More stories

  • in

    American dog ticks along their expanding range edge in Ontario, Canada

    Sonenshine, D. E. Insects of Virginia No. 13. Ticks of Virginia (Acari: Metastigmata). Res. Div. Bull. 139, 1–44 (1979).
    Google Scholar 
    Lindquist, E. E. et al. A Handbook to the Ticks of Canada (Ixodida: Ixodidae, Argasidae) (Biological Survey of Canada, 2016).
    Google Scholar 
    Campbell, A. & MacKay, P. R. Distribution of the American dog tick, Dermacentor variabilis (Say), and its small-mammal hosts in relation to vegetation types in a study area in Nova Scotia. Can. J. Zool. 57, 1950–1959 (1979).CAS 
    PubMed 

    Google Scholar 
    Barker, I. K. et al. Distribution of the Lyme disease vector, Ixodes dammini (Acari: Ixodidae) and isolation of Borrelia burgdorferi in Ontario, Canada. J. Med. Entomol. 29, 1011–1022 (1992).CAS 
    PubMed 

    Google Scholar 
    Morshed, M. G., Scott, J. D., Fernando, K., Mann, R. B. & Durden, L. A. Lyme disease spirochete, Borrelia burgdorferi endemic at epicenter in Rondeau Provincial Park, Ontario. J. Med. Entomol. 40, 91–94 (2003).PubMed 

    Google Scholar 
    Nelder, M. P. et al. Population-based passive tick surveillance and detection of expanding foci of blacklegged ticks Ixodes scapularis and the Lyme disease agent Borrelia burgdorferi in Ontario, Canada. PLoS ONE 9, e105358 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clow, K. M. et al. Distribution of ticks and the risk of Lyme disease and other tick-borne pathogens of public health significance in Ontario, Canada. Vector Borne Zoonotic Dis. 16, 215–222 (2016).PubMed 

    Google Scholar 
    Smith, K. A. et al. Tick infestations of wildlife and companion animals in Ontario, Canada, with detection of human pathogens in Ixodes scapularis ticks. Ticks Tick Borne Dis. 10, 72–76 (2019).PubMed 

    Google Scholar 
    Scott, J. D. et al. Extensive distribution of the Lyme disease bacterium, Borrelia burgdorferi sensu lato, in multiple tick species parasitizing avian and mammalian hosts across Canada. Healthcare 6, 131 (2018).PubMed Central 

    Google Scholar 
    James, A. M., Burdett, C., McCool, M. J., Fox, A. & Riggs, P. The geographic distribution and ecological preferences of the American dog tick, Dermacentor variabilis (Say), in the USA. Med. Vet. Entomol. 29, 178–188 (2015).CAS 
    PubMed 

    Google Scholar 
    Blouin, E. F., Kocan, A. A., Glenn, B. L., Kocan, K. M. & Hair, J. A. Transmission of Cytauxzoon felis Kier, 1979 from bobcats, Felis rufus (Schreber), to domestic cats by Dermacentor variabilis (Say). J. Wildl. Dis. 20, 241–242 (1984).CAS 
    PubMed 

    Google Scholar 
    Yunik, M. E., Galloway, T. D. & Lindsay, L. R. Active surveillance of Anaplasma marginale in populations of arthropod vectors (Acari: Ixodidae; Diptera: Tabanidae) during and after an outbreak of bovine anaplasmosis in southern Manitoba, Canada. Can. J. Vet. Res. 80, 171–174 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Trumpp, K. M., Parsley, A. L., Lewis, M. J., Camp, J. W. Jr. & Taylor, S. D. Presumptive tick paralysis in 2 American miniature horses in the United States. J. Vet. Intern. Med. 33, 1784–1788 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Léger, E., Vourc’h, G., Vial, L., Chevillon, C. & McCoy, K. D. Changing distributions of ticks: Causes and consequences. Exp. Appl. Acarol. 59, 219–244 (2013).PubMed 

    Google Scholar 
    Ogden, N. H., Mechai, S. & Margos, G. Changing geographic ranges of ticks and tick-borne pathogens: Drivers, mechanisms and consequences for pathogen diversity. Front. Cell. Infect. Microbiol. 3, 46 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Bouchard, C. et al. Increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep. 45, 83–89 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Artsob, H. et al. Isolation of Francisella tularensis and Powassan virus from ticks (Acari: Ixodidae) in Ontario, Canada. J. Med. Entomol. 21, 165–168 (1984).CAS 
    PubMed 

    Google Scholar 
    Gregson, J. D. The Ixodoidea of Canada. Canadian Department of Agriculture Publication 930 (Canadian Department of Agriculture, 1956).
    Google Scholar 
    Scholten, T. Human tick infestations in Ontario: Findings at the Toronto Public Health Laboratory, 1967–1977. Can. J. Public Health 68, 494–496 (1977).CAS 
    PubMed 

    Google Scholar 
    Jarvis, D. The Acarina, with a host index to the species found in Ontario. 48th Ann. Rept. Ent. Soc. Ontario 1909 36, 82–109 (1910).Dergousoff, S. J., Galloway, T. D., Lindsay, L. R., Curry, P. S. & Chilton, N. B. Range expansion of Dermacentor variabilis and Dermacentor andersoni (Acari: Ixodidae) near their northern distributional limits. J. Med. Entomol. 50, 510–520 (2013).PubMed 

    Google Scholar 
    Ministry of Natural Resources and Forestry. Forest resources of Ontario 2016 (Ministry of Natural Resources and Forestry, 2018).Crins, W. J., Gray, P. A., Uhlig, P. W. C. & Wester, M. C. The ecosystems of Ontario, Part 1: Ecozones and ecoregions. (Ministry of Natural Resources and Forestry, 2009).Nelder, M. P. et al. Human pathogens associated with the blacklegged tick Ixodes scapularis: A systematic review. Parasit. Vectors 9, 265 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    University of Toronto. FSA land area file. https://mdl.library.utoronto.ca/collections/numeric-data/census-canada/2016/geo (2018).Lehane, A. et al. Reported county-level distribution of the American dog tick (Acari: Ixodidae) in the contiguous United States. J. Med. Entomol. 57, 131–155 (2020).PubMed 

    Google Scholar 
    Dennis, D. T., Nekomoto, T. S., Victor, J. C., Paul, W. S. & Piesman, J. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J. Med. Entomol. 35, 629–638 (1998).CAS 
    PubMed 

    Google Scholar 
    Springer, Y. P., Eisen, L., Beati, L., James, A. M. & Eisen, R. J. Spatial distribution of counties in the continental United States with records of occurrence of Amblyomma americanum (Ixodida: Ixodidae). J. Med. Entomol. 51, 342–351 (2014).PubMed 

    Google Scholar 
    Eisen, R. J., Eisen, L. & Beard, C. B. County-scale distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the continental United States. J. Med. Entomol. 53, 349–386 (2016).PubMed 

    Google Scholar 
    Clow, K. M. et al. Northward range expansion of Ixodes scapularis evident over a short timescale in Ontario, Canada. PLoS ONE 12, e0189393 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rand, P. W. et al. Passive surveillance in Maine, an area emergent for tick-borne diseases. J. Med. Entomol. 44, 1118–1129 (2007).PubMed 

    Google Scholar 
    Baldwin, D., Desloges, J. & Band, L. Physical geography of Ontario in Ecology of a managed terrestrial landscape: patterns and processes of forest landscapes in Ontario (eds. Perera, A. H., Euler, D. L. & Thompson, I. D.) 12–29 (UBC Press, 2000).Minigan, J. N., Hager, H. A., Peregrine, A. S. & Newman, J. A. Current and potential future distribution of the American dog tick (Dermacentor variabilis, Say) in North America. Ticks Tick Borne Dis. 9, 354–362 (2018).PubMed 

    Google Scholar 
    Wilkinson, P. R. The distribution of Dermacentor ticks in Canada in relation to bioclimatic zones. Can. J. Zool. 45, 517–537 (1967).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bishopp, F. C. & Trembley, T. H. Distribution and hosts of certain North American ticks. J. Parasitol. 31, 1–54 (1945).
    Google Scholar 
    Walker, E. D. et al. Geographic distribution of ticks (Acari: Ixodidae) in Michigan, with emphasis on Ixodes scapularis and Borrelia burgdorferi. J. Med. Entomol. 35, 872–882 (1998).CAS 
    PubMed 

    Google Scholar 
    Harlan, H. J. Observations of host seeking behaviour in American dog ticks, Dermacentor variabilis (Say) (Acari: Ixodidae) in Ohio. Med. Entomol. 4, 23–33 (2003).
    Google Scholar 
    Dodds, D. G., Martell, A. M. & Yescott, R. E. Ecology of the American dog tick, Dermacentor variabilis (Say) Nova Scotia. Can. J. Zool. 47, 171–181 (1969).
    Google Scholar 
    Judd, W. W. Recent records of ticks, Ixodes cookei Packard and Dermacentor variabilis (Say) (Acarina: Ixodoidea) in southwestern Ontario. Entomol. News 86, 157–159 (1975).CAS 
    PubMed 

    Google Scholar 
    Snetsinger, R., Jacobs, S. B., Kim, K. C. & Tavris, D. Extension of the range of Dermacentor variabilis (Acari: Ixodidae) in Pennsylvania. J. Med. Entomol. 30, 795–798 (1993).CAS 
    PubMed 

    Google Scholar 
    Saura, S., Bodin, Ö. & Fortin, M.-J. Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Sagurova, I. et al. Predicted northward expansion of the geographic range of the tick vector Amblyomma americanum in North America under future climate conditions. Environ. Health Perspect. 127, 107014 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mierzejewska, E. J., Estrada-Peña, A., Alsarraf, M., Kowalec, M. & Bajer, A. Mapping of Dermacentor reticulatus expansion in Poland in 2012–2014. Ticks Tick Borne Dis. 7, 94–106 (2016).PubMed 

    Google Scholar 
    Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O. & Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gasmi, S. et al. Evidence for increasing densities and geographic ranges of tick species of public health significance other than Ixodes scapularis in Quebec, Canada. PLoS ONE 13, e0201924 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Pak, D., Jacobs, S. B. & Sakamoto, J. M. A 117-year retrospective analysis of Pennsylvania tick community dynamics. Parasit. Vectors 12, 189 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Garvie, M. B., McKiel, J. A., Sonenshine, D. E. & Campbell, A. Seasonal dynamics of American dog tick, Dermacentor variabilis (Say), populations in southwestern Nova Scotia. Can. J. Zool. 56, 28–39 (1978).CAS 
    PubMed 

    Google Scholar 
    Burg, J. G. Seasonal activity and spatial distribution of host-seeking adults of the tick Dermacentor variabilis. Med. Vet. Entomol. 15, 413–421 (2001).CAS 
    PubMed 

    Google Scholar 
    Newhouse, V. F. Variations in population density, movement, and rickettsial infection rates in a local population of Dermacentor variabilis (Acarina: Ixodidae) ticks in the Piedmont of Georgia. Environ. Entomol. 12, 1737–1746 (1983).
    Google Scholar 
    Mackenzie, A. M. R., Rossier, E., Polley, J. R. & Corber, S. J. Rocky Mountain spotted fever—Ontario. Can. Dis. Wkly. Rep. 5, 130–132 (1979).
    Google Scholar 
    Gary, A. T., Webb, J. A., Hegarty, B. C. & Breitschwerdt, E. B. The low seroprevalence of tick-transmitted agents of disease in dogs from southern Ontario and Quebec. Can. Vet. J. 47, 1194–1200 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Walker, W. J. & Moore, C. A. Tularemia: Experience in the Hamilton area. Can. Med. Assoc. J. 105, 390–396 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ontario Agency for Health Protection and Promotion (Public Health Ontario). 2019 tularemia data at a glance. https://www.publichealthontario.ca/en/diseases-and-conditions/infectious-diseases/vector-borne-zoonotic-diseases/tularemia (2020).Wood, H. & Artsob, H. Spotted fever group rickettsiae: a brief review and a Canadian perspective. Zoonoses Public Health 59(Suppl 2), 65–79 (2012).PubMed 

    Google Scholar 
    Wood, H., Dillon, L., Patel, S. N. & Ralevski, F. Prevalence of Rickettsia species in Dermacentor variabilis ticks from Ontario, Canada. Ticks Tick Borne Dis. 7, 1044–1046 (2016).PubMed 

    Google Scholar 
    Kaufman, E. L. et al. Range-wide genetic analysis of Dermacentor variabilis and its Francisella-like endosymbionts demonstrates phylogeographic concordance between both taxa. Parasit. Vectors 11, 306 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Statistics Canada. Census profile. 2016 Census. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E (2017).Statistics Canada. Land use, census of agriculture historical data. Table: 32–10–0153–01. https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E (2022). More

  • in

    Simulation-based evaluation of two insect trapping grids for delimitation surveys

    Key delimitation trapping survey performance factorsTrap attractivenessThe performance of the current Medfly design was unexpectedly inferior to that of the leek moth even with a more vagile target insect, 2.8 times greater trap density in the core, and a grid size over three times larger. Despite all those factors, p(capture) for the leek moth grid with 1/λ = 20 m was 15 percentage points greater than that for Medfly at 30 days duration. Thus, trap attractiveness was the key determinant for delimiting survey performance, as it was for detection13.One straightforward way to improve p(capture) and the accuracy of boundary setting, while also cutting costs, would be to develop more attractive traps. Poorly attractive traps include food-based attractants48 and traps based solely on visual stimuli36. But developing better traps is difficult. Pheromone-based attractants generally perform best49, but these are unavailable for many insects. For instance, scientists have searched for decades for effective pheromones for Anastrepha suspensa (Loew) and A. ludens (Loew) without success50. Common issues include the complexity of components, costs of synthesis, and chemical stability.Trap densitiesAll else being equal, increasing the trap density will generally improve p(capture) for any survey grid, and intuitively this can help compensate for using less attractive traps. However, the impact of increasing density is limited when attractiveness is low13,47, and large surveys or grids with many traps can become prohibitively expensive51. The Medfly grid designers likely understood that the available trap and lure was not highly attractive, and used higher densities in inner bands to try to reach some desired (non-quantitative) survey performance level. By contrast, the designers of the leek moth grid used a (constant) density three times smaller, likely because the trap and lure were known to be relatively strong. Here, for both species, marginal ROI decreased as densities increased (Tables 2, 3). Hence, increasing densities has limited benefit, but may be useful when better lures are unavailable13.In that context, the use of variable densities in the Medfly grid is understandable. At its standard size, the survey grid would require 8,100 traps if the core trap density were constant (Table 1). The designers likely intuited that lower densities could be used in outer bands because captures there were less likely. However, doing so reduces the likelihood of detection in outer bands and could increase the possibility of undetected egress, especially with longer survey durations. As far as we know, natural egress has not been raised as a concern following the numerous Medfly quarantines that have used this survey grid over the years, in Southern California in particular52.Generally, however, we think the variable Medfly grid densities run counter to delimitation goals. Greater core and Band 2 densities have proportionally more impact on p(capture), but only a few detections in the core are necessary to confirm the presence of the population (Goal 1), and inner area detections probably contribute little to boundary setting (see below). Therefore, lower or intermediate densities (at most) may be optimal for the core when considering ROI. For the outer bands, increasing densities might improve boundary setting (Goal 2) and help mitigate potential egress, but the sizes of those bands already limit cost efficiency (Table 2), making greater densities less advisable. Our simulation results can help elucidate how to balance these interests to achieve delimitation goals while minimizing costs47.Grid size considerationsThe simulation results indicated that the standard survey sizes for these two pests were excessive. We have verified that empirically for Medfly using trapping detections data53. A 14.5-km grid has been widely used for many other insects in the CDFA (2013) guidelines10, such as Mexfly and OFF, and the same analysis indicated that those are also oversized for use in short-term delimitation surveys53. From the same analysis, the predicted survey radius for leek moth, with D = 500 m2 per day, would be 2,382 m, or a diameter of nearly 4.8 km, which matches the results here. Similarly, Dominiak and Fanson45 analyzed trapping data for Qfly and found that the recommended quarantine area distance of 15 km could be reduced to 3 to 4 km.Grids with radii larger than 4.8-km only seem necessary for highly vagile insects, those with D ≥ 50,000 m2 per day47. This should not be surprising. Small insect populations are unlikely to move very far31,54, especially if hosts are available20,39,55. The (proposed) short duration of a delimitation survey would also limit dispersal potential (see below). Many delimiting survey plans may be oversized, because they were developed before much dispersal research had been done37, thus uncertainty was high. Our dispersal distance analysis included species with a wide range of dispersal abilities, so it can be used generally to choose smaller survey grid radii53.Reducing grid sizes down to about 4.8-km diameters may have little impact on p(capture), since detections in bands outside that distance contributed little to overall performance. The cores of both the leek moth and Medfly grids accounted for 86 percent or more of overall p(capture). While core area detections will confirm the presence of the population, they are less useful for defining spatial extent. The furthest detections from the presumed source are usually used to delimit the incursion46,56 (although in our experience formal boundary setting exercises seem rare). Delimiting surveys may often yield few captures anyway, because adventive populations can be very small and subject to high mortality31. Because size reductions eliminate traps in proportionally larger outer areas, the impact on survey costs is substantial. Removing just the outermost bands of each grid would directly reduce costs by $11,200 for leek moth (400 traps) and by $7,488 for Medfly (288 traps; Table 1).Another reason for the large size of the standard Medfly grid may be that it was designed for monitoring and management in addition to delimitation57. Medfly quarantines end after at least three generations without a detection, so the surveys may last for months. The grid size was reportedly originally determined by multiplying the estimated dispersal distance by three (PPQ, personal communication), to account for uncertainty. This implies that the estimated distance was about 2,400 m per 30 days. Thus, the design may not have been built for the 30-d duration used here, but our recommended design is valid if a shorter delimitation activity without further monitoring is appropriate.Although it seemed too large for leek moth, an 8-km grid for delimitation could be appropriate for some other moths. For example, the delimiting survey plans for Spodoptera littoralis (Boisduval) and S. exempta Walker use this size9. S. littoralis is described as dispersing “many miles”, and S. exempta can travel hundreds of miles9, which clearly exceeds the described dispersal ability of leek moth. On the other hand, the survey plan for summer fruit tortrix moth (Adoxophyes orana Fischer von Röeslerstamm) also specifies an 8-km grid for delimitation but contains little information on dispersal, suggesting only that most movement is local8. Like leek moth, a 4.8-km grid for that species seems likely to be more appropriate.Limiting egress potential is probably the main consideration when setting survey size, but uncertainty about the source population location may also be a factor. Survey grids placed over the earliest insect detection may sometimes be off center from the location of the source population54. However, so far as we know for our agency, most adventive populations have been localized, based on post-discovery detections (PPQ, personal communication). Likewise, we have found53 and other researchers have found that dispersal distances for different species in outbreaks and mark-recapture studies are often less than 1 km58,59,60. That may often be the case for detection networks of traps (e.g., for high risk fruit flies), which increase the likelihood of capture before the population has had much time to grow and disperse. Here, we focused explicitly on localized populations, but allowed for uncertainty in the simulations by varying outbreak locations over one mile in the central part of the grid. If the outbreak population is very large and has extensively spread out (e.g., spotted lanternfly, Lycorma delicatula (White) in 201461), delimitation will not be localized, but “area-wide”2. The results here do not apply to area-wide outbreaks, and we are currently studying how to effectively delimit them.Optimizing delimitation surveysMany trapping survey designs in use were based not on “hard” science but on local experience62. Scientists have recognized the need for more cost-effective surveillance strategies63,64. Quantitatively assessing p(capture) in different designs for the same target pest allows us to determine grid sizes and densities that lower costs while maintaining performance. Results here demonstrated that the sizes and densities of these two survey grids could be optimized to save up to $20,244 per survey for the leek moth and $38,168 per survey for the Medfly. In practical terms, that means more than five leek moth surveys could be run for the cost of one standard design survey. Additionally, over seven Medfly delimitation surveys could be funded by the budget of one standard plan. The magnitudes of reduction seen here may be typical, since about 90 percent of the costs in trapping surveys are for transportation and maintenance related to traps65.Quantifying survey performance was not possible until very recently, so it has been little discussed in the literature5,66, and no standard thresholds exist. We think 0.5 may be a reasonable minimum threshold for the choice of p(capture), to try to ensure that population detection is “more likely than not”. Designs that aim to maximize p(capture) could be realistic with high attractiveness traps, but those designs seem very likely to have lower ROIs (e.g., Table 2). Even for the most serious insect pests, we think targeting near-perfect population detection during delimitation is likely not justified. Designs achieving p(capture) from 0.6 to 0.75 could be highly effective in terms of both costs and performance.Another potential area of improvement is grid shape. Circular grids perform as well as square grids but use fewer traps and less service area to achieve equivalent p(capture)47. Moreover, detections in the corners of a square grid are evidence that insects could have traveled beyond the square along the axes, resulting in uncertain boundary setting. Most published survey grids are square10,46, but many field managers tend to use approximately circular trapping grids in the field (PPQ, personal communication). The conversion to a circular grid with a radius of half the square side length reduces the area and number of traps by around 21 percent47. Our findings were consistent with that value.This new quantification ability also indicates that some delimiting survey designs in the U.S.A. may not be performing as well as expected47. For instance, the delimiting survey design for Mexfly uses approximately 31 traps per km2 in the core of a 14.5 km square grid11, but the traps are only weakly attractive (1/λ ≈ 5 m). In this scenario, p(capture) was only around 0.23 with a 30-d survey duration47. A much greater density ( > 80 traps per km2) could be used in the core to achieve p(capture) ≥ 0.5, but this may not be feasible depending on the survey budget.Technical and modeling considerationsExamining diffusion-based movement for these two insects in TrapGrid can give insight into why simulations indicated that smaller grids may be adequate47. The value of σ for Medfly after 30 days is only about 1,550 m. In a normal distribution, σ = 1,550 m gives a 95th percentile distance of 2,550 m, which is similar to the estimated distance above of 2,400 m. Over 90 days, σ = 2,700 m for Medfly, which gives a 95th percentile distance of 4,441 m, still much shorter than the grid radius of 7,250 m. A 95th percentile of 7,250 m requires σ ≈ 4,408 m, which equals t = 253 days. In addition, the maximum total distance (up to 39 days after detection) we observed in trapping detections data for Medfly in Florida was about 4,800 m53.The same calculations for leek moth give σ ≈ 490 m for 30 days, with a 95th percentile distance of only 806 m. That is half the length of the recommended shortened radius above of 2.4 km, and nearly five times shorter than the radius of the standard 8-km grid. A 95th percentile of 4,000 m requires σ = 2,432 m, which implies t = 740 days, which is about two years. Therefore, the leek moth grid is arguably even more oversized than the Medfly grid.The default capture probability calculation in the current version (Ver. 2019-12-11) of TrapGrid is not sensitive to population size32 and does not consider the effects of ambient factors (e.g., wind speed and direction, rainfall, temperature). Many other factors can also impact trapping survey outcomes, such as topography of the environment, availability of host plants, seasonality of pest, and population dynamics. These factors are not considered in the current version of TrapGrid. More

  • in

    Identification of soil particle size distribution in different sedimentary environments at river basin scale by fractal dimension

    Siderius, C., Biemans, H., Kashaigili, J. & Conway, D. Water conservation can reduce future water-energy-food-environment trade-offs in a medium-sized African river basin. Agric. Water Manag. 266, 107548 (2022).
    Google Scholar 
    Zhao, G., Liang, R., Li, K., Wang, Y. & Pu, X. Study on the coupling model of urbanization and water environment with basin as a unit: A study on the Hanjiang Basin in China. Ecol. Ind. 131, 108130 (2021).
    Google Scholar 
    Zhu, Q. et al. Relationship between ecological quality and ecosystem services in a red soil hilly watershed in southern China. Ecol. Ind. 121, 107119 (2021).
    Google Scholar 
    Fu, A. et al. The effects of ecological rehabilitation projects on the resilience of an extremely drought-prone desert riparian forest ecosystem in the Tarim River Basin, Xinjiang, China. Sci. Rep. 11, 18485 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, D. et al. Comprehensive assessment of the water environment carrying capacity based on the spatial system dynamics model, a case study of Yongding River Basin in North China. J. Clean. Prod. 344, 131137 (2022).
    Google Scholar 
    Basu, H., Dandele, P. S. & Srivastava, S. K. Sedimentary facies of the Mesoproterozoic Srisailam Formation, Cuddapah basin, India: Implications for depositional environment and basin evolution. Mar. Pet. Geol. 133, 105242 (2021).
    Google Scholar 
    Capella, W. et al. Sandy contourite drift in the late Miocene Rifian Corridor (Morocco): Reconstruction of depositional environments in a foreland-basin seaway. Sed. Geol. 355, 31–57 (2017).
    Google Scholar 
    Ilevbare, M. & Omodolor, H. E. Ancient deposition environment, mechanism of deposition and textural attributes of Ajali Formation, western flank of the Anambra Basin, Nigeria. Case Stud. Chem. Environ. Eng. 2, 100022 (2020).
    Google Scholar 
    Qiao, J. B., Zhu, Y. J., Jia, X. X. & Shao, M. A. Multifractal characteristics of particle size distributions (50–200 m) in soils in the vadose zone on the Loess Plateau, China. Soil Tillage Res. 205, 104786 (2021).
    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).CAS 

    Google Scholar 
    Rodríguez-Lado, L. & Lado, M. Relation between soil forming factors and scaling properties of particle size distributions derived from multifractal analysis in topsoils from Galicia (NW Spain). Geoderma 287, 147–156 (2017).ADS 

    Google Scholar 
    Mozaffari, H., Moosavi, A. A. & Dematte, J. A. M. Estimating particle-size distribution from limited soil texture data: Introducing two new methods. Biosys. Eng. 216, 198–217 (2022).
    Google Scholar 
    Sudarsan, B., Ji, W., Adamchuk, V. & Biswas, A. Characterizing soil particle sizes using wavelet analysis of microscope images. Comput. Electron. Agric. 148, 217–225 (2018).
    Google Scholar 
    Pollacco, J. A. P., Fernández-Gálvez, J. & Carrick, S. Improved prediction of water retention curves for fine texture soils using an intergranular mixing particle size distribution model. J. Hydrol. 584, 124597 (2020).
    Google Scholar 
    Richer-de-Forges, A. C. et al. Hand-feel soil texture and particle-size distribution in central France. Relationships and implications. CATENA 213, 106155 (2022).CAS 

    Google Scholar 
    Du, W. et al. Insights into vertical differences of particle number size distributions in winter in Beijing, China. Sci. Total Environ. 802, 149695 (2022).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Darder, M. L., Paz-González, A., García-Tomillo, A., Lado, M. & Wilson, M. G. Comparing multifractal characteristics of soil particle size distributions calculated by Mie and Fraunhofer models from laser diffraction measurements. Appl. Math. Model. 94, 36–48 (2021).
    Google Scholar 
    Ke, Z. M. et al. Multifractal parameters of soil particle size as key indicators of the soil moisture distribution. J. Hydrol. 595, 125988 (2021).
    Google Scholar 
    Qi, F. et al. Soil particle size distribution characteristics of different land-use types in the Funiu mountainous region. Soil Tillage Res. 184, 45–51 (2018).
    Google Scholar 
    Tyler, S. W. & Wheatcraft, S. W. Fractal scaling of soil particle-size distribution: Analysis and imitations. Soil Sci. Soc. Am. J. 56, 362–369 (1992).ADS 

    Google Scholar 
    Zhang, Y. et al. Effects of fractal dimension and water content on the shear strength of red soil in the hilly granitic region of southern China. Geomorphology 351, 106956 (2020).
    Google Scholar 
    Ahmadi, A., Neyshabouri, M.-R., Rouhipour, H. & Asadi, H. Fractal dimension of soil aggregates as an index of soil erodibility. J. Hydrol. 400, 305–311 (2011).ADS 

    Google Scholar 
    Gao, Z., Niu, F., Lin, Z. & Luo, J. Fractal and multifractal analysis of soil particle-size distribution and correlation with soil hydrological properties in active layer of Qinghai-Tibet Plateau, China. CATENA 203, 105373 (2021).
    Google Scholar 
    Xu, G. et al. New method for the reconstruction of sedimentary systems including lithofacies, environments, and flow paths: A case study of the Xisha Trough Basin, South China Sea. Mar. Pet. Geol. 133, 105268 (2021).
    Google Scholar 
    Li, Z., Yu, X., Dong, S., Chen, Q. & Zhang, C. Microtextural features on quartz grains from eolian sands in a subaqueous sedimentary environment: A case study in the hinterland of the Badain Jaran Desert, Northwest China. Aeolian Res. 43, 100573 (2020).
    Google Scholar 
    Chen, T. et al. Modeling the effects of topography and slope gradient of an artificially formed slope on runoff, sediment yield, water and soil loss of sandy soil. CATENA 212, 106060 (2022).
    Google Scholar 
    George, C. F., Macdonald, D. I. M. & Spagnolo, M. Deltaic sedimentary environments in the Niger Delta, Nigeria. J. Afr. Earth Sci. 160, 103592 (2019).
    Google Scholar 
    Tian, Y. et al. Petrology, lithofacies, and sedimentary environment of Upper Cretaceous Abu Roash “G” in the AESW Block, Abu Gharadig Basin, Western Desert, Egypt. J. Afr. Earth Sci. 145, 178–189 (2018).ADS 

    Google Scholar 
    Cheng, Z., Jalon-Rójas, I., Wang, X. H. & Liu, Y. Impacts of land reclamation on sediment transport and sedimentary environment in a macro-tidal estuary. Estuar. Coast. Shelf Sci. 242, 106861 (2020).
    Google Scholar 
    Wei, X., Li, X. G. & Wei, N. Fractal features of soil particle size distribution in layered sediments behind two check dams: Implications for the Loess Plateau, China. Geomorphology 266, 133–145 (2016).ADS 

    Google Scholar 
    Wang, S. et al. Grain size characteristics of surface sediment and its response to the dynamic sedimentary environment in Qiantang Estuary, China. Int. J. Sediment Res. 37, 457–467 (2022).
    Google Scholar 
    Wided, S., Jalila, S. & Kamel, R. Grain size analysis and characterization of sedimentary environment along the Bizerte Coast, N-E of Tunisia. J. Afr. Earth Sc. 184, 104353 (2021).
    Google Scholar 
    Cai, X., Yang, Y. E., Ringler, C., Zhao, J. & You, L. Agricultural water productivity assessment for the Yellow River Basin. Agric. Water Manag. 98, 1297 (2011).
    Google Scholar 
    Fu, J., Zang, C. & Zhang, J. Economic and resource and environmental carrying capacity trade-off analysis in the Haihe river basin in China. J. Clean. Prod. 270, 122271 (2020).
    Google Scholar 
    Zhang, K. et al. Confronting challenges of managing degraded lake ecosystems in the anthropocene, exemplified from the Yangtze River Basin in China. Anthropocene 24, 30–39 (2018).
    Google Scholar 
    Huybrechts, N., Zhang, Y. F. & Verbanck, M. A. A new closure methodology for 1D fully coupled models of mobile-bed alluvial hydraulics: Application to silt transport in the Lower Yellow River. Int. J. Sedim. Res. 26(1), 36–49 (2011).
    Google Scholar 
    Cheng, D. Z. Strengthen the financial foundation of ecological protection and development of the Yellow River Basin. People Tribune 27, 76–78 (2021).
    Google Scholar 
    Yang, W. N., Zhou, L. & Sun, D. Q. Ecological vulnerability assessment of the Yellow River basin based on partition: Integration concept. Remote Sens. Nat. Resourc. 33(03), 211–218 (2021).
    Google Scholar 
    Sun, H. et al. Exposure of population to droughts in the Haihe river basin under global warming of 1.5 and 2.0 °C Scenarios. Q. Int. 453, 74–84 (2017).ADS 

    Google Scholar 
    Mandelbrott, B. B. The Fractal Geometry of Nature (W.H. Freeman and Company, 1983).
    Google Scholar 
    Samiei-Fard, R., Heidari, A., Konyushkova, M. & Mahmoodi, S. Application of particle size distribution throughout the soil profile as a criterion for recognition of newly developed geoforms in the Southeastern Caspian coast. CATANA 203, 105362 (2021).CAS 

    Google Scholar 
    Guo, J. Y. et al. Grain size characteristics and source analysis of aeolian sediment feed into river in Ulanbuh Desert along bank of Yellow River. J. China Inst. Water Resour. Hydropower Res. 19(01), 15–24 (2021).
    Google Scholar 
    Ge, T. T., Xue, Y. J., Jiang, X. Y., Zou, L. & Wang, X. C. Sources and radiocarbon ages of organic carbon in different grain size fractions of Yellow River-transported particles and coastal sediments. Chem. Geol. 534, 119452 (2020).ADS 

    Google Scholar 
    Hou, C. Y., Yi, Y. J., Song, J. & Zhou, Y. Effect of water-sediment regulation operation on sediment grain size and nutrient content in the lower Yellow River. J. Clean. Prod. 279, 123533 (2021).CAS 

    Google Scholar 
    Ni, S. M., Feng, S. Y., Zhang, D. Q., Wang, J. G. & Cai, C. F. Sediment transport capacity in erodible beds with reconstituted soils of different textures. CATANA 183, 104197 (2019).
    Google Scholar 
    Li, J. L. et al. Multifractal features of the particle-size distribution of suspended sediment in the Three Gorges Reservoir, China. Int. J. Sedim. Res. 36(4), 489–500 (2021).
    Google Scholar 
    Wang, W. F., Liu, R. T., Guo, Z. X., Feng, Y. H. & Jiang, J. Y. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southern area of Tengger Desert. J. Desert Res. 41(01), 209–218 (2021).
    Google Scholar 
    Wang, K., Pei, Z. Y., Wang, W. M., Hao, S. R. & Pang, G. H. Influence of the flat cycle on the fractal characteristics of soil pore structure in Salix psammophila. Sci. Technol. Eng. 21(07), 2647–2654 (2021).
    Google Scholar 
    Gao, G. L. et al. Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskii shelterbelts in Ningxia, NW China. Ecol. Indic. 43, 236–243 (2014).CAS 

    Google Scholar 
    Liu, X., Zhang, G. C., Heathman, G. C., Wang, Y. Q. & Huang, C. H. Fractal features of soil particle-size distribution as affected by plant communities in the forested region of Mountain Yimeng, China. Geoderma 154(1), 123–130 (2009).ADS 

    Google Scholar 
    Xu, G. C., Li, Z. B. & Li, P. Fractal features of soil particle-size distribution and total soil nitrogen distribution in a typical watershed in the source area of the middle Dan River, China. CATENA 101, 17–23 (2013).CAS 

    Google Scholar 
    Zhao, S. Q., Chi, D. Q., Jia, F. C., Deng, Y. P. & Sun, C. T. Fractal characteristics of saline soil particles in different regions. Jiangsu Agric. Sci. 49(06), 203–207 (2021).
    Google Scholar  More

  • in

    Niche partitioning between planktivorous fish in the pelagic Baltic Sea assessed by DNA metabarcoding, qPCR and microscopy

    High diet overlap is assumed to cause competition between the three dominant pelagic planktivorous mesopredators in the Baltic Sea, sprat, herring, and stickleback11,24,25. Despite this assumption, stickleback populations have increased dramatically over the past decades, which raises the question of whether and how resources are partitioned26. While previous studies of fish diet overlap have mainly relied on microscopic identification of gut content, we implemented a DNA metabarcoding approach targeting two different gene regions, the 18S rRNA gene (18S) and the mitochondrial cytochrome c oxidase I gene (COI) to reveal the taxonomic diversity of prey, and a qPCR step to quantify rotifers that are at times abundant in the Baltic Sea. Our study highlights consistency between methods, with DNA metabarcoding resolving the plankton-fish link at the highest taxonomic resolution. Our results suggest a unique niche of stickleback that may enable high population growth in the open water, despite high competition between mesopredators, although this finding needs to be confirmed at larger scale. More than half of the DNA found in herring and sprat stomach contents was assigned to Pseudocalanus, supporting previous observations of high diet overlap between the two clupeids11,12. On the other hand, the diet of stickleback differed substantially from the two clupeids, with rotifers appearing as main prey DNA in spring. The high rotifer biomass in the environment and lack of competition from other predators indicate that this novel niche utilization may support the drastic increase of pelagic stickleback in the Baltic Sea.We find that copepods dominated the gut content of the two clupeids sprat and herring. Pseudocalanus and Temora occupied most of the sequence reads of the clupeid metabarcoding, two species that are often reported as preferred prey in previous studies11,12. Despite high contributions of these two copepods, Pseudocalanus was more than four times as abundant as Temora in clupeid gut contents. A strong preference for this copepod with marine origin can further confirm the increased competition between the clupeids, as Pseudocalanus has decreased due to decreased salinity12 and shares a similar vertical distribution as clupeid during daytime27. Our study using metabarcoding further reveals a large relative quantity (11%) of the ctenophore Mertensia in the gut samples of both clupeids. Similar, Clarke et al.28 reported an important contribution of gelatinous zooplankton to upper trophic levels in the Southern Ocean. Despite high abundances of ctenophores in the Baltic Sea and their assumed importance in marine food webs19, they are not reported as food for planktivorous fish. A possible explanation is the difficulty observing them microscopically, as their digestion rate is faster than crustaceans29, and no hard parts remain in the digestive system. Further, COI detected the presence of cladocerans, which was confirmed by the microscopic survey, but underrepresented with 18S that strongly amplify copepods20. Interestingly, more than twice annelid COI reads, including the benthic macroinvertebrates Bylgides and Marenzellaria, were associated to stickleback (15%) and herring (8%) than to sprat (4%), highlighting their ability to migrate vertically. These interactions suggest that together stickleback and herring contribute to benthic-pelagic coupling when oxygen is not restricting vertical migration in the southern Baltic Sea30.Sprat and herring share a similar feeding niche, which may explain previously observed declines in body mass and stomach fullness, and supports the theory of competition between the two species31. In contrast, stickleback revealed little diet overlap with the other mesopredators. The low relative abundances of Pseudocalanus (1–8%) in metabarcoding analyses indicates that the density-dependent competition may not limit the population growth of stickleback. The copepods that were shared in the diet of stickleback, sprat, and herring were Temora, Acartia, and Centropages have increased over the last decades, as opposed to Pseudocalanus32. Our results show that stickleback are able to feed on a broader spectrum of prey and highlight that stickleback utilizes the rotifer Synchaeta baltica as prey, which is an important component of the plankton community composition in the Baltic Sea18,20. Due to the difference of prey size, we can expect an overrepresentation of copepod to rotifer sequences compared with microscopic count data. High predation rate on S. baltica is supported by both the qPCR assay as well as microscopic counts, although only the eggshells were visible but not the soft-bodied rotifer. Despite the considerably lower carbon content per S. baltica (ca. 6 µg C ind−1) compared to copepods (ca. 20 µg C ind−1)33, the high number of rotifers likely act as a major food source for stickleback. These results propose that stickleback, due to their opportunistic feeding behaviour34 and smaller size35, have a distinct feeding niche from sprat and herring in the open water, as they feed on a smaller size class of zooplankton compared to the clupeids. Thus, we cannot assume the same process of competition between clupeids and stickleback.Rotifers can at times be very abundant in the Baltic Sea, reaching densities up to 25,000 ind m−3, but their natural predators are poorly studied. An increasing trend in biomass of the two main rotifer genera (Synchaeta and Keratella) was observed since the 1990s36. In a recent study, we showed that rotifers might occupy a unique feeding niche, as direct grazers of dinoflagellate spring bloom, as well as in the recycling of organic matter in summer20. The low level of predation on rotifers by clupeid adults ( More

  • in

    Understanding social–ecological systems using social media data

    Ecosystem services are the contributions of nature to human well-being — for example, the provision of raw materials, carbon sequestration and recreation. Although relatively new, the study of these essential services has developed rapidly and is now included in many global policies and assessments. However, mapping and modelling these services is restricted by the availability of data that can account for the multidimensional traits of ecosystem services and model coupled social–ecological systems. Traditional datasets, including surveys, interviews, and focus groups, are often not viable on the scale necessary for many ecosystem service assessments. More

  • in

    Long-term observation of the egg and chick size in the nests of Larus ichthyaetus in Lake Chany, Russia

    We surveyed three islands of Lake Chany: Uzkoredkii (54° 58′ 15′′ N, 77°27′04′′ E), Reden’kii (54° 56′ 05′′ N, 77° 22′ 27′′ 52 E), Korablik (54° 59′ 31′′ N, 77° 40′ 38′′ E). The studied intertidal habitats are rarely reached by humans.Gull nests were counted in colonies by regular surveys over eight years (1993, 1994, 1996–1998, 2001–2003) on the islands of Lake Chany. Colonies were visited daily or sometimes every other day. To minimize the disturbance caused by the investigation, the time spent working, within view of the gulls was restricted to a maximum of forty minutes per study plots. We noted nest content at every visit for the presence of eggs or chicks. In total, there were 1 164 nests under observation. Nests contained 1 (n = 140), 2 (n = 518), 3 (n = 504) or 4 (n = 2) eggs. Modal clutch size of the great black-headed gull is two or three eggs, varying seasonally. The length and width of the eggs were measured using Vernier calipers (division accuracy 0,1 mm) and numbered with a waterproof marker. Egg volumes were estimated using Hoyt’s equation: Volume = 0.51 * Length * Width * Width/100013. We determined the volume of 2117 great black-headed gull eggs.As the laying of eggs has already started by the first visit to the colony, the date of the beginning of egg laying was calculated by subtracting the average length of the incubation period of great black-headed gulls (27 days) from the hatching date of first chick in the nest (n = 559 nests). If the hatching date was not known, the clutch initiation date was determined by subtracting the number of days of incubation from the date that the nest was first discovered (n = 469 nests). The stage of incubation was estimated from the change in position of an incubated egg placed in water14,15. The technique’s accuracy varied throughout incubation and mean prediction error fall between 0–4 days. On average, egg flotation estimated an embryo’s developmental age to within 1.9 ± 1.6 days (mean ± 1 SD)16. Only 47 nests were found during egg laying. Great black-headed gulls usually laid eggs at intervals of two days. Incubation started as soon as the first egg was laid, so eggs hatched asynchronously, one or two days apart.Whenever possible, we determined the within-clutch laying sequence of eggs (1st, 2nd, 3rd, and 4th). A complete laying sequence was established by observation in 47 cases. In about 48% of clutches the position in laying sequence was established on the basis of the sequence of hatching. In other cases, if we could distinguish within-clutch distinct flotation levels of eggs, we numbered eggs according to the stage of incubation. Sometimes this technique for distinguishing egg laying order were used in other seabirds17,18.We recorded the pipping date (i.e. appearance of star-like bursts) and the actual hatching date of the individual eggs. Wet chicks were registered as hatchlings of that day; dry chicks were registered as 1 day old. Chicks older than two days left the nest and moved to a location nearby. Newly hatched gull chicks were captured by hand at nests, ringed, and measured. We determined wing, tarsus, and head length using a ruler with zero-stop and vernier calipers and body weight measured using Pesola spring balances for 747 chicks of great black-headed gulls, and 457 of them hatched from eggs that were measured. More

  • in

    Priority effects shape the structure of infant-type Bifidobacterium communities on human milk oligosaccharides

    Turroni F, Milani C, Duranti S, Lugli GA, Bernasconi S, Margolles A, et al. The infant gut microbiome as a microbial organ influencing host well-being. Ital J Pediatr. 2020;46:1–13.Article 

    Google Scholar 
    Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. 2016;8:343ra82–343ra82.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Akagawa S, Tsuji S, Onuma C, Akagawa Y, Yamaguchi T, Yamagishi M, et al. Effect of delivery mode and nutrition on gut microbiota in neonates. Ann Nutr Metab. 2019;74:132–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 2018;555:210–5.Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos. 2014;123:1420–30.Article 

    Google Scholar 
    Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.Article 

    Google Scholar 
    Fukami T, Nakajima M. Community assembly: Alternative stable states or alternative transient states? Ecol Lett. 2011;14:973–84.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sprockett D, Fukami T, Relman DA. Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol. 2018;15:197–205.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol. 2022;20:109–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tannock GW, Lawley B, Munro K, Pathmanathan SG, Zhou SJ, Makrides M, et al. Comparison of the compositions of the stool microbiotas of infants fed goat milk formula, cow milk-based formula, or breast milk. Appl Environ Microbiol. 2013;79:3040–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, et al. A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun. 2016;7:11939.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, et al. Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv. 2019;5:eaaw7696.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H. Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr. 2000;71:1589–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Macrobal A, Sonnenburg JL. Human milk oligosaccharide consumption by intestinal microbiota. Clin Microbiol Infect. 2012;18:12–15.Article 

    Google Scholar 
    Macrobal A, Barboza M, Froehlich JW, Block DE, German JB, Lebrilla CB, et al. Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem. 2010;58:5334–40.Article 
    CAS 

    Google Scholar 
    Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao JZ, et al. Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients. 2020;12:71.CAS 
    Article 

    Google Scholar 
    Katayama T. Host-derived glycans serve as selected nutrients for the gut microbe: human milk oligosaccharides and bifidobacteria. Biosci Biotechnol Biochem. 2016;80:621–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    Turroni F, Foroni E, Pizzetti P, Giubellini V, Ribbera A, Merusi P, et al. Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol. 2009;75:1534–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gore C, Munro K, Lay C, Bibiloni R, Morris J, Woodcock A, et al. Bifidobacterium pseudocatenulatum is associated with atopic eczema: A nested case-control study investigating the fecal microbiota of infants. J Allergy Clin Immunol. 2008;121:135–40.PubMed 
    Article 

    Google Scholar 
    Lewis ZT, Mills DA. Differential establishment of bifidobacteria in the breastfed infant gut. Nestle Nutr Inst Work Ser. 2017;88:149–59.Article 

    Google Scholar 
    Tannock GW, Lee PS, Wong KH, Lawley B. Why don’t all infants have bifidobacteria in their stool? Front Microbiol. 2016;7:6–10.Article 

    Google Scholar 
    Reyman M, van Houten MA, van Baarle D, Bosch AATM, Man WH, Chu MLJN, et al. Impact of delivery mode-associated gut microbiota dynamics on health in the first year of life. Nat Commun. 2019;10:1–12.CAS 
    Article 

    Google Scholar 
    Underwood MA, Kalanetra KM, Bokulich NA, Lewis ZT, Mirmiran M, Tancredi DJ, et al. A comparison of two probiotic strains of bifidobacteria in preterm infants. J Pediatr. 2013;163:1585–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    Plummer EL, Bulach DM, Murray GL, Jacobs SE, Tabrizi SN, Garland SM. Gut microbiota of preterm infants supplemented with probiotics: sub-study of the ProPrems trial. BMC Microbiol. 2018;18:1–8.Article 
    CAS 

    Google Scholar 
    Kitajima H, Sumida Y, Tanaka R, Yuki N, Takayama H, Fujimura M. Early administration of Bifidobacterium breve to preterm infants: Randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 1997;76:101–7.Article 

    Google Scholar 
    Ojima MN, Yoshida K, Sakanaka M, Jiang L, Odamaki T, Katayama T. Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Curr Opin Biotechnol. 2022;73:108–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med. 2019;25:716–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR. Bifidobacterium breve BBG-001 in very preterm infants: A randomised controlled phase 3 trial. Lancet. 2016;387:649–60.PubMed 
    Article 

    Google Scholar 
    Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 2005;33:5691–702.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh T, Ojima MN, Sakanaka M, Ashida H, Gotoh A, Katayama T. Enzymatic adaptation of Bifidobacterium bifidum to host glycans, viewed from glycoside hydrolyases and carbohydrate-binding modules. Microorganisms. 2020;8:481.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Egan M, Motherway MO, Kilcoyne M, Kane M, Joshi L, Ventura M, et al. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium. BMC Microbiol. 2014;14:1–14.Article 
    CAS 

    Google Scholar 
    Higgins MA, Ryan KS. Generating a fucose permease deletion mutant in Bifidobacterium longum subspecies infantis ATCC 15697. Anaerobe. 2021;68:102320.CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Connell Motherway M, Kinsella M, Fitzgerald GF, van Sinderen D. Transcriptional and functional characterization of genetic elements involved in galacto-oligosaccharide utilization by Bifidobacterium breve UCC2003. Micro Biotechnol. 2013;6:67–79.Article 
    CAS 

    Google Scholar 
    Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, et al. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology. 2012;22:361–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Vannette RL, Fukami T. Historical contingency in species interactions: Towards niche-based predictions. Ecol Lett. 2014;17:115–24.PubMed 
    Article 

    Google Scholar 
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703.PubMed 
    Article 
    CAS 

    Google Scholar 
    Pu Z, Jiang L. Dispersal among local communities does not reduce historical contingencies during metacommunity assembly. Oikos. 2015;124:1327–36.Article 

    Google Scholar 
    Chase JM. Community assembly: when should history matter? Oecologia. 2003;136:489–98.PubMed 
    Article 

    Google Scholar 
    Schröder A, Persson L, De Roos AM. Direct experimental evidence for alternative stable states: A review. Oikos. 2005;110:3–19.Article 

    Google Scholar 
    Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, et al. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem. 2011;286:34583–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gotoh A, Katoh T, Sakanaka M, Ling Y, Yamada C, Asakuma S, et al. Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum. Sci Rep. 2018;8:13958.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ashida H, Miyake A, Kiyohara M, Wada J, Yoshida E, Kumagai H, et al. Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology. 2009;19:1010–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL. Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology. 2010;156:3329–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Avershina E, Storrø O, Øien T, Johnsen R, Wilson R, Egeland T, et al. Bifidobacterial succession and correlation networks in a large unselected cohort of mothers and their children. Appl Environ Microbiol. 2013;79:497–507.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, et al. Diversity of bifidobacteria within the infant gut microbiota. PLoS One. 2012;7:20–4.Article 
    CAS 

    Google Scholar 
    James K, Bottacini F, Contreras JIS, Vigoureux M, Egan M, Motherway MO, et al. Metabolism of the predominant human milk oligosaccharide fucosyllactose by an infant gut commensal. Sci Rep. 2019;9:1–20.Article 
    CAS 

    Google Scholar 
    Dedon LR, Özcan E, Rani A, Sela DA. Bifidobacterium infantis metabolizes 2′fucosyllactose-derived and free fucose through a common catabolic pathway resulting in 1,2-propanediol secretion. Front Nutr. 2020;7:1–16.Article 
    CAS 

    Google Scholar 
    Sprockett D, Martin M, Costello E, Burns A, Holmes S, Gurven M, et al. Microbiota assembly, structure, and dynamics among tsimane horticulturalists of the Bolivian Amazon. Nat Commun. 2019;11:1–14.Laursen MF, Sakanaka M, von Burg N, Mörbe U, Andersen D, Moll JM, et al. Bifidobacterium species associated with breastfeeding produce aromatic lactic acids in the infant gut. Nat Microbiol. 2021;6:1367–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meng D, Sommella E, Salviati E, Campiglia P, Ganguli K, Djebali K, et al. Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res. 2020;88:209–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bunesova V, Lacroix C, Schwab C. Fucosyllactose and l-fucose utilization of infant Bifidobacterium longum and Bifidobacterium kashiwanohense. BMC Microbiol. 2016;16:248.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ruiz-Moyano S, Totten SM, Garrido D, Smilowitz JT, Bruce German J, Lebrilla CB, et al. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol. 2013;79:6040–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schwab C, Ruscheweyh HJ, Bunesova V, Pham VT, Beerenwinkel N, Lacroix C. Trophic interactions of infant bifidobacteria and Eubacterium hallii during l-fucose and fucosyllactose degradation. Front Microbiol. 2017;8:1–14.Article 

    Google Scholar 
    Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol. 2016;7:1–12.Article 

    Google Scholar 
    Marcobal A, Barboza M, Sonnenburg ED, Pudlo N, Martens EC, Desai P, et al. Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe. 2011;10:507–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen T, Kostic AD, D’Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. Cell. 2016;165:842–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vatanen T, Franzosa EA, Schwager R, Tripathi S, Arthur TD, Vehik K, et al. The human gut microbiome in early-onset type 1 diabetes from the TEDDY study. Nature. 2018;562:589–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, et al. Composition and Variation of the Human Milk Microbiota Are Influenced by Maternal and Early-Life Factors. Cell Host Microbe. 2019;25:324–335.e4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martín R, Langa S, Reviriego C, Jiménez E, Marín ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–8.PubMed 
    Article 

    Google Scholar 
    Martín R, Jiménez E, Heilig H, Fernández L, Marín ML, Zoetendal EG, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75:965–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8.PubMed 
    Article 
    CAS 

    Google Scholar 
    Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y. Effects of Bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr Int. 2004;46:509–15.PubMed 
    Article 

    Google Scholar 
    Nishimoto M, Kitaoka M. Practical preparation of lacto-N-biose I, a candidate for the bifidus factor in human milk. Biosci Biotechnol Biochem. 2007;71:2101–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002;52:2141–6.CAS 
    PubMed 

    Google Scholar 
    Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, et al. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature. 2016;533:543–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tanizawa Y, Fujisawa T, Kaminuma E, Nakamura Y. Arita M. DFAST and DAGA: Web-based integrated genome annotation tools and resources. Biosci Microbiota, Food Heal. 2016;35:173–84.CAS 
    Article 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:206–14.Article 
    CAS 

    Google Scholar 
    Price MN, Arkin AP. PaperBLAST: Text-mining papers for information about homologs. bioRxiv. 2017;2:1–10.
    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.Article 
    CAS 

    Google Scholar 
    Saier MH, Reddy VS, Tsu BV, Ahmed MS, Li C, Moreno-Hagelsieb G. The Transporter Classification Database (TCDB): Recent advances. Nucleic Acids Res. 2016;44:D372–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol. 2009;75:4175–84.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Anumula KR. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem. 2006;350:1–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cohenford MA, Abraham A, Abraham J, Dain JA. Colorimetric assay for free and bound l-fucose. Anal Biochem. 1989;177:172–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kato K, Odamaki T, Mitsuyama E, Sugahara H, Xiao JZ, Osawa R. Age-related changes in the composition of gut Bifidobacterium species. Curr Microbiol. 2017;74:987–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. 2011;17:10–12.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:1–13.Article 
    CAS 

    Google Scholar 
    Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput Sci. 2017;2017:1–17.CAS 

    Google Scholar 
    Milani C, Lugli GA, Fontana F, Mancabelli L, Alessandri G, Longhi G, et al. METAnnotatorX2: A comprehensive tool for deep and shallow metagenomic data set analyses. mSystems. 2021;6:1–15.Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2019. More

  • in

    Epidemiologically-based strategies for the detection of emerging plant pathogens

    Anderson, P. K. et al. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. 19, 535–544 (2004).PubMed 

    Google Scholar 
    Brasier, C. M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57, 792–808 (2008).
    Google Scholar 
    Waage, J. K. & Mumford, J. D. Agricultural biosecurity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 863–876 (2008).CAS 
    PubMed 

    Google Scholar 
    IPPC. Surveillance guide—A guide to understand the principal requirements of surveillance programmes for national plant protection organizations. Second edition. http://www.fao.org/documents/card/en/c/cb7139en (2021) https://doi.org/10.4060/cb7139en.Parnell, S., van den Bosch, F., Gottwald, T. & Gilligan, C. A. Surveillance to inform control of emerging plant diseases: An epidemiological perspective. Annu. Rev. Phytopathol. 55, 591–610 (2017).CAS 
    PubMed 

    Google Scholar 
    Cunniffe, N. J., Cobb, R. C., Meentemeyer, R. K., Rizzo, D. M. & Gilligan, C. A. Modeling when, where, and how to manage a forest epidemic, motivated by sudden oak death in California. Proc. Natl. Acad. Sci. 113, 5640–5645 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gottwald, T. R., Dixon, W., Parnell, S. & Riley, T. Huanglongbing: The dragon arrives in the USA. In Huanglongbing-Greening International Workshop, July 14–21 13–14 (2006).Herms, D. A., Stone, A. K. & Chatfield, J. A. Emerald ash borer: The beginning of the end of ash in North America?. Ornam. Plants Annu. Rep. Res. Rev. 2003, 62–71 (2004).
    Google Scholar 
    Sansford, C. E. Pest Risk Analysis for Hymenoscyphus pseudoalbidus (anamorph Chalara fraxinea) for the UK and the Republic of Ireland. https://webarchive.nationalarchives.gov.uk/ukgwa/20140904094312mp_/http://www.fera.defra.gov.uk/plants/plantHealth/pestsDiseases/documents/hymenoscyphusPseudoalbidusPRA.pdf (2013).Alonso Chavez, V., Parnell, S. & van den Bosch, F. Monitoring invasive pathogens in plant nurseries for early-detection and to minimise the probability of escape. J. Theor. Biol. 407, 290–302 (2016).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Bourhis, Y., Gottwald, T. R., Lopez-Ruiz, F. J., Patarapuwadol, S. & van den Bosch, F. Sampling for disease absence-deriving informed monitoring from epidemic traits. J. Theor. Biol. 461, 8–16 (2019).ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Mastin, A. J., van den Bosch, F., van den Berg, F. & Parnell, S. Quantifying the hidden costs of imperfect detection for early detection surveillance. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180261 (2019).
    Google Scholar 
    Mastin, A. J., van den Bosch, F., Gottwald, T. R., Alonso Chavez, V. & Parnell, S. R. A method of determining where to target surveillance efforts in heterogeneous epidemiological systems. PLoS Comput. Biol. 13, e1005712 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Parnell, S., Gottwald, T. R., Gilks, W. R. & van den Bosch, F. Estimating the incidence of an epidemic when it is first discovered and the design of early detection monitoring. J. Theor. Biol. 305, 30–36 (2012).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    Parnell, S., Gottwald, T. R., Cunniffe, N. J., Alonso Chavez, V. & van den Bosch, F. Early detection surveillance for an emerging plant pathogen: A rule of thumb to predict prevalence at first discovery. Proc. R. Soc. B Biol. Sci. 282, 20151478 (2015).
    Google Scholar 
    Silva, G. et al. Plant pest surveillance: From satellites to molecules. Emerg. Top. Life Sci. 5, 275–287 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mastin, A. J., Gottwald, T. R., van den Bosch, F., Cunniffe, N. J. & Parnell, S. Optimising risk-based surveillance for early detection of invasive plant pathogens. PLoS Biol. 18, e3000863 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martelli, G. P., Boscia, D., Porcelli, F. & Saponari, M. The olive quick decline syndrome in south-east Italy: A threatening phytosanitary emergency. Eur. J. Plant Pathol. 144, 235–243 (2015).
    Google Scholar 
    Saponari, M., Boscia, D., Nigro, F. & Martelli, G. P. Identification of DNA sequences related to Xylella fastidiosa in oleander, almond and olive trees exhibiting leaf scorch symptoms in Apulia (southern Italy). J. Plant Pathol. 95, 668 (2013).
    Google Scholar 
    Ben Moussa, I. E. et al. Seasonal fluctuations of sap-feeding insect species infected by Xylella fastidiosa in Apulian olive groves of southern Italy. J. Econ. Entomol. 109, 1512–1518 (2016).PubMed 

    Google Scholar 
    Cornara, D. et al. Transmission of Xylella fastidiosa to grapevine by the meadow spittlebug. Phytopathology 106, 1285–1290 (2016).CAS 
    PubMed 

    Google Scholar 
    Cornara, D. et al. Transmission of Xylella fastidiosa by naturally infected Philaenus spumarius (Hemiptera, Aphrophoridae) to different host plants. J. Appl. Entomol. 141, 80–87 (2017).
    Google Scholar 
    Saponari, M. et al. Infectivity and transmission of Xylella fastidiosa by Philaenus spumarius (Hemiptera: Aphrophoridae) in Apulia, Italy. J. Econ. Entomol. 107, 1316–1319 (2014).PubMed 

    Google Scholar 
    European Commission. Commission Implementing Regulation (EU) 2020/1201 of 14 August 2020 as regards measures to prevent the introduction into and the spread within the Union of Xylella fastidiosa (Wells et al.). (2021).EFSA et al. Guidelines for statistically sound and risk-based surveys of Xylella fastidiosa. EFSA. Support. Publ. 17, 1873 (2020).EFSA et al. General guidelines for statistically sound and risk-based surveys of plant pests. EFSA Support. Publ. 17, 1919E (2020).Bourhis, Y., Gottwald, T. & van den Bosch, F. Translating surveillance data into incidence estimates. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180262 (2019).CAS 

    Google Scholar 
    Cornara, D. et al. Spittlebugs as vectors of Xylella fastidiosa in olive orchards in Italy. J. Pest Sci. 90, 521–530 (2017).
    Google Scholar 
    Cornara, D., Bosco, D. & Fereres, A. Philaenus spumarius: when an old acquaintance becomes a new threat to European agriculture. J. Pest Sci. 91, 957–972 (2018).
    Google Scholar 
    Almeida, R. P. P., Blua, M. J., Lopes, J. R. S. & Purcell, A. H. Vector transmission of Xylella fastidiosa: Applying fundamental knowledge to generate disease management strategies. Ann. Entomol. Soc. Am. 98, 775–786 (2005).
    Google Scholar 
    Purcell, A. H. & Finlay, A. H. Evidence for noncirculative transmission of Pierce’s disease bacterium by sharpshooter leafhoppers. Phytopathology 69, 393–395 (1979).
    Google Scholar 
    Hill, B. & Purcell, A. H. Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathology 85, 209 (1995).
    Google Scholar 
    Hill, B. L. & Purcell, A. H. Multiplication and movement of Xylella fastidiosa within grapevine and four other plants. Phytopathology 85, 1368 (1995).
    Google Scholar 
    Huang, Q., Bentz, J. & Sherald, J. L. Fast, easy and efficient DNA extraction and one-step polymerase chain reaction for the detection of Xylella fastidiosa in potential insect vectors. J. Plant Pathol. 88, 77–81 (2006).CAS 

    Google Scholar 
    Harper, S. J., Ward, L. I. & Clover, G. R. G. Development of LAMP and real-time PCR methods for the rapid detection of Xylella fastidiosa for quarantine and field applications. Phytopathology 100, 1282–1288 (2010).CAS 
    PubMed 

    Google Scholar 
    EFSA et al. Pest survey card on Xylella fastidiosa. EFSA Support. Publ. 16, (2019).Fierro, A., Liccardo, A. & Porcelli, F. A lattice model to manage the vector and the infection of the Xylella fastidiosa on olive trees. Sci. Rep. 9, 8723 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    EPPO. PM 7/24 (4) Xylella fastidiosa. EPPO Bull. 49, 175–227 (2019).Landa, B. B. et al. Emergence of a plant pathogen in Europe associated with multiple intercontinental introductions. Appl. Environ. Microbiol. 86, 1–15 (2019).
    Google Scholar 
    Castro, C., DiSalvo, B. & Roper, M. C. Xylella fastidiosa: A reemerging plant pathogen that threatens crops globally. PLoS Pathog. 17, e1009813 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saponari, M., Giampetruzzi, A., Loconsole, G., Boscia, D. & Saldarelli, P. Xylella fastidiosa in olive in Apulia: Where we stand. Phytopathology 109, 175–186 (2019).CAS 
    PubMed 

    Google Scholar 
    Zarco-Tejada, P. J. et al. Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nat. Plants 4, 432–439 (2018).CAS 
    PubMed 

    Google Scholar 
    Gottwald, T. et al. Canine olfactory detection of a vectored phytobacterial pathogen, Liberibacter asiaticus, and integration with disease control. Proc. Natl. Acad. Sci. 117, 3492–3501 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mendel, J., Furton, K. G. & Mills, D. An Evaluation of scent-discriminating canines for rapid response to agricultural diseases. HortTechnology 28, 102–108 (2018).
    Google Scholar 
    ECDC. Guidelines for the Surveillance of Invasive Mosquitoes in Europe. (2012).Kading, R. C., Golnar, A. J., Hamer, S. A. & Hamer, G. L. Advanced surveillance and preparedness to meet a new era of invasive vectors and emerging vector-borne diseases. PLoS Negl. Trop. Dis. 12, e0006761 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Kumagai, L. B. et al. First report of Candidatus Liberibacter asiaticus associated with citrus huanglongbing in California. Plant Dis. 97, 283 (2013).CAS 
    PubMed 

    Google Scholar 
    Ben Moussa, I. E. et al. Evaluation of “Spy Insect” approach for monitoring Xylella fastidiosa in symptomless olive orchards in the Salento peninsula (Southern Italy). IOBC WPRS Bull. 121, 77–84 (2017).
    Google Scholar 
    Cruaud, A. et al. Using insects to detect, monitor and predict the distribution of Xylella fastidiosa: A case study in Corsica. Sci. Rep. 8, 15628 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yaseen, T. et al. On-site detection of Xylella fastidiosa in host plants and in “spy insects” using the real-time loop-mediated isothermal amplification method. Phytopathol. Mediterr. https://doi.org/10.14601/Phytopathol_Mediterr-15250 (2015).Article 

    Google Scholar 
    López-Mercadal, J. et al. Collection of data and information in Balearic Islands on biology of vectors and potential vectors of Xylella fastidiosa (GP/EFSA/ALPHA/017/01). EFSA Support. Publ. 18, 6925E (2021).
    Google Scholar 
    Cunty, A. Detection, identification and surveillance of Xylella fastidiosa on vectors in France https://zenodo.org/record/3551122#.XjGqBs77SUl. (2019) https://doi.org/10.5281/zenodo.3551122.Kottelenberg, D., Hemerik, L., Saponari, M. & van der Werf, W. Shape and rate of movement of the invasion front of Xylella fastidiosa spp. pauca in Puglia. Sci. Rep. 11, 1061 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More