More stories

  • in

    Globally distributed mining-impacted environments are underexplored hotspots of multidrug resistance genes

    World Health Organization. Antimicrobial resistance: global report on surveillance. World Health Organization. 2014. https://www.who.int/publications/i/item/9789241564748.O’Neill J. Tackling drug-resistant infections globally: final report and recommendations. Government of the United Kingdom. 2016. https://apo.org.au/sites/default/files/resource-files/2016-05/apo-nid63983.pdf.UN Environment. Frontiers 2017: emerging Issues of environmental concern. United Nations Environment Programme. 2017. https://wedocs.unep.org/20.500.11822/22255.Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74:417–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477:457–61.PubMed 
    Article 
    CAS 

    Google Scholar 
    Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006;14:176–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang F, Fu Y-H, Sheng H-J, Topp E, Jiang X, Zhu Y-G, et al. Antibiotic resistance in the soil ecosystem: a one health perspective. Curr Opin Environ Sci Health. 2021;20:100230.Article 

    Google Scholar 
    Zhang F, Zhao X, Li Q, Liu J, Ding J, Wu H, et al. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil. Environ Sci Pollut Res. 2018;25:9547–55.CAS 
    Article 

    Google Scholar 
    Seiler C, Berendonk T. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol. 2012;3:399.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ji X, Shen Q, Liu F, Ma J, Xu G, Wang Y, et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J Hazard Mater. 2012;235-236:178–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    Komijani M, Shamabadi NS, Shahin K, Eghbalpour F, Tahsili MR, Bahram M. Heavy metal pollution promotes antibiotic resistance potential in the aquatic environment. Environ Pollut. 2021;274:116569.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhao Y, Cocerva T, Cox S, Tardif S, Su J-Q, Zhu Y-G, et al. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Sci Total Environ. 2019;656:512–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bhattacharyya A, Haldar A, Bhattacharyya M, Ghosh A. Anthropogenic influence shapes the distribution of antibiotic resistant bacteria (ARB) in the sediment of Sundarban estuary in India. Sci Total Environ. 2019;647:1626–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bridge G. Contested terrain: mining and the environment. Annu Rev Environ Resour. 2004;29:205–59.Article 

    Google Scholar 
    Liu J-L, Yao J, Zhu X, Zhou D-L, Duran R, Mihucz VG, et al. Metagenomic exploration of multi-resistance genes linked to microbial attributes in active nonferrous metal(loid) tailings. Environ Pollut. 2021;273:115667.CAS 
    Article 

    Google Scholar 
    Baker BJ, Banfield JF. Microbial communities in acid mine drainage. FEMS Microbiol Ecol. 2003;44:139–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mendez MO, Maier RM. Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect. 2008;116:278–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol. 2019;10:338.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu H-W, Wang J-T, Li J, Li J-J, Ma Y-B, Chen D, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ Microbiol. 2016;18:3896–909.CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang L-N, Zhou W-H, Hallberg Kevin B, Wan C-Y, Li J, Shu W-S. Spatial and temporal analysis of the microbial community in the tailings of a Pb-Zn mine generating acidic drainage. Appl Environ Microbiol. 2011;77:5540–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milaković M, Vestergaard G, González-Plaza JJ, Petrić I, Šimatović A, Senta I, et al. Pollution from azithromycin-manufacturing promotes macrolide-resistance gene propagation and induces spatial and seasonal bacterial community shifts in receiving river sediments. Environ Int. 2019;123:501–11.PubMed 
    Article 
    CAS 

    Google Scholar 
    Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73.PubMed 
    Article 

    Google Scholar 
    Yang T-T, Liu J, Chen W-C, Chen X, Shu H-Y, Jia P, et al. Changes in microbial community composition following phytostabilization of an extremely acidic Cu mine tailings. Soil Biol Biochem. 2017;114:52–58.CAS 
    Article 

    Google Scholar 
    Zhao L, Anderson CW, Qiu G, Meng B, Wang D, Feng X. Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China. Biogeosciences. 2016;13:2429–40.CAS 
    Article 

    Google Scholar 
    Liang J-L, Liu J, Jia P, Yang T-T, Zeng Q-W, Zhang S-C, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020;14:1600–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu YY, Chen T, Fuhrman JA, Sun F. COCACOLA: binning metagenomic contigs using sequence COmposition, read CoverAge, CO-alignment and paired-end read LinkAge. Bioinformatics. 2017;33:791–98.CAS 
    PubMed 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Uritskiy GV, DiRuggiero J, Taylor J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018;6:158.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt D, LoCascio PF, Hauser LJ, Uberbacher EC. Gene and translation initiation site prediction in metagenomic sequences. Bioinformatics. 2012;28:2223–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Arango-Argoty G, Garner E, Pruden A, Heath LS, Vikesland P, Zhang L. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome. 2018;6:23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doster E, Lakin SM, Dean CJ, Wolfe C, Young JG, Boucher C, et al. MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data. Nucleic Acids Res. 2020;48:D561–69.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pal C, Bengtsson-Palme J, Rensing C, Kristiansson E, Larsson DJ. BacMet: antibacterial biocide and metal resistance genes database. Nucleic Acids Res. 2014;42:D737–43.CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin C, Stebbins B, Ajmani A, Comendul A, Hamner S, Hasan NA, et al. Nanopore-based metagenomics analysis reveals prevalence of mobile antibiotic and heavy metal resistome in wastewater. Ecotoxicology. 2021;30:1572–85.CAS 
    PubMed 
    Article 

    Google Scholar 
    Siguier P, Pérochon J, Lestrade L, Mahillon J, Chandler M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–36.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moura A, Soares M, Pereira C, Leitão N, Henriques I, Correia A. INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics. 2009;25:1096–98.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tansirichaiya S, Rahman MA, Roberts AP. The transposon registry. Mob DNA. 2019;10:40.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Chakraborty J, Sapkale V, Rajput V, Shah M, Kamble S, Dharne M. Shotgun metagenome guided exploration of anthropogenically driven resistomic hotspots within Lonar soda lake of India. Ecotoxicol Environ Saf. 2020;194:110443.CAS 
    PubMed 
    Article 

    Google Scholar 
    Krawczyk PS, Lipinski L, Dziembowski A. PlasFlow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 2018;46:e35.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bushnell B. BBMap: a fast, accurate, splice-aware aligner. 2014. The 9th Annual Genomics of Energy & Environment Meeting. US. https://www.osti.gov/servlets/purl/1241166.Ma L, Xia Y, Li B, Yang Y, Li L-G, Tiedje JM, et al. Metagenomic assembly reveals hosts of antibiotic resistance genes and the shared resistome in pig, chicken, and human feces. Environ Sci Technol. 2016;50:420–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li L-G, Xia Y, Zhang T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J. 2017;11:651–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Segata N, Börnigen D, Morgan XC, Huttenhower C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun. 2013;4:2304.PubMed 
    Article 
    CAS 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39:W475–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    Littman RA, Fiorenza EA, Wenger AS, Berry KL, van de Water JA, Nguyen L, et al. Coastal urbanization influences human pathogens and microdebris contamination in seafood. Sci Total Environ. 2020;736:139081.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng W, Huyan J, Tian Z, Zhang Y, Wen X. Clinical class 1 integron-integrase gene–a promising indicator to monitor the abundance and elimination of antibiotic resistance genes in an urban wastewater treatment plant. Environ Int. 2020;135:105372.CAS 
    PubMed 
    Article 

    Google Scholar 
    Tasker S, Caney SM, Day MJ, Dean RS, Helps CR, Knowles TG, et al. Effect of chronic FIV infection, and efficacy of marbofloxacin treatment, on Mycoplasma haemofelis infection. Vet Microbiol. 2006;117:169–79.CAS 
    PubMed 
    Article 

    Google Scholar 
    Holden MT, Seth-Smith HM, Crossman LC, Sebaihia M, Bentley SD, Cerdeño-Tárraga AM, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol. 2009;191:261–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    Moebius N, Ross C, Scherlach K, Rohm B, Roth M, Hertweck C. Biosynthesis of the respiratory toxin bongkrekic acid in the pathogenic bacterium Burkholderia gladioli. Chem Biol. 2012;19:1164–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stryjewski ME, LiPuma JJ, Messier RH Jr, Reller LB, Alexander BD. Sepsis, multiple organ failure, and death due to Pandoraea pnomenusa infection after lung transplantation. J Clin Microbiol. 2003;41:2255–57.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Anaissie E, Fainstein V, Miller P, Kassamali H, Pitlik S, Bodey GP, et al. Pseudomonas putida: newly recognized pathogen in patients with cancer. Am J Med. 1987;82:1191–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hinse D, Vollmer T, Rückert C, Blom J, Kalinowski J, Knabbe C, et al. Complete genome and comparative analysis of Streptococcus gallolyticus subsp. gallolyticus, an emerging pathogen of infective endocarditis. BMC Genom. 2011;12:400.CAS 
    Article 

    Google Scholar 
    Looney WJ, Narita M, Mühlemann K. Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis. 2009;9:312–23.CAS 
    PubMed 
    Article 

    Google Scholar 
    de Nies L, Lopes S, Busi SB, Galata V, Heintz-Buschart A, Laczny CC, et al. PathoFact: a pipeline for the prediction of virulence factors and antimicrobial resistance genes in metagenomic data. Microbiome. 2021;9:49.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L, Lukjancenko O, et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat Commun. 2019;10:1124.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Rodriguez-R LM, Konstantinidis KT. Nonpareil: a redundancy-based approach to assess the level of coverage in metagenomic datasets. Bioinformatics. 2014;30:629–35.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Vegan: community ecology package. R package version 2.5-7. 2013. http://CRAN.R-project.org/package=vegan.Hijmans RJ. geosphere: spherical trigonometry. R package version 1.5-10. 2019. https://CRAN.R-project.org/package=geosphere.Wickham H. ggplot2: elegant graphics for data analysis. R package version 3.3.2. 2016. https://CRAN.R-project.org/package=ggplot2.Larsson J, Godfrey AJR, Gustafsson P, Eberly DH, Huber E, Slowikowski K, et al. Eulerr: area-proportional Euler and Venn diagrams with ellipses. R package version 6.1.0. 2018. https://CRAN.R-project.org/package=eulerr.Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, et al. rgdal: Bindings for the ‘Geospatial’ data abstraction library. R package version 1.5.18. 2015. https://CRAN.R-project.org/package=rgdal.Brownrigg R, McIlroy D, Minka TP, Bivand R. mapproj: Map projections. R package version 1.2.7. 2020. https://CRAN.R-project.org/package=mapproj.Bivand R, Lewin-Koh N, Pebesma E, Archer E, Baddeley A, Bearman N, et al. maptools: Tools for handling spatial objects. R package version 0.9-9. 2020. https://CRAN.R-project.org/package=maptools.Rice EW, Wang P, Smith AL, Stadler LB. Determining hosts of antibiotic resistance genes: a review of methodological advances. Environ Sci Technol Lett. 2020;7:282–91.CAS 
    Article 

    Google Scholar 
    Forsberg KJ, Patel S, Gibson MK, Lauber CL, Knight R, Fierer N, et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 2014;509:612–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hu H-W, Wang J-T, Singh BK, Liu Y-R, Chen Y-L, Zhang Y-J, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ Microbiol. 2018;20:3186–200.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ju F, Beck K, Yin X, Maccagnan A, McArdell CS, Singer HP, et al. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. ISME J. 2019;13:346–60.PubMed 
    Article 

    Google Scholar 
    Chen Q-L, An X-L, Zheng B-X, Gillings M, Peñuelas J, Cui L, et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol Lett. 2019;1:3–13.Article 

    Google Scholar 
    Martinez JL, Sánchez MB, Martínez-Solano L, Hernandez A, Garmendia L, Fajardo A, et al. Functional role of bacterial multidrug efflux pumps in microbial natural ecosystems. FEMS Microbiol Rev. 2009;33:430–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    Karkman A, Pärnänen K, Larsson DJ. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat Commun. 2019;10:80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cao J, Yang G, Mai Q, Zhuang Z, Zhuang L. Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to as (III) contamination with an emphasis on potential pathogens. Sci Total Environ. 2020;725:138367.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DJ. Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BMC Genom. 2015;16:964.Article 
    CAS 

    Google Scholar 
    Teare MD, Barrett JH. Genetic linkage studies. Lancet. 2005;366:1036–44.CAS 
    Article 

    Google Scholar 
    Learman DR, Ahmad Z, Brookshier A, Henson MW, Hewitt V, Lis A, et al. Comparative genomics of 16 Microbacterium spp. that tolerate multiple heavy metals and antibiotics. PeerJ. 2019;6:e6258.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu Z, Klümper U, Liu Y, Yang Y, Wei Q, Lin J-G, et al. Metagenomic and metatranscriptomic analyses reveal activity and hosts of antibiotic resistance genes in activated sludge. Environ Int. 2019;129:208–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fresia P, Antelo V, Salazar C, Giménez M, D’Alessandro B, Afshinnekoo E, et al. Urban metagenomics uncover antibiotic resistance reservoirs in coastal beach and sewage waters. Microbiome. 2019;7:35.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu Y-G, Johnson TA, Su J-Q, Qiao M, Guo G-X, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu Y-G, Zhao Y, Li B, Huang C-L, Zhang S-Y, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams AB. In: Kovalchuk I, Kovalchuk O, editors. Genome stability. Boston: Academic Press; 2016. p. 69–85.Cury J, Touchon M, Rocha EP. Integrative and conjugative elements and their hosts: composition, distribution and organization. Nucleic Acids Res. 2017;45:8943–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu M, Li X, Xie Y, Bi D, Sun J, Li J, et al. ICEberg 2.0: an updated database of bacterial integrative and conjugative elements. Nucleic Acids Res. 2018;47:D660–65.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Su J-Q, An X-L, Li B, Chen Q-L, Gillings MR, Chen H, et al. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. Microbiome. 2017;5:84.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao R, Feng J, Yin X, Liu J, Fu W, Berendonk TU, et al. Antibiotic resistome in landfill leachate from different cities of China deciphered by metagenomic analysis. Water Res. 2018;134:126–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 2015;9:2490–502.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhao X, Li X, Li Y, Sun Y, Zhang X, Weng L, et al. Shifting interactions among bacteria, fungi and archaea enhance removal of antibiotics and antibiotic resistance genes in the soil bioelectrochemical remediation. Biotechnol Biofuels. 2019;12:160.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Khelaifia S, Drancourt M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin Microbiol Infect. 2012;18:841–48.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fuchsman CA, Collins RE, Rocap G, Brazelton WJ. Effect of the environment on horizontal gene transfer between bacteria and archaea. PeerJ. 2017;5:e3865.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cangelosi GA, Freitag NE, Buckley M. From outside to inside: environmental microorganisms as human pathogens. 2005. https://www.asmscience.org/content/report/colloquia/colloquia.14Molina L, Ramos C, Duque E, Ronchel MC, Garcı́a JM, Wyke L, et al. Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol Biochem. 2000;32:315–21.CAS 
    Article 

    Google Scholar 
    Furlan JPR, Pitondo-Silva A, Stehling EG. Detection of blaNDM-1 in Stenotrophomonas maltophilia isolated from Brazilian soil. Mem Inst Oswaldo Cruz. 2018;113:e170558.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gao J, Li B-Y, Wang H-H, Liu Z-Q. Pseudomonas hunanensis sp. nov., isolated from soil subjected to long-term manganese pollution. Curr Microbiol. 2014;69:19–24.CAS 
    PubMed 
    Article 

    Google Scholar 
    Green SK, Schroth MN, Cho JJ, Kominos SD, Vitanza-Jack VB. Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol. 1974;28:987–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Deciphering waste bound nitrogen by employing psychrophillic Aporrectodea caliginosa and priming of coprolites by associated heterotrophic nitrifiers under high altitude Himalayas

    Blume-Werry, G. et al. Invasive earthworms unlock arctic plant nitrogen limitation. Nat. Commun. 11, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Marhan, S. & Scheu, S. Mixing of different mineral soil layers by endogeic earthworms affects carbon and nitrogen mineralization. Biol. Fertil. Soils 42, 308 (2006).Article 

    Google Scholar 
    Sanchez-Hernandez, J. C. Vermiremediation of Pharmaceutical-Contaminated Soils and Organic Amendments (Springer, Berlin, 2020).Book 

    Google Scholar 
    Gómez-Brandón, M., Aira, M., Lores, M. & Domínguez, J. Changes in microbial community structure and function during vermicomposting of pig slurry. Bioresour. Technol. 102, 4171–4178. https://doi.org/10.1016/j.biortech.2010.12.057 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aira, M. & Domínguez, J. Earthworm effects without earthworms: Inoculation of raw organic matter with worm-worked substrates alters microbial community functioning. PLoS ONE 6, e16354. https://doi.org/10.1371/journal.pone.0016354 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blair, J., Parmelee, R. W., Allen, M. F., McCartney, D. & Stinner, B. R. Changes in soil N pools in response to earthworm population manipulations in agroecosystem with different N sources. Soil Biol. Biochem. 29, 361–367. https://doi.org/10.1016/S0038-0717(96)00098-3 (1997).CAS 
    Article 

    Google Scholar 
    Abail, Z. & Whalen, J. K. Earthworm contributions to soil nitrogen supply in corn-soybean agroecosystems in Quebec. Canada. Pedosphere 31, 405–412. https://doi.org/10.1016/S1002-0160(20)60086-8 (2021).Article 

    Google Scholar 
    Frelich, L. E. et al. Earthworm invasion into previously earthworm-free temperate and boreal forests. Biol. Invasions 8, 1235–1245. https://doi.org/10.1007/s10530-006-9019-3 (2006).Article 

    Google Scholar 
    Ding, W. et al. Effect thresholds for the earthworm Eisenia fetida: Toxicity comparison between conventional and biodegradable microplastics. Sci. Total Environ. 781, 146884 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Treder, K., Jastrzębska, M., Kostrzewska, M. K. & Makowski, P. Do long-term continuous cropping and pesticides affect earthworm communities?. Agronomy 10, 586 (2020).CAS 
    Article 

    Google Scholar 
    Fonte, S. J., Kong, A. Y. Y., van Kessel, C., Hendrix, P. F. & Six, J. Influence of earthworm activity on aggregate-associated carbon and nitrogen dynamics differs with agroecosystem management. Soil Biol. Biochem. 39, 1014–1022. https://doi.org/10.1016/j.soilbio.2006.11.011 (2007).CAS 
    Article 

    Google Scholar 
    Scheu, S., Schlitt, N., Tiunov, A. V., Newington, J. E. & Jones, H. T. Effects of the presence and community composition of earthworms on microbial community functioning. Oecologia 133, 254–260. https://doi.org/10.1007/s00442-002-1023-4 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Sheikh, T. et al. Unveiling the efficiency of psychrophillic aporrectodea caliginosa in deciphering the nutrients from dalweed and cow manure with bio-optimization of coprolites. Sustainability 13, 5338 (2021).CAS 
    Article 

    Google Scholar 
    Lavelle, P. & Spain, A. V. Soil Ecology (Springer, Dordrecht, 2001).Book 

    Google Scholar 
    Aubert, L., Konradova, D., Barris, S. & Quinet, M. Different drought resistance mechanisms between two buckwheat species Fagopyrum esculentum and Fagopyrum tataricum. Physiol. Plant. https://doi.org/10.1111/ppl.13248 (2020).Article 
    PubMed 

    Google Scholar 
    Sistla, S. A., Asao, S. & Schimel, J. P. Detecting microbial N-limitation in tussock tundra soil: Implications for Arctic soil organic carbon cycling. Soil Biol. Biochem. 55, 78–84. https://doi.org/10.1016/j.soilbio.2012.06.010 (2012).CAS 
    Article 

    Google Scholar 
    Chkrebtii, O. A., Cameron, E. K., Campbell, D. A. & Bayne, E. M. Transdimensional approximate Bayesian computation for inference on invasive species models with latent variables of unknown dimension. Comput. Stat. Data Anal. 86, 97–110. https://doi.org/10.1016/j.csda.2015.01.002 (2015).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Szlavecz, K. et al. Invasive earthworm species and nitrogen cycling in remnant forest patches. Appl. Soil. Ecol. 32, 54–62. https://doi.org/10.1016/j.apsoil.2005.01.006 (2006).Article 

    Google Scholar 
    Liu, M., Cao, J. & Wang, C. Bioremediation by earthworms on soil microbial diversity and partial nitrification processes in oxytetracycline-contaminated soil. Ecotoxicol. Environ. Saf. 189, 109996 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lubbers, I. M. et al. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Change 3, 187–194. https://doi.org/10.1038/nclimate1692 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, Z., Chen, Z., Niu, Y., Ren, P. & Hao, M. Feasibility of vermicomposting for spent drilling fluid from a nature-gas industry employing earthworms Eisenia fetida. Ecotoxicol. Environ. Saf. 214, 111994 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elyamine, A. M. & Hu, C. Earthworms and rice straw enhanced soil bacterial diversity and promoted the degradation of phenanthrene. Environ. Sci. Eur. 32, 124. https://doi.org/10.1186/s12302-020-00400-y (2020).CAS 
    Article 

    Google Scholar 
    Sun, M. et al. Ecological role of earthworm intestinal bacteria in terrestrial environments: A review. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140008 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turp, G. A., Turp, S. M., Ozdemir, S. & Yetilmezsoy, K. Vermicomposting of biomass ash with bio-waste for solubilizing nutrients and its effect on nitrogen fixation in common beans. Environ. Technol. Innov. https://doi.org/10.1016/j.eti.2021.101691 (2021).Article 

    Google Scholar 
    Lv, B., Zhang, D., Chen, Q. & Cui, Y. Effects of earthworms on nitrogen transformation and the correspond genes (amoA and nirS) in vermicomposting of sewage sludge and rice straw. Bioresour. Technol. 287, 121428. https://doi.org/10.1016/j.biortech.2019.121428 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sharma, K. & Garg, V. K. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour. Technol. 250, 708–715. https://doi.org/10.1016/j.biortech.2017.11.101 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Castillo Diaz, J. M., Martin-Laurent, F., Beguet, J., Nogales, R. & Romero, E. Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: Risk for soil functions, structure, and bacterial abundance. Sci. Total Environ. 579, 1111–1119. https://doi.org/10.1016/j.scitotenv.2016.11.082 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Samal, K., Raj Mohan, A., Chaudhary, N. & Moulick, S. Application of vermitechnology in waste management: A review on mechanism and performance. J. Environ. Chem. Eng. 7, 103392. https://doi.org/10.1016/j.jece.2019.103392 (2019).CAS 
    Article 

    Google Scholar 
    Katakula, A. A. N., Handura, B., Gawanab, W., Itanna, F. & Mupambwa, H. A. Optimized vermicomposting of a goat manure-vegetable food waste mixture for enhanced nutrient release. Sci. Afr. 12, e00727 (2021).
    Google Scholar 
    Cáceres, R., Malińska, K. & Marfà, O. Nitrification within composting: A review. Waste Manag. 72, 119–137. https://doi.org/10.1016/j.wasman.2017.10.049 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lv, B., Cui, Y., Wei, H., Chen, Q. & Zhang, D. Elucidating the role of earthworms in N2O emission and production pathway during vermicomposting of sewage sludge and rice straw. J. Hazard. Mater. 400, 123215 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, L. et al. The non-negligibility of greenhouse gas emission from a combined pre-composting and vermicomposting system with maize stover and cow dung. Environ. Sci. Pollut. Res. 28, 19412–19423 (2021).CAS 
    Article 

    Google Scholar 
    Chen, C., Whalen, J. K. & Guo, X. Earthworms reduce soil nitrous oxide emissions during drying and rewetting cycles. Soil Biol. Biochem. 68, 117–124. https://doi.org/10.1016/j.soilbio.2013.09.020 (2014).CAS 
    Article 

    Google Scholar 
    Wang, X. et al. Treating low carbon/nitrogen (C/N) wastewater in simultaneous nitrification-endogenous denitrification and phosphorous removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage. Water Res. 77, 191–200. https://doi.org/10.1016/j.watres.2015.03.019 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, Z., Sun, H. & Wu, W. Intensified simultaneous nitrification and denitrification performance in integrated packed bed bioreactors using PHBV with different dosing methods. Environ. Sci. Pollut. Res. 27, 21560–21569. https://doi.org/10.1007/s11356-020-08290-6 (2020).CAS 
    Article 

    Google Scholar 
    Pan, Z. et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process. Bioresour. Technol. 301, 122726. https://doi.org/10.1016/j.biortech.2019.122726 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xia, L., Li, X., Fan, W. & Wang, J. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp .ND7 isolated from municipal activated sludge. Bioresour. Technol. 301, 122749. https://doi.org/10.1016/j.biortech.2020.122749 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dad, J. M. & Khan, A. B. Threatened medicinal plants of Gurez Valley, Kashmir Himalayas. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 7, 20–26. https://doi.org/10.1080/21513732.2011.602646 (2011).Article 

    Google Scholar 
    Cameira, M. D. & Mota, M. Nitrogen related diffuse pollution from horticulture production—mitigation practices and assessment strategies. Horticulturae https://doi.org/10.3390/horticulturae3010025 (2017).Article 

    Google Scholar 
    Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W. & Karmegam, N. Centrality of cattle solid wastes in vermicomposting technology—A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environ. Pollut. 268, 115688. https://doi.org/10.1016/j.envpol.2020.115688 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kuzyakov, Y., Friedel, J. K. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498. https://doi.org/10.1016/S0038-0717(00)00084-5 (2000).CAS 
    Article 

    Google Scholar 
    Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).CAS 
    Article 

    Google Scholar 
    Makoto, K., Bryanin, S. V. & Takagi, K. The effect of snow reduction and Eisenia japonica earthworm traits on soil nitrogen dynamics in spring in a cool-temperate forest. Appl. Soil. Ecol. 144, 1–7. https://doi.org/10.1016/j.apsoil.2019.06.019 (2019).Article 

    Google Scholar 
    Huang, K. et al. Optimal growth condition of earthworms and their vermicompost features during recycling of five different fresh fruit and vegetable wastes. Environ. Sci. Pollut. Res. Int. 23, 13569–13575. https://doi.org/10.1007/s11356-016-6848-1 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Makoto, K., Minamiya, Y. & Kaneko, N. Differences in soil type drive the intraspecific variation in the responses of an earthworm species and consequently, tree growth to warming. Plant Soil 404, 209–218. https://doi.org/10.1007/s11104-016-2827-z (2016).CAS 
    Article 

    Google Scholar 
    Grenon, F., Bradley, R. L. & Titus, B. D. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol. Biochem. 36, 1465–1474. https://doi.org/10.1016/j.soilbio.2004.04.021 (2004).CAS 
    Article 

    Google Scholar 
    Zhang, H., Li, J., Zhang, Y. & Huang, K. Quality of vermicompost and microbial community diversity affected by the contrasting temperature during vermicomposting of dewatered sludge. Int. J. Env. Res. Public Health 17, 1748 (2020).CAS 
    Article 

    Google Scholar 
    Velasco-Velasco, J., Parkinson, R. & Kuri, V. Ammonia emissions during vermicomposting of sheep manure. Bioresour. Technol. 102, 10959–10964 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dan, X. et al. Effects of changing temperature on gross N transformation rates in acidic subtropical forest soils. Forests 10, 894 (2019).Article 

    Google Scholar 
    Gusain, R. & Suthar, S. Vermicomposting of invasive weed Ageratum conyzoids: Assessment of nutrient mineralization, enzymatic activities, and microbial properties. Bioresour. Technol. 312, 123537 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klaasen, H. L., Koopman, J. P., Poelma, F. G. & Beynen, A. C. Intestinal, segmented, filamentous bacteria. FEMS Microbiol. Rev. 8, 165–180. https://doi.org/10.1111/j.1574-6968.1992.tb04986.x (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fischer, K., Hahn, D., Daniel, O., Zeyer, J. & Amann, R. I. In situ analysis of the bacterial community in the gut of the earthworm Lumbricus terrestris L. by whole-cell hybridization. Can. J. Microbiol. 41, 666–673. https://doi.org/10.1139/m95-092 (1995).CAS 
    Article 

    Google Scholar 
    Karsten, G. R. & Drake, H. L. Comparative assessment of the aerobic and anaerobic microfloras of earthworm guts and forest soils. Appl. Environ. Microbiol. 61, 1039–1044. https://doi.org/10.1128/AEM.61.3.1039-1044.1995 (1995).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hobson, A. M., Frederickson, J. & Dise, N. B. CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag. 25, 345–352. https://doi.org/10.1016/j.wasman.2005.02.015 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Singh, A. et al. Earthworms and vermicompost: An eco-friendly approach for repaying nature’s debt. Environ. Geochem. Health 42, 1617–1642 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zedelius, J. et al. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation. Environ Microbiol. Rep. 3, 125–135. https://doi.org/10.1111/j.1758-2229.2010.00198.x (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, R., Suter, H. C., He, J.-Z., Hayden, H. & Chen, D. Influence of temperature and moisture on the relative contributions of heterotrophic and autotrophic nitrification to gross nitrification in an acid cropping soil. J. Soils Sed. https://doi.org/10.1007/s11368-015-1170-y (2015).Article 

    Google Scholar 
    Zhang, Y. et al. Composition of soil recalcitrant C regulates nitrification rates in acidic soils. Geoderma 337, 965–972. https://doi.org/10.1016/j.geoderma.2018.11.014 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, J., Sun, W., Zhong, W. & Cai, Z. The substrate is an important factor in controlling the significance of heterotrophic nitrification in acidic forest soils. Soil Biol. Biochem. 76, 143–148. https://doi.org/10.1016/j.soilbio.2014.05.001 (2014).CAS 
    Article 

    Google Scholar 
    Abail, Z., Sampedro, L. & Whalen, J. K. Short-term carbon mineralization from endogeic earthworm casts as influenced by properties of the ingested soil material. Appl. Soil. Ecol. 116, 79–86 (2017).Article 

    Google Scholar 
    Coq, S., Barthès, B. G., Oliver, R., Rabary, B. & Blanchart, E. Earthworm activity affects soil aggregation and organic matter dynamics according to the quality and localization of crop residues—an experimental study (Madagascar). Soil Biol. Biochem. 39, 2119–2128 (2007).CAS 
    Article 

    Google Scholar 
    Medina-Sauza, R. M. et al. Earthworms building up soil microbiota, a review. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2019.00081 (2019).Article 

    Google Scholar 
    Aira, M., Monroy, F. & Domínguez, J. Ageing effects on nitrogen dynamics and enzyme activities in casts of Aporrectodea caliginosa (Lumbricidae). Pedobiologia 49, 467–473 (2005).CAS 
    Article 

    Google Scholar 
    Clause, J., Barot, S., Richard, B., Decaëns, T. & Forey, E. The interactions between soil type and earthworm species determine the properties of earthworm casts. Appl. Soil. Ecol. 83, 149–158 (2014).Article 

    Google Scholar 
    McDaniel, J. P., Stromberger, M. E., Barbarick, K. A. & Cranshaw, W. Survival of Aporrectodea caliginosa and its effects on nutrient availability in biosolids amended soil. Appl. Soil. Ecol. 71, 1–6 (2013).Article 

    Google Scholar 
    Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lubbers, I., Brussaard, L., Otten, W. & Van Groenigen, J. Earthworm-induced N mineralization in fertilized grassland increases both N2O emission and crop-N uptake. Eur. J. Soil Sci. 62, 152–161 (2011).CAS 
    Article 

    Google Scholar 
    Peter, S. D. J., George, G. B., Siu, M. T., Marcus, A. H. & Harold, L. D. Emission of nitrous oxide and dinitrogen by diverse earthworm families from Brazil and resolution of associated denitrifying and nitrate-dissimilating taxa. FEMS Microbiol. Ecol. 83, 375–391. https://doi.org/10.1111/j.1574-6941.2012.01476.x (2013).CAS 
    Article 

    Google Scholar 
    Firestone, M. K. & Davidson, E. A. Microbiological basis of NO and N2O production and consumption in soil. Exch. Trace Gases terr. Ecosyst. Atmos. 47, 7–21 (1989).CAS 

    Google Scholar 
    Zhu, X. et al. Exploring the relationships between soil fauna, different tillage regimes and CO2 and N2O emissions from black soil in China. Soil Biol. Biochem. 103, 106–116 (2016).CAS 
    Article 

    Google Scholar 
    Yu, D.-S. et al. Simultaneous nitrogen and phosphorus removal characteristics of an anaerobic/aerobic operated spndpr system treating low C/N urban sewage. Huan Jing ke Xue Huanjing Kexue 39, 5065–5073 (2018).PubMed 

    Google Scholar 
    Wang, F., Zhao, Y., Xie, S. & Li, J. Implication of nitrifying and denitrifying bacteria for nitrogen removal in a shallow lake. Clean: Soil, Air, Water 45, 1500319 (2017).
    Google Scholar 
    Wang, J. et al. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Manag. 34, 1546–1552. https://doi.org/10.1016/j.wasman.2014.04.010 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nigussie, A., Kuyper, T. W., Bruun, S. & de Neergaard, A. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting. J. Clean. Prod. 139, 429–439. https://doi.org/10.1016/j.jclepro.2016.08.058 (2016).CAS 
    Article 

    Google Scholar 
    Yang, F., Li, G., Zang, B. & Zhang, Z. The maturity and CH4, N2O, NH3 emissions from vermicomposting with agricultural waste. Compost Sci. Util. 25, 262–271. https://doi.org/10.1080/1065657X.2017.1329037 (2017).CAS 
    Article 

    Google Scholar 
    Ma, L. et al. Soil properties alter plant and microbial communities to modulate denitrification rates in subtropical riparian wetlands. Land Degrad. Dev. 31, 1792–1802 (2020).Article 

    Google Scholar 
    Xu, X. et al. Effective nitrogen removal in a granule-based partial-denitrification/anammox reactor treating low C/N sewage. Bioresour. Technol. 297, 122467 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, X., Xing, M., Wang, Y., Xu, Z. & Yang, J. Microbial enzyme and biomass responses: Deciphering the effects of earthworms and seasonal variation on treating excess sludge. J. Environ. Manag. 170, 207–214. https://doi.org/10.1016/j.jenvman.2016.01.022 (2016).CAS 
    Article 

    Google Scholar 
    Kremen, A., Bear, J., Shavit, U. & Shaviv, A. Model demonstrating the potential for coupled nitrification denitrification in soil aggregates. Environ. Sci. Technol. 39, 4180–4188. https://doi.org/10.1021/es048304z (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y., Song, C., Zhou, Z., Cao, X. & Zhou, Y. Coupling between nitrification and denitrification as well as its effect on phosphorus release in sediments of Chinese Shallow Lakes. Water 11, 1809 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Das, D. & Deka, H. Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: Changes in nutrient profile and assessment of the maturity of the end products. Environ. Sci. Pollut. Res. 28, 35717–35727 (2021).CAS 
    Article 

    Google Scholar 
    Fernández-Gómez, M. J., Romero, E. & Nogales, R. Feasibility of vermicomposting for vegetable greenhouse waste recycling. Bioresour. Technol. 101, 9654–9660. https://doi.org/10.1016/j.biortech.2010.07.109 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Biruntha, M. et al. Vermiconversion of biowastes with low-to-high C/N ratio into value added vermicompost. Bioresour. Technol. 297, 122398 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Devi, C. & Khwairakpam, M. Feasibility of vermicomposting for the management of terrestrial weed Ageratum conyzoides using earthworm species Eisenia fetida. Environ. Technol. Innov. 18, 100696. https://doi.org/10.1016/j.eti.2020.100696 (2020).Article 

    Google Scholar 
    Garg, P., Gupta, A. & Satya, S. Vermicomposting of different types of waste using Eisenia foetida: A comparative study. Bioresour. Technol. 97, 391–395. https://doi.org/10.1016/j.biortech.2005.03.009 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, K., Li, F., Wei, Y., Fu, X. & Chen, X. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresour. Technol. 170, 45–52. https://doi.org/10.1016/j.biortech.2014.07.058 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gusain, R. & Suthar, S. Vermicomposting of duckweed (Spirodela polyrhiza) by employing Eisenia fetida: Changes in nutrient contents, microbial enzyme activities and earthworm biodynamics. Bioresour. Technol. 311, 123585 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karmegam, N. et al. Precomposting and green manure amendment for effective vermitransformation of hazardous coir industrial waste into enriched vermicompost. Bioresour. Technol. 319, 124136. https://doi.org/10.1016/j.biortech.2020.124136 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bhattacharya, S. S. & Chattopadhyay, G. N. Transformation of nitrogen during vermicomposting of fly ash. Waste Manag. Res. 22, 488–491. https://doi.org/10.1177/0734242X04048625 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hussain, N., Abbasi, T. & Abbasi, S. Transformation of the pernicious and toxic weed parthenium into an organic fertilizer by vermicomposting. Int. J. Environ. Stud. 73, 731–745 (2016).CAS 
    Article 

    Google Scholar 
    Rai, R. & Suthar, S. Composting of toxic weed Parthenium hysterophorus: Nutrient changes, the fate of faecal coliforms, and biopesticide property assessment. Bioresour. Technol. 311, 123523 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Whalen, J. K., Parmelee, R. W. & Subler, S. Quantification of nitrogen excretion rates for three lumbricid earthworms using 15N. Biol. Fertil. Soils 32, 347–352. https://doi.org/10.1007/s003740000259 (2000).CAS 
    Article 

    Google Scholar 
    Esmaeili, A., Khoram, M. R., Gholami, M. & Eslami, H. Pistachio waste management using combined composting-vermicomposting technique: Physico-chemical changes and worm growth analysis. J. Clean. Prod. 242, 118523 (2020).CAS 
    Article 

    Google Scholar 
    Karmegam, N., Vijayan, P., Prakash, M. & Paul, J. A. J. Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. J. Clean. Prod. 228, 718–728 (2019).CAS 
    Article 

    Google Scholar 
    Paul, J. A., Karmegam, N. & Daniel, T. Municipal solid waste (MSW) vermicomposting with an epigeic earthworm Perionyx ceylanensis Mich. Bioresour. Technol. 102, 6769–6773. https://doi.org/10.1016/j.biortech.2011.03.089 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, K., Xia, H., Cui, G. & Li, F. Effects of earthworms on nitrification and ammonia oxidizers in vermicomposting systems for recycling of fruit and vegetable wastes. Sci. Total Environ. 578, 337–345. https://doi.org/10.1016/j.scitotenv.2016.10.172 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mokgophi, M. M., Manyevere, A., Ayisi, K. K. & Munjonji, L. Characterisation of chamaecytisus tagasaste, moringa oleifera and vachellia karroo vermicomposts and their potential to improve soil fertility. Sustainability 12, 9305 (2020).CAS 
    Article 

    Google Scholar 
    Pathma, J. & Sakthivel, N. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1, 26–26. https://doi.org/10.1186/2193-1801-1-26 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Villar, I., Alves, D., Pérez-Díaz, D. & Mato, S. Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag. 48, 409–417 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Y. et al. Speciation of heavy metals and bacteria in cow dung after vermicomposting by the earthworm, Eisenia fetida. Bioresour. Technol. 245, 411–418 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Svensson, B. H., Boström, U. & Klemedtson, L. Potential for higher rates of denitrification in earthworm casts than in the surrounding soil. Biol. Fertil. Soils 2, 147–149. https://doi.org/10.1007/BF00257593 (1986).Article 

    Google Scholar 
    Syers, J. K. & Springett, J. A. Earthworms and Soil Fertility. In Biological Processes and Soil Fertility (eds Tinsley, J. & Darbyshire, J. F.) 93–104 (Springer Netherlands, Dordrecht, 1984).Chapter 

    Google Scholar 
    Mohanty, S. R. et al. nitrification rates are affected by biogenic nitrate and volatile organic compounds in agricultural soils. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00772 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, G. et al. Changes of quinolone resistance genes and their relations with microbial profiles during vermicomposting of municipal excess sludge. Sci. Total Environ. 644, 494–502 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Paliwal, R. & Julka, J. Checklist of earthworms of western Himalaya, India. Zoos’ Print J. 20, 1972–1976 (2005).Article 

    Google Scholar 
    Gal, C., Frenzel, W. & Möller, J. Re-examination of the cadmium reduction method and optimisation of conditions for the determination of nitrate by flow injection analysis. Microchim. Acta 146, 155–164. https://doi.org/10.1007/s00604-004-0193-7 (2004).CAS 
    Article 

    Google Scholar 
    Schmidt, L. W. in Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties (ed A.L. Page) 1027–1042 (1982).Yoshinari, T., Hynes, R. & Knowles, R. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem. 9, 177–183. https://doi.org/10.1016/0038-0717(77)90072-4 (1977).CAS 
    Article 

    Google Scholar 
    Parkin, T. B. Automated analysis of nitrous oxide. Soil Sci. Soc. Am. J. 49, 273 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    Hussain, M. et al. Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak. J. Agric. Sci. https://doi.org/10.21162/PAKJAS/16.4901 (2016).Article 

    Google Scholar 
    Gislin, D., Sudarsanam, D., Antony Raj, G. & Baskar, K. Antibacterial activity of soil bacteria isolated from Kochi, India and their molecular identification. J Genet. Eng. Biotechnol. 16, 287–294. https://doi.org/10.1016/j.jgeb.2018.05.010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rashid, K. M. H., Mohiuddin, M. & Rahman, M. Enumeration, isolation and identification of nitrogen-fixing bacterial strains at seedling stage in rhizosphere of rice grown in non-calcareous grey flood plain soil of Bangladesh. J. Fac. Environ. Sci. Technol. 13, 97 (2008).
    Google Scholar 
    Williams, S. & Association of Official Analytical, C. Official methods of analysis of the Association of official analytical chemists. (Association of official analytical chemists, 1984). More

  • in

    Deep ocean drivers better explain habitat preferences of sperm whales Physeter macrocephalus than beaked whales in the Bay of Biscay

    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).Article 

    Google Scholar 
    Esselman, P. C. & Allan, J. D. Application of species distribution models and conservation planning software to the design of a reserve network for the riverine fishes of northeastern Mesoamerica. Freshw. Biol. 56, 71–88 (2011).Article 

    Google Scholar 
    Valle, M. et al. Comparing the performance of species distribution models of Zostera marina: Implications for conservation. J. Sea Res. 83, 56–64 (2013).ADS 
    Article 

    Google Scholar 
    Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4:421, (2017).Roberts, J. J. et al. Habitat-based cetacean density models for the US Atlantic and Gulf of Mexico. Sci. Rep. 6, 22615 (2016).Lambert, C. et al. How does ocean seasonality drive habitat preferences of highly mobile top predators? Part I: The north-western Mediterranean Sea. Deep Sea. Res. Part II Top. Stud. Oceanogr. 141, 115–132 (2017).ADS 
    Article 

    Google Scholar 
    Lan, K.-W., Shimada, T., Lee, M.-A., Su, N.-J. & Chang, Y. Using remote-sensing environmental and fishery data to map potential Yellowfin Tuna habitats in the tropical pacific Ocean. Remote Sens. 9, 444 (2017).ADS 
    Article 

    Google Scholar 
    Austin, R. A. et al. Predicting habitat suitability for basking sharks (Cetorhinus maximus) in UK waters using ensemble ecological niche modelling. J. Sea Res. 153, 101767 (2019).Article 

    Google Scholar 
    Hobday, A. J. et al. Impacts of climate change on marine top predators: Advances and future challenges. Deep Sea Res. Part II Top. Stud. Oceanogr. 113, 1–8 (2015).ADS 
    Article 

    Google Scholar 
    Avila, I. C., Kaschner, K. & Dormann, C. F. Current global risks to marine mammals: Taking stock of the threats. Biol. Conserv. 221, 44–58 (2018).Article 

    Google Scholar 
    Panti, C. et al. Marine litter: One of the major threats for marine mammals. Outcomes from the European Cetacean Society workshop. Environ. Pollut. 247, 72–79 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grémillet, D. et al. Spatial match-mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions?. J. Appl. Ecol. 45, 610–621 (2008).Article 
    CAS 

    Google Scholar 
    Österblom, H., Olsson, O., Blenckner, T. & Furness, R. W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).Article 

    Google Scholar 
    Hazen, E. L., Nowacek, D. P., Laurent, L. S., Halpin, P. N. & Moretti, D. J. The relationship among oceanography, prey fields, and beaked whale foraging habitat in the tongue of the ocean. PLoS ONE 6, e19269 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Louzao, M. et al. Marine megafauna niche coexistence and hotspot areas in a temperate ecosystem. Cont. Shelf Res. 186, 77–87 (2019).ADS 
    Article 

    Google Scholar 
    Rogan, E. et al. Distribution, abundance and habitat use of deep diving cetaceans in the North-East Atlantic. Deep Sea Res. Part II Top. Stud. Oceanogr. 141, 8–19 (2017).ADS 
    Article 

    Google Scholar 
    Bangley, C. W., Curtis, T. H., Secor, D. H., Latour, R. J. & Ogburn, M. B. Identifying important juvenile dusky shark habitat in the northwest atlantic ocean using acoustic telemetry and spatial modeling. Mar. Coast. Fish. 12, 348–363 (2020).Article 

    Google Scholar 
    Yen, P. P. W., Sydeman, W. J. & Hyrenbach, K. D. Marine bird and cetacean associations with bathymetric habitats and shallow-water topographies: implications for trophic transfer and conservation. J. Mar. Syst. 50, 79–99 (2004).Article 

    Google Scholar 
    Redfern, J. V et al. Techniques for cetacean–habitat modeling. Mar. Ecol. Prog. Ser. 310, 271-295 (2006).Robison, B. H. Deep pelagic biology. J. Exp. Mar. Bio. Ecol. 300, 253–272 (2004).Article 

    Google Scholar 
    Reijnders, P. J. H., Aguilar, A. & Borrell, A. Pollution and marine mammals. In Encyclopedia of Marine Mammal (eds Perrin, W. F. et al.) 890–898 (Academic Press, New York, 2009).Chapter 

    Google Scholar 
    Spitz, J. et al. Prey preferences among the community of deep-diving odontocetes from the Bay of Biscay, Northeast Atlantic. Deep Sea Res. Part I Oceanogr. Res. Pap. 58, 273–282 (2011).ADS 
    Article 

    Google Scholar 
    Cañadas, A. et al. The challenge of habitat modelling for threatened low density species using heterogeneous data: The case of Cuvier’s beaked whales in the Mediterranean. Ecol. Indic. 85, 128–136 (2018).Article 

    Google Scholar 
    Pirotta, E., Brotons, J. M., Cerdà, M., Bakkers, S. & Rendell, L. E. Multi-scale analysis reveals changing distribution patterns and the influence of social structure on the habitat use of an endangered marine predator, the sperm whale Physeter macrocephalus in the Western Mediterranean Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 155, 103169 (2020).Article 

    Google Scholar 
    Watwood, S. L., Miller, P. J. O., Johnson, M., Madsen, P. T. & Tyack, P. L. Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). J. Anim. Ecol. 75, 814–825 (2006).PubMed 
    Article 

    Google Scholar 
    Warren, V. E. et al. Spatio-temporal variation in click production rates of beaked whales: Implications for passive acoustic density estimation. J. Acoust. Soc. Am. 141, 1962–1974 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Shearer, J. M. et al. Diving behaviour of Cuvier’s beaked whales (Ziphius cavirostris) off Cape Hatteras, North Carolina. R. Soc. Open Sci. 6: 181728 (2019).Brodie, S. et al. Integrating dynamic subsurface habitat metrics into species distribution models. Front. Mar. Sci. 5:219 (2018).Becker, E. et al. Moving towards dynamic ocean management: How well do modeled ocean products predict species distributions?. Remote Sens. 8, 149 (2016).ADS 
    Article 

    Google Scholar 
    Wood, S. N. On confidence intervals for generalized additive models based on penalized regression splines. Aust. N. Z. J. Stat. 48, 445–464 (2006).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Virgili, A. et al. Combining multiple visual surveys to model the habitat of deep-diving cetaceans at the basin scale. Glob. Ecol. Biogeogr. 28, 300–314 (2019).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, New York, 2004).MATH 
    Book 

    Google Scholar 
    Voss, N. A., Vecchione, M., Toll, R. B. & Sweeney, M. J. Systematics and Biogeography of Cephalopods (Smithsonian Institution Press, New York, 1998).
    Google Scholar 
    Kostylev, V. E., Erlandsson, J., Ming, M. Y. & Williams, G. A. The relative importance of habitat complexity and surface area in assessing biodiversity: Fractal application on rocky shores. Ecol. Complex. 2, 272–286 (2005).Article 

    Google Scholar 
    Pingree, R. D. & Cann, B. L. Three anticyclonic slope water oceanic eDDIES (SWODDIES) in the Southern Bay of Biscay in 1990. Deep Sea Res. Part A Oceanogr. Res. Pap. 39, 1147–1175 (1991).ADS 
    Article 

    Google Scholar 
    Koutsikopoulos, C. & Cann, B. L. Physical processes and hydrological structures related to the Bay of Biscay anchovy. Sci. Mar. 60, 9–19 (1996).
    Google Scholar 
    Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376 (2009).Article 

    Google Scholar 
    Woodson, C. B. & Litvin, S. Y. Ocean fronts drive marine fishery production and biogeochemical cycling. Proc. Natl. Acad. Sci. 112, 1710–1715 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kiszka, J., Macleod, K., Van Canneyt, O., Walker, D. & Ridoux, V. Distribution, encounter rates, and habitat characteristics of toothed cetaceans in the Bay of Biscay and adjacent waters from platform-of-opportunity Data. ICES J. Mar. Sci. 64, 1033–1043 (2007).Article 

    Google Scholar 
    Waring, G. T., Hamazaki, T., Sheehan, D., Wood, G. & Baker, S. Characterization of beaked whale (Ziphiidae) and sperm whale (Physeter macrocephalus) summer habitat in shelf-edge and deeper waters off the Northeast U.S.. Mar. Mammal Sci. 17, 703–717 (2001).Article 

    Google Scholar 
    Moulins, A., Rosso, M., Nani, B. & Würtz, M. Aspects of the distribution of Cuvier’s beaked whale (Ziphius cavirostris) in relation to topographic features in the Pelagos Sanctuary (north-western Mediterranean Sea). J. Mar. Biol. Assoc. U. K. 87, 177–186 (2007).Article 

    Google Scholar 
    Mussi, B., Miragliuolo, A., Zucchini, A. & Pace, D. S. Occurrence and spatio-temporal distribution of sperm whale (Physeter macrocephalus) in the submarine canyon of Cuma (Tyrrhenian Sea, Italy). Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 59–70 (2014).Article 

    Google Scholar 
    Moors-Murphy, H. B. Submarine canyons as important habitat for cetaceans, with special reference to the Gully: A review. Deep Res. Part II Top. Stud. Oceanogr. 104, 6–19 (2014).ADS 
    Article 

    Google Scholar 
    Millot, C. & Taupier-Letage, I. Circulation in the Mediterranean Sea. In: Saliot, A. (eds) The Mediterranean Sea. Handbook of Environmental Chemistry, vol 5K. Springer, Berlin, Heidelberg. (2005). https://doi.org/10.1007/b107143Robbins, J. R., Bell, E., Potts, J., Babey, L. & Marley, S. A. Likely year-round presence of beaked whales in the Bay of Biscay. Hydrobiologia https://doi.org/10.1007/s10750-022-04822-y (2022).Article 

    Google Scholar 
    McSweeney, D. J., Baird, R. W. & Mahaffy, S. D. Site fidelity, associations, and movements of Cuvier’s (Ziphius cavirostris) and Blainville’s (Mesoplodon densirostris) beaked whales off the island of Hawai’i. Mar. Mammal Sci. 23, 666–687 (2007).Article 

    Google Scholar 
    Wimmer, T. & Whitehead, H. Movements and distribution of northern bottlenose whales, Hyperoodon ampullatus, on the Scotian Slope and in adjacent waters. Can. J. Zool. 82, 1782–1794 (2004).Article 

    Google Scholar 
    Mannocci, L., Monestiez, P., Spitz, J. & Ridoux, V. Extrapolating cetacean densities beyond surveyed regions: Habitat-based predictions in the circumtropical belt. J. Biogeogr. 42, 1267–1280 (2015).Article 

    Google Scholar 
    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    Lambert, C., Mannocci, L., Lehodey, P. & Ridoux, V. Predicting cetacean habitats from their energetic needs and the distribution of their prey in two contrasted tropical regions. PLoS ONE 9, e105958 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Virgili, A. et al. Towards a better characterisation of deep-diving whales’ distributions by using prey distribution model outputs?. PLoS ONE 16, e0255667 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scales, K. L. et al. Fit to predict? Eco-informatics for predicting the catchability of a pelagic fish in near real time. Ecol. Appl. 27, 2313–2329 (2017).PubMed 
    Article 

    Google Scholar 
    Amano, M. & Yoshioka, M. Sperm whale diving behavior monitored using a suction-cup-attached TDR tag. Mar. Ecol. Prog. Ser. 258, 291–295 (2003).ADS 
    Article 

    Google Scholar 
    Irvine, L., Palacios, D. M., Urbán, J. & Mate, B. Sperm whale dive behavior characteristics derived from intermediate-duration archival tag data. Ecol. Evol. 7, 7822–7837 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shearer, J. M. et al. Diving behaviour of Cuvier’s beaked whales (Ziphius cavirostris) off Cape Hatteras, North Carolina. R. Soc. Open Sci. 6, 181728 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Towers, J. R. et al. Movements and dive behaviour of a toothfish-depredating killer and sperm whale. ICES J. Mar. Sci. 76, 298–311 (2019).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.3. Redlands, CA: Environmental Systems Research Institute (2016).Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A. & Halpin, P. N. Marine geospatial ecology tools: An integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environ. Model. Softw. 25, 1197–1207 (2010).Article 

    Google Scholar 
    Buckland, S. T., Rexstad, E. A., Marques, T. A. & Oedekoven, C. S. Distance Sampling: Methods and Applications (Springer International Publishing, New York, 2015).MATH 
    Book 

    Google Scholar 
    Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Baird, R. W. et al. Diving behaviour of Cuvier’s (Ziphius cavirostris) and Blainville’s (Mesoplodon densirostris) beaked whales in Hawai‘i. Can. J. Zool. 84, 1120–1128 (2006).Article 

    Google Scholar 
    Harris, P. T., Macmillan-Lawler, M., Rupp, J. & Baker, E. K. Geomorphology of the oceans. Mar. Geol. 352, 4–24 (2014).ADS 
    Article 

    Google Scholar 
    Hijmans, R. J. raster: Geographic data analysis and modeling. R package version 3. 4–5. https://CRAN.R-project.org/package=raster (2020).Lau-Medrano, W. grec: Gradient-based recognition of spatial patterns in environmental data. R package version 1.4.1. (2020).Foster, S. D. & Bravington, M. V. A Poisson-Gamma model for analysis of ecological non-negative continuous data. Environ. Ecol. Stat. 20, 533–552 (2013).MathSciNet 
    Article 

    Google Scholar 
    Wood, S. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc (B), 73(1), 3-36 (2011).Hedley, S. L. & Buckland, S. T. Spatial models for line transect sampling. J. Agric. Biol. Environ. Stat. 9, 181–199 (2004).Article 

    Google Scholar 
    Mannocci, L. et al. Predicting cetacean and seabird habitats across a productivity gradient in the South Pacific gyre. Prog. Oceanogr. 120, 383–398 (2014).ADS 
    Article 

    Google Scholar 
    Wei, T. & Simko, V. R package ‘corrplot’: Visualization of a correlation matrix (Version 0.84). https://github.com/taiyun/corrplot (2017).Spiess, A. qpcR: Modelling and analysis of real‐time PCR data. R package version 1.4‐1. https://CRAN.R-project.org/package=qpcR (2018).Fabozzi, F. J., Focardi, S. M., Rachev, S. T. & Arshanapalli, B. G. The basics of financial econometrics: Tools, concepts, and asset management applications. John Wiley & Sons (2014).Becker, E. A. et al. Habitat-based density models for three cetacean species off southern california illustrate pronounced seasonal differences. Front. Mar. Sci. 4:121 (2017).Neill, S. P. & Hashemi, M. R. Fundamentals of ocean renewable energy: Generating electricity from the sea. Academic Press (2018).Becker, E. A. et al. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol. Evol. 10, 5759–5784 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Diversity and distribution of CO2-fixing microbial community along elevation gradients in meadow soils on the Tibetan Plateau

    Zhou, J. Z. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2, 106–110. https://doi.org/10.1038/nclimate1331 (2012).Li, F. L., Liu, M., Li, Z. P., Jiang, C. Y., Han, F. X. & Che, Y. P.Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Appl. Soil Ecol. 64, 1–6. https://doi.org/10.1016/j.apsoil.2012.10.006 (2013).Gryta, A., Frąc, M. & Oszust, K. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Appl. Biochem. Biotechnol. 174, 1434–1443. https://doi.org/10.1007/s12010-014-1131-8 (2014).Djukic, I., Zehetner, F., Mentler, A. & Gerzabek, M. H. Microbial community composition and activity in different Alpine vegetation zones. Soil Boil Biochem. 42, 155–161. https://doi.org/10.1016/j.soilbio.2009.10.006 (2010)Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature. 436 (7054), 1157–1160. https://doi.org/10.1038/nature03891 (2015).Zhang, X., Zhao, X. & Zhang, M. Functional diversity changes of microbial communities along a soil aquifer for reclaimed water recharge. FEMS Microbiol. Ecol. 80, 9–18. https://doi.org/10.1111/j.1574-6941.2011.01263.x (2012).Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289. https://doi.org/10.1146/annurev-marine-120709-142712 (2010)Falkowski, P. et al. The global carbon cycle: A test of our knowledge of earth as a system. Science 290, 291–296. https://doi.org/10.1126/science.290.5490.291 (2000).Tabita, F. R. Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52, 155–189. https://doi.org/10.1128/mr.52.2.155-189.1988 (1988).Yuan, H., Ge, T., Chen, C., O’Donnell, A. G. & Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. Appl. Environ. Microbiol. 78, 2328–2336. https://doi.org/10.1128/AEM.06881-11 (2012).Xu, H. H. & Tabita, F. R. Ribulose-1,5-bisphosphate carboxylase/oxygenase gene expression and diversity of Lake Erie planktonic microorganisms. Appl. Environ. Microbiol. 62, 1913–1921. https://doi.org/10.1128/aem.62.6.1913-1921.1996 (1996).Bräuer, S. L. et al. Dark carbon fixation in the Columbia River’s Estuarine Turbidity Maxima: Molecular characterization of red-type cbbL genes and measurement of DIC uptake rates in response to added electron donors. Estuaries Coast. 36(5), 1073–1083. https://doi.org/10.1007/s12237-013-9603-6 (2013).Hanson, T. E. & Tabita, F. R. A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl. Acad. Sci. USA 98, 4397–4402. https://doi.org/10.1073/pnas.081610398 (2001).Selesi, D., Pattis, I., Schmid, M., Kandeler, Ellen. & Hartmann, A. Quantification of bacterial RubisCO genes in soils by cbbL targeted real-time PCR. J. Microbiol. Meth. 69, 497–503. https://doi.org/10.1016/j.mimet.2007.03.002 (2007).Shanmugam, S. G.et al. Bacterial diversity patterns differ in soils developing in sub-tropical and cool-temperate ecosystems. Microb. Ecol. 73, 556–569. https://doi.org/10.1007/s00248-016-0884-8 (2017).Guo, G., Kong, W., Liu, J., Zhao, J. & Du H. Diversity and distribution of autotrophic microbial community along environmental gradients in grassland soils on the Tibetan Plateau. Appl. Microbiol. Biotechnol. 99, 8765–8776. https://doi.org/10.1093/femsec/fiw160 (2015).Bryant, J. A., Lamanna, C., Morlon, H., Kerkhoff, A. J., Enquist, B. J. & Green, J. L. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A. 105, 11505–11511. https://doi.org/10.1073/pnas.0801920105 (2008)Shen, C., Ni, Y., Liang, W. & Chu, H. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra. Front. Microbiol. 6, 582. https://doi.org/10.3389/fmicb.2015.00582 (2015).Lugo, M. A., Ferrero, M., Menoyo, E., Estévez, M.C., Sieriz, F. & Anton, A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb. Ecol. 55, 705–713. https://doi.org/10.1007/s00248-007-9313-3 (2008).Singh, D., Takahashi, K., & Adams, J. M. Elevational patterns in archaeal diversity on Mt. Fuji. Plos One. 7, e44494. https://doi.org/10.1371/journal.pone.0044494 (2012)Miyamoto, Y., Nakano, T., Hattori, M. & Nara, K. The mid-domain effect in ectomycorrhizal fungi: Range overlap along an elevation gradient on Mount Fuji Japan. ISME J. 8(8), 1739–1746. https://doi.org/10.1038/ismej.2014.34 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, D., Lee-Cruz, L., Kim, W. S. & Kerfahi D. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea. Soil. Boil. Biochem. 68, 140–149. https://doi.org/10.1016/j.soilbio.2013.09.027 (2014).Qiu, J. China: The third pole. Nature 454, 393–396. https://doi.org/10.1038/454393a (2008)Singh, D., Takahashi, K., Kim, M., Chun, J. & Adams, J. M. A hump-backed trend in bacterial diversity with elevation on mount Fuji, Japan. Microb. Ecol. 63, 429–437. https://doi.org/10.1007/s00248-011-9900-1 (2012).Shen, C. et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Boil. Biochem. 57, 204–211. https://doi.org/10.1016/j.soilbio.2012.07.013 (2013).Zhang, B., Chen, S. Y., Zhang, J. F. & Tian, C. Depth-related responses of soil microbial communities toexperimental warming in an alpine meadow on the Qinghai-Tibet Plateau. Eur. J. Soil Sci. 66, 496–504. https://doi.org/10.1111/ejss.12240 (2015).Liu, J.et al. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China. Soil Boil. Biochem. 70, 113–122. https://doi.org/10.1016/j.soilbio.2013.12.014 (2014)Wu, X. D., Xu, H. Y., Liu, G. M., Ma, X., Mu, C. & Zhao L. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan Plateau. Appl. Soil Ecol. 120, 81–88. https://doi.org/10.1016/j.apsoil.2017.08.001 (2017).Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. M.A taxa-area relationship for bacteria. Nature 432, 750–753. https://doi.org/10.1038/nature03073 (2004).Fuks, D. et al. Relationships between heterotrophic bacteria and cyanobacteria in the northern Adriatic in relation to the mucilage phenomenon. Sci. Total Environ. 353, 178–188. https://doi.org/10.1016/j.scitotenv.2005.09.015 (2005).Dziallas, C. & Grossart, H. P. Microbial interactions with the cyanobacterium Microcystis aeruginosa and their dependence on temperature. Mar Biol. 159, 2389–2398. https://doi.org/10.1007/s00227-012-1927-4 (2012).Shen, H., Niu, Y., Xie, P., Tao, M. & Yang, X. Morphological and physiological changes in Microcystis aeruginosa as a result of interactions with heterotrophic bacteria. Freshw. Biol. 56, 1065–1080. https://doi.org/10.1111/j.1365-2427.2010.02551.x (2011).Xun, L., Sun, M. L., Zhang, H. H., Xu, N. & Sun, G. Y. Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community. Microb. Biotechnol. 9, 293–304. https://doi.org/10.1111/1751-7915.12342 (2016).Mohamed, H., Miloud, B., Zohra, F., García-Arenzana, J. M. & Rodríguez-Couto, S. Isolation and characterization of actinobacteria from Algerian Sahara soils with antimicrobial activities. Int. J. Mol. Cell Med. 6, 109–120. https://doi.org/10.22088/acadpub.BUMS.6.2.5 (2017).Wang, J. T. et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb. Ecol. 69, 135–145. https://doi.org/10.1007/s00248-014-0465-7 (2015).Zhang, Y. G. et al. Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microb. Biotechnol. 8, 739–746. https://doi.org/10.1111/1751-7915.12288 (2015).Li, G., Xu, G., Shen, C., Yong, T., Zhang, Y., Ma, K.Contrasting elevational diversity patterns for soil bacteria between two ecosystems divided by the treeline. Sci. China Life Sci. 59, 1177–1186. https://doi.org/10.1007/s11427-016-0072-6 (2016).Liu, L., Hart M. M., Zhang, J., Cai, X. & Gai, J. Altitudinal distribution patterns of AM fungal assemblages in a Tibeta.n alpine grassland. FEMS Microbiol. Ecol. 91, fiv078. https://doi.org/10.1093/femsec/fiv078 (2015).Xiao, K. Q. et al. Quantitative analyses of ribulose-1, 5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbb L) in typical paddy soils. FEMS Microbiol. Ecol. 87, 89–101. https://doi.org/10.1111/1574-6941.12193 (2014).Sardans, J., Peñuelas, J. & Estiarte, M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Appl. Soil Ecol. 39, 223–235. https://doi.org/10.1016/j.apsoil.2007.12.011 (2008).Article 

    Google Scholar 
    Sidari, M., Ronzello, G., Vecchio, G. & Muscolo, A. Influence of slope aspects on soil chemical and biochemical properties in a Pinus Iaricio forest ecosystem of Aspromonte (Southern Italy). Eur. J. Soil Biol. 44, 364–372. https://doi.org/10.1016/j.ejsobi.2008.05.001(2008) (2008).CAS 
    Article 

    Google Scholar 
    La, D., Zhang, Y. J., Pang, Y. Z., Cui, L. L., Liu J. & Suo, N. C.Numerical analysis on plant community and species richness patterns along an altitudinal gradient in the Mila Hill, Tibet. J. Tibet Univ. 12–20 (in Chinese) (2015). More

  • in

    The complete chloroplast genome of critically endangered Chimonobambusa hirtinoda (Poaceae: Chimonobambusa) and phylogenetic analysis

    Assembly and annotation of the chloroplast genomesAssembly resulted in a whole cp genome sequence of C. hirtinoda with a length of 139, 561 bp (Fig. 1), consisting of 83, 166 bp large single-copy region, 20, 811 bp small single-copy regions, and two 21,792 bp IR regions, comprising the typical quadripartite structure of terrestrial plants. The cp genome of C. hirtinoda was annotated with 130 genes, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes (Table 1). Most of the 15 genes in the C. hirtinoda cp genome contain introns. Of these, 13 genes contain one intron (atpF, ndhA, ndhB, petB, petD, rpl2, rpl16, rps16, trnA-UGC, trnI-GAU, trnK-UUU, trnL-UAA, trnV-UAC) and only the gene cyf3 includes two introns, and the gene clpP intron was deleted (Supplementary Table S1). The rps12 gene contained two copies, and the three exons were spliced into a trans-splicing gene18.Figure 1Chloroplast genome map of C. hirtinoda. Different colors represent different functional genes groups. Genes outside the circle indicate counterclockwise transcription, and genes inside the clockwise transcription. The thick black line on the outer circle represents the two IR regions. The GC content is the dark gray area within the ring.Full size imageTable 1 Summary of the chloroplast genome of C. hirtinoda.Full size tableThe accD, ycf1, and ycf2 genes were missing in the cp genome of C. hirtinoda, and the introns in the genes clpP and rpoC1 were lost. This phenomenon is consistent with previous systematic evolutionary studies on the genome structure of plants in the Poaceae family19. The phenomenon of missing genes is reported in other plants20,21,22,23.The total GC content in the C. hirtinoda cp genome was 38.90%, and the content for each of the four bases, A, T, G, and C, was 30.63%, 30.46%, 19.57%, and 19.33%, respectively (Table 2). The LSC region (36.98%) and SSC region (33.21%) exhibited much lower values than the IR region (44.23%), indicating a non-uniform distribution of the base contents in the cp genome, probably because of four rRNAs in the IR region, which in turn makes the GC content higher in the IR region. These values were similar to cp genome results previously reported for some Poaceae plants24,25.Table 2 Base composition in the C. hirtinoda choloroplast genome.Full size tableRepeat sequences and codon analysisSSR consists of 10-bp-long base repeats and is widely used for exploring phylogenetic evolution and genetic diversity analysis26,27,28,29.In total, 48 SSRs were detected in C. hirtinoda, including 27 mononucleotide versions, accounting for 56.25% of the total SSRs, primarily consisting of A or T. Additionally, four dinucleotide repeats consisting of AT/TA and TC/CT repeats, and 3 tri, 13 tetra, and 1penta-repeats (Fig. 2A). From the SSRs distribution perspective, the majority (79%) of SSRs (38) were observed in the LSC area, whereas 6 SSRs in the IR region (13%) and 4 SSRs in the SSC region (8%) were discovered (Fig. 2B). Previous research suggests that the distribution of SSRs numbers in each region and the differences among locations in GC content are related to the expansion or contraction of the IR boundary30.Figure 2Analysis of simple sequence repeats in C. hirtinoda cp genome. (A) The percentage distribution of 45 SSRs in LSC, SSC, and IR regions. (B).Full size imageThe REPuter program revealed that the cp genome of C. hirtinoda was identified with 61 repeats, consisting of 15 palindromic, 19 forward and no reverse and complement repeats (Fig. 3). We noticed that repeat analyses of three Chimonobambusa genus species exhibited 61–65 repeats, with only one reverse in C. hejiangensis. Most of the repeat lengths were between 30 and 100 bp, and the repeat sequences were located in either IR or LSC region31 (Supplementary Table S2).Figure 3Information of chloroplast genome repeats of Chimonobambusa genus species.Full size imageWe identified 20,180 codons in the coding region of C. hirtinoda (Fig. 4, Supplementary Table S3). The codon AUU of Ile was the most used, and the TER of UAG was the least used codon (817 and 19), excluding the termination codons. Leu was the most encoded amino acid (2,170), and TER was the lowest (85). The Relative Synonymous Codon Usage (RSCU) value greater than 1.0 means a codon is used more frequently32. The RSCU values for 31 codons exceeded 1 in the C. hirtinoda cp genome, and of these, the third most frequent codon was A/U with 29 (93.55%), and the frequency of start codons AUG and UGG used demonstrated no bias (RSCU = 1).Figure 4Amino acid frequencies in C. hirtinoda cp genome protein coding sequences. The column diagrams indicate the number of amino acid codes, and the broken line indicates the proportion of amino acid codes.Full size imageComparative analysis of genome structureThe nucleotide variability (Pi) values of the three cp genomes discovered in the Chimonobambusa genus species ranged from 0 to 0.021 with an average value of 0.000544, as demonstrated from DnaSP 5.10 software analysis. Five peaks were observed in the two single-copy regions, and the highest peak was present in the trnT-trnE-trnY region of the LSC region (Fig. 5). The Pi value for LSC and SSC is significantly higher than that of the IR region. In the IR region, highly different sequences were not observed, a highly conserved region. The sequences of these highly variable regions are reported in other plants during examinations for species identification, phylogenetic analysis, and population genetics research33,34,35.Figure 5Sliding window analysis of Chimonobambusa genus complete chloroplast genome sequences. X-axis: position of the midpoint of a window, Y-axis: nucleotide diversity of each window.Full size imageThe structural information for the complete cp genomes among three Chimonobambusa genus species revealed that the sequences in most regions were conserved (Fig. 6). The LSC and SSC regions exhibit a remarkable degree of variation, higher than the IR region, and the non-coding region demonstrates higher variability than the coding region. In the non-coding areas, 7–9 k, 28–30 k, 36 k and other gene loci differed significantly. Genes rpoC2, rps19, ndhJ and other regions differ in the protein-coding region. However, the agreement between the tRNA and rRNA regions is 100%. A similar phenomenon has also been reported by others36.Figure 6Visualization of genome alignment of three species chloroplast genome sequences using Chimonobambusa hejiangensis as reference. The vertical scale shows the percent of identity, ranging from 50 to 100%. The horizontal axis shows the coordinates within the cp genome. Those are some colors represents protein coding, intron, mRNA and conserved non-coding sequence, respectively.Full size imageIR contraction and expansion in the chloroplast genomeDue to the unique circular structure of the cp genome, there are four junctions between the LSC/IRB/SSC/IRA regions. During species evolution, the stability of the two IR regions sequences was ensured by the IR region of the chloroplast genome expanding and contracting to some degree, and this adjustment is the primary reason for chloroplast genome length variation37,38.The variations at IR/SC boundary regions in the three Chimonobambusa genus chloroplast genomes were highly similar in the organization, gene content, and gene order. The size of IR ranges from 21,797 bp (C. tumidissinoda) to 21,835 bp (C. hejiangensis). The ndhH gene spans the SSC/IRa boundary, and this gene extended 181–224 bp into the IRa region for all three Chimonobambusa genus. The gene rps19 was extended from the IRb to the LSC region with a 31–35 bp gap. The rpl12 gene was located in the LSC region of all genomes, varied from 35–36 bp apart from the LSC/IRb (Fig. 7).Figure 7Comparison of LSC, SSC and IR boundaries of chloroplast genomes among the three Chimonobambusa species. The LSC, SSC and IRs regions are represented with different colors. JLB, JSB, JSA and JLA represent the connecting sites between the corresponding regions of the genome, respectively. Genes are showed by boxes.Full size imageThree chloroplast genomes of the Chimonobambusa genus were compared using the Mauve alignment. The results showed that all sequences show perfect synteny conservation with no inversion or rearrangements (Fig. 8).Figure 8The chloroplast genomes of three Chimonobambusa species rearranged by the software MAUVE. Locally collinear blocks (LCBs) are represented by the same color blocks connected by lines. The vertical line indicates the degree of conservatism among position. The small red bar represents rRNA.Full size imagePhylogenetic analysisWe performed a phylogenetic analysis using the complete chloroplast genomes and matK gene reflecting the phylogenetic position of C. hirtinoda. The maximum likelihood (ML) analysis based on the complete chloroplast genomes indicated seven nodes with entirely branch support (100% bootstrap value). However, the three Chimonobambusa genera exhibited a moderate relationship due to fewer samples used, supporting that C. hirtinoda is closely related to C. tumidissinoda with a 62% bootstrap value more than C. hejiangensis. A phylogenetic tree based on the matK gene revealed that Chimonobambusa species clustered in one branch was consistent with the phylogenetic tree constructed by the complete cp genome tree (Fig. 9). The results show that the whole chloroplast genome identified related species better than the former, consistent with the previous study39.Figure 9Maximum likelihood phylogenetic tree based on the complete chloroplast genomes (A) and matK gene (B).Full size image More

  • in

    Reduction of greenhouse gases emission through the use of tiletamine and zolazepam

    Caycedo-Marulanda, A. & Mathur, S. Suggested strategies to reduce the carbon footprint of anesthetic gases in the operating room. Can. J. Anaesth. J. Can. Anesth. 69, 269–270 (2022).CAS 
    Article 

    Google Scholar 
    World Health Organization. COP24 Special Report Health & Climate Change. https://apps.who.int/iris/bitstream/handle/10665/276405/9786057496713-tur.pdf (2018).Gadani, H. & Vyas, A. Anesthetic gases and global warming: potentials, prevention and future of anesthesia. Anesth. Essays Res. 5, 5 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vollmer, M. K. et al. Modern inhalation anesthetics: potent greenhouse gases in the global atmosphere. Geophys. Res. Lett. 42, 1606–1611 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    Sulbaek Andersen, M. P., Nielsen, O. J., Karpichev, B., Wallington, T. J. & Sander, S. P. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials. J. Phys. Chem. A 116, 5806–5820 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Ryan, S. M. & Nielsen, C. J. Global warming potential of inhaled anesthetics: application to clinical use. Anesth. Analg. 111, 92–98 (2010).PubMed 
    Article 

    Google Scholar 
    American Society of Anesthesiologists. Task Force on Environmental Sustainability Committee on Equipment and Facilities. Greening the Operating Room and Perioperative Arena: Environmental Sustainability for Anesthesia Practice. https://www.asahq.org/about-asa/governance-and-committees/asa-committees/committee-on-equipment-and-facilities/environmental-sustainability/greening-the-operating-room#intro (2014).McGain, F., Story, D., Kayak, E., Kashima, Y. & McAlister, S. Workplace sustainability: the “cradle to grave” view of what we do. Anesth. Analg. 114, 1134–1139 (2012).PubMed 
    Article 

    Google Scholar 
    Yasny, J. S. & White, J. Environmental implications of anesthetic gases. Anesth. Prog. 59, 154–158 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byhahn, C., Wilke, H. J. & Westpphal, K. Occupational exposure to volatile anaesthetics: epidemiology and approaches to reducing the problem. CNS Drugs 15, 197–215 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sherman, J., Le, C., Lamers, V. & Eckelman, M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth. Analg. 114, 1086–1090 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankes, R. F. Propofol wastage in anesthesia. Anesth. Analg. 114, 1091–1092 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weller, M. A general review of the environmental impact of health care, hospitals, operating rooms, and anesthetic care. Int. Anesthesiol. Clin. 58, 64–69 (2020).PubMed 
    Article 

    Google Scholar 
    Dawidowicz, A. L. et al. Investigation of propofol renal elimination by HPLC using supported liquid membrane procedure for sample preparation. Biomed. Chromatogr. BMC 16, 455–458 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, G. L. et al. Influence of ambient temperature and confinement on the chemical immobilization of fallow deer (Dama dama). J Wildl Dis 53, 364–367 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, G. et al. Comparison of tiletamine-zolazepam combined with dexmedetomidine or xylazine for chemical immobilization of wild fallow deer (Dama dama). J. Zoo Wildl. Med. 52, 1009–1012 (2021).PubMed 
    Article 

    Google Scholar 
    Lin, H. C., Thurmon, J. C., Benson, G. J. & Tranquilli, W. J. Telazol: a review of its pharmacology and use in veterinary medicine. J. Vet. Pharmacol. Ther. 16, 383–418 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, W. J. Staircase bioassay: the up-and-down method. Neurosci. Biobehav. Rev. 15, 47–50 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, C.-M. et al. Sitting position does not alter minimum alveolar concentration for desflurane. Can. J. Anesth. Can. Anesth. 54, 523–530 (2007).Article 

    Google Scholar 
    Wadhwa, A. & Sessler, D. I. Women have the same desflurane minimum alveolar concentration as men. J. Am. Soc. Anesthesiol. 99, 4 (2003).
    Google Scholar 
    Monteiro, E. R., Coelho, K., Bressan, T. F., Simões, C. R. & Monteiro, B. S. Effects of acepromazine-morphine and acepromazine-methadone premedication on the minimum alveolar concentration of isoflurane in dogs. Vet. Anaesth. Analg. 43, 27–34 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campagnol, D., Neto, F. J. T., Giordano, T., Ferreira, T. H. & Monteiro, E. R. Effects of epidural administration of dexmedetomidine on the minimum alveolar concentration of isoflurane in dogs. Am. J. Vet. Res. 68, 1308–1318 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, A., Morey, T. E., Hernandez, J. & Davies, W. Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits. Am. J. Vet. Res. 64, 957–962 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aguado, D., Benito, J. & Gómez de Segura, I. A. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine–ketamine in combination with either morphine or fentanyl. Vet. J. 189, 63–66 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muir, W. W. III., Wiese, A. J. & March, P. A. Effects of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine drug combination on minimum alveolar concentration in dogs anesthetized with isoflurane. Am. J. Vet. Res. 64, 1155–1160 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, W. J. The up-and-down method for small samples. J. Am. Stat. Assoc. 60, 967–978 (1965).MathSciNet 
    Article 

    Google Scholar 
    Paul, M. & Fisher, D. M. Are estimates of MAC reliable?. Anesthesiology 95, 1362–1370 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sonner, J. M. Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth. Analg. 95, 609–614 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flecknell, P. et al. Preanesthesia, anesthesia, analgesia, and euthanasia. in Laboratory Animal Medicine 1135–1200 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-409527-4.00024-9.Grimm, K. A., Lamont, L. A., Tranquilli, W. J., Greene, S. A. & Robertson, S. A. Veterinary Anesthesia and Analgesia (Wiley, 2015).Book 

    Google Scholar 
    Grimm, K. A., Tranquilli, W. J. & Lamont, L. A. Essentials of Small Animal Anesthesia and Analgesia (Wiley, 2011).
    Google Scholar 
    Hanna, M. & Bryson, G. L. A long way to go: minimizing the carbon footprint from anesthetic gases. Can. J. Anesth. Can. Anesth. 66, 838–839 (2019).Article 

    Google Scholar 
    Andersen, M. P. S., Nielsen, O. J., Wallington, T. J., Karpichev, B. & Sander, S. P. Assessing the impact on global climate from general anesthetic gases. Anesth. Analg. 114, 1081–1085 (2012).CAS 
    Article 

    Google Scholar 
    Ishizawa, Y. General anesthetic gases and the global environment. Anesth. Analg. 112, 213–217 (2011).PubMed 
    Article 

    Google Scholar 
    Brown, A. C., Canosa-Mas, C. E., Parr, A. D., Pierce, J. M. T. & Wayne, R. P. Tropospheric lifetimes of halogenated anaesthetics. Nature 341, 635–637 (1989).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Lucio, L. M. C., Braz, M. G., don Nascimento Junior, P., Braz, J. R. C. & Braz, L. G. Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases. Braz. J. Anesthesiol. Engl. Ed. 68, 33–41 (2018).
    Google Scholar 
    Waste anesthetic gases-occupational hazards in hospitals. https://www.cdc.gov/niosh/docs/2007-151/ (2007). https://doi.org/10.26616/NIOSHPUB2007151.MacNeill, A. J., Lillywhite, R. & Brown, C. J. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health 1, e381–e388 (2017).PubMed 
    Article 

    Google Scholar 
    Rauchenwald, V. et al. New method of destroying waste anesthetic gases using gas-phase photochemistry. Anesth. Analg. 131, 288–297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Özelsel, T.J.-P., Sondekoppam, R. V., Ip, V. H. Y. & Tsui, B. C. H. Re-defining the 3R’s (reduce, refine, and replace) of sustainability to minimize the environmental impact of inhalational anesthetic agents. Can. J. Anesth. Can. Anesth. 66, 249–254 (2019).Article 

    Google Scholar 
    Thiel, C. L. et al. Environmental impacts of surgical procedures: life cycle assessment of hysterectomy in the United States. Environ. Sci. Technol. 49, 1779–1786 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Mastrangelo, G., Comiati, V., dell’Aquila, M. & Zamprogno, E. Exposure to anesthetic gases and Parkinson’s disease: a case report. BMC Neurol. 13, 194 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Casale, T. et al. Anesthetic gases and occupationally exposed workers. Environ. Toxicol. Pharmacol. 37, 267–274 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma, A. et al. Should total intravenous anesthesia be used to prevent the occupational waste anesthetic gas exposure of pregnant women in operating rooms?. Anesth. Analg. 128, 188–190 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, J. M. L. Comparison of disposable circle and ‘to-and-fro’ breathing systems during anaesthesia in dogs. J. Small Anim. Pract. 39, 416–420 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suttner, S. & Boldt, J. Low-flow anaesthesia: does it have potential pharmacoeconomic consequences?. Pharmacoeconomics 17, 585–590 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, R. S. & West, E. Environmental sustainability in veterinary anaesthesia. Vet. Anaesth. Analg. 46, 409–420 (2019).PubMed 
    Article 

    Google Scholar 
    Feldman, J. M. Managing fresh gas flow to reduce environmental contamination. Anesth. Analg. 114, 1093–1101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davies, T. V. S. Low flow anaesthesia: frequently asked questions (2020).Pattanapon, N., Bootcha, R. & Petchdee, S. The effects of anesthetic drug choice on heart rate variability in dogs. J. Adv. Vet. Anim. Res. 5, 485 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hampton, C. E. et al. Effects of intravenous administration of tiletamine-zolazepam, alfaxalone, ketamine-diazepam, and propofol for induction of anesthesia on cardiorespiratory and metabolic variables in healthy dogs before and during anesthesia maintained with isoflurane. Am. J. Vet. Res. 80, 33–44 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratnu, D. A., Anjana, R. R., Parikh, P. V. & Kelawala, D. N. Effects of tiletamine-zolazepam and isoflurane for induction and maintenance in xylazine premedicated dogs. Indian J. Vet. Sci. Biotechnol. 17, 86–88 (2021).CAS 

    Google Scholar 
    Malavasi, L. M., Jensen-Waern, M., Augustsson, H. & Nyman, G. Changes in minimal alveolar concentration of isoflurane following treatment with medetomidine and tiletamine/zolazepam, epidural morphine or systemic buprenorphine in pigs. Lab. Anim. 42, 62–70 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malavasi, L. M. et al. Effects of extradural morphine on end-tidal isoflurane concentration and physiological variables in pigs undergoing abdominal surgery: a clinical study. Vet. Anaesth. Analg. 33, 307–312 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Krimins, R. A., Ko, J. C., Weil, A. B., Payton, M. E. & Constable, P. D. Hemodynamic effects in dogs after intramuscular administration of a combination of dexmedetomidine-butorphanol-tiletamine-zolazepam or dexmedetomidine-butorphanol-ketamine. Am. J. Vet. Res. 73, 1363–1370 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nam, S.-W., Shin, B.-J. & Jeong, S. M. Anesthetic and cardiopulmonary effects of butorphanol-tiletamine-zolazepam-medetomidine and tramadol-tiletamine-zolazepam-medetomidine in dogs. J. Vet. Clin. 30(6), 421–427 (2013).
    Google Scholar 
    Ko, J. C. H., Payton, M., Weil, A. B., Kitao, T. & Haydon, T. Comparison of anesthetic and cardiorespiratory effects of tiletamine–zolazepam–butorphanol and tiletamine–zolazepam–butorphanol– medetomidine in dogs. Vet. Ther. 8, 14 (2007).
    Google Scholar 
    Grimm, K. A., Tranquilli, W. J., Thurmon, J. C. & Benson, G. J. Duration of nonresponse to noxious stimulation after intramuscular administration of butorphanol, medetomidine, or a butorphanol-medetomidine combination during isoflurane administration in dogs. Am. J. Vet. Res. 61, 42–47 (2000).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Synchronous vegetation response to the last glacial-interglacial transition in northwest Europe

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).Article 

    Google Scholar 
    Heiri, O. et al. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat. Commun. 5, 1–7 (2014).Article 
    CAS 

    Google Scholar 
    Muschitiello, F. et al. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015).CAS 
    Article 

    Google Scholar 
    Mangerud, J. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5 (2021).Article 

    Google Scholar 
    Cheng, H. et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. USA 117, 23408–23417 (2020).CAS 
    Article 

    Google Scholar 
    van Hoesel, A., Hoek, W. Z., Pennock, G. M. & Drury, M. R. The Younger Dryas impact hypothesis: a critical review. Quat. Sci. Rev. 83, 95–114 (2014).Article 

    Google Scholar 
    Partin, J. W. et al. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics. Nat. Commun. 6, 1–9 (2015).Article 

    Google Scholar 
    Reinig, F. et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 595, 66–69 (2021).CAS 
    Article 

    Google Scholar 
    Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas — a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).Article 

    Google Scholar 
    Hoek, W. Z. Vegetation response to the ∼ 14.7 and ∼ 11.5 ka cal. BP climate transitions: is vegetation lagging climate? Glob. Planet. Change 30, 103–115 (2001).Article 

    Google Scholar 
    Litt, T. et al. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quat. Sci. Rev. 20, 1233–1249 (2001).Article 

    Google Scholar 
    Muschitiello, F. & Wohlfarth, B. Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas. Quat. Sci. Rev. 109, 49–56 (2015).Article 

    Google Scholar 
    Nakagawa, T. et al. The spatio-temporal structure of the Lateglacial to early Holocene transition reconstructed from the pollen record of Lake Suigetsu and its precise correlation with other key global archives: implications for palaeoclimatology and archaeology. Glob. Planet. Change 202, 103493 (2021).Article 

    Google Scholar 
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).Article 

    Google Scholar 
    Engels, S. et al. Subdecadal‐scale vegetation responses to a previously unknown late‐Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). J. Quat. Sci 31, 741–752 (2016).Article 

    Google Scholar 
    Van Raden, U. J. et al. High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 13–24 (2013).Article 

    Google Scholar 
    Blaga, C. I., Reichart, G.-J., Lotter, A. F., Anselmetti, F. S. & Sinninghe Damsté, J. S. A TEX86 lake record suggests simultaneous shifts in temperature in Central Europe and Greenland during the last deglaciation. Geophys. Res. Lett. 40, 948–953 (2013).Article 

    Google Scholar 
    Rach, O., Brauer, A., Wilkes, H. & Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7, 109 (2014).CAS 
    Article 

    Google Scholar 
    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).CAS 
    Article 

    Google Scholar 
    Doncaster, C. P. et al. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97, 3079–3090 (2016).Article 

    Google Scholar 
    Jones, G. et al. The Lateglacial to early Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the European tephra framework. Boreas 47, 28–40 (2018).Article 

    Google Scholar 
    Blaga, C. I., Reichart, G.-J., Heiri, O. & Damsté, J. S. S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J. Paleolimnol. 41, 523–540 (2009).Article 

    Google Scholar 
    Bechtel, A., Smittenberg, R. H., Bernasconi, S. M. & Schubert, C. J. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: insights into sources and GDGT-based proxies. Org. Geochem. 41, 822–832 (2010).CAS 
    Article 

    Google Scholar 
    Lowe, J. et al. On the timing of retreat of the Loch Lomond (‘Younger Dryas’) Readvance icefield in the SW Scottish Highlands and its wider significance. Quat. Sci. Rev. 219, 171–186 (2019).Article 

    Google Scholar 
    Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R news 8, 20–25 (2008).
    Google Scholar 
    Merkt, J. & Müller, H. Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony. Quat. Int. 61, 41–59 (1999).Article 

    Google Scholar 
    Litt, T. & Stebich, M. Bio-and chronostratigraphy of the lateglacial in the Eifel region, Germany. Quat. Int. 61, 5–16 (1999).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Giesecke, T. Holocene dynamics of the southern boreal forest in Sweden. The Holocene 15, 858–872 (2005).Article 

    Google Scholar 
    Müller, D. et al. New insights into lake responses to rapid climate change: the Younger Dryas in Lake Gościąż, central Poland. Boreas 50, 535–555 (2021).Article 

    Google Scholar 
    Davis, B. A. S. et al. The Eurasian Modern Pollen Database (EMPD), version 2. Earth Syst. Sci. data 12, 2423–2445 (2020).Article 

    Google Scholar 
    Neugebauer, I. et al. A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany. Quat. Sci. Rev. 36, 91–102 (2012).Article 

    Google Scholar 
    Ralska-Jasiewiczowa, M. et al. Very fast environmental changes at the Pleistocene/Holocene boundary, recorded in laminated sediments of Lake Gościaż, Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 225–247 (2003).Article 

    Google Scholar 
    Bonk, A. et al. Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland). Quat. Sci. Rev. 251, 106715 (2021).Article 

    Google Scholar 
    Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M. & Negendank, J. F. W. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–523 (2008).CAS 
    Article 

    Google Scholar 
    Mekhaldi, F. et al. Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum. Clim. Past 16, 1145–1157 (2020).Article 

    Google Scholar 
    Mayfield, R. J. et al. Metrics of structural change as indicators of chironomid community stability in high latitude lakes. Quat. Sci. Rev. 249, 106594 (2020).Article 

    Google Scholar 
    van der Knaap, W. O. & Van Leeuwen, J. F. N. Climate-pollen relationships AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps. The Holocene 13, 809–828 (2003).Article 

    Google Scholar 
    Bazelmans, J. et al. Environmental changes in the late Allerød and early Younger Dryas in the Netherlands: a multiproxy high-resolution record from a site with two Pinus sylvestris populations. Quat. Sci. Rev. 272, 107199 (2021).Article 

    Google Scholar 
    Birks, H. H., Battarbee, R. W. & Birks, H. J. B. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene-a synthesis. J. Paleolimnol 23, 91–114 (2000).Article 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Lohne, Ø. S., Mangerud, J. A. N. & Birks, H. H. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Kråkenes, western Norway. J. Quat. Sci 29, 506–507 (2014).Article 

    Google Scholar 
    Lohne, Ø. S., Mangerud, J. A. N. & Birks, H. H. Precise 14 C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC 05) chronology. J. Quat. Sci 28, 490–500 (2013).Article 

    Google Scholar 
    Wohlfarth, B. et al. Hässeldala–a key site for last termination climate events in northern Europe. Boreas 46, 143–161 (2017).Article 

    Google Scholar 
    Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).Article 

    Google Scholar 
    Lane, C. S., Brauer, A., Blockley, S. P. E. & Dulski, P. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–1254 (2013).Bronk Ramsey, C. et al. Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quat. Sci. Rev. 118, 18–32 (2015).Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, https://doi.org/10.1029/2005JD006079 (2006).Brauer, A., Endres, C., Zolitschka, B. & Negendank, J. F. W. AMS radiocarbon and varve chronology from the annually laminated sediment record of Lake Meerfelder Maar, Germany. Radiocarbon 42, 355–368 (2000).CAS 
    Article 

    Google Scholar 
    Wulf, S. et al. Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland. Quat. Sci. Rev. 76, 129–139 (2013).Article 

    Google Scholar 
    Brauer, A. et al. The importance of independent chronology in integrating records of past climate change for the 60–8 ka INTIMATE time interval. Quat. Sci. Rev. 106, 47–66 (2014).Article 

    Google Scholar 
    Lane, C. S. et al. The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 122 192–206 (2015).Article 

    Google Scholar 
    Adolphi, F. & Muscheler, R. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene–Bayesian wiggle-matching of cosmogenic radionuclide records. Clim. Past 12, 15–30 (2016).Article 

    Google Scholar 
    Muschitiello, F. et al. Deep-water circulation changes lead North Atlantic climate during deglaciation. Nat. Commun. 10, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Adolphi, F. et al. Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nat. Geosci. 7, 662–666 (2014).CAS 
    Article 

    Google Scholar 
    Siegenthaler, U., Heimann, M. & Oeschger, H. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22, 177–191 (1980).CAS 
    Article 

    Google Scholar 
    Muscheler, R., Adolphi, F. & Svensson, A. Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum. Earth Planet. Sci. Lett. 394, 209–215 (2014).CAS 
    Article 

    Google Scholar 
    Muschitiello, F. An improved and continuous synchronization of the Greenland ice-core and Hulu Cave U-Th timescales using probabilistic inversion. Clim. Past Discuss. 1–39 https://doi.org/10.5194/cp-2021-116 (2021).Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis. (Blackwell scientific publications, 1991).Engels, S. et al. Haemelsee: late-glacial pollen counts. PANGAEA, https://doi.org/10.1594/PANGAEA.939693 (2021).Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).CAS 
    Article 

    Google Scholar 
    Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol 25, 101–110 (2001).Article 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. Tech. Guid. i–vi. Vol. 10, 1–276 (2007).Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).Article 

    Google Scholar 
    Heiri, O. & Lotter, A. F. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolimnol 26, 343–350 (2001).Article 

    Google Scholar 
    Rach, O., Hadeen, X. & Sachse, D. An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis. Org. Geochem. 142, 103995 (2020).CAS 
    Article 

    Google Scholar 
    Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).CAS 
    Article 

    Google Scholar 
    Hopmans, E. C., Schouten, S. & Damsté, J. S. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).CAS 
    Article 

    Google Scholar 
    Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. The Holocene 18, 19–30 (2008).Article 

    Google Scholar 
    R CORE TEAM, A. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. URL http://www.R-project.org (2020).Engels, S., van Geel, B., Buddelmeijer, N. & Brauer, A. High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) and other central European records. Rev. Palaeobot. Palynol. 221, 160–170 (2015).Article 

    Google Scholar 
    Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets–a chronological database and time‐slice reconstruction, DATED‐1. Boreas 45, 1–45 (2016).Article 

    Google Scholar  More

  • in

    The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation

    Fisheries overexploitation is a problem in all oceans and seas globally. Authorities and administrations in charge of assigning quotas have very little fine-grained information on the fish captures, and instead use large-scale, coarse data to assess the health level of fisheries. Thus, being able to cross-match fish species and sizes, to the sea regions they were captured from, can be helpful in this regard, providing finer-grained information.Previous attempts at assembling datasets for fish detection and classification exist, ranging from fish detection or counting in underwater images and video streams1,2,3, to counting on belts on trawler ships4, to classification in laboratory conditions5,6, or in underwater preprocessed images of single fish7,8,9, or single fish in free-form pictures10, as well as simultaneous detection and classification of several fish11,12. However, none of the works found in the literature addresses the topic of simultaneous instance segmentation and species classification, along with fish size estimation, in a fish market environment, as is the aim of this paper. Instance segmentation refers to the extraction of pixel-level masks for each individual object (in this case fish specimens), rather than bounding boxes (object detection), or class label masks (e.g. a single mask for all fish specimens of the same species, also referred to as semantic segmentation). Moreover, works in the literature use pictures taken in laboratory conditions (with a single fish per image, shown from the side), or in underwater conditions. Only French et al.4 uses pictures of fish catches on a belt, for counting purposes. Table 1 shows a summary of the datasets identified in the literature, along with their characteristics, including how the proposed dataset compares.Table 1 Summary of previous datasets found in the literature, and comparison to proposed dataset.Full size tableThe DeepFish project (website: http://deepfish.dtic.ua.es/) is aimed at providing fish species classification and size estimation for fish specimens arriving at fish markets, both for the automation of fish sales, and the retrieval of fine-grained information about the health of fisheries. For a period of six months (April to September 2021), images have been captured at the fish market in El Campello (Alicante, Spain). Images of market trays show a variety of fish species, including targeted as well as accidental captures from the ‘Cabo de la Huerta’, an important site for protection and preservation of marine habitats and biodiversity as defined by the European Comission Habitats Directive (92/43/EEC). From the pictures, a total of 59 different species are identified with 12 species having more than 100 specimens and 25 with more than 10 specimens, as shown in Table 2. There is a high imbalance of species captured due to the natural variation in fish species populations according to seasonality and other ecological factors (rarity of the species, i.e. total population count, etc). Due to some species showing sexual dimorphism (i.e. Symphodus tinca), this species is split into two separate class labels, leading to a different number of species, and class labels (59 species, but 60 class labels). The dataset presents a high temporal imbalance too. As shown in Fig. 1, the capture of new fish tray images was not evenly distributed during the six month study period. Several factors contributed to this: wholesale fish market operating days (e.g. no weekend data, holidays and stop periods, etc.), fish species variability (one of the aims was to be able to capture at least 100 specimens from several species, and seasonality meant some could not be available for capture in later months), as well as the time availability of research group members to attend the fish arrival, tray preparation and auctioning in the evenings.Table 2 Distribution of fish species in the dataset.Full size tableFig. 1Temporal distribution of fish tray images captured. It can be observed that April (04) and May (05) were much more active than the rest of months. This is due to several contributing factors.Full size imageThe resulting DeepFish dataset introduced here contains annotated images from 1,291 fish market trays, with a total of 7,339 specimens (individual fish instances) which were labelled (species and mask) using a specially-adapted version of the Django labeller instance segmentation labelling tool13. Subsequently, another JSON file is generated, following the Microsoft Common Objects in Context (MS COCO) dataset format14, which can be directly fed to a neural network. This is done via a script that is also provided15. Figure 2 shows the distribution of individuals for the selected species within the dataset. Furthermore, Fig. 3 shows examples of the trays, with instance segmentation (ground truth silhouette, i.e. as an interpolation from human-provided points) along with species labelling (different colour shading).Fig. 2Graphical view of the distribution of fish species in the DeepFish dataset for species above 10 specimens. Note, Symphodus tinca is considered separately due to sexual dimorphism (211 male; 335 female samples).Full size imageFig. 3Examples of ground truth fish instance masks with class labelling, showing the 12 species (13 labels) with more than 100 specimens (in bold in Table 2).Full size imageFrom the point of view of research, this data is important for the classification of fish species, instance segmentation, as well as specimen size estimation (e.g. as a regression problem, or otherwise). From an end-results perspective, data automatically labelled with fish instance segmentation accompanied by species name and estimated size is useful to different stakeholders, namely: fishing authorities (to understand how much of each species is being caught per zone), maritime conservation (to calculate depletion of fisheries), but also managers of the markets themselves, as well as clients (digitized sales, e-commerce), etc.The usage of the provided data can be manifold, as it can be used for several problems, namely: object detection and classification, which involves finding objects (in this case fish specimens) providing a bounding box, and a class for each of these boxes; additionally, the data can also be used for semantic segmentation, which can provide a pixel-wise segmentation of the image providing labels (in this case species labels) to different pixel regions of the image; furthermore, also instance segmentation is possible, in which not just a single label for all instances of the same species is provided, but each specimen is provided with a mask (specimen segmentation), as well as a label (species). Furthermore, several measurements of each fish are provided, which can also be used to estimate their size, since they have been shown to be correlated with each other16. These are estimated from the calculated homography (given the tray size is known), given the burden of measuring each fish due to the large amount of specimens in the dataset. More