More stories

  • in

    A functional definition to distinguish ponds from lakes and wetlands

    Current scientific definitions of pondsWe compiled existing scientific definitions of ponds by conducting a backwards and forwards search of papers referenced in or subsequently referencing three seminal pond papers8,17,18 (see “Methods”). We ultimately compiled 54 pond definitions from scientific literature (data available19). The variables most often included in definitions were surface area (91% of definitions), depth (48%), permanence (48%), origin (i.e., natural or human-made; 33%), and standing water (33%; Fig. 2a). When surface area or depth were included in definitions, they were often mentioned qualitatively (e.g., “small” and “shallow”). Of the 61% of definitions that included a maximum pond surface area, the range was 0.1 to 100 ha, the median was 2 ha, and all but two definitions were ≤ 10 ha (Fig. 2b). For depth, only 17% of studies provided a maximum depth cutoff, which ranged 2 to 8 m (Fig. 2c). Of the 26 definitions mentioning permanence, 22 stated that ponds could be temporary or permanent and only three indicated that ponds are exclusively permanent waterbodies. Of the 18 definitions mentioning origin, 17 mentioned that ponds could be natural or human-made with the remaining study indicating ponds can have diverse origins.Figure 2Summary of “pond” definitions from scientific literature including (a) presence of various morphological, biological, and physical characteristics in the definition as blue bars (n = 54 definitions total). Bold black lines indicate the number of definitions with surface area and depth values. Histograms of the upper limits from “pond” definitions for (b) surface area and (c) maximum depth.Full size imageOther important factors included in definitions related to morphometry. For example, 30% of definitions mentioned the potential for plants to colonize the entire basin, which relates to high light penetration (mentioned in 11% of definitions) and/or shallow depths. For example, Wetzel11 defines ponds as having enough light penetration that macrophyte photosynthesis can occur over the entire waterbody. As such, these conditions may be comparable to the littoral region of lakes (11% of definitions). Lastly, 7% of pond definitions mentioned mixing versus stratification, whereby ponds mix more than lakes20 yet less than shallow lakes due to a smaller fetch16.To assess if there was agreement in pond definitions among papers, we examined the number of times each definition was cited. Across the 54 definitions, there were 89 citations of 48 unique papers. Ultimately, most papers (75%) were only cited only once, indicating no consensus in pond definition. The most cited paper was Biggs et al.21, which accounted for 15% of citations. The next two most cited papers were Oertli et al.17 and Sondergaard et al.18, which were seminal papers included in our backwards-forwards search, and each comprised 8% of citations.International definitionsAt an international level, there is no consensus on how to discriminate among ponds, lakes, and wetlands. In North America, wetlands are generally considered to be shallow:  More

  • in

    Pleistocene drivers of Northwest African hydroclimate and vegetation

    de Menocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).ADS 
    Article 

    Google Scholar 
    de Menocal, P. B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    Donges, J. F. et al. Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution. Proc. Natl Acad. Sci. U.S.A. 108, 20422–20427 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maslin, M. A. et al. East african climate pulses and early human evolution. Quat. Sci. Rev. 101, 1–17 (2014).ADS 
    Article 

    Google Scholar 
    Larrasoaña, J. C., Roberts, A. P. & Rohling, E. J. Dynamics of Green Sahara periods and their role in hominin evolution. PLoS One 8, 76514 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Castañeda, I. S. et al. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa. Proc. Natl Acad. Sci. USA. 106, 20159–20163 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    United Nations World Food Programme. Scaling up for resilient individuals, communities and systems in the Sahel Operational Reference Note. (2018).Barbier, B., Yacouba, H., Karambiri, H., Zoromé, M. & Somé, B. Human vulnerability to climate variability in the sahel: Farmers’ adaptation strategies in northern burkina faso. Environ. Manag. 43, 790–803 (2009).ADS 
    Article 

    Google Scholar 
    Mohamed, A. Ben Climate change risks in Sahelian Africa. Reg. Environ. Chang. 11, 109–117 (2011).Article 

    Google Scholar 
    Biasutti, M. Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 118, 1613–1623 (2013).ADS 
    Article 

    Google Scholar 
    Roudier, P., Sultan, B., Quirion, P. & Berg, A. The impact of future climate change on West African crop yields: what does the recent literature say? Glob. Environ. Chang 21, 1073–1083 (2011).Article 

    Google Scholar 
    Keeling, R. F. & Keeling, C. D. Atmospheric monthly in situ CO2 data—Mauna Loa Observatory, Hawaii. In Scripps CO2 Program Data. UC San Diego Library Digital Collections. https://doi.org/10.6075/J08W3BHW (2017).Brandt, M. et al. An unexpectedly large count of trees in the West African Sahara and Sahel. Nature 587, 78–82 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Tiedemann, R., Sarnthein, M. & Shackleton, N. J. Astronomic timescale for the Pliocene Atlantic δ18O and dust flux records of Ocean Drilling Program Site 659. Paleoceanography 9, 619–638 (1994).ADS 
    Article 

    Google Scholar 
    de Menocal, P. B., Ruddiman, W. F. & Pokras, E. M. Influences of high‐ and low‐latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial atlantic Ocean Drilling Program Site 663. Paleoceanography 8, 209–242 (1993).ADS 
    Article 

    Google Scholar 
    Kuechler, R. R., Dupont, L. M. & Schefuß, E. Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa. Clim. Past 14, 73–84 (2018).Article 

    Google Scholar 
    Rose, C. et al. Changes in northeast African hydrology and vegetation associated with pliocene-pleistocene sapropel cycles. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150243 (2016).Article 
    CAS 

    Google Scholar 
    Tierney, J. E., Pausata, F. S. R. & De Menocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tierney, J. E. & Russell, J. M. Abrupt climate change in southeast tropical Africa influenced by Indian monsoon variability and ITCZ migration. Geophys. Res. Lett. 34, 1–6 (2007).Article 
    CAS 

    Google Scholar 
    Skonieczny, C. et al. Monsoon-driven Saharan dust variability over the past 240,000 years. Sci. Adv. 5, eaav1887 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McGee, D. et al. The magnitude, timing and abruptness of changes in North African dust deposition over the last 20,000 yr. Earth Planet. Sci. Lett. 371–372, 163–176 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Bosmans, J. H. C., Hilgen, F. J., Tuenter, E. & Lourens, L. J. Obliquity forcing of low-latitude climate. Clim. Past 11, 1335–1346 (2015).Article 

    Google Scholar 
    Bosmans, J. H. C., Drijfhout, S. S., Tuenter, E., Hilgen, F. J. & Lourens, L. J. Response of the North African summer monsoon to precession and obliquity forcings in the EC-Earth GCM. Clim. Dyn. 44, 279–297 (2014).Article 

    Google Scholar 
    Mantsis, D. F. et al. The response of large-scale circulation to obliquity-induced changes in meridional heating gradients. J. Clim. 27, 5504–5516 (2014).ADS 
    Article 

    Google Scholar 
    Rachmayani, R., Prange, M. & Schulz, M. Intra-interglacial climate variability: model simulations of Marine Isotope Stages 1, 5, 11, 13, and 15. Clim. Past 12, 677–695 (2016).Article 

    Google Scholar 
    Chou, C. & Neelin, J. D. Mechanisms limiting the northward extent of the northern summer monsoons over North America, Asia, and Africa. J. Clim. 16, 406–425 (2003).ADS 
    Article 

    Google Scholar 
    Bischoff, T., Schneider, T. & Meckler, A. N. A conceptual model for the response of tropical rainfall to orbital variations. J. Clim. 30, 8375–8391 (2017).ADS 
    Article 

    Google Scholar 
    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate.Bond, W. J. & Midgley, G. F. A proposed CO2-controlled mechanism of woody plant invasion in grasslands and savannas. Glob. Chang. Biol. 6, 865–869 (2000).ADS 
    Article 

    Google Scholar 
    Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. N. Phytol. 191, 197–209 (2011).Article 

    Google Scholar 
    Vallé, F., Dupont, L. M., Leroy, S. A. G. G., Schefuß, E. & Wefer, G. Pliocene environmental change in West Africa and the onset of strong NE trade winds (ODP Sites 659 and 658). Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 403–414 (2014).Article 

    Google Scholar 
    Leroy, S. & Dupont, L. Development of vegetation and continental aridity in northwestern Africa during the Late Pliocene: the pollen record of ODP site 658. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 295–316 (1994).Article 

    Google Scholar 
    Huang, Y., Dupont, L., Sarnthein, M., Hayes, J. M. & Eglinton, G. Mapping of C4 plant input from North West Africa into North East Atlantic sediments. Geochim. Cosmochim. Acta 64, 3505–3513 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Buitenwerf, R., Bond, W. J., Stevens, N. & Trollope, W. S. W. Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Glob. Chang. Biol. 18, 675–684 (2012).ADS 
    Article 

    Google Scholar 
    Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Stevens, N., Erasmus, B. F. N., Archibald, S. & Bond, W. J. Woody encroachment over 70 years in South African savannahs: overgrazing, global change or extinction aftershock? Philos. Trans. R. Soc. B Biol. Sci. 371, (2016).Kgope, B. S., Bond, W. J. & Midgley, G. F. Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral. Ecol. 35, 451–463 (2010).Article 

    Google Scholar 
    Scheff, J., Seager, R., Liu, H., Coats, S. & Observatory, L. E. Are glacials dry? Consequences for paleoclimatology and for greenhouse warming. J. Clim. 30, 6593–6609 (2017).ADS 
    Article 

    Google Scholar 
    Bragg, F. J. et al. Stable isotope and modelling evidence for CO2 as a driver of glacial-interglacial vegetation shifts in southern Africa. Biogeosciences 10, 2001–2010 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Bhattacharya, T., Tierney, J. E., Addison, J. A. & Murray, J. W. Ice-sheet modulation of deglacial North American monsoon intensification. Nat. Geosci. 11, 848–852 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    DiNezio, P. N. et al. Glacial changes in tropical climate amplified by the Indian Ocean. Sci. Adv. 4, 1–12 (2018).Article 

    Google Scholar 
    Kuechler, R. R., Schefuß, E., Beckmann, B., Dupont, L. & Wefer, G. NW African hydrology and vegetation during the Last Glacial cycle reflected in plant-wax-specific hydrogen and carbon isotopes. Quat. Sci. Rev. 82, 56–67 (2013).ADS 
    Article 

    Google Scholar 
    Raymo, M. E. & Nisancioglu, K. H. The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography 18, 1011 (2003).Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).Article 

    Google Scholar 
    Bosmans, J. H. C. et al. Precession and obliquity forcing of the freshwater budget over the Mediterranean. Quat. Sci. Rev. 123, 16–30 (2015).ADS 
    Article 

    Google Scholar 
    McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).ADS 
    Article 

    Google Scholar 
    Bradtmiller, L. I. et al. Changes in biological productivity along the northwest African margin over the past 20,000 years. Paleoceanography 31, 185–202 (2016).ADS 
    Article 

    Google Scholar 
    Guan, K., Wood, E. F. & Caylor, K. K. Multi-sensor derivation of regional vegetation fractional cover in Africa. Remote Sens. Environ. 124, 653–665 (2012).ADS 
    Article 

    Google Scholar 
    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).ADS 
    PubMed 
    Article 

    Google Scholar 
    Sage, R. F. The evolution of C4 photosynthesis. N. Phytol. 161, 341–370 (2004).CAS 
    Article 

    Google Scholar 
    Lloyd, J. et al. Contributions of woody and herbaceous vegetation to tropical savanna ecosystem productivity: a quasi-global estimate. Tree Physiol. 28, 451–468 (2008).PubMed 
    Article 

    Google Scholar 
    Archibald, S. & Hempson, G. P. Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150309 (2016).Elderfield, H. et al. Evolution of ocean temperature. Science 337, 704–709 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hooghiemstra, H., Lézine, A. M., Leroy, S. A. G., Dupont, L. & Marret, F. Late Quaternary palynology in marine sediments: a synthesis of the understanding of pollen distribution patterns in the NW African setting. Quat. Int. 148, 29–44 (2006).Article 

    Google Scholar 
    Dupont, L. M. Vegetation zones in NW Africa during the brunhes chron reconstructed from marine palynological data. Quat. Sci. Rev. 12, 189–202 (1993).ADS 
    Article 

    Google Scholar 
    Dallmeyer, A., Claussen, M., Lorenz, S. J. & Shanahan, T. The end of the African humid period as seen by a transient comprehensive Earth system model simulation of the last 8000 years. Clim 16, 117–140 (2020).ADS 

    Google Scholar 
    Collins, J. A. et al. Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nat. Geosci. 4, 42–45 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Pastouret, L., Chamley, H., Delibrias, G., Duplessy, J. & Thiede, J. Late quaternary climatic changes in western tropical africa deduced from deep-sea sedimentation off the Niger delta. Oceanol. Acta 1, 217–232 (1978).CAS 

    Google Scholar 
    Tierney, J. E., Lewis, S. C., Cook, B. I., LeGrande, A. N. & Schmidt, G. A. Model, proxy and isotopic perspectives on the East African Humid Period. Earth Planet. Sci. Lett. 307, 103–112 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    COHMAP members. Climatic changes of the last 18,000 years: observations and model simulations. Science 241, 1043–1052 (1988).Article 

    Google Scholar 
    Street-Perrott, F. A., Marchand, D. S., Roberts, N. & Harrison, S. P. Global lake-level variations from 18,000 to 0 years ago: a palaeoclimate analysis. U.S. Department of Energy Technical Report 46, 20545 (1989).de Menocal, P. B. & Tierney, J. E. Green Sahara: African humid periods paced by Earth’ s orbital changes. Nat. Educ. Knowl. 3(10):12 (2012).Sage, R. F. & Kubien, D. S. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynth. Res. 77, 209–225 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K. & Pflaumann, U. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature 293, 193–196 (1981).ADS 
    Article 

    Google Scholar 
    Rowland, G. H. et al. The spatial distribution of aeolian dust and terrigenous fluxes in the tropical Atlantic ocean since the last glacial maximum. Paleoceanogr. Paleoclimatol. 36, 1–17 (2021).Article 

    Google Scholar 
    Polissar, P. J., Rose, C., Uno, K. T., Phelps, S. R. & DeMenocal, P. Synchronous rise of African C4 ecosystems 10 million years ago in the absence of aridification. Nat. Geosci. 12, 657–660 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Jullien, E. et al. Low-latitude “dusty events” vs. high-latitude “icy Heinrich events”. Quat. Res. 68, 379–386 (2007).Article 

    Google Scholar 
    Pye, K. Aeolian Dust and Dust Deposits. (Academic Press, 1987).Skonieczny, C. et al. A three-year time series of mineral dust deposits on the West African margin: sedimentological and geochemical signatures and implications for interpretation of marine paleo-dust records. Earth Planet. Sci. Lett. 364, 145–156 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Malaizé, B. et al. The impact of African aridity on the isotopic signature of Atlantic deep waters across the Middle Pleistocene Transition. Quat. Res. 77, 182–191 (2012).Article 
    CAS 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, 1–17 (2005).
    Google Scholar 
    Polissar, P. J. & D’Andrea, W. J. Uncertainty in paleohydrologic reconstructions from molecular D values. Geochim. Cosmochim. Acta 129, 146–156 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Eggleston, S., Schmitt, J., Bereiter, B., Schneider, R. & Fischer, H. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle. Paleoceanography 31, 434–452 (2016).ADS 
    Article 

    Google Scholar 
    Tierney, J. E. & deMenocal, P. B. Abrupt shifts in Horn of Africa hydroclimate since the last glacial maximum. Science 342, 843–846 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schrag, D. P. et al. The oxygen isotopic composition of seawater during the Last Glacial Maximum. Quat. Sci. Rev. 21, 331–342 (2002).ADS 
    Article 

    Google Scholar 
    Vogts, A., Moossen, H., Rommerskirchen, F. & Rullkötter, J. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org. Geochem. 40, 1037–1054 (2009).CAS 
    Article 

    Google Scholar 
    Garcin, Y. et al. Reconstructing C3 and C4 vegetation cover using n-alkane carbon isotope ratios in recent lake sediments from Cameroon, Western Central Africa. Geochim. Cosmochim. Acta 142, 482–500 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    White, F. The Vegetation of Africa. (UNESCO 1983).Ritchie, J. C., Eyles, C. H. & Haynes, C. V. Sediment and pollen evidence for an early to mid-Holocene humid period in the eastern Sahara. Nature 314, 352–355 (1985).ADS 
    Article 

    Google Scholar 
    Watrin, J. et al. Plant migration and plant communities at the time of the ‘green Sahara’. Comptes Rendus—Geosci. 341, 656–670 (2009).ADS 
    Article 

    Google Scholar 
    Hély, C. et al. Holocene changes in African vegetation: tradeoff between climate and water availability. Clim 10, 681–686 (2014).ADS 

    Google Scholar 
    Lézine, A. M. Timing of vegetation changes at the end of the Holocene Humid Period in desert areas at the northern edge of the Atlantic and Indian monsoon systems. Comptes Rendus—Geosci. 341, 750–759 (2009).ADS 
    Article 

    Google Scholar 
    Dupont, L. M. & Hooghiemstra, H. The Saharan-Sahelian boundary during the Brunhes chron. Acta Bot. Neerl. 38, 405–415 (1989).Article 

    Google Scholar 
    Sachse, D. et al. Molecular paleohydrology: interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms. Annu. Rev. Earth Planet. Sci. 40, 221–249 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Dansgaard, W. Stable isotopes in precipitation. Tellus 16, 436–468 (1964).ADS 
    Article 

    Google Scholar 
    Worden, J. et al. Importance of rain evaporation and continental convection in the tropical water cycle. Nature 445, 528–532 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Risi, C., Bony, S. & Vimeux, F. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 2 Physical interpretation of the amount effect. J. Geophys. Res. Atmos. 113, D19306 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    Risi, C. et al. What controls the isotopic composition of the African monsoon precipitation? Insights from event-based precipitation collected during the 2006 AMMA field campaign. Geophys. Res. Lett. 35, L24808 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    Badewien, T., Vogts, A. & Rullkötter, J. n-Alkane distribution and carbon stable isotope composition in leaf waxes of C3 and C4 plants from Angola. Org. Geochem. 89–90, 71–79 (2015).Bezabih, M., Pellikaan, W. F., Tolera, A. & Hendriks, W. H. Evaluation of n-alkanes and their carbon isotope enrichments (d 13 C) as diet composition markers. Anim. Int. J. Anim. Biosci. 5, 57–66 (2011).CAS 
    Article 

    Google Scholar 
    Kristen, I. et al. Biomarker and stable carbon isotope analyses of sedimentary organic matter from Lake Tswaing: evidence for deglacial wetness and early Holocene drought from South Africa. 143–160 https://doi.org/10.1007/s10933-009-9393-9 (2010).Magill, C. R., Ashley, G. M. & Freeman, K. H. Water, plants, and early human habitats in eastern Africa. Proc. Natl Acad. Sci. 110, 1175–1180 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheddadi, R., Carré, M., Nourelbait, M., François, L. & Rhoujjati, A. Early Holocene greening of the Sahara requires Mediterranean winter rainfall. 1–7 https://doi.org/10.1073/pnas.2024898118 (2021).Niedermeyer, E. M. et al. Orbital- and millennial-scale changes in the hydrologic cycle and vegetation in the western African Sahel: insights from individual plant wax δD and δ13C. Quat. Sci. Rev. 29, 2996–3005 (2010).ADS 
    Article 

    Google Scholar 
    Adkins, J., deMenocal, P. & Eshel, G. The ‘African humid period’ and the record of marine upwelling from excess 230Th in Ocean Drilling Program Hole 658C. Paleoceanography 21, 1–14 (2006).Article 

    Google Scholar 
    Mcgee, D. Glacial—interglacial precipitation changes. Annu. Rev. Mar. Sci. 12, 525–557 (2020).Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 Years of West African monsoon and ocean thermal evolution. Science 316, 1303–1307 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schefuß, E., Schouten, S. & Schneider, R. R. Climatic controls on central African hydrology during the past 20,000 years. Nature 437, 1003–1006 (2005).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Weijers, J. W. H., Schefuß, E., Schouten, S. & Damsté, J. S. S. Coupled thermal and hydrological evolution of tropical Africa over the last deglaciation. Science 315, 1701–1704 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lezine, A. M. & Cazet, J. P. High-resolution pollen record from core KW31, Gulf of Guinea, documents the history of the lowland forests of West Equatorial Africa since 40,000 yr ago. Quat. Res. 64, 432–443 (2005).Article 

    Google Scholar 
    Marret, F., Scourse, J. D., Versteegh, G., Fred Jansen, J. H. & Schneider, R. Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation. J. Quat. Sci. 16, 761–766 (2001).Article 

    Google Scholar 
    Dupont, L. & Behling, H. Land-sea linkages during deglaciation: High-resolution records from the eastern Atlantic off the coast of Namibia and Angola (ODP site 1078). Quat. Int. 148, 19–28 (2006).Article 

    Google Scholar 
    Maley, J. & Brenac, P. Vegetation dynamics, palaeoenvironments and climatic changes in the forests of western Cameroon during the last 28,000 years B.P. Rev. Palaeobot. Palynol. 99, 157–187 (1998).Article 

    Google Scholar 
    Giresse, P., Maley, J. & Brenac, P. Late Quaternary palaeoenvironments in the Lake Barombi Mbo (West Cameroon) deduced from pollen and carbon isotopes of organic matter. Palaeogeogr. Palaeoclimatol. Palaeoecol. 107, 65–78 (1994).Article 

    Google Scholar 
    Maley, J. The African rain forest vegetation and palaeoenvironments during late quaternary. Clim. Change 19, 79–98 (1991).ADS 
    Article 

    Google Scholar 
    Talbot, M. R. & Johannessen, T. A high resolution paleoclimatic record for the last 27,500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth Planet. Sci. Lett. 110, 23–37 (1992).Anhuf, D. et al. Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 510–527 (2006).Article 

    Google Scholar 
    Elenga, H. et al. Pollen-based biome reconstruction for southern Europe and Africa 18,000 yr BP. J. Biogeogr. 27, 621–634 (2000).Article 

    Google Scholar 
    Gasse, F., Chalié, F., Vincens, A., Williams, M. A. J. & Williamson, D. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data. Quat. Sci. Rev. 27, 2316–2340 (2008).ADS 
    Article 

    Google Scholar 
    Wu, H., Guiot, J., Brewer, S. & Guo, Z. Climatic changes in Eurasia and Africa at the last glacial maximum and mid-Holocene: reconstruction from pollen data using inverse vegetation modelling. Clim. Dyn. 29, 211–229 (2007).Article 

    Google Scholar 
    Harrison, S. P. & Prentice, C. I. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Chang. Biol. 9, 983–1004 (2003).ADS 
    Article 

    Google Scholar 
    Prentice, I. C., Cleator, S. F., Huang, Y. H., Harrison, S. P. & Roulstone, I. Reconstructing ice-age palaeoclimates: quantifying low-CO2 effects on plants. Glob. Planet. Change 149, 166–176 (2017).ADS 
    Article 

    Google Scholar 
    Prentice, I. C., Villegas-Diaz, R. & Harrison, S. P. Accounting for atmospheric carbon dioxide variations in pollen-based reconstruction of past hydroclimates. Glob. Planet. Change 103790 https://doi.org/10.1016/j.gloplacha.2022.103790 (2022).Abell, J. T., Winckler, G., Anderson, R. F. & Herbert, T. D. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Winckler, G., Anderson, R. F. & Schlosser, P. Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition. Paleoceanography 20, 1–10 (2005).Article 

    Google Scholar 
    McGee, D. & Mukhopadhyay, S. Extraterrestrial He in sediments: from recorder of asteroid collisions to timekeeper of global environmental changes. in Advances in Isotope Geochemistry 155–176 (Springer, 2013). https://doi.org/10.1007/978-3-642-28836-4_7Costa, K. & McManus, J. Efficacy of 230Th normalization in sediments from the Juan de Fuca Ridge, northeast Pacific Ocean. Geochim. Cosmochim. Acta 197, 215–225 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Nier, A. O. & Schlutter, D. J. Extraction of helium from individual interplanetary dust particles by step-heating. Meteoritics 27, 166–173 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    McGee, D. et al. Tracking eolian dust with helium and thorium: impacts of grain size and provenance. Geochim. Cosmochim. Acta 175, 47–67 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Bhattacharya, A. Application of the Helium Isotopic System to Accretion of Terrestrial and Extraterrestrial Dust Through the Cenozoic. (Harvard University, 2012).Ebisuzaki, W. A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Clim. 10, 2147–2153 (1997).ADS 
    Article 

    Google Scholar 
    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).ADS 
    Article 

    Google Scholar 
    Grinsted, A., Moore, J. C. & Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 11, 515–533 (2004).Article 

    Google Scholar 
    Berger, A. L. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2361–2367 (1978).ADS 
    Article 

    Google Scholar 
    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).ADS 
    Article 

    Google Scholar 
    Eisenman, I. & Huybers, P. J. daily_insolation. (2006).Thyng, K. M., Greene, C. A., Hetland, R. D., Zimmerle, H. M. & DiMarco, S. F. True colors of oceanography. Oceanography 29, 9–13 (2016).Article 

    Google Scholar 
    Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Rommerskirchen, F. et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records. Geochem. Geophys. Geosyst. 4, (2003).Zhao, M., Dupont, L., Eglinton, G. & Teece, M. n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N.W. Africa over the last 160 kyr. Org. Geochem. 34, 131–143 (2003).CAS 
    Article 

    Google Scholar 
    Küechler, R. R. A Revised Orbital Forcing Concept of West African Climate and Vegetation Variability During the Pliocene and the Last Glacial Cycle-Molecular Isotopic Approach and Proxy Calibration. (University of Bremen, 2015). More

  • in

    Linking metabolites in eight bioactive forage species to their in vitro methane reduction potential across several cultivars and harvests

    Haque, M. N. Dietary manipulation: A sustainable way to mitigate methane emissions from ruminants. J. Anim. Sci. Technol. 60, 1–10. https://doi.org/10.1186/s40781-018-0175-7(2018) (2018).Article 

    Google Scholar 
    IPCC, 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press (in press).Lauder, A. R. et al. Offsetting methane emissions—An alternative to emission equivalence metrics. Int. J. Greenh. 12, 419–429. https://doi.org/10.1016/j.ijggc.2012.11.028 (2013).CAS 
    Article 

    Google Scholar 
    Hill, J., McSweeney, C., Wright, A. G., Bishop-Hurley, G. & Kalantar-Zadeh, K. Measuring methane production from ruminants. Trends Biotechnol. 34, 26–35. https://doi.org/10.1016/j.tibtech.2015.10.004 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Zanten, H. H. E. et al. Defining a land boundary for sustainable livestock consumption. Glob Change Biol. 24, 4185–4194. https://doi.org/10.1111/gcb.14321 (2018).ADS 
    Article 

    Google Scholar 
    Naumann, H. D., Tedeschi, L. O., Zeller, W. E. & Huntley, N. F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. de Zootec. 46, 929–949. https://doi.org/10.1590/S1806-92902017001200009 (2017).Article 

    Google Scholar 
    Mueller-Harvey, I. Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric. 86, 2010–2037. https://doi.org/10.1002/jsfa.2577 (2006).CAS 
    Article 

    Google Scholar 
    Burggraaf, V. T. et al. Morphology and agronomic performance of white clover with increased flowering and condensed tannin concentration. N. Z. J. Agric. Res. 49, 147–155. https://doi.org/10.1080/00288233.2006.9513704 (2006).CAS 
    Article 

    Google Scholar 
    Einarsson, R. et al. Crop production and nitrogen use in European cropland and grassland 1961–2019. Sci. Data 8, 288. https://doi.org/10.1038/s41597-021-01061-z (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salminen, J.-P. & Karonen, M. Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol. 25, 325–338. https://doi.org/10.1111/j.1365-2435.2010.01826.x (2011).Article 

    Google Scholar 
    Zeller, W. E. Activity, purification, and analysis of condensed tannins: current state of affairs and future endeavors. Crop Sci. 59, 886–904. https://doi.org/10.2135/cropsci2018.05.0323 (2019).CAS 
    Article 

    Google Scholar 
    Barbehenn, R. V. & Peter Constabel, C. Tannins in plant–herbivore interactions. Phytochemistry 72, 1551–1565. https://doi.org/10.1016/j.phytochem.2011.01.040 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chung, Y. H. et al. Enteric methane emission, diet digestibility, and nitrogen excretion from beef heifers fed sainfoin or alfalfa1. J. Anim. Sci. 91, 4861–4874. https://doi.org/10.2527/jas.2013-6498 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Christensen, R. G. et al. Effects of feeding birdsfoot trefoil hay on neutral detergent fiber digestion, nitrogen utilization efficiency, and lactational performance by dairy cows1. J. Dairy Sci. 98, 7982–7992. https://doi.org/10.3168/jds.2015-9348 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jonker, A. & Yu, P. The occurrence, biosynthesis, and molecular structure of proanthocyanidins and their effects on legume forage protein precipitation, digestion and absorption in the ruminant digestive tract. Int. J. Mol. Sci. 18, 1105. https://doi.org/10.3390/ijms18051105 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Barry, T. N. & McNabb, W. C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 81, 263–272. https://doi.org/10.1017/S0007114599000501 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Verma, S., Taube, F. & Malisch, C. S. Examining the variables leading to apparent incongruity between antimethanogenic potential of tannins and their observed effects in ruminants—A review. Sustainability 13, 2743. https://doi.org/10.3390/su13052743 (2021).CAS 
    Article 

    Google Scholar 
    Malisch, C. S. et al. Large variability of proanthocyanidin content and composition in Sainfoin (Onobrychis viciifolia). J. Agric. Food Chem. 63, 10234–10242. https://doi.org/10.1021/acs.jafc.5b04946 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verma, S., Salminen, J.-P., Taube, F. & Malisch, C. S. Large inter- and intraspecies variability of polyphenols and proanthocyanidins in eight temperate forage species indicates potential for their exploitation as nutraceuticals. J. Agric. Food Chem. 69, 12445–12455. https://doi.org/10.1021/acs.jafc.1c03898 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lorenz, H., Reinsch, T., Kluß, C., Taube, F. & Loges, R. Does the admixture of forage herbs affect the yield performance, yield stability and forage quality of a grass clover ley?. Sustainability 12, 5842. https://doi.org/10.3390/su12145842 (2020).Article 

    Google Scholar 
    Hofer, D. et al. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 53, 1023–1034. https://doi.org/10.1111/1365-2664.12694 (2016).Article 

    Google Scholar 
    Mueller-Harvey, I. et al. Benefits of condensed tannins in forage legumes fed to ruminants : Importance of structure, concentration and diet compsition. Crop Sci. 59, 861–885. https://doi.org/10.2135/cropsci2017.06.0369 (2017).CAS 
    Article 

    Google Scholar 
    Loza, C. et al. Assessing the potential of diverse forage mixtures to reduce enteric methane emissions in vitro. Animals 11, 1126. https://doi.org/10.3390/ani11041126 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Min, B. R. et al. Dietary mitigation of enteric methane emissions from ruminants: A review of plant tannin mitigation options. Anim. Nutr. 6, 231–236. https://doi.org/10.1016/j.aninu.2020.05.002 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Gastelen, S., Dijkstra, J. & Bannink, A. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep?. J. Dairy Sci. 102, 6109–6130. https://doi.org/10.3168/jds.2018-15785 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hatew, B. et al. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Anim. Feed Sci. Technol. 202, 20–31. https://doi.org/10.1016/j.anifeedsci.2015.01.012 (2015).CAS 
    Article 

    Google Scholar 
    Storm, I. M. L. D., Hellwing, A. L. F., Nielsen, N. I. & Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animals 2, 160–183. https://doi.org/10.3390/ani2020160 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dewhurst, R. J., Delaby, L., Moloney, A., Boland, T. & Lewis, E. Nutritive value of forage legumes used for grazing and silage. Irish J. Agric. Food Res. 48, 167–187 (2009).CAS 

    Google Scholar 
    Hakl, J., Fuksa, P., Konečná, J. & Šantrůček, J. Differences in the crude protein fractions of lucerne leaves and stems under different stand structures. Grass Forage Sci. 71, 413–423. https://doi.org/10.1111/gfs.12192 (2016).CAS 
    Article 

    Google Scholar 
    Jayanegara, A., Makkar, H. & Becker, K. The use of principal component analysis in identifying and integrating variables related to forage quality and methane production. J. Indones. Trop. Anim. 34, 241–247. https://doi.org/10.14710/jitaa.34.4.241-247 (2009).Article 

    Google Scholar 
    Maccarana, L. et al. Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach. J. Anim. Sci. Biotechnol. 7, 35–35. https://doi.org/10.1186/s40104-016-0094-8 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baruah, L., Malik, P. K., Kolte, A. P., Dhali, A. & Bhatta, R. Methane mitigation potential of phyto-sources from Northeast India and their effect on rumen fermentation characteristics and protozoa in vitro. Vet. World 11, 809–818. https://doi.org/10.14202/vetworld.2018.809-818 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hassanat, F. & Benchaar, C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93, 332–339. https://doi.org/10.1002/jsfa.5763 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naumann, H. et al. Relationships between structures of condensed tannins from texas legumes and methane production during in vitro rumen digestion. Molecules 23, 2123. https://doi.org/10.3390/molecules23092123 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Jayanegara, A., Makkar, H. P. S. & Becker, K. Addition of purified tannin sources and polyethylene glycol treatment on methane emission and rumen fermentation in vitro. Media Peternakan 38, 57–63. https://doi.org/10.5398/medpet.2015.38.1.57 (2015).Article 

    Google Scholar 
    Jayanegara, A., Goel, G., Makkar, H. P. S. & Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 209, 60–68. https://doi.org/10.1016/j.anifeedsci.2015.08.002 (2015).CAS 
    Article 

    Google Scholar 
    Hatew, B. et al. Diversity of condensed tannin structures affects rumen in vitro methane production in sainfoin (Onobrychis viciifolia) accessions. Grass Forage Sci. 70, 474–490. https://doi.org/10.1111/gfs.12125 (2015).CAS 
    Article 

    Google Scholar 
    Huyen, N. T. et al. Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci. 154, 1474–1487. https://doi.org/10.1017/S0021859616000393 (2016).CAS 
    Article 

    Google Scholar 
    Salami, S. A. et al. Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiy061 (2018).Article 
    PubMed 

    Google Scholar 
    Salminen, J. P., Karonen, M. & Sinkkonen, J. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem.-Eur. J. 17, 2806–2816. https://doi.org/10.1002/chem.201002662 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bezabih, M., Pellikaan, W. F., Tolera, A., Khan, N. A. & Hendriks, W. Chemical composition and in vitro total gas and methane production of forage species from the Mid Rift Valley grasslands of Ethiopia. Grass Forage Sci. 69, 635–643. https://doi.org/10.1111/gfs.12091 (2013).CAS 
    Article 

    Google Scholar 
    Navarrete, S., Kemp, P. D., Pain, S. J. & Back, P. J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed Sci. Technol. 222, 158–167. https://doi.org/10.1016/j.anifeedsci.2016.10.008 (2016).CAS 
    Article 

    Google Scholar 
    Basha, N. A., Scogings, P. F. & Nsahlai, I. V. Effects of season, browse species and polyethylene glycol addition on gas production kinetics of forages in the subhumid subtropical savannah, South Africa. J. Sci. Food Agric. 93, 1338–1348. https://doi.org/10.1002/jsfa.5895 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    O’Donovan, L. & Brooker, J. D. Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 147, 1025–1033. https://doi.org/10.1099/00221287-147-4-1025 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bhatta, R. et al. Difference in the nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 92, 5512–5522. https://doi.org/10.3168/jds.2008-1441 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Naumann, H. D. et al. Effect of molecular weight and concentration of legume condensed tannins on in vitro larval migration inhibition of Haemonchus contortus. Vet. Parasitol. 199, 93–98. https://doi.org/10.1016/j.vetpar.2013.09.025 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jayanegara, A., Goel, G., Makkar, H.P.S., & Becker, K. Reduction in
    methane emissions from ruminants by plant secondary metabolites: Effects of polyphenols and saponins. Food and Agriculture Organization of the United Nations (FAO) Rome, Italy, 151–157. ISBN 978-92-5-106697-3 (2010).Hatew, B. et al. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia) on in vitro ruminal methane production and fermentation characteristics. J. Anim. Physiol. Anim. Nutr. 100, 348–360. https://doi.org/10.1111/jpn.12336 (2016).CAS 
    Article 

    Google Scholar 
    Waghorn, G. C., Douglas, G. B., Niezen, J. H., McNabb, W. C. & Foote, A. G. Forages with condensed tannins-their management and nutritive value for ruminants. Proc. N. Z. Grassl. Assoc., 60, 89−98 (1998).Woodward, S. L., Waghorn, G. C. & Lassey, K. Early indications that feeding Lotus will reduce methane emissions from ruminants. Proc. N. Z. Soc. Anim. Prod. 61, 23–26 (2001).
    Google Scholar 
    Molle, G. et al. Responses to condensed tannins of flowering sulla (Hedysarum coronarium L.) grazed by dairy sheep: Part 1: Effects on feeding behaviour, intake, diet digestibility and performance. Livest. Sci. 123, 138–146. https://doi.org/10.1016/j.livsci.2008.11.018 (2009).Article 

    Google Scholar 
    Orlandi, T., Kozloski, G. V., Alves, T. P., Mesquita, F. R. & Ávila, S. C. Digestibility, ruminal fermentation and duodenal flux of amino acids in steers fed grass forage plus concentrate containing increasing levels of Acacia mearnsii tannin extract. Anim. Feed Sci. Technol. 210, 37–45. https://doi.org/10.1016/j.anifeedsci.2015.09.012 (2015).CAS 
    Article 

    Google Scholar 
    Patra, A. K. & Yu, Z. Effects of adaptation of in vitro rumen culture to garlic oil, nitrate, and saponin and their combinations on methanogenesis, fermentation, and abundances and diversity of microbial populations. Front. Microbiol. https://doi.org/10.3389/fmicb.2015.01434 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Niderkorn, V. et al. Effect of increasing the proportion of chicory in forage-based diets on intake and digestion by sheep. Animal 13, 718–726. https://doi.org/10.1017/S1751731118002185 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lee, J., Hemmingson, N., Minneé, E. & Clark, C. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics, and plant density. Crop Pasture Sci. 66, 168. https://doi.org/10.1071/CP14181 (2015).CAS 
    Article 

    Google Scholar 
    Cong, W.-F., Jing, J., Rasmussen, J., Søegaard, K. & Eriksen, J. Forbs enhance productivity of unfertilised grass-clover leys and support low-carbon bioenergy. Sci. Rep. 7, 1422. https://doi.org/10.1038/s41598-017-01632-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanderson, M. A., Labreveux, M., Hall, M. H. & Elwinger, G. F. Nutritive value of chicory and English plantain forage. Crop Sci. 43, 1797. https://doi.org/10.2135/cropsci2003.1797 (2003).CAS 
    Article 

    Google Scholar 
    Van Soest, P. J., Robertson, J. B. & Lewis, B. A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 (1991).Article 
    PubMed 

    Google Scholar 
    Engström, M. T. et al. Rapid qualitative and quantitative analyses of proanthocyanidin oligomers and polymers by UPLC-MS/MS. J. Agric. Food Chem. 62, 3390–3399. https://doi.org/10.1021/jf500745y (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Menke, K. & Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 28, 7–55 (1988).
    Google Scholar 
    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Venables, B. & Ripley, B. Generalised linear models. In Modern Applied Statistics With S.(4th edition) 183–208 (Springer, 2013). More

  • in

    Common and distinctive genomic features of Klebsiella pneumoniae thriving in the natural environment or in clinical settings

    Genome’s collection and phylogenetic analysisThe study examined the genomes of 139 isolates, 61 of environmental samples (ENV) and 78 clinical (CLI) (Supplementary Table 1, Supplementary Fig. 1), with origin in 21 countries: USA (23/139, 17%), UK, Portugal and Spain (each 15/139, 33%), China (14/139, 10%), Germany (13/139, 9%), Thailand (11/139, 8%) and other countries (each  More

  • in

    Evaluation of root lodging resistance during whole growth stage at the plant level in maize

    Experimental design and crop managementField experiments were conducted at Chengyang Agricultural Experimental Station, Qingdao, China (36°18′ 11″/N, 120°21′ 13″/E) in 2019 and 2020. The soil type in the field was brown loam that contained 22.76 g kg−1 organic matter, 82.39 mg kg−1 alkali-hydrolysable N, 25.10 mg kg−1 Olsen-P and 94.89 mg kg−1 exchangeable K. The test cultivars of maize were Jinhai5 with strong lodging resistance and Xundan20 with weak lodging resistance, which were repeated four times in plots laying out in randomized block designs. Plant density was 7.5 plants / m2 with the row spacing of 60 cm. the plot consisted of 8 rows length of 15 m. Two–three seeds per hole were manually sowed at 5 cm on 20 April 2019 and 24 April 2020, and the seedlings were thinned to the target planting density at V2, and harvested on 10 September and 14 September, respectively. Fertilization and irrigation management followed local production practices in maize.Sampling and measurementPlant samples were taken at V8, V12, R1, R2 and R6. Ten typical plants of each tested cultivars were selected to be subjected to mechanical and above-ground morphological measurements at each sampling. The other three maize plants were used to measure morphological traits of roots. Xundan20 was seriously damaged due to the storm in the late stage of maize growth in 2020, resulting in the missing data for physiological maturity.Determination of leaf area vertical distributionLeaf area of expanded leaves each was computed by the coefficient method: Single leaf area = length * width * 0.75. Leaf area for unexpanded leaves was estimated by the leaf weight method. Leaf area per plant was the sum of all individual green leaf areas. Leaf height is the height from the ground to the leaf collar position of maize.Determination of max root side-pulling resistanceSample plants were surrounded with water-proof steel devices inserted into underground, and watered to soil moisture over saturation at one day before mechanical testing. When measured, due to the limited space, all leaves of sample plants are removed in order to improve the measurement accuracy. The defoliated stalks were immobilized by a pair of lengthwise steel clamps to prevent stalks from bending (Fig. 7). After the digital pole dynamometer18 with a 1.5 m long slider and a main unit was linked to the stalks at a height of 80 cm away from the ground, the operator by hand pulled at a slow and uniform speed until the roots were pulled out. Records of load force, declination angle and sensor position were automatically stored in main unit during this operation. The peak value of forces, extracted from records, was taken as the max root side-pulling resistance.Figure 7Schematic diagram for measuring max root side-pulling resistance.Full size imageRoot anti-lodging indexBased on the method of Cui et al.6, the force value comparison is changed to the moment value comparison to calculate root anti-lodging index:$${text{AL}}_{root} = M_{root} / , M_{wind} = F_{root} / , F_{wind}$$
    (1)
    where M root is the root failure moment, M wind is the wind resultant moment. Root anti-lodging index indicates the ability of plants to resist root lodging. The larger its value is, the stronger the resistance is, and vice versa.$${text{M}}_{root} = F , *d$$
    (2)
    where F is the max root side-pulling resistance, d is moment arm, i.e., the length of force arm. As a component of root anti-lodging index, the root failure moment represents the ability of the root system to resist lateral pulling. The greater its value is, the better the resistance is, and vice versa.With the base of the stem as the fulcrum,$${text{M}}_{wind} = sum 0.{5}CA_{i} rho V^{2} h_{i}$$
    (3)
    where C is coefficient of air resistance, ρ is air mass density ,V is the wind speed , Ai is the area of a single leaf , hi is the height of leaf, ∑ represents to sum up over all leaves. C value is set to be 0.219. When encountering wind speed at grade 6 or higher, maize is more prone to lodging. Unless stated explicitly, the following analysis was limited to the upper wind speed for grade 6 wind20.Root morphological traitsThe number and length of all primary nodal roots were measured. Root-soil balls each of two or three tested plants were obtained after lateral root-pulling testing. The images of the three frontal sides, 120 degrees apart from each other, of the root-soil balls were taken using a digital camera. Ball volumes were then evaluated by considering them to be rotationally symmetric. Average volumes were used for further analysis.Single root tensile resistanceRoots after counting the number of nodal roots were used to measure the single root tensile resistance. First, clean the dust off roots. Then, diameters of roots were determined with a vernier caliper. Single root tensile resistance was measured by HF-500 digital push–pull apparatus. Fixed the upper and lower ends of the root, then one end moved slowly and uniformly, the other end was still until the root breaks. The peak tension force displayed by the instrument was taken as the single root tensile resistance.Statistical analysisBased on variance analysis, the Tukey method was used to compare the differences among means. The logarithmic transformation of variables was carried out to improve the homogeneity of error variance if appropriate.The substantive effect or influence of various factors on the response variable can be expressed by effect size of factors, which can be calculated under the framework of variance analysis. Effect size is the proportion of the effect of a certain factor in the total effect, which is a dimensionless number21,22,23.The formula for calculating effect size of factors is:$$omega^{2} = frac{{df_{effect} times left( {MS_{effect} – MS_{error} } right)}}{{SS_{total} + MS_{error} }}$$
    (4)
    where df is the degree of freedom, MS represents mean square.Two conceptual models were used when dealing with effect size. One model was of components, i.e., taking the logarithm of both sides of Eq. (1):$${text{LOG}}left( {{text{AL}}_{{{text{root}}}} } right) , = {text{ LOG}}left( {{text{M}}_{{{text{root}}}} } right) , + {text{ LOG}}left( {{text{M}}_{{{text{wind}}}} } right)$$
    (5)
    where LOG denotes logarithmic transformation.The other was the factorial model, i.e.,$${text{factors affecting AL}}_{{{text{root}}}} = {text{ wind grade }} + {text{ cultivar }} + {text{ growth stage}}$$
    (6)
    Experimental research and field studies on plants including the collection of plant materialThe authors declare that the cultivation of plants and carrying out study in Chengyang Agricultural Experimental Station complies with all relevant institutional, national and international guidelines and treaties.Statement of permissions and/or licenses for collection of plant or seed specimensThe authors declare that the seed specimens used in this study are publicly accessible seed materials and we were given explicit written permission to use them for this research. More

  • in

    Viscotoxin and lectin content in foliage and fruit of Viscum album L. on the main host trees of Hyrcanian forests

    Shah, S. et al. Ethno botanical study of medicinal plants of district charsadda, Khyber Pakhtoonkhwa, Pakistan. Int. J. Herb. Med. 8, 67–75 (2020).
    Google Scholar 
    Hu, R., Lin, C., Xu, W., Liu, Y. & Long, C. Ethnobotanical study on medicinal plants used by Mulam people in Guangxi, China. J. Ethnobiol. Ethnomed. 16, 1–50 (2020).Article 

    Google Scholar 
    Kooti, W. et al. Effective medicinal plant in cancer treatment, part 2: Review study. J. Evid. Based Complem. Altern. Med. 22, 982–995 (2017).CAS 
    Article 

    Google Scholar 
    Mazalovska, M. & Kouokam, J. C. Transiently expressed mistletoe lectin ii in nicotiana benthamiana demonstrates anticancer activity in vitro. Molecules 25, 2562 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Shukla, S. & Mehta, A. Anticancer potential of medicinal plants and their phytochemicals: A review. Rev. Bras. Bot. 38, 199–210 (2015).Article 

    Google Scholar 
    Shaikh, A. M., Shrivastava, B., Apte, K. G. & Navale, S. D. Medicinal plants as potential source of anticancer agents: A review. J. Pharmacogn. Phytochem. APT Res. Found. 5, 291–295 (2016).CAS 

    Google Scholar 
    Iqbal, J. et al. Plant-derived anticancer agents: A green anticancer approach. Asian Pac. J. Trop. Biomed. 7, 1129–1150 (2017).Article 

    Google Scholar 
    Zuber, D. Biological flora of Central Europe: Viscum album L. Flora 199, 181–203 (2004).Article 

    Google Scholar 
    Bar-Sela, G. White-Berry Mistletoe (Viscum album L.) as complementary treatment in cancer: Does it help?. Eur. J. Integr. Med. 3, e55–e62 (2011).Article 

    Google Scholar 
    Vicaş, S. I., Ruginǎ, D. & Socaciu, C. Comparative study about antioxidant activities of viscum album from different host trees, harvested in different seasons. J. Med. Plants Res. 5, 2237–2244 (2011).
    Google Scholar 
    Gastauer, M. & Meira-Neto, J. A. A. Updated angiosperm family tree for analyzing phylogenetic diversity and community structure. Acta Bot. Brasilica 31, 191–198 (2017).Article 

    Google Scholar 
    Varga, I. et al. Changes in the distribution of European mistletoe (Viscum album) in hungary during the last hundred years. Folia Geobot. 49, 559–577 (2014).Article 

    Google Scholar 
    Lech, P., Żółciak, A. & Hildebrand, R. Occurrence of european mistletoe (Viscum album l.) On forest trees in poland and its dynamics of spread in the period 2008–2018. Forests 11, 83 (2020).Article 

    Google Scholar 
    Büssing, A., Suzart, K. & Schweizer, K. Differences in the apoptosis-inducing properties of Viscum album L. extracts. Anticancer. Drugs 8, S9–S14 (1997).PubMed 
    Article 

    Google Scholar 
    Maier, G. & Fiebig, H. H. Absence of tumor growth stimulation in a panel of 16 human tumor cell lines by mistletoe extracts in vitro. Anticancer. Drugs 13, 373–379 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Orhan, D. D., Aslan, M., Sendogdu, N., Ergun, F. & Yesilada, E. Evaluation of the hypoglycemic effect and antioxidant activity of three Viscum album subspecies (European mistletoe) in streptozotocin-diabetic rats. J. Ethnopharmacol. 98, 95–102 (2005).PubMed 
    Article 

    Google Scholar 
    Ofem, O. E. et al. Effect of crude aqueous leaf extract of Viscum album (mistletoe) in hypertensive rats. Indian J. Pharmacol. 39, 15–19 (2007).Article 

    Google Scholar 
    Gupta, G. et al. Sedative, antiepileptic and antipsychotic effects of Viscum album L. (Loranthaceae) in mice and rats. J. Ethnopharmacol. 141, 810–816 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Orhue, P. O., Edomwande, E. C., Igbinosa, E. & Al, E. Antibacterial activity of extracts of mistletoe (Tapinanthus dodoneifollus (dc) dancer) from Cocoa tree (Theobrama cacao). Int. J. Herbs Pharmacol. Res. 3, 24–29 (2014).
    Google Scholar 
    Karagöz, A., Önay, E., Arda, N. & Kuru, A. Antiviral potency of mistletoe (Viscum album ssp. album) extracts against human parainfluenza virus type 2 in Vero cells. Phyther. Res. 17, 560–562 (2003).Article 

    Google Scholar 
    Thronicke, A., Schad, F., Debus, M., Grabowski, J. & Soldner, G. Viscum album L. therapy in oncology—An update on current evidence. Complement. Med. Res. https://doi.org/10.1159/000524184 (2022).Article 
    PubMed 

    Google Scholar 
    Lavastre, V., Cavalli, H., Ratthe, C. & Girard, D. Anti-inflammatory effect of Viscum album agglutinin-I (VAA-I): Induction of apoptosis in activated neutrophils and inhibition of lipopolysaccharide-induced neutrophilic inflammation in vivo. Clin. Exp. Immunol. 137, 272–278 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ćebović, T., Spasić, S. & Popović, M. Cytotoxic effects of the Viscum album L. extract on ehrlich tumour cells in vivo. Phyther. Res. 22, 1097–1103 (2008).Article 
    CAS 

    Google Scholar 
    Tröger, W. et al. Viscum album [L.] extract therapy in patients with locally advanced or metastatic pancreatic cancer: A randomised clinical trial on overall survival. Eur. J. Cancer 49, 3788–3797 (2013).PubMed 
    Article 

    Google Scholar 
    Ostermann, T. et al. A Systematic review and meta-analysis on the survival of cancer patients treated with a fermented Viscum album L. extract (Iscador): An update of findings. Complement. Med. Res. 27(260), 271 (2020).
    Google Scholar 
    Loef, M. & Walach, H. Quality of life in cancer patients treated with mistletoe: A systematic review and meta-analysis. BMC Complement. Med. Ther. 20, 227 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Szurpnicka, A., Kowalczuk, A. & Szterk, A. Biological activity of mistletoe: In vitro and in vivo studies and mechanisms of action. Arch. Pharm. Res. 43, 593–629 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, S., Kim, K.-C. & Lee, C. Mistletoe (Viscum album) extract targets Axl to suppress cell proliferation and overcome cisplatin- and erlotinib-resistance in non-small cell lung cancer cells. Phytomedicine 36, 183–193 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Urech, K. & Baumgartner, S. Chemical constituents of Viscum album L.: Implications for the pharmaceutical preparation of mistletoe. Transl. Res. Biomed. 4(11), 23 (2015).
    Google Scholar 
    Franz, H., Ziska, P. & Kindt, A. Isolation and properties of three lectins from mistletoe (Viscum album L.). Biochem. J. 195, 481–484 (1981).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ochocka, J. R. & Piotrowski, A. Biologically active compounds from European mistletoe (Viscum album L.). Can. J. Plant Pathol. 24, 21–28 (2002).CAS 
    Article 

    Google Scholar 
    Hajtó, T. et al. Oncopharmacological perspectives of a plant lectin (Viscum album agglutinin-I): Overview of recent results from in vitro experiments and in vivo animal models, and their possible relevance for clinical applications. Evid. Based Complement. Altern. Med. 2, 59–67 (2005).Article 

    Google Scholar 
    Nazaruk, J. & Orlikowski, P. Phytochemical profile and therapeutic potential of Viscum album L. Nat. Prod. Res. 30, 373–385 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Samuelsson, G. Mistletoe toxins. Syst. Zool. 22, 566–569 (1973).CAS 
    Article 

    Google Scholar 
    Debreczeni, J. É., Girmann, B., Zeeck, A., Krätzner, R. & Sheldrick, G. M. Structure of viscotoxin A3: Disulfide location from weak SAD data. Acta Crystallogr. Sect. D Biol. Crystallogr. 59, 2125–2132 (2003).Article 
    CAS 

    Google Scholar 
    Parsakhoo, A. & Jalilvand, H. Effects of ironwood (Parrotia persica c A Meyer ) leaf litter on forest soil nutrients content. Am. J. Agric. Environ. Sci. 5, 244–249 (2009).CAS 

    Google Scholar 
    Hosseini, S. M. Inscription of the Hyrcanian forests on the UNESCO world heritage list nomination file, UNESCO, 492. Available at: https://whc.unesco.org/en/list/1584/documents/ (2019).Hosseini, S. M. et al. The effects of Viscum album L. on foliar weight and nutrients content of host trees in Caspian forests (Iran). Polish J. Ecol. 55, 579–583 (2007).MathSciNet 
    CAS 

    Google Scholar 
    Sefidi, K., Marvie Mohadjer, M. R., Etemad, V. & Copenheaver, C. A. Stand characteristics and distribution of a relict population of persian ironwood (Parrotia persica CA Meyer) in northern Iran. Flora Morphol. Distrib. Funct. Ecol. Plants 206, 418–422 (2011).Article 

    Google Scholar 
    Cărăbuş, M. C., Leinemann, L., Curtu, A. L. & Şofletea, N. Preliminary results on the genetic diversity of Carpinus betulus in Carpathian populations. Bull. Transilv. Univ. Brasov, Ser. II For Wood Ind. Agric. Food Eng. 8, 1–6 (2015).
    Google Scholar 
    Barbasz, A., Kreczmer, B., Rudolphi-Skorska, E. & Sieprawska, A. Biologically active substances in plant extracts from mistletoe Viscum album and trees: fir (Abies alba Mill.), pine (Pinus sylvestris L.) and yew (Taxus baccata L.). Herba Pol. 58, 16–26 (2012).
    Google Scholar 
    Wójciak-Kosior, M. et al. Evaluation of seasonal changes of triterpenic acid contents in viscum album from different host trees. Pharm. Biol. 55, 1–4 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Stefanucci, A. et al. Viscum album L. homogenizer-assisted and ultrasound-assisted extracts as potential sources of bioactive compounds. J. Food Biochem. 44, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Urech, K., Schaller, G. & Jäggy, C. Viscotoxins, mistletoe lectins and their isoforms in mistletoe (Viscum album L.) extracts Iscador: Analytical results on pharmaceutical processing of mistletoe. Drug Res. 56, 428–434 (2006).CAS 

    Google Scholar 
    Soursouri, A., Hosseini, S. M. & Fattahi, F. Biochemical analysis of European mistletoe (Viscum album L.) foliage and fruit settled on Persian ironwood (Parrotia persica C. A. Mey) and hornbeam (Carpinus betulus L.). Biocatal. Agric. Biotechnol. 22, 101360 (2019).Article 

    Google Scholar 
    Önay-Uçar, E., Karagöz, A. & Arda, N. Antioxidant activity of Viscum album ssp. album. Fitoterapia 77, 556–560 (2006).PubMed 
    Article 

    Google Scholar 
    Simona, V., Rugina, D. & Socaciu, C. Antioxidant activities of Viscum album’s leaves from various host trees. Bull. Univ Agric. Sci. Vet. Med. Cluj Napoca Agric. 65, 327–332 (2008).
    Google Scholar 
    Schaller, G., Urech, K., Grazi, G. & Giannattasio, M. Viscotoxin composition of the three European subspecies of Viscum album. Planta Med. 64, 677–678 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holandino, C. et al. Phytochemical analysis and in vitro anti-proliferative activity of Viscum album ethanolic extracts. BMC Complement. Med. Ther. 20, 215 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zuber, D. & Widmer, A. Phylogeography and host race differentiation in the European mistletoe (Viscum album L.). Mol. Ecol. 18, 1946–1962 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schaller, G., Urech, K. & Giannattasio, M. Cytotoxicity of different viscotoxins and extracts from the European subspecies of Viscum album L. Phyther. Res. 10, 473–477 (1996).CAS 
    Article 

    Google Scholar 
    Eggenschwiler, J. et al. Mistletoe lectin is not the only cytotoxic component in fermented preparations of Viscum album from white fir (Abies pectinata). BMC Complement. Altern. Med. 7, 14 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jaggy, C., Musielski, H., Urech, K. & Schaller, G. Quantitative determination of lectins in mistletoe preparations. Arzneimittel-Forschung/Drug Res. 45, 905–909 (1995).CAS 

    Google Scholar  More

  • in

    Honey bee symbiont buffers larvae against nutritional stress and supplements lysine

    Dolezal AG, Toth AL. Feedbacks between nutrition and disease in honey bee health. Curr Opin Insect Sci. 2018;26:114–9.PubMed 
    Article 

    Google Scholar 
    Scofield HN, Mattila HR. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS ONE. 2015;10:e0121731.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Akman Gündüz E, Douglas AE. Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc R Soc B Biol Sci. 2009;276:987–91.Article 
    CAS 

    Google Scholar 
    Wu D, Daugherty SC, Van Aken SE, Pai GH, Watkins KL, Khouri H, et al. Metabolic Complementarity and Genomics of the Dual Bacterial Symbiosis of Sharpshooters. PLoS Biol 2006;4:e188.Bing X, Attardo GM, Vigneron A, Aksoy E, Scolari F, Malacrida A, et al. Unravelling the relationship between the tsetse fly and its obligate symbiont Wigglesworthia: transcriptomic and metabolomic landscapes reveal highly integrated physiological networks. Proc R Soc B Biol Sci. 2017; 284:20170360.Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng X-Y, et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc Natl Acad Sci USA. 2019;116:22673–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flórez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, et al. An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun. 2018;9:2478.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kaltenpoth M, Göttler W, Herzner G, Strohm E. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr Biol. 2005;15:475–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliver KM, Degnan PH, Hunter MS, Moran NA. Bacteriophages encode factors required for protection in a symbiotic mutualism. Science 2009;325:992–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011;334:670–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Boulétreau M. Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA. 2001;98:6247–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ. Microbial factor-mediated development in a host-bacterial mutualism. Science 2004;306:1186–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chun CK, Troll JV, Koroleva I, Brown B, Manzella L, Snir E, et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc Natl Acad Sci USA. 2008;105:11323–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 2014;343:529–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X. Molecular basis of symbiosis between Rhizobium and legumes. Nature 1997;387:394–401.CAS 
    PubMed 
    Article 

    Google Scholar 
    Médigue C, Masson-Boivin C, Gilbert LB, Cruveiller S, Gris C, Batut J, et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 2010;8:e1000280.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brucker RM, Bordenstein SR. Speciation by symbiosis. Trends Ecol Evol. 2012;27:443–51.PubMed 
    Article 

    Google Scholar 
    Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet. 2008;42:165–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moran NA, Tran P, Gerardo NM. Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol. 2005;71:8802–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lee FJ, Miller KI, McKinlay JB, Newton ILG. Differential carbohydrate utilization and organic acid production by honey bee symbionts. FEMS Microbiol Ecol. 2018;94:fiy113.CAS 
    Article 

    Google Scholar 
    Lee FJ, Rusch DB, Stewart FJ, Mattila HR, Newton ILG. Saccharide breakdown and fermentation by the honey bee gut microbiome. Environ Microbiol. 2015;17:796–815.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, et al. Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio 2016;7:e01326–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kešnerová L, Mars RAT, Ellegaard KM, Troilo M, Sauer U, Engel P. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol. 2017;15:e2003467.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gallai N, Salles JM, Settele J, Vaissière BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. 2009;68:810–21.Article 

    Google Scholar 
    Brodschneider R, Gray A, Adjlane N, Ballis A, Brusbardis V, Charrière JD, et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J Apic Res. 2018;57:452–7.Article 

    Google Scholar 
    Kulhanek K, Steinhauer N, Rennich K, Caron DM, Sagili RR, Pettis JS, et al. A national survey of managed honey bee 2015-6 annual colony losses in the USA. J Apic Res. 2017;56:328–40.Article 

    Google Scholar 
    Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 2015;347:1255957.PubMed 
    Article 
    CAS 

    Google Scholar 
    Dolezal AG, Carrillo-Tripp J, Judd TM, Allen Miller W, Bonning BC, Toth AL. Interacting stressors matter: Diet quality and virus infection in honeybee health. R Soc Open Sci. 2019;6:81803.Article 
    CAS 

    Google Scholar 
    St Clair AL, Zhang G, Dolezal AG, O’Neal ME, Toth AL, et al. Diversified farming in a monoculture landscape: effects on honey bee health and wild bee communities. Environ Entomol. 2020;49:753–64.Article 

    Google Scholar 
    Naug D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol Conserv. 2009;142:2369–72.Article 

    Google Scholar 
    Taha EKA, Al-Kahtani S, Taha R. Protein content and amino acids composition of bee-pollens from major floral sources in Al-Ahsa, eastern Saudi Arabia. Saudi J Biol Sci. 2019;26:232–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Groot AP. Amino acid requirements for growth of the honeybee (Apis mellifica L.). Experientia 1952;8:192–4.Article 

    Google Scholar 
    Brodschneider R, Crailsheim K. Nutrition and health in honey bees. Apidologie 2010;41:278–94.Article 

    Google Scholar 
    Keller I, Fluri P, Imdorf A. Pollen nutrition and colony development in honey bees – Part II. Bee World. 2005;86:27–34.Article 

    Google Scholar 
    Huang Z. Pollen nutrition affects honey bee stress resistance. Terr Arthropod Rev. 2012;5:175–89.Article 

    Google Scholar 
    van Dooremalen C, Stam E, Gerritsen L, Cornelissen B, van der Steen J, van Langevelde F, et al. Interactive effect of reduced pollen availability and Varroa destructor infestation limits growth and protein content of young honey bees. J Insect Physiol. 2013;59:487–93.PubMed 
    Article 
    CAS 

    Google Scholar 
    Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, et al. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol. 2007;5:48.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sannino DR, Dobson AJ, Edwards K, Angert ER, Buchon N. The Drosophila melanogaster gut microbiota provisions thiamine to its host. MBio 2018;9:e00155–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hammer TJ, Moran NA. Links between metamorphosis and symbiosis in holometabolous insects. Philos Trans R Soc B Biol Sci. 2019;374:20190068.CAS 
    Article 

    Google Scholar 
    Kowallik V, Mikheyev AS. Honey bee larval and adult microbime life stages are effectively decoupled with vertical transmisson overcoming early life perturbations. mBio 2021;12:e02966–21.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 2011;14:403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wright GA, Nicolson SW, Shafir S. Nutritional physiology and ecology of honey bees. Annu Rev Entomol. 2017;63:327–44.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tarpy DR, Mattila HR, Newton ILG. Development of the honey bee gut microbiome throughout the queen-rearing process. Appl Environ Microbiol. 2015;81:3182–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Corby-Harris V, Snyder LA, Schwan MR, Maes P, McFrederick QS, Anderson KE. Origin and effect of Alpha 2.2 Acetobacteraceae in honey bee larvae and description of Parasaccharibacter apium gen. nov., sp. nov. Appl Environ Microbiol. 2014;80:7460–72.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Vojvodic S, Rehan SM, Anderson KE. Microbial gut diversity of Africanized and European honey bee larval instars. PLoS ONE. 2013;8:72106.Article 
    CAS 

    Google Scholar 
    Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, et al. Dynamic microbiome evolution in social bees. Sci Adv. 2017;3:e1600513.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen O, Ashkenazy H, Belinky F, Huchon D, Pupko T. GLOOME: Gain loss mapping engine. Bioinformatics 2010;26:2914–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    Price MN, Deutschbauer AM, Arkin AP. GapMind: Automated annotation of amino acid biosynthesis. mSystems 2020;5:e00291–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schmehl DR, Tomé HVV, Mortensen AN, Martins GF, Ellis JD. Protocol for the in vitro rearing of honey bee (Apis mellifera L.) workers. J Apic Res. 2016;55:113–29.Article 

    Google Scholar 
    Li H, Tennessen JM. Preparation of Drosophila larval samples for gas chromatography-mass spectrometry (GC-MS)-based metabolomics. J Vis Exp. 2018;136:e57847.
    Google Scholar 
    Rortais A, Arnold G, Halm MP, Touffet-Briens F. Modes of honeybees exposure to systemic insecticides: Estimated amounts of contaminated pollen and nectar consumed by different categories of bees. Apidologie 2005;36:71–83.CAS 
    Article 

    Google Scholar 
    Buttstedt A, Mureşan CI, Lilie H, Hause G, Ihling CH, Schulze SH, et al. How honeybees defy gravity with royal jelly to raise queens. Curr Biol. 2018;28:1095–1100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fratini F, Cilia G, Mancini S, Felicioli A. Royal jelly: An ancient remedy with remarkable antibacterial properties. Microbiol Res. 2016;192:130–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fontana R, Mendes MA, De Souza BM, Konno K, César LMM, Malaspina O, et al. Jelleines: A family of antimicrobial peptides from the royal jelly of honeybees (Apis mellifera). Peptides 2004;25:919–28.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rokop ZP, Horton MA, Newton ILG. Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl Environ Microbiol. 2015;81:7261–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crailsheim K, Brodschneider R, Aupinel P, Behrens D, Genersch E, Vollmann J, et al. Standard methods for artificial rearing of Apis mellifera larvae. J Apic Res. 2013;52:1–16.Article 

    Google Scholar 
    Smith EA, Newton ILG. Genomic signatures of honey bee association in an acetic acid symbiont. Genome Biol Evol. 2020;12:1882–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kaftanoglu O, Linksvayer TA, Page RE. Rearing honey bees, Apis mellifera, in vitro 1: Effects of sugar concentrations on survival and development. J Insect Sci. 2011;11:96.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aupinel P, Fortini D, Dufour H, Tasei J-N, Michaud B, Odoux J-F, et al. Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae. Bull Insectol. 2005;58:107–11.
    Google Scholar 
    Hansen AK, Moran NA. Aphid genome expression reveals host-symbiont cooperation in the production of amino acids. Proc Natl Acad Sci USA. 2011;108:2849–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCutcheon JP, McDonald BR, Moran NA. Convergent evolution of metabolic roles in bacterial co-symbionts of insects. Proc Natl Acad Sci USA. 2009;106:15394–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. Aps Nat. 2000;407:81–86.CAS 

    Google Scholar 
    Gil R, Silva FJ, Zientz E, Delmotte F, González-Candelas F, Latorre A, et al. The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes. Proc Natl Acad Sci USA. 2003;100:9388–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCutcheon JP, Moran NA. Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol. 2012;10:13–26.CAS 
    Article 

    Google Scholar 
    Wernegreen JJ, Lazarus AB, Degnan PH. Small genome of Candidatus Blochmannia, the bacterial endosymbiont of Camponotus, implies irreversible specialization to an intracellular lifestyle. Microbiology 2002;148:2551–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    McCutcheon JP, Moran NA. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. Proc Natl Acad Sci USA. 2007;104:19392–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bennett GM, Mccutcheon JP, Macdonald BR, Romanovicz D, Moran NA. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis. mBio 2014;5:e01697–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Husnik F, Nikoh N, Koga R, Ross L, Duncan RP, Fujie M, et al. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 2013;153:1567.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bao XY, Yan JY, Yao YL, Wang Y, Bin, Visendi P, Seal S, et al. Lysine provisioning by horizontally acquired genes promotes mutual dependence between whitefly and two intracellular symbionts. PLOS Pathog. 2021;17:e1010120.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cotte JF, Casabianca H, Giroud B, Albert M, Lheritier J, Grenier-Loustalot MF. Characterization of honey amino acid profiles using high-pressure liquid chromatography to control authenticity. Anal Bioanal Chem. 2004;378:1342–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker HG. Non-sugar chemical constituents of nectar. Apidologie 1977;8:349–56.Article 

    Google Scholar 
    Nyholm SV, McFall-Ngai MJ. The winnowing: Establishing the squid – Vibrios symbiosis. Nat Rev Microbiol. 2004;2:632–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol. 2007;73:4308–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng XY, et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc Natl Acad Sci USA. 2019;116:22673–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oono R, Anderson CG, Denison RF. Failure to fix nitrogen by non-reproductive symbiotic rhizobia triggers host sanctions that reduce fitness of their reproductive clonemates. Proc R Soc B Biol Sci. 2011;278:2698–703.Article 

    Google Scholar 
    Brown BP, Wernegreen JJ. Genomic erosion and extensive horizontal gene transfer in gut-associated Acetobacteraceae. BMC Genom. 2019;20:1–15.CAS 
    Article 

    Google Scholar 
    Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Riboswitches: the oldest mechanism for the regulation of gene expression? Trends Genet. 2004;20:44–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Meijuan X, Rao Z, Yang J, Dou W, Xu Z. The effect of a LYSE exporter overexpression on L-arginine production in Corynebacterium crenatum. Curr Microbiol. 2013;67:271–8.Article 
    CAS 

    Google Scholar 
    Indurthi SM, Chou H-T, Lu C-D. Molecular characterization of lysR-lysXE, gcdR-gcdHG and amaR-amaAB operons for lysine export and catabolism: a comprehensive lysine catabolic network in Pseudomonas aeruginosa PAO1. Microbiology 2016;162:876–88.CAS 
    Article 

    Google Scholar 
    Pathania A, Sardesai AA. Distinct paths for basic amino acid export in Escherichia coli: YbjE (LysO) mediates export of L-lysine. J Bacteriol. 2015;197:2036–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller DL, Smith EA, Newton ILG. A bacterial symbiont protects honey bees from fungal disease. mBio 2021;12:e00503–21.CAS 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Sustainable small-scale fisheries can help people and the planet

    More than three billion people rely on the ocean to make a living, most of whom are in developing countries. For some 17% of the world’s population, fisheries and aquaculture provide the main source of animal protein. For the least-developed countries, fish contributes about 29% of animal protein intake; in other developing countries, it accounts for 19%1.As the global population increases, the demand for seafood is expected to rise, too. Already, Africa and Asia have seen fish production double over the past few decades. Globally, fish consumption is set to rise by around 15% by 20302.Although ocean ecosystems are strained by climate change, overfishing and more, studies nevertheless suggest that seafood can be expanded sustainably to meet future food demands3. Last year, international efforts promoting this approach included the Blue Food Assessment (a joint initiative of 25 research institutions) and the United Nations Food Systems Summit.Success will depend on small-scale fisheries. Small operations tend to deliver both food and income directly to the people who need them most, and locals have a strong incentive to make their practices sustainable. What’s more, these fisheries can be remarkably efficient. Almost everything that hand-to-mouth fisheries catch is consumed. By contrast, around 20% of the fish caught by industrial fleets is estimated to be wasted, mainly because of unwanted by-catch4. So, whereas large-scale operators land more fish, small-scale fisheries provide a larger share of the fish that is actually consumed.Small fishers rarely have the right resources to expand their operations, or even to survive. If they do scale up, they might lose some of their current advantages or engage in the same harmful practices as do large commercial fisheries. Managed with care, however, small fisheries could provide win–wins for livelihoods and the environment. Making this happen should be high on the agenda at the UN Ocean Conference in Lisbon this month.As someone who has studied food security and policymaking for decades, here I suggest ways to support and strengthen artisanal fishing operations.Small reformsThe potential and importance of small-scale fisheries has been increasingly recognized over the past decade. In 2014, the UN Food and Agriculture Organization (FAO) provided voluntary guidelines to support sustainable small-scale fisheries, aimed at improving food security and eradicating poverty. A forthcoming report by the FAO, Duke University in Durham, North Carolina, and the non-profit organization WorldFish, headquartered in Penang, Malaysia, will conclude a remarkable initiative to collate case studies, questionnaire results and data sets to help get fishers a seat at policymakers’ tables. The UN General Assembly has declared 2022 the International Year of Artisanal Fisheries and Aquaculture.Most nations already have management policies for marine ecosystems that provide for small-scale fisheries. In India, Indonesia, Malaysia and Sri Lanka, for example, there is a ban on trawling within about 8 kilometres of the coastline to prevent industrial fishers from scooping up large catches, which protects those regions for local fishers. Countries such as Costa Rica ease access by exempting small-scale fisheries from licences, and Angola exempts subsistence and artisanal fishers from paying licensing fees5.But this is not enough. Small-scale fishers’ rights to access are often poorly defined, ineffectively enforced or unfairly distributed4. The boundaries of exclusive economic zones (EEZs) — the parts of the coast belonging to a given nation — are often poorly policed, and large-scale vessels regularly swoop in and take sea life through bottom trawling, something that small fishers seldom practice. Large-scale bottom-trawlers account for 26% of the global fisheries catch, with more than 99% of that occurring in the EEZs of coastal countries6. Even when there are well-meaning policies to protect local fishers, foreign vessels can take advantage. For instance, a 2018 investigation by the Environmental Justice Foundation in London found that around 90% of Ghana’s industrial fishing fleet was linked to Chinese ownership, despite Ghanaian laws expressly forbidding foreign ownership or control of its boats. Clearer definitions of the terms fisher, fishing and fishing vessel to make provisions for small-scale operators could help, in part, to avoid such abuse.Government subsidies also require reform. One estimate found that large-scale fishers receive about three-and-a-half times more subsidies than small-scale fishers do7. This widens the existing advantages of large operations in terms of vessels and gear, infrastructure (including cold storage), processing capacity and access to cheap fuel. By giving large-scale fishers the capacity to catch even more, it can have the perverse effect of encouraging overfishing8. Instead, subsidies and other funds should be directed towards small-scale fishers to let them expand their access to markets, while keeping them from adopting the negative practices of large-scale operations.More for consumptionThe total global loss and waste from fisheries is estimated at between 30% and 35% annually1. This could increase as smaller operations broaden their markets. A 2015 estimate of the Volta Basin coast in West Africa attributed 65% of fish-production losses to a lack of technology and good manufacturing practices, and to a lack of infrastructure such as decent roads and cold storage9. The study found that fish were rarely lost to physical damage during the process; most waste resulted from spoilage. Such losses limit the sale of fish locally and to distant markets.Public and private investment in cold-storage facilities and processing equipment (such as for drying, fermentation, pickling or smoking) could help. Current funding for fishery conservation projects comes from development partners, regional banks, the World Bank, private foundations and other agencies — with some entities also providing microloans to small-scale fisheries — but these efforts are uncoordinated and inadequate.One promising strategy is to pair international or national funding with direct contracts for feeding programmes linked to schools, hospitals and similar facilities. Such arrangements would provide small fisheries with large, consistent markets and storage infrastructure that boosts local consumption and does not incentivize overfishing.

    Artisanal fishers at a fish-processing cooperative in Santa Rosa de Salinas, Ecuador.Credit: Camilo Pareja/AFP/Getty

    Other strategies pair local fishers with conservation efforts. As fishing operations scale up, fish entrails and other waste cannot simply be thrown into the sea: care must be taken not to contaminate the environment. One option is to fund ecosystem-restoration projects that also benefit local fisheries. For example, the Mikoko Pamoja (Mangroves Together) project in Gazi Bay, Kenya, restores and conserves degraded mangrove forests, which act as nurseries for young fish. The restoration thus earns saleable carbon credits while enhancing nearby fishery grounds for the local community.Consumers could support small fisheries by buying local, because shorter supply chains mean more income for the fishers. The use of ecolabels — which seek to promote sustainably managed fisheries by certifying that a product has a reduced environmental impact — could also encourage consumer adoption, and help consumers to make informed choices.However, such certification is costly to obtain and maintain, and requires compliance, monitoring and reporting. Certification can distort market opportunities, effectively excluding small enterprises from entering international markets. These programmes can also have unintended consequences: most certification programmes focus on environmental sustainability and pay less attention to social responsibility elements, such as fairness in access to resources, markets and wages.Instead, simple incentive programmes could be implemented by funders, managers and local governments trying to promote sustainable fisheries. For example, local markets could display a rating system for individual fishers or small entrepreneurs. This could include various elements of sustainability other than environmental ones — such as providing information on the type of fishing gear, location of the catch and freshness. Promoting the rating as a social responsibility concept would inform consumers of the need to support sustainable fisheries. The rating system could be conducted by community members trained in inspection and enforcement.Local controlDiverse efforts are needed to protect small fisheries’ access and to boost local consumption and reduce waste, and must be tailored to local community conditions. The 2021 UN Food Systems Summit was a ‘people’s summit’ that elevated roles for Indigenous peoples and civil-society groups, yet the voice of fishing communities was notably absent.Few governments take an integrated approach to the development, implementation and enforcement of policies. For example, policies governing urban development tend not to consider the implications on the ocean, fish and fishers. In the late 2000s, for instance, fishers were initially denied access to traditional public fishing zones along the beach front in Durban, South Africa, following upgrades to the port and the development of a private marina and hotel. (Fishers later reclaimed some of the zones after protests and engagement with the authorities10.)Cooperatives can help on several fronts: by coordinating fishing activities, sharing information (about weather, sea conditions or fish movement) and advocating effectively for human and social rights. For instance, CoopeSoliDar, a small-scale fisheries management cooperative in San José, Costa Rica, has helped to strengthen collective action to sustainably use molluscs, alleviate poverty and strengthen the representation of women and young people in community decision-making. Governments can help by creating a legal framework to establish cooperatives and include them in decisions to manage marine resources.Local communities can also stand up for themselves. For example, a class action by a group of 5,000 artisanal fishers in South Africa in 2004 argued against a policy they said did not give them recognition or access to food and fishing rights that were established in the country’s constitution. The court ruled in the group’s favour in 2007, and the resulting legal framework granted small-scale fishers collective community fishing rights, recognizing community members as bona fide fishers11.Integrated inputsSmall fisheries do not operate in isolation. Unlike terrestrial resources, the ocean is an extensive, global commons without clear territorial boundaries. Issues as diverse as climate change, ocean acidification, overfishing and pollution by nutrients and plastics and other chemicals all affect local fishers. But such system interactions get scant attention when fisheries policies focus on a single seafood stock or individual fishing area.Whereas the concept of integrated land management has been part of the development agenda for a few decades, integrated marine management is only now emerging. To work, it must involve all relevant stakeholders, including small-scale fishers.A context-specific strategy in the Seychelles is a leading example of such integration. Communities, financing partners and the government worked together to create the Seychelles Marine Spatial Plan Initiative, which protects 30% of the archipelago’s waters and boosts climate resilience. The Seychelles faces significant threats from rising sea levels and warmer air and water temperatures that put fisheries, infrastructure, tourism and its rich biodiversity at risk.In an example in the Coral Triangle region (encompassing Indonesia, Malaysia, Papua New Guinea, the Philippines, the Solomon Islands and East Timor), local communities gave their input to a marine protection plan. This led to a greater understanding of how practices such as overfishing and taking undersized stock sustains marine and coastal resources, and how managing these helps to address food security, climate change and threats to marine biodiversity. Such cooperation between fishing communities and governments in managing marine protected areas is essential to the preservation of future fish stocks (see go.nature.com/3xvkqxj).Fishers should be actively engaged in relevant meetings held by the UN and national and local councils, so that they can weigh in on matters that affect fishing access, their livelihoods and environmental concerns. Both fishers and organizers must help to build empowerment mechanisms to make sure their voices are heard, such as providing translation services and scheduling meetings at accessible locations. This is important not just for the fishers’ human rights, but also because much can be learnt from artisanal fishers’ local knowledge.Moves that would, for instance, restrict the fishing season or areas so that stocks or biodiversity can recover should include compensation mechanisms that will secure fishers’ cooperation and livelihoods. Social-protection measures such as food and income assistance can also help to tide fishers over.When fish swim in schools, they move more efficiently, forage better and are protected from predators. The same might be said for small-scale fishers, but those networks should extend to local and international communities, too. Collaborative problem-solving and an integrated food system can deliver seafood protein, sustainably, to a world that increasingly needs it. More