Unique metabolism of different glucosinolates in larvae and adults of a leaf beetle specialised on Brassicaceae
War, A. R. et al. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 7, 1306–1320 (2012).Article
Google Scholar
Pentzold, S., Zagrobelny, M., Roelsgaard, P. S., Møller, B. L. & Bak, S. The multiple strategies of an insect herbivore to overcome plant cyanogenic glucoside defence. PLoS ONE 9, e91337. https://doi.org/10.1371/journal.pone.0091337 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Abdalsamee, M. K., Giampa, M., Niehaus, K. & Müller, C. Rapid incorporation of glucosinolates as a strategy used by a herbivore to prevent activation by myrosinases. Insect Biochem. Mol. Biol. 52, 115–123. https://doi.org/10.1016/j.ibmb.2014.07.002 (2014).CAS
Article
PubMed
Google Scholar
Winde, I. & Wittstock, U. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72, 1566–1575. https://doi.org/10.1016/j.phytochem.2011.01.016 (2011).CAS
Article
PubMed
Google Scholar
Sporer, T., Körnig, J. & Beran, F. Ontogenetic differences in the chemical defence of flea beetles influence their predation risk. Funct Ecol. 34, 1370–1379. https://doi.org/10.1111/1365-2435.13548 (2020).Article
Google Scholar
Hammer, T. J. & Moran, N. A. Links between metamorphosis and symbiosis in holometabolous insects. Philos. Trans. R. Soc. B-Biol. Sci. 374, 20190068. https://doi.org/10.1098/rstb.2019.0068 (2019).CAS
Article
Google Scholar
Wäckers, F. L., Romeis, J. & van Rijn, P. Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annu. Rev. Entomol. 52, 301–323. https://doi.org/10.1146/annurev.ento.52.110405.091352 (2007).CAS
Article
PubMed
Google Scholar
Altermatt, F. & Pearse, I. S. Similarity and specialization of the larval versus adult diet of european butterflies and moths. Am. Nat. 178, 372–382. https://doi.org/10.1086/661248 (2011).Article
PubMed
Google Scholar
Hammer, T. J., McMillan, W. O. & Fierer, N. Metamorphosis of a butterfly-associated bacterial community. PLoS ONE 9, e86995. https://doi.org/10.1371/journal.pone.0086995 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Shukla, S. P., Sanders, J. G., Byrne, M. J. & Pierce, N. E. Gut microbiota of dung beetles correspond to dietary specializations of adults and larvae. Mol. Ecol. 25, 6092–6106. https://doi.org/10.1111/mec.13901 (2016).CAS
Article
PubMed
Google Scholar
Blažević, I. et al. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169, 112100. https://doi.org/10.1016/j.phytochem.2019.112100 (2020).CAS
Article
PubMed
Google Scholar
Halkier, B. A. & Gershenzon, J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303–333. https://doi.org/10.1146/annurev.arplant.57.032905.105228 (2006).CAS
Article
PubMed
Google Scholar
Wittstock, U., Kurzbach, E., Herfurth, A. M. & Stauber, E. J. Glucosinolate breakdown. Adv. Botanical Res. – Glucosinolates 80, 125–169. https://doi.org/10.1016/bs.abr.2016.06.006 (2016).CAS
Article
Google Scholar
Jeschke, V., Gershenzon, J. & Vassão, D. G. in Glucosinolates Vol. 80 Advances in Botanical Research (ed S. Kopriva), 199–245 (2016).Sun, R. et al. Tritrophic metabolism of plant chemical defenses and its effects on herbivore and predator performance. eLife 9, e51029, doi:https://doi.org/10.7554/eLife.51029 (2019).Malka, O. et al. Glucosinolate desulfation by the phloem-feeding insect Bemisia tabaci. J. Chem. Ecol. 42, 230–235. https://doi.org/10.1007/s10886-016-0675-1 (2016).CAS
Article
PubMed
Google Scholar
Schramm, K., Vassão, D. G., Reichelt, M., Gershenzon, J. & Wittstock, U. Metabolism of glucosinolate-derived isothiocyanates to glutathione conjugates in generalist lepidopteran herbivores. Insect Biochem. Mol. Biol. 42, 174–182. https://doi.org/10.1016/j.ibmb.2011.12.002 (2012).CAS
Article
PubMed
Google Scholar
Beran, F. et al. Phyllotreta striolata flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proc. Natl. Acad. Sci. USA 111, 7349–7354. https://doi.org/10.1073/pnas.1321781111 (2014).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Beran, F. et al. One pathway is not enough: The cabbage stem flea beetle Psylliodes chrysocephala uses multiple strategies to overcome the glucosinolate-myrosinase defense in its host plants. Front. Plant Sci. 9, 1754. https://doi.org/10.3389/fpls.2018.01754 (2018).Article
PubMed
PubMed Central
Google Scholar
Müller, C. et al. Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J. Chem. Ecol. 27, 2505–2516 (2001).Article
Google Scholar
Ratzka, A., Vogel, H., Kliebenstein, D. J., Mitchell-Olds, T. & Kroymann, J. Disarming the mustard oil bomb. Proc. Natl. Acad. Sci. USA. 99, 11223–11228 (2002).ADS
CAS
Article
Google Scholar
Wittstock, U. et al. Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc. Natl. Acad. Sci. USA. 101, 4859–4864 (2004).ADS
CAS
Article
Google Scholar
Falk, K. L. & Gershenzon, J. The desert locust, Schistocerca gregaria, detoxifies the glucosinolates of Schouwia purpurea by desulfation. J. Chem. Ecol. 33, 1542–1555. https://doi.org/10.1007/s10886-007-9331-0 (2007).CAS
Article
PubMed
Google Scholar
Vanhaelen, N., Haubruge, E., Lognay, G. & Francis, F. Hoverfly glutathione S-transferases and effect of Brassicaceae secondary metabolites. Pestic. Biochem. Phys. 71, 170–177 (2001).CAS
Article
Google Scholar
Friedrichs, J. et al. Novel glucosinolate metabolism in larvae of the leaf beetle Phaedon cochleariae. Insect Biochem. Mol. Biol. 124, 103431. https://doi.org/10.1016/j.ibmb.2020.103431 (2020).CAS
Article
PubMed
Google Scholar
Reifenrath, K., Riederer, M. & Müller, C. Leaf surface wax layers of Brassicaceae lack feeding stimulants for Phaedon cochleariae. Entomol. Exp. Appl. 115, 41–50 (2005).CAS
Article
Google Scholar
Cataldi, T. R. I., Lelario, F., Orlando, D. & Bufo, S. A. Collision-induced dissociation of the A+2 isotope ion facilitates glucosinolates structure elucidation by electrospray Ionization-Tandem Mass Spectrometry with a linear Quadrupole Ion Trap. Anal. Chem. 82, 5686–5696. https://doi.org/10.1021/ac100703w (2010).CAS
Article
PubMed
Google Scholar
Cataldi, T. R. I., Rubino, A., Lelario, F. & Bufo, S. A. Naturally occuring glucosinolates in plant extracts of rocket salad (Eruca sativa L.) identified by liquid chromatography coupled with negative ion electrospray ionization and quadrupole ion-trap mass spectrometry. Rapid Commun. Mass Spectrom. 21, 2374–2388, doi:https://doi.org/10.1002/rcm.3101 (2007).Yang, Z. L., Kunert, G., Sporer, T., Kornig, J. & Beran, F. Glucosinolate abundance and composition in Brassicaceae influence sequestration in a specialist flea beetle. J. Chem. Ecol. 46, 186–197. https://doi.org/10.1007/s10886-020-01144-y (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Smirnoff, N. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biol. and Medic. 122, 116–129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033 (2018).CAS
Article
Google Scholar
Agerbirk, N., De Vos, M., Kim, J. H. & Jander, G. Indole glucosinolate breakdown and its biological effects. Phytochem. Rev. 8, 101–120. https://doi.org/10.1007/s11101-008-9098-0 (2009).CAS
Article
Google Scholar
Goggin, F. L., Avila, C. A. & Lorence, A. Vitamin C content in plants is modified by insects and influences susceptibility to herbivory. BioEssays 32, 777–790. https://doi.org/10.1002/bies.200900187 (2010).CAS
Article
PubMed
Google Scholar
Kim, J. H., Lee, B. W., Schroeder, F. C. & Jander, G. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid). Plant J. 54, 1015–1026 (2008).CAS
Article
Google Scholar
Liu, T. T. & Yang, T. S. Stability and antimicrobial activity of allyl isothiocyanate during long-term storage in an oil-in-water emulsion. J. Food Sci. 75, C445–C451. https://doi.org/10.1111/j.1750-3841.2010.01645.x (2010).CAS
Article
PubMed
Google Scholar
Luang-In, V. & Rossiter, J. T. Stability studies of isothiocyanates and nitriles in aqueous media. Songklanakarin J. Sci. Technol. 37, 625–630 (2015).CAS
Google Scholar
Tsao, R., Yu, Q., Friesen, I., Potter, J. & Chiba, M. Factors affecting the dissolution and degradation of oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. J. Agric. Food Chem. 48, 1898–1902. https://doi.org/10.1021/jf9906578 (2000).CAS
Article
PubMed
Google Scholar
Brodbeck, B. & Strong, D. in Insect Outbreaks (eds P. Barbosa & J. C. Schultz) Ch. 14, 347–363 (Academic Press, INC., 1987).Kumar, V. et al. Differential distribution of amino acids in plants. Amino Acids 49, 821–869. https://doi.org/10.1007/s00726-017-2401-x (2017).CAS
Article
PubMed
Google Scholar
Millar, K. A., Gallagher, E., Burke, R., McCarthy, S. & Barry-Ryan, C. Proximate composition and anti-nutritional factors of fava-bean (Vicia faba), green-pea and yellow-pea (Pisum sativum) flour. J. Food Compos. Anal. 82, doi:https://doi.org/10.1016/j.jfca.2019.103233 (2019).Miller, R. W., McGrew, C., Wolff, I. A., Jones, Q. & Vanetten, C. H. Seed meal amino acids – amino acid composition of seed meals from 41 species of Cruciferae. J. Agric. Food Chem. 10, 426-430. https://doi.org/10.1021/jf60123a023 (1962).Article
Google Scholar
Fischer, W. N. et al. Low and high affinity amino acid H+-cotransporters for cellular import of neutral and charged amino acids. Plant J. 29, 717–731. https://doi.org/10.1046/j.1365-313X.2002.01248.x (2002).CAS
Article
PubMed
Google Scholar
Lea, P. J., Sodek, L., Parry, M. A. J., Shewry, R. & Halford, N. G. Asparagine in plants. Ann. Appl. Biol. 150, 1–26. https://doi.org/10.1111/j.1744-7348.2006.00104.x (2007).CAS
Article
Google Scholar
Leroy, P. D. et al. Aphid-host plant interactions: does aphid honeydew exactly reflect the host plant amino acid composition? Arthropod-Plant Inte. 5, 193–199. https://doi.org/10.1007/s11829-011-9128-5 (2011).Article
Google Scholar
Shukla, S. P. & Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 29, 4692–4705. https://doi.org/10.1111/mec.15657 (2020).CAS
Article
PubMed
Google Scholar
Angelino, D. et al. Myrosinase-dependent and -independent formation and control of isothiocyanate products of glucosinolate hydrolysis. Front. Plant Sci. 6, 831. https://doi.org/10.3389/fpls.2015.00831 (2015).Article
PubMed
PubMed Central
Google Scholar
Liou, C. S. et al. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. Cell 180, 717–729. https://doi.org/10.1016/j.cell.2020.01.023 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Liu, X. J. et al. Dietary broccoli alters rat cecal microbiota to improve glucoraphanin hydrolysis to bioactive isothiocyanates. Nutrients 9, 262. https://doi.org/10.3390/nu9030262 (2017).CAS
Article
PubMed Central
Google Scholar
Sikorska-Zimny, K. & Beneduce, L. The metabolism of glucosinolates by gut microbiota. Nutrients 13, 2750. https://doi.org/10.3390/nu13082750 (2021).CAS
Article
PubMed
PubMed Central
Google Scholar
Müller, C., Vogel, H. & Heckel, D. G. Transcriptional responses to short-term and long-term host plant experience and parasite load in an oligophagous beetle. Mol. Ecol. 26, 6370–6383. https://doi.org/10.1111/mec.14349 (2017).CAS
Article
PubMed
Google Scholar
Rueckert, S., Betts, E. L. & Tsaousis, A. D. The symbiotic spectrum: where do the gregarines fit? Trends Parasitol. 35, 687–694. https://doi.org/10.1016/j.pt.2019.06.013 (2019).Article
PubMed
Google Scholar
Kühnle, A. & Müller, C. Responses of an oligophagous beetle species to rearing for several generations on alternative host plant species. Ecol. Entomol. 36, 125–134. https://doi.org/10.1111/j.1365-2311.2010.01256.x (2011).Article
Google Scholar
Sporer, T. et al. Hijacking the mustard-oil bomb: How a glucosinolate-sequestering flea beetle copes with plant myrosinases. Front. Plant Sci. 12, 645030. https://doi.org/10.3389/fpls.2021.645030 (2021).Article
PubMed
PubMed Central
Google Scholar
Kallenbach, M. et al. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J. 78, 1060–1072. https://doi.org/10.1111/tpj.12523 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
Kallenbach, M., Veit, D., Eilers, E. J. & Schuman, M. C. Application of silicone tubing for robust, simple, high-throughput, and time-resolved analysis of plant volatiles in field experiments. Bioprotocol 5, e1391 (2015).
Google Scholar
Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J. & Neumann, S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J. Cheminf. 8, 3. https://doi.org/10.1186/s13321-016-0115-9 (2016).CAS
Article
Google Scholar
Kováts, E. Characterization of organic compounds by gas chromatography. Part 1. Retention indices of aliphatic halides, alcohols, aldehydes and ketones. Helv. Chim. Acta 41, 1915–1932, doi:https://doi.org/10.1002/hlca.19580410703 (1958).El-Sayed, A. M. The Pherobase: Database of Pheromones and Semiochemicals. (2012).McDanell, R., McLean, A. E. M., Hanley, A. B., Heaney, R. K. & Fenwick, G. R. Chemical and biological properties of indole glucosinolates (glucobrassicins): a review. Food Chem. Toxicol. 26, 59–70. https://doi.org/10.1016/0278-6915(88)90042-7 (1988).CAS
Article
PubMed
Google Scholar
Weber, G., Oswald, S. & Zöllner, U. Suitability of rapae cultivars with a different glucosinolate content for Brevicoryne brassicae (L) and Myzus persicae (Sulzer) (Hemiptera, Aphididae). Z. Pflanzenk. Pflanzenschutz 93, 113–124 (1986).CAS
Google Scholar
Wadleigh, R. W. & Yu, S. J. Detoxification of isothiocynante allelochemicals by glutathione transferase in three lepidopterous species. J. Chem. Ecol. 14, 1279–1288. https://doi.org/10.1007/bf01019352 (1988).CAS
Article
PubMed
Google Scholar
Francis, F., Lognay, G., Wathelet, J. P. & Haubruge, E. Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata. J. Chem. Ecol. 27, 243–256. https://doi.org/10.1023/A:1005672220342 (2001).CAS
Article
PubMed
Google Scholar
Aliabadi, A., Renwick, J. A. A. & Whitman, D. W. Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J. Chem. Ecol. 28, 1749–1762. https://doi.org/10.1023/a:1020505016637 (2002).CAS
Article
PubMed
Google Scholar
Bridges, M. et al. Spatial organization of the glucosinolate-myrosinase system in brassica specialist aphids is similar to that of the host plant. Proc. R. Soc. B-Biol. Sci. 269, 187–191. https://doi.org/10.1098/rspb.2001.1861 (2002).CAS
Article
Google Scholar
Müller, C., Agerbirk, N. & Olsen, C. E. Lack of sequestration of host plant glucosinolates in Pieris rapae and P. brassicae. Chemoecology 13, 47–54, doi: https://doi.org/10.1007/s000490300005 (2003).Francis, F., Vanhaelen, N. & Haubruge, E. Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Arch. Insect Biochem. Physiol. 58, 166–174. https://doi.org/10.1002/arch.20049 (2005).CAS
Article
PubMed
Google Scholar
Müller, C. & Wittstock, U. Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem. Mol. Biol. 35, 1189–1198. https://doi.org/10.1016/j.ibmb.2005.06.001 (2005).CAS
Article
PubMed
Google Scholar
Agerbirk, N., Müller, C., Olsen, C. E. & Chew, F. S. A common pathway for metabolism of 4-hydroxybenzylglucosinolate in Pieris and Anthocaris (Lepidoptera: Pieridae). Biochem. Syst. Ecol. 34, 189–198. https://doi.org/10.1016/j.bse.2005.09.005 (2006).CAS
Article
Google Scholar
Vergara, F. et al. Glycine conjugates in a lepidopteran insect herbivore: the metabolism of benzylglucosinolate in the cabbage white butterfly Pieris rapae. ChemBioChem 7, 1982–1989. https://doi.org/10.1002/cbic.200600280 (2006).Article
PubMed
Google Scholar
Agerbirk, N., Olsen, C. E., Topbjerg, H. B. & Sørensen, J. C. Host plant-dependent metabolism of 4-hydroxybenzylglucosinolate in Pieris rapae: Substrate specificity and effects of genetic modification and plant nitrile hydratase. Insect Biochem. Mol. Biol. 37, 1119–1130. https://doi.org/10.1016/j.ibmb.2007.06.009 (2007).CAS
Article
PubMed
Google Scholar
Kazana, E. et al. The cabbage aphid: a walking mustard oil bomb. Proc. R. Soc. B-Biol. Sci. 274, 2271–2277 (2007).CAS
Article
Google Scholar
Agerbirk, N., Olsen, C. E., Poulsen, E., Jacobsen, N. & Hansen, P. R. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation. Insect Biochem. Mol. Biol. 40, 126–137. https://doi.org/10.1016/j.ibmb.2010.01.003 (2010).CAS
Article
PubMed
Google Scholar
Opitz, S. E. W., Jensen, S. R. & Muller, C. Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. J. Chem. Ecol. 36, 148–157. https://doi.org/10.1007/s10886-010-9740-3 (2010).CAS
Article
PubMed
Google Scholar
Opitz, S. E. W., Mix, A., Winde, I. B. & Müller, C. Desulfation followed by sulfation: metabolism of benzylglucosinolate in Athalia rosae (Hymenoptera: Tenthredinidae). ChemBioChem 12, 1252–1257. https://doi.org/10.1002/cbic.201100053 (2011).CAS
Article
PubMed
Google Scholar
Elbaz, M. et al. Asymmetric adaptation to indolic and aliphatic glucosinolates in the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). Mol. Ecol. 21, 4533–4546. https://doi.org/10.1111/j.1365-294X.2012.05713.x (2012).CAS
Article
PubMed
Google Scholar
Opitz, S. E. W. et al. Host shifts from Lamiales to Brassicaceae in the sawfly genus Athalia. PLoS ONE 7, e33649. https://doi.org/10.1371/journal.pone.0033649 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Stauber, E. J. et al. Turning the “Mustard oil bomb” into a “Cyanide bomb”: aromatic glucosinolate metabolism in a specialist insect herbivore. PLoS ONE 7, e35545. https://doi.org/10.1371/journal.pone.0035545 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Gloss, A. D. et al. Evolution in an ancient detoxification pathway is coupled with a transition to herbivory in the Drosophilidae. Mol. Biol. Evol. 31, 2441–2456. https://doi.org/10.1093/molbev/msu201 (2014).CAS
Article
PubMed
PubMed Central
Google Scholar
Goodey, N. A., Florance, H. V., Smirnoff, N. & Hodgson, D. J. Aphids pick their poison: selective sequestration of plant chemicals affects host plant use in a specialist herbivore. J. Chem. Ecol. 41, 956–964. https://doi.org/10.1007/s10886-015-0634-2 (2015).CAS
Article
PubMed
Google Scholar
Jeschke, V. et al. How glucosinolates affect generalist lepidopteran larvae: growth, development and glucosinolate metabolism. Front. Plant Sci. 8, doi:https://doi.org/10.3389/fpls.2017.01995 (2017).Steiner, A. M., Busching, C., Vogel, H. & Wittstock, U. Molecular identification and characterization of rhodaneses from the insect herbivore Pieris rapae. Sci. Rep. 8, 10819. https://doi.org/10.1038/s41598-018-29148-5 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Ahn, S. J. et al. Identification and evolution of glucosinolate sulfatases in a specialist flea beetle. Sci. Rep. 9, 15725. https://doi.org/10.1038/s41598-019-51749-x (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Malka, O. et al. Glucosylation prevents plant defense activation in phloem-feeding insects. Nat. Chem. Biol. 16, 1420–1426. https://doi.org/10.1038/s41589-020-00658-6 (2020).CAS
Article
PubMed
Google Scholar
Sun, R. et al. Detoxification of plant defensive glucosinolates by an herbivorous caterpillar is beneficial to its endoparasitic wasp. Mol. Ecol. 29, 4014–4031. https://doi.org/10.1111/mec.15613 (2020).CAS
Article
PubMed
Google Scholar
Manivannan, A. et al. Identification of a sulfatase that detoxifies glucosinolates in the phloem-feeding insect Bemisia tabaci and prefers indolic glucosinolates. Front. Plant Sci. 12, 671286. https://doi.org/10.3389/fpls.2021.671286 (2021).Article
PubMed
PubMed Central
Google Scholar
Yang, Z. L. et al. Sugar transporters enable a leaf beetle to accumulate plant defense compounds. Nat. Commun. 12, 2658. https://doi.org/10.1038/s41467-021-22982-8 (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar More