional to the number of individuals on a vertex and does not depend on the individuals’ traits (we relax this assumption later on). The offspring resulting from a birth event inherits the parental traits, which can independently be affected by mutations with probability μ. A mutated trait differs from the parental trait by a random change that follows a normal distribution with variance ({sigma }_{mu }^{2}) (corresponding to the continuum of alleles model48). The offspring can further migrate to neighbouring vertices by executing a simple random walk on G with probability m. A schematic overview of the two different settings considered is provided in Fig. 1. Under the setting with no selection, individuals are only characterised by neutral traits so that ({{{{{{{mathcal{X}}}}}}}}={{{{{{{mathcal{U}}}}}}}}). For individuals on a vertex with trait xk ≡ uk we define b(i)(xk) ≡ b, so that the birth rate is constant. This ensures that neutral traits do not provide any selective advantage. Under the setting with heterogeneous selection, each vertex of the graph vi is labelled by a habitat type with environmental condition Θi that specifies the optimal adaptive trait value on vi. It follows that, for individuals with traits ({x}_{k}=({u}_{k},{s}_{k})in {{{{{{{mathcal{U}}}}}}}}times {{{{{{{mathcal{S}}}}}}}}) on vi, we define$${b}^{(i)}({x}_{k})equiv {b}^{(i)}({s}_{k})=b(1-p{({s}_{k}-{{{Theta }}}_{i})}^{2})$$
    (2)
    where p is the selection strength41. This ensures that the maximum birth rate on vi is attained for sk = Θi, which results in a differential advantage that acts as an evolutionary stabilising force. In the following we consider two habitat types denoted by I and II with symmetric environmental conditions θI and θII, so that Θi ∈ {θI, θII} and θII = − θI = θ, where θ can be viewed as the habitat heterogeneity41.Fig. 1: Graphical representation of the structure of individuals in the eco-evolutionary model.a Setting with no selection, where individuals are characterised by a set of neutral traits (uin {{{{{{{mathcal{U}}}}}}}}). The scatter plots represent a projection of the first two components of u for the individuals present on the designated vertices at time t = 1000, obtained from one simulation of the IBM. b Setting with heterogeneous selection. In this setting, individuals are additionally characterised by adaptive traits (sin {{{{{{{mathcal{S}}}}}}}}). Blue vertices favour the optimal adaptive trait value θI, while red vertices favour θII. The scatter plots represent a projection of the first component of u and s for the individuals present on the designated vertices at time t = 1000, obtained from one simulation. The majority of individuals are locally well-adapted and have an adaptive trait close to the optimal value, but some maladaptive individuals originating from neighbouring vertices are also present. m = 0.05.Full size imageDeterministic approximation of the population dynamics under no selectionThe model can be formulated as a measure-valued point process (30 and Supplementary Note). Under this formalism, we demonstrate in the Supplementary Note how the population size and the trait dynamics show a deterministic behaviour when a stabilising force dampens the stochastic fluctuations. This makes it possible to express the dynamics of the macroscopic properties with deterministic differential equations, connecting emergent patterns to the processes that generate them. In particular, in the setting of no selection, competition stabilises the population size fluctuations, and the dynamics can be considered deterministic and expressed as$${partial }_{t}{N}_{t}^{(i)}={N}_{t}^{(i)}left[b(1-m)-frac{{N}_{t}^{(i)}}{K}right]+mbmathop{sum}limits_{jne i}frac{{a}_{i,j}}{{d}_{j}}{N}_{t}^{(j)}$$
    (3)
    where (A={({a}_{i,j})}_{1le i,jle M}) is the adjacency matrix of the graph G and D = (d1,d2,…,dM) is a vector containing the degree of each vertex (number of edges incident to the vertex). The first term on the right-hand side corresponds to logistic growth, which accounts for birth and death events of non-migrating individuals. The second term captures the gains due to migrations, which depend on the graph topology. Assuming that all vertices with the same degree have an equivalent position on the graph, corresponding to a “mean field” approach (see Methods), one can obtain a closed-form solution from Eq. (3) (see Eq. (12)), which shows that the average population size (overline{N}) scales with ({langle sqrt{k}rangle }^{2}/langle krangle), where 〈k〉 is the average vertex degree and (langle sqrt{k}rangle) is the average square-rooted vertex degree. The quantity ({langle sqrt{k}rangle }^{2}/langle krangle), denoted as hd, relates to the homogeneity in vertex degree of the graph and can therefore be viewed as a measure negatively associated with heterogeneity in connectivity. Simulations of the IBM illustrate that hd can explain differences in population size for complex graph topologies with varying migration regimes (Fig. 2a for graphs with M = 7 vertices and Supplementary Fig. 1a for M = 9). This analytical result is connected to theoretical work on reaction-diffusion processes49 and highlights that irregular graphs (graphs whose vertices do not have the same degree) result in unbalanced migration fluxes that affect the ecological balance between births and deaths. Highly connected vertices present an oversaturated carrying capacity (N(i)  > bK, see Methods), increasing local competition and lowering total population size compared with regular graphs (Fig. 2a). Because populations with small sizes experience more drift (31 and Supplementary Fig. 2), this result indicates that graph topology affects neutral differentiation not only through population isolation, but also by affecting population dynamics.Fig. 2: Effect of and hd on average population size (overline{N}) and neutral differentiation QST,u in the setting with no selection.a Response of (overline{N}) to homogeneity in degree ({h}_{d}={langle sqrt{k}rangle }^{2}/langle krangle) for all undirected connected graphs with M = 7 vertices and m = 0.5. b Response of QST,u to average path length for similar simulations obtained with m = 0.01. c Response of QST,u to homogeneity in degree hd for the same data. In a, b, and c, each dot represents average results from 5 replicate simulations of the IBM, the colour scale corresponds to the proportion of the graphs with similar x and y-axis values (graph density), and the blue line corresponds to a linear fit. d Standardized effect of hd and on QST,u, obtained from multivariate regression models independently fitted on similar data obtained for m = 0.01 and m = 0.5. The contributions of and hd to QST,u are alike for low migration regimes. Error bars show 95% confidence intervals. Analogous results on graphs with M = 9 vertices are presented in Supplementary Fig. 1 and all regression details can be found in Supplementary Table 2.Full size imageNonetheless, the stochasticity of the processes at the individual level can propagate to the population level and substantially affect the macroscopic properties. In particular, neutral differentiation emerges from the stochastic fluctuations of the populations’ neutral trait distribution. These fluctuations complicate an analytical underpinning of the dynamics, and in this case simulations of IBM offer a straightforward approach to evaluate the level of neutral differentiation.Effect of graph topology on neutral differentiation under no selectionWe study a setting with no selection and investigate the effect of the graph topology on neutral differentiation. When migration is limited, individuals’ traits are coherent on each vertex but stochastic drift at the population level generates neutral differentiation between the vertices. Migration attenuates neutral differentiation because it has a correlative effect on local trait distributions. Following21,22,26, we expect that the intensity of the correlative effect depends on the average path length of the graph 〈l〉, defined as the average shortest path between all pairs of vertices50. For a constant number of vertices, 〈l〉 is strictly related to the mean betweenness centrality and quantifies the graph connectivity50. High 〈l〉 implies low connectivity and greater isolation of populations, and hence we expect that graphs with high 〈l〉 are associated with high differentiation levels. We consider various graphs with an identical number of vertices and run simulations of the IBM to obtain the neutral differentiation level QST,u attained after a time long enough to discard transient dynamics (see Methods). We then interpret the discrepancies in QST,u across the simulations by relating them to the underlying graph topologies.We observe strong differences in QST,u across graphs for varying m, and find that 〈l〉 explains at least 55% of the variation in QST,u across all graphs with M = 7 vertices for (Fig. 2b). Nonetheless, some specific graphs, such as the star graph, present higher levels of QST,u than expected by their average path length. To explain this discrepancy, we explore the effect of homogeneity in vertex degree hd, as we showed in Eq. (12) that it decreases population size, which should in turn increase QST,u by intensifying stochastic drift. We find that hd explains 57% of the variation for low m (Fig. 2c). However, the fit remains similar after correcting for differences in population size (see Supplementary Table 1), indicating that irregular graphs structurally amplify the isolation of populations. Unbalanced migration fluxes lead central vertices to host more individuals than allowed by their carrying capacity. This causes increased competition that results in a higher death rate, so that migrants have a lower probability of further spreading their trait. Highly connected vertices therefore behave as bottlenecks, increasing the isolation of peripheral vertices and consequently amplifying QST,u.We then evaluate the concurrent effect of 〈l〉 and hd on QST,u with a multivariate regression model that we fit independently for low and high migration regimes (Fig. 2d). The multivariate regression model explains at least 70% of the variation in QST,u for the migration regimes considered and for graphs with M = 7 vertices (see Supplementary Table 2 for details). Moreover, we find that 〈l〉 and hd have akin contributions to neutral differentiation for low m, but the effect of 〈l〉 increases for higher migration regimes while the effect of hd decreases. To ensure that these conclusions can be generalised to larger graphs, we conduct the same analysis on a subset of graphs with M = 9 vertices and find congruent results (Supplementary Fig. 1). In the absence of selection and with competitive interactions, graphs with a high average path length 〈l〉 and low homogeneity in vertex degree hd, or similarly graphs with low connectivity and high heterogeneity in connectivity, show high levels of neutral differentiation.Deterministic approximation of the population dynamics and adaptation under heterogeneous selectionWe next consider heterogeneous selection and investigate the response of adaptive differentiation to the spatial distribution of habitat types, denoted as the Θ-spatial distribution. Adaptive differentiation emerges from local adaptation, but migration destabilises adaptation as a result of the influx of maladaptive migrants. We expect that higher connectivity between vertices of similar habitat type increases the level of adaptive differentiation, because it increases the proportion of well-adapted migrants. Local adaptation can be investigated by approximating the stochastic dynamics of the trait distribution with a deterministic partial differential equation (PDE). We demonstrate under mean-field assumption how the deterministic approximation can be reduced to an equivalent two-habitat model. We analyse the reduced model with the theory of adaptive dynamics36,41 and find a critical migration threshold m⋆ that determines local adaptation. m⋆ depends on a quantity coined the habitat assortativity rΘ, and we demonstrate with numerical simulations that rΘ determines the overall adaptive differentiation level QST,s reached at steady state in the deterministic approximation.Heterogeneous selection, captured by the dependence of the birth rate on Θi, generates a stabilising force that dampens the stochastic fluctuations of the adaptive trait distribution. The dynamics of the adaptive trait distribution consequently shows a deterministic behavior and we demonstrate in the Supplementary Note and Supplementary Figs. 3 and 4 that the number of individuals on vi with traits (sin {{Omega }}subset {{{{{{{mathcal{S}}}}}}}}) can be approximated by the quantity ∫Ωn(i)(s)ds, where n(i) is a continuous function solution of the PDE$${partial }_{t}{n}_{t}^{(i)}(s)= , {n}_{t}^{(i)}(s)left[{b}^{(i)}(s)(1-m)-frac{1}{K}{int}_{{{{{{{{mathcal{S}}}}}}}}}{n}_{t}^{(i)}({{{{{{{bf{s}}}}}}}})d{{{{{{{bf{s}}}}}}}}right]\ +mmathop{sum}limits_{jne i}{b}_{j}(s)frac{{a}_{i,j}}{{d}_{j}}{n}_{t}^{(j)}(s)+frac{1}{2}mu {sigma }_{mu }^{2}{{{Delta }}}_{s}left[{b}^{(i)}(s){n}_{t}^{(i)}(s)right]$$
    (4)
    Equation (4) is similar to Eq. (3), except that it incorporates an additional term corresponding to mutation processes and that the birth rate is trait-dependent. We show how Eq. (4) can be reduced to an equivalent two-habitat model under mean-field assumption. The mean-field approach differs slightly from the setting with no selection because vertices are labelled with Θi. Here we assume that vertices with similar habitat types have an equivalent position on the graph (see Supplementary Fig. 5 for a graphical representation), so that all vertices with habitat type I are characterised by the identical adaptive trait distribution that we denote by ({overline{n}}^{{{{{{{{bf{I}}}}}}}}}), and are associated with the birth rate ({b}^{{{{{{{{bf{I}}}}}}}}}(s)=b(1-p{(s-{theta }_{{{{{{{{bf{I}}}}}}}}})}^{2})). Let P(I, II) denote the proportion of edges connecting a vertex vi of type II to a vertex vj of type I, and let P(I) denote the proportion of vertices vi of type I. By further assuming that habitats are homogeneously distributed on the graph so that (P({{{{{{{bf{I}}}}}}}})=P({{{{{{{bf{II}}}}}}}})=frac{1}{2}), Eq. (4) transforms into$${partial }_{t}{overline{n}}_{t}^{{{{{{{{bf{I}}}}}}}}}(s)= ,{overline{n}}_{t}^{{{{{{{{bf{I}}}}}}}}}(s)left[{b}^{{{{{{{{bf{I}}}}}}}}}(s)(1-m)-frac{1}{K}{int}_{{{{{{{{mathcal{S}}}}}}}}}{overline{n}}_{t}^{{{{{{{{bf{I}}}}}}}}}({{{{{{{bf{s}}}}}}}})d{{{{{{{bf{s}}}}}}}}right]+frac{1}{2}mu {sigma }_{mu }^{2}({{{Delta }}}_{s}{b}^{{{{{{{{bf{I}}}}}}}}}{overline{n}}_{t}^{{{{{{{{bf{I}}}}}}}}})(s)\ +frac{m}{2},[(1-{r}_{{{Theta }}}){b}^{{{{{{{{bf{II}}}}}}}}}(s){overline{n}}_{t}^{{{{{{{{bf{II}}}}}}}}}(s)+(1+{r}_{{{Theta }}}){b}^{{{{{{{{bf{I}}}}}}}}}(s){overline{n}}_{t}^{{{{{{{{bf{I}}}}}}}}}(t)]$$
    (5)
    (see Methods), where we define$${r}_{{{Theta }}}=2left(P({{{{{{{bf{I}}}}}}}},{{{{{{{bf{I}}}}}}}})-P({{{{{{{bf{I}}}}}}}},{{{{{{{bf{II}}}}}}}})right)$$
    (6)
    as the habitat assortativity of the graph, which ranges from −1 to 1. When rΘ = − 1, all edges connect dissimilar habitat types (disassortative graph), while as rΘ tends towards 1 the graph is composed of two clusters of vertices with identical habitat types (assortative graph). Eq. (5) can be analysed with the theory of adaptive dynamics36,38,41, a mathematical framework that provides analytical insights by assuming a “trait substitution process”. Following this assumption, the mutation term in Eq. (5) is omitted and the phenotypic distribution results in a collection of discrete individual types that are gradually replaced by others until evolutionary stability is reached (see Methods and36,38,41 for details). By applying the theory of adaptive dynamics, we find a critical migration rate m⋆$${m}^{star }=frac{1}{(1-{r}_{{{Theta }}})}frac{4p{theta }^{2}}{(1+3p{theta }^{2})}$$
    (7)
    so that when m  > m⋆, a single type of individual exists with adaptive trait ({s}^{* }=left({theta }_{{{{{{{{bf{II}}}}}}}}}+{theta }_{{{{{{{{bf{I}}}}}}}}}right)/2=0) in the steady-state (see Methods for the derivation of Eq. (7)). In this case, adaptive differentiation QST,s is nil and the average population size is given by (overline{N}=bK{(1-ptheta )}^{2}). In contrast, when m = 0 and/or rΘ = 1, all individuals are locally well-adapted with trait Θi on vi, and it follows that the average population size is higher and equal to (overline{N}=bK), while adaptive differentiation is maximal and equal to ({Q}_{ST,s}={{{{{{{rm{Var}}}}}}}}({{Theta }})/left({{{{{{{rm{Var}}}}}}}}({{Theta }})+0right)=1). When 0  m⋆, implying that individuals become equally fit in all habitats. In this case, the isolation effect of heterogeneous selection is lost and QST,u reaches a similar level as in the setting with no selection for m  > m⋆ (Fig. 5a), although QST,u is slightly higher in the setting with heterogeneous selection due to lower population size ((overline{N}=bK(1-ptheta )) vs. (overline{N}=bK), see section above and Methods). This suggests that rΘ reinforces QST,u, as assortative graphs sustain higher levels of adaptive differentiation (Figs. 3 and 4). Simulations on the path graph with varying Θ-spatial distribution support this conclusion for high migration regimes, but show the opposite relationship under low migration regimes, where the habitat assortativity rΘ decreases QST,u (Fig. 5b). Assortative graphs are composed of large clusters of vertices with similar habitats, within which migrants can circulate without fitness losses. Local neutral trait distributions become more correlated within these clusters, resulting in a decline in QST,u for assortative graphs compared with disassortative graphs. Figure 5b therefore highlights the ambivalent effect of rΘ on QST,u. rΘ reinforces QST,u by favouring adaptive differentiation, but also decreases QST,u by decreasing population isolation within clusters of vertices with the same habitat type.We compare the effect of rΘ on QST,u to the effect of the topology metrics 〈l〉 and hd found in the setting with no selection using multivariate regression analysis on simulation results obtained for different graphs with varying Θ-spatial distribution (Fig. 5d for graphs with M = 7 vertices and Supplementary Fig. 7b for M = 9). The multivariate model explains the discrepancies in QST,u across the simulations for low and high migration regimes (see Supplementary Table 3 for details), and we find that rΘ, 〈l〉, and hd contribute similarly to neutral differentiation. Hence, the effects of rΘ and the topology metrics 〈l〉 and hd add up under heterogeneous selection. A change in sign of the standardized effect of rΘ on QST,s for low and high migration regimes verifies that the ambivalent effect of rΘ on QST,u found on the path graph holds for general graph ensembles. Simulations with trait-dependent competition and simulations on realistic graphs with a continuum of habitat types equally confirm the ambivalent effect of rΘ and further support the complementary effect of 〈l〉 and hd on QST,u (see Supplementary Fig. 8). 〈l〉 and hd therefore drive neutral differentiation with and without heterogeneous selection. rΘ becomes an additional determinant of neutral differentiation under heterogeneous selection. In contrast to the non-ambivalent, positive effect of habitat assortativity on adaptive differentiation, rΘ can amplify or depress neutral differentiation depending on the migration regime considered. More