Gibbs, J. P. Wetland loss and biodiversity conservation. Conserv. Biol. 14, 314–317 (2000).Article
Google Scholar
Turner, R. K. et al. Ecological-economic analysis of wetlands: Scientific integration for management and policy. Ecol. Econ. 35, 7–23 (2000).Article
Google Scholar
Zedler, J. B. & Kercher, S. Wetland resources: Status trends ecosystem services and restorability. Annu. Rev. Environ. Resour. 15, 39–74 (2005).Article
Google Scholar
Euliss, N. H., Smith, L. M., Wilcox, D. A. & Browne, B. A. Lining ecosystem processes with wetland management goals: Chartering a course for a sustainable future. Wetlands 28, 553–562 (2008).Article
Google Scholar
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change. 26, 152–158 (2014).Article
Google Scholar
Macreadie, P. J. et al. The future of blue carbon. Nat. Commun. 10, 3998 (2019).ADS
Article
Google Scholar
RAMSAR. Wise use of wetlands, Ramsar Handbooks, 4th edition (2010).Kingsford, R. T., Basset, A. & Jackson, L. Wetlands: Conservation’s poor cousins. Aquat. Conserv. 26, 892–916 (2016).Article
Google Scholar
Beck, M. W., Heck, K. L. & Able, K. W. The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 51, 633–641 (2001).Article
Google Scholar
Canu, D. M. et al. Adressing sustainability of clam farming in the Venice Lagoon. Ecol. Soc. 16, 26 (2010).
Google Scholar
Canu, D. M., Solidoro, C., Cossarini, G. & Giorgi, F. Effect of global change on bivalve rearing activity and the need for adaptive management. Clim. Res. 42, 13–26 (2011).Article
Google Scholar
Newton, A. et al. Anthropogenic pressures on Coastal Wetlands. Front. Ecol. Evol. 8, 144 (2020).Article
Google Scholar
Ayache, F. et al. Environmental characteristics landscape history and pressures on three coastal lagoons in the Southern Mediterranean Region: Merja Zerga (Morocco) Ghar El Melh (Tunisia) and Lake Manzala (Egypt). Hydrobiologia 622, 15–43 (2009).CAS
Article
Google Scholar
Solidoro, C. et al. Response of Venice Lagoon ecosystem to natural and anthropogenic pressures over the last 50 years. In Coastal Lagoons—Critical Habitats of Environmental Change (eds. Kennish, M. J. & Paerl, H. W.) 483–511 (2010).Newton, A. et al. Assessing quantifying and valuing the ecosystem services of coastal lagoons. J. Nat. Conserv. 44, 50–65 (2018).Article
Google Scholar
Newton, A. et al. An overview of ecological status vulnerability and future perspectives of European large shallow semi-enclosed coastal systems lagoons and transitional waters. Estuar. Coast. Shelf Sci. 140, 95–122 (2014).ADS
Article
Google Scholar
Béjaoui, B. et al. Random Forest model and TRIX used in combination to assess and diagnose the trophic status of Bizerte Lagoon, southern Mediterranean. Ecol. Indic. 71, 293–301 (2016).Article
Google Scholar
Ramdani, M. et al. North African wetland lakes: Characterization of nine sites included in the CASSARINA Project. Aquat. Ecol. 35, 281–302 (2001).Article
Google Scholar
Junk, W. J. et al. Current state of knowledge regarding the world’s wetlands and their future under global climate change: A synthesis. Aquat. Sci. 75, 151–167 (2013).CAS
Article
Google Scholar
Ouni, H. et al. Numerical modeling of hydrodynamic circulation in Ichkeul Lake-Tunisia. Energy Rep. 6, 208–213 (2020).Article
Google Scholar
Hollis, G. E. et al. Modeling and management of the internationally important wetland at Garaet Ichkeul Tunisia. Numéro 4 de IWRB special publication, International Waterfowl Research Bureau, ISSN 0962–6271 Volume 4 de International Waterfowl Research Bureau Slimbridge: IWRB special publication (ed. International Waterfowl Research Bureau) 1–121 (1986).Casagranda, C. & Boudouresque, C. F. A first quantification of the overall biomass, from phytoplankton to birds, of a Mediterranean brackish lagoon: Revisiting the ecosystem of Lake Ichkeul (Tunisia). Hydrobiologia 637, 73–85 (2010).Article
Google Scholar
Hamdi, N., Touihri, M. & Charfi, F. Diagnostic Écologique du Parc National Ichkeul (Tunisie) après la construction des barrages: Cas des oiseaux d’eau. Rev. Ecol-Terre Vie. 67, 41–62 (2012).
Google Scholar
UNESCO. Biosphere Reserve Information Tunisia Ichkeul, UNESCO-MAB. Biosphere Reserves Directory. (2009a).UNESCO. Ichkeul National Park http://whc.unesco.org/en/list/8/ (2009b).RAMSAR. Convention and Wetlands International. Information Sheet on Ramsar Wetlands Tunisia Ichkeul, Ramsar Sites Information Service. (2009).Tamisier, A., et al. Modelling aquatic ecosystems: Benefits, costs and risks, for a field biologist. Ichkeul Lake, Tunisia, a case study. In Limnology and Aquatic birds, Monitoring, modeling and management (eds. Comin, F. A., Herrera, J. A. & Ramirez, J.) 185–203 (2001).Giordani, G. et al. Nutrient fluxes in transitional zones of the Italian coast. LOICZ Reports & Studies No. 28, ii+157 pages, LOICZ, Texel, the Netherlands. (2005).Thomson, A. J., Giannopoulos, G., Pretty, J., Baggs, E. M. & Richardson, D. J. Biological sources and sinks of nitrous oxide and strategies to mitigate emissions. Phil. Trans. R. Soc. B367, 1157–1168 (2012).Article
Google Scholar
Chen, N., Wu, J., Chen, Z., Lu, T. & Wang, L. Spatial-temporal variation of dissolved N2 and denitrification in an agricultural river network, southeast China. Agric. Ecosyst. Environ. 189, 1–10 (2014).ADS
CAS
Article
Google Scholar
Loeks, B. M. & Cotner, J. B. Upper Midwest lakes are supersaturated with N2. Proc. Natl. Acad. Sci. USA 117, 17063–17067 (2020).Article
Google Scholar
Thomann, R. V., DiToro, D. M., Winfield, R. P. & O’Connor, D. J. Mathematical modelling of phytoplankton in Lake Ontario. Part 1. Model development and verification. U.S. Environmental Protection Agency, EPA-660/3-75-005, Corvallis, Oreg. 77 (1975).DiToro, D. M. & Connolly, J. P. Mathematical models of water quality in large lakes. Part 2: Lake Erie. U.S. Environmental Protection Agency, Duluth, Minnesota. EPA-600/3-80-065. 231. (1980)Jacobsen, O. S. & Jorgensen, S. E. A submodel for nitrogen release from sediments. Ecol. Model. 1, 147–151 (1975).CAS
Article
Google Scholar
Jorgensen, S. E., Kamp-Neilsen, L. & Jacobsen, O. S. A submodel for anaerobic mud-water exchange of phosphate. Ecol. Model. 1, 133–146 (1975).Article
Google Scholar
Jorgensen, S. E. An Eutrophication model for a lake. Ecol. Model. 2, 147–165 (1976).Article
Google Scholar
Jorgensen, S. E., Mejer, H. & Friis, M. Examination of a Lake model. Ecol. Model. 4, 253–278 (1978).Article
Google Scholar
Chapelle, A., Mesnage, V., Mazouni, N., Deslous-Paoli, J. M. & Picot, B. Modélisation des cycles de l’azote et du phosphore dans les sédiments d’une lagune soumise à une exploitation conchylicole. Oceanol. Acta. 17, 609–620 (1994).CAS
Google Scholar
Raillard, O. & Ménesguen, A. An ecosystem box model for estimating the carrying capacity of a macrotidal shellfish system. Mar. Ecol. Prog. Ser. 115, 117–130 (1994).ADS
Article
Google Scholar
Kremer, H. H. et al. Land–ocean interactions in the coastal zone: Science plan and implementation strategy, IGBP Report 51, IHDP Report 18. International Geosphere-Biosphere Programme. (2005).Strobl, R., Zaldivar, C. J., Somma, F., Stips, A. & Garcia, G. E. Application of the LOICZ Methodology to the Mediterranean Sea EUR 23936 EN. Luxembourg (Luxembourg): OPOCE. JRC52454. (2009).Swaney, D. P. & Giordani, G (Eds.). Proceedings of the LOICZ Workshop on Biogeochemical Budget Methodology and Applications, Providence RI, November 9–10, 2007. LOICZ Reports and Studies no. 37. GKSS Research Centre, Geesthacht. http://www.loicz.org/imperia/md/content/loicz/print/rsreports/biogeochemical_budget_methodology_and_applications.pdf (2011).Swaney, D. P., Smith, S. V. & Wulff, F. The LOICZ Biogeochemical Modeling Protocol and its Application to Estuarine Ecosystems. In Teratise on Estuarine and Coastal Ecosystem Science, Academic Press, Elsevier (eds. Bauer, J. E. & Bianchi, T. S.) 136–159 (2011).Glaeser, B., Kannen, A. & Kremer, H. Introduction: The future of coastal areas. Challenges for planning practice and research. Gaia-Ecol. Perspect. Sci. Soc. 18, 145–149 (2009).
Google Scholar
Glaeser, B., Bruckmeier, K., Glaser, M. & Krause, G. Social-ecological systems analysis in coastal and marine areas: A path toward integration of interdisciplinary knowledge. In Current Trends in Human Ecology. Cambridge Scholars Publishing (eds. Lopes, P. & Begossi, A.) 183–203 (2009b).Glaser, M. & Glaeser, B. The social dimension in the management of social ecological change. In Treatise on Estuarine and Coastal Science, Vol. 11: Integrated Management of Estuaries and Coasts. München: Elsevier (eds. Kremer, H. & Pinckney, J.) 59 (2011).Glaser, M. & Glaeser, B. Towards a framework for cross-scale and multi-level analysis of coastal and marine social-ecological systems dynamics. Reg. Environ. Change. 14, 2039–2052 (2014).Article
Google Scholar
Vybernaite-Lubiene, I. et al. Biogeochemical budgets of nutrients and metabolism in the curonian lagoon (Southeast Baltic Sea): Spatial and temporal variations. Water 14, 164 (2022).CAS
Article
Google Scholar
Yazidi, A., Saidi, S., Ben, M. N. & Darragi, F. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia). J. Afr. Earth. Sci. 134, 166–173 (2017).ADS
CAS
Article
Google Scholar
Goudling, M. et al. Ecosystem-based management of Amazon fisheries and wetlands. Fish Fish. 20, 138–158 (2018).
Google Scholar
Mitsch, W. J. & Gosselink, J. G. Wetlands 5th edn. (Wiley, 2015).
Google Scholar
World Bank 2022.Affouri, H. & Sahraoui, O. The sedimentary organic matter from a Lake Ichkeul core (far northern Tunisia): Rock-Eval and biomarker approach. J. Afr. Earth. Sci. 129, 248–259 (2017).ADS
CAS
Article
Google Scholar
Vanderkelen, I., van Lipzig, N. P. M. & Thiery, A. Modelling the water balance of Lake Victoria (East Africa)–Part 1: Observational analysis. Hydrol. Earth Syst. Sci. 22, 1–17 (2018).Article
Google Scholar
Coe, M. T. & Foley, J. A. Human and natural impacts on the water resources of the Lake Chad basin. J. Geophys. Res. Atmos. 106, 3349–3356 (2001).ADS
Article
Google Scholar
Gao, H., Bohn, T. J., Podest, E., McDonald, K. C. & Lettenmaier, D. P. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 6, 34021 (2011).Article
Google Scholar
Prange, M., Wilke, T. & Wesselingh, F. P. The other side of sea level change. Commun. Earth Environ. 1, 69 (2020).ADS
Article
Google Scholar
Glausiusz, J. Environmental Science: New life for the DeaSea?. Nature 464, 1118–1120 (2010).CAS
Article
Google Scholar
Gronewold, A. D. & Stow, C. A. Water Loss from the Great Lakes. Science 343, 1084–1085 (2014).ADS
Article
Google Scholar
Mei, X., Dai, Z., Du, J. & Chen, J. Linkage between Three Gorges Dam impacts and the dramatic recessions in China’s largest freshwater lake, Poyang Lake. Sci. Rep. 5, 18197 (2015).ADS
CAS
Article
Google Scholar
Micklin, P. The aral sea disaster. Ann. Rev. Earth Planet. Sci. 35, 47–72 (2007).ADS
CAS
Article
Google Scholar
Feng, L., Han, X., Hu, C. & Chen, X. Four decades of wetland changes of the largest freshwater lake in China: Possible linkage to the Three Gorges Dam?. Remote Sens. Environ. 176, 43–55 (2016).ADS
Article
Google Scholar
Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS
Article
Google Scholar
Awange, J. L. et al. The falling lake victoria water level: GRACE, TRIMM and CHAMP satellite analysis of the lake basin. Water Resour. Manag. 22, 775–796 (2008).Article
Google Scholar
Carroll, M. L., Townshend, R. H. G., DiMiceli, C. M., Loboda, T. & Sohlberg, R. A. Shrinkage lakes of the Artic: Spatial relationships and trajectory of change. Geophys. Res. Lett. 38, 20406 (2011).ADS
Article
Google Scholar
Lefebvre, G. et al. Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Sci. Total Environ. 692, 546–555 (2019).ADS
CAS
Article
Google Scholar
Touaylia, S., Ghannem, S., Toumi, H., Béjaoui, M. & Garrido, J. Assessment of heavy metals status in northern Tunisia using contamination indices: Case of the Ichkeul steams system. Int. J. Environ. Res. Public Health. 3, 209–217 (2016).
Google Scholar
Aouissi, J., Benabdallah, S., Lili, C. Z. & Cudennec, C. Modelling water quality to improve agricultural practices and land management in a Tunisian catchment using soil and water assessment tool. J. Environ. Qual. 43, 18–25 (2014).Article
Google Scholar
Aouissi, J., Lili, C. Z., Benabdallah, S. & Cudennec, C. Assessing the hydrological impacts of agricultural changes upstream of the Tunisian World Heritage sea-connected Ichkeul Lake. Proc. Int. Assoc. Hydrol. Sci. 365, 61–65 (2015).
Google Scholar
Fathalli, A. et al. Molecular and phylogenetic characterization of potentially toxic cyanobacteria in Tunisian freshwaters. Syst. Appl. Microbiol. 34, 303–310 (2011).CAS
Article
Google Scholar
Ouchir, N., Morin, S., Ben, A. L., Boughdiri, M. & Aydi, A. Periphytic diatom communities in tributaries around Lake Ichkeul, northern Tunisia: A preliminary assessment. Afr. J. Aquat. Sci. 42, 65–73 (2017).Article
Google Scholar
Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 4, 10 (2013).
Google Scholar
Paerl, H. W. & Huisman, J. Climate change: A catalyste for global expansion of harmful cyanobacteria blooms. Environ. Microb. Rep. 1, 27–37 (2009).CAS
Article
Google Scholar
Paerl, H. W., Nathan, S. H. & Calandrino, E. S. Controlling harmful cyanobacteria blooms in a world experiencing anthropogenic and climatic-induced change. Sci. Total Environ. 409, 1739–1745 (2011).ADS
CAS
Article
Google Scholar
O’Neil, J. M., Davis, T. M., Burford, M. A. & Gobler, C. J. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae 14, 313–334 (2012).Article
Google Scholar
Ben, S. F. et al. Pesticides in Ichkeul Lake-Bizerte Lagoon Watershed in Tunisia: Use, occurrence, and effects on bacteria and free-living marine nematodes. Environ. Sci. Pollut. Res. 23, 36–48 (2016).Article
Google Scholar
Bourhane, Z. et al. Microbial diversity alteration reveals biomarkers of contamination in soil-river-lake continuum. J. Hazard. Mater. 421, 126789 (2022).CAS
Article
Google Scholar
Kolzau, S. et al. Seasonal patterns of nitrogen and phosphorus limitation in four German lakes and the predictability of limitation status from Ambient nutrient concentrations. PLoS ONE 9, e96065 (2014).ADS
Article
Google Scholar
Abidi, M., Ben, A. R. & Gueddari, M. Assessment of the trophic status of the South Lagoon of Tunis (Tunisia, Mediterranean Sea); a Geochemical and Statistical Approaches. J. Chem. (2018).Saunders, D. L. & Kaffl, J. Denitrification rates in the sediments of Lake Memphremagog, Canda–USA. Water Res. 35, 1897–1904 (2001).CAS
Article
Google Scholar
Davidson, E. A. & Seitzinger, S. The enigma of progress in denitrification research. Ecol. Appl. 16, 2057–2063 (2006).Article
Google Scholar
Medina-Galvan, J. et al. Comparing the biogeochemical functioning of two arid subtropical coastal lagoons: The effect of wastewater discharges. Ecosyst. Health Sustain. 7, 1 (2021).Article
Google Scholar
Piehler, M. F. & Smyth, A. R. Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere. 2, 1–17 (2011).ADS
Article
Google Scholar
Loeks-Johson, B. M. & Cotner, J. B. Upper Midwest lakes are supersaturated with N2. Proc. Natl. Acad. Sci. U S A. 117, 17063–17067 (2020).Reddy, K. R., Patrick, W. H. & Lindau, C. W. Nitrification-denitrification at the plant root sediment interface in Wetlands. Limnol. Oceanogr. 34, 1004–1013 (1989).ADS
CAS
Article
Google Scholar
Adrian, A. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).ADS
Article
Google Scholar
Seo, C. D. & DeLaune, R. D. Fungal and bacterial mediated denitrification in wetlands: Influence of sediment redox condition. Water Res. 44, 2441–2450 (2010).CAS
Article
Google Scholar
Montzka, S. A., Dlugokencky, I. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).CAS
Article
Google Scholar
Sferratore, A., Billen, G. & Garnier, J. The S Modeling nutrient (N, P, Si ) budget in the Seine watershed: Application of the River Strahler model using data from local to global scale resolution Modeling nutrient (N, P, Si) budget in the Seine watershed: Application of the River Strahler model using data from local to global scale resolution. Glob. Biogeochem. Cycles. 19, 20 (2005).Article
Google Scholar
Béjaoui, B. et al. 3D modeling of phytoplankton seasonal variation and nutrient budget in a Southern Mediterranean Lagoon. Mar. Pollut. Bull. 114, 962–976 (2017).Article
Google Scholar
Shaiek, M., Fassatoui, C. & Romdhane, M. S. Past and present fish species recorded in the estuarine Lake Ichkeul, northern Tunisia. Afr. J. Aquat. Sci. 41, 171–180 (2016).Article
Google Scholar
INM. Données climatiques de la région de Bizerte. Institut National de Météorologie, Tunis, Tunisie. (2017).Rodier, J. et al. L’analyse de l’eau, Eaux naturelles, eaux résiduaires, eau de mer, Dunod Paris. (1996).Lorenzen, C. J. Determination of chlorophyll and pheopigments by spectrophotometric equations. Limnol. Oceanogr. 12, 343–346 (1967).ADS
CAS
Article
Google Scholar
Parsons, T. R., Maita, Y. & Lalli, C. M. A manual of chemical and biological methods for seawater analysis. Geol. Mag. 122, 570–570 (1980).
Google Scholar
Redfield, A. C. The biological control of chemical factors in the environment. Sci. Prog. 11, 150–170 (1960).CAS
Google Scholar
Gordon, D. C. et al. LOICZ biogeochemical modelling guidelines. LOICZ Rep and Stud. 5, 1–96 (1996).
Google Scholar
Seitzinger, S. P. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance. Limnol. Oceanogr. 33, 702–724 (1988).ADS
CAS
Google Scholar
Atkinson, M. J. & Smith, S. V. C:N: P ratios of benthic marine plants. Limnol. Oceanogr. 28, 568–574 (1983).ADS
CAS
Article
Google Scholar
APHA (American Public Health Association) Standard Methods for the Examination of Water and Wastewater. 18th Edition, American Public Health Association (APHA), American Water Works Association (AWWA) and Water Pollution Control Federation (WPCF), Washington DC (1992). More