More stories

  • in

    Metagenomics to characterize sediment microbial biodiversity associated with fishing exposure within the Stellwagen Bank National Marine Sanctuary

    Pace, N. R. The small things can matter. PLoS Biol. 16(8), e3000009. https://doi.org/10.1371/journal.pbio.3000009 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoshino, T. et al. Global diversity of microbial communities in marine sediment. PNAS 117, 27587–27597 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baker, B. J., Appler, K. E. & Gong, X. New microbial biodiversity in marine sediments. Ann. Rev. Mar. Sci. 13, 161–175. https://doi.org/10.1146/annurev-marine-032020-014552 (2021).Article 
    PubMed 

    Google Scholar 
    Zinger, L. et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6, e24570. https://doi.org/10.1371/journal.pone.0024570 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiao, N. et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 8, 593–599 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ward, N. D. et al. Representing the function and sensitivity of coastal interfaces in earth system models. Nat. Commun. 11, 2458 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cook, R., & Auster, P. J. Developing alternatives for optimal representation of seafloor habitats and associated communities in Stellwagen Bank National Marine Sanctuary. Marine Sanctuaries Conservation Series ONMS-06–02. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD (2006).Wauchope, H. S. Evaluating impact using time-series data. Trends Ecol. Evol. 36, 3. https://doi.org/10.1016/j.tree.2020.11.001 (2021).Article 

    Google Scholar 
    Stellwagen Bank National Marine Sanctuary (SBNMS) Condition Report. Office of National Marine Sanctuaries National Oceanic and Atmospheric Administration. doi:https://doi.org/10.25923/48ZK-BB07. pp. 1–263. (2020).Grieve, C., Brady, D. C. & Polet, H. Best practices for managing, measuring and mitigating the benthic impacts of fishing—Part 1. Mar. Stewardship Council Sci. Ser. 2, 18–88 (2014).
    Google Scholar 
    Watling, L. & Norse, E. A. Disturbance of the seafloor by mobile fishing gear: A comparison to forest clear cutting. Conserv. Biol. 12, 1180–1197 (1998).Article 

    Google Scholar 
    Snelgrove, P. V. R. et al. The importance of marine sediment biodiversity in ecosystem processes. Ambio 26, 578–583 (1997).
    Google Scholar 
    Grassle, J. F. & Maciolek, N. J. Deep-sea species richness: Regional and local diversity estimates from quantitative bottom samples. Am. Nat. 139, 313–341 (1992).Article 

    Google Scholar 
    Polinski, J. M., Bucci, J. P., Gasser, M. & Bodnar, A. G. Targeted metagenomic assessment of biodiversity across prokaryotic and eukaryotic taxa in sediments from the Stellwagen Bank National Marine Sanctuary. Sci. Rep. 9, 14820 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Petro, C. et al. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).Article 

    Google Scholar 
    Cook, R. et al. The substantial first impact of bottom fishing on rare biodiversity hotspots: A dilemma for evidence-based conservation. PLoS ONE 8, e69904 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grabowski, J. H. et al. Assessing the vulnerability of marine benthos to fishing gear impacts. Rev. Fisheries Sci. Aquacult. 22, 142–155 (2014).Article 

    Google Scholar 
    Silva, T. L. State of the science report: An addendum to the Stellwagen Bank National Marine Sanctuary 2020 Condition Report 1–20 (U.S. Department of Commerce, 2021).
    Google Scholar 
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bech, P. K. et al. Marine sediments hold an untapped potential for novel taxonomic and bioactive bacterial diversity. MSystems 5, e00782-e820 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 79, 629–661 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hou, Z. Geochemical and microbial community attributes in relation to hyporheic zone geological facies. Sci. Rep. 7, 12006 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hugenholtz, P., Goebel, B. M. & Pace, N. R. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180, 4765–4774 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Durazzi, F. et al. Comparison between 16S rRNA and shotgun sequencing data for the taxonomic characterization of the gut microbiota. Sci. Rep. 11, 3030 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asnicar, F. et al. Precise phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat. Commun. 11, 2500 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dance, A. The search for microbial dark matter. Nature 582, 301–303. https://doi.org/10.1038/d41586-020-01684-z (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Fishing Restrictions. Magnuson Fishery Conservation and Management Act (MFCMA) (16 U.S.C. Part 1801 et seq.) (1990).Begon, M., Harper, J. L. & Townsend, C. R. Ecology: Individuals, Populations, and Communities 3rd edn. (Blackwell Science Ltd., 1996).Book 

    Google Scholar 
    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews, S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Next Gen. Sequencing Data Anal. 17, 1 (2011).
    Google Scholar 
    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, J., Breitwieser, F. P., Thielen, P. & Salzberg, S. L. Bracken: estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2, e104 (2017).Article 

    Google Scholar 
    Wickham, H. ggplot2. WIREs Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Breitwieser, F. P. & Salzberg, S. L. Pavian: Interactive analysis of metagenomics data for microbiome studies and pathogen identification. Bioinformatics 36, 1303–1304 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, Y. W. et al. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alneberg, J. et al. CONCOCT: Clustering cONtigs on COverage and ComposiTion. ArXiv 1312, 4038 (2013).ADS 

    Google Scholar 
    Kang, D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks, D. H. et al. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a web browser. BMC Bioinform. 12, 385 (2011).Article 

    Google Scholar 
    Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blin, K. et al. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 49, W29–W35 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN 978–3–319–24277–4. (2016).Moon, K. W. Interactive Plot. In Learn ggplot2 Using Shiny App (ed. Moon, K.-W.) 295–347 (Springer International Publishing, 2016).Chapter 

    Google Scholar 
    Oksanen, J., et al. Package ‘vegan’. Community ecology package, version 2, 1-295 (2013).Wilkinson, L. SYSTAT. In Wiley Interdisciplinary Reviews: Computational Statistics, Multidimensional Scaling (eds Wegman, E. & Said, Y. H.) (John Wiley & Sons, New York, 2010).
    Google Scholar 
    Dexter, E., Rollwagen-Bollens, G. & Bollens, M. The trouble with stress: A flexible method for the evaluation of nonmetric multidimensional scaling. Limnol. Oceanogr. Methods 16, 434–443 (2018).Article 

    Google Scholar 
    Longford, N. T. Longitudinal and time-series analysis. In Studying Human Populations. Springer Texts in Statistics (Springer, 2008). https://doi.org/10.1007/978-0-387-73251-0_11.Chapter 
    MATH 

    Google Scholar 
    NOAA Office of Law Enforcement. Speed-filtered vessel monitoring system (VMS) data from Greater. Atlantic VMS Program (2019).Palmer, M. C., & Wigley, S. E. Validating the stock apportionment of commercial fisheries landings using positional data from vessel monitoring systems (VMS). Northeast Fisheries Science Center Reference Document 07–22. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center, Woods Hole, MA. (2007).Northeastern Regional Association of Coastal Ocean Observing Systems Buoy (NERACOOS) Monitoring Program. Portsmouth, NH. www.neracoos.org (2021).Stroup, W. Generalized Linear Mixed Models: Modern Concepts (Methods and Applications. Taylor & Francis Group, 2013).MATH 

    Google Scholar 
    Ridout, M. S., Hinde, J. P., & Demétrio, C. G. B. “Models for Count Data with Many Zeros,” in Proceedings of the 19th International Biometric Conference, 179–192, Cape Town. (1998).Barnhardt, W. A., Kelley, J. T., Dickson, S. M. & Belknap, D. F. Mapping the Gulf of maine with side-scan sonar: A new bottom-type classification for complex seafloors. J. Coast. Res. 14, 646–659 (1998).
    Google Scholar 
    Carrier-Belleau, C. et al. Environmental stressors, complex interactions and marine benthic communities’ responses. Sci. Rep. 11, 4194. https://doi.org/10.1038/s41598-021-83533-1 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auster, P., Joy, K. & Valentine, P. C. Fish species and community distributions as proxies for seafloor habitat distributions: the Stellwagen Bank National Marine Sanctuary example (Northwest Atlantic, Gulf of Maine). Environ. Biol. Fishes 60, 331–346 (2001).Article 

    Google Scholar 
    Solan, M., Raffaelli, D. G., Paterson, D. M., White, P. C. L. & Pierce, G. J. Marine biodiversity and ecosystem function: Empirical approaches and future research needs. Mar. Ecol. Prog. Ser. 311, 175–178 (2006).ADS 
    Article 

    Google Scholar 
    Worm, B. et al. Impacts of biodiversity loss on ocean ecosystem services. Science 314, 787–790 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dyksma, S. et al. Ubiquitous Gammaproteobacteria dominate dark carbon fixation in coastal sediments. ISME J. 10, 1939–1953 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tuttle, R. N. et al. Detection of natural products and their producers in ocean sediments. Appl. Environ. Microbiol. 85, e02830-e2918 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heinrichs, L., Aytur, S. A. & Bucci, J. P. Whole metagenomic sequencing to characterize the sediment microbial community within the Stellwagen Bank National Marine Sanctuary and preliminary biosynthetic gene cluster screening of Streptomyces scabrisporus. Mar. Genom. 50, 100718 (2020).Article 

    Google Scholar 
    Belknap, K. C. et al. Genome mining of biosynthetic and chemotherapeutic gene clusters in Streptomyces bacteria. Sci. Rep. 10, 2003. https://doi.org/10.1038/s41598-020-58904-9 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Soto Jiménez, M. F., Cerqueda-García, D., Montero-Muñoz, J. L., Aguirre-Macedo, M. L. & García-Maldonado, J. Q. Assessment of the bacterial community structure in shallow and deep sediments of the Perdido Fold Belt region in the Gulf of Mexico. PeerJ 6, e5583. https://doi.org/10.7717/peerj (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pershing, A. J. et al. Slow adaptation in the face of rapid warming leads to collapse of the Gulf of Maine cod fishery. Science 62, 809–812 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Pittman, S. J. Relevance of the Northeast Integrated Ecosystem Assessment for the Stellwagen Bank National Marine Sanctuary Condition Report (2007–2018) Marine Sanctuaries Conservation Science Series ONMS-19–08. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of National Marine Sanctuaries, Silver Spring, MD. (2019).Bucci, J. P., Szempruch, A. J., Caldwell, J. M., Ellis, C. & Levine, J. F. Seasonal changes in microbial community structure in freshwater stream sediment in a North Carolina River Basin. Diversity 6, 18–32 (2014).Article 

    Google Scholar 
    Won, N. I., Kim, K. H., Kang, J. H., Park, S. R. & Lee, H. J. Exploring the impacts of anthropogenic disturbance on seawater and sediment microbial communities in korean coastal waters using metagenomics analysis. Int. J. Environ. Res. Public Health 14, 130 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zinger, L. et al. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE 6(9), e24570 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Auster, P., Lindholm, J., Cramer, A., Nenandovic, M., Prindle, C., & Tamsett, A. The seafloor habitat recovery monitoring project (SHRMP) at Stellwagen Bank National Marine Sanctuary. Final Project Report. (2013b).UN General Assembly, Transforming our world: The 2030 Agenda for Sustainable Development, 21 October, A/RES/70/1, available at: https://www.refworld.org/docid/57b6e3e44.html. (2015).Malve, H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioall. Sci. 8, 83–91. https://doi.org/10.4103/0975-7406.171700 (2016).CAS 
    Article 

    Google Scholar  More

  • in

    Disease-economy trade-offs under alternative epidemic control strategies

    Here we provide an overview of the key elements of our framework including describing the contact function that links economic activities to contacts, the SIRD (Susceptible-Infectious-Recovered-Dead) model, the dynamic economic model governing choices, and calibration. The core of our approach is a dynamic optimization model of individual behavior coupled with an SIRD model of infectious disease spread. Additional details are found in the SI.Contact functionWe model daily contacts as a function of economic activities (labor supply, measured in hours, and consumption demand, measured in dollars) creating a detailed mapping between contacts and economic activities. For example, all else equal, if a susceptible individual reduces their labor supply from 8 to 4 h, they reduce their daily contacts at work from 7.5 to 3.75. Epidemiological data is central to calibrating this mapping between epidemiology and economic behavior. Intuitively, the calibration involves calculating the mean number of disease-transmitting contacts occurring at the start of the epidemic and linking it to the number of dollars spent on consumption and hours of labor supplied before the recession begins.We use an SIRD transmission framework to simulate SARS-CoV-2 transmission for a population of 331 million interacting agents. This is supported by several studies (e.g.,77,78) that identify infectiousness prior to symptom onset. We consider three health types m ∈ {S, I, R} for individuals, corresponding to epidemiological compartments of susceptible (S), infectious (I), and recovered (R). Individuals of health type m engage in various economic activities ({A}_{i}^{m}), with i denoting the activities modeled. One of the ({A}_{i}^{m}) is assumed to represent unavoidable other non-economic activities, such as sleeping and commuting, which occur during the hours of the day not used for economic activities (see SI 2.3.1). Disease dynamics are driven by contacts between susceptible and infectious types, where the number of susceptible-infectious contacts per person is given by the following linear equation:$${{{{{{{{mathscr{C}}}}}}}}}^{SI}({{{{{{{bf{A}}}}}}}})=mathop{sum}limits_{i}{rho }_{i}{A}_{i}^{S}{A}_{i}^{I}$$
    (1)
    while similar in several respects to prior epi-econ models15,16,74, a methodological contribution is that ρi converts hours worked and dollars spent into contacts. For example, ρc has units of contacts per squared dollar spent at consumption activities, while ρl has units of contacts per squared hour worked.We also consider robustness to different functional forms in Fig. 6F, G as a reduced-form way to consider multiple consumption and labor activities with heterogeneous contact rates. Formally:$${{{{{{{{mathscr{C}}}}}}}}}^{SI}({{{{{{{bf{A}}}}}}}})=mathop{sum}limits_{i}{rho }_{i}{({A}_{i}^{S}{A}_{i}^{I})}^{alpha },$$
    (2)
    where α  > 1 (convex) corresponds to a contact function where higher-contact activities are easiest to reduce or individuals with more contacts are easier to isolate. α  More

  • in

    Reduction of greenhouse gases emission through the use of tiletamine and zolazepam

    Caycedo-Marulanda, A. & Mathur, S. Suggested strategies to reduce the carbon footprint of anesthetic gases in the operating room. Can. J. Anaesth. J. Can. Anesth. 69, 269–270 (2022).CAS 
    Article 

    Google Scholar 
    World Health Organization. COP24 Special Report Health & Climate Change. https://apps.who.int/iris/bitstream/handle/10665/276405/9786057496713-tur.pdf (2018).Gadani, H. & Vyas, A. Anesthetic gases and global warming: potentials, prevention and future of anesthesia. Anesth. Essays Res. 5, 5 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vollmer, M. K. et al. Modern inhalation anesthetics: potent greenhouse gases in the global atmosphere. Geophys. Res. Lett. 42, 1606–1611 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    Sulbaek Andersen, M. P., Nielsen, O. J., Karpichev, B., Wallington, T. J. & Sander, S. P. Atmospheric chemistry of isoflurane, desflurane, and sevoflurane: kinetics and mechanisms of reactions with chlorine atoms and OH radicals and global warming potentials. J. Phys. Chem. A 116, 5806–5820 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Ryan, S. M. & Nielsen, C. J. Global warming potential of inhaled anesthetics: application to clinical use. Anesth. Analg. 111, 92–98 (2010).PubMed 
    Article 

    Google Scholar 
    American Society of Anesthesiologists. Task Force on Environmental Sustainability Committee on Equipment and Facilities. Greening the Operating Room and Perioperative Arena: Environmental Sustainability for Anesthesia Practice. https://www.asahq.org/about-asa/governance-and-committees/asa-committees/committee-on-equipment-and-facilities/environmental-sustainability/greening-the-operating-room#intro (2014).McGain, F., Story, D., Kayak, E., Kashima, Y. & McAlister, S. Workplace sustainability: the “cradle to grave” view of what we do. Anesth. Analg. 114, 1134–1139 (2012).PubMed 
    Article 

    Google Scholar 
    Yasny, J. S. & White, J. Environmental implications of anesthetic gases. Anesth. Prog. 59, 154–158 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Byhahn, C., Wilke, H. J. & Westpphal, K. Occupational exposure to volatile anaesthetics: epidemiology and approaches to reducing the problem. CNS Drugs 15, 197–215 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sherman, J., Le, C., Lamers, V. & Eckelman, M. Life cycle greenhouse gas emissions of anesthetic drugs. Anesth. Analg. 114, 1086–1090 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankes, R. F. Propofol wastage in anesthesia. Anesth. Analg. 114, 1091–1092 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weller, M. A general review of the environmental impact of health care, hospitals, operating rooms, and anesthetic care. Int. Anesthesiol. Clin. 58, 64–69 (2020).PubMed 
    Article 

    Google Scholar 
    Dawidowicz, A. L. et al. Investigation of propofol renal elimination by HPLC using supported liquid membrane procedure for sample preparation. Biomed. Chromatogr. BMC 16, 455–458 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, G. L. et al. Influence of ambient temperature and confinement on the chemical immobilization of fallow deer (Dama dama). J Wildl Dis 53, 364–367 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, G. et al. Comparison of tiletamine-zolazepam combined with dexmedetomidine or xylazine for chemical immobilization of wild fallow deer (Dama dama). J. Zoo Wildl. Med. 52, 1009–1012 (2021).PubMed 
    Article 

    Google Scholar 
    Lin, H. C., Thurmon, J. C., Benson, G. J. & Tranquilli, W. J. Telazol: a review of its pharmacology and use in veterinary medicine. J. Vet. Pharmacol. Ther. 16, 383–418 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, W. J. Staircase bioassay: the up-and-down method. Neurosci. Biobehav. Rev. 15, 47–50 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, C.-M. et al. Sitting position does not alter minimum alveolar concentration for desflurane. Can. J. Anesth. Can. Anesth. 54, 523–530 (2007).Article 

    Google Scholar 
    Wadhwa, A. & Sessler, D. I. Women have the same desflurane minimum alveolar concentration as men. J. Am. Soc. Anesthesiol. 99, 4 (2003).
    Google Scholar 
    Monteiro, E. R., Coelho, K., Bressan, T. F., Simões, C. R. & Monteiro, B. S. Effects of acepromazine-morphine and acepromazine-methadone premedication on the minimum alveolar concentration of isoflurane in dogs. Vet. Anaesth. Analg. 43, 27–34 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Campagnol, D., Neto, F. J. T., Giordano, T., Ferreira, T. H. & Monteiro, E. R. Effects of epidural administration of dexmedetomidine on the minimum alveolar concentration of isoflurane in dogs. Am. J. Vet. Res. 68, 1308–1318 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valverde, A., Morey, T. E., Hernandez, J. & Davies, W. Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits. Am. J. Vet. Res. 64, 957–962 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aguado, D., Benito, J. & Gómez de Segura, I. A. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine–ketamine in combination with either morphine or fentanyl. Vet. J. 189, 63–66 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muir, W. W. III., Wiese, A. J. & March, P. A. Effects of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine drug combination on minimum alveolar concentration in dogs anesthetized with isoflurane. Am. J. Vet. Res. 64, 1155–1160 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dixon, W. J. The up-and-down method for small samples. J. Am. Stat. Assoc. 60, 967–978 (1965).MathSciNet 
    Article 

    Google Scholar 
    Paul, M. & Fisher, D. M. Are estimates of MAC reliable?. Anesthesiology 95, 1362–1370 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sonner, J. M. Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth. Analg. 95, 609–614 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flecknell, P. et al. Preanesthesia, anesthesia, analgesia, and euthanasia. in Laboratory Animal Medicine 1135–1200 (Elsevier, 2015). https://doi.org/10.1016/B978-0-12-409527-4.00024-9.Grimm, K. A., Lamont, L. A., Tranquilli, W. J., Greene, S. A. & Robertson, S. A. Veterinary Anesthesia and Analgesia (Wiley, 2015).Book 

    Google Scholar 
    Grimm, K. A., Tranquilli, W. J. & Lamont, L. A. Essentials of Small Animal Anesthesia and Analgesia (Wiley, 2011).
    Google Scholar 
    Hanna, M. & Bryson, G. L. A long way to go: minimizing the carbon footprint from anesthetic gases. Can. J. Anesth. Can. Anesth. 66, 838–839 (2019).Article 

    Google Scholar 
    Andersen, M. P. S., Nielsen, O. J., Wallington, T. J., Karpichev, B. & Sander, S. P. Assessing the impact on global climate from general anesthetic gases. Anesth. Analg. 114, 1081–1085 (2012).CAS 
    Article 

    Google Scholar 
    Ishizawa, Y. General anesthetic gases and the global environment. Anesth. Analg. 112, 213–217 (2011).PubMed 
    Article 

    Google Scholar 
    Brown, A. C., Canosa-Mas, C. E., Parr, A. D., Pierce, J. M. T. & Wayne, R. P. Tropospheric lifetimes of halogenated anaesthetics. Nature 341, 635–637 (1989).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Lucio, L. M. C., Braz, M. G., don Nascimento Junior, P., Braz, J. R. C. & Braz, L. G. Occupational hazards, DNA damage, and oxidative stress on exposure to waste anesthetic gases. Braz. J. Anesthesiol. Engl. Ed. 68, 33–41 (2018).
    Google Scholar 
    Waste anesthetic gases-occupational hazards in hospitals. https://www.cdc.gov/niosh/docs/2007-151/ (2007). https://doi.org/10.26616/NIOSHPUB2007151.MacNeill, A. J., Lillywhite, R. & Brown, C. J. The impact of surgery on global climate: a carbon footprinting study of operating theatres in three health systems. Lancet Planet. Health 1, e381–e388 (2017).PubMed 
    Article 

    Google Scholar 
    Rauchenwald, V. et al. New method of destroying waste anesthetic gases using gas-phase photochemistry. Anesth. Analg. 131, 288–297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Özelsel, T.J.-P., Sondekoppam, R. V., Ip, V. H. Y. & Tsui, B. C. H. Re-defining the 3R’s (reduce, refine, and replace) of sustainability to minimize the environmental impact of inhalational anesthetic agents. Can. J. Anesth. Can. Anesth. 66, 249–254 (2019).Article 

    Google Scholar 
    Thiel, C. L. et al. Environmental impacts of surgical procedures: life cycle assessment of hysterectomy in the United States. Environ. Sci. Technol. 49, 1779–1786 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Mastrangelo, G., Comiati, V., dell’Aquila, M. & Zamprogno, E. Exposure to anesthetic gases and Parkinson’s disease: a case report. BMC Neurol. 13, 194 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Casale, T. et al. Anesthetic gases and occupationally exposed workers. Environ. Toxicol. Pharmacol. 37, 267–274 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sharma, A. et al. Should total intravenous anesthesia be used to prevent the occupational waste anesthetic gas exposure of pregnant women in operating rooms?. Anesth. Analg. 128, 188–190 (2019).PubMed 
    Article 

    Google Scholar 
    Hughes, J. M. L. Comparison of disposable circle and ‘to-and-fro’ breathing systems during anaesthesia in dogs. J. Small Anim. Pract. 39, 416–420 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suttner, S. & Boldt, J. Low-flow anaesthesia: does it have potential pharmacoeconomic consequences?. Pharmacoeconomics 17, 585–590 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, R. S. & West, E. Environmental sustainability in veterinary anaesthesia. Vet. Anaesth. Analg. 46, 409–420 (2019).PubMed 
    Article 

    Google Scholar 
    Feldman, J. M. Managing fresh gas flow to reduce environmental contamination. Anesth. Analg. 114, 1093–1101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davies, T. V. S. Low flow anaesthesia: frequently asked questions (2020).Pattanapon, N., Bootcha, R. & Petchdee, S. The effects of anesthetic drug choice on heart rate variability in dogs. J. Adv. Vet. Anim. Res. 5, 485 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hampton, C. E. et al. Effects of intravenous administration of tiletamine-zolazepam, alfaxalone, ketamine-diazepam, and propofol for induction of anesthesia on cardiorespiratory and metabolic variables in healthy dogs before and during anesthesia maintained with isoflurane. Am. J. Vet. Res. 80, 33–44 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratnu, D. A., Anjana, R. R., Parikh, P. V. & Kelawala, D. N. Effects of tiletamine-zolazepam and isoflurane for induction and maintenance in xylazine premedicated dogs. Indian J. Vet. Sci. Biotechnol. 17, 86–88 (2021).CAS 

    Google Scholar 
    Malavasi, L. M., Jensen-Waern, M., Augustsson, H. & Nyman, G. Changes in minimal alveolar concentration of isoflurane following treatment with medetomidine and tiletamine/zolazepam, epidural morphine or systemic buprenorphine in pigs. Lab. Anim. 42, 62–70 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malavasi, L. M. et al. Effects of extradural morphine on end-tidal isoflurane concentration and physiological variables in pigs undergoing abdominal surgery: a clinical study. Vet. Anaesth. Analg. 33, 307–312 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Krimins, R. A., Ko, J. C., Weil, A. B., Payton, M. E. & Constable, P. D. Hemodynamic effects in dogs after intramuscular administration of a combination of dexmedetomidine-butorphanol-tiletamine-zolazepam or dexmedetomidine-butorphanol-ketamine. Am. J. Vet. Res. 73, 1363–1370 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nam, S.-W., Shin, B.-J. & Jeong, S. M. Anesthetic and cardiopulmonary effects of butorphanol-tiletamine-zolazepam-medetomidine and tramadol-tiletamine-zolazepam-medetomidine in dogs. J. Vet. Clin. 30(6), 421–427 (2013).
    Google Scholar 
    Ko, J. C. H., Payton, M., Weil, A. B., Kitao, T. & Haydon, T. Comparison of anesthetic and cardiorespiratory effects of tiletamine–zolazepam–butorphanol and tiletamine–zolazepam–butorphanol– medetomidine in dogs. Vet. Ther. 8, 14 (2007).
    Google Scholar 
    Grimm, K. A., Tranquilli, W. J., Thurmon, J. C. & Benson, G. J. Duration of nonresponse to noxious stimulation after intramuscular administration of butorphanol, medetomidine, or a butorphanol-medetomidine combination during isoflurane administration in dogs. Am. J. Vet. Res. 61, 42–47 (2000).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Synchronous vegetation response to the last glacial-interglacial transition in northwest Europe

    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).Article 

    Google Scholar 
    Heiri, O. et al. Validation of climate model-inferred regional temperature change for late-glacial Europe. Nat. Commun. 5, 1–7 (2014).Article 
    CAS 

    Google Scholar 
    Muschitiello, F. et al. Fennoscandian freshwater control on Greenland hydroclimate shifts at the onset of the Younger Dryas. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    Renssen, H. et al. Multiple causes of the Younger Dryas cold period. Nat. Geosci. 8, 946–949 (2015).CAS 
    Article 

    Google Scholar 
    Mangerud, J. The discovery of the Younger Dryas, and comments on the current meaning and usage of the term. Boreas 50, 1–5 (2021).Article 

    Google Scholar 
    Cheng, H. et al. Timing and structure of the Younger Dryas event and its underlying climate dynamics. Proc. Natl. Acad. Sci. USA 117, 23408–23417 (2020).CAS 
    Article 

    Google Scholar 
    van Hoesel, A., Hoek, W. Z., Pennock, G. M. & Drury, M. R. The Younger Dryas impact hypothesis: a critical review. Quat. Sci. Rev. 83, 95–114 (2014).Article 

    Google Scholar 
    Partin, J. W. et al. Gradual onset and recovery of the Younger Dryas abrupt climate event in the tropics. Nat. Commun. 6, 1–9 (2015).Article 

    Google Scholar 
    Reinig, F. et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 595, 66–69 (2021).CAS 
    Article 

    Google Scholar 
    Ammann, B. et al. Quantification of biotic responses to rapid climatic changes around the Younger Dryas — a synthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 159, 313–347 (2000).Article 

    Google Scholar 
    Hoek, W. Z. Vegetation response to the ∼ 14.7 and ∼ 11.5 ka cal. BP climate transitions: is vegetation lagging climate? Glob. Planet. Change 30, 103–115 (2001).Article 

    Google Scholar 
    Litt, T. et al. Correlation and synchronisation of Lateglacial continental sequences in northern central Europe based on annually laminated lacustrine sediments. Quat. Sci. Rev. 20, 1233–1249 (2001).Article 

    Google Scholar 
    Muschitiello, F. & Wohlfarth, B. Time-transgressive environmental shifts across Northern Europe at the onset of the Younger Dryas. Quat. Sci. Rev. 109, 49–56 (2015).Article 

    Google Scholar 
    Nakagawa, T. et al. The spatio-temporal structure of the Lateglacial to early Holocene transition reconstructed from the pollen record of Lake Suigetsu and its precise correlation with other key global archives: implications for palaeoclimatology and archaeology. Glob. Planet. Change 202, 103493 (2021).Article 

    Google Scholar 
    Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).Article 

    Google Scholar 
    Engels, S. et al. Subdecadal‐scale vegetation responses to a previously unknown late‐Allerød climate fluctuation and Younger Dryas cooling at Lake Meerfelder Maar (Germany). J. Quat. Sci 31, 741–752 (2016).Article 

    Google Scholar 
    Van Raden, U. J. et al. High-resolution late-glacial chronology for the Gerzensee lake record (Switzerland): δ18O correlation between a Gerzensee-stack and NGRIP. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 13–24 (2013).Article 

    Google Scholar 
    Blaga, C. I., Reichart, G.-J., Lotter, A. F., Anselmetti, F. S. & Sinninghe Damsté, J. S. A TEX86 lake record suggests simultaneous shifts in temperature in Central Europe and Greenland during the last deglaciation. Geophys. Res. Lett. 40, 948–953 (2013).Article 

    Google Scholar 
    Rach, O., Brauer, A., Wilkes, H. & Sachse, D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat. Geosci. 7, 109 (2014).CAS 
    Article 

    Google Scholar 
    Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).CAS 
    Article 

    Google Scholar 
    Doncaster, C. P. et al. Early warning of critical transitions in biodiversity from compositional disorder. Ecology 97, 3079–3090 (2016).Article 

    Google Scholar 
    Jones, G. et al. The Lateglacial to early Holocene tephrochronological record from Lake Hämelsee, Germany: a key site within the European tephra framework. Boreas 47, 28–40 (2018).Article 

    Google Scholar 
    Blaga, C. I., Reichart, G.-J., Heiri, O. & Damsté, J. S. S. Tetraether membrane lipid distributions in water-column particulate matter and sediments: a study of 47 European lakes along a north–south transect. J. Paleolimnol. 41, 523–540 (2009).Article 

    Google Scholar 
    Bechtel, A., Smittenberg, R. H., Bernasconi, S. M. & Schubert, C. J. Distribution of branched and isoprenoid tetraether lipids in an oligotrophic and a eutrophic Swiss lake: insights into sources and GDGT-based proxies. Org. Geochem. 41, 822–832 (2010).CAS 
    Article 

    Google Scholar 
    Lowe, J. et al. On the timing of retreat of the Loch Lomond (‘Younger Dryas’) Readvance icefield in the SW Scottish Highlands and its wider significance. Quat. Sci. Rev. 219, 171–186 (2019).Article 

    Google Scholar 
    Muggeo, V. M. R. Segmented: an R package to fit regression models with broken-line relationships. R news 8, 20–25 (2008).
    Google Scholar 
    Merkt, J. & Müller, H. Varve chronology and palynology of the Lateglacial in Northwest Germany from lacustrine sediments of Hämelsee in Lower Saxony. Quat. Int. 61, 41–59 (1999).Article 

    Google Scholar 
    Litt, T. & Stebich, M. Bio-and chronostratigraphy of the lateglacial in the Eifel region, Germany. Quat. Int. 61, 5–16 (1999).Article 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Giesecke, T. Holocene dynamics of the southern boreal forest in Sweden. The Holocene 15, 858–872 (2005).Article 

    Google Scholar 
    Müller, D. et al. New insights into lake responses to rapid climate change: the Younger Dryas in Lake Gościąż, central Poland. Boreas 50, 535–555 (2021).Article 

    Google Scholar 
    Davis, B. A. S. et al. The Eurasian Modern Pollen Database (EMPD), version 2. Earth Syst. Sci. data 12, 2423–2445 (2020).Article 

    Google Scholar 
    Neugebauer, I. et al. A Younger Dryas varve chronology from the Rehwiese palaeolake record in NE-Germany. Quat. Sci. Rev. 36, 91–102 (2012).Article 

    Google Scholar 
    Ralska-Jasiewiczowa, M. et al. Very fast environmental changes at the Pleistocene/Holocene boundary, recorded in laminated sediments of Lake Gościaż, Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 225–247 (2003).Article 

    Google Scholar 
    Bonk, A. et al. Varve microfacies and chronology from a new sediment record of Lake Gościąż (Poland). Quat. Sci. Rev. 251, 106715 (2021).Article 

    Google Scholar 
    Brauer, A., Haug, G. H., Dulski, P., Sigman, D. M. & Negendank, J. F. W. An abrupt wind shift in western Europe at the onset of the Younger Dryas cold period. Nat. Geosci. 1, 520–523 (2008).CAS 
    Article 

    Google Scholar 
    Mekhaldi, F. et al. Radionuclide wiggle matching reveals a nonsynchronous early Holocene climate oscillation in Greenland and western Europe around a grand solar minimum. Clim. Past 16, 1145–1157 (2020).Article 

    Google Scholar 
    Mayfield, R. J. et al. Metrics of structural change as indicators of chironomid community stability in high latitude lakes. Quat. Sci. Rev. 249, 106594 (2020).Article 

    Google Scholar 
    van der Knaap, W. O. & Van Leeuwen, J. F. N. Climate-pollen relationships AD 1901–1996 in two small mires near the forest limit in the northern and central Swiss Alps. The Holocene 13, 809–828 (2003).Article 

    Google Scholar 
    Bazelmans, J. et al. Environmental changes in the late Allerød and early Younger Dryas in the Netherlands: a multiproxy high-resolution record from a site with two Pinus sylvestris populations. Quat. Sci. Rev. 272, 107199 (2021).Article 

    Google Scholar 
    Birks, H. H., Battarbee, R. W. & Birks, H. J. B. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late glacial and early Holocene-a synthesis. J. Paleolimnol 23, 91–114 (2000).Article 

    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Lohne, Ø. S., Mangerud, J. A. N. & Birks, H. H. IntCal13 calibrated ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from Kråkenes, western Norway. J. Quat. Sci 29, 506–507 (2014).Article 

    Google Scholar 
    Lohne, Ø. S., Mangerud, J. A. N. & Birks, H. H. Precise 14 C ages of the Vedde and Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and their comparison with the Greenland Ice Core (GICC 05) chronology. J. Quat. Sci 28, 490–500 (2013).Article 

    Google Scholar 
    Wohlfarth, B. et al. Hässeldala–a key site for last termination climate events in northern Europe. Boreas 46, 143–161 (2017).Article 

    Google Scholar 
    Brauer, A. et al. High resolution sediment and vegetation responses to Younger Dryas climate change in varved lake sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 18, 321–329 (1999).Article 

    Google Scholar 
    Lane, C. S., Brauer, A., Blockley, S. P. E. & Dulski, P. Volcanic ash reveals time-transgressive abrupt climate change during the Younger Dryas. Geology 41, 1251–1254 (2013).Bronk Ramsey, C. et al. Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quat. Sci. Rev. 118, 18–32 (2015).Rasmussen, S. O. et al. A new Greenland ice core chronology for the last glacial termination. J. Geophys. Res. Atmos. 111, https://doi.org/10.1029/2005JD006079 (2006).Brauer, A., Endres, C., Zolitschka, B. & Negendank, J. F. W. AMS radiocarbon and varve chronology from the annually laminated sediment record of Lake Meerfelder Maar, Germany. Radiocarbon 42, 355–368 (2000).CAS 
    Article 

    Google Scholar 
    Wulf, S. et al. Tracing the Laacher See Tephra in the varved sediment record of the Trzechowskie palaeolake in central Northern Poland. Quat. Sci. Rev. 76, 129–139 (2013).Article 

    Google Scholar 
    Brauer, A. et al. The importance of independent chronology in integrating records of past climate change for the 60–8 ka INTIMATE time interval. Quat. Sci. Rev. 106, 47–66 (2014).Article 

    Google Scholar 
    Lane, C. S. et al. The Late Quaternary tephrostratigraphy of annually laminated sediments from Meerfelder Maar, Germany. Quat. Sci. Rev. 122 192–206 (2015).Article 

    Google Scholar 
    Adolphi, F. & Muscheler, R. Synchronizing the Greenland ice core and radiocarbon timescales over the Holocene–Bayesian wiggle-matching of cosmogenic radionuclide records. Clim. Past 12, 15–30 (2016).Article 

    Google Scholar 
    Muschitiello, F. et al. Deep-water circulation changes lead North Atlantic climate during deglaciation. Nat. Commun. 10, 1–10 (2019).CAS 
    Article 

    Google Scholar 
    Adolphi, F. et al. Persistent link between solar activity and Greenland climate during the Last Glacial Maximum. Nat. Geosci. 7, 662–666 (2014).CAS 
    Article 

    Google Scholar 
    Siegenthaler, U., Heimann, M. & Oeschger, H. 14C variations caused by changes in the global carbon cycle. Radiocarbon 22, 177–191 (1980).CAS 
    Article 

    Google Scholar 
    Muscheler, R., Adolphi, F. & Svensson, A. Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum. Earth Planet. Sci. Lett. 394, 209–215 (2014).CAS 
    Article 

    Google Scholar 
    Muschitiello, F. An improved and continuous synchronization of the Greenland ice-core and Hulu Cave U-Th timescales using probabilistic inversion. Clim. Past Discuss. 1–39 https://doi.org/10.5194/cp-2021-116 (2021).Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis. (Blackwell scientific publications, 1991).Engels, S. et al. Haemelsee: late-glacial pollen counts. PANGAEA, https://doi.org/10.1594/PANGAEA.939693 (2021).Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 274, 423–438 (2008).CAS 
    Article 

    Google Scholar 
    Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J. Paleolimnol 25, 101–110 (2001).Article 

    Google Scholar 
    Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. Tech. Guid. i–vi. Vol. 10, 1–276 (2007).Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. F. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).Article 

    Google Scholar 
    Heiri, O. & Lotter, A. F. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolimnol 26, 343–350 (2001).Article 

    Google Scholar 
    Rach, O., Hadeen, X. & Sachse, D. An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis. Org. Geochem. 142, 103995 (2020).CAS 
    Article 

    Google Scholar 
    Huguet, C. et al. An improved method to determine the absolute abundance of glycerol dibiphytanyl glycerol tetraether lipids. Org. Geochem. 37, 1036–1041 (2006).CAS 
    Article 

    Google Scholar 
    Hopmans, E. C., Schouten, S. & Damsté, J. S. S. The effect of improved chromatography on GDGT-based palaeoproxies. Org. Geochem. 93, 1–6 (2016).CAS 
    Article 

    Google Scholar 
    Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. The Holocene 18, 19–30 (2008).Article 

    Google Scholar 
    R CORE TEAM, A. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. URL http://www.R-project.org (2020).Engels, S., van Geel, B., Buddelmeijer, N. & Brauer, A. High-resolution palynological evidence for vegetation response to the Laacher See eruption from the varved record of Meerfelder Maar (Germany) and other central European records. Rev. Palaeobot. Palynol. 221, 160–170 (2015).Article 

    Google Scholar 
    Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets–a chronological database and time‐slice reconstruction, DATED‐1. Boreas 45, 1–45 (2016).Article 

    Google Scholar  More

  • in

    The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation

    Fisheries overexploitation is a problem in all oceans and seas globally. Authorities and administrations in charge of assigning quotas have very little fine-grained information on the fish captures, and instead use large-scale, coarse data to assess the health level of fisheries. Thus, being able to cross-match fish species and sizes, to the sea regions they were captured from, can be helpful in this regard, providing finer-grained information.Previous attempts at assembling datasets for fish detection and classification exist, ranging from fish detection or counting in underwater images and video streams1,2,3, to counting on belts on trawler ships4, to classification in laboratory conditions5,6, or in underwater preprocessed images of single fish7,8,9, or single fish in free-form pictures10, as well as simultaneous detection and classification of several fish11,12. However, none of the works found in the literature addresses the topic of simultaneous instance segmentation and species classification, along with fish size estimation, in a fish market environment, as is the aim of this paper. Instance segmentation refers to the extraction of pixel-level masks for each individual object (in this case fish specimens), rather than bounding boxes (object detection), or class label masks (e.g. a single mask for all fish specimens of the same species, also referred to as semantic segmentation). Moreover, works in the literature use pictures taken in laboratory conditions (with a single fish per image, shown from the side), or in underwater conditions. Only French et al.4 uses pictures of fish catches on a belt, for counting purposes. Table 1 shows a summary of the datasets identified in the literature, along with their characteristics, including how the proposed dataset compares.Table 1 Summary of previous datasets found in the literature, and comparison to proposed dataset.Full size tableThe DeepFish project (website: http://deepfish.dtic.ua.es/) is aimed at providing fish species classification and size estimation for fish specimens arriving at fish markets, both for the automation of fish sales, and the retrieval of fine-grained information about the health of fisheries. For a period of six months (April to September 2021), images have been captured at the fish market in El Campello (Alicante, Spain). Images of market trays show a variety of fish species, including targeted as well as accidental captures from the ‘Cabo de la Huerta’, an important site for protection and preservation of marine habitats and biodiversity as defined by the European Comission Habitats Directive (92/43/EEC). From the pictures, a total of 59 different species are identified with 12 species having more than 100 specimens and 25 with more than 10 specimens, as shown in Table 2. There is a high imbalance of species captured due to the natural variation in fish species populations according to seasonality and other ecological factors (rarity of the species, i.e. total population count, etc). Due to some species showing sexual dimorphism (i.e. Symphodus tinca), this species is split into two separate class labels, leading to a different number of species, and class labels (59 species, but 60 class labels). The dataset presents a high temporal imbalance too. As shown in Fig. 1, the capture of new fish tray images was not evenly distributed during the six month study period. Several factors contributed to this: wholesale fish market operating days (e.g. no weekend data, holidays and stop periods, etc.), fish species variability (one of the aims was to be able to capture at least 100 specimens from several species, and seasonality meant some could not be available for capture in later months), as well as the time availability of research group members to attend the fish arrival, tray preparation and auctioning in the evenings.Table 2 Distribution of fish species in the dataset.Full size tableFig. 1Temporal distribution of fish tray images captured. It can be observed that April (04) and May (05) were much more active than the rest of months. This is due to several contributing factors.Full size imageThe resulting DeepFish dataset introduced here contains annotated images from 1,291 fish market trays, with a total of 7,339 specimens (individual fish instances) which were labelled (species and mask) using a specially-adapted version of the Django labeller instance segmentation labelling tool13. Subsequently, another JSON file is generated, following the Microsoft Common Objects in Context (MS COCO) dataset format14, which can be directly fed to a neural network. This is done via a script that is also provided15. Figure 2 shows the distribution of individuals for the selected species within the dataset. Furthermore, Fig. 3 shows examples of the trays, with instance segmentation (ground truth silhouette, i.e. as an interpolation from human-provided points) along with species labelling (different colour shading).Fig. 2Graphical view of the distribution of fish species in the DeepFish dataset for species above 10 specimens. Note, Symphodus tinca is considered separately due to sexual dimorphism (211 male; 335 female samples).Full size imageFig. 3Examples of ground truth fish instance masks with class labelling, showing the 12 species (13 labels) with more than 100 specimens (in bold in Table 2).Full size imageFrom the point of view of research, this data is important for the classification of fish species, instance segmentation, as well as specimen size estimation (e.g. as a regression problem, or otherwise). From an end-results perspective, data automatically labelled with fish instance segmentation accompanied by species name and estimated size is useful to different stakeholders, namely: fishing authorities (to understand how much of each species is being caught per zone), maritime conservation (to calculate depletion of fisheries), but also managers of the markets themselves, as well as clients (digitized sales, e-commerce), etc.The usage of the provided data can be manifold, as it can be used for several problems, namely: object detection and classification, which involves finding objects (in this case fish specimens) providing a bounding box, and a class for each of these boxes; additionally, the data can also be used for semantic segmentation, which can provide a pixel-wise segmentation of the image providing labels (in this case species labels) to different pixel regions of the image; furthermore, also instance segmentation is possible, in which not just a single label for all instances of the same species is provided, but each specimen is provided with a mask (specimen segmentation), as well as a label (species). Furthermore, several measurements of each fish are provided, which can also be used to estimate their size, since they have been shown to be correlated with each other16. These are estimated from the calculated homography (given the tray size is known), given the burden of measuring each fish due to the large amount of specimens in the dataset. More

  • in

    Viral infection changes the expression of personality traits in an insect species reared for consumption

    Koski, S. E. Broader horizons for animal personality research. Front. Ecol. Evol. 2, 70 (2014).Article 

    Google Scholar 
    Careere, C. & Eens, M. Unravelling animal personalities: How and why individuals consistently differ. Behaviour 142, 1149–1157 (2005).Article 

    Google Scholar 
    Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B 271, 847–852 (2004).Article 

    Google Scholar 
    Bell, A. M. & Sih, A. Exposure to predation generates personality in three-spined sticklebacks (Gasterosteus aculeatus). Ecol. Lett. 10, 828–834 (2007).PubMed 
    Article 

    Google Scholar 
    Cavigelli, S. A. Animal personality and health. Behaviour 142, 1223–1244 (2005).Article 

    Google Scholar 
    Barber, I. & Dingemanse, N. J. Parasitism and the evolutionary ecology of animal personality. Proc. R. Soc. Lond. B 365, 4077–4088 (2010).
    Google Scholar 
    Koprivnikar, J., Gibson, C. H. & Redfern, J. C. Infectious personalities: Behavioural syndromes and disease risk in larval amphibians. Proc. R. Soc. Lond. B 279, 1544–1550 (2012).
    Google Scholar 
    Turner, J. & Hughes, W. O. H. The effect of parasitism on personality in a social insect. Behav. Proc. 157, 532–539 (2018).Article 

    Google Scholar 
    Frost, A. J., Winrow-Giffen, A., Ashley, P. J. & Sneddon, L. U. Plasticity in animal personality traits: Does prior experience alter the degree of boldness?. Proc. Biol. Sci. 274, 333–339 (2007).PubMed 

    Google Scholar 
    Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: A review. Philos. Trans. R. Soc. B 365, 3947–3958 (2010).Article 

    Google Scholar 
    Müller, T. & Müller, C. Phenotype of a leaf beetle larva depends on host plant quality and previous test experience. Behav. Proc. 142, 40–45 (2017).Article 

    Google Scholar 
    Hart, B. L. Biological basis of behaviour in sick animals. Neurosci. Biobehav. Rev. 12, 123–137 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hart, B. L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14, 273–294 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnson, R. W. The concept of sickness behavior: A brief chronological account of four key discoveries. Vet. Immunol. Immunopathol. 87, 443–450 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Klein, S. L. Parasite manipulation of the proximate mechanisms that mediate social behavior in vertebrates. Physiol. Behav. 79, 441–449 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Boyer, N., Reale, D., Marmet, J., Pisanu, B. & Chapuis, L. Personality, space use and tick load in an introduced population of Siberian chipmunks Tanias sibiricus. J. Anim. Ecol. 79, 538–547 (2010).PubMed 
    Article 

    Google Scholar 
    Ezenwa, V. O. Host social behavior and parasitic infection: A multifactorial approach. Behav. Ecol. 15, 446–454 (2004).Article 

    Google Scholar 
    Finkemeier, M. A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huntingford, F. & Adams, C. Behavioural syndromes in farmed fish: Implications for production and welfare. Behaviour 142, 1207–1221 (2005).Article 

    Google Scholar 
    Berggren, Å., Jansson, A. & Low, M. Approaching ecological sustainability in the emerging insects-as-food industry. Trends Ecol. Evol. 34, 132–138 (2019).PubMed 
    Article 

    Google Scholar 
    Dochtermann, N. A. & Nelson, A. B. Multiple facets of exploratory behavior in house crickets (Acheta domesticus): Split personalities or simply different behaviors?. Ethology 120, 1110–1117 (2014).Article 

    Google Scholar 
    van Huis, A. & Tomberlin, J. K. Future prospects. In Insects as Food Feed: From Production to Consumption (eds van Huis, A. & Tomberlin, J. K.) 430–445 (Wageningen Academic Publishers, 2017).Szelei, J. et al. Susceptibility of North-American and European crickets to Acheta domesticus densovirus (AdDNV) and associated epizootics. J. Invert. Pathol 106, 394–399 (2011).CAS 
    Article 

    Google Scholar 
    Eilenberg, J., Vlak, J. M., Nielsen-LeRoux, C., Cappellozza, S. & Jensen, A. B. Diseases in insects produced for food and feed. J. Insects Food Feed 1, 87–102 (2015).Article 

    Google Scholar 
    Raubenheimer, D. & Tucker, D. Associative learning by locusts: Pairing of visual cues with consumption of protein and carbohydrate. Anim. Behav. 54, 1449–1459 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mallory, H. S., Howard, A. F. & Weiss, M. R. Timing of environmental enrichment affects memory in the house cricket, Acheta domesticus. PLoS One 11, e0152245 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sih, A., Bell, A. M., Johnson, J. C. & Ziemba, R. E. Behavioral syndromes: An integrative overview. Q. Rev. Biol. 79, 241–277 (2004).PubMed 
    Article 

    Google Scholar 
    Siva-Jothy, J. A. & Vale, P. F. Viral infection causes sex-specific changes in fruit fly social aggregation behaviour. Biol. Lett. 15, 20190344 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Houte, S., Ros, V. I. D. & Van Oers, M. M. Walking with insects: Molecular mechanisms behind parasitic manipulation of host behaviour. Mol. Ecol. 22, 3458–3475 (2013).PubMed 
    Article 

    Google Scholar 
    Vale, P. F., Siva-Jothy, J. A., Morrill, A. & Forbes, M. R. The influence of parasites. In Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds Córdoba-Aguilar, A., González-Tokman, D. & González-Santoyo, I) (Oxford University Press, 2018).de Roode, J. C. & Lefèvre, T. Behavioral Immunity in Insects. Insects 3, 789–820 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kutzer, M. A. M. & Armitage, S. A. O. Maximising fitness in the face of parasites: A review of host tolerance. Zoology 119, 281–289 (2016).PubMed 
    Article 

    Google Scholar 
    Vossen, L. E., Roman, E. & Jansson, A. Fasting increases shelter use in house crickets (Acheta domestica). J. Insects Food Feed 8, 5–8 (2021).Article 

    Google Scholar 
    Schutgens, M., Cook, B., Gilbert, F. & Behnke, J. M. Behavioural changes in the flour beetle Tribolium confusum infected with the spirurid nematode Protospirura muricola. J. Helminthol. 89, 68–79 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kazlauskas, N., Klappenbach, M., Depino, A. M. & Locatelli, F. F. Sickness behavior in honey bees. Front. Physiol. 7, 261 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stahlschmidt, Z. R. & Adamo, S. A. Context dependency and generality of fever in insects. Naturwissenschaften 100, 691–696 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, S. Y. S., Tattersall, G. J. & Koprivnikar, J. Trematode parasite infection affects temperature selection in aquatic host snails. Physiol. Biochem. Zool. 92, 71–79 (2019).PubMed 
    Article 

    Google Scholar 
    Berggren, Å., Jansson, A. & Low, M. Using current systems to inform rearing facility design in the insects-as-food industry. J. Insects Food Feed. 4, 167–170 (2018).Article 

    Google Scholar 
    Marshall, J. A. & Haes, E. C. M. Grasshoppers and Allied Insects of Great Britain and Ireland (Harley Books, Essex) (1988).GBIF Secretariat. Acheta domesticus (Linnaeus, 1758). GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei accessed via GBIF.org on 12 Jan 2022 (2021).Holst, K. T. The Saltatoria (Bush-crickets, Crickets and Grasshoppers) of Northern Europe (E J Brill, 1986).Ingrisch, S. & Köhler, G. Die heuschrecken mitteleuropas. (Westarp Wissenschaften, 1998).Booth, D. T. & Kiddell, K. Temperature and the energetics of development in the house cricket (Acheta domesticus). J. Insect Physiol. 53, 950–953 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ghouri, A. S. K. & McFarlane, J. E. Observations on the development of crickets. Can. Entomol. 90, 158–165 (1958).Article 

    Google Scholar 
    Semberg, E. et al. Diagnostic protocols for the detection of Acheta domesticus densovirus (AdDV) in cricket frass. J. Virol. Methods 264, 61–64 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bergoin, M. & Tijssen, P. Parvoviruses of arthropods. In Encyclopedia of Virology. 76–85 (2008).Cotmore, S. F. et al. The family Parvoviridae. Arch. Virol. 159, 1239–1247 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Styer, E. L. & Hamm, J. J. Report of a densovirus in a commercial cricket operation in the southeastern United States. J. Invert. Pathol. 58, 283–285 (1991).Article 

    Google Scholar 
    Weissman, D. B., Gray, D. A., Pham, H. T. & Tijssen, P. Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial crickets farms, an epizootic densovirus, and government regulations make for a potential disaster. Zootaxa 3504, 67–88 (2012).Article 

    Google Scholar 
    Maciel-Vergara, G. & Ros, V. I. D. Viruses of insects reared for food and feed. J. Invert. Pathol. 147, 60–75 (2017).Article 

    Google Scholar 
    Liu, K. et al. The Acheta domesticus densovirus, isolated from the European house cricket, has evolved an expression strategy unique among parvoviruses. J. Virol. 85, 10069–10078 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, Y. et al. Densovirus crosses the insect midgut by transcytosis and disturbs the epithelial barrier function. J. Virol. 87, 12380–12391 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Miranda, J. R. et al. Virus diversity and loads in crickets reared for feed: Implications for husbandry. Front. Vet. Sci. 8, 642085 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    de Miranda, J. R., Granberg, F., Onorati, P., Jansson, A. & Berggren, Å. Virus prospecting in crickets: discovery and strain divergence of a novel Iflavirus in wild and cultivated Acheta domesticus. Viruses 13, 364 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Niemelä, P., Vainikka, A., Hedrick, A. & Kortet, R. Integrating behaviour with life history: Boldness of the field cricket, Gryllus integer, during ontogeny. Funct. Ecol. 26, 450–456 (2012).Article 

    Google Scholar 
    Hedrick, A. V. Crickets with extravagant mating songs compensate for predation risk with extra caution. Proc. R. Soc. Lond. B 267, 671–675 (2000).CAS 
    Article 

    Google Scholar 
    Hedrick, A. V. & Kortet, R. Hiding behaviour in two cricket populations that differ in predation pressure. Anim. Behav. 72, 1111–1118 (2006).Article 

    Google Scholar 
    Kortet, R. & Hedrick, A. V. A behavioural syndrome in the field cricket Gryllus integer: Intrasexual aggression is correlated with activity in a novel environment. Biol. J. Linnean Soc. 91, 475–482 (2007).Article 

    Google Scholar 
    Fisher, D. N., David, M., Rodríguez-Muñoz, R. & Tregenza, T. Lifespan and age, but not residual reproductive value or condition, are related to behaviour in wild field crickets. Ethology 124, 338–346 (2018).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In: Proceedings of the 3rd International Workshop on Distributed Statistical Computing. Vienna, Austria (2003).Le Galliard, J. F., Paquet, M., Cisel, M. & Montes-Poloni, L. Personality and the pace-of-life syndrome: Variation and selection on exploration, metabolism and locomotor performances. Funct. Ecol. 27, 136–144 (2013).Article 

    Google Scholar 
    Roche, D. G., Careau, V. & Binning, S. A. Demystifying animal ‘personality’ (or not): Why individual variation matters to experimental biologists. J. Exp. Biol. 219, 3832–3843 (2016).PubMed 

    Google Scholar 
    Low, M. et al. The importance of accounting for larval detectability in mosquito habitat-association studies. Malar. J. 15, 1–9 (2016).Article 

    Google Scholar  More

  • in

    A global database of woody tissue carbon concentrations

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993, https://doi.org/10.1126/science.1201609 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences 116, 4382–4387, https://doi.org/10.1073/pnas.1810512116 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Chazdon, R. L. et al. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances 2, e1501639, https://doi.org/10.1126/sciadv.1501639 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214, https://doi.org/10.1038/nature16512 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550, https://doi.org/10.1038/s41586-020-2686-x (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006, https://doi.org/10.1038/nature07771 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87, https://doi.org/10.1038/s41586-020-2035-0 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nature Climate Change 3, 792–796, https://doi.org/10.1038/nclimate1853 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Köhl, M. et al. Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management 352, 21–34, https://doi.org/10.1016/j.foreco.2015.05.036 (2015).Article 

    Google Scholar 
    Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences 107, 16738–16742, https://doi.org/10.1073/pnas.1004875107 (2010).ADS 
    Article 

    Google Scholar 
    Asner, G. P. Tropical forest carbon assessment: integrating satellite and airborne mapping approaches. Environmental Research Letters 4, https://doi.org/10.1088/1748-9326/4/3/034009 (2009).Xu, L. et al. Changes in global terrestrial live biomass over the 21st century. Science Advances 7, eabe9829, https://doi.org/10.1126/sciadv.abe9829 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Aalde, U. et al. in IPCC Guidelines for National Greenhouse Gas Inventories Vol. 4 (eds Eggleston, S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) Ch. 4 (IPPC, 2006).Brown, S. Measuring carbon in forests: current status and future challenges. Environmental Pollution 116, 363–372, https://doi.org/10.1016/s0269-7491(01)00212-3 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Woodall, C. W., Heath, L. S., Domke, G. M. & Nichols, M. C. Methods and equations for estimating aboveground volume, biomass, and carbon for trees in the U.S. forest inventory, 2010. (U.S. Department of Agriculture, Forest Service, Northern Research Station, 2011).Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences 108, 9899–9904, https://doi.org/10.1073/pnas.1019576108 (2011).ADS 
    Article 

    Google Scholar 
    Lamlom, S. H. & Savidge, R. A. A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenergy 25, 381–388 (2003).CAS 
    Article 

    Google Scholar 
    Van Der Werf, G. R. et al. CO2 emissions from forest loss. Nature Geoscience 2, 737–738, https://doi.org/10.1038/ngeo671 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nature Geoscience 11, 915–920, https://doi.org/10.1038/s41561-018-0246-x (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Tavşanoğlu, Ç. & Pausas, J. G. A functional trait database for Mediterranean Basin plants. Scientific Data 5, 180135, https://doi.org/10.1038/sdata.2018.135 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecology Letters 12, 351–366, https://doi.org/10.1111/j.1461-0248.2009.01285.x (2009).Article 
    PubMed 

    Google Scholar 
    Martin, A. R., Domke, G. M., Doraisami, M. & Thomas, S. C. Carbon fractions in the world’s dead wood. Nature Communications 12, https://doi.org/10.1038/s41467-021-21149-9 (2021).Martin, A. R. & Thomas, S. C. A Reassessment of carbon content in tropical trees. PLoS ONE 6, e23533, https://doi.org/10.1371/journal.pone.0023533 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, A. R., Gezahegn, S. & Thomas, S. C. Variation in carbon and nitrogen concentration among major woody tissue types in temperate trees. Canadian Journal of Forest Research 45, 744–757, https://doi.org/10.1139/cjfr-2015-0024 (2015).CAS 
    Article 

    Google Scholar 
    Thomas, S. C. & Martin, A. R. Carbon content of tree tissues: a synthesis. Forests 3, 332–352, https://doi.org/10.3390/f3020332 (2012).Article 

    Google Scholar 
    Doraisami, M. et al. GLOWCAD: A global database of woody tissue carbon concentrations fractions. Dryad https://doi.org/10.5061/dryad.18931zcxk (2022)Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315, https://doi.org/10.1002/joc.5086 (2017).ADS 
    Article 

    Google Scholar 
    Guerrero‐Ramírez, N. R. et al. Global root traits (GRooT) database. Global Ecology and Biogeography 30, 25–37, https://doi.org/10.1111/geb.13179 (2021).Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Global Change Biology 26, 119–188, https://doi.org/10.1111/gcb.14904 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    Iversen, C. M. et al. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology. New Phytologist 215, 15–26, https://doi.org/10.1111/nph.14486 (2017).Article 
    PubMed 

    Google Scholar 
    Isaac, M. E. et al. Intraspecific trait variation and coordination: Root and Leaf Economics Spectra in coffee across environmental gradients. Frontiers in Plant Science 8, https://doi.org/10.3389/fpls.2017.01196 (2017).Liu, C. et al. Variation in the functional traits of fine roots is linked to phylogenetics in the common tree species of Chinese subtropical forests. Plant and Soil 436, 347–364, https://doi.org/10.1007/s11104-019-03934-0 (2019).CAS 
    Article 

    Google Scholar 
    Wang, R. et al. Different phylogenetic and environmental controls of first‐order root morphological and nutrient traits: Evidence of multidimensional root traits. Functional Ecology 32, 29–39, https://doi.org/10.1111/1365-2435.12983 (2018).Article 

    Google Scholar 
    Minden, V. & Kleyer, M. Internal and external regulation of plant organ stoichiometry. Plant Biology 16, 897–907, https://doi.org/10.1111/plb.12155 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alameda, D. & Villar, R. Linking root traits to plant physiology and growth in Fraxinus angustifolia Vahl. seedlings under soil compaction conditions. Environmental and Experimental Botany 79, 49–57, https://doi.org/10.1016/j.envexpbot.2012.01.004 (2012).Article 

    Google Scholar 
    Aubin, I. et al. Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews 24, 164–186, https://doi.org/10.1139/er-2015-0072 (2016).Article 

    Google Scholar 
    Fernández-García, N. et al. Intrinsic water use efficiency controls the adaptation to high salinity in a semi-arid adapted plant, henna (Lawsonia inermis L.). Journal of Plant Physiology 171, 64–75, https://doi.org/10.1016/j.jplph.2013.11.004 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grechi, I. et al. Effect of light and nitrogen supply on internal C:N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany 59, 139–149, https://doi.org/10.1016/j.envexpbot.2005.11.002 (2007).CAS 
    Article 

    Google Scholar 
    Ineson, P., Cotrufo, M. F., Bol, R., Harkness, D. D. & Blum, H. Quantification of soil carbon inputs under elevated CO2: C3 plants in a C4 soil. Plant and Soil 187, 345–350, https://doi.org/10.1007/bf00017099 (1995).Article 

    Google Scholar 
    Pregitzer, K. S. et al. Atmospheric CO2, soil nitrogen and turnover of fine roots. New Phytologist 129, 579–585, https://doi.org/10.1111/j.1469-8137.1995.tb03025.x (1995).Article 

    Google Scholar 
    Rohatgi, A. WebPlotDigitizer: Version 4.5. https://automeris.io/WebPlotDigitizer (2021).Harmon, M. E., Fasth, B., Woodall, C. W. & Sexton, J. Carbon concentration of standing and downed woody detritus: effects of tree taxa, decay class, position, and tissue type. Forest Ecology and Management 291, 259–267, https://doi.org/10.1016/j.foreco.2012.11.046 (2013).Article 

    Google Scholar 
    Boyle, B. H. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 1-15, https://tnrs.biendata.org/ (2021).Krankina, O. N., Harmon, M. E. & Griazkin, A. V. Nutrient stores and dynamics of woody detritus in a boreal forest: modeling potential implications at the stand level. Canadian Journal of Forest Research 29, 20–32, https://doi.org/10.1139/x98-162 (1999).Article 

    Google Scholar 
    Whittaker, R. H. Classification of natural communities. Botanical Review 28, 1–239, https://doi.org/10.1007/BF02860872 (1962).Article 

    Google Scholar 
    Maiti, R. & Rodriguez, H. G. Wood carbon and nitrogen of 37 woody shrubs and trees in Tamaulipan thorn scrub, northeastern Mexico. Pakistan Journal of Botany 51, 979–984 (2019).CAS 
    Article 

    Google Scholar 
    Durkaya, A. B. D., E. Makineci, I. Orhan Aboveground biomass and carbon storage relationship of Turkish Pines. Fresenius Environmental Bulletin 24, 3573–3583 (2015).CAS 

    Google Scholar 
    Tesfaye, M. A., Bravo-Oviedo, A., Bravo, F., Pando, V. & De Aza, C. H. Variation in carbon concentration and wood density for five most commonly grown native tree species in central highlands of Ethiopia: The case of Chilimo dry Afromontane forest. Journal of Sustainable Forestry 38, 769–790, https://doi.org/10.1080/10549811.2019.1607754 (2019).Article 

    Google Scholar 
    Abdallah, M. A. B., Mata-González, R., Noller, J. S. & Ochoa, C. G. Ecosystem carbon in relation to woody plant encroachment and control: Juniper systems in Oregon, USA. Agriculture, Ecosystems & Environment 290, 106762, https://doi.org/10.1016/j.agee.2019.106762 (2020).CAS 
    Article 

    Google Scholar 
    Arias, D., Calvo-Alvarado, J., Richter, D. D. B. & Dohrenbusch, A. Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica. Biomass and Bioenergy 35, 1779–1788, https://doi.org/10.1016/j.biombioe.2011.01.009 (2011).CAS 
    Article 

    Google Scholar 
    Assefa, D., Godbold, D. L., Belay, B., Abiyu, A. & Rewald, B. Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-growing Woody Species in Ethiopian Highland Forest. Ecosystems 21, 482–494, https://doi.org/10.1007/s10021-017-0163-7 (2018).CAS 
    Article 

    Google Scholar 
    Atkin, O. K., Schortemeyer, M., Mcfarlane, N. & Evans, J. R. The response of fast- and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554, https://doi.org/10.1007/s004420050889 (1999).ADS 
    Article 
    PubMed 

    Google Scholar 
    Bardulis, A., Jansons, A., Bardule, A., Zeps, M. & LAzdins, A. Assessment of carbon content in root biomass in Scots Pine and silver birch young stands of Latvia. Baltic Forestry 23, 482–489 (2017).
    Google Scholar 
    Becker, G. S., Braun, D., Gliniars, R. & Dalitz, H. Relations between wood variables and how they relate to tree size variables of tropical African tree species. Trees 26, 1101–1112, https://doi.org/10.1007/s00468-012-0687-6 (2012).Article 

    Google Scholar 
    Bembenek, M. et al. Carbon content in Juvenile and mature wood of Scots Pine (Pinus sylyestris L.). Baltic Forestry 21, 279–284 (2015).
    Google Scholar 
    Bert, D. & Danjon, F. Carbon concentration variations in the roots, stem and crown of mature Pinus pinaster (Ait.). Forest Ecology and Management 222, 279–295, https://doi.org/10.1016/j.foreco.2005.10.030 (2006).Article 

    Google Scholar 
    Borden, K. A., Anglaaere, L. C. N., Adu-Bredu, S. & Isaac, M. E. Root biomass variation of cocoa and implications for carbon stocks in agroforestry systems. Agroforestry Systems 93, 369–381, https://doi.org/10.1007/s10457-017-0122-5 (2019).Article 

    Google Scholar 
    Borden, K. A., Isaac, M. E., Thevathasan, N. V., Gordon, A. M. & Thomas, S. C. Estimating coarse root biomass with ground penetrating radar in a tree-based intercropping system. Agroforestry Systems 88, 657–669, https://doi.org/10.1007/s10457-014-9722-5 (2014).Article 

    Google Scholar 
    Bueno-López, S. W., García-Lucas, E. & Caraballo-Rojas, L. R. Allometric equations for total aboveground dry biomass and carbon content of Pinus occidentalis trees. Madera y Bosques 25, https://doi.org/10.21829/myb.2019.2531868 (2019).Bulmer, R. H., Schwendenmann, L. & Lundquist, C. J. Allometric models for estimating aboveground biomass, carbon and nitrogen stocks in temperate Avicennia marina forests. Wetlands 36, 841–848, https://doi.org/10.1007/s13157-016-0793-0 (2016).Article 

    Google Scholar 
    Bütler, R., Patty, L., Le Bayon, R.-C., Guenat, C. & Schlaepfer, R. Log decay of Picea abies in the Swiss Jura Mountains of central Europe. Forest Ecology and Management 242, 791–799, https://doi.org/10.1016/j.foreco.2007.02.017 (2007).Article 

    Google Scholar 
    Cao, Y. & Chen, Y. Ecosystem C:N:P stoichiometry and carbon storage in plantations and a secondary forest on the Loess Plateau, China. Ecological Engineering 105, 125–132, https://doi.org/10.1016/j.ecoleng.2017.04.024 (2017).Article 

    Google Scholar 
    Castaño-Santamaría, J. & Bravo, F. Variation in carbon concentration and basic density along stems of sessile oak (Quercus petraea (Matt.) Liebl.) and Pyrenean oak (Quercus pyrenaica Willd.) in the Cantabrian Range (NW Spain). Annals of Forest Science 69, 663–672, https://doi.org/10.1007/s13595-012-0183-6 (2012).Article 

    Google Scholar 
    Chao, K.-J. et al. Carbon concentration declines with decay class in tropical forest woody debris. Forest Ecology and Management 391, 75–85, https://doi.org/10.1016/j.foreco.2017.01.020 (2017).Article 

    Google Scholar 
    Chen, Y. et al. Nutrient limitation of woody debris decomposition in a tropical forest: contrasting effects of N and P addition. Functional Ecology 30, 295–304, https://doi.org/10.1111/1365-2435.12471 (2016).Article 

    Google Scholar 
    Correia, A. C. et al. Biomass allometry and carbon factors for a Mediterranean pine (Pinus pinea L.) in Portugal. Forest Systems 19, 418, https://doi.org/10.5424/fs/2010193-9082 (2010).Article 

    Google Scholar 
    Cousins, S. J. M., Battles, J. J., Sanders, J. E. & York, R. A. Decay patterns and carbon density of standing dead trees in California mixed conifer forests. Forest Ecology and Management 353, 136–147, https://doi.org/10.1016/j.foreco.2015.05.030 (2015).Article 

    Google Scholar 
    Craven, D. et al. Seasonal variability of photosynthetic characteristics influences growth of eight tropical tree species at two sites with contrasting precipitation in Panama. Forest Ecology and Management 261, 1643–1653, https://doi.org/10.1016/j.foreco.2010.09.017 (2011).Article 

    Google Scholar 
    Cruz, P., Bascuñan, A., Velozo, J. & Rodriguez, M. Funciones alométricas de contenido de carbono para quillay, peumo, espino y litre. Bosque (Valdivia) 36, 375–381, https://doi.org/10.4067/s0717-92002015000300005 (2015).Article 

    Google Scholar 
    Currie, W. S. & Nadelhoffer, K. J. The imprint of land-use history: patterns of carbon and nitrogen in downed woody debris at the Harvard Forest. Ecosystems 5, 446–460, https://doi.org/10.1007/s10021-002-1153-x (2002).CAS 
    Article 

    Google Scholar 
    Dong, L., Zhang, X. & Li Variation in carbon concentration and allometric equations for estimating tree carbon contents of 10 broadleaf species in natural forests in northeast China. Forests 10, 928, https://doi.org/10.3390/f10100928 (2019).Article 

    Google Scholar 
    Dossa, G. G. O., Paudel, E., Cao, K., Schaefer, D. & Harrison, R. D. Factors controlling bark decomposition and its role in wood decomposition in five tropical tree species. Scientific Reports 6, 34153, https://doi.org/10.1038/srep34153 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durkaya, B., Durkaya, A., Makineci, E. & Ülküdür, M. Estimation of above-ground biomass and sequestered carbon of Taurus Cedar (Cedrus libani L.) in Antalya, Turkey. iForest – Biogeosciences and Forestry 6, 278–284, https://doi.org/10.3832/ifor0899-006 (2013).Article 

    Google Scholar 
    Elias, M. & Potvin, C. Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research 33, 1039–1045, https://doi.org/10.1139/x03-018 (2003).Article 

    Google Scholar 
    Fang, S., Xue, J. & Tang, L. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. Journal of Environmental Management 85, 672–679, https://doi.org/10.1016/j.jenvman.2006.09.014 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fonseca, W., Alice, F. E. & Rey-Benayas, J. M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New Forests 43, 197–211, https://doi.org/10.1007/s11056-011-9273-9 (2012).Article 

    Google Scholar 
    Frangi, J. L., Richter, L. L., Barrera, M. D. & Aloggia, M. Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina. Canadian Journal of Forest Research 27, 1095–1102, https://doi.org/10.1139/x97-060 (1997).Article 

    Google Scholar 
    Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology 98, 362–373, https://doi.org/10.1111/j.1365-2745.2009.01615.x (2010).Article 

    Google Scholar 
    Fukatsu, E., Fukuda, Y., Takahashi, M. & Nakada, R. Clonal variation of carbon content in wood of Larix kaempferi (Japanese larch). Journal of Wood Science 54, 247–251, https://doi.org/10.1007/s10086-007-0939-z (2008).CAS 
    Article 

    Google Scholar 
    Ganamé, M., Bayen, P., Dimobe, K., Ouédraogo, I. & Thiombiano, A. Aboveground biomass allocation, additive biomass and carbon sequestration models for Pterocarpus erinaceus Poir. in Burkina Faso. Heliyon 6, e03805, https://doi.org/10.1016/j.heliyon.2020.e03805 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ganjegunte, G. K., Condron, L. M., Clinton, P. W., Davis, M. R. & Mahieu, N. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management 187, 197–211, https://doi.org/10.1016/s0378-1127(03)00332-3 (2004).Article 

    Google Scholar 
    Gao, B., Taylor, A. R., Chen, H. Y. H. & Wang, J. Variation in total and volatile carbon concentration among the major tree species of the boreal forest. Forest Ecology and Management 375, 191–199, https://doi.org/10.1016/j.foreco.2016.05.041 (2016).Article 

    Google Scholar 
    Gillerot, L. et al. Inter- and intraspecific variation in mangrove carbon fraction and wood specific gravity in Gazi Bay, Kenya. Ecosphere 9, e02306, https://doi.org/10.1002/ecs2.2306 (2018).Article 

    Google Scholar 
    Gómez-Brandón, M. et al. Physico-chemical and microbiological evidence of exposure effects on Picea abies – coarse woody debris at different stages of decay. Forest Ecology and Management 391, 376–389, https://doi.org/10.1016/j.foreco.2017.02.033 (2017).Article 

    Google Scholar 
    Guner, S. T. & Comez, A. Biomass equations and changes in carbon stock in afforested Black Pine (Pinus nigra Arnold. subsp. pallasiana (Lamb.) Holmboe) stands in Turkey. Fresenius Environmental Bulletin 26, 2368–2379 (2017).CAS 

    Google Scholar 
    Guo, J., Chen, G., Xie, J., Yang, Z. & Yang, Y. Patterns of mass, carbon and nitrogen in coarse woody debris in five natural forests in southern China. Annals of Forest Science 71, 585–594, https://doi.org/10.1007/s13595-014-0366-4 (2014).Article 

    Google Scholar 
    Hanpattanakit, P., Chidthaisong, A., Sanwangsri, M. & Lichaikul, N. Improving allometric equations to estimate biomass and carbon in secondary dry dipterocarp forest. Singapore SG 18, 208–211 (2016).
    Google Scholar 
    Herrero De Aza, C., Turrión, M. B., Pando, V. & Bravo, F. Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Annals of Forest Science 68, 1067–1076, https://doi.org/10.1007/s13595-011-0122-y (2011).Article 

    Google Scholar 
    Huet, S., Forgeard, F. O. & Nys, C. Above- and belowground distribution of dry matter and carbon biomass of Atlantic beech (Fagus sylvatica L.) in a time sequence. Annals of Forest Science 61, 683–694, https://doi.org/10.1051/forest:2004063 (2004).CAS 
    Article 

    Google Scholar 
    Jacobs, D. F., Selig, M. F. & Severeid, L. R. Aboveground carbon biomass of plantation-grown American chestnut (Castanea dentata) in absence of blight. Forest Ecology and Management 258, 288–294, https://doi.org/10.1016/j.foreco.2009.04.014 (2009).Article 

    Google Scholar 
    Janssens, I. A. et al. Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Annals of forest science 56, 81–90, https://doi.org/10.1051/forest:19990201 (1999).Article 

    Google Scholar 
    Jiménez Pérez, J., Treviño Garza, E. J. & Yerena Yamallel, J. I. Concentración de carbono en especies del bosque de pino-encino en la Sierra Madre Oriental. Revista mexicana de ciencias forestales 4, 50–61 (2013).Article 

    Google Scholar 
    Jomura, M. et al. Biotic and abiotic factors controlling respiration rates of above- and belowground woody debris of Fagus crenata and Quercus crispula in Japan. PLOS ONE 10, e0145113, https://doi.org/10.1371/journal.pone.0145113 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, D. & O’Hara, K. Variation in carbon fraction, density, and carbon density in conifer tree tissues. Forests 9, 430, https://doi.org/10.3390/f9070430 (2018).Article 

    Google Scholar 
    Jones, D. A. & O’Hara, K. L. Carbon density in managed coast redwood stands: implications for forest carbon estimation. Forestry 85, 99–110, https://doi.org/10.1093/forestry/cpr063 (2012).Article 

    Google Scholar 
    Jones, D. A. & O’Hara, K. L. The influence of preparation method on measured carbon fractions in tree tissues. Tree Physiology 36, 1177–1189, https://doi.org/10.1093/treephys/tpw051 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Joosten, R. & Schulte, A. Possible effects of altered growth behaviour of Norway Spruce (Picea abies) on carbon accounting. Climatic Change 55, 115–129, https://doi.org/10.1023/a:1020227806137 (2002).CAS 
    Article 

    Google Scholar 
    Joosten, R., Schumacher, J., Wirth, C. & Schulte, A. Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany. Forest Ecology and Management 189, 87–96, https://doi.org/10.1016/j.foreco.2003.07.037 (2004).Article 

    Google Scholar 
    Kim, C., Yoo, B., Jung, S. & Lee, K. Allometric equations to assess biomass, carbon and nitrogen content of black pine and red pine trees in southern Korea. iForest – Biogeosciences and Forestry 10, 483–490, https://doi.org/10.3832/ifor2164-010 (2017).Article 

    Google Scholar 
    Kort, J. & Turnock, R. Carbon reservoirs and biomass in Canadian prairie shelterbelts. Agroforestry Systems 44, 175-186, https://doi.org/10.1023/a:1006226006785 (1998).Köster, K., Metslaid, M., Engelhart, J. & Köster, E. Dead wood basic density, and the concentration of carbon and nitrogen for main tree species in managed hemiboreal forests. Forest Ecology and Management 354, 35–42, https://doi.org/10.1016/j.foreco.2015.06.039 (2015).Article 

    Google Scholar 
    Kraenzel, M., Castillo, A., Moore, T. & Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. Forest Ecology and Management 173, 213–225, https://doi.org/10.1016/s0378-1127(02)00002-6 (2003).Article 

    Google Scholar 
    Laiho, R. & Laine, J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland. Forest Ecology and Management 93, 161–169, https://doi.org/10.1016/s0378-1127(96)03916-3 (1997).Article 

    Google Scholar 
    Laiho, R. & Prescott, C. E. The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests. Canadian Journal of Forest Research 29, 1592–1603, https://doi.org/10.1139/x99-132 (1999).Article 

    Google Scholar 
    Lambert, R. L., Lang, G. E. & Reiners, W. A. Loss of mass and chemical change in decaying boles of a subalpine Balsam Fir forest. Ecology 61, 1460–1473, https://doi.org/10.2307/1939054 (1980).Article 

    Google Scholar 
    Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Functional Ecology 24, 493–501, https://doi.org/10.1111/j.1365-2435.2009.01672.x (2010).Article 

    Google Scholar 
    Li, X. et al. Biomass and carbon storage in an age-sequence of Korean Pine (Pinus koraiensis) plantation forests in central Korea. Journal of Plant Biology 54, 33–42, https://doi.org/10.1007/s12374-010-9140-9 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Lombardi, F. et al. Investigating biochemical processes to assess deadwood decay of Beech and Silver Fir in Mediterranean mountain forests. Annals of Forest Science 70, 101–111, https://doi.org/10.1007/s13595-012-0230-3 (2013).Article 

    Google Scholar 
    Lutter, R., Tullus, A., Kanal, A., Tullus, T. & Tullus, H. The impact of former land-use type to above- and below-ground C and N pools in short-rotation hybrid aspen (Populus tremula L. × P. tremuloides Michx.) plantations in hemiboreal conditions. Forest Ecology and Management 378, 79–90, https://doi.org/10.1016/j.foreco.2016.07.021 (2016).Article 

    Google Scholar 
    Mahmood, H. et al. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill Zone of Bangladesh. Journal of Forestry Research 31, 1235–1245, https://doi.org/10.1007/s11676-019-00881-5 (2020).CAS 
    Article 

    Google Scholar 
    Maiti, R., Gonzalez Rodriguez, H. & Kumari, A. Wood density of ten native trees and shrubs and its possible relation with a few wood chemical compositions. American Journal of Plant Sciences 07, 1192–1197, https://doi.org/10.4236/ajps.2016.78114 (2016).CAS 
    Article 

    Google Scholar 
    Mäkinen, H., Hynynen, J., Siitonen, J. & Sievänen, R. Predicting The decomposition of Scots Pine, Norway Spruce, and Birch stems in Finland. Ecological Applications 16, 1865–1879, https://doi.org/10.1890/1051-0761(2006)016[1865:ptdosp]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    Manuella, S. et al. Chemical transformations in downed logs and snags of mixed boreal species during decomposition. Canadian Journal of Forest Research 43, 785–798, https://doi.org/10.1139/cjfr-2013-0086 (2013).CAS 
    Article 

    Google Scholar 
    Martin, A. R. & Thomas, S. C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees. Tree Physiology 33, 1338–1353, https://doi.org/10.1093/treephys/tpt085 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martin, A. R., Thomas, S. C. & Zhao, Y. Size-dependent changes in wood chemical traits: a comparison of neotropical saplings and large trees. AoB PLANTS 5, plt039–plt039, https://doi.org/10.1093/aobpla/plt039 (2013).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell & Environment 22, 1475–1495, https://doi.org/10.1046/j.1365-3040.1999.00523.x (1999).CAS 
    Article 

    Google Scholar 
    Moreira, A. B., Gregoire, T. G. & Do Couto, H. T. Z. Wood density and carbon concentration of coarse woody debris in native forests, Brazil. Forest Ecosystems 6, https://doi.org/10.1186/s40663-019-0177-z (2019).Morhart, C., Sheppard, J. P., Schuler, J. K. & Spiecker, H. Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.) – a case study. Forest Ecosystems 3, https://doi.org/10.1186/s40663-016-0063-x (2016).Northup, B. K., Zitzer, S. F., Archer, S., Mcmurtry, C. R. & Boutton, T. W. Above-ground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland. Journal of Arid Environments 62, 23–43, https://doi.org/10.1016/j.jaridenv.2004.09.019 (2005).ADS 
    Article 

    Google Scholar 
    Palviainen, M. & Finér, L. Decomposition and nutrient release from Norway spruce coarse roots and stumps – a 40-year chronosequence study. Forest Ecology and Management 358, 1–11, https://doi.org/10.1016/j.foreco.2015.08.036 (2015).Article 

    Google Scholar 
    Peri, P. L., Gargaglione, V., Martínez Pastur, G. & Lencinas, M. V. Carbon accumulation along a stand development sequence of Nothofagus antarctica forests across a gradient in site quality in Southern Patagonia. Forest Ecology and Management 260, 229–237, https://doi.org/10.1016/j.foreco.2010.04.027 (2010).Article 

    Google Scholar 
    Pompa-García, M. & Jurado, E. Carbon concentration in structures of Arctostaphylos pungens HBK: an alternative CO2 sink in forests. Phyton 84, 385-389 (2016).Pompa-García, M., Sigala-Rodríguez, J., Jurado, E. & Flores, J. Tissue carbon concentration of 175 Mexican forest species. iForest – Biogeosciences and Forestry 10, 754–758, https://doi.org/10.3832/ifor2421-010 (2017).Article 

    Google Scholar 
    Pompa-García, M. & Yerena-Yamalliel, J. I. Concentration of carbon in Pinus cembroides Zucc: potential source of global warming mitigation. Revista Chapingo Serie Ciencias Forestales y del Ambiente 20, 169–175, https://doi.org/10.5154/r.rchscfa.2014.04.014 (2014).Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A. & Flanagan, L. B. Decomposition, δ13C, and the “lignin paradox”. Canadian Journal of Soil Science 86, 235–245, https://doi.org/10.4141/s05-090 (2006).CAS 
    Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A. & Nault, J. R. Decomposition and change in N and organic composition of small-diameter Douglas-fir woody debris over 23 years. Canadian Journal of Forest Research 42, 1153-1167 (2012).CAS 
    Article 

    Google Scholar 
    Preston, C. M., Trofymow, J. A., Niu, J. & Fyfe, C. A. PMAS-NMR spectroscopy and chemical analysis of coarse woody debris in coastal forests of Vancouver Island. Forest Ecology and Management 111, 51–68, https://doi.org/10.1016/s0378-1127(98)00307-7 (1998).Article 

    Google Scholar 
    Rana, R., Langenfeld-Heyser, R., Finkeldey, R. & Polle, A. FTIR spectroscopy, chemical and histochemical characterisation of wood and lignin of five tropical timber wood species of the family of Dipterocarpaceae. Wood Science and Technology 44, 225–242, https://doi.org/10.1007/s00226-009-0281-2 (2010).CAS 
    Article 

    Google Scholar 
    Ray, R., Majumder, N., Chowdhury, C. & Jana, T. K. Wood chemistry and density: an analog for response to the change of carbon sequestration in mangroves. Carbohydrate Polymers 90, 102–108, https://doi.org/10.1016/j.carbpol.2012.05.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rodrigues, D. P., Hamacher, C., Estrada, G. C. D. & Soares, M. L. G. Variability of carbon content in mangrove species: effect of species, compartments and tidal frequency. Aquatic Botany 120, 346–351, https://doi.org/10.1016/j.aquabot.2014.10.004 (2015).CAS 
    Article 

    Google Scholar 
    Sakai, Y., Ugawa, S., Ishizuka, S., Takahashi, M. & Takenaka, C. Wood density and carbon and nitrogen concentrations in deadwood of Chamaecyparis obtusa and Cryptomeria japonica. Soil Science and Plant Nutrition 58, 526–537, https://doi.org/10.1080/00380768.2012.710526 (2012).CAS 
    Article 

    Google Scholar 
    Sandström, F., Petersson, H., Kruys, N. & Ståhl, G. Biomass conversion factors (density and carbon concentration) by decay classes for dead wood of Pinus sylvestris, Picea abies and Betula spp. in boreal forests of Sweden. Forest Ecology and Management 243, 19–27, https://doi.org/10.1016/j.foreco.2007.01.081 (2007).Article 

    Google Scholar 
    Sanquetta, M. N. I., Sanquetta, C. R., Mognon, F., Corte, A. P. D. & Maas, G. C. B. Wood density and carbon content in young teak individuals from Pará, Brazil. Científica 44, 608, https://doi.org/10.15361/1984-5529.2016v44n4p608-614 (2016).Article 

    Google Scholar 
    Schwendenmann, L. & Mitchell, N. Carbon accumulation by native trees and soils in an urban park, Auckland. New Zealand Journal of Ecology 38(20), 213–220 (2014).Setälä, H., Marshall, V. G. & Trofymow, J. A. Influence of micro- and macro-habitat factors on collembolan communities in Douglas-fir stumps during forest succession. Applied Soil Ecology 2, 227–242, https://doi.org/10.1016/0929-1393(95)00053-9 (1995).Article 

    Google Scholar 
    Sohrabi, H., Bakhtiarvand-Bakhtiari, S. & Ahmadi, K. Above- and below-ground biomass and carbon stocks of different tree plantations in central Iran. Journal of Arid Land 8, 138–145, https://doi.org/10.1007/s40333-015-0087-z (2016).Article 

    Google Scholar 
    Telmo, C., Lousada, J. & Moreira, N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresource Technology 101, 3808–3815, https://doi.org/10.1016/j.biortech.2010.01.021 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Thomas, A. L. et al. Carbon and nitrogen accumulation within four black walnut alley cropping sites across Missouri and Arkansas, USA. Agroforestry Systems 94, 1625–1638, https://doi.org/10.1007/s10457-019-00471-8 (2020).Article 

    Google Scholar 
    Thomas, S. C. & Malczewski, G. Wood carbon content of tree species in Eastern China: interspecific variability and the importance of the volatile fraction. Journal of Environmental Management 85, 659–662, https://doi.org/10.1016/j.jenvman.2006.04.022 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tolunay, D. Carbon concentrations of tree components, forest floor and understorey in young Pinus sylvestris stands in north-western Turkey. Scandinavian Journal of Forest Research 24, 394–402, https://doi.org/10.1080/02827580903164471 (2009).Article 

    Google Scholar 
    Tramoy, R., Sebilo, M., Nguyen Tu, T. T. & Schnyder, J. Carbon and nitrogen dynamics in decaying wood: paleoenvironmental implications. Environmental Chemistry 14, 9, https://doi.org/10.1071/en16049 (2017).CAS 
    Article 

    Google Scholar 
    Van Geffen, K. G., Poorter, L., Sass-Klaassen, U., Van Logtestijn, R. S. P. & Cornelissen, J. H. C. The trait contribution to wood decomposition rates of 15 Neotropical tree species. Ecology 91, 3686–3697, https://doi.org/10.1890/09-2224.1 (2010).Article 
    PubMed 

    Google Scholar 
    Wang, G. et al. Variations in the live biomass and carbon pools of Abies georgei along an elevation gradient on the Tibetan Plateau, China. Forest Ecology and Management 329, 255–263, https://doi.org/10.1016/j.foreco.2014.06.023 (2014).Article 

    Google Scholar 
    Wang, X. W., Weng, Y. H., Liu, G. F., Krasowski, M. J. & Yang, C. P. Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances. Forest Ecology and Management 358, 344–352, https://doi.org/10.1016/j.foreco.2015.08.029 (2015).Article 

    Google Scholar 
    Watzlawick, L. F. et al. Teores de carbono em espécies da floresta ombrófila mista e efeito do grupo ecológico. Cerne 20, 613–620, https://doi.org/10.1590/01047760201420041492 (2014).Article 

    Google Scholar 
    Weber, J. C. et al. Variation in growth, wood density and carbon concentration in five tree and shrub species in Niger. New Forests 49, 35–51, https://doi.org/10.1007/s11056-017-9603-7 (2018).Article 

    Google Scholar 
    Weggler, K., Dobbertin, M., Jüngling, E., Kaufmann, E. & Thürig, E. Dead wood volume to dead wood carbon: the issue of conversion factors. European Journal of Forest Research 131, 1423–1438, https://doi.org/10.1007/s10342-012-0610-0 (2012).Article 

    Google Scholar 
    Widagdo, F. R. A., Xie, L., Dong, L. & Li, F. Origin-based biomass allometric equations, biomass partitioning, and carbon concentration variations of planted and natural Larix gmelinii in northeast China. Global Ecology and Conservation 23, e01111, https://doi.org/10.1016/j.gecco.2020.e01111 (2020).Article 

    Google Scholar 
    Wu, H. et al. Tree functional types simplify forest carbon stock estimates induced by carbon concentration variations among species in a subtropical area. Scientific Reports 7, https://doi.org/10.1038/s41598-017-05306-z (2017).Xing, Z. et al. Carbon and biomass partitioning in balsam fir (Abies balsamea). Tree Physiology 25, 1207–1217, https://doi.org/10.1093/treephys/25.9.1207 (2005).Article 
    PubMed 

    Google Scholar 
    Yang, F.-F. et al. Dynamics of coarse woody debris and decomposition rates in an old-growth forest in lower tropical China. Forest Ecology and Management 259, 1666–1672, https://doi.org/10.1016/j.foreco.2010.01.046 (2010).Article 

    Google Scholar 
    Yeboah, D., Burton, A. J., Storer, A. J. & Opuni-Frimpong, E. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New Forests 45, 35–52, https://doi.org/10.1007/s11056-013-9390-8 (2014).Article 

    Google Scholar 
    Ying, J., Weng, Y., Oswald, B. P. & Zhang, H. Variation in carbon concentrations and allocations among Larix olgensis populations growing in three field environments. Annals of Forest Science 76, https://doi.org/10.1007/s13595-019-0877-0 (2019).Yuan, J., Cheng, F., Zhu, X., Li, J. & Zhang, S. Respiration of downed logs in pine and oak forests in the Qinling Mountains, China. Soil Biology and Biochemistry 127, 1–9, https://doi.org/10.1016/j.soilbio.2018.09.012 (2018).CAS 
    Article 

    Google Scholar 
    Zabek, L. M. & Prescott, C. E. Biomass equations and carbon content of aboveground leafless biomass of hybrid poplar in Coastal British Columbia. Forest Ecology and Management 223, 291–302, https://doi.org/10.1016/j.foreco.2005.11.009 (2006).Article 

    Google Scholar 
    Zhang, H., Jiang, Y., Song, M., He, J. & Guan, D. Improving understanding of carbon stock characteristics of Eucalyptus and Acacia trees in southern China through litter layer and woody debris. Scientific Reports 10, https://doi.org/10.1038/s41598-020-61476-3 (2020).Zhang, Q., Wang, C., Wang, X. & Quan, X. Carbon concentration variability of 10 Chinese temperate tree species. Forest Ecology and Management 258, 722–727, https://doi.org/10.1016/j.foreco.2009.05.009 (2009).Article 

    Google Scholar 
    Zheng, H. et al. Variation of carbon storage by different reforestation types in the hilly red soil region of southern China. Forest Ecology and Management 255, 1113–1121, https://doi.org/10.1016/j.foreco.2007.10.015 (2008).Article 

    Google Scholar 
    Zhou, L. et al. Tissue-specific carbon concentration, carbon stock, and distribution in Cunninghamia lanceolata (Lamb.) Hook plantations at various developmental stages in subtropical China. Annals of Forest Science 76, https://doi.org/10.1007/s13595-019-0851-x (2019).Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92, https://doi.org/10.1038/nature12872 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Muscarella, R. et al. The global abundance of tree palms. Global Ecology and Biogeography 29, 1495–1514, https://doi.org/10.1111/geb.13123 (2020).Article 

    Google Scholar 
    Du, H. et al. Mapping global bamboo forest distribution using multisource remote sensing data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, 1458–1471 (2018).ADS 
    Article 

    Google Scholar 
    Iwashita, D. K., Litton, C. M. & Giardina, C. P. Coarse woody debris carbon storage across a mean annual temperature gradient in tropical montane wet forest. Forest Ecology and Management 291, 336–343, https://doi.org/10.1016/j.foreco.2012.11.043 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2021).Wikström, N., Savolainen, V. & Chase, M. W. Evolution of the angiosperms: calibrating the family tree. Proceedings of the Royal Society of London. Series B: Biological Sciences 268, 2211–2220, https://doi.org/10.1098/rspb.2001.1782 (2001).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gastauer, M. & Meira Neto, J. A. A. Updated angiosperm family tree for analyzing phylogenetic diversity and community structure. Acta Botanica Brasilica 31, 191–198, https://doi.org/10.1590/0102-33062016abb0306 (2017).Article 

    Google Scholar  More