More stories

  • in

    Characterization of triatomine bloodmeal sources using direct Sanger sequencing and amplicon deep sequencing methods

    Blosser, E. M. et al. Environmental drivers of seasonal patterns of host utilization by Culiseta melanura (Diptera: Culicidae) in Florida. J. Med. Entomol. 54, 1365–1374 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Burkett-Cadena, N. D., Hassan, H. K., Eubanks, M. D., Cupp, E. W. & Unnasch, T. R. Winter severity predicts the timing of host shifts in the mosquito Culex erraticus. Biol. Lett. 8, 567–569 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Gürtler, R. E., Cecere, M. C., Vazquez, D. P., Chuit, R. & Cohen, J. E. Host-feeding patterns of domiciliary Triatoma infestans (Hemiptera: Reduviidae) in northwest Argentina: Seasonal and instar variation. J. Med. Entomol. 33, 15–26 (1996).PubMed 

    Google Scholar 
    Rabinovich, J. E. et al. Ecological patterns of blood-feeding by kissing-bugs (Hemiptera: Reduviidae: Triatominae). Mem. Inst. Oswaldo Cruz 106, 479–494 (2011).PubMed 

    Google Scholar 
    Kent, R. J. Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Mol. Ecol. Resour. 9, 4–18 (2009).CAS 
    PubMed 

    Google Scholar 
    Cecere, M. C. et al. Host-feeding sources and infection with Trypanosoma cruzi of Triatoma infestans and Triatoma eratyrusiformis (Hemiptera: Reduviidae) from the Calchaqui Valleys in Northwestern Argentina. J. Med. Entomol. 53, 666–673 (2016).CAS 
    PubMed 

    Google Scholar 
    Logue, K. et al. Unbiased characterization of Anopheles mosquito blood meals by targeted high-throughput sequencing. PLoS Negl. Trop. Dis. 10, e0004512 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Keller, J. I., Schmidt, J. O., Schmoker, A. M., Ballif, B. A. & Stevens, L. Protein mass spectrometry extends temporal blood meal detection over polymerase chain reaction in mouse-fed Chagas disease vectors. Mem. Inst. Oswaldo Cruz 113, e180160 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Borland, E. M. & Kading, R. C. Modernizing the toolkit for arthropod bloodmeal identification. Insects 12, 1–27 (2021).
    Google Scholar 
    Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS 
    PubMed 

    Google Scholar 
    Hamer, S. A. et al. Comparison of DNA and carbon and nitrogen stable isotope-based techniques for identification of prior vertebrate hosts of ticks. J. Med. Entomol. 52, 1043–1049 (2015).CAS 
    PubMed 

    Google Scholar 
    Scott, M. C., Harmon, J. R., Tsao, J. I., Jones, C. J. & Hickling, G. J. Reverse line blot probe design and polymerase chain reaction optimization for bloodmeal analysis of ticks from the eastern United States. J. Med. Entomol. 49, 697–709 (2012).CAS 
    PubMed 

    Google Scholar 
    Arias-Giraldo, L. M. et al. Identification of blood-feeding sources in Panstrongylus, Psammolestes, Rhodnius and Triatoma using amplicon-based next-generation sequencing. Parasit. Vectors 13, 1–14 (2020).
    Google Scholar 
    Kieran, T. J. et al. Blood meal source characterization using Illumina sequencing in the Chagas Disease vector Rhodnius pallescens (Hemiptera: Reduviidae) in Panamá. J. Med. Entomol. https://doi.org/10.1093/jme/tjx170 (2017).Article 
    PubMed 

    Google Scholar 
    Dumonteil, E. et al. Detailed ecological associations of triatomines revealed by metabarcoding and next-generation sequencing: Implications for triatomine behavior and Trypanosoma cruzi transmission cycles. Sci. Rep. 8, 1–13 (2018).CAS 

    Google Scholar 
    Estrada-Franco, J. G. et al. Vertebrate-Aedes aegypti and Culex quinquefasciatus (Diptera)-arbovirus transmission networks: Non-human feeding revealed by meta-barcoding and nextgeneration sequencing. PLoS Negl. Trop. Dis. 14, 1–22 (2020).
    Google Scholar 
    Campana, M. G. et al. Simultaneous identification of host, ectoparasite and pathogen DNA via in-solution capture. Mol. Ecol. Resour. 16, 1224–1239 (2016).CAS 
    PubMed 

    Google Scholar 
    Klotz, S. A. et al. Free-roaming kissing bugs, vectors of Chagas disease, feed often on humans in the Southwest. Am. J. Med. 127, 421–426 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Waleckx, E., Suarez, J., Richards, B. & Dorn, P. L. Triatoma sanguisuga blood meals and potential for Chagas Disease, Louisiana, USA. Emerg. Infect. Dis. 20, 2141–2143 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kjos, S. A. et al. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. J. Med. Entomol. 50, 1126–1139 (2013).PubMed 

    Google Scholar 
    Gürtler, R. E., Cohen, J. E., Cecere, M. C. & Chuit, R. Shifting host choices of the vector of Chagas Disease, Triatoma Infestans, in relation to the availability of host in houses in North-West Argentina. J. Appl. Ecol. 34, 699–715 (1997).
    Google Scholar 
    Minuzzi-Souza, T. et al. Molecular bloodmeal analyses reveal that Trypanosoma cruzi-infected, native triatomine bugs often feed on humans in houses in central Brazil. Med. Vet. Entomol. 32, 504–508 (2018).CAS 
    PubMed 

    Google Scholar 
    Lent, H. & Wygodzinsky, P. W. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ Disease. Bull. Am. Museum Nat. Hist. 163, 123–520 (1979).
    Google Scholar 
    World Health Organization. Chagas disease in Latin America: An epidemiological update based on 2010 estimates. Wkly. Epidemiol. Rec. 6, 33–44 (2015).
    Google Scholar 
    Dorn, P. L. et al. Autochthonous transmission of Trypanosoma cruzi, Louisiana. Emerg. Infect. Dis. 13, 13–15 (2007).
    Google Scholar 
    Cantey, P. T. et al. The United States Trypanosoma cruzi infection study: Evidence for vector-borne transmission of the parasite that causes Chagas disease among United States blood donors. Transfusion 52, 1922–1930 (2012).PubMed 

    Google Scholar 
    Garcia, M. N. et al. Molecular identification and genotyping of Trypanosoma cruzi DNA in autochthonous Chagas disease patients from Texas, USA. Infect. Genet. Evol. 49, 151–156 (2017).CAS 
    PubMed 

    Google Scholar 
    Barr, S., Gossett, K. A. & Klei, T. R. Clinical, clinicopathologic, and parasitologic observations of trypanosomiasis in dogs infected with North American Trypanosoma cruzi isolates. Am. J. Vet. Res. 52, 954–960 (1991).CAS 
    PubMed 

    Google Scholar 
    Meyers, A. C., Meinders, M. & Hamer, S. A. Widespread Trypanosoma cruzi infection in government working dogs along the Texas-Mexico border: Discordant serology, parasite genotyping and associated vectors. PLoS Negl. Trop. Dis. 11, 1–19 (2017).
    Google Scholar 
    Meyers, A. C., Edwards, E. E., Sanders, J. P., Saunders, A. B. & Hamer, S. A. Fatal Chagas myocarditis in government working dogs in the southern United States: Cross-reactivity and differential diagnoses in five cases across six months. Vet. Parasitol. Reg. Stud. Rep. 24, 1–7 (2021).
    Google Scholar 
    Hodo, C. L. & Hamer, S. A. Toward an ecological framework for assessing reservoirs of vector-borne pathogens: Wildlife reservoirs of Trypanosoma cruzi across the southern United States. ILAR J. 58, 379–392 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guarneri, A. A., Pereira, M. H. & Diotaiuti, L. Influence of the blood meal source on the development of Triatoma infestans, Triatoma brasiliensis, Triatoma sordida, and Triatoma pseudomaculata (Heteroptera, Reduviidae). J. Med. Entomol. 37, 373–379 (2000).CAS 
    PubMed 

    Google Scholar 
    Pippin, W. F. The biology and vector capability of Triatoma sanguisuga texana Usinger and Triatoma gerstaeckeri (Stål) compared with Rhodnius prolixus (Stål) (Hemiptera: Triatominae). J. Med. Entomol. 7, 30–45 (1970).CAS 
    PubMed 

    Google Scholar 
    Bern, C., Kjos, S., Yabsley, M. J. & Montgomery, S. P. Trypanosoma cruzi and Chagas’ disease in the United States. Clin. Microbiol. Rev. 24, 655–681 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Kjos, S. et al. Distribution and characterization of canine Chagas disease in Texas. Vet. Parasitol. 152, 249–256 (2008).CAS 
    PubMed 

    Google Scholar 
    Tenney, T. D., Curtis-Robles, R., Snowden, K. F. & Hamer, S. A. Shelter dogs as sentinels for Trypanosoma cruzi transmission across Texas. Emerg. Infect. Dis. 20, 1323–1326 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Curtis-Robles, R., Wozniak, E. J., Auckland, L. D., Hamer, G. L. & Hamer, S. A. Combining public health education and disease ecology research: Using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl. Trop. Dis. 9, e0004235 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Curtis-Robles, R., Hamer, S. A., Lane, S., Levy, M. Z. & Hamer, G. L. Bionomics and spatial distribution of triatomine vectors of Trypanosoma cruzi in Texas and other southern states, USA. Am. J. Trop. Med. Hyg. 98, 113–121 (2018).PubMed 

    Google Scholar 
    Curtis-Robles, R., Aukland, L. D., Snowden, K. F., Hamer, G. L. & Hamer, S. A. Analysis of over 1500 triatomine vectors from across the US, predominantly Texas, for Trypanosoma cruzi infection and discrete typing units. Infect. Genet. Evol. 58, 171–180 (2018).PubMed 

    Google Scholar 
    Hodo, C. L., Wilkerson, G. K., Birkner, E. C., Gray, S. B. & Hamer, S. A. Trypanosoma cruzi transmission among captive nonhuman primates, wildlife, and vectors. EcoHealth 15, 426–436 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, T. et al. Analytical performance of a multiplex Real-Time PCR assay using TaqMan probes for quantification of Trypanosoma cruzi satellite DNA in blood samples. PLoS Negl. Trop. Dis. 7, e2000 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piron, M. et al. Development of a real-time PCR assay for Trypanosoma cruzi detection in blood samples. Acta Trop. 103, 195–200 (2007).CAS 
    PubMed 

    Google Scholar 
    Curtis-Robles, R. et al. Parasitic interactions among Trypanosoma cruzi, triatomine vectors, domestic animals, and wildlife in Big Bend National Park along the Texas-Mexico border. Acta Trop. 188, 225–233 (2018).PubMed 

    Google Scholar 
    Cupp, E. W. et al. Identification of reptilian and amphibian blood meals from mosquitoes in an eastern equine encephalomyelitis virus focus in central Alabama. Am. J. Trop. Med. Hyg. 71, 272–276 (2004).PubMed 

    Google Scholar 
    Medeiros, M. C. I., Ricklefs, R. E., Brawn, J. D. & Hamer, G. L. Plasmodium prevalence across avian host species is positively associated with exposure to mosquito vectors. Parasitology 142, 1612–1620 (2015).CAS 
    PubMed 

    Google Scholar 
    Hamer, G. L. et al. Host selection by Culex pipiens mosquitoes and West Nile virus amplification. Am. J. Trop. Med. Hyg. 80, 268–278 (2009).PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    Hathaway, N. J., Parobek, C. M., Juliano, J. J. & Bailey, J. A. SeekDeep: Single-base resolution de novo clustering for amplicon deep sequencing. Nucleic Acids Res. 46, e21 (2018).CAS 
    PubMed 

    Google Scholar 
    Zeledón, R. et al. An Appraisal of the Status of Chagas Disease in the United States (Elsevier Inc., Amsterdam, 2012).
    Google Scholar 
    Gorchakov, R. et al. Trypanosoma cruzi infection prevalence and bloodmeal analysis in triatomine vectors of Chagas disease from rural peridomestic locations in Texas, 2013–2014. J. Med. Entomol. 53, 911–918 (2016).CAS 
    PubMed 

    Google Scholar 
    Stevens, L. et al. Vector blood meals and Chagas Disease transmission potential, United States. Emerg. Infect. Dis. 18, 646–650 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Polonio, R., López-Domínguez, J., Herrera, C. & Dumonteil, E. Molecular ecology of Triatoma dimidiata in southern Belize reveals risk for human infection and the local differentiation of Trypanosoma cruzi parasites. Int. J. Infect. Dis. 108, 320–329 (2021).CAS 
    PubMed 

    Google Scholar 
    Sasaki, H., Rosales, R. & Tabaru, Y. Host feeding profiles of Rhodnius prolixus and Triatoma dimidiata in Guatemala (Hemiptera: Reduviidae: Triatominae). Med. Entomol. Zool. 54, 283–289 (2003).
    Google Scholar 
    Villalobos, G., Martínez-Hernández, F., de la Torre, P., Laclette, J. P. & Espinoza, B. Entomological indices, feeding sources, and molecular identification of Triatoma phyllosoma (Hemiptera: Reduviidae) one of the main vectors of Chagas disease in the Istmo de Tehuantepec, Oaxaca, Mexico. Am. J. Trop. Med. Hyg. 85, 490–497 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Mota, J. et al. Identification of blood meal source and infection with Trypanosoma cruzi of Chagas disease vectors using a multiplex cytochrome b polymerase chain reaction assay. Vector Borne Zoonotic Dis. 7, 617–627 (2007).PubMed 

    Google Scholar 
    Pizarro, J. C. & Stevens, L. A new method for forensic DNA analysis of the blood meal in Chagas disease vectors demonstrated using Triatoma infestans from Chuquisaca, Bolivia. PLoS ONE 3, e3585 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abad-Franch, F. & Gurgel-Gonçalves, R. The ecology and natural history of wild triatominae in the Americas. In Triatominae—The Biology of Chagas Disease Vectors (eds Guarneri, A. & Lorenzo, M.) 387–445 (Springer Nature Switzerland AG, 2021). https://doi.org/10.1007/978-3-030-64548-9_16.Chapter 

    Google Scholar 
    Busselman, R. E. & Hamer, S. A. Chagas disease ecology in the United States: Recent advances in understanding Trypanosoma cruzi transmission among triatomines, wildlife, and domestic animals and a quantitative synthesis of vector-host interactions. Annu. Rev. Anim. Biosci. 10, 325–348 (2022).PubMed 

    Google Scholar 
    Minuzzi-Souza, T. T. C. et al. Vector-borne transmission of Trypanosoma cruzi among captive Neotropical primates in a Brazilian zoo. Parasit. Vectors 9, 1–7. https://doi.org/10.1186/s13071-016-1334-7 (2016).CAS 
    Article 

    Google Scholar 
    Reis, F. C. et al. Trypanosomatid infections in captive wild mammals and potential vectors at the Brasilia Zoo, Federal District, Brazil. Vet. Med. Sci. 6, 248–256. https://doi.org/10.1002/vms3.216 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martínez-Hernández, F., Oria-Martínez, B., Rendón-Franco, E., Villalobos, G. & Muñoz-García, C. I. Trypanosoma cruzi, beyond the dogma of non-infection in birds. Infect. Genet. Evol. https://doi.org/10.1016/j.meegid.2022.105239 (2022).Article 
    PubMed 

    Google Scholar 
    Botto-Mahan, C. et al. Lizards as silent hosts of Trypanosoma cruzi. Emerg. Infect. Dis. 28, 1250–1253. https://doi.org/10.3201/eid2806.220079 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    PISCOeo_pm, a reference evapotranspiration gridded database based on FAO Penman-Monteith in Peru

    Allen, R. G. et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. FAO, Rome 300, D05109 http://www.fao.org/docrep/X0490E/X0490E00.htm (1998).
    Google Scholar 
    Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bulletin of the American Meteorological Society 90, 311–324, https://doi.org/10.1175/2008BAMS2634.1 (2009).ADS 
    Article 

    Google Scholar 
    Wang, K. & Dickinson, R. E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics 50, https://doi.org/10.1029/2011RG000373 (2012).Liu, W. Evaluating remotely sensed monthly evapotranspiration against water balance estimates at basin scale in the Tibetan Plateau. Hydrology Research 49, 1977–1990, https://doi.org/10.2166/nh.2018.008 (2018).Article 

    Google Scholar 
    Valipour, M., Bateni, S. M., Gholami Sefidkouhi, M. A., Raeini-Sarjaz, M. & Singh, V. P. Complexity of forces driving trend of reference evapotranspiration and signals of climate change. Atmosphere 11, 1081, https://doi.org/10.1007/s41748-021-00252-3 (2020).ADS 
    Article 

    Google Scholar 
    Anwar, S. A., Mamadou, O., Diallo, I. & Sylla, M. B. On the influence of vegetation cover changes and vegetation-runoff systems on the simulated summer potential evapotranspiration of Tropical Africa using RegCM4. Earth Systems and Environment 5, 883–897, https://doi.org/10.3390/atmos11101081 (2021).ADS 
    Article 

    Google Scholar 
    Tomas-Burguera, M., Vicente-Serrano, S. M., Beguera, S., Reig, F. & Latorre, B. Reference crop evapotranspiration database in Spain (1961–2014). Earth System Science Data 11, 1917–1930, https://doi.org/10.5194/essd-11-1917-2019 (2019).ADS 
    Article 

    Google Scholar 
    Córdova, M., Carrillo-Rojas, G., Crespo, P., Wilcox, B. & Célleri, R. Evaluation of the Penman-Monteith (FAO 56 PM) Method for Calculating Reference Evapotranspiration Using Limited Data. Mountain Research and Development 35, 230–239, https://doi.org/10.1659/MRD-JOURNAL-D-14-0024.1 (2015).Article 

    Google Scholar 
    Valle Júnior, L. C. G. d. et al. Evaluation of FAO-56 procedures for estimating reference evapotranspiration using missing climatic data for a Brazilian tropical savanna. Water 13, 1763, https://doi.org/10.3390/w13131763 (2021).Article 

    Google Scholar 
    Djaman, K., Irmak, S. & Futakuchi, K. Daily reference evapotranspiration estimation under limited data in Eastern Africa. Journal of Irrigation and Drainage Engineering 143, 06016015, https://doi.org/10.1061/(ASCE)IR.1943-4774.0001154 (2017).Article 

    Google Scholar 
    Čadro, S., Uzunović, M., Žurovec, J. & Žurovec, O. Validation and calibration of various reference evapotranspiration alternative methods under the climate conditions of Bosnia and Herzegovina. International Soil and Water Conservation Research 5, 309–324, https://doi.org/10.1016/j.iswcr.2017.07.002 (2017).Article 

    Google Scholar 
    Vicente-Serrano, S. M. et al. Recent changes in monthly surface air temperature over Peru, 1964–2014. International Journal of Climatology 38, 283–306, https://doi.org/10.1002/joc.5176 (2018).ADS 
    Article 

    Google Scholar 
    Huerta, A., Aybar, C. & Lavado-Casimiro, W. PISCO temperatura versión 1.1 (PISCOt v1. 1). Lima, Peru: National Meteorology and Hydrology Service of Peru (SENAMHI) https://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/.Temp/ (2018).Lavado Casimiro, W. S., Labat, D., Guyot, J. L. & Ardoin-Bardin, S. Assessment of climate change impacts on the hydrology of the Peruvian Amazon–Andes basin. Hydrological Processes 25, 3721–3734, https://doi.org/10.1002/hyp.8097 (2011).ADS 
    Article 

    Google Scholar 
    Rau, P. et al. Assessing multidecadal runoff (1970–2010) using regional hydrological modelling under data and water scarcity conditions in Peruvian Pacific catchments. Hydrological Processes 33, 20–35, https://doi.org/10.1002/hyp.13318 (2019).ADS 
    Article 

    Google Scholar 
    Olsson, T. et al. Downscaling climate projections for the Peruvian coastal Chancay-Huaral basin to support river discharge modeling with WEAP. Journal of Hydrology: Regional Studies 13, 26–42, https://doi.org/10.1016/j.ejrh.2017.05.011 (2017).Article 

    Google Scholar 
    Lavado-Casimiro, W., Lhomme, J. P., Labat, D. & Loup, J. Estimating reference evapotranspiration (FAO 56 Penman Monteith) with limited climatic data in the Peruvian Amazon-Andes basin. Revista Peruana Geo-Atmosferica 4, 31–43 (2015).
    Google Scholar 
    Hargreaves, G. H. & Samani, Z. A. Reference crop evapotranspiration from temperature. Applied engineering in agriculture 1, 96–99, https://doi.org/10.13031/2013.26773 (1985).Article 

    Google Scholar 
    Laqui, W. et al. Can artificial neural networks estimate potential evapotranspiration in Peruvian highlands? Modeling Earth Systems and Environment 5, 1911–1924, https://doi.org/10.1007/s40808-019-00647-2 (2019).Article 

    Google Scholar 
    Baigorria, G. A., Villegas, E. B., Trebejo, I., Carlos, J. F. & Quiroz, R. Atmospheric transmissivity: distribution and empirical estimation around the central Andes. International Journal of Climatology 24, 1121–1136, https://doi.org/10.1002/joc.1060 (2004).ADS 
    Article 

    Google Scholar 
    Huerta, A. PISCO potential evapotranspiration, https://iridl.ldeo.columbia.edu/SOURCES/.SENAMHI/.HSR/.PISCO/.PET/.Oudin, L., Michel, C. & Anctil, F. Which potential evapotranspiration input for a lumped rainfall-runoff model?: Part 1—can rainfall-runoff models effectively handle detailed potential evapotranspiration inputs? Journal of Hydrology 303, 275–289, https://doi.org/10.1016/j.jhydrol.2004.08.025 (2005).ADS 
    Article 

    Google Scholar 
    Xiang, K., Li, Y., Horton, R. & Feng, H. Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review. Agricultural Water Management 232, 106043, https://doi.org/10.1016/j.agwat.2020.106043 (2020).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific data 7, 1–18, https://doi.org/10.1038/s41597-020-0453-3 (2020).Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data 5, 1–12, https://doi.org/10.1038/sdata.2017.191 (2018).Article 

    Google Scholar 
    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bulletin of the American Meteorological Society 77, 437–472, 10.1175/1520-0477(1996)077  2.0.CO;2 (1996).Hersbach, H. et al. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999–2049, https://doi.org/10.1002/qj.3803 (2020).ADS 
    Article 

    Google Scholar 
    Muñoz Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth System Science Data 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021 (2021).ADS 
    Article 

    Google Scholar 
    Aybar, C. et al. Construction of a high-resolution gridded rainfall dataset for Peru from 1981 to the present day. Hydrological Sciences Journal 65, 770–785, https://doi.org/10.1080/02626667.2019.1649411 (2020).Article 

    Google Scholar 
    Llauca, H., Lavado-Casimiro, W., Montesinos, C., Santini, W. & Rau, P. PISCO_HyM_GR2M: A model of monthly water balance in Peru (1981–2020). Water 13, 1048, https://doi.org/10.3390/w13081048 (2021).Article 

    Google Scholar 
    Gubler, S. et al. The influence of station density on climate data homogenization. International Journal of Climatology 37, 4670–4683, https://doi.org/10.1002/joc.5114 (2017).ADS 
    Article 

    Google Scholar 
    Hunziker, S. et al. Identifying, attributing, and overcoming common data quality issues of manned station observations. International Journal of Climatology 37, 4131–4145, https://doi.org/10.1002/joc.5037 (2017).ADS 
    Article 

    Google Scholar 
    Hunziker, S. et al. Effects of undetected data quality issues on climatological analyses. Climate of the Past 14, 1–20, https://doi.org/10.5194/cp-14-1-2018 (2018).ADS 
    Article 

    Google Scholar 
    Paredes, P., Pereira, L., Almorox, J. & Darouich, H. Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables. Agricultural Water Management 240, 106210, https://doi.org/10.1016/j.agwat.2020.106210 (2020).Article 

    Google Scholar 
    Irmak, S., Kabenge, I., Skaggs, K. E. & Mutiibwa, D. Trend and magnitude of changes in climate variables and reference evapotranspiration over 116-yr period in the Platte River Basin, central Nebraska–USA. Journal of Hydrology 420, 228–244, https://doi.org/10.1016/j.jhydrol.2011.12.006 (2012).ADS 
    Article 

    Google Scholar 
    Tomas-Burguera, M., Vicente-Serrano, S. M., Grimalt, M. & Beguera, S. Accuracy of reference evapotranspiration (ETo) estimates under data scarcity scenarios in the Iberian Peninsula. Agricultural water management 182, 103–116, https://doi.org/10.1016/j.agwat.2016.12.013 (2017).Article 

    Google Scholar 
    Mardikis, M., Kalivas, D. & Kollias, V. Comparison of interpolation methods for the prediction of reference evapotranspiration—an application in Greece. Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA) 19, 251–278, https://doi.org/10.1007/s11269-005-3179-2 (2005).Article 

    Google Scholar 
    McVicar, T. R. et al. Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. Journal of Hydrology 338, 196–220, https://doi.org/10.1016/j.jhydrol.2007.02.018 (2007).ADS 
    Article 

    Google Scholar 
    Robinson, E. L., Blyth, E. M., Clark, D. B., Finch, J. & Rudd, A. C. Trends in atmospheric evaporative demand in Great Britain using high-resolution meteorological data. Hydrology and Earth System Sciences 21, 1189–1224, https://doi.org/10.5194/hess-21-1189-2017 (2017).ADS 
    Article 

    Google Scholar 
    Mohammadi, B. & Moazenzadeh, R. Performance analysis of daily global solar radiation models in Peru by regression analysis. Atmosphere 12, https://doi.org/10.3390/atmos12030389 (2021).Vicente-Serrano, S. M., Beguería, S., López-Moreno, J. I., García-Vera, M. A. & Stepanek, P. A complete daily precipitation database for northeast Spain: reconstruction, quality control, and homogeneity. International Journal of Climatology 30, 1146–1163, https://doi.org/10.1002/joc.1850 (2010).ADS 
    Article 

    Google Scholar 
    Lanzante, J. R. Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. International Journal of Climatology: A Journal of the Royal Meteorological Society 16, 1197–1226, 10.1002/(SICI)1097-0088(199611)16:11 < 1197::AID-JOC89 > 3.0.CO;2-L (1996).ADS 
    Article 

    Google Scholar 
    Wood, W. H., Marshall, S. J., Whitehead, T. L. & Fargey, S. E. Daily temperature records from a mesonet in the foothills of the Canadian Rocky Mountains, 2005–2010. Earth System Science Data 10, 595–607, https://doi.org/10.5194/essd-10-595-2018 (2018).ADS 
    Article 

    Google Scholar 
    Guentchev, G., Barsugli, J. J. & Eischeid, J. Homogeneity of gridded precipitation datasets for the Colorado River basin. Journal of Applied Meteorology and Climatology 49, 2404–2415, https://doi.org/10.1175/2010JAMC2484.1 (2010).ADS 
    Article 

    Google Scholar 
    Oyler, J. W., Ballantyne, A., Jencso, K., Sweet, M. & Running, S. W. Creating a topoclimatic daily air temperature dataset for the conterminous United States using homogenized station data and remotely sensed land skin temperature. International Journal of Climatology 35, 2258–2279, https://doi.org/10.1002/joc.4127 (2015).ADS 
    Article 

    Google Scholar 
    McAfee, S. A., McCabe, G. J., Gray, S. T. & Pederson, G. T. Changing station coverage impacts temperature trends in the Upper Colorado River basin. International Journal of Climatology 39, 1517–1538, https://doi.org/10.1002/joc.5898 (2019).ADS 
    Article 

    Google Scholar 
    Beguería, S., Vicente-Serrano, S. M., Tomás-Burguera, M. & Maneta, M. Bias in the variance of gridded data sets leads to misleading conclusions about changes in climate variability. International Journal of Climatology 36, 3413–3422, https://doi.org/10.1002/joc.4561 (2016).ADS 
    Article 

    Google Scholar 
    Thevakaran, A. & Sonnadara, D. Estimating missing daily temperature extremes in Jaffna, Sri Lanka. Theoretical and applied climatology 132, 145–152, https://doi.org/10.1007/s00704-017-2082-0 (2018).ADS 
    Article 

    Google Scholar 
    Hubbard, K. Spatial variability of daily weather variables in the high plains of the USA. Agricultural and Forest Meteorology 68, 29–41, https://doi.org/10.1016/0168-1923(94)90067-1 (1994).ADS 
    Article 

    Google Scholar 
    Camargo, M. B. & Hubbard, K. G. Spatial and temporal variability of daily weather variables in sub-humid and semi-arid areas of the United States high plains. Agricultural and forest meteorology 93, 141–148, https://doi.org/10.1016/S0168-1923(98)00122-1 (1999).ADS 
    Article 

    Google Scholar 
    Brugnara, Y., Good, E., Squintu, A. A., van der Schrier, G. & Brönnimann, S. The EUSTACE global land station daily air temperature dataset. Geoscience Data Journal 6, 189–204, https://doi.org/10.5285/7925ded722d743fa8259a93acc7073f2 (2019).ADS 
    Article 

    Google Scholar 
    Gonzalez-Hidalgo, J. C., Peña-Angulo, D., Brunetti, M. & Cortesi, N. MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951–2010). International Journal of Climatology 35, 4444–4463, https://doi.org/10.1002/joc.4298 (2015).ADS 
    Article 

    Google Scholar 
    Gudmundsson, L., Bremnes, J. B., Haugen, J. E. & Engen-Skaugen, T. Technical note: Downscaling RCM precipitation to the station scale using statistical transformations – a comparison of methods. Hydrology and Earth System Sciences 16, 3383–3390, https://doi.org/10.5194/hess-16-3383-2012 (2012).ADS 
    Article 

    Google Scholar 
    Stanley, T., Kirschbaum, D. B., Huffman, G. J. & Adler, R. F. Approximating long-term statistics early in the global precipitation measurement era. Earth Interactions 21, 1–10, https://doi.org/10.1175/EI-D-16-0025.1 (2017).Article 

    Google Scholar 
    Haimberger, L. Homogenization of radiosonde temperature time series using innovation statistics. Journal of Climate 20, 1377–1403, https://doi.org/10.1175/JCLI4050.1 (2007).ADS 
    Article 

    Google Scholar 
    Menne, M. J. & Williams, C. N. Homogenization of temperature series via pairwise comparisons. Journal of Climate 22, 1700–1717, https://doi.org/10.1175/2008JCLI2263.1 (2009).ADS 
    Article 

    Google Scholar 
    Vincent, L. A., Zhang, X., Bonsal, B. R. & Hogg, W. D. Homogenization of daily temperatures over Canada. Journal of Climate 15, 1322–1334, 10.1175/1520-0442(2002)015 < 1322:HODTOC > 2.0.CO;2 (2002).ADS 
    Article 

    Google Scholar 
    Jin, M. & Dickinson, R. E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environmental Research Letters 5, 044004, https://doi.org/10.1088/1748-9326/5/4/044004 (2010).ADS 
    Article 

    Google Scholar 
    Wan, Z., Hook, S. & Hulley, G. MOD11A2 MODIS/Terra land surface temperature/emissivity 8-day l3 global 1 km SIN grid v006. NASA EOSDIS Land Processes DAAC 10, https://doi.org/10.5067/MODIS/MOD11A2.006 (2015).Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS biology 14, e1002415, https://doi.org/10.1371/journal.pbio.1002415 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010) (US Department of the Interior, US Geological Survey Washington, DC, USA, 2011).Holden, Z. A., Abatzoglou, J. T., Luce, C. H. & Baggett, L. S. Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain. Agricultural and Forest Meteorology 151, 1066–1073, https://doi.org/10.1016/j.agrformet.2011.03.011 (2011).ADS 
    Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International journal of climatology 37, 4302–4315, https://doi.org/10.1002/joc.5086 (2017).ADS 
    Article 

    Google Scholar 
    Willmott, C. J. & Robeson, S. M. Climatologically aided interpolation (CAI) of terrestrial air temperature. International Journal of Climatology 15, 221–229, https://doi.org/10.1002/joc.3370150207 (1995).ADS 
    Article 

    Google Scholar 
    Hunter, R. D. & Meentemeyer, R. K. Climatologically aided mapping of daily precipitation and temperature. Journal of Applied Meteorology 44, 1501–1510, https://doi.org/10.1175/JAM2295.1 (2005).ADS 
    Article 

    Google Scholar 
    Parmentier, B. et al. Using multi-timescale methods and satellite-derived land surface temperature for the interpolation of daily maximum air temperature in Oregon. International Journal of Climatology 35, 3862–3878, https://doi.org/10.1002/joc.4251 (2015).ADS 
    Article 

    Google Scholar 
    Hengl, T., Heuvelink, G. B. & Rossiter, D. G. About regression-kriging: From equations to case studies. Computers & Geosciences 33, 1301–1315, https://doi.org/10.1016/j.cageo.2007.05.001. Spatial Analysis (2007).Sun, X.-L., Yang, Q., Wang, H.-L. & Wu, Y.-J. Can regression determination, nugget-to-sill ratio and sampling spacing determine relative performance of regression kriging over ordinary kriging? CATENA 181, 104092, https://doi.org/10.1016/j.catena.2019.104092 (2019).Article 

    Google Scholar 
    Trajkovic, S. & Gocic, M. Evaluation of three wind speed approaches in temperature-based ET 0 equations: a case study in Serbia. Arabian Journal of Geosciences 14, 1–8, https://doi.org/10.1007/s12517-020-06331-5 (2021).Article 

    Google Scholar 
    Fotheringham, A. S., Brunsdon, C. & Charlton, M. Geographically weighted regression: the analysis of spatially varying relationships (John Wiley & Sons, 2003).Comber, A. et al. A route map for successful applications of geographically weighted regression. Geographical Analysis https://doi.org/10.1111/gean.12316 (2021).Li, X., Zhou, Y., Asrar, G. R. & Zhu, Z. Developing a 1 km resolution daily air temperature dataset for urban and surrounding areas in the conterminous United States. Remote Sensing of Environment 215, 74–84, https://doi.org/10.1016/j.rse.2018.05.034 (2018).ADS 
    Article 

    Google Scholar 
    Wu, J., Zhong, B., Tian, S., Yang, A. & Wu, J. Downscaling of urban land surface temperature based on multi-factor geographically weighted regression. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12, 2897–2911, https://doi.org/10.1109/JSTARS.2019.2919936 (2019).ADS 
    Article 

    Google Scholar 
    Zhang, G., Zhu, S., Zhang, N., Zhang, G. & Xu, Y. Downscaling hourly air temperature of WRF simulations over complex topography: A case study of Chongli District in Hebei Province, China. Journal of Geophysical Research: Atmospheres 127, e2021JD035542, https://doi.org/10.1029/2021JD035542 (2022).ADS 
    Article 

    Google Scholar 
    Callañaupa Gutierrez, S. et al. Seasonal variability of daily evapotranspiration and energy fluxes in the Central Andes of Peru using eddy covariance techniques and empirical methods. Atmospheric Research 261, 105760, https://doi.org/10.1016/j.atmosres.2021.105760 (2021).Article 

    Google Scholar 
    Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W. & Morgan, K. T. Step by step calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences. University of Florida https://edis.ifas.ufl.edu/pdf/AE/AE45900.pdf (2010).Huerta, A. PISCOeo_pm, a reference evapotranspiration gridded database based on FAO Penman-Monteith in Peru. figshare https://doi.org/10.6084/m9.figshare.c.5633182.v3 (2021).Willmott, C. J., Robeson, S. M. & Matsuura, K. A refined index of model performance. International Journal of climatology 32, 2088–2094, https://doi.org/10.1002/joc.2419 (2012).ADS 
    Article 

    Google Scholar 
    Legates, D. R. & McCabe, G. J. A refined index of model performance: a rejoinder. International Journal of Climatology 33, 1053–1056, https://doi.org/10.1002/joc.3487 (2013).ADS 
    Article 

    Google Scholar 
    Durre, I., Menne, M. J., Gleason, B. E., Houston, T. G. & Vose, R. S. Comprehensive automated quality assurance of daily surface observations. Journal of Applied Meteorology and Climatology 49, 1615–1633, https://doi.org/10.1175/2010JAMC2375.1 (2010).ADS 
    Article 

    Google Scholar 
    Huerta, A. & Lavado-Casimiro, W. Atlas de Zonas Áridas del Perú: una evaluación presente y futura (Servicio Nacional de Meteorología e Hidrología del Perú, Lima, Perú, 2021).Singer, M. B. et al. Hourly potential evapotranspiration at 0.1° resolution for the global land surface from 1981-present. Scientific Data 8, 1–13, https://doi.org/10.1038/s41597-021-01003-9 (2021).Article 

    Google Scholar 
    Pelosi, A. & Chirico, G. Regional assessment of daily reference evapotranspiration: Can ground observations be replaced by blending ERA5-Land meteorological reanalysis and CM-SAF satellite-based radiation data? Agricultural Water Management 258, 107169, https://doi.org/10.1016/j.agwat.2021.107169 (2021).Article 

    Google Scholar 
    McCuen, R. H. A sensitivity and error analysis cf procedures used for estimating evaporation. JAWRA Journal of the American Water Resources Association 10, 486–497, https://doi.org/10.1111/j.1752-1688.1974.tb00590.x (1974).ADS 
    Article 

    Google Scholar 
    Coleman, G. & DeCoursey, D. G. Sensitivity and model variance analysis applied to some evaporation and evapotranspiration models. Water Resources Research 12, 873–879, https://doi.org/10.1029/WR012i005p00873 (1976).ADS 
    Article 

    Google Scholar 
    Beven, K. A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology 44, 169–190, https://doi.org/10.1016/0022-1694(79)90130-6 (1979).ADS 
    Article 

    Google Scholar 
    Hupet, F. & Vanclooster, M. Effect of the sampling frequency of meteorological variables on the estimation of the reference evapotranspiration. Journal of Hydrology 243, 192–204, https://doi.org/10.1016/S0022-1694(00)00413-3 (2001).ADS 
    Article 

    Google Scholar 
    Ali, M. et al. Sensitivity of Penman–Monteith estimates of reference evapotranspiration to errors in input climatic data. Journal of Agrometeorology 11, 1–8, https://journal.agrimetassociation.org/index.php/jam/article/view/1214 (2009).
    Google Scholar 
    Field, C. B., Jackson, R. B. & Mooney, H. A. Stomatal responses to increased CO2: implications from the plant to the global scale. Plant, Cell & Environment 18, 1214–1225, https://doi.org/10.1111/j.1365-3040.1995.tb00630.x (1995).Article 

    Google Scholar 
    Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resources Research 51, 5450–5463, https://doi.org/10.1002/2015WR017031 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Swann, A. L., Hoffman, F. M., Koven, C. D. & Randerson, J. T. Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity. Proceedings of the National Academy of Sciences 113, 10019–10024, https://doi.org/10.1073/pnas.1604581113 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nature Climate Change 6, 946–949, https://doi.org/10.1038/nclimate3046 (2016).ADS 
    Article 

    Google Scholar 
    Greve, P., Roderick, M. L. & Seneviratne, S. I. Simulated changes in aridity from the last glacial maximum to 4xCO2. Environmental Research Letters 12, 114021, https://doi.org/10.1088/1748-9326/aa89a3 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Scheff, J. Drought indices, drought impacts, CO2, and warming: a historical and geologic perspective. Current Climate Change Reports 4, 202–209, https://doi.org/10.1007/s40641-018-0094-1 (2018).Article 

    Google Scholar 
    Swann, A. L. Plants and drought in a changing climate. Current Climate Change Reports 4, 192–201, https://doi.org/10.1007/s40641-018-0097-y (2018).Article 

    Google Scholar 
    Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proceedings of the National Academy of Sciences 115, 4093–4098, https://doi.org/10.1073/pnas.1720712115 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nature Climate Change 9, 44–48, https://doi.org/10.1038/s41558-018-0361-0 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Greve, P., Roderick, M., Ukkola, A. & Wada, Y. The aridity index under global warming. Environmental Research Letters 14, 124006, https://doi.org/10.1088/1748-9326/ab5046 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Huerta, A. & Gutierrez, L. PISCOeo_pm. figshare https://doi.org/10.6084/m9.figshare.19686738.v1 (2022). More

  • in

    Applying convolutional neural networks to speed up environmental DNA annotation in a highly diverse ecosystem

    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis, A., Dean, J., Devin, M., Ghemawat, S. & Zheng, X. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. (2015).Alberdi, A., Aizpurua, O., Gilbert, M. T. P. & Bohmann, K. Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods Ecol. Evol. 9, 134–147 (2018).Article 

    Google Scholar 
    Albert, J. S. & Reis, R. E. One. Introduction to Neotropical freshwaters. In Historical biogeography of Neotropical freshwater fishes (pp. 3-20). University of California Press. (2011).Allard, L., Popée, M., Vigouroux, R. & Brosse, S. Effect of reduced impact logging and small-scale mining disturbances on Neotropical stream fish assemblages. Aquat. Sci. 78, 315–325 (2016).Article 

    Google Scholar 
    Berry, O. et al. Making environmental DNA (eDNA) biodiversity records globally accessible. Environ. DNA 3(4), 699–705 (2020).Article 

    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29(6), 358–367 (2014).PubMed 
    Article 

    Google Scholar 
    Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. Nat. Biotechnol. 32, 852–857 (2019).Article 
    CAS 

    Google Scholar 
    Bonder, M. J., Abeln, S., Zaura, E. & Brandt, B. W. Comparing clustering and pre-processing in taxonomy analysis. Bioinformatics 28(22), 2891–2897 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boussarie, G. et al. Environmental DNA illuminates the dark diversity of sharks. Sci. Adv. 4, eaap9661 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyer, F. et al. obitools: A unix-inspired software package for DNA metabarcoding. Mol. Ecology Resour. 16(1), 176–182 (2016).CAS 
    Article 

    Google Scholar 
    Brandt, M.I., Trouche, B., Quintric, L., Günther, B., Wincker, P., Poulain, J. & Arnaud-Haond, S. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Molecular Ecology Resources. Accepted (2021).Brosse, S., Melki, F. & Vigouroux, R. Fishes from the Mitaraka mountains (French Guiana). Zoosystema 41, 131–151 (2019).Article 

    Google Scholar 
    Brown, E. A., Chain, F. J., Crease, T. J., MacIsaac, H. J. & Cristescu, M. E. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities?. Ecol. Evol. 5(11), 2234–2251 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Busia, K., George, D. E., Fannjiang, C., Alexander, D.H., Dorfman, E., Poplin, R., Chang, P., & DePris, M. A deep learning approach to pattern recognition for short DNA sequences. BioRxiv (2020).Bylemans, J., Gleeson, D. M., Hardy, C. M. & Furlan, E. Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray-Darling Basin (Australia). Ecol. Evol. 8(17), 8697–8712 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calderón-Sanou, I., Münkemüller, T., Boyer, F., Zinger, L. & Thuiller, W. From environmental DNA sequences to ecological conclusions: How strong is the influence of methodological choices?. J. Biogeogr. 47(1), 193–206 (2020).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cantera, I., Coutant, O., Jézéuel, C., Decotte, J.B., Dejean, T., Vigouroux, R., Valentini, A. Murienne, J. & Brosse S. Slight deforestation causes harsh biodiversity decline in Amazonian rivers (submitted)Cantera, I., Decotte, J. B., Dejean, T., Murienne, J., Vigouroux, R., Valentini, A., & Brosse, S. Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach. BioRxiv (2020).Cantera, I. et al. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Sci. Rep. 9(1), 1–1 (2019).CAS 
    Article 

    Google Scholar 
    Cardoso, Y. P. & Montoya-Burgos, J. I. Unexpected diversity in the catfish Pseudancistrus brevispinis reveals dispersal routes in a Neotropical center of endemism: The Guyanas Region. Mol. Ecol. 18, 947–964 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cilleros, K. et al. Unlocking biodiversity and conservation studies in high-diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes. Mol. Ecol. Resour. 19(1), 27–46 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Collen, B., Ram, M., Zamin, T. & McRae, L. The tropical biodiversity data gap: Addressing disparity in global monitoring. Trop. Conserv. Sci. 1(2), 75–88 (2008).Article 

    Google Scholar 
    Cordier, T., Lanzén, A., Apothéloz-Perret-Gentil, L., Stoeck, T. & Pawlowski, J. Embracing environmental genomics and machine learning for routine biomonitoring. Trends Microbiol. 27(5), 387–397 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cordier, T. et al. Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap. Mol. Ecol. 30(13), 2937–2958 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coutant, O. et al. Detecting fish assemblages with environmental DNA: Does protocol matter? Testing eDNA metabarcoding method robustness. Environ. DNA 3(3), 619–630 (2020).Article 

    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895 (2017).PubMed 
    Article 

    Google Scholar 
    Deneu, B., Servajean, M., Bonnet, P., Botella, C., Munoz, F., & Joly, A. Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment. PLoS Comput. Biol. (in press) (2021).de Mérona, B., Tejerina-Garro, F. L. & Vigouroux, R. Fish-habitat relationships in French Guiana rivers: A review. Cybium 36, 7–15 (2012).
    Google Scholar 
    DiBattista, J. D. et al. Environmental DNA can act as a biodiversity barometer of anthropogenic pressures in coastal ecosystems. Sci. Rep. 10(1), 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Dornelas, M., Madin, E. M., Bunce, M., DiBattista, J. D., Johnson, M., Madin, J. S., Magurran, A. E., McGill, B. J., Pettorelli, N., Pizarro, O. & Williams, S. B. Towards a macroscope: Leveraging technology to transform the breadth, scale and resolution of macroecological data. Glob. Ecol. Biogeogr. (2019).Dufresne, Y., Lejzerowicz, F., Perret-Gentil, L. A., Pawlowski, J. & Cordier, T. SLIM: A flexible web application for the reproducible processing of environmental DNA metabarcoding data. BMC Bioinform. 20(1), 1–6 (2019).Article 

    Google Scholar 
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4(4), 423–425 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ficetola, G. F., Taberlet, P. & Coissac, E. How to limit false positives in environmental DNA and metabarcoding?. Mol. Ecol. Resour. 16(3), 604–607 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecology Resour. 15(3), 543–556 (2015).CAS 
    Article 

    Google Scholar 
    Flynn, J. M., Brown, E. A., Chain, F. J., MacIsaac, H. J. & Cristescu, M. E. Toward accurate molecular identification of species in complex environmental samples: Testing the performance of sequence filtering and clustering methods. Ecol. Evol. 5(11), 2252–2266 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gold, Z. et al. eDNA metabarcoding bioassessment of endangered fairy shrimp (Branchinecta spp.). Conserv. Genet. Resour. 12, 685–690 (2020).Article 

    Google Scholar 
    Grünig, M., Razavi, E., Calanca, P., Mazzi, D., Wegner, J. D., & Pellissier, L. Applying deep neural networks to predict incidence and phenology of plant pests and diseases. Ecosphere (accepted) (2021).Helaly, M. A., Rady, S., & Aref, M. M. Convolutional neural networks for biological sequence taxonomic classification: A comparative study. In International Conference on Advanced Intelligent Systems and Informatics (pp. 523–533). Springer, Cham (2019).Holman, L. E. et al. Animals, protists and bacteria share marine biogeographic patterns. Nat. Ecol. Evol. 5(6), 738–746 (2021).PubMed 
    Article 

    Google Scholar 
    Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: Emerging methods to estimate species diversity. Trends Ecol. Evol. 29(2), 97–106 (2014).PubMed 
    Article 

    Google Scholar 
    Jarman, S. N., Berry, O. & Bunce, M. The value of environmental DNA biobanking for long-term biomonitoring. Nat. Ecol. Evol. 2(8), 1192–1193 (2018).PubMed 
    Article 

    Google Scholar 
    Juhel, J. B., Utama, R. S., Marques, V., Vimono, I. B., Sugeha, H. Y., Kadarusman, Pouyaud, L., Dejean, T., Mouillot, D. & Hocdé, R. Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle. Proc. R. Soc. B 287(1930), 20200248 (2020).Kopp, W., Monti, R., Tamburrini, A., Ohler, U. & Akalin, A. Deep learning for genomics using Janggu. Nat. Commun. 11(1), 1–7 (2020).Article 
    CAS 

    Google Scholar 
    Le Bail, P. Y. et al. Updated checklist of the freshwater and estuarine fishes of French Guiana. Cybium 36(1), 293–319 (2012).
    Google Scholar 
    LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989).Article 

    Google Scholar 
    Li, W. et al. Validating eDNA measurements of the richness and abundance of anurans at a large scale. J. Anim. Ecol. 90(6), 1466–1479 (2021).PubMed 
    Article 

    Google Scholar 
    Lopes, C. M. et al. eDNA metabarcoding: A promising method for anuran surveys in highly diverse tropical forests. Mol. Ecol. Resour. 17(5), 904–914 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Makiola, A. et al. Key questions for next-generation biomonitoring. Front. Environ. Sci. 7, 197 (2020).Article 

    Google Scholar 
    Marques, V. et al. Blind assessment of vertebrate taxonomic diversity across spatial scales by clustering environmental DNA metabarcoding sequences. Ecography 43(12), 1779–1790 (2020).Article 

    Google Scholar 
    Marques, V. et al. GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding. Divers. Distrib. 27(10), 1880–1892 (2020).Article 

    Google Scholar 
    Mathon, L. et al. Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification. Mol. Ecol. Resour. 21(7), 2565–2579 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    McGee, K. M., Robinson, C. & Hajibabaei, M. Gaps in DNA-based biomonitoring across the globe. Front. Ecol. Evol. 7, 337 (2019).Article 

    Google Scholar 
    Murienne, J. et al. Aquatic eDNA for monitoring French Guiana biodiversity. Biodivers. Data J. 7, e37518 (2019).Nugent, C. M. & Adamowicz, S. J. Alignment-free classification of COI DNA barcode data with the Python package Alfie. Metabarcoding Metagenomics 4, e55815 (2020).Pagni, M. et al. Density-based hierarchical clustering of pyro-sequences on a large scale-the case of fungal ITS1. Bioinformatics 29(10), 1268–1274 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Papa, Y., Le Bail, P. Y. & Covain, R. Genetic landscape clustering of a large DNA barcoding dataset reveals shared patterns of genetic divergence among freshwater fishes of the Maroni Basin. Authorea Preprints (2020).Piro, V. C., Dadi, T. H., Seiler, E., Reinert, K. & Renard, B. Y. ganon: Precise metagenomics classification against large and up-to-date sets of reference sequences. Bioinformatics 36(Supplement 1), i12–i20 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Polanco Fernández, A., Marques, V., Fopp, F., Juhel, J. B., Borrero-Pérez, G. H., Cheutin, M. C., Eme, D. & Pellissier, L. Comparing environmental DNA metabarcoding and underwater visual census to monitor tropical reef fishes. Environ. DNA 3, 142–156 (2021).Polanco, A. et al. Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems. Environ. DNA 3(6), 1113–1127 (2021).Article 

    Google Scholar 
    Polanco Fernández, A., Martinezguerra, M. M., Marques, V., Francisco Villa-Navarro, Borrero-Pérez, G. H., Cheutin, M. C., Dejean, T., Hocdé, R., Juhel, J. B., Maire, E., Manel, S. & Pellissier, L. Recovering aquatic and terrestrial biodiversity in a tropical estuary using environmental DNA. Biotropica 53(6), 1606–1619 (2021).Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, 1–22 (2016).Article 

    Google Scholar 
    Rojahn, J., Gleeson, D. M., Furlan, E., Haeusler, T. & Bylemans, J. Improving the detection of rare native fish species in environmental DNA metabarcoding surveys. Aquat. Conserv. Mar. Freshw. Ecosyst. 31(4), 990–997 (2021).Article 

    Google Scholar 
    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).Article 

    Google Scholar 
    Sato, Y., Miya, M., Fukunaga, T., Sado, T. & Iwasaki, W. MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol. 35(6), 1553–1555 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schirmer, M. et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43(6), e37 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated–reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15(6), 1289–1303 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678 (2020).PubMed 
    Article 

    Google Scholar 
    Shokralla, S., Spall, J. L., Gibson, J. F. & Hajibabaei, M. Next-generation sequencing technologies for environmental DNA research. Mol. Ecol. 21(8), 1794–1805 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shorten, C. & Khoshgoftaar, T. A survey on image data augmentation for deep learning. J. Big Data 6, 60 (2019).Article 

    Google Scholar 
    Singer, G. A. C., Fahner, N. A., Barnes, J. G., McCarthy, A. & Hajibabaei, M. Comprehensive biodiversity analysis via ultra-deep patterned flow cell technology: A case study of eDNA metabarcoding seawater. Sci. Rep. 9(1), 1–12 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Su, G. et al. Human impacts on global freshwater fish biodiversity. Science 371(6531), 835 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Taberlet, P., Bonin, A., Coissac, E. & Zinger, L. Environmental DNA: For Biodiversity Research and Monitoring (Oxford University Press, Oxford, 2018).Book 

    Google Scholar 
    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21(8), 2045–2050 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA-An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).Article 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD–A platform for ensemble forecasting of species distributions. Ecography 32(3), 369–373 (2009).Article 

    Google Scholar 
    Valentini, A. et al. Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol. Ecol. 25(4), 929–942 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    West, K. et al. Large-scale eDNA metabarcoding survey reveals marine biogeographic break and transitions over tropical north-western Australia. Divers. Distrib. 27(10), 1942–1957 (2021).Article 

    Google Scholar  More

  • in

    Comparative metagenomics reveals expanded insights into intra- and interspecific variation among wild bee microbiomes

    Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Mus. Novit. 3296, 1–11 (2000).Article 

    Google Scholar 
    Michener, C. D. The Bees of the World 2nd edn, (John Hopkins University Press, 2007).Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274, 303–313 (2007).PubMed 
    Article 

    Google Scholar 
    Fürst, M., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McMahon, D. P., Wilfert, L., Paxton, R. J. & Brown, M. J. F. Emerging viruses in bees: from molecules to ecology. Adv. Virus Res. 101, 251–291 (2015).Article 

    Google Scholar 
    Koch, H., Abrol, D. P., Li, J. & Schmid-Hempel, P. Diversity of evolutionary patterns of bacterial gut associates of corbiculate bees. Mol. Ecol. 22, 2028–2044 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S. et al. Environment or kin: whence do bees obtain acidophilic bacteria? Mol. Ecol. 21, 1754–1768 (2012).PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in social polymorphic bees. FEMS Microbiol. Ecol. 88, 398–406 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).PubMed 
    Article 

    Google Scholar 
    Jones, J. C. et al. The gut microbiome is associated with behavioural task in honey bees. Insectes Sociaux 65, 419–429 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kristensen, T. N., Schonherz, A., Rohde, P. D., Sorensen, J. G. & Loeschcke, V. Strong experimental support for the hologenome hypothesis revealed from Drosophila melanogaster selection lines. bioRxiv https://doi.org/10.1101/2021.09.09.459587 (2021)Bovo, S., Utzeri, V. J., Ribani, A., Cabbri, R. & Fontanesi, L. Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Sci. Rep. 10, 1–17 (2020).Article 
    CAS 

    Google Scholar 
    Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B. 286, 20182894 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graystock, P., Rehan, S. M. & McFrederick, Q. S. Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv. Genet. 18, 701–711 (2017).Article 

    Google Scholar 
    Engel, P. et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7, e02164–15 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Voulgari-Kokota, A., McFrederick, Q. S., Steffan-Dewenter, I. & Keller, A. Drivers, diversity, and functions of the solitary-bee microbiota. Trends Microbiol 27, 1034–1044 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rothman, J. A., Leger, L., Graystock, P., Russell, K. & McFrederick, Q. S. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ. Microbiol. 21, 3417–3429 (2019).CAS 
    Article 

    Google Scholar 
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4, 60–65 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breeze, T. D., Bailey, A. P., Balcombe, K. G. & Potts, S. G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 142, 137–143 (2011).Article 

    Google Scholar 
    Dharampal, P. S., Hetherington, M. C. & Steffan, S. A. Microbes make the meal: oligolectic bees require microbes within their host pollen to thrive. Ecol. Entomol. 45, 1418–1427 (2020).Article 

    Google Scholar 
    Keller, A. et al. (More than) hitchhikers through the network: the shared microbiome of bees and flowers. Curr. Opin. Insect 44, 8–15 (2021).Article 

    Google Scholar 
    Hugenholtz, P. & Tyson, G. W. Metagenomics. Nature 455, 481–483 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high- throughput metagenomics. Sci. Rep. 8, 8879 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Regan, T. et al. Characterisation of the British honey bee metagenome. Nat. Commun. 9, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLOS ONE 13, e0205575 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schoonvaere, K. et al. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLOS ONE 11, e0168456 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehan, S. M., Leys, R. & Schwarz, M. P. A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes. PLOS ONE 7, e34690 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rehan, S. M. Small carpenter bees (Ceratina). Encyclopedia of Social Insects (ed Chris, S.) (Springer, 2020).Sakagami, S. F. & Maeta, Y. Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). J. Kans. Entomol. 57, 639–656 (1984).
    Google Scholar 
    Huisken, J. L., Shell, W. A., Pare, H. K. & Rehan, S. M. The influence of social environment on cooperating and conflict in an incipiently social bee, Ceratina calcarata. Behav. Ecol. 75, 74 (2021).Article 

    Google Scholar 
    Rehan, S. M., Glastad, K. M., Lawson, S. P. & Hunt, B. G. The genome and methylome of a subsocial small carpenter bee, Ceratina calcarata. GBE 8, 1401–1410 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rehan, S. M. et al. Conserved genes underlie phenotypic plasticity in an incipiently social bee. GBE 10, 2749–2758 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arsenault, S. V., Hunt, B. G. & Rehan, S. M. The effect of maternal care on gene expression and DNA methylation in a subsocial bee. Nat. Commun. 9, 3468 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shell, W. A. et al. Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Comms. Biol. 4, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    Dew, R. M., McFrederick, Q. S. & Rehan, S. M. Diverse diets with consistent core microbiome in wild bee pollen provisions. Insects 11, 49 (2020).Article 

    Google Scholar 
    Lawson, S. P., Kennedy, K. & Rehan, S. M. Pollen composition significantly impacts development and survival of the native small carpenter bee, Ceratina calcarata. Ecol. Entomol. 46, 232–239 (2021).Article 

    Google Scholar 
    Oppenheimer, R. L., Shell, W. A. & Rehan, S. M. Phylogeography and population genetics of the Australian small carpenter bee, Ceratina australensis. Biol. J. Linn. Soc. 124, 747–755 (2018).Article 

    Google Scholar 
    McFrederick, Q. S. & Rehan, S. M. Wild bee pollen usage and microbial communities co- vary across landscapes. Microb. Ecol. 77, 513–522 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rehan, S. M., Richards, M. H. & Schwarz, M. P. Sociality in the Australian small carpenter bee Ceratina (Neoceratina) australensis. Insectes Sociaux 57, 403–412 (2010).Article 

    Google Scholar 
    Harpur, B. A. & Rehan, S. M. Connecting social polymorphism to single nucleotide polymorphism: population genomics of the small carpenter bee, Ceratina australensis. Biol. J. Linn. Soc. 132, 945–954 (2021).Article 

    Google Scholar 
    Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome: challenges and prospects. PNAS 118, e2104429118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson, S. P., Ciaccio, K. N. & Rehan, S. M. Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behav. Ecol. 70, 1891–1900 (2016).Article 

    Google Scholar 
    Ganeshprasad, D. N., Jani, K., Shouche, Y. S. & Sneharani, A. H. Gut bacterial inhabitants of open nested honey bee, Apis florea. Preprint at https://assets.researchsquare.com/files/rs-225332/v1/ddf21abe-2456-4f45-af61-4ba3e81d16e7.pdf?c=1641312753 (2021).Rothman, J. A., Cox-Foster, D. L., Andrikopoulos, C. & McFrederick, Q. S. Diet breadth affects bacterial identity but not diversity in the pollen provisions of closely related polylectic and oligolectic bees. Insects 11, 1–13 (2020).Article 

    Google Scholar 
    Cohen, H., McFrederick, Q. S. & Philpott, S. M. Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb. Ecol. 80, 897–907 (2020).PubMed 
    Article 

    Google Scholar 
    Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera: Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).Article 

    Google Scholar 
    Pinto-Tomás, A. A. et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120–1123 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Walterson, A. M. & Stavrinides, J. Pantoea insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39, 968–984 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiner, R., Strauß, S., Thamm, M., Farré-Armengol, G. & Junker, R. R. The bacterium Pantoea ananatis modifies behavioral responses to sugar solutions in honeybees. Insects 11, 692 (2020).PubMed Central 
    Article 

    Google Scholar 
    Leonhardt, S. D. & Kaltenpoth, M. Microbial communities of three sympatric Australian stingless bee species. Plos ONE 9, e105718 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bailey, L. & Ball, B. V. Honey Bee Pathology (Academic Press, 1991).Tham, V. L. Isolation of Streptococcus pluton from the larvae of European honey bees in Australia. Aust. Vet. J. 54, 406–407 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowman, J. The genus Flavobacterium. Prokaryotes 7, 481–531 (2006).
    Google Scholar 
    Voordouw, G. The genus Desulovibrio: The centennial. Appl. Environ. Microbiol. 61, 2813–2819 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Singaravelen, N., Nee’man, G., Inbar, M. & Izhaki, I. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. J. Chem. Ecol. 31, 2791–2804 (2005).Article 
    CAS 

    Google Scholar 
    Baracchi, D., Marples, A., Jenkins, A. J., Leitch, A. R. & Chittka, L. Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Sci. Rep. 7, 1951 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adler, L. S. & Irwin, R. E. Ecological costs and benefits of defenses in nectar. Ecology 86, 2968–2978 (2005).Article 

    Google Scholar 
    Bally, J. et al. Nicotiana paulineana, a new Australian species in Nicotiana section Suaveolentes. Aust. Syst. Bot. 34, 477–484 (2021).Article 

    Google Scholar 
    Coenye, T. & Vandamme, P. Diversity and significance of Burkholderia species occupying diverse ecology niches. Environ. Microbiol. 5, 719–729 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy, A., Merritt, A. J., Aravena-Roman, M., Hodge, M. M. & Inglis, T. J. J. Expanded range of Burkholderia species in Australia. Am. J. Trop. Med. Hyg. 78, 599–604 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaltenpoth, M. & Flórez, L. V. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu. Rev. Entomol. 65, 145–170 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Foley, K., Fazio, G., Jensen, A. B. & Hughes, W. O. H. Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. J. Invertebr. Pathol. 111, 68–73 (2012).PubMed 
    Article 

    Google Scholar 
    Yoder, J. A. et al. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J. Toxicol. Environ. Health Part A 76, 587–600 (2013).CAS 
    Article 

    Google Scholar 
    Yun, J.-H., Jung, M.-J., Kim, P. S. & Bae, J.-W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    Dew, R. M., Silva, D. P. & Rehan, S. M. Range expansion of an already widespread bee under climate change. GECCO 17, e00584 (2019).
    Google Scholar 
    Cambra, M., Capote, N. & Myrta, A. & Llácer, G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 36, 202–204 (2006).Article 

    Google Scholar 
    Roberts, J. M. K., Ireland, K. B., Tay, W. T. & Paini, D. Honey bee-assisted surveillance for early plant virus detection. Ann. Appl. Biol. 173, 285–293 (2018).CAS 
    Article 

    Google Scholar 
    Elliott, B. et al. Pollen diets and niche overlap of honey bees and native bees in protected areas. BAAE 50, 169–180 (2021).
    Google Scholar 
    Porrini, C. et al. Use of honey bees as bioindicators of environmental pollution in Italy. in Honey bees: estimating the environmental impact of chemicals (eds Devillers, J. & Pham-Delegue, M.-H.) (Taylor & Francis Press, 2002).Kennedy, P., Higginson, A. D., Radford, A. N. & Sumner, S. Altruism in a volatile world. Nature 555, 359–362 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubin, B. E. R., Sanders, J. G., Turner, K. M., Pierce, N. E. & Kocher, S. D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 5, 180369 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohr, K. I. & Tebbe, C. C. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8, 258–272 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amin, F. A. Z. et al. Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. Int. J. Envrion. Res. Public Health 17, 1–15 (2020).
    Google Scholar 
    Takeshita, K. & Kikuchi, Y. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res. Microbiol. 168, 175–187 (2017).PubMed 
    Article 

    Google Scholar 
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).PubMed 
    Article 

    Google Scholar 
    D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).Article 
    CAS 

    Google Scholar 
    Wang, L. et al. Dynamic changes of gut microbial communities of bumble bee queens through important life stages. mSystems 4, e00631–19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kapheim, K. M., Johnson, M. M. & Jolley, M. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci. Rep. 11, 2993 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abdelazez, A. et al. Potential benefits of Lactobacillus plantarum as probiotic and its advantages in human health and industrial applications: A review. Adv. Environ. Biol. 12, 16–27 (2018).CAS 

    Google Scholar 
    Frese, S. A. et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7, e1001314 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).PubMed 
    Article 

    Google Scholar 
    Tejerina, M. R., Cabana, M. J. & Benitez-Ahrendts, M. R. Strains of Lactobacillus spp. reduce chalkbrood in Apis mellifera. J. Invertebr. Pathol. 178, 107521 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vásquez, A. et al. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLOS ONE 7, e33188 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Voulgari-Kokota, A., Steffan-Dewenter, I. & Keller, A. Susceptibility of red mason bee larvae to bacterial threats due to microbiome exchange with imported pollen provisions. Insects 11, 1–14 (2020).Article 

    Google Scholar 
    Steffan, S. A. et al. Omnivory in bees: Elevated trophic positions among all major bee families. Am. Nat. 194, 414–421 (2019).PubMed 
    Article 

    Google Scholar 
    Hurst, P. S. Social biology of Exoneurella tridentata, an allodapine bee with morphological castes and perennial colonies. Unpublished D. Phil. Thesis (Flinders University, 2001).Chalita, M. et al. Improved metagenomic taxonomic profiling using a curated core gene- based bacterial database reveals unrecognized species in the genus Streptococcus. Pathogens 9, 204 (2021).Article 

    Google Scholar 
    Rehan, S. M. & Toth, A. L. Climbing the social ladder: molecular evolution of sociality. Trends Ecol. Evol. 30, 426–433 (2015).PubMed 
    Article 

    Google Scholar 
    Shell, W. A. & Rehan, S. M. Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees. Apidologie 49, 13–30 (2018).CAS 
    Article 

    Google Scholar 
    Kirby, K. S. Isolation and characterization of ribosomal ribonucleic acid. Biochem. J. 96, 266–269 (1956).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2019).Article 
    CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tsilimigras, M. C. B. & Fodor, A. A. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann. Epidemiol. 26, 330–335 (2016).PubMed 
    Article 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’. Community Ecology package, version 2, 1–295 (2013).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mina, R., Haixu, T. & Yuzhen, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9, 599 (2008).Article 
    CAS 

    Google Scholar 
    Langfelder, P. & Horvath, S. Tutorials for the WGCNA package. https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/ (2016).Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Paluszynska, A. Structure mining and knowledge extraction from random forest with applications to The Cancer Genome Atlas project. Master’s Thesis (University of Warsaw, 2017). More

  • in

    Reply to: Evidence confirms an anthropic origin of Amazonian Dark Earths

    Lombardo et al. argue that, if our hypothesis is correct, ADEs should be continuous rather than patchy. However, alluvium deposition can be a patchy process and the distribution of large and small ADE patches can be predicted regionally based on fluvial geomorphology. For example, 89% of all known ADEs have been predictively mapped using elevation, distance to bluff, and geological provenance as the key predictors (with a false negative rate of 6.5% and a false positive rate of 4.7%)10. Predicted areas include small and large ADE patches, up to several square kilometres in size, and indicate that ADEs cover ~154,000 km2 mostly in central and western Amazonia. This may seem to be a very large area ( >3% of the Amazon basin) but it is only a fraction of the projections found in some of the most cited anthropogenic theory literature11. Assuming the same excess fertility observed at our site, the creation of those ADEs would have required a prohibitive amount of biomass burning, in areas 800–1680 times larger (Fig. 1), which is inconsistent with the centralised small-scale deposition proposed by Lombardo et al. In this regional scenario, it remains unclear how many Amazons would have been needed to build the already-mapped ADEs.Lombardo et al. centre their opinion on settlements in other parts of the Amazon basin, under different socioecological and geomorphological contexts, and where the data we have developed are not available for comparison. Their narrative conflates the Brazilian lowland with other regions, such as the Llanos de Moxos and other systems in the Bolivian-Peruvian foreland basins, where older archeological sites occur. Their comments about the mineral composition of ADEs appear to contradict recent discoveries (made by some of their co-authors)12 which show that some oxides found at our ADE site bear “no relationship to anthropogenic activity” because “their sources are attributed to the weathering of micas, feldspars, mafic minerals (pyroxene), and sodic plagioclase” that are not found locally. To explain the inconsistency between those findings and the current theory of ADE formation, Macedo et al. argue that “sediment depositions in floodplain soils” that “are not related to human occupation” should be considered. That suggestion is consistent with our data which indicate deposition of exogenous materials to the site prior to the invention of agriculture in central Amazonia.Our study area is on a Tertiary terrace, and we acknowledge in our paper that it lies above the modern 100-year flood height for Manaus. However, significant Pleistocene and Holocene tectonic activity and river aggradation/degradation demonstrably affected the flood height over time. A complex neotectonic history has affected terrace elevations, nutrient deposition, and remobilisation, as well as flood heights and aggradation, resulting in higher base levels that were many metres above flood waters today in past millennia13,14,15. In addition, rivers transported and dispersed sediments from the Andes to the lowland, which were re-mobilised, and re-deposited in patchy patterns, from floodplains several times between 20 and 5 thousand years ago16,17,18. Such mineral inputs by past avulsion events may have occurred earlier in the Quaternary and remain as a relict soil where it has not subsequently eroded19. The older weathered sediments on the upper terraces lining the river look nothing like recent alluvium and the distribution of elements and their assemblages at our site are consistent with alluvial deposits in other sites. This process is explained in studies cited by Lombardo et al. (e.g., Pupim et al.), which note several periods of river aggradation, that support our hypothesis.As explained in our original paper, our data do not preclude a more recent human effect on the local landscape. The wisdom of indigenous populations, manifested in the application of waste materials to agricultural sites (since at least the late Holocene), may have further enriched ADEs or countered their natural degradation. Recent studies12, 16, 17, which post-date the studies that Lombardo et al. cite to argue against a geogenic influence, reveal a dynamic neotectonic history and support our hypothesis. Thus, the extent to which other ADE sites originated from depositional processes should be investigated based on evidence that goes beyond those presented by Lombardo et al. More

  • in

    SEM/EDX analysis of stomach contents of a sea slug snacking on a polluted seafloor reveal microplastics as a component of its diet

    Derraik, J. G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44(9), 842–852 (2002).CAS 
    PubMed 

    Google Scholar 
    Gregory, M. R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2013–2025 (2009).
    Google Scholar 
    Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B. & Janssen, C. R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 70(1–2), 227–233 (2013).CAS 
    PubMed 

    Google Scholar 
    Auta, H. S., Emenike, C. U. & Fauziah, S. H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 102, 165–176 (2017).CAS 
    PubMed 

    Google Scholar 
    Zobkov, M. B. & Esiukova, E. E. Microplastics in a Marine Environment: Review of Methods for Sampling, Processing, and Analyzing Microplastics in Water, Bottom Sediments, and Coastal Deposits (2018).Coyle, R., Hardiman, G. & O’Driscoll, K. Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud. Chem. Environ. Eng. 2, 100010 (2020).
    Google Scholar 
    Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment: Part 2 of a Global Assessment. A Report to Inform the Second United Nations Environment Assembly, 220 (Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2016).
    Google Scholar 
    Kroon, F. J., Motti, C. E., Jensen, L. H. & Berry, K. L. Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. Sci. Rep. 8(1), 1–15. https://doi.org/10.1038/s41598-018-34590-6 (2018).CAS 
    Article 

    Google Scholar 
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62(12), 2588–2597 (2011).CAS 
    PubMed 

    Google Scholar 
    Cole, M. A novel method for preparing microplastic fibers. Sci. Rep. 6(1), 1–7. https://doi.org/10.1038/srep34519 (2016).CAS 
    Article 

    Google Scholar 
    Costa, M. et al. On the importance of size of plastic fragments and pellets on the strandline: A snapshot of a Brazilian beach. Environ. Monit. Assess. 168, 299–304 (2010).PubMed 

    Google Scholar 
    Kershaw, P. J. et al. (eds) GESAMP Guidelines or the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean, Rep. Stud. GESAMP No. 99 130 (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2019).
    Google Scholar 
    Lusher, A. L., Welden, N. A., Sobral, P. & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 9, 1346 (2017).
    Google Scholar 
    Lusher, A., Bråte, I. L. N., Hurley, R., Iversen, K. & Olsen, M. Testing of Methodology for Measuring Microplastics in Blue Mussels (Mytilus spp) and Sediments, and Recommendations for Future Monitoring of Microplastics (R & D-project) (2017).Laist, D. W. Impacts of marine debris: Entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. In Marine debris, 99–139 (Springer, 1997).Denuncio, P. et al. Plastic ingestion in Franciscana dolphins, Pontoporia blainvillei (Gervais and d’Orbigny, 1844), from Argentina. Mar. Pollut. Bull. 62(8), 1836–1841 (2011).CAS 
    PubMed 

    Google Scholar 
    Do Sul, J. A. I., Santos, I. R., Friedrich, A. C., Matthiensen, A. & Fillmann, G. Plastic pollution at a sea turtle conservation area in NE Brazil: Contrasting developed and undeveloped beaches. Estuar. Coasts 34(4), 814–823 (2011).
    Google Scholar 
    Lazar, B. & Gračan, R. Ingestion of marine debris by loggerhead sea turtles, Caretta caretta, in the Adriatic Sea. Mar. Pollut. Bull. 62(1), 43–47 (2011).CAS 
    PubMed 

    Google Scholar 
    Poppi, L. et al. Post-mortem investigations on a leatherback turtle Dermochelys coriacea stranded along the Northern Adriatic coastline. Dis. Aquat. Org. 100(1), 71–76 (2012).
    Google Scholar 
    Van Franeker, J. A. et al. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environ. Pollut. 159(10), 2609–2615 (2011).PubMed 

    Google Scholar 
    Betts, K. Why Small Plastic Particles May Pose a Big Problem in the Oceans 8995–8995 (ACS Publications, 2008).
    Google Scholar 
    Cefas, L. Programme 8: Bass gillnet selectivity. Fish. Sci. 09 (2008).Priscilla, V., Sedayu, A. & Patria, M. P. Microplastic abundance in the water, seagrass, and sea hare Dolabella auricularia in Pramuka Island, Seribu Islands, Jakarta Bay, Indonesia. J. Phys. Conf. Ser. 1402, 033073. https://doi.org/10.1088/1742-6596/1402/3/033073 (2019).Article 

    Google Scholar 
    Graham, E. R. & Thompson, J. T. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Ecol. 368(1), 22–29 (2009).
    Google Scholar 
    Thompson, R. C. et al. Lost at sea: Where is all the plastic? Science 304(5672), 838–838 (2004).CAS 
    PubMed 

    Google Scholar 
    Hämer, J., Gutow, L., Köhler, A. & Saborowski, R. Fate of microplastics in the marine isopod Idotea emarginata. Environ. Sci. Technol. 48(22), 13451–13458 (2014).ADS 
    PubMed 

    Google Scholar 
    Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185, 77–83 (2014).PubMed 

    Google Scholar 
    Cole, M. et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ. Sci. Technol. 50(6), 3239–3246 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gutow, L., Eckerlebe, A., Giménez, L. & Saborowski, R. Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environ. Sci. Technol. 50(2), 915–923 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Naji, A., Nuri, M. & Vethaak, A. D. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 235, 113–120 (2018).CAS 
    PubMed 

    Google Scholar 
    Ding, J. et al. Detection of microplastics in local marine organisms using a multi-technology system. Anal. Methods 11(1), 78–87 (2019).CAS 

    Google Scholar 
    Gniadek, M. & Dąbrowska, A. The marine nano-and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches. Mar. Pollut. Bull. 148, 210–216 (2019).CAS 
    PubMed 

    Google Scholar 
    Dąbrowska, A. A roadmap for a plastisphere. Mar. Pollut. Bull. 167, 112322 (2021).PubMed 

    Google Scholar 
    Ebere, E. C. & Ngozi, V. E. Microplastics, an emerging concern: A review of analytical techniques for detecting and quantifying microplatics. Anal. Methods Environ. Chem. J. 2(2), 13–30 (2019).
    Google Scholar 
    Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M. & Dini, L. Micro and nanoplastics identification: Classic methods and innovative detection techniques. Front. Toxicol. https://doi.org/10.3389/ftox.2021.636640 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrante, M. et al. Microplastics in fillets of Mediterranean seafood. A risk assessment study. Environ. Res. 204, 112247 (2022).CAS 
    PubMed 

    Google Scholar 
    Li, J. et al. Characterization, source, and retention of microplastic in sandy beaches and mangrove wetlands of the Qinzhou Bay, China. Mar. Pollut. Bull. 136, 401–406 (2018).CAS 
    PubMed 

    Google Scholar 
    Liu, J. et al. Pollution characteristics of microplastics in mollusks from the coastal Area of Yantai. China. Bull. Environ. Contamin. Toxicol. 107, 1–7 (2021).
    Google Scholar 
    Tarjuelo, I., Posada, D., Crandall, K., Pascual, M. & Turon, X. Cryptic species of Clavelina (Ascidiacea) in two different habitats: Harbours and rocky littoral zones in the northwestern Mediterranean. Mar. Biol. 139(3), 455–462 (2001).
    Google Scholar 
    Brunetti, R. & Mastrototaro, F. Botrylloides pizoni, a new species of Botryllinae (Ascidiacea) from the Mediterranean Sea R. Zootaxa 3258(1), 28–36 (2012).
    Google Scholar 
    Beli, E. et al. The zoogeography of extant rhabdopleurid hemichordates (Pterobranchia: Graptolithina), with a new species from the Mediterranean Sea. Invertebr. Syst. 32(1), 100–110 (2018).
    Google Scholar 
    Chimienti, G., Angeletti, L., Furfaro, G., Canese, S. & Taviani, M. Habitat, morphology and trophism of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep Sea Res. I Oceanogr. Res. Pap. 165, 103364 (2020).
    Google Scholar 
    Furfaro, G. & Mariottini, P. A new Dondice Marcus Er. 1958 (Gastropoda: Nudibranchia) from the Mediterranean Sea reveals interesting insights into the phylogenetic history of a group of Facelinidae taxa. Zootaxa 4731(1), 1–22. https://doi.org/10.11646/zootaxa.4731.1.1 (2020).Article 

    Google Scholar 
    Cózar, A. et al. Plastic accumulation in the Mediterranean Sea. PLoS ONE 10(4), e0121762. https://doi.org/10.1371/journal.pone.0121762 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, S., Sharma, V. & Chatterjee, S. Microplastics in the Mediterranean Sea: Sources, pollution intensity, sea health, and regulatory policies. Front. Mar. Sci. 8, 634934. https://doi.org/10.3389/fmars.2021.634934 (2021).Article 

    Google Scholar 
    Pinardi, N. & Masetti, E. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158(3–4), 153–173 (2000).
    Google Scholar 
    Suaria, G. et al. The Mediterranean Plastic soup: Synthetic polymers in Mediterranean surface waters. Sci. Rep. 6(1), 1–10 (2016).
    Google Scholar 
    Vianello, A. et al. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf. Sci. 130, 54–61. https://doi.org/10.1016/j.ecss.2013.03.022 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Parenzan, P. Il Mar Piccolo di Taranto. Ciem. Comm. Taranto (1984).Cavallo, R. A. & Stabili, L. Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res. 36(15), 3719–3726 (2002).CAS 
    PubMed 

    Google Scholar 
    Cardellicchio, N. et al. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 55(10–12), 451–458 (2007).CAS 
    PubMed 

    Google Scholar 
    Cardellicchio, N., Annicchiarico, C., Di Leo, A., Giandomenico, S. & Spada, L. The Mar Piccolo of Taranto: An interesting marine ecosystem for the environmental problems studies. Environ. Sci. Pollut. Res. 23(13), 12495–12501 (2016).
    Google Scholar 
    Tursi, A. et al. Mega-litter and remediation: The case of Mar Piccolo of Taranto (Ionian Sea). Rendiconti Lincei. Sci. Fisiche e Nat. 29(4), 817–824 (2018).
    Google Scholar 
    Mastrototaro, F. et al. Benthic diversity of the soft bottoms in a semi-enclosed basin of the Mediterranean Sea. Marine Biological Association of the United Kingdom. J. Mar. Biol. Assoc. U.K. 88(2), 247 (2008).
    Google Scholar 
    Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533 (2019).CAS 
    PubMed 

    Google Scholar 
    Corami, F. et al. Evidence of small microplastics (< 100 μm) ingestion by Pacific oysters (Crassostrea gigas): A novel method of extraction, purification, and analysis using Micro-FTIR. Mar. Pollut. Bull. 160, 111606 (2020).CAS  PubMed  Google Scholar  De-la-Torre, G. E., Apaza-Vargas, D. M. & Santillán, L. L. Microplastic ingestion and feeding ecology in three intertidal mollusk species from Lima, Peru. Rev. Biol. Mar. Oceanogr. 55(2), 167–171 (2020). Google Scholar  Jiang, Y. et al. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. Chemosphere 286, 131677 (2021).ADS  PubMed  Google Scholar  Haszprunar, G. The heterobranchia—A new concept of the phylogeny of the higher Gastropoda. J. Zool. Syst. Evol. Res. 23(1), 15–37 (1985). Google Scholar  Wägele, H., Klussmann-Kolb, A., Vonnemann, V. & Medina, M. Heterobranchia I: The Opisthobranchia. In Phylogeny and Evolution of the Mollusca (eds Ponder, W. F. & Lindberg, D.) 385–408 (University of California Press, 2008). Google Scholar  Prkic, J. et al. First record of Calma gobioophaga Calado and Urgorri, 2002 (Gastropoda: Nudibranchia) in the Mediterranean Sea. Mediterr. Mar. Sci. 15(2), 423–428 (2014). Google Scholar  Furfaro, G., Trainito, E., De Lorenzi, F., Fantin, M. & Doneddu, M. Tritonia nilsodhneri Marcus Ev., 1983 (Gastropoda, Heterobranchia, Tritoniidae): First records for the Adriatic Sea and new data on ecology and distribution of Mediterranean populations. Acta Adriat. 58, 2 (2017). Google Scholar  Thompson, T. E. Studies on ontogeny of Tritonia hombergi Cuvier (Gastropoda: Opisthobranchia). Philos. Trans. R. Soc. Lond. B 245, 171–218. https://doi.org/10.1098/rstb.1962.0009 (1962).ADS  Article  Google Scholar  Cattaneo-Vietti, R., Angelini, S. & Bavestrello, G. Skin and gut spicules in Discodoris atromaculata (Bergh, 1880) (Mollusca: Nudibranchia). Bollettino Malacol. 28, 173–180 (1993). Google Scholar  Cattaneo-Vietti, R., Angelini, S., Gaggero, L. & Lucchetti, G. Mineral composition of nudibranch spicules. J. Molluscan Stud. 61(3), 331–337. https://doi.org/10.1093/mollus/61.3.331 (1995).Article  Google Scholar  Garese, A., García-Matucheski, S., Acuña, F. H. & Muniain, C. Feeding behavior of Spurilla sp. (Mollusca: Opisthobranchia) with a description of the kleptocnidae sequestered from its sea anemone prey. Zool. Stud. 51(7), 905–912 (2012).CAS  Google Scholar  Braga, T. et al. Bursatella leachii from Mar Menor as a source of bioactive molecules: Preliminary evaluation of the nutritional profile, in vitro biological activities and fatty acids contents. J. Aquat. Food Prod. Technol. 26(10), 1337–1350 (2017).CAS  Google Scholar  Willis, T. J. et al. Kleptopredation: A mechanism to facilitate planktivory in a benthic mollusc. Biol. Let. 13, 20170447. https://doi.org/10.1098/rsbl.2017.0447 (2017).Article  Google Scholar  Goodheart, J. A. et al. Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). Front. Zool. 15(1), 1–18. https://doi.org/10.1186/s12983-018-0289-2 (2018).CAS  Article  Google Scholar  Marin, A. & Ros, J. Chemical defenses in Sacoglossan Opisthobranchs: Taxonomic trends and evolutive implications. Sci. Mar. 67(Suppl. 1), 227–241 (2004). Google Scholar  Wägele, H., Ballestero, M. & Avila, C. Defensive glandular structures in opisthobranch molluscs—From histology to ecology. Oceanogr. Mar. Biol. Annu. Rev. 44, 197–276 (2006). Google Scholar  Pavlik, J. R. Antipredatory defensive roles of natural products from marine invertebrates. In Handbook of Marine Natural Products Vol. 12 (eds Fattorusso, E. et al.) 677–710 (Springer, 2012). Google Scholar  Avila, C., Nuñez-Pons, L. & Moles, J. From the tropics to the poles chemical defense strategies in sea slugs (Mollusca: Heterobranchia). In Chemical Ecology: The Ecological Impact of Marine Natural Products (eds Puglisi, M. P. & Becerro, M. A.) 93 (CRC Press, 2018). Google Scholar  Capper, A., Tibbetts, I. R., O’Neil, J. M. & Shaw, G. R. The fate of Lyngbya majuscula toxins in three potential consumers. J. Chem. Ecol. 31(7), 1595–1606 (2005).CAS  PubMed  Google Scholar  Dean, L. J. & Prinsep, M. R. The chemistry and chemical ecology of nudibranchs. Nat. Prod. Rep. 34(12), 1359–1390 (2017).CAS  PubMed  Google Scholar  Simmons, T. L., Andrianasolo, E., McPhail, K., Flatt, P. & Gerwick, W. H. Marine natural products as anticancer drugs. Mol. Cancer Ther. 4(2), 333–342 (2005).CAS  PubMed  Google Scholar  Klussmann-Kolb, A. Phylogeny of the Aplysiidae (Gastropoda, Opisthobranchia) with new aspects of the evolution of seahares. Zool. Scr. 33, 439–462 (2004). Google Scholar  Willan, R. C. Phylogenetic systematics of the Notaspidea (Opisthobranchia) with reappraisal of families and genera. Am. Malacol. Bull. 5, 215–241 (1987). Google Scholar  Medina, M. & Walsh, P. J. Molecular systematics of the order Anaspidea based on mitochondrial DNA sequences (12S, 16S, and COI). Mol. Phylogenet. Evol. 15, 41–58 (2000).CAS  PubMed  Google Scholar  Furfaro, G., De Matteo, S., Mariottini, P. & Giacobbe, S. Ecological notes of the alien species Godiva quadricolor (Gastropoda: Nudibranchia) occurring in Faro Lake (Italy). J. Nat. Hist. 52(11–12), 645–657 (2018). Google Scholar  Appleton, D. R., Sewell, M. A., Berridge, M. V. & Copp, B. R. A new biologically active malyngamide from a New Zealand collection of the sea hare Bursatella leachii. J. Nat. Prod. 65(4), 630–631 (2002).CAS  PubMed  Google Scholar  Rajaganapathi, J., Kathiresan, K. & Singh, T. P. Purification of anti-HIV protein from purple fluid of the sea hare Bursatella leachii de Blainville. Mar. Biotechnol. 4(5), 447–453 (2002).CAS  Google Scholar  Suntornchashwej, S., Chaichit, N., Isobe, M. & Suwanborirux, K. Hectochlorin and morpholine derivatives from the Thai Sea Hare, Bursatella leachii. J. Nat. Prod. 68(6), 951–955 (2005).CAS  PubMed  Google Scholar  Dhahri, M. et al. Extraction, characterization, and anticoagulant activity of a sulfated polysaccharide from Bursatella leachii viscera. ACS Omega 5(24), 14786–14795 (2020).CAS  PubMed  PubMed Central  Google Scholar  Clarke, C. L. The population dynamics and feeding preferences of Bursatella leachii (Opisthobranchia: Anaspidea) in northeast Queensland, Australia. Rec. West. Austral. Museum Suppl. 69, 11–21 (2006). Google Scholar  Blainville, H. M. D. de. Bursatella, p. 138, in: Dictionnaire des Sciences Naturelles (F. Cuvier, ed.), Vol. 5, Supplément. Levrault, Strasbourg & Le Normant, Paris (1817).Trainito, E. & Doneddu, M. Nudibranchi del Mediterraneo 2nd edn, 192 (Il Castello, 2014). Google Scholar  Zbyszewski, M., Corcoran, P. L. & Hockin, A. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 40(2), 288–299 (2014).CAS  Google Scholar  Wang, Z. M., Wagner, J., Ghosal, S., Bedi, G. & Wall, S. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci. Total Environ. 603, 616–626 (2017).ADS  PubMed  Google Scholar  Gewert, B., Plassmann, M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513–1521 (2015).CAS  PubMed  Google Scholar  Gewert, B., Plassmann, M., Sandblom, O. & MacLeod, M. Identification of chain scission products released to water by plastic exposed to ultraviolet light. Environ. Sci. Technol. Lett. 5, 272–276 (2018).CAS  Google Scholar  Lang, M. et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Sci. Total Environ. 722, 137762 (2020).ADS  CAS  PubMed  Google Scholar  Ding, L., Mao, R., Ma, S., Guo, X. & Zhu, L. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Res. 174, 115634 (2020).CAS  PubMed  Google Scholar  Wang, F. et al. The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment. J. Hazard. Mater. 394, 122517 (2020).CAS  PubMed  Google Scholar  Ouyang, Z. et al. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process. J. Hazard. Mater. 424, 127461 (2022).CAS  PubMed  Google Scholar  Dehaut, A. et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223–233 (2016).CAS  PubMed  Google Scholar  Besley, A., Vijver, M. G., Behrens, P. & Bosker, T. A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Mar. Pollut. Bull. 114(1), 77–83 (2017).CAS  PubMed  Google Scholar  Karami, A. et al. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 578, 485–494 (2017).ADS  CAS  PubMed  Google Scholar  Caron, A. G. et al. Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: Validation of a sequential extraction protocol. Mar. Pollut. Bull. 127, 743–751 (2018).CAS  PubMed  Google Scholar  Piarulli, S. et al. Microplastic in wild populations of the omnivorous crab Carcinus aestuarii: A review and a regional-scale test of extraction methods, including microfibres. Environ. Pollut. 251, 117–127 (2019).CAS  PubMed  Google Scholar  Pfohl, P. et al. Microplastic extraction protocols can impact the polymer structure. Microplast. Nanoplast. 1(1), 1–13 (2021). Google Scholar  Qiu, Q. et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuar. Coast. Shelf Sci. 176, 102–109 (2016).ADS  CAS  Google Scholar  Lusher, A. L., Munno, K., Hermabessiere, L. & Carr, S. Isolation and extraction of microplastics from environmental samples: An evaluation of practical approaches and recommendations for further harmonization. Appl. Spectrosc. 74(9), 1049–1065 (2020).ADS  CAS  PubMed  Google Scholar  Bellasi, A., Binda, G., Pozzi, A., Boldrocchi, G. & Bettinetti, R. The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and green alternative. Chemosphere 278, 130357 (2021).ADS  CAS  PubMed  Google Scholar  Essa, A. M. & Khallaf, M. K. Antimicrobial potential of consolidation polymers loaded with biological copper nanoparticles. BMC Microbiol. 16(1), 1–8 (2016). Google Scholar  Etcheverry, M., Ferreira, M. L., Capiati, N. J., Pegoretti, A. & Barbosa, S. E. Strengthening of polypropylene–glass fiber interface by direct metallocenic polymerization of propylene onto the fibers. Compos. A Appl. Sci. Manuf. 39(12), 1915–1923 (2008). Google Scholar  Ivanič, A., Kravanja, G., Kidess, W., Rudolf, R. & Lubej, S. The influences of moisture on the mechanical, morphological and thermogravimetric properties of mineral wool made from basalt glass fibers. Materials 13(10), 2392 (2020).ADS  PubMed Central  Google Scholar  Kavad, B. V., Pandey, A. B., Tadavi, M. V. & Jakharia, H. C. A review paper on effects of drilling on glass fiber reinforced plastic. Procedia Technol. 14, 457–464 (2014). Google Scholar  Alsayed, S. H., Al-Salloum, Y. A. & Almusallam, T. H. Performance of glass fiber reinforced plastic bars as a reinforcing material for concrete structures. Compos. B Eng. 31(6–7), 555–567 (2000). Google Scholar  Fries, E. et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ. Sci. Process Impacts 15(10), 1949–1956 (2013).CAS  PubMed  Google Scholar  Turner, A. & Filella, M. The influence of additives on the fate of plastics in the marine environment, exemplified with barium sulphate. Mar. Pollut. Bull. 158, 111352 (2020).CAS  PubMed  Google Scholar  Barathi, M., Kumar, A. S. K. & Rajesh, N. Efficacy of novel Al–Zr impregnated cellulose adsorbent prepared using microwave irradiation for the facile defluoridation of water. J. Environ. Chem. Eng. 1(4), 1325–1335 (2013).CAS  Google Scholar  Bahsis, L. et al. Cellulose-copper as bio-supported recyclable catalyst for the clickable azide-alkyne [3+2] cycloaddition reaction in water. Int. J. Biol. Macromol. 119, 849–856 (2018).CAS  PubMed  Google Scholar  Ibrahim, N. A., Eid, B. M., Abd El-Aziz, E., Abou Elmaaty, T. M. & Ramadan, S. M. Multifunctional cellulose-containing fabrics using modified finishing formulations. RSC Adv. 7(53), 33219–33230 (2017).ADS  CAS  Google Scholar  Van, H. T., Le Sy, H., Nguyen, T. M. L. & Nguyen, D. K. Application of Mussell-derived biosorbent to remove NH 4+ from aqueous solution: Equilibrium and Kinetics. SN Appl. Sci. 3(4), 1–12 (2021). Google Scholar  Lakshmanna, B. et al. Data on Molluscan Shells in parts of Nellore Coast, southeast coast of India. Data Brief 16, 705–712 (2018).CAS  PubMed  Google Scholar  Taylor, P. D., Vinn, O., Kudryavtsev, A. & Schopf, J. W. Raman spectroscopic study of the mineral composition of cirratulid tubes (Annelida, Polychaeta). J. Struct. Biol. 171(3), 402–405 (2010).CAS  PubMed  Google Scholar  Schröder, V. et al. Micromorphological details and identification of chitinous wall structures in Rapana venosa (Gastropoda, Mollusca) egg capsules. Sci. Rep. 10(1), 1–13 (2020). Google Scholar  Ngamniyom, A., Wongroj, W., Karnchaisri, K. & Siriwattanarat, R. Ophidascaris baylisi (Nematoda: Ascarididae): Scanning electron microscopic study of the adult surface with ultrastructure and chemical composition analysis of eggshells. Sci. Technol. Asia 26, 189–198 (2021). Google Scholar  Fabra, M. et al. The plastic Trojan horse: Biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health. Sci. Total Environ. 797, 149217 (2021).ADS  CAS  PubMed  Google Scholar  Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the “Plastisphere”. Front. Microbiol. 10, 865 (2019).PubMed  PubMed Central  Google Scholar  More

  • in

    Biotic induction and microbial ecological dynamics of Oceanic Anoxic Event 2

    The biotic induction of OAE-2The rapid proliferation of select microbial communities at 427.54 mcd likely represents a pre-OAE biotic perturbation (pre-OAE BP) presaging the protracted period of widespread marine deoxygenation during OAE-2, and progressive deoxygenation predating the +CIE7 (Fig. 4). At the beginning of the pre-OAE BP (427.54 mcd), abruptly elevated tetrapyrroles and crenarchaeol concentrations signify an abrupt increase in primary production by photoautotrophs and chemoautotrophs residing above the chemocline. Increased volumes of precipitating biogenic snow concordantly consumed oxygen, expanding the preexisting OMZ as anaerobic bacteria thrived based on accelerated obGDGTs synthesis. Euxinia did not penetrate the photic zone at the outset of the productivity bloom as isorenieratane was not detected and heightened rates of microbial sulfate reduction were seemingly transient, inferred from the DAGEs profile, and limited to pre-OAE BP initiation. The lack of a well-stratified water column, evinced by absent to low concentrations of halophilic archaeal lipids (i.e., extended archaeols), relatively low rates of microbial sulfate reduction, and a dense oxygenic microbial plate likely precluded the development of PZE initially.Establishing a definitive causal mechanism for the pre-OAE BP is difficult, but the concomitance of LIP activity with the productivity spike is intriguing. Application of a linear sedimentation rate from OAE-2 to the pre-OAE BP interval following previous works6,7 approximated the pre-OAE BP occurring 220 ± 4 kyr before OAE-2, lasting for ~100 kyr (427.54–426.88 mcd; see Estimating the duration of the pre-OAE BP in Supplementary Information for rationale and calculation). Significantly, this was roughly coincident with the onset of LIP activity (~200–300 kyr before OAE-2) inferred from marine osmium isotope stratigraphy27. Similarities in the modern planktonic community response, such as elevated productivity and compositional changes, between the 2018 Kilauea eruption28 and the pre-OAE BP reinforce inference of a potential magmatic trigger for this event (see Evidence for LIP trigger of the pre-OAE biotic perturbation in Supplementary Information for additional details).A constant, yet overall lower, nutrient and trace metal inventory6 (Fig. S4) combined with a redox-driven shift in fixed N species (from NO3− to NH4+)15, potentially leading to a fixed N shortage29 via intensified denitrification and annamox reactions30, were probable culprits in the failure to sustain prolific rates of primary production beyond 100 kyr at the Demerara Rise. The gradual decline in biomass production, indicated by decreasing tetrapyrrole and crenarchaeol profiles (Fig. 4), was accompanied by a notable shift in deep water communities. Sulfate-reducing bacteria exerted increasing predominance over methanogenic archaea, a trend coeval with the primary productivity spike and extending well into the OAE (Fig. 3). A collapse of autotrophic communities to pre-perturbation levels was concordant with the progressive shoaling of H2S-laden waters. Continued vertical migration of the chemocline intruded the photic zone, producing PZE that enabled anoxygenic photosynthesis by Chlorobiaceae (Fig. 4). Unlike the overall oscillatory character of PZE throughout the studied section, this protracted phase of PZE was sustained until the onset of OAE-2 (426.43–426.00 mcd, Figs. 3 and 4) and is approximately contemporaneous with a thallium (Tl) isotope excursion7 (426.40–426.30 mcd).The positive Tl isotope excursion represents the progressive expansion of bottom water anoxia predating OAE-2 by 43 ± 11 kyr6,7. However, evidence for a causal mechanism of pre-OAE deoxygenation remains indeterminate. Our comprehensive biomarker inventory provides an interpreted sequence of events culminating in the regional to global expansion of anoxia predating OAE-2. A protracted phase of enhanced primary productivity began ~220 ± 4 kyr prior to OAE-2, increasing localized production and export of organic carbon at Demerara Rise. Similar productivity spikes likely occurred in settings of comparable paleogeographic configuration (e.g., equatorial, continental margins/shelves), seeding the oceans with fixed carbon. Continued scavenging of marine oxygen via organic carbon remineralization resulted in OMZ expansion locally, and likely initiated oxygen drawdown in much of the proto-North Atlantic Ocean. Stratigraphic records of sulfur isotopes of pyrite (δ34Spyrite) from the proto-North Atlantic and Tethys Oceans11 validate the areal extrapolation of our interpretations. A gradual decline in δ34Spyrite values at Demerara Rise begins at 427.50 mcd, nearly identical to the onset of the pre-OAE BP (427.54 mcd, Fig. 4). Correlation of δ34Spyrite in a global transect (Western Interior Seaway, proto-North Atlantic, Tethys) revealed consistent behavior in δ34Spyrite prior to the +CIE, indicating increasingly expansive marine deoxygenation on a global scale11. Over ~100 kyr, increased regional biomass production induced pervasive marine anoxia, inhibiting Mn-oxide formation, producing the observed positive Tl isotope excursion, and ultimately, the globally observed +CIE reflecting enhanced organic carbon burial signaling the onset of OAE-2. Thus, the local biotic signal recorded at ODP Site 1258 underlines the crucial role the Demerara Rise, and similar undocumented settings, served in initiating deoxygenation of the global ocean.Microbial ecological dynamics during and after OAE-2Changes in microbial community compositions during OAE-2 were apparent, signified by a shift in the normalized total biomarker pool (Fig. 3) and variations in the absolute concentrations of individual biomarkers (Fig. 4). In general, OAE-2 was defined by an expansion and diversification of intermediate and deep water communities (426.00–423.07 mcd), followed by a period of instability leading to the termination of the OAE (423.07–422.00 mcd). Photo- and chemoautotrophs residing above the chemocline were adversely affected, evinced by relatively low, invariant tetrapyrrole and crenarchaeol profiles (Fig. 4). Based on these observations, we divided OAE-2 into two periods defined by contrasting paleoenvironmental conditions modulating the microbial inhabitants of Demerara Rise.The first period of OAE-2 (426.00–423.07 mcd, Fig. 4) was marked by the intrusion of a euxinic OMZ into the photic zone. Elevated, yet fluctuating isorenieratane concentrations suggest relatively persistent PZE of varying vertical extent, in agreement with previous investigations using biomarkers and nitrogen isotopes at nearby sites12,13,31. During this interval, microbial sulfate reduction was likely active as DAGEs continually increased, aligning with estimates of expanded seafloor euxinia32. The co-occurrence of abundant extended archaeols and isorenieratane intimates the role that density stratification served in maintaining the protracted PZE of OAE-2, substantiating concurrent findings based on neodymium33 and oxygen isotopes34. Vertical nutrient advection via upwelling35 led to preferential exposure to expanding intermediate water communities tolerant to sulfidic conditions in the OMZ. Scavenging of a potentially limited fixed N inventory30, depleted in NO3− and predominated by NH4+[ 15,29, and inhibition of efficient nutrient transfer by pronounced density stratification likely induced severe N deficiency in surface water communities, explaining the relatively muted productivity of oxygenic photoautotrophs (i.e., tetrapyrroles) and chemoautotrophs (i.e., crenarchaeol) observed (Fig. 4). The concentration and predominant utilization of fixed N in the OMZ led to the proliferation and diversification of intermediate and deep water microbial taxa, while a shoaling chemocline led to increased nutrient (i.e., fixed N) competition between photoautotrophs and retreating Thaumarchaeota as highlighted by our biomarker inventory and the nitrogen isotopic record31. These findings challenge previous interpretations of highly productive, predominantly eukaryotic primary producers reliant on the upwelling of isotopically depleted NH4+ during OAE-215. Instead, the decline of C30-17-nor-DPEP (Fig. S5; Supplementary Data 3), a source-specific tetrapyrrole diagenetically derived from algal chlorophyll-c36, and reconstructed water column conditions during OAE-2 indirectly support a rise in cyanobacteria, diazotrophs able to fix N2, in oxygenated, nutrient-depleted shallow waters. Increased cyanobacterial contribution is further supported by C and N stable isotopes16,37, as well as the prominence of potentially phylum-specific biomarkers across OAE-2 (e.g., 2-methylhopanoids6,14).Fig. 5: Contrasting biogeochemical conditions between the pre-OAE BP and OAE-2.a, b Microbial ecology and water column conditions during the pre-OAE BP, reflecting high primary production of organic carbon (a) and OAE-2, characterized by relatively lower organic carbon production, but substantially enhanced biomass preservation (b). c, d Averaged fractional abundances of individual biomarkers throughout the pre-OAE BP (c) and OAE-2 (d). Biomarker source organisms are abbreviated as follows: phytoplankton (P), ammonia oxidizing archaea (AOA), sulfur oxidizing bacteria (SOB), unknown anaerobic bacteria (UAB), sulfate reducing bacteria (SRB), halophilic archaea (HA), methanogenic archaea (MA).Full size imageA reversal from the formerly outlined conditions typified the second period of OAE-2 (423.07–421.99 mcd, Fig. 4). Destabilization of the stratified water column and reduced production of H2S led to deepening and contraction of the euxinic OMZ. The observed decline in halophilic archaea, coincident with an overall decline in Chlorobiaceae populations, is roughly coeval with positive neodymium isotopic excursions observed across the proto-North Atlantic33 attributed to the enhanced latitudinal commingling of proto-North Atlantic water masses38. Although detrimental to sustained PZE, the persistence of a well-developed anaerobic bacterial community (i.e., obGDGTs) suggests the lasting presence of a non-euxinic OMZ despite improved bottom water circulation. A premature recovery of the chemoautotrophic Thaumarchaeota, inhabiting the base of the photic zone, relative to the shallower dwelling obligately oxygenic phototrophs (Fig. 3) likely reflects reduced toxicity associated with retreating euxinic waters, lessened resource competition with [primarily] Chlorobiaceae, and a competitive advantage tied to preferential exposure to upwelled nutrients and tolerance to low O2 conditions.The termination of OAE-2 was marked by the temporary re-establishment of microbial community compositions mirroring those observed prior to the pre-OAE BP (Figs. 3 and 4). Contraction of the OMZ led to a deep chemocline, with PZE restricted to the basal photic zone as the production of reduced sulfide species diminished. The Thaumarchaeota continued the recovery initiated towards the latter half of OAE-2, accompanied by the rebounding oxygenic photoautotrophs. However, the recovery of shallow autotrophic communities was halted by an episode of PZE (421.19–421.04 mcd) based on abrupt increases in isorenieratane concentrations (Fig. 4). Temporary development of pronounced density stratification likely facilitated the accumulation of H2S in the lower to intermediate photic zone, producing the short-lived PZE episode. Interestingly, covariant responses observed in additional biomarker profiles (e.g., obGDGTs) to PZE during OAE-2 were not evident across this post-OAE interval, possibly due to the transient nature of PZE at this time. For example, the initial increase in isorenieratane concentrations at the onset of OAE-2 was not immediately accompanied by shifts in other biomarker classes (e.g., obGDGTs; Fig. 4), suggesting frequent recurrences of PZE may be required to illicit a major microbial ecological response as observed later during the OAE. Still, this brief episode of post-OAE PZE (421.19–421.04 mcd) coincides with a positive organic carbon isotope excursion9 (Fig. S5), trace metal drawdown6 (Fig. S4), and minor positive Tl isotope excursion7 at the Demerara Rise. Prior study7 tentatively attributed this interval to enhanced carbon burial during a post-OAE deoxygenation event of smaller magnitude, with subsequent work revealing continued pyrite burial post-OAE 211. Our biomarker inventory revealed some environmental consistencies (e.g., PZE) between this interval and OAE-2, but the overall biotic response to this post-OAE geochemical perturbation was relatively subdued and requires additional sampling and investigation to properly constrain.Broader implicationsThe recognition of the pre-OAE BP and evolving water column conditions at Demerara Rise highlights additional complexities of a dynamic ocean relevant to interpretations of OAE-2 and the +CIE. Enhanced, sustained, and widespread carbon burial is required to produce the +CIE used to define OAE-28,10. Still, the principal forcing, productivity or preservation, remains enigmatic as evidence for the former mounts12,39.Based on the tetrapyrrole profiles (Fig. 4) primary production was greatest during the pre-OAE BP and relatively muted throughout OAE-2 at Demerara Rise, assuming minimal alteration to the genetic tetrapyrrole stratigraphic signal. Biomass preservation was presumedly enhanced during OAE-2 through sulfurization11, as the OMZ transitioned from anoxic to euxinic and penetrated the photic zone, yet low tetrapyrrole concentrations persist. Previous work noted a similar discrepancy between preservation potential and porphyrin abundance, postulating a paucity of trace metals to chelate with the free-base porphyrins induced poor preservation as desulfurization did not reveal additional porphyrin content16. However, both the pre-OAE BP and OAE-2 were characterized by relatively depleted trace metal inventories6 (Fig. S4), yet exhibit contrasting tetrapyrrole profiles, suggesting relative changes in primary production were the predominate control on the stratigraphic distribution of tetrapyrroles across the studied interval at the Demerara Rise. The strong covariance between tetrapyrrole and crenarchaeol concentrations reinforces the interpretation tetrapyrroles faithfully reflect primary production (Fig. S6). Crenarchaeol, a biosynthetic product of chemoautotrophic archaea (Thaumarchaeota) comprising up to 20% of all archaea and bacteria in the modern ocean40, is structurally distinct from the tetrapyrroles making it likely that diagenetic alteration of the two biomarkers is not consistent in rate or form. Thus, the positive correlation between key proxies for major contributors to primary production, the photoautotrophs and chemoautotrophs, minimizes concern for the integrity of the biotic signal at Demerara Rise (see Tetrapyrroles as a record of primary production in Supplementary Information for additional details).These findings provide direct evidence for a causal mechanism resulting in both the Tl isotope excursion and +CIE as previously described. It is highly probable the pre-OAE BP was not exclusive to the Demerara Rise based on the immense and presently unconstrained organic carbon burial required to produce the +CIE10. Further characterization of comparable localities to Demerara Rise may reveal similar high productivity events, as primed, highly productive settings likely capitalized on exogenous nutrient delivery via efficient upwelling to the photic zone prior to stratification during OAE-2. Hence, OAE-2 and the +CIE were not coincident with heightened surface water productivity relative to the pre-OAE BP at the Demerara Rise. Rather, antecedent increases in primary production locally facilitated the initiation of the OAE as a mechanism to consume marine oxygen and subsequently enhance organic carbon preservation globally. This highlights how OAE-2, and perhaps other OAEs in the geologic record, were not instantaneously induced but rather a gradual transition stemming from sustained forcing(s). In addition, the occurrence of the pre-OAE BP well before the established onset of OAE-2 reveals how fluctuations in primary production can be linked to marine deoxygenation but may not necessarily be concurrent. As shown here, OAE-2 at the Demerara Rise was preceded by elevated primary production that progressively attenuated towards event onset. While the hallmark features of an OAE are well-established, further identification and refinement of trends preceding widespread anoxia in the past will improve our understanding of how marine deoxygenation develops, as well as our ability to assess planetary health today.A shift from a productivity- to preservation-dominant system during OAE-2 at Demerara Rise, and possibly similar paleogeographic settings experiencing the pre-OAE BP, facilitated substantial organic carbon burial producing the +CIE. Distinct shifts in water column chemistry and structure from the pre-OAE BP to OAE-2 imparted considerable changes on microbial life, which altered the primary driver governing biomass sequestration (Fig. 5). Yet, both intervals reveal relatively comparable carbonate-corrected total organic carbon values6 (Fig. S5), signifying enhanced preservation as a critical component of organic carbon burial during OAE-2 at Demerara Rise. Consequently, this work suggests that sustained increases in primary production prior to OAE-2 initiated and regulated pre-OAE deoxygenation, resulting in a progressive shift to preservation as the primary control on organic carbon accumulation in sediments. Expanding euxinia and attendant changes to biogeochemical cycling adversely affected primary producers while simultaneously enhancing organic matter preservation via sulfurization11. Flourishment of Thaumarchaeota in oligotrophic settings in the modern open ocean41, and lack thereof during OAE-2 based on diminished crenarchaeol concentrations, underscores the scarcity of bioessential elements (e.g., fixed N) caused by microbial utilization of electron acceptors further down the redox ladder due to intensified marine anoxia, ultimately limiting primary production. The switch from a productivity to preservation model, reconstructed using biomarkers (Fig. 5) and initially suggested based on drawdown of the trace metal inventory6, was also concomitant with relative warming4. Simulated projections of the marine microbial response to continued global warming in the future revealed similar biotic trends (e.g., decreased primary productivity) to warming-induced oceanographic changes42 (e.g., intensified stratification) observed during OAE-2. Thus, an abundance of proxy- and model-based results paired with conceptual evidence suggest relatively low production and enhanced preservation of organic carbon throughout OAE-2 at the equatorial Demerara Rise.The pre-OAE BP may foreshadow greater regional trends observed during OAE-2. Equatorial upwelling centers, like Demerara Rise, are spatially restricted and represent regions of already high primary production before OAE-2. Climatic shifts concurrent with OAE-2 may have produced favorable conditions for elevated primary productivity in regions unable to capitalize on or exposed to allochthonous nutrient delivery prior to the +CIE. While the pre-OAE BP offers a causal mechanism for the Tl isotope excursion and +CIE initiation, areal expansion of organic carbon preservation and production is necessary to sustain enhanced organic carbon burial for the duration of the +CIE.Continued development of preexisting proxies is critical to extract and clarify current understandings of major climatic events in Earth history. Although reliant on excellent preservation of the microbial signal, the analytical and interpretative approach used here enables simultaneous examination of a wide array of biomarkers, producing a more holistic reconstruction of oceanographic changes inferred from microbial ecological variations spanning the surface to the sediment. This is timely, as investigations of the sedimentary archives become increasingly valuable analogs to understand the response of modern oceans to natural and anthropogenic forcings. Similarities between the pre-OAE BP and modern, climate-driven marine deoxygenation are concerning, while particular attention to preexisting highly productive settings may hold the key to forecasting the geologically rapid transition to a global OAE. Even though natural processes are currently beyond our control, stifling anthropogenic catalysts of climate change may decelerate the unfortunate, progressive suitability of OAEs as climate analogs in the future. More

  • in

    Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).ADS 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
    Article 

    Google Scholar 
    Rayner, P. J. et al. Interannual variability of the global carbon cycle (1992-2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements. Glob. Biogeochem. Cycles 22, 1–12 (2008).Article 
    CAS 

    Google Scholar 
    Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 26, 300–318 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Betts, R. A. et al. A successful prediction of the record CO2 rise associated with the 2015/2016 El Niño. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170301 (2018).Article 
    CAS 

    Google Scholar 
    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang, Y. et al. Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environ. Res. Lett. 12, 064007 (2017).ADS 
    Article 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, W. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marcolla, B., Rödenbeck, C. & Cescatti, A. Patterns and controls of inter-annual variability in the terrestrial carbon budget. Biogeosciences 14, 3815–3829 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Yin, Y. et al. Changes in the response of the northern hemisphere carbon uptake to temperature over the last three decades. Geophys. Res. Lett. 45, 4371–4380 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Palmer, P. I. et al. Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nat. Commun. 10, 1–9 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu, L. et al. Enhanced North American carbon uptake associated with El Niño. Sci. Adv. 5, 1–11 (2019).ADS 

    Google Scholar 
    Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Chang. Biol. 26, 682–696 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Reichstein, M. et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    Shiga, Y. P. et al. Forests dominate the interannual variability of the North American carbon sink. Environ. Res. Lett. 13, 084015 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Ciais, P., Wang, Y. & Zhu, D. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob. Chang. Biol. 24, 4709–4717 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, J. et al. Detecting drought impact on terrestrial biosphere carbon fluxes over contiguous US with satellite observations. Environ. Res. Lett. 13, 095003 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chevallier, F. et al. Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. J. Geophys. Res. 110, D24309 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).ADS 
    Article 

    Google Scholar 
    Chevallier, F. et al. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys. 19, 14233–14251 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. The European carbon cycle response to heat and drought as seen from atmospheric CO2 data for 1999–2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190506 (2020).Article 
    CAS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, 1–9 (2019).CAS 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, Z. L. et al. Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002–2017. Adv. Clim. Chang. Res. 12, 475–481 (2021).Article 

    Google Scholar 
    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Virkkala, A. M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Glob. Chang. Biol. 27, 4040–4059 (2021).PubMed 
    Article 

    Google Scholar 
    Randazzo, N. A. et al. Higher autumn temperatures lead to contrasting CO2 flux responses in boreal forests versus tundra and shrubland. Geophys. Res. Lett. 48, e2021GL093843 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 365, 3227–3246 (2010).Article 

    Google Scholar 
    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 7, 359–363 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 

    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Randerson, J. T., Field, C. B., Fung, I. Y. & Tans, P. P. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26, 2765–2768 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Black, T. A. et al. Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys. Res. Lett. 27, 1271–1274 (2000).ADS 
    Article 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 1–7 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).ADS 
    Article 

    Google Scholar 
    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. et al. Identifying critical climate periods for vegetation growth in the northern hemisphere. J. Geophys. Res. Biogeosci. 123, 2541–2552 (2018).Article 

    Google Scholar 
    Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170302 (2018).Article 
    CAS 

    Google Scholar 
    Saatchi, S. et al. Detecting vulnerability of humid tropical forests to multiple stressors. One Earth 4, 988–1003 (2021).ADS 
    Article 

    Google Scholar 
    Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Liu, J. et al. Carbon monitoring system flux net biosphere exchange 2020 (CMS-Flux NBE 2020). Earth Syst. Sci. Data 13, 299–330 (2021).ADS 
    Article 

    Google Scholar 
    Quetin, G. R., Bloom, A. A., Bowman, K. W. & Konings, A. G. Carbon flux variability from a relatively simple ecosystem model with assimilated data is consistent with terrestrial biosphere model estimates. J. Adv. Model. Earth Syst. 12, e2019MS001889 (2020).ADS 
    Article 

    Google Scholar 
    Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1005 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gentine, P. et al. Coupling between the terrestrial carbon and water cycles – A review. Environ. Res. Lett. 14, 83003 (2019).CAS 
    Article 

    Google Scholar 
    Bastos, A. et al. Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).CAS 
    Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Melton, J. R. & Arora, V. K. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci. Model Dev. 9, 323–361 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).ADS 
    Article 

    Google Scholar 
    Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim. Change 129, 413–426 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meiyappan, P., Jain, A. K. & House, J. I. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 29, 1524–1548 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI‐M Earth system model version 1.2 (MPI‐ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulter, B., Frank, D. C., Hodson, E. L. & Zimmermann, N. E. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8, 2027–2036 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Lienert, S. & Joos, F. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences 15, 2909–2930 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob. Biogeochem. Cycles 24, 1–13 (2010).
    Google Scholar 
    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 1–33 (2005).Article 
    CAS 

    Google Scholar 
    Walker, A. P. et al. The impact of alternative trait‐scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. N. Phytol. 215, 1370–1386 (2017).CAS 
    Article 

    Google Scholar 
    Joetzjer, E. et al. Improving the ISBACC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest. Geosci. Model Dev. 8, 1709–1727 (2015).ADS 
    Article 

    Google Scholar 
    Kato, E., Kinoshita, T., Ito, A., Kawamiya, M. & Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J. Land Use Sci. 8, 104–122 (2013).Article 

    Google Scholar 
    Wei, Y. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project – Part 2: environmental driver data. Geosci. Model Dev. 7, 2875–2893 (2014).ADS 
    Article 

    Google Scholar 
    Dlugokencky, E. J., Thoning, K. W., Lang, P. M. & Tans, P. P. NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network. ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (2017). More