More stories

  • in

    Ecohydrological effects of water conveyance in a disconnected river in an arid inland river basin

    The water table depth, surface water body area, and surface ecological processes have all changed significantly during the 20 years the ecological water conveyance projects have been underway in the lower reaches of the Tarim River. Specifically, there has been a notable increase in the water table, surface water body area, vegetation density and coverage, the vegetation index (NDVI), Net Primary Production (NPP) of natural vegetation, and ecosystem function and health. The following sections provide details on these changes.Changes in groundwater table depthGroundwater (soil water) is the most important water source for maintaining natural vegetation in the lower reaches of the Tarim River, as the climate is extremely arid and atmospheric precipitation has little ecological significance. The changes in water table depth are directly related to the composition, distribution, and growth of the natural vegetation of the desert riparian forest, which in this case is mainly P. euphratica5. During the past 20 years, the ecological water conveyance in the lower reaches of the Tarim has been intermittent, and the groundwater table elevation has been closely related to the water conveyance. From the analysis of the groundwater table’s rise in the upper, middle, and lower reaches of the Tarim River (Fig. 1), the magnitude of the uplift is clearly related to four crucial factors: the groundwater table depth prior to the water conveyance, the volume of water discharge, the duration of the transfer, and the water head location.Figure 1Changes in groundwater depth of typical monitoring cross-sections pre- and post-conveyance of water in the lower reaches of Tarim River from 2000 to 2020. Yengsu, Karday, Argan and Yikanbujima are four monitoring sections in the lower reaches of Tarim River. “#1”is the No. 1 groundwater level monitoring well on each monitoring section, which is located 50 m away from the river.Full size imageIn the early stages of the water conveyance projects (2000–2010), the groundwater table in the upper and middle segments of the lower reaches of the Tarim River rose to a relatively large extent, while the groundwater table in the lower segment of the river only showed an increasing rising trend after 2011. The monitoring results reveal that after nearly 20 years of ecological water conveyance, the groundwater table in three sections of the lower reaches of the Tarim has been affected at a range of more than 1000 m. The three sections are the Yengsu section in the upper segment, the Karday section in the middle segment, and the Yiganbujima section in the lower segment. Furthermore, the groundwater table has risen by 2.69, 1.38 and 1.59 m, respectively, in these three sections22. Within 100 m from the river, the water table depth rose from 7.76, 9.31 and 7.82 m prior to ecological water conveyance to 3.70, 4.48, and 2.69 m, and 4.06, 4.83, and 5.13 m, respectively, after it. Within 500 m from the river, the water table rose by 1.6, 3.99, and 5.26 m, respectively. The shallow groundwater in the lower reaches of the Tarim River has also been recharged to a certain extent, and the lateral influence range is still gradually expanding.Changes in water body areaThe changes in water body area in the lower reaches of the Tarim River are closely related to the amount of water delivered via conveyance. During the past 20 years, the surface water body area, seasonal water body area, and permanent water body area all decreased to the lowest point in 2009, with the river water failing to reach Taitema Lake, the river’s terminal, in 2006, 2007, and 200923. The surface water body area, seasonal water body area and permanent water body area in the river’s lower reaches fluctuated and increased during the ecological water conveyance process. In particular, the seasonal water body area in the upstream section showed a significant expansion. The area increase rate of surface water, seasonal water, and permanent water in the middle section from Yengsu to Argan is 1.75 km2 a−1, 1.58 km2 a−1, and 0.16 km2 a−1, respectively. Similarly, the area of surface water bodies, seasonal water bodies, and permanent water bodies in the lower section (below Argan) increased at the rate of 13.48 km2 a−1, 8.24 km2 a−1, and 5.23 km2 a−1, respectively. It is worth mentioning that the area of surface permanent water body and seasonal water body in Taitema Lake significantly increased, with the area of the lake waters expanding 417.08 km2, from 38.19 km2 in 2000 to 455.27 km2 in 2019. This represents a nearly 12-fold increase (Fig. 2).Figure 2Spatial distribution of water surface area in lower reaches of Tarim River in 2000 and 2019. The subfigures were generated in R 4.0.2 (https://cran.r-project.org/bin/windows/), and then merged in Microsoft PowerPoint 2013 (https://www.microsoft.com/).Full size imageVegetation sample site monitoring analysisThe vegetation species in the lower reaches of the Tarim River were sparsely distributed, with P. euphratica and Tamarix sp. as the main established species. In the longitudinal direction, surface vegetation coverage and species number decreased as the water table depth increased from the upper and middle segments to the lower segment. In the lateral direction, surface vegetation shows the same trend, with groundwater table depth increasing the greater the distance from the river13.The surface ecological processes in the lower reaches of the Tarim River have responded positively to the water conveyance project, with density, coverage and the number and diversity of species significantly increasing. However, the response of surface ecological processes to the changes in groundwater table uplift has varied from section to section. In the lateral direction, the groundwater table in areas nearer to the river had a more prominent rise and the response of surface vegetation was stronger, whereas the groundwater table rise in areas farther from the river was smaller and so the response of surface vegetation was weaker. In the longitudinal direction, the same trend was observed from the upper to the lower segments in response to changes in the groundwater table. In this paper, we analyze the changes in detail by taking a closer look at the Yengsu section, which is located at the beginning of the middle section of the lower reaches of the Tarim River. In so doing, we apply sample site investigation and dynamic monitoring of the groundwater table to the study area.Changes in vegetation density and coverageThe results of our sample site monitoring show notable positive changes in groundwater depth between 2000 and 2021 as a direct result of the ecological water conveyance initiative. At 150 m from the river, the groundwater table depth rose from 8.47 m to 4.34 m, respectively, representing an uplift of 4.13 m (Fig. 3c). Moreover, the vegetation coverage and density increased from 18.77% and 0.016 plants/m2 to 46.51% and 0.049 plants/m2, and the number of species doubled from three to six.Figure 3Changes in vegetation coverage, density and number of species (a), species diversity indices (b), and groundwater depth (c) for each site at Yengsu section in the lower reaches of Tarim River.Full size imageAt 250 m from the river, the groundwater table depth rose from 8.07 m in 2000 to 4.85 m in 2021, representing an uplift of 3.22 m. The vegetation coverage and density increased from 10.89% and 0.020 plants/m2 to 31.24% and 0.160 plants/m2, respectively, and the number of species jumped from five to seven.At 350 m from the river, the water table rose 2.48 m between 2000 and 2021. The vegetation coverage and density increased from 3.69% and 0.010 plants/m2 to 22.27% and 0.022 plants/m2, respectively, and the number of species increased from two to three. It is worth noting that the expansion in vegetation cover in the first three sample sites was mainly due to the increase in the number and canopy width of herbs and shrubs that occurred as a direct result of the ecological water conveyance process.At 750 m from the river, the groundwater table depth rose from 5.96 m to 4.98 m between 2005 and 2021, respectively, representing an uplift of 0.64 m, while the vegetation coverage and density increased from 20.07% and 0.011 plants/m2 to 26.43% and 0.019 plants/m2, respectively.At 1050 m from the river, the sample site had an elevated water table of 1.22 m. The vegetation coverage and density increased from 2.41% and 0.004 plants/m2 in 2005 to 5.89% and 0.0148 plants/m2 in 2021, respectively (Fig. 3a). Among them, the increase in canopy area of Tamarix sp. and P. euphratica in the sample site was the main reason for the expansion in coverage.Changes in species diversity indicesPlant richness and evenness in the lower reaches of the Tarim River were low, with species diversity indices showing significant changes in response to the ecological water conveyance and the rise in the groundwater table (Fig. 3b). For example, at the Yengsu section, the Simpson dominance index, McIntosh evenness index and Margalef richness index, which reflect changes in species diversity, decreased from 0.58, 0.45 and 0.74 in 2005 to 0.46, 0.03 and 0.03, respectively. These changes occurred in response to the increase in groundwater depth from the first sample site at 150 m to the sixth sample site at 1050 m from the river channel. After 20 years of ecological water conveyance, the Simpson dominance index, McIntosh evenness index and Margalef richness index had increased on average by 0.33, 0.35 and 0.49, respectively, in the first three sample sites (Fig. 3b).Vegetation index (NDVI) changesThe Normalized Difference Vegetation Index (NDVI) is an important indicator of vegetation growth24. The study results reveal that the NDVI of the lower reaches of the Tarim River increased from 0.14 in 2000 to 0.21 in 2020, representing a rise of about 33.3%. The ecological water conveyance expanded the river region’s natural vegetation 188%, from 492 km2 in 2000 to 1423 km2 in 2020. Specifically, the area of low, medium, and high vegetation cover expanded by 277 km2, 537 km2 and 132 km2, representing increases of 20.8%, 448% and 190%, respectively. Further analysis of changes in vegetation coverage at different river sections indicate that the area of low vegetation coverage in the upper and middle segments showed a decreasing trend, whereas the area of medium and high vegetation coverage in the upper and middle segments showed an increasing trend. This latter trend was especially prominent in the middle segment, where the increase in the area covered by medium and high vegetation was relatively large.In the downstream segment, the area covered by all types of vegetation showed an upward trend, with the area covered by low vegetation expanding significantly (Fig. 4). In the lateral direction, the NDVI within 2 km of the water conveyance channel showed a more obvious response with greater increases, while NDVI beyond 2 km from the channel revealed smaller increases25. These differences reflect the influence range of the ecological water conveyance.Figure 4Variation of vegetation cover in the lower reaches of Tarim River. Spatial distribution of fraction of vegetation cover in (a) 2000, (b) 2010 and (c) 2020. Trends of (d) high fraction of vegetation cover, (e) middle fraction of vegetation cover and (f) low fraction of vegetation cover in different river sections. (g) Vegetation area and (h) change trend at different distances from the river.Full size imageChanges in net primary production (NPP) of natural vegetationNet primary production (NPP) is a key parameter of carbon cycling and energy flow in terrestrial ecosystems. NPP not only reflects terrestrial ecosystem productivity, but also characterizes the quality of terrestrial ecosystems and plays an important role in global change and carbon balance26,27. The results of our study show that the area of natural vegetation in the lower reaches of the Tarim River with highly significant and significant increases in NPP during the study period accounted for 31.93% (P  herbaceous community. The largest increase in NPP was observed in the Tamarix spp. community, rising 350.20% from 2001 to 201928.Area changes in vegetation carbon sink areaThe ecological water conveyance project in the lower reaches of the Tarim expanded the vegetation coverage and enhanced the carbon sequestration capacity of the region through photosynthesis. The lower reaches of the river are dominated by desert and sparse vegetation, and the ecosystem carbon sinks are mainly low carbon sinks. The monitoring results of the study show that the vegetation carbon sink area in the river’s lower reaches indicate a gradual expansion under the influence of the ecological water conveyance29, increasing from 1.54% of the study area in 2001 to 7.8% in 2020. As well, the Net Ecosystem Productivity (NEP) of the area’s vegetation showed an increasing trend at a rate of 0.541 g C·m−2·a−1, with the largest increase – 0.406 g C·m−2·a−1 – occurring in summer29and no significant carbon sink area in winter.Furthermore, in order to quantitatively investigate the degree of influence of ecological water conveyance on the carbon sink area in the lower reaches of the Tarim, a linear fit of cumulative water conveyance and carbon sink area was performed (Fig. 5). Based on the results, a strong linear correlation was found between cumulative water conveyance and carbon sink area (R2 = 0.958, p  More

  • in

    Biological traits of marine benthic invertebrates in Northwest Europe

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Diaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D., Villéger, S., Scherer-Lorenzen, M. & Mason, N. W. H. Functional structure of biological communities predicts ecosystem multifunctionality. PLoS One 6, e17476 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013).PubMed 
    Article 

    Google Scholar 
    Statzner, B., Resh, V. H. & Roux, A. L. The synthesis of long-term ecological research in the context of concurrently developed ecological theory: design of a research strategy for the Upper Rhone River and its floodplain. Freshw. Biol. 31, 253–263 (1994).Article 

    Google Scholar 
    Townsend, C. R. & Hildrew, A. G. Species traits in relation to a habitat templet for river systems. Freshw. Biol. 31, 265–275 (1994).Article 

    Google Scholar 
    McIntyre, S., Lavorel, S. & Tremont, R. M. Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation. J. Ecol. 83, 31–44 (1995).Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11–25 (2003).ADS 
    Article 

    Google Scholar 
    Bremner, J., Rogers, S. I. & Frid, C. L. J. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Indic. 6, 609–622 (2006).Article 

    Google Scholar 
    Frid, C. L. J., Paramor, O. A. L., Brockington, S. & Bremner, J. Incorporating ecological functioning into the designation and management of marine protected areas Incorporating ecological functioning into the designation and management of marine protected areas. Hydrobiologia 606, 69–79 (2008).Article 

    Google Scholar 
    Marchini, A., Munari, C. & Mistri, M. Functions and ecological status of eight Italian lagoons examined using biological traits analysis (BTA). Mar. Pollut. Bull. 56, 1076–1085 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    van der Linden, P. et al. A biological trait approach to assess the functional composition of subtidal benthic communities in an estuarine ecosystem. Ecol. Indic. 20, 121–133 (2012).Article 

    Google Scholar 
    Paganelli, D., Marchini, A. & Occhipinti-ambrogi, A. Functional structure of marine benthic assemblages using Biological Traits Analysis (BTA): A study along the Emilia-Romagna coastline (Italy, North-West Adriatic Sea). Estuar. Coast. Shelf Sci. 96, 245–256 (2012).ADS 
    Article 

    Google Scholar 
    Bolam, S. G. & Eggleton, J. D. Macrofaunal production and biological traits: spatial relationships along the UK continental shelf. J. Sea Res. 88, 47–58 (2014).ADS 
    Article 

    Google Scholar 
    Bolam, S. G., McIlwaine, P. S. O. & Garcia, C. Application of biological traits to further our understanding of the impacts of dredged material disposal on benthic assemblages. Mar. Pollut. Bull. 105, 180–192 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolam, S. G. et al. Differences in biological traits composition of benthic assemblages between unimpacted habitats. Mar. Environ. Res. 126, 1–13 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kenny, A. J. et al. Assessing cumulative human activities, pressures, and impacts on North Sea benthic habitats using a biological traits approach. ICES J. Mar. Sci. 75, 1080–1092 (2018).Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 11609 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tyler, E. H. M. et al. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Glob. Ecol. Biogeogr. 21, 922–934 (2012).Article 

    Google Scholar 
    Faulwetter, S., Markantonatou, V., Pavloudi, C. & Papageorgiou, N. Polytraits: a database on biological traits of marine polychaetes. Biodivers. Data J. 2, e1024 (2014).Article 

    Google Scholar 
    Aberson, M. J. R., Bolam, S. G. & Hughes, R. G. The dispersal and colonisation behaviour of the marine polychaete Nereis diversicolor (O. F. Müller) in south-east England. Hydrobiologia 672, 3–14 (2011).Article 

    Google Scholar 
    Ahrens, J. B., Borda, E., Barroso, R. & Paiva, P. C. The curious case of Hermodice carunculata (Annelida: Amphinomidae): evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol. Ecol. 22, 2280–2291 (2018).Article 
    CAS 

    Google Scholar 
    Alexander, M. E., Dick, J. T. A., O’Connor, N. E., Haddaway, N. R. & Farnsworth, K. D. Functional responses of the intertidal amphipod Echinogammarus marinus: effects of prey supply, model selection and habitat complexity. Mar. Ecol. Prog. Ser. 468, 191–202 (2012).ADS 
    Article 

    Google Scholar 
    Alexandridis, N. Models of general community assembly mechanisms simulating the spatial and temporal dynamics of benthic biodiversity. PhD Thesis. Université de Bretagne occidentale, Earth Sciences, Doctoral Thesis, 119pp. (2017).Aliani, S. & Meloni, R. Dispersal strategies of benthic species and water current variability in the Corsica Channel (Western Mediterranean). Sci. Mar. 63, 137–145 (1999).Article 

    Google Scholar 
    Allen, E. J. Polychaeta of Plymouth and the South Devon Coast, including a list of the Archiannelida. J. Mar. Biol. Assoc. UK 10, 592–646 (1915).Article 

    Google Scholar 
    Allen, J. A. Observations on Cochlodesma Praetenue (Pulteney) [Eulamellibranchia]. J. Mar. Biol. Assoc. UK 37, 97–112 (1958).Article 

    Google Scholar 
    Allen, J. A. Observations on the biology of Pandalina Brevirostris [Decapoda; Crustacea]. J. Mar. Biol. Assoc. UK 45, 291–304 (1965).Article 

    Google Scholar 
    Allen, J. A. The British species of Thracia (Eulamellibranchia). J. Mar. Biol. Assoc. UK 41, 723–735 (1961).Article 

    Google Scholar 
    Allen, P. L. Feeding behaviour of Asterias rubens (L.) on soft bottom bivalves: a study in selective predation. J. Exp. Mar. Bio. Ecol. 70, 79–90 (1983).CAS 
    Article 

    Google Scholar 
    Anker, A. et al. Macrofauna associated with echiuran burrows: A review with new observations of the innkeeper worm, Ochetostoma erythrogrammon Leuckart and Rüppel, in Venezuela. Zool. Stud. 44, 157–190 (2005).
    Google Scholar 
    Ansell, A. D. & Parulekar, A. H. On the rate of growth of Nuculana minuta (Műller) (Bivalvia; Nuculanidae). J. Molluscan Stud. 44, 71–82 (1978).
    Google Scholar 
    Ansell, A. D. Boring and burrowing mechanisms in Petricola pholadiformis Lamarck. J. Exp. Mar. Bio. Ecol. 4, 211–220 (1970).Article 

    Google Scholar 
    Ansell, A. D. Burrowing in Lyonsia norvegica (Gmelin) (Bivalvia: Lyonsiidae). J. Molluscan Stud. 37, 387–393 (1967).Article 

    Google Scholar 
    Ansell, A. D. The Functional Morphology of the British Species of Veneracea (Eulamellibranchia). J. Mar. Biol. Assoc. UK 41, 489–517 (1961).Article 

    Google Scholar 
    Arias, A. & Paxton, H. Onuphis and Aponuphis (Annelida: Onuphidae) from southwestern Europe, with the description of a new species. Zootaxa 3949, 345–369 (2015).PubMed 
    Article 

    Google Scholar 
    Arias, A., Barroso, R., Anadón, N. & Paiva, P. C. On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids. Zookeys 337, 19–33 (2013).Article 

    Google Scholar 
    Atkinson, R. J. A., Moore, P. G. & Morgan, P. J. The burrows and burrowing behaviour of Maera loveni (Crustacea: Amphipoda). J. Zool. Soc. Lond. 198, 399–416 (1982).Article 

    Google Scholar 
    Attrill, M. J. & Hartnoll, R. G. Aspects of the biology of the deep-sea crab Geryon Trispinosus from the Porcupine Seabight. J. Mar. Biol. Assoc. UK 71, 311–328 (2014).Article 

    Google Scholar 
    De Backer, A. et al. Bioturbation effects of Corophium volutator: Importance of density and behavioural activity. Estuar. Coast. Shelf Sci. 91, 306–313 (2011).ADS 
    Article 

    Google Scholar 
    Bailey-Brock, J. H. Ecology of the tube‐building polychaete Diopatra leuckarti Kinberg, 1865 (Onuphidae) in Hawaii: community structure, and sediment stabilizing properties. Zool. J. Linn. Soc. 80, 191–199 (1984).Article 

    Google Scholar 
    Barberá, C. et al. Trophic ecology of the sea urchin Spatangus purpureus elucidated from gonad fatty acids composition analysis. Mar. Environ. Res. 71, 235–246 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    Barry, P. J. Two new species of Adontorhina Berry, 1947 (Bivalvia: Thyasiridae) from the Porcupine Bank, off the west coast of Ireland. Zootaxa 1526, 37–49 (2007).Article 

    Google Scholar 
    Bartolomaeus, T. Head kidneys in hatchlings of Scoloplos armiger (Annelida: Orbiniida): implications for the occurrence of protonephridia in lecithotrophic larvae. J. Mar. Biol. Assoc. UK 78, 183–192 (1998).Article 

    Google Scholar 
    Bass, N. R. & Brafield, A. E. The life-cycle of the polychaete Nereis virens. J. Mar. Biol. Assoc. UK 52, 701–726 (1972).Article 

    Google Scholar 
    Beiras, R., Pérez-Camacho, A. & Albentosa, M. Influence of food concentration on energy balance and growth performance of Venerupis pullastra seed reared in an open-flow system. Aquaculture 116, 353–365 (1993).Article 

    Google Scholar 
    Bely, A. E. Distribution of segment regeneration ability in the Annelida. Integr. Comp. Biol. 46, 508–518 (2006).PubMed 
    Article 

    Google Scholar 
    Beninger, P. G. & Lucas, A. Seasonal variations in condition, reproductive activity, and gross biochemical composition of two species of adult clam reared in a common habitat: Tapes decussatus L. (Jeffreys) and Tapes philippinarum (Adams & Reeve). J. Exp. Mar. Bio. Ecol. 79, 19–37 (1984).CAS 
    Article 

    Google Scholar 
    Billett, D. S. B. The Ecology of Deep-Sea Holothurians. University of Southampton, Oceanography, Doctoral Thesis, 408pp (1988).Birkeland, C. Interactions between a sea pen and seven of its predators. Ecol. Monogr. 44, 211–232 (2013).Article 

    Google Scholar 
    Blake, J. A. & Arnofsky, P. L. Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia 402, 57–106 (1999).Article 

    Google Scholar 
    Bolam, S. G. Population structure and reproductive biology of Pygospio elegans (Polychaeta: Spionidae) on an intertidal sandflat, Firth of Forth, Scotland. Invertebr. Biol. 123, 260–268 (2005).Article 

    Google Scholar 
    Borowsky, B. Behaviours associated with tube-sharing in Microdeutopus gryllotalpa. J. Exp. Mar. Bio. Ecol. 68, 39–51 (1983).Article 

    Google Scholar 
    Bouchet, V. M. P. et al. Influence of the mode of macrofauna-mediated bioturbation on the vertical distribution of living benthic foraminifera: First insight from axial tomodensitometry. J. Exp. Mar. Bio. Ecol. 371, 20–33 (2009).Article 

    Google Scholar 
    Bouma, H., De Vries, P. P., Duiker, J. M. C., Herman, P. M. J. & Wolff, W. J. Migration of the bivalve Macoma balthica on a highly dynamic tidal flat in the Westerschelde estuary, The Netherlands. Mar. Ecol. Prog. Ser. 224, 157–170 (2001).ADS 
    Article 

    Google Scholar 
    Braeckman, U. et al. Role of macrofauna functional traits and density in biogeochemical fluxes and bioturbation. Mar. Ecol. Prog. Ser. 399, 173–186 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Brafield, A. E. & Chapman, G. Gametogenesis and breeding in a natural population of Nereis Virens. J. Mar. Biol. Assoc. UK 47, 619–627 (1967).Article 

    Google Scholar 
    Branch, G. M. & Pringle, A. The impact of the sand prawn Cdianassa kraussi Stebbing on sediment turnover and on bacteria, meiofauna, and benthic microflora. J. Exp. Mar. Bio. Ecol. 107, 219–235 (1987).Article 

    Google Scholar 
    Bridges, T. S. Reproductive investment in four developmental morphs of Streblospio (Polychaeta: Spionidae). Biol. Bull. 184, 144–152 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, R. A. Reproduction of Abra nitida (Müller) (Bivalvia) in the southern Skagerrak. Sarsia 67, 55–60 (1982).Article 

    Google Scholar 
    Buchanan, J. B. The biology of Calocaris macandreae [Crustacea: Thalassinidea]. J. Mar. Biol. Assoc. UK 43, 729–747 (1963).Article 

    Google Scholar 
    Buchanan, J. B. The biology of Echinocardium cordatum [Echinodermata: Spatangoidea] from Different habitats. J. Mar. Biol. Assoc. UK 46, 97–114 (1966).Article 

    Google Scholar 
    Carlier, A. et al. Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar. Ecol. Prog. Ser. 397, 125–137 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Carson, H. S. & Hentschel, B. T. Estimating the dispersal potential of polychaete species in the Southern California Bight: implications for designing marine reserves. Mar. Ecol. Prog. Ser. 316, 105–113 (2006).ADS 
    Article 

    Google Scholar 
    Casagranda, C. & Boudouresque, C. F. Abundance, population structure and production of Scrobicularia plana and Abra tenuis (Bivalva, Scrobicularidae) in a Mediterranean brackish lagoon, Lake Ichkeul, Tunisia. Int. Rev. Hydrobiol. 90, 376–391 (2005).Article 

    Google Scholar 
    Chesman, B. S. & Langston, W. J. Intersex in the clam Scrobicularia plana: a sign of endocrine disruption in estuaries? Biol. Lett. 2, 420–422 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Christie, G. A comparative study of the reproductive cycles of three Northumberland populations of Chaetozone setosa (Polychaeta: Cirratulidae). J. Mar. Biol. Assoc. UK 65, 239–254 (1985).Article 

    Google Scholar 
    Christie, G. The reproductive biology of a Northumberland population of Sphaerodorum gracilis (Rathke, 1843) (Polychaeta: Sphaerodoridae). Sarsia 69, 117–121 (1984).Article 

    Google Scholar 
    Clark, R. B. Observations on the food of Nephtys. Limnol. Oceanogr. 7, 380–385 (1962).ADS 
    Article 

    Google Scholar 
    Coelho, J. P., Rosa, M., Pereira, E., Duarte, A. & Pardal, M. A. Pattern and annual rates of Scrobicularia plana mercury bioaccumulation in a human induced mercury gradient (Ria de Aveiro, Portugal). Estuar. Coast. Shelf Sci. 69, 629–635 (2006).ADS 
    Article 

    Google Scholar 
    Corey, S. The comparative life histories of three Cumacea (Crustacea): Cumopsis goodsiri (Van Beneden), Iphinoe trispinosa (Goodsir), and Pseudocuma longicornis (Bate). Can. J. Zool. 47, 695–704 (1969).Article 

    Google Scholar 
    Crawford, G. I. The fauna of certain estuaries in West England and South Wales, with special reference to the Tanaidacea, Isopoda and Amphipoda. J. Mar. Biol. Assoc. UK 21, 647–662 (1937).Article 

    Google Scholar 
    Culliney, J. L. Comparative larval development of the shipworms Bankia gouldi and Teredo navalis. Mar. Biol. 29, 245–251 (1975).Article 

    Google Scholar 
    Dales, R. P. The reproduction and larval development of Nereis diversicolor O. F. Műller. J. Mar. Biol. Assoc. UK 29, 321–360 (1950).Article 

    Google Scholar 
    Dashtgard, S. E., Gingras, M. K. & Pemberton, S. G. Grain-size controls on the occurrence of bioturbation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 257, 224–243 (2008).Article 

    Google Scholar 
    Dauer, D. M. Biological criteria, environmental health and estuarine macrobenthic community structure. Mar. Pollut. Bull. 26, 249–257 (1993).Article 

    Google Scholar 
    Dauer, D. M. Functional morphology and feeding behavior of Scolelepis squamata (Polychaeta: Spionidae). Mar. Biol. 77, 279–285 (1983).Article 

    Google Scholar 
    Dauer, D. M., Mahon, H. K. & Sarda, R. Functional morphology and feeding behavior of Streblospio benedicti and S. shrubsolii (Polychaeta: Spionidae). Hydrobiologia 496, 207–213 (2003).Article 

    Google Scholar 
    Dauvin, J. C. Impact of Amoco Cadiz oil spill on the muddy fine sand Abra alba – Melinna palmata community from the Bay of Morlaix. Estuar. Coast. Shelf Sci. 14 (2018).Dauvin, J.-C. & Gentil, F. Long-term changes in populations of subtidal bivalves (Abra alba and A. prismatica) from the Bay of Morlaix (Western English Channel). Mar. Biol. 103, 63–73 (1989).Article 

    Google Scholar 
    Dauvin, J.-C. Biologie, dynamique et production d’une population d’ Abra alba (Wood) (mollusque-bivalve) de la baie de Morlaix (Manche occidentiale). J. Exp. Mar. Bio. Ecol. 97, 151–180 (1986).Article 

    Google Scholar 
    Dauvin, J.-C. & Gentil, F. Long-term changes in populations of subtidal bivalves (Abra alba and Abra prismatica) from the Bay of Morlaix (Western English Channel). Mar. Biol. 103, 63–73 (1989).Article 

    Google Scholar 
    Davis, W. R. The role of bioturbation in sediment resuspension and its interaction with physical shearing. J. Exp. Mar. Bio. Ecol. 171, 187–200 (1993).Article 

    Google Scholar 
    Dean, D. Migration of the sandworm Nereis virens during winter nights. Mar. Biol. 45, 165–173 (1978).Article 

    Google Scholar 
    Dekker, R. & Beukema, J. Relations of summer and winter temperatures with dynamics and growth of two bivalves, Tellina tenuis and Abra tenuis, on the northern edge of their intertidal distribution. J. Sea Res. 42, 207–220 (1999).ADS 
    Article 

    Google Scholar 
    Delgado, L., Guerao, G. & Ribera, C. The Gammaridea (Amphipoda) fauna in a Mediterranean coastal lagoon: considerations on population structure and reproductive biology. Crustaceana 82, 191–218 (2009).Article 

    Google Scholar 
    Dewarumez, J.-M. Etude biologique d’ Abra alba (Wood) Mollusque lamellibranche du littoral français de la mer du Nord. Université des Sciences et Techniques de Lille, Doctoral Thesis, 139pp (1979).Dinneen, P. Peresiella clymenoides Harmelin, 1968; A capitellid polychaete new to Ireland and Great Britain. Irish Nat. J. 20, 471–475 (2019).
    Google Scholar 
    Dobbs, F. C. & Scholly, T. A. Sediment processing and selective feeding by Pectinaria koreni (Polychaeta: Pectinariidae). Mar. Ecol. Prog. Ser. 29, 165–176 (1986).ADS 
    Article 

    Google Scholar 
    Domingues, P. M., Turk, P. E., Andrade, J. P. & Lee, P. G. Culture of the mysid, Mysidopsis almyra (Bowman), (Crustacea: Mysidacea) in a static water system: effects of density and temperature on production, survival and growth. Aquac. Res. 30, 135–143 (1999).Article 

    Google Scholar 
    Drinan, E. M. & Rodger, H. D. An occurrence of Gnathia sp., ectoparasitic isopods, on caged Atlantic salmon. Bull. Eur. Assoc. Fish Pathol. 10, 141–142 (1990).
    Google Scholar 
    Dufour, S. C., White, C., Desrosiers, G. & Juniper, S. K. Structure and composition of the consolidated mud tube of Maldane sarsi (Polychaeta: Maldanidae). Estuar. Coast. Shelf Sci. 78, 360–368 (2008).ADS 
    Article 

    Google Scholar 
    Dupont, S., Lundve, B. & Thorndyke, M. Near future ocean acidification increases growth rate of the lecithotrophic larvae and juveniles of the sea star Crossaster papposus. J. Exp. Zool. B Mol. Dev. Evol. 314, 382–389 (2010).PubMed 
    Article 

    Google Scholar 
    Duport, E., Stora, G., Tremblay, P. & Gilbert, F. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Müller, 1776. J. Exp. Mar. Bio. Ecol. 336, 33–41 (2006).Article 

    Google Scholar 
    Eckert, G. L. Effects of the planktonic period on marine population fluctuations. Ecology 84, 372–383 (2003).Article 

    Google Scholar 
    Esselink, P. & Zwarts, L. Seasonal trend in burrow depth and tidal variation in feeding activity of Nereis diversicolor. Mar. Ecol. Prog. Ser. 56, 243–254 (1989).ADS 
    Article 

    Google Scholar 
    Farke, H. & Berghuis, E. M. Spawning, larval development and migration behaviour of Arenicola marina in the laboratory. Netherlands. J. Sea Res. 13, 512–528 (1979).
    Google Scholar 
    Fauchald, K. & Jumars, P. A. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. an Annu. Rev. 17, 193–284 (1979).
    Google Scholar 
    Fauchald, K. Life diagram patterns in benthic polychaetes. Proc. Biol. Soc. Washingt. 96, 160–177 (1983).
    Google Scholar 
    Fetzer, I. & Arntz, W. Reproductive strategies of benthic invertebrates in the Kara Sea (Russian Arctic): adaptation of reproduction modes to cold water. Mar. Ecol. Prog. Ser. 356, 189–202 (2008).ADS 
    Article 

    Google Scholar 
    Fish, J. D. & Mills, A. The Reproductive Biology of Corophium Volutator and C. Arenarium (Crustacea: Amphipoda). J. Mar. Biol. Assoc. UK 59, 355–368 (1979).Article 

    Google Scholar 
    Fish, S. The biology of Eurydice Pulchra [Crustacea: Isopoda]. J. Mar. Biol. Assoc. UK 50, 753–768 (1970).Article 

    Google Scholar 
    Francesch, O. & Lopez-Jamar, E. Dynamics, growth and production of Abra alba and Abra nitida from La Coruna, NW of Spain. Bol. del Inst. Esp. Oceanogr. 7, 101–113 (1991).
    Google Scholar 
    François, F., Gerino, M., Stora, G., Durbec, J. P. & Poggiale, J. C. Functional approach to sediment reworking by gallery-forming macrobenthic organisms: Modeling and application with the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 229, 127–136 (2002).ADS 
    Article 

    Google Scholar 
    Frid, C. L. J. Foraging behaviour of the spiny starfish Marthasterias glacialis in Lough Ine, Co. Cork. Mar. Behav. Physiol. 19, 227–239 (1992).Article 

    Google Scholar 
    Funder, S., Demidov, I. & Yelovicheva, Y. Hydrography and mollusc faunas of the Baltic and the White Sea–North Sea seaway in the Eemian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 184, 275–304 (2002).Article 

    Google Scholar 
    Gemmill, J. F. I. The development of the starfish Solaster endeca Forbes. Trans. Zool. Soc. London 20, 1–71 (1912).Article 

    Google Scholar 
    Gendron, L. Determination of the size at sexual maturity of the waved whelk Buccinum undatum Linnaeus, 1758, in the Gulf of St. Lawrence, as a basis for the establishment of a minimum catchable size. J. Shellfish Res. 11, 1–7 (1992).
    Google Scholar 
    Gentil, F., Dauvin, J. C. & Ménard, F. Reproductive biology of the polychaete Owenia fusiformis Delle Chiaje in the Bay of Seine (eastern English Channel). J. Exp. Mar. Bio. Ecol. 142, 13–23 (1990).Article 

    Google Scholar 
    Gerlach, S. A., Ekstrøm, D. K. & Eckardt, P. B. Filter feeding in the hermit crab, Pagurus bernhardus. Oecologia 24, 257–264 (1976).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghertsos, K., Luczak, C., Dewarumez, J.-M. & Dauvin, J.-C. Influence of spatial scales of observation on temporal change in diversity and trophic structure of fine-sand communities from the English Channel and the southern North Sea. ICES J. Mar. Sci. 57, 1481–1487 (2000).Article 

    Google Scholar 
    Giangrande, A. Polychaete reproductive patterns, life cycle and life histories: an overview. Oceanogr. Mar. Biol. An Annu. Rev. 35, 323–386 (1997).
    Google Scholar 
    Giangrande, A., Montresor, M., Cavallo, A. & Licciano, M. Influence of Naineris laevigata (Polychaeta: Orbiniidae) on vertical grain size distribution, and dinoflagellate resting stages in the sediment. J. Sea Res. 47, 97–108 (2002).ADS 
    Article 

    Google Scholar 
    Godbold, J. & Solan, M. Relative importance of biodiversity and the abiotic environment in mediating an ecosystem process. Mar. Ecol. Prog. Ser. 396, 273–282 (2009).ADS 
    Article 

    Google Scholar 
    Gordillo, S. Puzzling distribution of the fossil and living genus Hiatella (Bivalvia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 165, 231–249 (2001).Article 

    Google Scholar 
    Gotto, D. M. & Gotto, R. V. Labidoplax media Oestergren: A sea-cucumber new to British and Irish waters, with observational notes. Irish Nat. J. 17, 250–252 (1972).
    Google Scholar 
    Gray, A. J. S., Waldichuk, M., Newton, A. J., Berry, R. J. & Holden, A. V. Pollution-induced changes in populations [and discussion]. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 286, 545–561 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Greathead, C. F., Donnan, D. W., Mair, J. M. & Saunders, G. R. The sea pens Virgularia mirabilis, Pennatula phosphorea and Funiculina quadrangularis: distribution and conservation issues in Scottish waters. J. Mar. Biol. Assoc. UK 87, 1095–1103 (2007).Article 

    Google Scholar 
    Green, J. Activities of the siphons of Scrobicularia plana (Da Costa). J. Molluscan Stud. 37, 339–341 (1967).
    Google Scholar 
    Guerra-Garcia, J. M., Corzo, J., Garcia-Asencio, I. & Garcia-Gómez, J. C. Seasonal fluctuations of Phtisica marina Slabber (Crustacea: Amphipoda: Caprellidea) in the estuarine zone of southwest Spain. Pol. Arch. Hydrobiol. 47, 527–531 (2000).
    Google Scholar 
    Gusso, C. C., Gravina, M. F. & Maggiore, F. R. Temporal variations in soft bottom benthic communities in central Tyrrhenian Sea (Italy). Arch. di Oceanogr. e Limnol. 22, 175–182 (2001).
    Google Scholar 
    Haaland, B. & Schram, T. A. Larval development and metamorphosis of Gyptis rosea (Hesionidae, Polychaeta). Sarsia 67, 107–118 (1982).Article 

    Google Scholar 
    Hale, R., Mavrogordato, M. N., Tolhurst, T. J. & Solan, M. Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors. Sci. Rep. 4, 6463 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammond, R. A. The burrowing of Priapulus caudatus. J. Zool. Soc. Lond. 162, 469–480 (1970).Article 

    Google Scholar 
    Hansen, B. Aspects of feeding, growth and stage development by trochophora larvae of the boreal polychaete Mediomastus fragile (Rasmussen) (Capitellidae). J. Exp. Mar. Bio. Ecol. 166, 273–288 (1993).Article 

    Google Scholar 
    Harley, M. B. Occurence of a filter-feeding mechanism in the polychaete Nereis diversicolor. Nature 165, 734–735 (1950).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hartnoll, R. G. The Biology of the burrowing crab. Corystes cassivelaunus. Bijdr. Tot Dierkd. 42, 139–155 (1972).Article 

    Google Scholar 
    Haszprunar, G. The fine morphology of the osphradial sense organs of the Mollusca. IV. Caudofoveata and Solenogastres. Philos. Trans. R. Soc. B Biol. Sci. 315, 63–73 (1987).ADS 

    Google Scholar 
    Hedman, J. E., Gunnarsson, J. S., Samuelsson, G. & Gilbert, F. Particle reworking and solute transport by the sediment-living polychaetes Marenzelleria neglecta and Hediste diversicolor. J. Exp. Mar. Bio. Ecol. 407, 294–301 (2011).CAS 
    Article 

    Google Scholar 
    Hirasaka, K. Notes on Nucula. J. Mar. Biol. Assoc. UK 14, 629–645 (1927).Article 

    Google Scholar 
    Holmes, S., Dekker, R. & Williams, I. Population dynamics and genetic differentiation in the bivalve mollusc Abra tenuis: Aplanic dispersal. Mar. Ecol. Prog. Ser. 268, 131–140 (2004).ADS 
    Article 

    Google Scholar 
    Howie, D. I. D. The reproductive biology of the lugworm, Arenicola marina L. Fortschr. Zool. 29, 247–263 (1984).
    Google Scholar 
    Hrs-Brenko, M. & Legac, M. Inter- and Intra-species relationships of sessile bivalves on the eastern coast of the Adriatic Sea. Natura Croatica 15, 203–230 (2006).
    Google Scholar 
    Hughes, D. J., Ansell, A. D. & Atkinson, J. A. Sediment bioturbation by the echiuran worm Maxmuelleria Zankesteri (Herdman) and its consequences for radionuclide dispersal in Irish Sea sediments. J. Exp. Mar. Bio. Ecol. 195, 203–220 (1996).Article 

    Google Scholar 
    Hughes, T. G. The processing of food material within the gut of Abra tenuis (Bivalvia: Tellinacea). J. Molluscan Stud. 43, 162–180 (1977).
    Google Scholar 
    Jara-Jara, R., Abad, M., Pazos, A. J., Perez-Paralle, M. L. & Sanchez, J. L. Growth and reproductive patterns in Venerupis pullastra seed reared in waste water effluent from a fish farm in Galicia (N.W. Spain). J. Shellfish Res. 19, 949–956 (2000).
    Google Scholar 
    Jaume, D., Cartes, J. E. & Sorbe, J. C. A new species of Bathymedon Sars, 1892 (Amphipoda: Oedicerotidae) from the western Mediterranean bathyal floor. Sci. Mar. 62, 341–356 (1998).Article 

    Google Scholar 
    Jeffery, W. R. The tunicate Ciona: a model system for understanding the relationship between regeneration and aging. Invertebr. Reprod. Dev. 59, 17–22 (2015).PubMed 
    Article 

    Google Scholar 
    Jensen, A. C., Humphreys, J., Caldow, R. W. G., Grisley, C. & Dyrynda, P. E. J. Naturalization of the Manila clam (Tapes philippinarum), an alien species, and establishment of a clam fishery within Poole Harbour, Dorset. J. Mar. Biol. Assoc. UK 84, 1069–1073 (2004).Article 

    Google Scholar 
    Jensen, J. N. Increased abundance and growth of the suspension-feeding bivalve Corbula gibba in a shallow part of the eutrophic Limfjord, Denmark. Netherlands. J. Sea Res. 27, 101–108 (1990).
    Google Scholar 
    Jensen, J. N. Recruitment, growth and mortality of juvenile Corbula gibba and Abra alba in the Limfjord, Denmark. The Baltic Sea environment: History, eutrophication, recruitment and toxicology. Kieler Meeresforschungen (Sonderheft) 6, 357–365 (1988).
    Google Scholar 
    Jensen, K. The presence of the bivalve Cerastoderma edule affects migration, survival and reproduction of the amphipod Corophium volutator. Mar. Ecol. Prog. Ser. 25, 269–277 (1985).ADS 
    Article 

    Google Scholar 
    Johannessen, O. H. Length and weight relationships and the potential production of the bivalve Venerupis pullastra (Montagu) on a sheltered beach in Western Norway. Sarsia 53, 41–48 (1973).Article 

    Google Scholar 
    Johannessen, O. H. Population structure and individual growth of Venerupis pullastra (Montagu) (Lamellibranchia). Sarsia 52, 97–116 (1973).Article 

    Google Scholar 
    Johnson, K. B. & Brink, L. A. Predation on bivalve veligers by polychaete larvae. Biol. Bull. 194, 297–303 (2020).Article 

    Google Scholar 
    Jones, D. A. & Naylor, E. The swimming rhythm of the sand beach isopod Eurydice pulchra. J. Exp. Mar. Bio. Ecol. 4, 188–199 (1970).Article 

    Google Scholar 
    Jönsson, B. J. et al. Does the influence of the epibenthic predator Crangon L. (brown shrimp) extend to sediment microalgae and bacteria? Netherlands. J. Sea Res. 31, 83–94 (1993).ADS 

    Google Scholar 
    Josefson, A. B. Regulation of population size, growth, and production of a deposit-feeding bivalve: A long-term field study of three deep-water populations off the swedish west coast. J. Exp. Mar. Bio. Ecol. 59, 125–150 (1982).Article 

    Google Scholar 
    Kai, R. A. Biology and life cycle of Nutatoluna borealis Lilj. 1851, a scavenging isopod from the continental slope of the Mediterranean. Deep. Res. I 44, 2045–2067 (1998).
    Google Scholar 
    Kaïm-Malka, R. A. Biology and life cycle of Tmetonyx similis (G. O. Sars, 1891) (Amphipoda, Lysianassidae), a scavenging amphipod from the continental slope of the Mediterranean. J. Nat. Hist. 39, 3163–3186 (2005).Article 

    Google Scholar 
    Kaiser, M. J., Moore, P. G., Kaiser, M. J. & Moore, P. G. Obligate marine scavengers: do they exist? J. Nat. Hist. 33, 475–481 (1999).Article 

    Google Scholar 
    Kay, M. C. & Emlet, R. B. Laboratory spawning, larval development, and metamorphosis of the limpets Lottia digitalis and Lottia asmi (Patellogastropoda, Lottiidae). Invertebr. Biol. 121, 11–24 (2002).Article 

    Google Scholar 
    King, P. E. & Case, R. M. Sea spiders (Pycnogonids) in and around Milford Haven (South West Wales). F. Stud. 6, 517–529 (1986).
    Google Scholar 
    Kongsrud, J. A. & Rapp, H. T. Nicomache (Loxochona) lokii sp. nov. (Annelida: Polychaeta: Maldanidae) from the Loki’s Castle vent field: An important structure builder in an Arctic vent system. Polar Biol. 35, 161–170 (2012).Article 

    Google Scholar 
    Kristensen, E. et al. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar. Ecol. Prog. Ser. 446, 285–302 (2012).ADS 
    Article 

    Google Scholar 
    Kristensen, E. Life cycle, growth and production in estuarine populations of the polychaetes Nereis virens and N. diversicolor. Holarct. Ecol. 7, 249–256 (1984).
    Google Scholar 
    Larsen, J. B., Frischer, M. E., Ockelmann, K. W., Rasmussen, L. J. & Hansen, B. W. Temporal occurrence of planktotrophic bivalve larvae identified morphologically and by single step nested multiplex PCR. J. Plankton Res. 29, 423–436 (2007).CAS 
    Article 

    Google Scholar 
    Laudien, J., Herrmann, M. & Arntz, W. E. Soft bottom community structure and diversity in Kongsfjorden (Svalbard). In C. Wiencke (ed.): The coastal ecosystem of Kongsfjorden, Svalbard. Synopsis of biological research at the Koldewey Station in the years 1991–2003. Berichte zur Polar- und Meeresforschung 492, 91–102 (1991).
    Google Scholar 
    Lavesque, N. et al. Heteromysis (Heteromysis) microps (Crustacea, Mysidae), a commensal species for Upogebia pusilla (Crustacea, Upogebiidae) in Arcachon Bay (NE Atlantic Ocean). Mar. Biodivers. Rec. 9, 14 (2016).Article 

    Google Scholar 
    Le Pape, O. et al. Habitat suitability for juvenile common sole (Solea solea, L.) in the Bay of Biscay (France): A quantitative description using indicators based on epibenthic fauna. J. Sea Res. 57, 126–136 (2007).Article 

    Google Scholar 
    Lebour, M. V. Notes on the breeding of some lamellibranchs from Plymouth and their larvae. J. Mar. Biol. Assoc. UK 23, 119 (1938).Article 

    Google Scholar 
    Levin, L. A. & Creed, E. L. Effect of temperature and food availability on reproductive responses of Streblospio benedicti (Polychaeta: Spionidae) with planktotrophic or lecithotrophic development. Mar. Biol. Int. J. Life Ocean. Coast. Waters 92, 103–113 (1986).
    Google Scholar 
    Levin, L. A. Multiple patterns of development in Streblospio benedicti Webster (Spionidae) from three coasts of North America. Biol. Bull. 166, 494–508 (1984).Article 

    Google Scholar 
    Levin, L. A., Caswell, H., DePatra, K. D. & Creed, E. L. Demographic consequences of larval development mode: planktotrophy vs. lecithotrophy in Streblospio benedicti. Ecology 68, 1877–1886 (1987).PubMed 
    Article 

    Google Scholar 
    Lopez, G. R. & Levinton, J. S. Ecology of Deposit-Feeding Animals in Marine Sediments. Q. Rev. Biol. 62, 235–260 (1987).Article 

    Google Scholar 
    López-Jamar, E., González, G. & Mejuto, J. Temporal changes of community structure and biomass in two subtidal macroinfaunal assemblages in La Coruña bay, NW Spain. Hydrobiol. 142, 137–150 (1986).Article 

    Google Scholar 
    Maire, O., Duchêne, J., Rosenberg, R., de Mendonça, J. & Grémare, A. Effects of food availability on sediment reworking in Abra ovata and A. nitida. Mar. Ecol. Prog. Ser. 319, 135–153 (2006).ADS 
    Article 

    Google Scholar 
    Maldonado, M. The ecology of the sponge larva. Can. J. Zool. 84, 175–194 (2006).Article 

    Google Scholar 
    Malham, S. K., Hutchinson, T. H. & Longshaw, M. A review of the biology of European cockles (Cerastoderma spp.). J. Mar. Biol. Assoc. UK 92, 1563–1577 (2012).Article 

    Google Scholar 
    Mann, R. & Gallager, S. M. Growth, morphometry and biochemical composition of the wood boring molluscs Teredo navalis L., Bankia gouldi (Bartsch), and Nototeredo knoxi (Bartsch) (Bivalvia: Teredinidae). J. Exp. Mar. Bio. Ecol. 85, 229–251 (1985).CAS 
    Article 

    Google Scholar 
    Mann, R. & Gallager, S. M. Physiological and biochemical energetics of larvae of Teredo navalis L. and Bankia gouldi (Bartsch) (Bivalvia: Teredinidae). J. Exp. Mar. Bio. Ecol. 85, 211–228 (1985).CAS 
    Article 

    Google Scholar 
    Maranhão, P. & Marques, J. C. The influence of temperature and salinity on the duration of embryonic development, fecundity and growth of the amphipod Echinogammarus marinus Leach (Gammaridae). Acta Oecologica 24, 5–13 (2003).ADS 
    Article 

    Google Scholar 
    Martin, D. & Britayev, T. A. Symbiotic Polychaetes: Review of known species. Oceanogr. Mar. Biol. an Annu. Rev. 36, 217–340 (1998).
    Google Scholar 
    Mattson, S. & Cedhagen, T. Aspects of the behaviour and ecology of Dyopedos monacanthus (Metzger) and D. porrectus Bate, with comparative notes on Dulichia tuberculata Boeck (Crustacea: Amphipoda: Podoceridae). J. Exp. Mar. Bio. Ecol. 127, 253–272 (1989).Article 

    Google Scholar 
    McHugh, D. A comparative study of reproduction and development in the polychaete family Terebellidae. Biol. Bull. 185, 153–167 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meadows, P. S. & Reid, A. The behaviour of Corophiurn volutator (Crustacea: Amphipoda). J. Zool. Soc. Lond. 150, 387–399 (1966).Article 

    Google Scholar 
    Méndez, N. Non-pelagic development of Capitella capitata (Polychaeta) in the littoral zone of Barcelona. Sci. Mar. 59, 95–101 (1995).
    Google Scholar 
    Mercier, A., Doncaster, E. J. & Hamel, J. F. Contrasting predation rates on planktotrophic and lecithotrophic propagules by marine benthic invertebrates. J. Exp. Mar. Bio. Ecol. 449, 100–110 (2013).Article 

    Google Scholar 
    Mermillod-Blondin, F., Bernard, C., Michaud, E., Desrosiers, G. & Mermillod-blondin, F. The functional group approach to bioturbation: The effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. J. Exp. Mar. Bio. Ecol. 326, 77–88 (2005).Article 
    CAS 

    Google Scholar 
    Mermillod-Blondin, F., Rosenberg, R., Francois-Carcaillet, F., Norling, K. & Mauclaire, L. Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Mar. Ecol. Prog. Ser. 36, 271–284 (2004).
    Google Scholar 
    Merz, R. A. & Woodin, S. A. Polychaete chaetae: Function, fossils, and phylogeny. Integr. Comp. Biol. 46, 481–496 (2006).PubMed 
    Article 

    Google Scholar 
    Messing, C. G. Postmarsupial development and growth of Pagurapseudes largoensis McSweeny (Crustacea, Tanaidacea). J. Crustac. Biol. 3, 380–408 (2020).Article 

    Google Scholar 
    Metaxatos, A. Population dynamics of the venerid bivalve Callista chione (L.) in a coastal area of the eastern Mediterranean. J. Sea Res. 52, 293–305 (2004).ADS 
    Article 

    Google Scholar 
    Meyer, K. S. et al. Hyalinoecia artifex: Field notes on a charismatic and abundant epifaunal polychaete on the US Atlantic continental margin. Invertebr. Biol. 135, 211–224 (2016).Article 

    Google Scholar 
    Moment, G. B. Simultaneous anterior and posterior regeneration and other growth phenomena in Maldanid polychaetes. J. Exp. Zool. 117, 1–13 (1951).Article 

    Google Scholar 
    Moore, P. G. & Wong, Y. M. Orchomene nanus (Kroyer) (Amphipoda: Lysianassoidea), a selective scavenger of dead crabs: feeding preferences in the field. J. Exp. Mar. Bio. Ecol. 192, 35–45 (1995).Article 

    Google Scholar 
    Moore, P. G. Observations on the behaviour of the scavenging lysianassoid Orchomene zschaui (Crustacea: Amphipoda) from South Georgia (South Atlantic). Mar. Ecol. Prog. Ser. 113, 29–38 (1994).ADS 
    Article 

    Google Scholar 
    Moore, P. G. The larger Crustacea associated with holdfasts of kelp (Laminaria hyperborea) in north-east Britain. Cah. Biol. Mar. 14, 493–518 (1973).
    Google Scholar 
    Moreira, J., Gestoso, L. & Troncoso, J. S. Diversity and temporal variation of peracarid fauna (Crustacea: Peracarida) in the shallow subtidal of a sandy beach: Playa América (Galicia, NW Spain). Mar. Ecol. 29, 12–18 (2008).ADS 
    Article 

    Google Scholar 
    Moreira, P. S. Food and feeding behavior of Arcturella sawayae Moreira, 1973 (Crustacea, Isopoda, Valvifera). Bol. do Zool. e Biol. Mar. n.s. 30, 217–232 (1973).Article 

    Google Scholar 
    Mori, M., Abello, P., National, S., Marco, M. & Ranieri, S. De. Population characteristics of the crab Monodaeus couchii (Crustacea, Brachyura, Xanthidae) in the Western Mediterranean. Misc. Zool. 18, 77–88 (1995).
    Google Scholar 
    Morton, B. The biology and functional morphology of the predatory septibranch Cardiomya costellata (Deshayes, 1833) (Bivalvia: Anomalodesmata: Cuspidariidae) from the Acores: survival at the edge. J. Mar. Biol. Assoc. UK 96, 1347–1361 (2016).Article 

    Google Scholar 
    Morton, J. E. The habitats and feeding organs of Dentalium entalis. J. Mar. Biol. Assoc. UK 38, 225–238 (1959).Article 

    Google Scholar 
    Morvan, C. & Ansell, A. D. Stereological methods applied to reproductive cycle of Tapes rhomboides. Mar. Biol. 97, 355–364 (1988).Article 

    Google Scholar 
    Morys, C., Powilleit, M. & Forster, S. Bioturbation in relation to the depth distribution of macrozoobenthos in the southwestern Baltic Sea. Mar. Ecol. Prog. Ser. 579, 19–36 (2017).ADS 
    Article 

    Google Scholar 
    Moura, P. et al. Reproductive cycle of the Manila clam (Ruditapes philippinarum): an intensively harvested invasive species in the Tagus Estuary (Portugal). J. Mar. Biol. Assoc. UK 98, 1645–1657 (2018).Article 

    Google Scholar 
    Munro, L. Determining the reproductive cycle of Eunicella verrucosa. Report Ref: RR Report 07/2004 ETR 12. (CCW, 2004).Murina, G. V. Ecology of Sipuncula. Mar. Ecol. Prog. Ser. 17, 1–7 (1984).ADS 
    Article 

    Google Scholar 
    Newell, G. E. The life-history of Clymenella tortuata (Leidy). (Polychaeta). Proc. Zool. Soc. Lond. 121, 561–586 (1951).Article 

    Google Scholar 
    Nickel, L. A. & Atkinson, R. J. A. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Mar. Ecol. Prog. Ser. 128, 181–197 (1995).ADS 
    Article 

    Google Scholar 
    Nicol, E. A. T. The feeding habits of the Galatheidea. J. Mar. Biol. Assoc. UK 18, 87–106 (1932).Article 

    Google Scholar 
    Nicolaidou, A. Life history and productivity of Pectinaria koreni Malmgren (polychaeta). Estuar. Coast. Shelf Sci. 17, 31–43 (1983).ADS 
    Article 

    Google Scholar 
    Nicolaisen, W. & Kanneworff, E. On the burrowing and feeding habits of the amphipods Bathyporeia pilosa Lindström and Bathyporeia sarsi Watkin. Ophelia 6, 231–250 (1969).Article 

    Google Scholar 
    Nott, P. Reproduction in Abra alba (Wood) and Abra tenuis (Montagu) (Tellinacea: Scrobiculariidae). J. Mar. Biol. Assoc. UK 60, 465–479 (1980).Article 

    Google Scholar 
    Obenat, S., Spivak, E. & Garrido, L. Life history and reproductive biology of the invasive amphipod Melita palmata (Amphipoda: Melitidae) in the Mar Chiquita coastal lagoon, Argentina. J. Mar. Biol. Assoc. UK 86, 1381–1387 (2006).Article 

    Google Scholar 
    Ockelmann, K. W. & Muus, K. The biology, ecology and behaviour of the bivalve Mysella bidentata (Montagu). Ophelia 17, 1–93 (1978).Article 

    Google Scholar 
    Ockelmann, K. W. & Vahl, O. On the biology of the polychaete Glycera alba, especially its burrowing and feeding. Ophelia 8, 275–294 (1970).Article 

    Google Scholar 
    Oldfield, E. Observations on the anatomy and mode of life of Lasaea rubra (Mantagu) and Turtonia minuta (Fabricus). J. Molluscan Stud. 31, 226–249 (1955).Article 

    Google Scholar 
    Olive, P. J. W. Annual breeding cycles in marine invertebrates and environmental temperature: Probing the proximate and ultimate causes of reproductive synchrony. J. Therm. Biol. 20, 79–90 (1995).Article 

    Google Scholar 
    Orvain, F. A model of sediment transport under the influence of surface bioturbation: generalisation to the facultative suspension-feeder Scrobicularia plana. Mar. Ecol. Prog. Ser. 286, 43–56 (2005).ADS 
    Article 

    Google Scholar 
    Palmero, A., Martínez, A., Brito, M. & Núñez, J. Acoetidae (Annelida, Polychaeta) from the Iberian Peninsula, Madeira and Canary islands, with description of a new species. Arquipélago. Life Mar. Sci. 25, 49–62 (2008).
    Google Scholar 
    Pearce, J. B. & Thorson, G. The feeding and reproductive biology of the red whelk, Neptunea antiqua (L.) (Gastropoda, Prosobranchia). Ophelia 4, 277–314 (1967).Article 

    Google Scholar 
    Pearson, T. H. & Rosenberg, R. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. an Annu. Rev. 16, 229–311 (1977).
    Google Scholar 
    Pechenik, J. On the advantages and disadvantages of larval stages in benthic marine invertebrate life cycles. Mar. Ecol. Prog. Ser. 177, 269–297 (1999).ADS 
    Article 

    Google Scholar 
    Peharda, M. et al. Age, growth and population structure of Acanthocardia tuberculata (Bivalvia: Cardiidae) in the eastern Adriatic Sea. Sci. Mar. 76, 59–66 (2012).Article 

    Google Scholar 
    Pekkarinen, M. Regeneration of the inhalant siphon and siphonal sense organs of brackish-water (Baltic Sea) Macoma balthica (Lamellibranchiata, Tellinacea). Ann. Zool. Fennici 21, 29–40 (1984).
    Google Scholar 
    Perez Camacho, A. Biology of Venerupis pullastra (Montagu, 1803) and Venerupis decussata (Linne, 1767) (Mollusca, Bivalvia), with special reference to the determinant factors of production. Bol. del Inst. Esp. Oceanogr. 5, 43–76 (1980).
    Google Scholar 
    Petersen, M. E. Reproduction and development in Cirratulidae (Annelida: Polychaeta). Hydrobiologia 402, 107–128 (1999).Article 

    Google Scholar 
    Pettibone, M. H. Endoparasitic polychaetous annelids of the family Arabellidae with descriptions of new species. Biol. Bull. 113, 170–187 (1957).Article 

    Google Scholar 
    Phillips, N. E. & Pernet, B. Capture of large particles by suspension-feeding scaleworm larvae (Polychaeta: Polynoidae). Biol. Bull. 191, 199–208 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pinn, E. H., Atkinson, R. J. A. & Rogerson, A. The diet of two mud-shrimps, Calocaris macandreae and Upogebia stellata (Crustacea: Decapoda: Thalassinidea). Ophelia 48, 211–223 (1998).Article 

    Google Scholar 
    Pinn, E. H., James, R., Atkinson, A. & Rogerson, A. Particle size selectivity and resource partitioning in five species of Thalassinidea (Crustacea: Decapoda). Mar. Ecol. Prog. Ser. 169, 243–250 (1998).ADS 
    Article 

    Google Scholar 
    Pinn, E. H., Richardson, C. A., Thompson, R. C. & Hawkins, S. J. Burrow morphology, biometry, age and growth of piddocks (Mollusca: Bivalvia: Pholadidae) on the south coast of England. Mar. Biol. 147, 943–953 (2005).Article 

    Google Scholar 
    Piot, A., Rochon, A., Stora, G. & Desrosiers, G. Experimental study on the influence of bioturbation performed by Nephtys caeca (Fabricius) and Nereis virens (Sars) annelidae on the distribution of dinoflagellate cysts in the sediment. J. Exp. Mar. Bio. Ecol. 359, 92–101 (2008).Article 

    Google Scholar 
    Ponurovskii, S. K. Population structure and growth of the Japanese littleneck clam Ruditapes philippinarum in Amursky Bay, Sea of Japan. Russ. J. Mar. Biol. 34, 329–332 (2008).
    Google Scholar 
    Ponurovsky, S. K. & Yakovlev, Y. M. The reproductive biology of the Japanese littleneck Tapes phillipinarum. J. Shellfish Res. 11, 265–277 (1992).
    Google Scholar 
    Prato, E. & Biandolino, F. Life history of the amphipod Corophium insidiosum (Crustacea: Amphipoda) from Mar Piccolo (Ionian Sea, Italy). Sci. Mar. 70, 355–362 (2006).Article 

    Google Scholar 
    Purchon, R. D. The structure and function of the British Pholadidae (Rock-Boring Lamellibranchia). Proc. Zool. Soc. Lond. 124, 859–911 (2010).Article 

    Google Scholar 
    Qian, P. Y. & Chia, F. S. Effects of diet type on the demographics of Capitella sp. (Annelida: Polychaeta): lecithotrophic development vs. planktotrophic development. J. Exp. Mar. Bio. Ecol. 157, 159–179 (1992).Article 

    Google Scholar 
    Quayle, D. B. The Rate of Growth of Venerupis pullastra (Montagu) at Millport, Scotland. Proc. R. Soc. Edinburgh. Sect. B. Biol. 64, 384–406 (1952).Article 

    Google Scholar 
    Raffaelli, D., Emmerson, M., Solan, M., Biles, C. & Paterson, D. Biodiversity and ecosystem processes in shallow coastal waters: an experimental approach. J. Sea Res. 49, 133–141 (2003).ADS 
    Article 

    Google Scholar 
    Rainer, S. F. Population dynamics and production of the bivalve Abra alba and implications for fisheries production. Mar. Biol. 85, 253–262 (1985).Article 

    Google Scholar 
    Raleigh, J. & Keegan, B. F. The gametogenic cycle of Scrobicularia plana (Mollusca: Bivalvia) in Mweeloon Bay (Galway, west coast of Ireland). J. Mar. Biol. Assoc. UK 86, 1157–1162 (2006).Article 

    Google Scholar 
    Ramsay, K. & Holt, R. H. F. Mantis shrimps Rissoides desmaresti in Tremadog Bay, North Wales. J. Mar. Biol. Assoc. UK 81, 695–696 (2001).Article 

    Google Scholar 
    Ramsay, K., Kaiser, M. J. & Hughes, R. N. A field study of intraspecific competition for food in hermit crabs (Pagurus bernhardus). Estuar. Coast. Shelf Sci. 44, 213–220 (1997).ADS 
    Article 

    Google Scholar 
    Rasmussen, E. Systematics and ecology of the Isefjord marine fauna (Denmark): With a survey of the eelgrass (zostera) vegetation and its communities. Ophelia 11, 1–507 (1973).Article 

    Google Scholar 
    Rees, H.L. & Dare, P. J. Sources of mortality and associated life-cycle traits of selected benthic species: a review. Fisheries Research Data Report, no. 33. (MAFF, 1993).Retraubun, A. S. W., Dawson, M. & Evans, S. M. The role of the burrow funnel in feeding processes in the lugworm Arenicola marina (L.). J. Exp. Mar. Bio. Ecol. 202, 107–118 (1996).Article 

    Google Scholar 
    Riisgard, H. U. & Banta, G. T. Irrigation and deposit feeding by the lugworm Arenicola marina, characteristics and secondary effects on the environment. A review of current knowledge. Vie Milieu 48, 243–257 (1998).
    Google Scholar 
    Riisgard, H. U. Suspension feeding in the polychaete Nereis diversicolor. Mar. Ecol. Prog. Ser. 70, 29–37 (1991).ADS 
    Article 

    Google Scholar 
    Rijken, M. Food and food uptake in Arenicola marina. Netherlands. J. Sea Res. 13, 406–421 (1979).
    Google Scholar 
    Robertson, A. I. The relationship between annual production: Biomass ratios and lifespans for marine macrobenthos. Oecologia 38, 193–202 (1979).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rochette, R., Maltais, M. J., Dill, L. M. & Himmelman, J. H. Interpopulation and context-related differences in responses of a marine gastropod to predation risk. Anim. Behav. 57, 977–987 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrı́guez-Rúa, A., Prado, M., Romero, Z. & Bruzón, M. The gametogenic cycle of Scrobicularia plana (da Costa, 1778) (Mollusc: Bivalve) in Guadalquivir estuary (Cádiz, SW Spain). Aquaculture 217, 157–166 (2003).Article 

    Google Scholar 
    Romero-Wetzel, M. B. Sipunculans as inhabitants of very deep, narrow burrows in deep-sea sediments. Mar. Biol. 91, 87–91 (1987).Article 

    Google Scholar 
    Rosenberg, R. Suspension feeding in Abra alba (Mollusca). Sarsi 78, 119–121 (1993).Article 

    Google Scholar 
    Rosenthal, H. Implications of transplantations to aquaculture and ecosystems. Mar. Fish. Rev. 42, 1–4 (1980).
    Google Scholar 
    Rouse, G. W. Polychaetes have evolved feeding larvae numerous times. Bull. Mar. Sci. 67, 391–409 (2000).ADS 

    Google Scholar 
    Rowden, A. A., Jones, M. B. & Morris, A. W. The role of Callianassa subterranea (Montagu) (Thalassinidea) in sediment resuspension in the North Sea. Cont. Shelf Res. 18, 1365–1380 (1998).ADS 
    Article 

    Google Scholar 
    Rumbold, C. E., Obenat, S. M. & Spivak, E. D. Comparison of life history traits of Tanais dulongii (Tanaidacea: Tanaididae) in natural and artificial marine environments of the south-western Atlantic. Helgol. Mar. Res. 69, 231–242 (2015).ADS 
    Article 

    Google Scholar 
    Sánchez, L. R. & Junoy, J. Isopods of the genus Arcturella (Valvifera: Arcturidae) from the expedition FAUNA I (S Spain), with description of a new species. Sci. Mar. 66, 33–41 (2002).Article 

    Google Scholar 
    Sardá, R. & Martin, D. Populations of Streblospio (Polychaeta: Spionidae) in temperature zones: demography and production. J. Mar. Biol. Assoc. UK 73, 769–784 (1993).Article 

    Google Scholar 
    Scaps, P. A review of the biology, ecology and potential use of the common ragworm Hediste diversicolor (O. F. Műller) (Annelida: Polychaeta). Hydrobiologia 470, 203–218 (2002).Article 

    Google Scholar 
    Schembrii, P. J. Feeding in Ebalia tuberosa (Pennant) (Crustacea: Decapoda: Leucosiidae). J. Exp. Mar. Bio. Ecol. 55, 1–10 (1981).Article 

    Google Scholar 
    Schiaparelli, S., Franci, G., Albertelli, G. & Cattaneo-Vietti, R. A nondestructive method to evaluate population structure and bioerosion activity of the boring bivalve Gastrochaena dubia. J. Coast. Res. 212, 383–386 (2005).Article 

    Google Scholar 
    Schubert, A. & Reise, K. Predatory effects of Nephtys hombergii on other polychaetes in tidal flat sediments. Mar. Ecol. Prog. Ser. 34, 117–124 (1986).ADS 
    Article 

    Google Scholar 
    Seike, K., Shirai, K. & Murakami-sugihara, N. Using tsunami deposits to determine the maximum depth of benthic burrowing. PLoS One 12, e0182753 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shaw, P. W. Effects of asexual reproduction on population structure of Sagartia elegans (Anthozoa: Actiniaria). Hydrobiologia 216/217, 519–525 (1991).Article 

    Google Scholar 
    Shcherbakova, T. D., Tzetlin, A. B., Mardashova, M. V. & Sokolova, O. S. Fine structure of the tubes of Maldanidae (Annelida). J. Mar. Biol. Assoc. UK 97, 1177–1187 (2017).CAS 
    Article 

    Google Scholar 
    Sigurdsson, J. B., Titman, C. W. & Davies, P. A. The dispersal of young post-larval bivalve molluscs by byssus threads. Nature 262, 386–387 (1976).ADS 
    Article 

    Google Scholar 
    Simonini, R., Ansaloni, I., Bonvicini Pagliai, A. M. & Prevedelli, D. Organic enrichment and structure of the macrozoobenthic community in the northern Adriatic Sea in an area facing Adige and Po mouths. ICES J. Mar. Sci. 61, 871–881 (2004).Article 

    Google Scholar 
    Smaldon, G. Population structure and breeding biology of Pisidia longicornis and Porcellana platychelses. Mar. Biol. 179, 171–179 (1972).Article 

    Google Scholar 
    Smith, S. T. The ecology and life history of Retusa obtusa (Montagu) (Gastropoda, Opisthobranchia). Can. J. Zool. 45, 397–405 (1967).Article 

    Google Scholar 
    Snelgrove, P., Grant, J. & Pilditch, C. Habitat selection and adult-larvae interactions in settling larvae of soft-shell clam Mya arenaria. Mar. Ecol. Prog. Ser. 182, 149–159 (1999).ADS 
    Article 

    Google Scholar 
    So, J. J., Uthicke, S., Hamel, J. F. & Mercier, A. Genetic population structure in a commercial marine invertebrate with long-lived lecithotrophic larvae: Cucumaria frondosa (Echinodermata: Holothuroidea). Mar. Biol. 158, 859–870 (2011).Article 

    Google Scholar 
    Sola, J. C. Reproduction, population dynamics, growth and production of Scrobicularia plana da costa (pelecypoda) in the Bidasoa Estuary, Spain. Netherlands. J. Aquat. Ecol. 30, 283–296 (1997).Article 

    Google Scholar 
    Sorlin, T. Floating behaviour in the tellinid bivalve Malcoma balthica (L.). Oecologia 77, 273–277 (1988).ADS 
    PubMed 
    Article 

    Google Scholar 
    Speybroeck, J., Alsteens, L., Vincx, M. & Degraer, S. Understanding the life of a sandy beach polychaete of functional importance – Scolelepis squamata (Polychaeta: Spionidae) on Belgian sandy beaches (northeastern Atlantic, North Sea). Estuar. Coast. Shelf Sci. 74, 109–118 (2007).ADS 
    Article 

    Google Scholar 
    Strathmann, R. R. The evolution and loss of feeding larval stages of marine invertebrates. Evolution 32, 894–906 (1978).PubMed 
    Article 

    Google Scholar 
    Sun, Z., Hamel, J. F., Parrish, C. C. & Mercier, A. Complex offspring size effects: Variations across life stages and between species. Ecol. Evol. 5, 1117–1129 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taylor, A. C. & Moore, P. G. The burrows and physiological adaptations to a burrowing lifestyle of Natatolana borealis (Isopoda: Cirolanidae). Mar. Biol. 123, 805–814 (1995).Article 

    Google Scholar 
    Taylor, A. C. Branchial ventilation in the burrowing crab, Atelecyclus rotundatus. J. Mar. Biol. Assoc. UK 64, 7–20 (1984).Article 

    Google Scholar 
    Thiel, M. Duration of extended parental care in marine amphipods. J. Crustac. Biol. 19, 60–71 (1999).Article 

    Google Scholar 
    Thorson, G. Reproductive and larval ecology of marine bottom invertebrates. Biol. Rev. 25, 1–45 (1950).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tirado, C., Salas, C. & Márquez, I. Reproduction of Venus verrucosa L., 1758 (Bivalvia: Veneridae) in the littoral of Málaga (southern Spain). Fish. Res. 63, 437–445 (2003).Article 

    Google Scholar 
    Trevor, J. H. The burrowing of Nereis diversicolor O.F. Müller, together with some observations on Arenicola marina (L.) (Annelida: Polychaeta). J. Exp. Mar. Bio. Ecol. 30, 129–145 (1977).Article 

    Google Scholar 
    Trueman, E. R. & Brown, A. C. The burrowing habit of marine gastropods. Adv. Mar. Biol. 28, 389–431 (1992).Article 

    Google Scholar 
    Trueman, E. R. & Foster‐Smith, R. L. The mechanism of burrowing of Sipunculus nudus. J. Zool. Soc. Lond. 179, 373–386 (1976).Article 

    Google Scholar 
    Urban-Malinga, B., Drgas, A., Gromisz, S. & Barnes, N. Species-specific effect of macrobenthic assemblages on meiobenthos and nematode community structure in shallow sandy sediments. Mar. Biol. 161, 195–212 (2014).PubMed 
    Article 

    Google Scholar 
    Urrutia, M. B., Navarro, E., Ibarrola, I. & Iglesias, J. I. P. Preingestive selection processes in the cockle Cerastoderma edule: mucus production related to rejection of pseudofaeces. Mar. Ecol. Prog. Ser. 209, 177–187 (2001).ADS 
    Article 

    Google Scholar 
    Vader, W. & Krapp-Schickel. Redescription and biology of Stenothoe brevicornis Sars (Amphipoda: Crustacea), an obligate associate of the sea anemone Actinostola callosa (Verrill). J. Nat. Hist. 30, 51–66 (1996).Article 

    Google Scholar 
    Van Colen, C. et al. Clam feeding plasticity reduces herbivore vulnerability to ocean warming and acidification. Nat. Clim. Chang. 10, 162–166 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Vaughn, D. & Allen, J. D. The peril of the plankton. Integr. Comp. Biol. 50, 552–570 (2010).PubMed 
    Article 

    Google Scholar 
    Venema, S. C. & Creutzberg, F. Seasonal migration of the swimming crab Macropipus holsatus in an estuarine area controlled by tidal streams. Netherlands. J. Sea Res. 7, 94–102 (1973).
    Google Scholar 
    Wanamaker, A. D. et al. Very long-lived mollusks confirm 17th century AD tephra-based radiocarbon reservoir ages for north Icelandic shelf waters. Radiocarbon 50, 399–412 (2008).Article 

    Google Scholar 
    Warren, L. M., Hutchings, P. A. & Doyle, S. A revision of the genus Mediomastus Hartman, 1944 (Polychaeta: Capitellidae). Rec. Aust. Museum 46, 227–256 (1994).Article 

    Google Scholar 
    Warwick, R. M. The partitioning of secondary production among species in benthic communities. Netherlands J. Sea Res. 16, 1–17 (1982).ADS 
    Article 

    Google Scholar 
    Warwick, R. M. & George, C. L. Annual macro-fauna production in an Abra community. in Industrialised embayments and their environmental problems: a case study of Swansea Bay (eds. Collins, M. B., Banner, F. T., Tyler, P. A. & James, A. E.) 517–538 (Pergamon Press, 1980).Weinberg, S. & Weinberg, F. The life cycle of a Gorgonian: Eunicella Singularis (Esper, 1794). Bijdr. tot Dierkd. 48, 127–137 (1979).Article 

    Google Scholar 
    Wennberg, S. A., Janssen, R. & Budd, G. E. Hatching and earliest larval stages of the priapulid worm Priapulus caudatus. Invertebr. Biol. 128, 157–171 (2009).Article 

    Google Scholar 
    Whitlatch, R. B. Food-Resource partitioning in the deposit feeding polychaete Pectinaria gouldii. Biol. Bull. 147, 227–235 (1974).Article 

    Google Scholar 
    Widdicombe, S. et al. Importance of bioturbators for biodiversity maintenance: Indirect effects of fishing disturbance. Mar. Ecol. Prog. Ser. 275, 1–10 (2004).ADS 
    Article 

    Google Scholar 
    Williams, G. On the occurrence of Scopelocheirus hopei and Cirolana borealis in living Acanthias vulgaris (spiny dogfish). Irish Nat. J. 7, 89–91 (1938).
    Google Scholar 
    Wilson, D. P. The larval development of three species of Magelona (Polychaeta) from localities near Plymouth. J. Mar. Biol. Assoc. UK 62, 385–401 (1982).ADS 
    Article 

    Google Scholar 
    Wilson, W. H. Sexual reproductive modes in polychaetes: classification and diversity. Bull. Mar. Sci. 48, 500–516 (1991).
    Google Scholar 
    Yonge, C. M. Observations on Sphenia binghami Turton. J. Mar. Biol. Assoc. UK 30, 387–392 (1951).Article 

    Google Scholar 
    Yonge, C. M. On the Habits and Adaptations of Aloidis (Corbula) gibba. J. Mar. Biol. Assoc. UK 26, 358–376 (1946).CAS 
    Article 

    Google Scholar 
    Yonge, C. M. On the structure and adaptions of the Tellinacea, deposit-feeding Eulamellibranchia. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 234, 29–76 (1949).ADS 
    Article 

    Google Scholar 
    Yonge, C. M. On the structure, biology and systematic position of Pharus legumen (L.). J. Mar. Biol. Assoc. UK 38, 277–290 (1959).Article 

    Google Scholar 
    Zenetos, A. The American piddock Petricola pholadiformis Lamarck, 1818 spreading in the Mediterranean Sea. Aquat. Invasions 4, 385–387 (2009).Article 

    Google Scholar 
    Zwarts, L. Burying depth of the benthic bivalve Scrobicularia plana (da Costa) in relation to siphon-cropping. J. Exp. Mar. Bio. Ecol. 101, 25–39 (1986).Article 

    Google Scholar 
    Ansell, A. D., Gibson, R. N. & Barnes, M. Oceanography and Marine Biology: An Annual Review volume 35 (UCL Press, 1997).Beesley, P. L., Ross, G. J. B. & Glasby, C. J. Polychaetes & Allies: The Southern Synthesis (CSIRO Publishing, 2000).Budd, G. C. In Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) http://www.marlin.ac.uk/species/detail/1722 (2007).Carrier, T. J., Reitzel, A. M. & Heyland, A. Evolutionary Ecology of Marine Invertebrate Larvae (Oxford University Press, 2008).Dame, R. F. D. Ecology of Marine Bivalves: an Ecosystem Approach (CRC Press, 1996).David, B., Guille, A., Féral, J.-P. & Roux, M. Echinoderms Through Time (Balkema, 1994).Dorresteijn, A. W. C. & Westheide, W. Reproductive Strategies and Developmental Patterns in Annelids (Springer Netherlands, 1999).Fauchald, K. The polychaete worms. Definitions and keys to the orders, families and genera Science Series 28 (Natural History Museum of Los Angeles, 1977).Food and Agriculture Organization of the United Nations. FAO fisheries synopsis (Food and Agriculture Organization of the United Nations, 1984). Giese, A. C. & Pearse, J. S. Reproduction of Marine Invertebrates. Volume 5. Molluscs: Pelecypods and Lesser Clades (Academic Press, 1979).Hayward, P. & Ryland, J. Handbook of the marine fauna of north-west Europe (Oxford University Press, 1995).Holtmann, S. et al. Atlas of the zoobenthos of the Dutch continental shelf (Ministry of Transport, Public works and Water management, 1996).Jangoux, M. & Lawrence, J. M. Echinoderm Nutrition (Balkema, 1982).Jones, A. M. & Baxter, J. M. Molluscs: Caudofoveata, Solenogastres, Polyplacophora and Scaphopoda: keys and notes for the identification of species (Linnean Society of London and the Estuarine and Brackish-Water Sciences Association, 1987).Little, C. The Biology of Soft Shores and Estuaries (Oxford University Press, 2000).Maldonado, M. & Bergquist, P. R. in Atlas of Marine Invertebrate Larvae (ed. Young, C. M.) Ch. 2 (Academic Press, 2002).MarLIN. BIOTIC – Biological Traits Information Catalogue. Marine Life Information Network. Plymouth: Marine Biological Association of the United Kingdom. http://www.marlin.ac.uk/biotic (2006).MBA (Marine Biological Association). Plymouth Marine Fauna. (Marine Biological Association of the United Kingdom, 1957).MolluscaBase eds. MolluscaBase: Abra tenuis (Montagu, 1803). https://www.molluscabase.org/aphia.php?p=taxdetails&id=141439 (2019).Morton, B. The Bivalvia: Proceedings of a memorial symposium in honour of Sir Charles Maurice Yonge (Hong Kong University Press, 1990).Müller, H.-G. World Catalogue and Bibliography of the Recent Pycnogonida (Wissenschaftlicher Verlag, 1993).Oliver, P. G., Holmes, A. M., Killeen, I. J. & Turner, J. A. Marine Bivalve Shells of the British Isles. Amgueddfa Cymru – National Museum Wales http://naturalhistory.museumwales.ac.uk/britishbivalves (2016).Pandian, T. J. Reproduction and Development in Annelida (CRC Press, 2019).Poore, G. C. B., Ahyong, S. T. & Taylor, J. The Biology of Squat Lobsters (CSIRO Publishing: Melbourne and CRC Press, 2011).Purcell, S., Samyn, Y. & Conand, C. Commercially important sea cucumbers of the world. FAO Species Catalogue for Fishery Purposes No. 6 (Food and Agriculture Organization of the United Nations, 2012).Purchon, R. The Biology of Mollusca (Pergamon, 1977).Richards, S. in Marine Life Information Network: Biology and Sensitivity Key Information Reviews (eds. Tyler-Walters, H. & Hiscock, K.) https://www.marlin.ac.uk/species/detail/32 (2007).Rouse, G. & Pleijel, F. Reproductive Biology and Phylogeny of Annelida (Science Publishers, 2006).Rouse, G. & Pleijel, F. Polychaetes (Oxford University Press, 2001).Ruppert, E. E., Fox, R. S. & Barnes, R. D. Invertebrate Zoology. A functional evolutionary approach 7th Ed (Thomson Learning, 2004).Ryland, J. S. & Tyler, P. A. Recruitment in Abra tenuis (Montagu) (Bivalvia, Semelidae), a species with direct development and a protracted meiobenthic phase. Proceedings of the 23rd European Marine Biology Symposium (Olsen and Olsen, 1989).Shalla, S. Cumacea. Identification guide to British cumaceans (Dove Marine Laboratory, 2011).Sigvaldadóttir, E. et al. Advances in Polychaete Research (Springer Science & Business Media, 2003).Sigwart, J. D. & Sumner-Rooney, L. H. In Structure and Evolution of Invertebrate Nervous Systems (eds. Schmidt-Rhaesa, A., Harzsch, S. & Purschke, G.) Ch. 18 (Oxford University Press, 2016). Simpson, A. Reproduction in Octocorals (Subclass Octocorallia): A Review of Published Literature. Deep-Sea Corals Portal http://www.ucs.louisiana.edu/~scf4101/Bambooweb/ (2009).Tebble, N. British Bivalve Seashells; A Handbook for Identification 2nd ed (1976).Thiel, M. & Watling, L. Lifestyles and Feeding Biology: The Natural History of the Crustacea volume 2 (Oxford University Press, 2015).Thorson, G. & Jørgensen, C. B. Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the Sound (Øresund) (C. A. Reitzel, 1946).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 60, Marine Gastropods 1: Patellogastropoda and Vetigastropoda. (Field Studies Council, 2017).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 61, Marine Gastropods 2: Littorinimorpha and Other, Unassigned, Caenogastropoda. (Field Studies Council, 2017).Wigham, G. D. & Graham, A. Synopsis of the British Fauna Volume 62, Marine Gastropods 3: Neogastropoda. (Field Studies Council, 2018).Yonge, C. M. & Thompson, T. E. Living Marine Molluscs (Collins, 1976).Young, C. M. & Eckelbarger, K. J. Reproduction, larval biology, and recruitment of the deep-sea benthos (Columbia University Press, 1994).Clare, D. S. et al. Ten key biological traits of marine benthic invertebrates surveyed in Northwest Europe. V2. Cefas Data Hub https://doi.org/10.14466/CefasDataHub.123 (2022).Rijnsdorp, A. D. et al. Estimating sensitivity of seabed habitats to disturbance by bottom trawling based on the longevity of benthic fauna. Ecol. Appl. 28, 1302–1312 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hiddink, J. G. et al. Assessing bottom trawling impacts based on the longevity of benthic invertebrates. J. Appl. Ecol. 56, 1075–1084 (2019).Article 

    Google Scholar 
    van Denderen, P. D. et al. Evaluating impacts of bottom trawling and hypoxia on benthic communities at the local, habitat, and regional scale using a modelling approach. ICES J. Mar. Sci. 77, 278–289 (2020).Article 

    Google Scholar 
    Bolam, S. G. Macrofaunal recovery following the intertidal recharge of dredged material: A comparison of structural and functional approaches. Mar. Environ. Res. 97, 15–29 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    van Denderen, P. D. et al. Similar effects of bottom trawling and natural disturbance on composition and function of benthic communities across habitats. Mar. Ecol. Prog. Ser. 541, 31–43 (2015).ADS 
    Article 

    Google Scholar 
    Rijnsdorp, A. D. et al. Towards a framework for the quantitative assessment of trawling impact on the seabed and benthic ecosystem. ICES J. Mar. Sci. 73, i172–i138 (2016).Article 

    Google Scholar 
    Sciberras, M. et al. Impacts of bottom fishing on the sediment infaunal community and biogeochemistry of cohesive and non-cohesive sediments. Limnol. Oceanogr. 61, 2076–2089 (2016).ADS 
    Article 

    Google Scholar 
    Eggleton, J. D., Depestele, J., Kenny, A. J., Bolam, S. G. & Garcia, C. How benthic habitats and bottom trawling affect trait composition in the diet of seven demersal and benthivorous fish species in the North Sea. J. Sea Res. 142, 132–146 (2018).ADS 
    Article 

    Google Scholar 
    Howarth, L. M. et al. Effects of bottom trawling and primary production on the composition of biological traits in benthic assemblages. Mar. Ecol. Prog. Ser. 602, 31–48 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Wohlgemuth, D., Solan, M. & Godbold, J. A. Species contributions to ecosystem process and function can be population dependent and modified by biotic and abiotic setting. Proc. R. Soc. B Biol. Sci. 284, 20162805 (2017).Article 

    Google Scholar 
    Cassidy, C., Grange, L. J., Garcia, C., Bolam, S. G. & Godbold, J. A. Species interactions and environmental context affect intraspecific behavioural trait variation and ecosystem function. Proc. R. Soc. B Biol. Sci. 287, 20192143 (2020).Article 

    Google Scholar 
    Cesar, C. P. & Frid, C. L. J. Benthic disturbance affects intertidal food web dynamics: implications for investigations of ecosystem functioning. Mar. Ecol. Prog. Ser. 466, 35–41 (2012).ADS 
    Article 

    Google Scholar 
    Törnroos, A., Nordström, M. C., Aarnio, K. & Bonsdorff, E. Environmental context and trophic trait plasticity in a key species, the tellinid clam Macoma balthica L. J. Exp. Mar. Bio. Ecol. 472, 32–40 (2015).Article 

    Google Scholar 
    Clare, D. S., Spencer, M., Robinson, L. A. & Frid, C. L. J. Species-specific effects on ecosystem functioning can be altered by interspecific interactions. PLoS One 11, e0165739 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Queirós, A. M. et al. A bioturbation classification of European marine infaunal invertebrates. Ecol. Evol. 3, 3958–3985 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Composition and decomposition of rhizoma peanut (Arachis glabrata Benth.) belowground biomass

    Experimental siteAll procedures for the experiment involving animals were carried out in accordance with relevant guidelines and regulations and they were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Florida (protocol #201509019). The experiment was conducted at the University of Florida North Florida Research and Education Center (NFREC) located in Marianna, FL (30° 52ʹ N, 85° 11ʹ W, 35 m asl) during 2018 and 2019.The study site was an existing mixed RP-bahiagrass grazing study where ‘Ecoturf’ RP was strip-planted into ‘Argentine’ bahiagrass on 12 June 2014. Rhizoma peanut strips were approximately 2-m wide, making it possible to harvest RP forage, roots, and rhizomes free of bahiagrass contamination3,4. The RP was collected from a nursery at the University of Florida—NFREC, whereas the bahiagrass seeds were bought from a seed company. All plants were collected, purchased, managed, and the research was conducted in compliance with relevant institutional, the corresponding national, and international guidelines and legislation.Soils at the experimental site were classified as Orangeburg loamy sand (fine-loamy, kaolinitic, thermic Typic Kandiudults24. At the beginning of the study, soil pH was 5.7 and soil OM was 15.4 g kg−1. Additionally, Mehlich-I extractable soil P, K, Mg, and Ca concentrations at the beginning of the experiment were 26, 99, 43, and 224 mg kg−1, respectively. Total annual rainfall and average annual temperature at the experimental site were 1889 and 602 mm, and 19 and 21 °C, for 2018 and 2019, respectively, and their monthly averages are shown in Fig. 5.Figure 5Monthly weather conditions at North Florida Research and Education Center (NFREC) Marianna, FL, during the experimental years.Full size imageTreatments and experimental designTreatments were two defoliation regimes applied to RP, continuously stocking and 56-days interval between clipping harvests. At the continuous stocking, stocking rates were variable to maintain similar herbage allowance among pastures, which was assessed every 14 days as described by Sollenberger et al.25. Two tester Angus crossbred steers (Bos spp.) remained on each pasture throughout the experimental period. Put-and-take cattle were allocated as needed to maintain a target herbage allowance of 1.5 kg DM kg−1 bodyweight3. Treatments were situated adjacent to each other (i.e., paired sites) in monoculture strips of RP within each of three 0.85-ha pastures. Each pasture was considered a block, thus the experiment consisted of three replicates of each treatment in a randomized complete block design. Within each replicate, treatments had three repetitions (pseudo replicates). To prohibit animal access to the non-grazed treatment, three 2 × 2-m exclusion cages were placed on RP strips in each pasture. Rhizoma peanut herbage mass was determined at both the grazed and non-grazed sites three times each year, at days 56, 112, and 168 of the experimental period by using a 0.25-m−2 quadrat. Two quadrats were collected in each repetition by clipping all the biomass within each quadrat at 2-cm stubble height. After each herbage mass sampling, the non-grazed residual dry matter inside the cages was clipped to a 2-cm stubble height using a weed eater and the herbage removed by raking. On average, across sampling dates and years, herbage mass at the grazed and non-grazed sites was 1050 and 1810 kg of organic matter (OM) ha−1, respectively.Long-term and short-term decomposition studiesThere were two types of root-rhizome decomposition trials. The first is referred to as the long-term decomposition study, and the second is the short-term decomposition study. The long-term study had an incubation period of 168 days, with a single in-situ incubation per year starting in May. The short-term study had in-situ incubation periods of 56 days and there were three incubations per year, occurring in May, June, and August. In all cases, only roots and rhizomes attached to the plant were used in both trials.Long-term studyOn 26 Apr. 2018 and on 23 Apr. 2019, right after RP emergence after breaking dormancy, RP roots and rhizomes were collected from an existing mixed RP-bahiagrass grazing study where RP had been planted in strips into bahiagrass (Paspalum notatum Flüggé) in 2014. Rhizoma peanut strips were approximately 2.75-m wide, alternating with similar wide bahiagrass strips. A pure stand of RP had been maintained in the strips during previous years using herbicides3, making it possible to harvest RP roots and rhizomes free of bahiagrass contamination. Roots and rhizomes were collected at 24 different points in each of three blocks of the original experiment. Roots and rhizomes were collected at 20-cm depth using shovels. As defoliation treatments had not being applied at this time of the year, the same material was used to perform the incubation inside and outside the exclusion cages. After harvesting, excess soil was removed by shaking from the root-rhizome mat using a 1.4-cm diameter sieve. Thereafter, the existing aboveground material was clipped, and the roots and rhizomes were then washed over the same sieve to remove the remaining soil. After washing, roots and rhizomes were dried to constant weight in a forced-air drying oven at 55 °C.To perform the decomposition study, approximately 12 g of dry roots and rhizomes were placed in Ankom bags (10 by 20 cm, 50 µm porosity; ANKOM Technology) and sealed17. Roots and rhizomes were aimed to be placed intact into Ankom bags, nonetheless, when they could not fit inside the bags, they were cut in the middle before being placed. On 2 May 2018 and 1 May 2019, the incubation period began. For each treatment, bags were incubated in situ in the field at 10-cm depth in the same blocks from which they were collected. Bags were removed from the field after 0, 3, 7, 14, 28, 56, 112, and 168 days. For each treatment within each block, three bags were incubated for each incubation time. Additionally, empty bags (one bag per treatment per time per block) were placed in the field. After removal of the in-situ bags from the field, samples and empty bags were dried at 55 °C for 72 h, cleaned with a brush, and weighed. Thereafter, samples were ground to pass a 2-mm screen using a Wiley Mill (Model 4, Thomas-Wiley Laboratory Mill, Thomas Scientific) and analyzed for DM and OM. Subsamples of the 2-mm ground samples were ball milled in a Mixer Mill (MM 400, Retsch) at 25 Hz for 9 min. Ball-milled samples were analyzed for C and N by dry combustion using an elemental analyzer (Vario Micro cube, Elementar). Additionally, samples ground at 2-mm were used to determine ADF in aboveground samples26. The N concentration in the ADF was determined using the above protocol to obtain the ADIN.Short-term studiesThe short-term studies were performed following the same procedures as the long-term study, except that the incubation period was only 56 days, and these studies were repeated three times each year. Roots and rhizomes were incubated in situ on 2 May, 27 June, and 23 Aug. 2018 and on 1 May, 26 June, and 21 Aug. 2019, following the same protocol as described above, except that bags were removed from the field after 0, 3, 7, 14, 28, and 56 days of incubation. The incubations occurring in May, June, and August will be referred as early, middle, and late season, respectively.The early-season incubation period uses the data from the first 56 days of the long-term study described above. For the middle- and late-season incubations each year, roots and rhizomes were harvested approximately 7 days days prior to incubation. Approximately six points in each repetition were collected at 20-cm depth using shovels. For the grazed treatment, roots and rhizomes were collected in the grazed area nearby the exclusion cages, whereas for the non-grazed treatment, the material was collected inside the exclusion cages. After removal of the bags from the field, they were processed and analyzed for DM, OM, C, and N following the protocol described above.Statistical analysesLong-term studyRemaining biomass, remaining N, C:N ratio, ADF, and ADIN were analyzed using the PROC GLIMMIX from SAS27, with treatment and days of incubation as fixed effects, and years and blocks as random effects. Days of incubation were considered repeated measures. Means were compared using the PDIFF procedure at the 5% significance level. When treatment or the interaction of treatment × day of incubation were statistically significant in the ANOVA, nonlinear models were tested to fit the data for each variable and treatment. Nonlinear models were selected for a given response based on data distribution and type of response. If only days of incubation was significant, the same model was applied for all treatments.Remaining biomass (OM basis), remaining N, and C:N ratio were explained by the single exponential decay model14,17,28. The equation describing this process is:$$X=B0, {exp}^{-kt},$$
    (1)
    where X is the remaining biomass, remaining N, or C:N ratio at day t, B0 is the disappearance coefficient, and k is the relative decay rate (g g−1 day−1). The model used to describe ADF and ADIN was the two-stage model “linear plateau”15,29. The equation describing this process is:$$begin{gathered} Xt = A + b1 times t, {text{if t }} le {text{ T}}, hfill \ {text{and}},{ } Xt = A + b1 times T, {text{if t }} > {text{ T}}, hfill \ end{gathered}$$
    (2)
    where X is the concentration of ADIN, t is the day of incubation, A is the initial concentration, b1 is the rate of increase in concentration from the beginning of incubation until plateau is reached; and T is the day in which concentration reaches the plateau.Short-term studiesThe single exponential model was applied in the remaining OM and remaining N, for each experimental unit, to obtain individual values for B0 and k. The data for initial N concentration, initial C:N ratio, and B0 and k for remaining OM and remaining N were analyzed using the PROC GLIMMIX from SAS27, with treatment and period as fixed effects, and years and blocks as random effects. Means were compared using the PDIFF procedure at the 5% significance level.Arrive guidelinesThis is study is reported in accordance to ARRIVE guidelines. More

  • in

    Drivers of parasite communities in three sympatric benthic sharks in the Gulf of Naples (central Mediterranean Sea)

    Marcogliese, D. J. & Cone, D. K. Food webs: A plea for parasites. Trends Ecol. Evol. 12, 320–325. https://doi.org/10.1016/S0169-5347(97)01080-X (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marcogliese, D. J. Food webs and the transmission of parasites to marine fish. Parasitology 124(7), 83–99. https://doi.org/10.1017/s003118200200149x (2002).Article 

    Google Scholar 
    Marcogliese, D. J. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1, 151–164. https://doi.org/10.1007/s10393-004-0028-3 (2004).Article 

    Google Scholar 
    Marcogliese, D. J. Parasites of the superorganism: Are they indicators of ecosystem health?. Int. J. Parasitol. 35(7), 705–716. https://doi.org/10.1016/j.ijpara.2005.01.015 (2005).Article 
    PubMed 

    Google Scholar 
    Rasmussen, T. K. & Randhawa, H. S. Host diet influences parasite diversity: A case study looking at tapeworm diversity among sharks. Mar. Ecol. Prog. Ser. 605, 1–16. https://doi.org/10.3354/meps12751 (2018).ADS 
    Article 

    Google Scholar 
    Vidal-Martínez, V. M., Pech, D., Sures, B., Purucker, S. T. & Poulin, R. Can parasites really reveal environmental impact?. Trends Parasitol. 26(1), 44–51. https://doi.org/10.1016/j.pt.2009.11.001 (2010).Article 
    PubMed 

    Google Scholar 
    Derbel, H., Châari, M. & Neifar, L. Digenean species diversity in teleost fishes from the Gulf of Gabes, Tunisia (Western Mediterranean). Parasite 19(2), 129–135. https://doi.org/10.1051/parasite/2012192129 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattiucci, S. et al. Temporal stability of parasite distribution and genetic variability values of Contracaecum osculatum sp. D and C. osculatum sp. E (Nematoda: Anisakidae) from fish of the Ross Sea (Antarctica). Int. J. Parasitol. Parasites Wildl. 4(3), 356–367. https://doi.org/10.1016/j.ijppaw.2015.10.004 (2015).Sures, B., Nachev, M., Selbach, C. & Marcogliese, D. J. Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’. Parasit. Vectors 10, 65. https://doi.org/10.1186/s13071-017-2001-3 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santoro, M., Iaccarino, D. & Bellisario, B. Host biological factors and geographic locality influence predictors of parasite communities in sympatric sparid fishes off the southern Italian coast. Sci. Rep. 10(1), 13283. https://doi.org/10.1038/s41598-020-69628-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, F., Poulin, R., de Meeüs, T., Guégan, J. F. & Renaud, F. Parasites and ecosystem engineering: What roles could they play?. Oikos 84, 167–171. https://doi.org/10.2307/3546879 (1999).Article 

    Google Scholar 
    Timi, J. T. & Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 50(10–11), 755–761. https://doi.org/10.1016/j.ijpara.2020.04.007 (2020).Article 
    PubMed 

    Google Scholar 
    Lafferty, et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546. https://doi.org/10.1111/j.1461-0248.2008.01174.x (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23(4), 202–210. https://doi.org/10.1016/j.tree.2008.01.003 (2008).Article 
    PubMed 

    Google Scholar 
    Stevens, J. D., Bonfil, R., Dulvy, N. K. & Walker, P. A. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57(3), 476–494. https://doi.org/10.1006/jmsc.2000.0724 (2000).Article 

    Google Scholar 
    Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315(5820), 1846–1850. https://doi.org/10.1126/science.1138657 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Palm, H. W. Fish parasites as biological indicators in a changing world: can we monitor environmental impact and climate change? In: Progress in Parasitology (ed. Melhorn, H.) 223–250 (Berlin, 2011).Dallarés, S. Twenty thousand parasites under the sea: A multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean). PhD Thesis. Universitat Autònoma de Barcelona. (2016).Dallarés, S., Pérez-del-Olmo, A., Montero, F. E. & Carrassón, M. Composition and seasonal dynamics of the parasite communities of Scyliorhinus canicula (L., 1758) and Galeus melastomus Rafinesque. (Elasmobranchii) from the NW Mediterranean Sea in relation to host biology and ecological features. Hydrobiologia 799(275–291). https://doi.org/10.1007/s10750-017-3226-z (2017).Article 

    Google Scholar 
    Dallarés, S., Padrós, F., Cartes, J. E., Solé, M. & Carrassón, M. The parasite community of the sharks Galeus melastomus, Etmopterus spinax and Centroscymnus coelolepis from the NW Mediterranean deep-sea in relation to feeding ecology and health condition of the host and environmental gradients and variables. Deep Sea Res. Part I Oceanogr. Res. Pap. 129, 41–58. https://doi.org/10.1016/j.dsr.2017.09.007 (2017).Ebert, D. A. & Dando, M. Field Guide to Sharks, Rays & Chimaeras of Europe and the Mediterranean. 385 (Princeton University Press, 2021).Santoro, M., Bellisario, B., Crocetta, F., Degli Uberti, B. & Palomba, M. A molecular and ecological study of Grillotia (Cestoda: Trypanorhyncha) larval infection in small to mid-sized benthonic sharks in the Gulf of Naples, Mediterranean Sea. Ecol. Evol. 11(20), 13744–13755. https://doi.org/10.1002/ece3.7933 (2021).Crocetta, F. et al. Bottom-trawl catch composition in a highly polluted coastal area reveals multifaceted native biodiversity and complex communities of fouling organisms on litter discharge. Mar. Environ. Res. 155, 104875. https://doi.org/10.1016/j.marenvres.2020.104875 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hay Mele, B. et al. Ecological assessment of anthropogenic impact in marine ecosystems: the case of Bagnoli Bay. Mar. Environ. Res. 158, 104953. https://doi.org/10.1016/j.marenvres.2020.104953 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rizzo, L., Musco, L. & Crocetta, F. Cohabiting with litter: Fish and benthic assemblages in coastal habitats of a heavily urbanized area. Mar. Poll. Bull. 164, 112077. https://doi.org/10.1016/j.marpolbul.2021.112077 (2021).CAS 
    Article 

    Google Scholar 
    Tanduo, V., Osca, D. & Crocetta, F. A bycatch surprise: Scyllarus subarctus Crosnier, 1970 (Decapoda: Achelata: Scyllaridae) in the Mediterranean Sea. J. Crust. Biol. 41(2), ruab010. https://doi.org/10.1093/jcbiol/ruab010 (2021).Follesa, M. C. & Carbonara, P. Atlas of the maturity stages of Mediterranean fishery resources in General Fisheries Commission for the Mediterranean.Studies and Reviews (ed. FAO) 259 (FAO, 2019).Le Cren, E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fuviatilis). J. Anim. Ecol. 20, 201–219 (1951).Article 

    Google Scholar 
    Mouine, N., Francour, P., Ktari, M. H. & Chakroun-Marzouk, N. The reproductive biology of Diplodus sargus sargus in the Gulf of Tunis (Central Mediterranean). Sci. Mar. 71(3), 461–469. https://doi.org/10.3989/scimar.2007.71n3461 (2007).Article 

    Google Scholar 
    Santoro, M., Palomba, M., Mattiucci, S., Osca, D. & Crocetta, F. New parasite records for the sunfish Mola mola in the Mediterranean Sea and their potential use as biological tags for long-distance host migration. Front. Vet. Sci. 7, 579728. https://doi.org/10.3389/fvets.2020.579728 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kabata, Z. Parasitic Copepoda of British Fishes. 468 (The Ray Society, British Museum, 1979).Bray, R. A. & Moore, A. B. M. The first record of the elasmobranch parasite Diphterostomum betencourti (Monticelli, 1893) (Digenea, Zoogonidae) in the coastal waters of southern England. Acta Parasitol. 45(4), 299–302 (2000).
    Google Scholar 
    Gibson, D. I. Superfamily Azygioidea Lühe, 1909 in Keys to the Trematoda. Vol. 1(eds. Gibson, D. I., Jones, A. & Bray, R. A.) 19–24 (CAB International, 2002).Anderson, R. C., Chabaud, A. G. & Willmott, S. CIH keys to the nematode parasites of vertebrates: Archival volume (eds. Anderson, R. C., Chabaud, A. G. & Willmott, S.) 463 (CAB International, 2009).Palm, H. W. The Trypanorhyncha Diesing, 1863 (IPB-PKSPL Press, 2004).
    Google Scholar 
    Dallarés, S., Pérez-del-Olmo, A., Carrassón, M. & Kuchta, R. Morphological and molecular characterisation of Ditrachybothridium macrocephalum Rees, 1959 (Cestoda: Diphyllidea) from Galeus melastomus Rafinesque in the Western Mediterranean. Syst. Parasitol. 92, 45–55. https://doi.org/10.1007/s11230-015-9586-8 (2015).Article 
    PubMed 

    Google Scholar 
    Zhu, X., Gasser, R. B., Podolska, M. & Chilton, N. B. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. Int. J. Parasitol. 28(12), 1911–1921. https://doi.org/10.1016/s0020-7519(98)00150-7 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van der Auwera, G., Chapelle, S. & De Wachter, R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338(2), 133–136. https://doi.org/10.1016/0014-5793(94)80350-1 (1994).Article 
    PubMed 

    Google Scholar 
    Palm, H. W., Waeschenbach, A., Olson, P. D. & Littlewood, D. T. Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda). Mol. Phyl. Evol. 52(2), 351–367. https://doi.org/10.1016/j.ympev.2009.01.019 (2009).CAS 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics 24(16), 1757–1764. https://doi.org/10.1093/bioinformatics/btn322 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583. https://doi.org/10.2307/3284227 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Euzet, L. & Combes, C. Les problèmes de l’espèces chez les animaux parasites. Bull. Soc. Zool. Fr. 40, 239–285 (1980).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article 

    Google Scholar 
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: .a comment on distance-based redundancy analysis. Ecology 82(1), 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).Article 

    Google Scholar 
    Locke, S. A., McLaughlin, J. D. & Marcogliese, D. J. Predicting the similarity of parasite communities in freshwater fishes using the phylogeny, ecology and proximity of hosts. Oikos 122(1), 73–83. https://doi.org/10.1111/j.1600-0706.2012.20211.x (2013).Article 

    Google Scholar 
    McArtor, D. B., Lubke, G. H. & Bergeman, C. S. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika 82, 1052–1077. https://doi.org/10.1007/s11336-016-9527-8 (2018).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (2017).Caira, J. N., Bueno, V. & Jensen, K. Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii). Zool. J. Linnean Soc. 193, 1336–1363. https://doi.org/10.1093/zoolinnean/zlaa185 (2021).Article 

    Google Scholar 
    Fanelli, E., Rey, J., Torres, P. & Gil de Sola, L. Feeding habits of blackmouth catshark Galeus melastomus Rafinesque, 1810 and velvet belly lantern shark Etmopterus spinax (Linnaeus, 1758) in the western Mediterranean. J. Appl. Ichthyol. 25(1), 83–93. https://doi.org/10.1111/j.1439-0426.2008.01112.x (2009).Article 

    Google Scholar 
    Anastasopoulou, A. et al. Diet and feeding strategy of blackmouth catshark Galeus melastomus. J. Fish Biol. 83(6), 1637–1655. https://doi.org/10.1111/jfb.12269 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    D’Iglio, C. et al. Biological and ecological aspects of the blackmouth catshark (Galeus melastomus Rafinesque, 1810) in the Southern Tyrrhenian Sea. J. Mar. Sci. Eng. 9(9), 967. https://doi.org/10.3390/jmse9090967 (2021).Article 

    Google Scholar 
    Saldanha, L., Almeida, A. J., Andrade, F. & Guerreiro, J. Observations on the diet of some slope dwelling fishes of Southern Portugal. Int. Rev. der Gesamten Hydrobiol. 80(2), 217–234. https://doi.org/10.1002/iroh.19950800210 (1995).Article 

    Google Scholar 
    Mnasri, N., El Kamel, O., Boumaïza, M., Reynaud, C. & Capapé, C. Food and feeding habits of the small-spotted catshark, Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) from the northern coast of Tunisia (central Mediterranean). Cah. Biol. Mar. 53(1), 139–150 (2012).
    Google Scholar 
    Šantić, M., Rađa, B. & Pallaoro, A. Feeding habits of small-spotted catshark (Scyliorhinus canicula Linnaeus, 1758) from the eastern central Adriatic Sea. Mar. Biol. Res. 8(10), 1003–1011. https://doi.org/10.1080/17451000.2012.702912 (2012).Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and Anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263. https://doi.org/10.1016/bs.apar.2017.12.001 (2018).Article 
    PubMed 

    Google Scholar 
    Santoro, M. et al. Helminth parasites of the dwarf sperm whale Kogia sima (Cetacea: Kogiidae) from the Mediterranean Sea, with implications on host ecology. Dis. Aquat. Org. 129(3), 175–182. https://doi.org/10.3354/dao03251 (2018).CAS 
    Article 

    Google Scholar 
    Cipriani, P. et al. The Mediterranean European hake, Merluccius merluccius: detecting drivers influencing the Anisakis spp. larvae distribution. Fish. Res. 202, 79–89. https://doi.org/10.1016/j.fishres.2017.07.010 (2018).Article 

    Google Scholar 
    Levsen, A. et al. Anisakis species composition and infection characteristics in Atlantic mackerel, Scomber scombrus, from major European fishing grounds—Reflecting changing fish host distribution and migration pattern. Fish. Res. 202, 112–121. https://doi.org/10.1016/j.fishres.2017.07.030 (2018).Article 

    Google Scholar 
    Palomba, M., Mattiucci, S., Crocetta, F., Osca, D. & Santoro, M. Insights into the role of deep-sea squids of the genus Histioteuthis (Histioteuthidae) in the life cycle of ascaridoid parasites in the Central Mediterranean Sea waters. Sci. Rep. 11, 7135. https://doi.org/10.1038/s41598-021-86248-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palombi, A. Il ciclo biologico di Diphterostomum brusinae Stossich (Trematode digenetico: fam. Zoogonidae Odhner). Considerazioni sui cicli evolutivi delle specie affini e dei trematodi in generale. Pubbl. Stn. Zool. 10, 111–149 (1930).
    Google Scholar 
    Gilardoni, C. et al. Cryptic speciation of the zoogonid digenean Diphterostomum flavum n. sp. demonstrated by morphological and molecular data. Parasite 27(44). https://doi.org/10.1051/parasite/2020040 (2020).Campbell, R. A., Haedrich, R. L. & Munroe, T. A. Parasitism and ecological relationships among deep-sea benthic fishes. Mar. Biol. 57, 301–313. https://doi.org/10.1007/BF00387573 (1980).Article 

    Google Scholar 
    Campbell R. A. Parasitism in the deep-sea in Deep-sea Biology, The Sea (ed. Rowe, G. T.) 473–552 (Wiley, 1983).Isbert, W. et al. Metazoan parasite communities and diet of the velvet belly lantern shark Etmopterus spinax (Squaliformes: Etmopteridae): a comparison of two deep-sea ecosystems. J. Fish Biol. 86(2), 687–706. https://doi.org/10.1111/jfb.12591 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klimpel, S., Palm, H. W. & Seehagen, A. Metazoan parasites and food composition of juvenile Etmopterus spinax (L., 1758) (Dalatiidae, Squaliformes) from the Norwegian Deep. Parasitol. Res. 89, 245–251. https://doi.org/10.1007/s00436-002-0741-1 (2003).Article 
    PubMed 

    Google Scholar 
    Moore, A. B. M. Metazoan parasites of the lesser-spotted dogfish Scyliorhinus canicula and their potential as stock discrimination tools. J. Mar. Biol. Assoc. UK 81(6), 1009–1013. https://doi.org/10.1017/S0025315401004982 (2001).Article 

    Google Scholar 
    Silva, C., Veríssimo, A., Cardoso, P., Cable, J. & Xavier, R. Infection of the lesser spotted dogfish with Proleptus obtusus Dujardin, 1845 (Nematoda: Spirurida) reflects ontogenetic feeding behaviour and seasonal differences in prey availability. Acta Parasit. 62(2), 471–476. https://doi.org/10.1515/ap-2017-0055 (2017).CAS 
    Article 

    Google Scholar 
    Bakopoulos, V. et al. Parasites of Scyliorhinus canicula (Linnaeus, 1758) in the north-eastern Aegean Sea. J. Mar. Biol. Assoc. UK 98(8), 2133–2143. https://doi.org/10.1017/S0025315417001552 (2018).MathSciNet 
    Article 

    Google Scholar 
    Moravec, F., Van As, J. G. & Dyková, I. Proleptus obtusus Dujardin, 1845 (Nematoda: Physalopteridae) from the puffadder shyshark Haploblepharus edwardsii (Scyliorhinidae) from off South Africa. Syst. Parasitol. 53, 169–173. https://doi.org/10.1023/A:1021130825469 (2002).Article 
    PubMed 

    Google Scholar 
    Morris, T., Avenant-Oldewage, A., Lamberth, S. & Reed, C. Shark parasites as bio-indicators of metals in two South African embayments. Mar. Pollut. Bull. 104(1–2), 221–228. https://doi.org/10.1016/j.marpolbul.2016.01.027 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kennedy, C. R., Bush, A. O. & Aho, J. M. Patterns in helminth communities: why are birds and fish different?. Parasitology 93(1), 205–215. https://doi.org/10.1017/S0031182000049945 (1986).Article 
    PubMed 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83(4), 575–583. https://doi.org/10.2307/3284227 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poulin, R. Species richness of parasite assemblages: Evolution and patterns. Annu. Rev. Ecol. Syst. 28, 341–358 (1997).Article 

    Google Scholar 
    Rizzo, E. & Bazzoli, N. Reproduction and embryogenesis in Biology and physiology of freshwater neotropical fish (eds. Baldisserotto, B., Criscuolo Urbinati, E. & Cyrino J. E. P.) 287–313 (Academic Press, 2020).Poulin, R. Variation in the intraspecific relationship between fish length and intensity of parasitic infection: Biological and statistical causes. J. Fish Biol. 56(1), 123–137. https://doi.org/10.1111/j.1095-8649.2000.tb02090.x (2005).Article 

    Google Scholar 
    Poulin, R. & Morand, S. Parasite Biodiversity (eds.) 216 Smithsonian Institution Books, 2004.Capapé, C. et al. Production, maturity, reproductive cycle and fecundity of small-spotted catshark, Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) from the northern coast of Tunisia (Central Mediterranean). J. Ichthyol. 54, 111–126. https://doi.org/10.1134/S0032945214010020 (2014).Article 

    Google Scholar 
    Kennedy, C.R Helminth communities in freshwater fish: structured communities or stochastic assemblages? in Parasite Communities: Patterns and Processes (eds. Esch G. W., Bush A. O., Aho J. M.) 156 (Chapman and Hall, 1990).Compagno, L. J. V. Sharks of the world in An annotated and illustrated catalogue of shark species known to date. Part 1 – Hexanchiformes to Lamniformes (ed. FAO) 249 (FAO, 1984).Compagno, L. J. V. Sharks of the world in An annotated and illustrated catalogue of shark species known to date. Part 2 – Carcharhiniformes (ed. FAO) 486 (FAO, 1984). More

  • in

    Dispersal and oviposition patterns of Lycorma delicatula (Hemiptera: Fulgoridae) during the oviposition period in Ailanthus altissima (Simaroubaceae)

    Fluorescent markingDispersal of SLF adults was tracked using a fluorescent marking system (FMS), which has been demonstrated to be applicable for multiple insect species including SLF nymphs21,22,24. To mark the SLF, either red, yellow, or blue fluorescent paint (#1166R, #1166Y, #1166B, BioQuip Products, USA) was diluted with distilled water (1:4). The mixture was then gently sprayed three times (ca. 20 mg each time) on each SLF individual using a mist sprayer from a distance of 30–50 cm (SI 2). Throughout the field survey, a handheld ultraviolet (UV) laser (PX 600 mW, class IIIB purple laser, 405 nm, Big Lasers, USA) was used to detect fluorescent-marked SLF individuals25.Effect of fluorescent marking on SLFPrior to field survey, the potential effects of fluorescent marking on the survivorship and flight behavior of SLF adults (sex ratio 1:1) were evaluated. SLF adults were collected using sweeping nets (BioQuip Products, USA) from Gyeonggi-do, South Korea (37°47′85.95″ N, 127°11′64.58″E) in September 2020. Two hours after fluorescent marking of SLF, both fluorescent-marked and unmarked SLF were subjected to survivorship and flight behavior assessment.Survivorship of insects was measured on two A. altissima trees (ca. 2 m in height) located in Gachon University, South Korea (37°45′38.50″N, 127°13′37.75″E). Two fluorescent-marked and two unmarked insects were placed in a cylindrical mesh cage [25 × 30 cm (radius × height)] enclosing a tree branch; a total of 20 groups were tested (n = 40). Then, survivorship of SLF was determined once every two days until no individuals were alive. Survivorship was compared between fluorescent-marked and unmarked SLF using Kaplan-Meir survivorship analysis (JMP 12, SAS Institute Inc., USA).The effects of fluorescent marking on flight behavior were evaluated in an open space (986 m2) in Gachon University, South Korea (37°45′08.37″N, 127°12′79.69″E) at 26 ± 1 °C and a relative humidity of 30 ± 5%. To induce flight of SLF adults, a wooden square rod [3 × 3 × 100 cm (width × length × height)] was established upright at the center of the arena. The SLF adult was placed individually 10 cm away from the top on the wooden square rod. To minimize any unnecessary stimuli from experimenter, SLF flight was induced by following the same sequence: once the insect climbed up the rod and oriented itself staying still to a random direction, then an experimenter carefully positioned at the back of the insect and gently pecked the forewings using tweezers to initiate its flight33,34. Pecking was intended to mimic predatory behavior of birds. Once the insect jumped away, an operator followed the individual until it landed on the ground (n = 30). The experiment was conducted for 2 h between 13:00–15:00 and marked and unmarked SLF were randomly tested during the evaluation. The number of pecks to initiate the flight, flight duration, and flight distance of SLF were compared using t-test (JMP 12, SAS Institute Inc., USA).Field study sitesDispersal patterns of SLF adults in A. altissima patches and their oviposition patterns were investigated in multiple A. altissima patches located along two streams in Gyeonggi-do, South Korea: Tan stream in Seongnam-si (37°48′01.80″N, 127°11′56.03″E) and Gyeongan stream in Gwangju-si (37°41′54.21″N, 127°27′12.37″E). Both Tan and Gyeongan streams run along suburban residential areas in their respective cities, with pedestrian lanes built along the streams. We selected seven A. altissima patches as study patches when more than 10 SLF adults were found per patch (Fig. 3). In the study patch, all SLF individuals or ca. up to 30 adults were florescent-marked. In addition, when the number of SLF adults was less than 10 from an A. altissima patch, those patches were designated as neighboring patches (Fig. 3). Dispersal and oviposition of SLF adults were monitored from both study and neighboring patches during the study.In Tan stream, four study patches (patches A–D) and one neighboring patch, which were distributed over ca. 1760 m, were selected (Fig. 3a). Areas around the patches were generally covered with grass and shrubs, and the areas were occasionally managed by local administration. Deciduous trees were regularly planted along the pedestrian lanes. There were a total of four, four, 61, and 47 A. altissima trees in patches A to D, respectively (Table 2). Compared with Tan stream, A. altissima patches were located closely to each other in Gyeongan stream: three study patches (patches E–G) and three neighboring patches were spread over only ca. 90 m (Fig. 3b). Vegetation surrounding A. altissima patches consisted of grasses and small shrubs as well as deciduous trees planted along the border of residential area nearby. There were a total of 69, nine, and 53 A. altissima trees in patches E to G, respectively (Table 2). Unlike Tan stream, 45% of A. altissima trees had trunks having cut off by local administration in Gyeongan stream (Table 2; Fig. 5).Dispersal pattern of SLF on A. altissima
    Three fluorescent paint colors were used to mark SLF individuals in the study patches (Fig. 3; SI 2). Insects that took off during marking were captured and excluded from the experiment. Among the selected study patches, SLF adults were generally distributed throughout each patch, while SLF adults were observed only from one out of 61 A. altissima trees in patch C. As a result, in Tan stream, 15 (color of paint used to fluorescent-marking; red), 31 (yellow), 11 (blue), and 32 (red) adults were marked from patches A to D, respectively, whereas in Gyeongan stream, 30 (red), 30 (blue), and 33 (yellow) adults were marked from patches E to G, respectively. Starting from September 14th, 2020 in Tan stream and September 18th in Gyeongan stream, fluorescent-marked SLF adults on A. altissima trees in both study and neighboring patches were counted with a UV laser twice a week (Fig. 3). Survey continued until no individuals were observed from the study patches.Oviposition pattern of SLF on A. altissima
    Oviposition pattern of SLF was surveyed on all A. altissima trees in the study patches in December in both streams (Table 2). For the survey, SLF egg masses were categorized into three types as follows: egg mass with waxy layer, egg mass without waxy layer, and scattered eggs (SI 3). Eggs that were not covered with waxy layer and did not form aggregates were categorized as scattered (SI 3). In the field, A. altissima trees were visually inspected to identify SLF egg mass, and the number of egg masses and their distances from the ground were recorded. In addition, the number of eggs per egg mass was recorded for egg masses located  5 generally indicates collinearity35,36. VIF between height and DRC was 1.56, and therefore the two variables were included together in the GLMM model.Policy statementExperiments involving Ailanthus altissima were conducted in compliance with relevant institutional, national, and international guidelines and legislation. More

  • in

    Monthly spatial dynamics of the Bay of Biscay hake-sole-Norway lobster fishery: an ISIS-Fish database

    We took as a starting point the hake – sole – Norway lobster Bay of Biscay ISIS-Fish database used for COSELMAR project16,20 (see http://isis-fish.org/download.html section “Bay of Biscay scenario dataset”, Database V0 in Fig. 1). This database was built using 2010 data, and was not calibrated, as it was designed for a geo-foresight study. Since our aim was to describe the system over a decade and simulate realistic dynamics close to available observations to assess management measures, we needed to update the parametrisation and calibrate the database. We took 2010–2012 as the calibration period, and 2013–2020 as the simulation period (grey arrow Fig. 1). The database has a monthly temporal resolution (constrained by the ISIS-Fish framework) and the spatial scale was set to match ICES statistical rectangles (0.5° latitude by 1° longitude rectangles, defined by the International Council for the Exploration of the Sea (ICES) https://www.ices.dk/data/maps/Pages/ICES-statistical-rectangles.aspx), consistent with available knowledge and data.In this section, we firstly describe all the data sources used to update and calibrate the database. Then, for each main component of an ISIS-Fish database – i.e. populations, exploitation and management – we describe this paper’s database parameters and assumptions. We finally describe the calibration procedure (inspired by previous work21,22), of which some results are shown in the Technical Validation section. We summarized this workflow in Fig. 1.Data sourcesData sources, estimates, and literature (including grey literature) were needed to update and calibrate the model. They are marked in Fig. 1 with salmon (data sources and estimates) and mustard (literature) blocks:

    SACROIS23: French landings and effort logbook declarations for 2010 were made available at the log-event*commercial category*ICES statistical rectangle*population scale. It was used to design exploitation features of the database, as well as populations spatial structure.

    LANGOLF survey: 2006–2010 LANGOLF surveys observations for 2006–2010 were made available for Norway lobster. They were used to work on Norway lobster abundance per length class and sex.

    Intercatch: catch observations for 2010–2020 in the Bay of Biscay for hake, at the quarter-métier group scale, and catch observations per class for sole on 2010–2012, and 2010 Norway lobster catch observations per sex and length class24, used to describe the inter-annual effort dynamics, to calibrate and validate the model.

    Estimates of hake abundance per size class in 2010, and hake quarterly estimates of recruitment on 2010–2012 from a northern hake spatial stock assessment model21, used to inform hake biology assumptions (named Other 1 in Fig. 1).

    ICES WGBIE24 2010 estimates of abundance per class (sole and Norway lobster), to inform their abundance at the initial time step; 2010–2012 yearly fishing mortality estimates per age class (sole) to calibrate the database (named Other 2 in Fig. 1).

    Other population, exploitation and management assumptions were informed with scientific literature25 and grey literature26,27 (Literature block in Fig. 1).

    Management assumptions were informed with legal texts2,4,28,29,30,31,32,33,34 and reported quota values in working group reports24.

    About populationsThis section describes for each species the assumptions and parameters values, except for accessibility, which has been calibrated, as described in section Calibration procedure. For all assumptions and values, more details are provided in Supplementary Information’s section 2.2.HakeThe stock size structure was defined with 1 cm size bins for [1;40[cm individuals, 2 cm for [40;100[cm individuals, and 10 cm for [100;130+] cm individuals35. Areas of presence were defined based on 2010 SACROIS French landings data per commercial category and statistical rectangle23, leading to the definition of a presence, a recruitment, an interim recruitment and a spawning area25 (see Supplementary Information’s section 2.2 and Figure S1). These areas allow for the description of intra-Bay of Biscay migrations related to spawning and recruitment processes: mature individuals aggregate at the beginning of the year on the shelf break to spawn, and then disperse on the shelf36,37,38,39,40 (at the beginning of April and July in the model). Also, from age 1 (around 20 cm), individuals in recruitment zone spread in interim recruitment zone, to model a diffusion towards areas neighbouring the nursery area, at the beginning of each time step (see Supplementary Information’s section 2.2 and Table S11). Maturity-at-size and weight-at-length relationships were the same functions as used by ICES working group35,41. Natural mortality was fixed at 0.5, basing on preliminar runs, instead of the commonly used 0.442. Recruitment values were defined prior to the simulation for 2010–2020 using available estimates on the 2010–2015 time series21,27. Deterministic estimates from these sources were allocated to the recruitment area in the Bay of Biscay and the beginning of each month in January-September on the whole time series, of which values are provided in the Supplementary Information’s section 2.2 and Table S3. Growth is modelled through monthly growth increments5,25. However, given the different widths of size bins in the implemented size structure, a correction was provided to values in the transition matrix to eliminate artifacts when growing to a size bin wider than the size bin of origin, as detailed in Supplementary Information’s section 2.2. Abundance at the initial step in each zone was estimated from Bay of Biscay abundance estimates for 201021. Mature individuals over 20 cm were allocated to the spawning area, all individuals strictly shorter than 20 cm were allocated to the recruitment area (as they were assumed to be less than 1 year old), and remaining individuals were allocated to the interim recruitment area. None were allocated to the presence area, in which individuals will go later in the time series, after disaggregating from the spawning area25 (Table S13).SoleThe stock is age structured, with 7 classes going from ages 2 to 7+43 (Table S2). No seasonal variations were implemented. Only a single presence zone was defined (see Supplementary Information’s section 2.2 and Figure S1), as in preliminary runs defining more presence areas for sole did not yield more knowledge in this study. We implemented ICES working group values for natural mortality, weight-at-age (Table S1) and maturity-at-age43. Recruitment occurs at the beginning of each year, individuals being recruited at age 2 (ages 0–1 were not modelled; Table S4). We implemented ICES working group estimates27 for abundance at initial time step (Table S14).Norway lobsterThe stock has a sex-size structure, with 1 mixed recruitment class at 0 cm; 33 length classes for males at 2 carapace length mm intervals, from [10;12[to [72;74[carapace length mm; 23 length classes for females at 2 carapace length mm intervals, from [10;12[to [52;54[carapace length mm. A single presence area was defined: the Great Mudbank21 (see Supplementary Information’s section 2.2 and Figure S1). Several seasonal processes occur for this stock, impacting recruitment, accessibility and growth: 1/ January, begins with the annual recruitment. Females are inside their burrows, less accessible; 2/ February-March females are inside their burrows, less accessible; 3/ April: Spring moulting, females are more accessible; 4–5/ May-August females are more accessible; 6/ September, females are inside their burrows, less accessible; 7/ October: Autumn moulting only for immature females and all males, females are inside their burrows, less accessible; 8/ November-December, females are inside their burrows, less accessible44. We implemented ICES working group values for natural mortality, weight-at-class and maturity-at-class45,46,47. Growth occurs twice a year, when moulting in April and October, and is modelled with growth increments. Recruitment occurs at the beginning of each year, modelled with a Beverton-Holt relationship26, and was assumed to have the same spatial distribution as spawning stock biomass. Abundance at initial step was derived from LANGOLF survey observations and ICES WGBIE estimates25,26 (Table S16).About exploitationThe fishing exploitation structure (fleets, strategies, métiers and gears) were derived following a classification method on SACROIS 2010 landings and effort data13,23 from French fleets, and taken from a TECTAC project (https://cordis.europa.eu/project/id/Q5RS-2002-01291) database for Spanish trawlers. More details on their definition are provided in Supplementary Information’s section 2.3, Tables S5–S9 and S20–S21 and Figure S3. Spanish longliners and gillnetters fleets exploitation was described based on catch (observations from Intercatch48) rather than effort.Hake selectivity and discarding functions (one for each gear) were taken from estimates of a spatial hake stock assessment model21. Parameters values and formulæ are provided in Supplementary Information’s section 2.3 and Tables S6-S7. On top of this, inter-annual fleet dynamics factors were included in equation (21) of ISIS-Fish documentation8 in order to account for observed catch temporal variations. These factors are therefore multiplicative parameters of the target factor of each species for each métier. They are computed using observed catch27 and differ according to the period and targeted species:

    over 2010–2016, it is a ratio of observed catch in weight per year over catch observations for 2010: for hake, one per métier *season*year (left(frac{ObservedCatc{h}_{metier,season,year}}{ObservedCatc{h}_{metier,season,2010}}right)), for sole, one per métier *year (left(frac{ObservedCatc{h}_{metier,year}}{ObservedCatc{h}_{metier,2010}}right)), and for Norway lobster, one per year (identical for each métier catching Norway lobster) (left(frac{ObservedCatc{h}_{year}}{ObservedCatc{h}_{2010}}right));

    over 2017–2020: at the time of writing these assumptions, more recent data was not available, and ratios were deduced from trends on 2014–2016. A linear model was fitted on ratios deduced earlier on 2014–2016. If a significant trend was identified (hake: whitefish trawlers quarters 2 and 4, longliners and gillnetters seasons 2–3; sole and Norway lobster: all métiers), the slope was used to deduce 2017–2020 ratios (the slope was halved for hake whitefish trawlers and sole and Norway lobster values to avoid unrealistic high values of effort). Otherwise, 2016 ratios were used.

    All values are provided in Supplementary Information’s section A.2 Tables S22–S24, and the final values of target factors are derived from the Calibration procedure.About managementWe implemented a set of management rules close to what is currently implemented in the Bay of Biscay.All stocks are managed by TALs (Total Allowable Landings) until 2015 and then by TACs (Total Allowable Catch), except for Norway lobster, managed by TALs on the whole time series, not being under the landings obligation. To favour a better parametrisation, allowing for more reliable dynamics on the following years of the time series, no TALs were implemented during the calibration period (2010–2012; Fig. 1). These regulations were implemented from 2013 using historically TALs and TACs values24.Landings of the three stocks are also constrained by a Minimum Conservation Reference Size regulation that was implemented for all stocks using values currently enforced in the studied fishery28. Likewise, from 2016, the Landings Obligation was implemented, with de minimis exemptions for hake and sole, depending on the year and the gear used to fish them2,31,32,33,34. See Supplementary Information’s sections 2.4 and A.3, Figure S2 and Table S10 for further details on these restrictions.In response to the above management rules, a fishers’ behaviour algorithm has been developed to describe fishermen adaptation. Some métiers may be forbidden, depending on some conditions – the catch quota has been reached, the landings obligation is enforced – but also some values – the proportion of discarded catch, and also catch on previous years. Therefore fishermen change métiers within their strategy métiers set through a re-allocation of fishing effort to the latter set. This re-allocation aims to avoid quota overshooting. Further details about this algorithm are provided in the Supplementary Information’s sections 2.4 and A.3 and Figure S2.Calibration procedureThe model has been calibrated using two parameters (population accessibility and fishing target factor) involved in the catchability process (equation (21) in ISIS-Fish documentation8). The objective of the calibration is to reproduce the dynamics of catch over 2010–2012 at the species*métiers group scale, for each year or quarter depending on available data’s granularity. Calibration is sequentially performed: accessibility parameters for each population were estimated first followed by the target factors. The estimation of each parameter set (parameter type * population) combination was separated, and values were estimated jointly within each parameter set. To account for the specificity of each population model dynamics (global age-based for sole, spatial and size-based for hake, spatial, sex and size-based for Norway lobster), an objective function is defined for each population to calibrate their accessibility. More details on objective functions and procedures are provided in Supplementary Information’s section 2.5, as well as estimated values in Tables S17–S19.Hake accessibilityThe calibration for hake accessibility is based on a procedure developed for a former version of the database25. One parameter was estimated per quarter, all values being equal across length classes. The model outputs were fitted to hake catch observations in weight in the Bay of Biscay in 2010–2012 per length class.Sole accessibilityOne parameter was estimated per age class. The model outputs were fitted to WGBIE fishing mortality per age class for sole27 in 2010–2012.Norway lobster accessibilityOne parameter was calibrated per sex and length class. The model outputs were fitted to catch in numbers per length class and sex in 2010 per quarter provided by WGBIE.About target factorsTarget factors drive how the effort is distributed between populations, métiers and season*year combinations. They were split in 3 components: a fixed component derived from the SACROIS effort dataset analysis (Tables S25–S27), another fixed component driving inter-annual variations of fishing effort (Tables S22–S24), derived from catch observations, and finally an estimated component (Tables S28–S30), allowing to tune the model’s dynamics to observed catch. This section focuses on the estimation of the latter.Hake target factors20 parameters were defined, for each combination of the 5 groups of métiers (longliners, gillnetters, whitefish trawler (coastal), whitefish trawler (not coastal), Norway lobster trawler, see definition Table S8) and 4 quarters. We fitted the model’s outputs to the same data and with the same objective function as for hake’s accessibilities estimation.Sole target factors1 estimated component per group of métiers (gillnetters, Norway lobster trawlers and whitefish trawlers) and quarter. We fitted the model’s outputs to sole catch in weight on 2010–2012 for each métier and quarter.Norway lobster target factors1 estimated component per group of métiers (Norway lobster trawlers and whitefish trawlers). We fitted the model’s outputs to monthly Norway lobster landings data per length and sex class for 2010.Base simulationThe base simulation ran from January 2010 to December 2020 inclusive, with a monthly time step, using the database and parameters values described in this document. Several outputs of interest may be explored after a run: catch (discards and landings), as done in several figures in this paper, but also biomass (total biomass or mature biomass), fishing mortality values, or effort, all at a fine spatio-temporal scale. More

  • in

    Genetic structure of American bullfrog populations in Brazil

    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20(3), 5451. https://doi.org/10.1016/j.tree.2005.01.003 (2005).Article 

    Google Scholar 
    Duenas, M. A., Hemming, D. J., Roberts, A. & Diaz-Soltero, H. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Glob. Ecol. Conserv. p. e01476 (2021).Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7(1), 1–12 (2020).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592(7855), 571–576 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gregory, R. & Long, G. Using structured decision making to help implement a precautionary approach to endangered species management. Risk Anal. 29(4), 518–532. https://doi.org/10.1111/j.1539-6924.2008.01182.x (2009).Article 
    PubMed 

    Google Scholar 
    Berroneau, M., Detaint, M. & Coi, C. Bilan du programme de mise en place d’une stratégie d’éradication de la grenouille taureau Lithobates catesbeianus (Shaw 1802) en Aquitaine (2003–2007) et perspectives. Bull. Soc. Herpétol. France 127, 35–45 (2008).
    Google Scholar 
    Orchard, S. A. Removal of the American bullfrog, Rana (Lithobates) catesbeiana, from a pond and a lake on Vancouver Island, British Columbia, Canada. Island invasives: eradication and management. IUCN (Gland, Switzerland), 1–542 (2011).Robertson, B. C. & Gemmell, N. J. Defining eradication units to control invasive pests. J. Appl. Ecol. 41(6), 1042–1048 (2004).Article 

    Google Scholar 
    Shaw, G. General Zoology or Systematic Natural History Vol. 3, 106–108 (Society for the study of Amphibians and Reptiles, 1802).
    Google Scholar 
    Howard, R. D. Sexual dimorphism in bullfrogs. Ecology 62(2), 303–310 (1981).Article 

    Google Scholar 
    Kaefer, Í. L., Boelter, R. A. & Cechin, S. Z. Reproductive biology of the invasive bullfrog Lithobates catesbeianus in southern Brazil. In Annales Zoologici Fennici 435–444 (2007).Bissattini, A. M. & Vignoli, L. Let’s eat out, there’s crayfish for dinner: American bullfrog niche shifts inside and outside native ranges and the effect of introduced crayfish. Biol. Invasions 19(9), 2633–2646 (2017).Article 

    Google Scholar 
    Boelter, R. A. & Cechin, S. Z. Impacto da dieta de rã-touro (Lithobates catesbeianus – Anura, Ranidae) sobre a fauna nativa: estudo de caso na região de Agudo – RS – Brasil 1. Nat. Conserv. 5(2), 45–53 (2007).
    Google Scholar 
    Govindarajulu, P., Price, W. S. & Anholt, B. R. Introduced bullfrogs (Rana catesbeiana) in western Canada: has their ecology diverged?. J. Herpetol. 40(2), 249–261 (2006).Article 

    Google Scholar 
    McCoy, C. J. Diet of bullfrogs (Rana catesbeiana) in Central Oklahoma farm ponds. In Proceedings of the Oklahoma Academy of Sciences 44–45 (1967).Teixeira, E., Silva, D., Pinto, O., Filho, R. & Feio, R. N. Predation of native anurans by invasive bullfrogs in Southeastern Brazil: spatial variation and effect of microhabitat use by prey. S. Am. J. Herpetol. 6(1), 1–11. https://doi.org/10.2994/057.006.0101 (2011).Article 

    Google Scholar 
    Wu, Z., Li, Y., Wang, Y. & Adams, M. J. Diet of introduced Bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island China. J. Herpetol. 39(4), 668–675 (2005).Article 

    Google Scholar 
    Howard, R. D. The influence of male-defended oviposition sites on early embryo mortality in bullfrogs. Ecol. Soc. Am. 59(4), 789–798 (1978).
    Google Scholar 
    Van Wilgen, N. J., Gillespie, M. S., Richardson, D. M. & Measey, J. A taxonomically and geographically constrained information base limits non-native reptile and amphibian risk assessment: a systematic review. PeerJ 6, 5850 (2018).Article 

    Google Scholar 
    Sales, L., Rebouças, R. & Toledo, L. F. Native range climate is insufficient to predict anuran invasive potential. Biol. Invasions 23, 2635–2647 (2021).Article 

    Google Scholar 
    Kumschick, S. et al. How repeatable is the Environmental Impact Classification of Alien Taxa (EICAT)? Comparing independent global impact assessments of amphibians. Ecol. Evol. 7(8), 2661–2670 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kupferberg, S. J. Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78(6), 1736–1751 (1997).Article 

    Google Scholar 
    Toledo, L. F., Ribeiro, R. S. & Haddad, C. F. Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J. Zool. 271(2), 170–177 (2007).Article 

    Google Scholar 
    Daszak, P. et al. Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol. J. 14, 201–208 (2004).
    Google Scholar 
    Gervasi, S. S. et al. Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 10(2), 166–171 (2013).PubMed 
    Article 

    Google Scholar 
    Urbina, J., Bredeweg, E. M., Garcia, T. S. & Blaustein, A. R. Host–pathogen dynamics among the invasive American bullfrog (Lithobates catesbeianus) and chytrid fungus (Batrachochytrium dendrobatidis). Hydrobiologia 817(1), 267–277 (2018).CAS 
    Article 

    Google Scholar 
    Schloegel, L. M. et al. The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim. Conserv. 13, 53–61. https://doi.org/10.1111/j.1469-1795.2009.00307.x (2010).Article 

    Google Scholar 
    Ohanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360(6389), 621–627 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Adams, A. J. et al. Extreme drought, host density, sex, and bullfrogs influence fungal pathogen infection in a declining lotic amphibian. Ecosphere 8(3), 01740 (2017).Article 

    Google Scholar 
    Santos, R. C. et al. High prevalence and low intensity of infection by Batrachochytrium dendrobatidis in rainforest bullfrog populations in southern Brazil. Herpetol. Conserv. Biol. 15(1), 118–130 (2020).
    Google Scholar 
    Ribeiro, L. P. et al. Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Sci. Rep. 9, 13422 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Both, C. & Grant, T. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Let. 8(5), 1–3. https://doi.org/10.1098/rsbl.2012.0412 (2012).Article 

    Google Scholar 
    Medeiros, C. I., Both, C., Grant, T. & Hartz, S. M. Invasion of the acoustic niche: variable responses by native species to invasive American bullfrog calls. Biol. Invasions 19(2), 675–690 (2017).Article 

    Google Scholar 
    Ferrante, L., Kaefer, I. L. & Baccaro, F. B. Aliens in the backyard: Did the American bullfrog conquer the habitat of native frogs in the semi-deciduous Atlantic Forest?. Herpetol. J. 30, 93–98 (2020).Article 

    Google Scholar 
    da Silva Silveira, S. & Guimarães, M. The enemy within: consequences of the invasive bullfrog on native anuran populations. Biol. Invasions 23(2), 373–378 (2021).Article 

    Google Scholar 
    Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).Article 

    Google Scholar 
    Ribeiro, L. P. & Toledo, L. F. An overview of the Brazilian frog farming. Aquaculture 548, 737623 (2022).Article 

    Google Scholar 
    Cunha, E. R. & Delariva, R. L. Introdução da rã-touro, Lithobates catesbeianus (SHAW, 1802): uma revisão. Saúde e Biologia 4(2), 34–46 (2009).
    Google Scholar 
    Ferreira, C. M., Pimenta, A. G. C. & Neto, J. S. P. Introdução à ranicultura. Boletim Técnico Do Instituto de Pesca 33, 15 (2002).
    Google Scholar 
    Fontanello, D. & Ferreira, C. M. Histórico da ranicultura nacional. Instituto de Pesca de São Paulo (2007).Both, C. et al. Widespread occurrence of the American bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil. S. Am. J. Herpetol. 6(2), 127–135 (2011).Article 

    Google Scholar 
    Bai, C., Ke, Z., Consuegra, S., Liu, X. & Yiming, L. The role of founder effects on the genetic structure of the invasive bullfrog (Lithobates catesbeianaus) in China. Biol. Invasions 14, 1785–1796. https://doi.org/10.1007/s10530-012-0189-x (2012).Article 

    Google Scholar 
    Liu, X. & Li, Y. Aquaculture enclosures relate to the establishment of feral populations of introduced species. PLoS ONE https://doi.org/10.1371/journal.pone.0006199 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos-pereira, M. & Rocha, C. F. D. Invasive bullfrog Lithobates catesbeianus (Anura: Ranidae) in the Paraná state, Southern Brazil : a summary of the species spread. Revista Brasileira De Zoociências 16, 141–147 (2015).
    Google Scholar 
    Moreira, C. R., Henriques, M. B. & Ferreira, C. M. Frog farms as proposed in agribusiness aquaculture: economic viability based in feed conversion. Pesca Inst. Bull. 39(4), 389–399 (2018).
    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Miaud, C. Prediction and validation of the potential global distribution of a problematic alien invasive species – The American bullfrog. Divers. Distrib. 13(4), 476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x (2007).Article 

    Google Scholar 
    Funk, W. C., Garcia, T. S., Cortina, G. A. & Hill, R. H. Population genetics of introduced bullfrogs, Rana (Lithobates) catesbeianus, in the Willamette Valley, Oregon, USA. Biol. Invasions 13, 651–658. https://doi.org/10.1007/s10530-010-9855-z (2011).Article 

    Google Scholar 
    Rollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R. & Sherwin, W. B. Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol. Ecol. 18, 1560–1573. https://doi.org/10.1111/j.1365-294X.2009.04132.x (2009).Article 
    PubMed 

    Google Scholar 
    Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22(1), 25–33. https://doi.org/10.1016/j.tree.2006.08.009 (2007).Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Bonin, A. & Miaud, C. Population genetics reveals origin and number of founders in a biological invasion. Mol. Ecol. 17, 773–782. https://doi.org/10.1111/j.1365-294X.2007.03622.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamath, P. L., Sepulveda, A. J. & Layhee, M. Genetic reconstruction of a bullfrog invasion to elucidate vectors of introduction and secondary spread. Ecol. Evol. 6(15), 5221–5233. https://doi.org/10.1002/ece3.2278 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411 (2020).Article 
    CAS 

    Google Scholar 
    Austin, J. D. Genetic evidence for female-biased dispersal in the bullfrog, Rana catesbeiana (Ranidae). Mol. Ecol. 12(11), 3165–3172. https://doi.org/10.1046/j.1365-294X.2003.01948.x (2003).Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4(3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11(1), 94. https://doi.org/10.1186/1471-2156-11-94 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17(18), 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x (2008).Article 
    PubMed 

    Google Scholar 
    Winter, D. J. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12(6), 1158–1160. https://doi.org/10.1111/j.1755-0998.2012.03174.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gerlach, G. Calculations of population differentiation based on GST and D: forget GST but not all of statistics!. Mol. Ecol. 19(18), 3845–3852 (2010).PubMed 
    Article 

    Google Scholar 
    Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple statistical significance testing. Stat. Med. 9, 811–818 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hauser, S., Wakeland, K. & Leberg, P. Inconsistent use of multiple comparison corrections in studies of population genetic structure: Are some type I errors more tolerable than others?. Mol. Ecol. Resour. 19(1), 144–148 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Team R Core. R: A language and environment for statistical computing. R Foundation for Statistical Computing URL. Vienna, Austria. Retrieved from https://www.r-project.org/. (2017).Dyer, R. J. gstudio: Analyses and functions related to the spatial analysis of genetic marker data. R Package Version (2014).Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8(1), 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A., vonHoldt, B. & M.,. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Moritz, C., Schneider, C. J. & Wake, D. B. Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst. Biol. 41(3), 273–291 (1992).Article 

    Google Scholar 
    Goebel, A. M., Donnelly, J. M. & Atz, M. E. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochromebin bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol. Phylogenet. Evol. 11(1), 163–199 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labonne, J. et al. From the bare minimum: genetics and selection in populations founded by only a few parents. Evol. Ecol. Res. 17(1), 21–34 (2016).
    Google Scholar 
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Carlsson, J. Effects of microsatellite null alleles on assignment testing. J. Hered. 99(6), 616–623 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Consuegra, S., Phillips, N., Gajardo, G. & Leaniz, C. G. Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of non-native rainbow trout. Evol. Appl. 4, 660–671. https://doi.org/10.1111/j.1752-4571.2011.00189.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peacock, M. M., Beard, K. H., O’Neill, E. M., Kirchoff, V. S. & Peters, M. B. Strong founder effects and low genetic diversity in introduced populations of Coqui frogs. Mol. Ecol. 18(17), 3603–3615. https://doi.org/10.1111/j.1365-294X.2009.04308.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Austin, J. D., Lougheed, S. C. & Boag, P. T. Discordant temporal and geographic patterns in maternal lineages of eastern north American frogs, Rana catesbeiana (Ranidae) and Pseudacris crucifer (Hylidae). Mol. Phylogenet. Evol. 32, 799–816. https://doi.org/10.1016/j.ympev.2004.03.006 (2004).Article 
    PubMed 

    Google Scholar 
    Selechnik, D. et al. Increased adaptive variation despite reduced overall genetic diversity in a rapidly adapting invader. Front. Genet. 10, 1221 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Predicting ecological impacts of the invasive brush-clawed shore crab under environmental change

    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95(6), 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailey, S. A. et al. Trends in the detection of aquatic non–indigenous species across global marine, estuarine and freshwater ecosystems: A 50–year perspective. Divers. Distrib. 26, 1780–1797 (2020).MathSciNet 
    Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).PubMed 
    Article 

    Google Scholar 
    Meyerson, M. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bonnamour, A., Gippet, J. M. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24(11), 2418–2426 (2021).PubMed 
    Article 

    Google Scholar 
    Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers. Distrib. 14, 329–342 (2008).Article 

    Google Scholar 
    Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).PubMed 
    Article 

    Google Scholar 
    Kenworthy, J. M., Davoult, D. & Lejeusne, C. Compared stress tolerance to short-term exposure in native and invasive tunicates from the NE Atlantic: When the invader performs better. Mar. Biol. 165(10), 1–11 (2018).Article 

    Google Scholar 
    Gollasch, S., Galil, B. S., & Cohen, A. N. Bridging divides: Maritime canals as invasion corridors. In Bridging Divides: Maritime Canals as Invasion Corridors (Vol. 83). https://doi.org/10.1007/978-1-4020-5047-3 (2006).Galil, B. S. et al. ‘Double trouble’: The expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol. Invasions 17, 973–976 (2015).Article 

    Google Scholar 
    Jeschke, J. et al. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14, 1–20 (2012).Article 

    Google Scholar 
    Lowry, E. et al. Biological invasions: A field synopsis, systematic review, and database of the literature. Ecol. Evol. 3, 182–196 (2012).PubMed 
    Article 

    Google Scholar 
    Brockerhoff, A., & McLay, C. Human-Mediated Spread of Alien Crabs. In In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 27–106). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_2 (2011).Hammock, B. G. et al. Low food availability narrows the tolerance of the copepod eurytemora affinis to salinity, but not to temperature. Estuar. Coasts 39, 189–200 (2016).CAS 
    Article 

    Google Scholar 
    Rato, L. D., Crespo, D. & Lemos, M. F. L. Mechanisms of bioinvasions by coastal crabs using integrative approaches – A conceptual review. Ecol. Ind. 125, 107578 (2021).Article 

    Google Scholar 
    Weis, J. S. The role of behavior in the success of invasive crustaceans. Mar. Freshw. Behav. Physiol. 43, 83–98 (2010).Article 

    Google Scholar 
    Hänfling, B., Edwards, F. & Gherardi, F. Invasive alien Crustacea: Dispersal, establishment, impact and control. Biocontrol 56, 573–595 (2011).Article 

    Google Scholar 
    Kouba, A. et al. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Sci. Total Environ. 813, 152325 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Geburzi, J. C., & McCarthy, M. L. How Do They Do It? – Understanding the Success of Marine Invasive Species. In YOUMARES 8 – Oceans Across Boundaries: Learning from each other (pp. 109–124). Springer International Publishing. https://doi.org/10.1007/978-3-319-93284-2_8 (2018).Casties, I. & Briski, E. Life history traits of aquatic non-indigenous species: Freshwater vs. marine habitats. Aquat. Invasions 14, 566–581 (2019).Article 

    Google Scholar 
    Grosholz, E. D. & Ruiz, G. M. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus maenas. Biol. Cons. 78, 59–66 (1996).Article 

    Google Scholar 
    Geburzi, J., Graumann, G., Köhnk, S. & Brandis, D. First record of the Asian crab Hemigrapsus takanoi Asakura & Watanabe, 2005 (Decapoda, Brachyura, Varunidae) in the Baltic Sea. BioInvasions Rec. 4, 103–107 (2015).Article 

    Google Scholar 
    Briski, E., Ghabooli, S., Bailey, S. A. & MacIsaac, H. J. Invasion risk posed by macroinvertebrates transported in ships’ ballast tanks. Biol. Invasions 14, 1843–1850 (2012).Article 

    Google Scholar 
    Wasserstraßen-und Schifffahrtsverwaltung des Bundes. Halbjahresbilanz Nord-Ostsee-Kanal 2021. www.wsv.de (2021).Nour, O. M., Stumpp, M., Morón Lugo, S. C., Barboza, F. R. & Pansch, C. Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. Aquat. Invasions 15, 297–317 (2020).Article 

    Google Scholar 
    Andersson, A. et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 44(Suppl 3), 345–356 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    BACC Author Team. Assessment of Climate Change for the Baltic Sea Basin. (2008).BACC Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. (2015).Meier, H. E. M. et al. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim. Dyn. 39, 2421–2441 (2012).Article 

    Google Scholar 
    Meier, H. E. M. et al. Climate change in the baltic sea region: A summary. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2021-67 (2021).Article 

    Google Scholar 
    Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).Article 

    Google Scholar 
    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).Article 

    Google Scholar 
    Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).Article 

    Google Scholar 
    Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).Article 

    Google Scholar 
    Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).Article 

    Google Scholar 
    Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800 (2019).PubMed 
    Article 

    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22, 1513–1525 (2020).Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Invader relative impact potential: A new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).Article 

    Google Scholar 
    Cornelius, A., Wagner, K. & Buschbaum, C. Prey preferences, consumption rates and predation effects of Asian shore crabs (Hemigrapsus takanoi) in comparison to native shore crabs (Carcinus maenas) in northwestern Europe. Mar. Biodivers. 51(5), 1–17 (2021).Article 

    Google Scholar 
    Elner, R. W. The influence of temperature, sex and chela size in the foraging strategy of the shore crab, Carcinus maenas (L.). Mar. Behav. Physiol. 7, 15–24 (1980).Article 

    Google Scholar 
    Brose, U. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24, 28–34 (2010).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol. Evol. 10, 5946–5962 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, A. & Kraemer, G. P. Morphometry and claw strength of the non-native asian shore crab, Hemigrapsus sanguineus. Northeast. Nat. 20, 478–492 (2013).Article 

    Google Scholar 
    Sedova, L. G. The effect of temperature on the rate of oxygen consumption in the sea urchin Strongylocentrotus intermedius. Russ. J. Mar. Biol. 26, 51–53 (2000).Article 

    Google Scholar 
    Saucedo, P. E., Ocampo, L., Monteforte, M. & Bervera, H. Effect of temperature on oxygen consumption and ammonia excretion in the Calafa mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 229, 377–387 (2004).Article 

    Google Scholar 
    Nie, H. et al. Effects of temperature and salinity on oxygen consumption and ammonia excretion in different colour strains of the Manila clam, Ruditapes philippinarum. Aquac. Res. 48, 2778–2786 (2017).CAS 
    Article 

    Google Scholar 
    Nguyen, K. D. T. et al. Upper Temperature limits of tropical marine ectotherms: Global warming implications. PLoS ONE 6, e29340 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. In Comprehensive Physiology 2151–2202 (Wiley, Hoboken, 2012).Chapter 

    Google Scholar 
    Barrios-O’Neill, D., Dick, J. T., Emmerson, M. C., Ricciardi, A. & MacIsaac, H. J. Predator-free space, functional responses and biological invasions. Funct. Ecol. 29(3), 377–384 (2015).Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures Vol. 2 (Wiley, Hoboken, 2012).
    Google Scholar 
    Bollache, L., Dick, J., Farnsworth, K. & Montgomery, I. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 4, 166–169 (2008).PubMed 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846 (2013).Article 

    Google Scholar 
    Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The functional response ratio (FRR): Advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).Article 

    Google Scholar 
    Englund, G., Ohlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol Lett 14, 914–921 (2011).PubMed 
    Article 

    Google Scholar 
    Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 72(1), 95–112 (2002).Article 

    Google Scholar 
    Dell, A. I., Pawar, S. & van Savage, M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    South, J., Welsh, D., Anton, A., Sigwart, J. D. & Dick, J. T. A. Increasing temperature decreases the predatory effect of the intertidal shanny Lipophrys pholis on an amphipod prey. J. Fish Biol. 92, 150–164 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pörtner, H.-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Dickey, J. W. E. et al. Breathing space: Deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages. Biol. Invasions 23, 2831–2847 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watanabe, S., Wilder, M. N., Strüssmann, C. A. & Shinji, J. Short-term responses of the adults of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at different salinities: Osmoregulation, oxygen consumption, and ammonia excretion. J. Crustac. Biol. 29, 269–272 (2009).Article 

    Google Scholar 
    Wasserman, R. J. et al. Using functional responses to quantify interaction effects among predators. Funct. Ecol. 30, 1988–1998 (2016).Article 

    Google Scholar 
    Murdoch, W. W. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).Article 

    Google Scholar 
    Gonzalez, A., Lambert, A. & Ricciardi, A. When does ecosystem engineering cause invasion and species replacement?. Oikos 117, 1247–1257 (2008).Article 

    Google Scholar 
    King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. U.S.A 105, 20339–20343 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asakura, A. & Watanabe, S. Hemigrapsus takanoi, new species, a sibling species of the common Japanese Intertidal Crab H. penicillatus (Decapoda: Brachyura: Grapsoidea). J. Crustac. Biol. 25, 279–292 (2005).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.3, https://CRAN.R-project.org/package=DHARMa (2021).Crawley, M. J. The R Book (Wiley, Hoboken, 2007).MATH 
    Book 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
    Google Scholar 
    Lenth, R. v. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1, https://CRAN.R-project.org/package=emmeans (2021).Pritchard, D. frair: Tools for Functional Response Analysis. R package version 0.5.100, https://CRAN.R-project.org/package=frair (2017).Juliano, S.A., Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Cheiner, S.M. and Gurven, J., Eds., Design and Analysis of Ecological Experiments, 2nd Edition, Chapman and Hall, London, 178–196. (2001)Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369 (1972).Article 

    Google Scholar  More