More stories

  • in

    Drivers of parasite communities in three sympatric benthic sharks in the Gulf of Naples (central Mediterranean Sea)

    Marcogliese, D. J. & Cone, D. K. Food webs: A plea for parasites. Trends Ecol. Evol. 12, 320–325. https://doi.org/10.1016/S0169-5347(97)01080-X (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marcogliese, D. J. Food webs and the transmission of parasites to marine fish. Parasitology 124(7), 83–99. https://doi.org/10.1017/s003118200200149x (2002).Article 

    Google Scholar 
    Marcogliese, D. J. Parasites: Small players with crucial roles in the ecological theater. EcoHealth 1, 151–164. https://doi.org/10.1007/s10393-004-0028-3 (2004).Article 

    Google Scholar 
    Marcogliese, D. J. Parasites of the superorganism: Are they indicators of ecosystem health?. Int. J. Parasitol. 35(7), 705–716. https://doi.org/10.1016/j.ijpara.2005.01.015 (2005).Article 
    PubMed 

    Google Scholar 
    Rasmussen, T. K. & Randhawa, H. S. Host diet influences parasite diversity: A case study looking at tapeworm diversity among sharks. Mar. Ecol. Prog. Ser. 605, 1–16. https://doi.org/10.3354/meps12751 (2018).ADS 
    Article 

    Google Scholar 
    Vidal-Martínez, V. M., Pech, D., Sures, B., Purucker, S. T. & Poulin, R. Can parasites really reveal environmental impact?. Trends Parasitol. 26(1), 44–51. https://doi.org/10.1016/j.pt.2009.11.001 (2010).Article 
    PubMed 

    Google Scholar 
    Derbel, H., Châari, M. & Neifar, L. Digenean species diversity in teleost fishes from the Gulf of Gabes, Tunisia (Western Mediterranean). Parasite 19(2), 129–135. https://doi.org/10.1051/parasite/2012192129 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattiucci, S. et al. Temporal stability of parasite distribution and genetic variability values of Contracaecum osculatum sp. D and C. osculatum sp. E (Nematoda: Anisakidae) from fish of the Ross Sea (Antarctica). Int. J. Parasitol. Parasites Wildl. 4(3), 356–367. https://doi.org/10.1016/j.ijppaw.2015.10.004 (2015).Sures, B., Nachev, M., Selbach, C. & Marcogliese, D. J. Parasite responses to pollution: what we know and where we go in ‘Environmental Parasitology’. Parasit. Vectors 10, 65. https://doi.org/10.1186/s13071-017-2001-3 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santoro, M., Iaccarino, D. & Bellisario, B. Host biological factors and geographic locality influence predictors of parasite communities in sympatric sparid fishes off the southern Italian coast. Sci. Rep. 10(1), 13283. https://doi.org/10.1038/s41598-020-69628-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, F., Poulin, R., de Meeüs, T., Guégan, J. F. & Renaud, F. Parasites and ecosystem engineering: What roles could they play?. Oikos 84, 167–171. https://doi.org/10.2307/3546879 (1999).Article 

    Google Scholar 
    Timi, J. T. & Poulin, R. Why ignoring parasites in fish ecology is a mistake. Int. J. Parasitol. 50(10–11), 755–761. https://doi.org/10.1016/j.ijpara.2020.04.007 (2020).Article 
    PubMed 

    Google Scholar 
    Lafferty, et al. Parasites in food webs: The ultimate missing links. Ecol. Lett. 11, 533–546. https://doi.org/10.1111/j.1461-0248.2008.01174.x (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23(4), 202–210. https://doi.org/10.1016/j.tree.2008.01.003 (2008).Article 
    PubMed 

    Google Scholar 
    Stevens, J. D., Bonfil, R., Dulvy, N. K. & Walker, P. A. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J. Mar. Sci. 57(3), 476–494. https://doi.org/10.1006/jmsc.2000.0724 (2000).Article 

    Google Scholar 
    Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P. & Peterson, C. H. Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science 315(5820), 1846–1850. https://doi.org/10.1126/science.1138657 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Palm, H. W. Fish parasites as biological indicators in a changing world: can we monitor environmental impact and climate change? In: Progress in Parasitology (ed. Melhorn, H.) 223–250 (Berlin, 2011).Dallarés, S. Twenty thousand parasites under the sea: A multidisciplinary approach to parasite communities of deep-dwelling fishes from the slopes of the Balearic Sea (NW Mediterranean). PhD Thesis. Universitat Autònoma de Barcelona. (2016).Dallarés, S., Pérez-del-Olmo, A., Montero, F. E. & Carrassón, M. Composition and seasonal dynamics of the parasite communities of Scyliorhinus canicula (L., 1758) and Galeus melastomus Rafinesque. (Elasmobranchii) from the NW Mediterranean Sea in relation to host biology and ecological features. Hydrobiologia 799(275–291). https://doi.org/10.1007/s10750-017-3226-z (2017).Article 

    Google Scholar 
    Dallarés, S., Padrós, F., Cartes, J. E., Solé, M. & Carrassón, M. The parasite community of the sharks Galeus melastomus, Etmopterus spinax and Centroscymnus coelolepis from the NW Mediterranean deep-sea in relation to feeding ecology and health condition of the host and environmental gradients and variables. Deep Sea Res. Part I Oceanogr. Res. Pap. 129, 41–58. https://doi.org/10.1016/j.dsr.2017.09.007 (2017).Ebert, D. A. & Dando, M. Field Guide to Sharks, Rays & Chimaeras of Europe and the Mediterranean. 385 (Princeton University Press, 2021).Santoro, M., Bellisario, B., Crocetta, F., Degli Uberti, B. & Palomba, M. A molecular and ecological study of Grillotia (Cestoda: Trypanorhyncha) larval infection in small to mid-sized benthonic sharks in the Gulf of Naples, Mediterranean Sea. Ecol. Evol. 11(20), 13744–13755. https://doi.org/10.1002/ece3.7933 (2021).Crocetta, F. et al. Bottom-trawl catch composition in a highly polluted coastal area reveals multifaceted native biodiversity and complex communities of fouling organisms on litter discharge. Mar. Environ. Res. 155, 104875. https://doi.org/10.1016/j.marenvres.2020.104875 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hay Mele, B. et al. Ecological assessment of anthropogenic impact in marine ecosystems: the case of Bagnoli Bay. Mar. Environ. Res. 158, 104953. https://doi.org/10.1016/j.marenvres.2020.104953 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rizzo, L., Musco, L. & Crocetta, F. Cohabiting with litter: Fish and benthic assemblages in coastal habitats of a heavily urbanized area. Mar. Poll. Bull. 164, 112077. https://doi.org/10.1016/j.marpolbul.2021.112077 (2021).CAS 
    Article 

    Google Scholar 
    Tanduo, V., Osca, D. & Crocetta, F. A bycatch surprise: Scyllarus subarctus Crosnier, 1970 (Decapoda: Achelata: Scyllaridae) in the Mediterranean Sea. J. Crust. Biol. 41(2), ruab010. https://doi.org/10.1093/jcbiol/ruab010 (2021).Follesa, M. C. & Carbonara, P. Atlas of the maturity stages of Mediterranean fishery resources in General Fisheries Commission for the Mediterranean.Studies and Reviews (ed. FAO) 259 (FAO, 2019).Le Cren, E. D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fuviatilis). J. Anim. Ecol. 20, 201–219 (1951).Article 

    Google Scholar 
    Mouine, N., Francour, P., Ktari, M. H. & Chakroun-Marzouk, N. The reproductive biology of Diplodus sargus sargus in the Gulf of Tunis (Central Mediterranean). Sci. Mar. 71(3), 461–469. https://doi.org/10.3989/scimar.2007.71n3461 (2007).Article 

    Google Scholar 
    Santoro, M., Palomba, M., Mattiucci, S., Osca, D. & Crocetta, F. New parasite records for the sunfish Mola mola in the Mediterranean Sea and their potential use as biological tags for long-distance host migration. Front. Vet. Sci. 7, 579728. https://doi.org/10.3389/fvets.2020.579728 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kabata, Z. Parasitic Copepoda of British Fishes. 468 (The Ray Society, British Museum, 1979).Bray, R. A. & Moore, A. B. M. The first record of the elasmobranch parasite Diphterostomum betencourti (Monticelli, 1893) (Digenea, Zoogonidae) in the coastal waters of southern England. Acta Parasitol. 45(4), 299–302 (2000).
    Google Scholar 
    Gibson, D. I. Superfamily Azygioidea Lühe, 1909 in Keys to the Trematoda. Vol. 1(eds. Gibson, D. I., Jones, A. & Bray, R. A.) 19–24 (CAB International, 2002).Anderson, R. C., Chabaud, A. G. & Willmott, S. CIH keys to the nematode parasites of vertebrates: Archival volume (eds. Anderson, R. C., Chabaud, A. G. & Willmott, S.) 463 (CAB International, 2009).Palm, H. W. The Trypanorhyncha Diesing, 1863 (IPB-PKSPL Press, 2004).
    Google Scholar 
    Dallarés, S., Pérez-del-Olmo, A., Carrassón, M. & Kuchta, R. Morphological and molecular characterisation of Ditrachybothridium macrocephalum Rees, 1959 (Cestoda: Diphyllidea) from Galeus melastomus Rafinesque in the Western Mediterranean. Syst. Parasitol. 92, 45–55. https://doi.org/10.1007/s11230-015-9586-8 (2015).Article 
    PubMed 

    Google Scholar 
    Zhu, X., Gasser, R. B., Podolska, M. & Chilton, N. B. Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. Int. J. Parasitol. 28(12), 1911–1921. https://doi.org/10.1016/s0020-7519(98)00150-7 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van der Auwera, G., Chapelle, S. & De Wachter, R. Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. FEBS Lett. 338(2), 133–136. https://doi.org/10.1016/0014-5793(94)80350-1 (1994).Article 
    PubMed 

    Google Scholar 
    Palm, H. W., Waeschenbach, A., Olson, P. D. & Littlewood, D. T. Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863 (Platyhelminthes: Cestoda). Mol. Phyl. Evol. 52(2), 351–367. https://doi.org/10.1016/j.ympev.2009.01.019 (2009).CAS 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgulis, A. et al. Database indexing for production MegaBLAST searches. Bioinformatics 24(16), 1757–1764. https://doi.org/10.1093/bioinformatics/btn322 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583. https://doi.org/10.2307/3284227 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Euzet, L. & Combes, C. Les problèmes de l’espèces chez les animaux parasites. Bull. Soc. Zool. Fr. 40, 239–285 (1980).Article 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26(1), 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article 

    Google Scholar 
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: .a comment on distance-based redundancy analysis. Ecology 82(1), 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).Article 

    Google Scholar 
    Locke, S. A., McLaughlin, J. D. & Marcogliese, D. J. Predicting the similarity of parasite communities in freshwater fishes using the phylogeny, ecology and proximity of hosts. Oikos 122(1), 73–83. https://doi.org/10.1111/j.1600-0706.2012.20211.x (2013).Article 

    Google Scholar 
    McArtor, D. B., Lubke, G. H. & Bergeman, C. S. Extending multivariate distance matrix regression with an effect size measure and the asymptotic null distribution of the test statistic. Psychometrika 82, 1052–1077. https://doi.org/10.1007/s11336-016-9527-8 (2018).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Core Team. R: a language and environment for statistical computing. https://www.R-project.org/ (2017).Caira, J. N., Bueno, V. & Jensen, K. Emerging global novelty in phyllobothriidean tapeworms (Cestoda: Phyllobothriidea) from sharks and skates (Elasmobranchii). Zool. J. Linnean Soc. 193, 1336–1363. https://doi.org/10.1093/zoolinnean/zlaa185 (2021).Article 

    Google Scholar 
    Fanelli, E., Rey, J., Torres, P. & Gil de Sola, L. Feeding habits of blackmouth catshark Galeus melastomus Rafinesque, 1810 and velvet belly lantern shark Etmopterus spinax (Linnaeus, 1758) in the western Mediterranean. J. Appl. Ichthyol. 25(1), 83–93. https://doi.org/10.1111/j.1439-0426.2008.01112.x (2009).Article 

    Google Scholar 
    Anastasopoulou, A. et al. Diet and feeding strategy of blackmouth catshark Galeus melastomus. J. Fish Biol. 83(6), 1637–1655. https://doi.org/10.1111/jfb.12269 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    D’Iglio, C. et al. Biological and ecological aspects of the blackmouth catshark (Galeus melastomus Rafinesque, 1810) in the Southern Tyrrhenian Sea. J. Mar. Sci. Eng. 9(9), 967. https://doi.org/10.3390/jmse9090967 (2021).Article 

    Google Scholar 
    Saldanha, L., Almeida, A. J., Andrade, F. & Guerreiro, J. Observations on the diet of some slope dwelling fishes of Southern Portugal. Int. Rev. der Gesamten Hydrobiol. 80(2), 217–234. https://doi.org/10.1002/iroh.19950800210 (1995).Article 

    Google Scholar 
    Mnasri, N., El Kamel, O., Boumaïza, M., Reynaud, C. & Capapé, C. Food and feeding habits of the small-spotted catshark, Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) from the northern coast of Tunisia (central Mediterranean). Cah. Biol. Mar. 53(1), 139–150 (2012).
    Google Scholar 
    Šantić, M., Rađa, B. & Pallaoro, A. Feeding habits of small-spotted catshark (Scyliorhinus canicula Linnaeus, 1758) from the eastern central Adriatic Sea. Mar. Biol. Res. 8(10), 1003–1011. https://doi.org/10.1080/17451000.2012.702912 (2012).Article 

    Google Scholar 
    Mattiucci, S., Cipriani, P., Levsen, A., Paoletti, M. & Nascetti, G. Molecular epidemiology of Anisakis and Anisakiasis: an ecological and evolutionary road map. Adv. Parasitol. 99, 93–263. https://doi.org/10.1016/bs.apar.2017.12.001 (2018).Article 
    PubMed 

    Google Scholar 
    Santoro, M. et al. Helminth parasites of the dwarf sperm whale Kogia sima (Cetacea: Kogiidae) from the Mediterranean Sea, with implications on host ecology. Dis. Aquat. Org. 129(3), 175–182. https://doi.org/10.3354/dao03251 (2018).CAS 
    Article 

    Google Scholar 
    Cipriani, P. et al. The Mediterranean European hake, Merluccius merluccius: detecting drivers influencing the Anisakis spp. larvae distribution. Fish. Res. 202, 79–89. https://doi.org/10.1016/j.fishres.2017.07.010 (2018).Article 

    Google Scholar 
    Levsen, A. et al. Anisakis species composition and infection characteristics in Atlantic mackerel, Scomber scombrus, from major European fishing grounds—Reflecting changing fish host distribution and migration pattern. Fish. Res. 202, 112–121. https://doi.org/10.1016/j.fishres.2017.07.030 (2018).Article 

    Google Scholar 
    Palomba, M., Mattiucci, S., Crocetta, F., Osca, D. & Santoro, M. Insights into the role of deep-sea squids of the genus Histioteuthis (Histioteuthidae) in the life cycle of ascaridoid parasites in the Central Mediterranean Sea waters. Sci. Rep. 11, 7135. https://doi.org/10.1038/s41598-021-86248-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palombi, A. Il ciclo biologico di Diphterostomum brusinae Stossich (Trematode digenetico: fam. Zoogonidae Odhner). Considerazioni sui cicli evolutivi delle specie affini e dei trematodi in generale. Pubbl. Stn. Zool. 10, 111–149 (1930).
    Google Scholar 
    Gilardoni, C. et al. Cryptic speciation of the zoogonid digenean Diphterostomum flavum n. sp. demonstrated by morphological and molecular data. Parasite 27(44). https://doi.org/10.1051/parasite/2020040 (2020).Campbell, R. A., Haedrich, R. L. & Munroe, T. A. Parasitism and ecological relationships among deep-sea benthic fishes. Mar. Biol. 57, 301–313. https://doi.org/10.1007/BF00387573 (1980).Article 

    Google Scholar 
    Campbell R. A. Parasitism in the deep-sea in Deep-sea Biology, The Sea (ed. Rowe, G. T.) 473–552 (Wiley, 1983).Isbert, W. et al. Metazoan parasite communities and diet of the velvet belly lantern shark Etmopterus spinax (Squaliformes: Etmopteridae): a comparison of two deep-sea ecosystems. J. Fish Biol. 86(2), 687–706. https://doi.org/10.1111/jfb.12591 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Klimpel, S., Palm, H. W. & Seehagen, A. Metazoan parasites and food composition of juvenile Etmopterus spinax (L., 1758) (Dalatiidae, Squaliformes) from the Norwegian Deep. Parasitol. Res. 89, 245–251. https://doi.org/10.1007/s00436-002-0741-1 (2003).Article 
    PubMed 

    Google Scholar 
    Moore, A. B. M. Metazoan parasites of the lesser-spotted dogfish Scyliorhinus canicula and their potential as stock discrimination tools. J. Mar. Biol. Assoc. UK 81(6), 1009–1013. https://doi.org/10.1017/S0025315401004982 (2001).Article 

    Google Scholar 
    Silva, C., Veríssimo, A., Cardoso, P., Cable, J. & Xavier, R. Infection of the lesser spotted dogfish with Proleptus obtusus Dujardin, 1845 (Nematoda: Spirurida) reflects ontogenetic feeding behaviour and seasonal differences in prey availability. Acta Parasit. 62(2), 471–476. https://doi.org/10.1515/ap-2017-0055 (2017).CAS 
    Article 

    Google Scholar 
    Bakopoulos, V. et al. Parasites of Scyliorhinus canicula (Linnaeus, 1758) in the north-eastern Aegean Sea. J. Mar. Biol. Assoc. UK 98(8), 2133–2143. https://doi.org/10.1017/S0025315417001552 (2018).MathSciNet 
    Article 

    Google Scholar 
    Moravec, F., Van As, J. G. & Dyková, I. Proleptus obtusus Dujardin, 1845 (Nematoda: Physalopteridae) from the puffadder shyshark Haploblepharus edwardsii (Scyliorhinidae) from off South Africa. Syst. Parasitol. 53, 169–173. https://doi.org/10.1023/A:1021130825469 (2002).Article 
    PubMed 

    Google Scholar 
    Morris, T., Avenant-Oldewage, A., Lamberth, S. & Reed, C. Shark parasites as bio-indicators of metals in two South African embayments. Mar. Pollut. Bull. 104(1–2), 221–228. https://doi.org/10.1016/j.marpolbul.2016.01.027 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kennedy, C. R., Bush, A. O. & Aho, J. M. Patterns in helminth communities: why are birds and fish different?. Parasitology 93(1), 205–215. https://doi.org/10.1017/S0031182000049945 (1986).Article 
    PubMed 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83(4), 575–583. https://doi.org/10.2307/3284227 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poulin, R. Species richness of parasite assemblages: Evolution and patterns. Annu. Rev. Ecol. Syst. 28, 341–358 (1997).Article 

    Google Scholar 
    Rizzo, E. & Bazzoli, N. Reproduction and embryogenesis in Biology and physiology of freshwater neotropical fish (eds. Baldisserotto, B., Criscuolo Urbinati, E. & Cyrino J. E. P.) 287–313 (Academic Press, 2020).Poulin, R. Variation in the intraspecific relationship between fish length and intensity of parasitic infection: Biological and statistical causes. J. Fish Biol. 56(1), 123–137. https://doi.org/10.1111/j.1095-8649.2000.tb02090.x (2005).Article 

    Google Scholar 
    Poulin, R. & Morand, S. Parasite Biodiversity (eds.) 216 Smithsonian Institution Books, 2004.Capapé, C. et al. Production, maturity, reproductive cycle and fecundity of small-spotted catshark, Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) from the northern coast of Tunisia (Central Mediterranean). J. Ichthyol. 54, 111–126. https://doi.org/10.1134/S0032945214010020 (2014).Article 

    Google Scholar 
    Kennedy, C.R Helminth communities in freshwater fish: structured communities or stochastic assemblages? in Parasite Communities: Patterns and Processes (eds. Esch G. W., Bush A. O., Aho J. M.) 156 (Chapman and Hall, 1990).Compagno, L. J. V. Sharks of the world in An annotated and illustrated catalogue of shark species known to date. Part 1 – Hexanchiformes to Lamniformes (ed. FAO) 249 (FAO, 1984).Compagno, L. J. V. Sharks of the world in An annotated and illustrated catalogue of shark species known to date. Part 2 – Carcharhiniformes (ed. FAO) 486 (FAO, 1984). More

  • in

    Dispersal and oviposition patterns of Lycorma delicatula (Hemiptera: Fulgoridae) during the oviposition period in Ailanthus altissima (Simaroubaceae)

    Fluorescent markingDispersal of SLF adults was tracked using a fluorescent marking system (FMS), which has been demonstrated to be applicable for multiple insect species including SLF nymphs21,22,24. To mark the SLF, either red, yellow, or blue fluorescent paint (#1166R, #1166Y, #1166B, BioQuip Products, USA) was diluted with distilled water (1:4). The mixture was then gently sprayed three times (ca. 20 mg each time) on each SLF individual using a mist sprayer from a distance of 30–50 cm (SI 2). Throughout the field survey, a handheld ultraviolet (UV) laser (PX 600 mW, class IIIB purple laser, 405 nm, Big Lasers, USA) was used to detect fluorescent-marked SLF individuals25.Effect of fluorescent marking on SLFPrior to field survey, the potential effects of fluorescent marking on the survivorship and flight behavior of SLF adults (sex ratio 1:1) were evaluated. SLF adults were collected using sweeping nets (BioQuip Products, USA) from Gyeonggi-do, South Korea (37°47′85.95″ N, 127°11′64.58″E) in September 2020. Two hours after fluorescent marking of SLF, both fluorescent-marked and unmarked SLF were subjected to survivorship and flight behavior assessment.Survivorship of insects was measured on two A. altissima trees (ca. 2 m in height) located in Gachon University, South Korea (37°45′38.50″N, 127°13′37.75″E). Two fluorescent-marked and two unmarked insects were placed in a cylindrical mesh cage [25 × 30 cm (radius × height)] enclosing a tree branch; a total of 20 groups were tested (n = 40). Then, survivorship of SLF was determined once every two days until no individuals were alive. Survivorship was compared between fluorescent-marked and unmarked SLF using Kaplan-Meir survivorship analysis (JMP 12, SAS Institute Inc., USA).The effects of fluorescent marking on flight behavior were evaluated in an open space (986 m2) in Gachon University, South Korea (37°45′08.37″N, 127°12′79.69″E) at 26 ± 1 °C and a relative humidity of 30 ± 5%. To induce flight of SLF adults, a wooden square rod [3 × 3 × 100 cm (width × length × height)] was established upright at the center of the arena. The SLF adult was placed individually 10 cm away from the top on the wooden square rod. To minimize any unnecessary stimuli from experimenter, SLF flight was induced by following the same sequence: once the insect climbed up the rod and oriented itself staying still to a random direction, then an experimenter carefully positioned at the back of the insect and gently pecked the forewings using tweezers to initiate its flight33,34. Pecking was intended to mimic predatory behavior of birds. Once the insect jumped away, an operator followed the individual until it landed on the ground (n = 30). The experiment was conducted for 2 h between 13:00–15:00 and marked and unmarked SLF were randomly tested during the evaluation. The number of pecks to initiate the flight, flight duration, and flight distance of SLF were compared using t-test (JMP 12, SAS Institute Inc., USA).Field study sitesDispersal patterns of SLF adults in A. altissima patches and their oviposition patterns were investigated in multiple A. altissima patches located along two streams in Gyeonggi-do, South Korea: Tan stream in Seongnam-si (37°48′01.80″N, 127°11′56.03″E) and Gyeongan stream in Gwangju-si (37°41′54.21″N, 127°27′12.37″E). Both Tan and Gyeongan streams run along suburban residential areas in their respective cities, with pedestrian lanes built along the streams. We selected seven A. altissima patches as study patches when more than 10 SLF adults were found per patch (Fig. 3). In the study patch, all SLF individuals or ca. up to 30 adults were florescent-marked. In addition, when the number of SLF adults was less than 10 from an A. altissima patch, those patches were designated as neighboring patches (Fig. 3). Dispersal and oviposition of SLF adults were monitored from both study and neighboring patches during the study.In Tan stream, four study patches (patches A–D) and one neighboring patch, which were distributed over ca. 1760 m, were selected (Fig. 3a). Areas around the patches were generally covered with grass and shrubs, and the areas were occasionally managed by local administration. Deciduous trees were regularly planted along the pedestrian lanes. There were a total of four, four, 61, and 47 A. altissima trees in patches A to D, respectively (Table 2). Compared with Tan stream, A. altissima patches were located closely to each other in Gyeongan stream: three study patches (patches E–G) and three neighboring patches were spread over only ca. 90 m (Fig. 3b). Vegetation surrounding A. altissima patches consisted of grasses and small shrubs as well as deciduous trees planted along the border of residential area nearby. There were a total of 69, nine, and 53 A. altissima trees in patches E to G, respectively (Table 2). Unlike Tan stream, 45% of A. altissima trees had trunks having cut off by local administration in Gyeongan stream (Table 2; Fig. 5).Dispersal pattern of SLF on A. altissima
    Three fluorescent paint colors were used to mark SLF individuals in the study patches (Fig. 3; SI 2). Insects that took off during marking were captured and excluded from the experiment. Among the selected study patches, SLF adults were generally distributed throughout each patch, while SLF adults were observed only from one out of 61 A. altissima trees in patch C. As a result, in Tan stream, 15 (color of paint used to fluorescent-marking; red), 31 (yellow), 11 (blue), and 32 (red) adults were marked from patches A to D, respectively, whereas in Gyeongan stream, 30 (red), 30 (blue), and 33 (yellow) adults were marked from patches E to G, respectively. Starting from September 14th, 2020 in Tan stream and September 18th in Gyeongan stream, fluorescent-marked SLF adults on A. altissima trees in both study and neighboring patches were counted with a UV laser twice a week (Fig. 3). Survey continued until no individuals were observed from the study patches.Oviposition pattern of SLF on A. altissima
    Oviposition pattern of SLF was surveyed on all A. altissima trees in the study patches in December in both streams (Table 2). For the survey, SLF egg masses were categorized into three types as follows: egg mass with waxy layer, egg mass without waxy layer, and scattered eggs (SI 3). Eggs that were not covered with waxy layer and did not form aggregates were categorized as scattered (SI 3). In the field, A. altissima trees were visually inspected to identify SLF egg mass, and the number of egg masses and their distances from the ground were recorded. In addition, the number of eggs per egg mass was recorded for egg masses located  5 generally indicates collinearity35,36. VIF between height and DRC was 1.56, and therefore the two variables were included together in the GLMM model.Policy statementExperiments involving Ailanthus altissima were conducted in compliance with relevant institutional, national, and international guidelines and legislation. More

  • in

    Monthly spatial dynamics of the Bay of Biscay hake-sole-Norway lobster fishery: an ISIS-Fish database

    We took as a starting point the hake – sole – Norway lobster Bay of Biscay ISIS-Fish database used for COSELMAR project16,20 (see http://isis-fish.org/download.html section “Bay of Biscay scenario dataset”, Database V0 in Fig. 1). This database was built using 2010 data, and was not calibrated, as it was designed for a geo-foresight study. Since our aim was to describe the system over a decade and simulate realistic dynamics close to available observations to assess management measures, we needed to update the parametrisation and calibrate the database. We took 2010–2012 as the calibration period, and 2013–2020 as the simulation period (grey arrow Fig. 1). The database has a monthly temporal resolution (constrained by the ISIS-Fish framework) and the spatial scale was set to match ICES statistical rectangles (0.5° latitude by 1° longitude rectangles, defined by the International Council for the Exploration of the Sea (ICES) https://www.ices.dk/data/maps/Pages/ICES-statistical-rectangles.aspx), consistent with available knowledge and data.In this section, we firstly describe all the data sources used to update and calibrate the database. Then, for each main component of an ISIS-Fish database – i.e. populations, exploitation and management – we describe this paper’s database parameters and assumptions. We finally describe the calibration procedure (inspired by previous work21,22), of which some results are shown in the Technical Validation section. We summarized this workflow in Fig. 1.Data sourcesData sources, estimates, and literature (including grey literature) were needed to update and calibrate the model. They are marked in Fig. 1 with salmon (data sources and estimates) and mustard (literature) blocks:

    SACROIS23: French landings and effort logbook declarations for 2010 were made available at the log-event*commercial category*ICES statistical rectangle*population scale. It was used to design exploitation features of the database, as well as populations spatial structure.

    LANGOLF survey: 2006–2010 LANGOLF surveys observations for 2006–2010 were made available for Norway lobster. They were used to work on Norway lobster abundance per length class and sex.

    Intercatch: catch observations for 2010–2020 in the Bay of Biscay for hake, at the quarter-métier group scale, and catch observations per class for sole on 2010–2012, and 2010 Norway lobster catch observations per sex and length class24, used to describe the inter-annual effort dynamics, to calibrate and validate the model.

    Estimates of hake abundance per size class in 2010, and hake quarterly estimates of recruitment on 2010–2012 from a northern hake spatial stock assessment model21, used to inform hake biology assumptions (named Other 1 in Fig. 1).

    ICES WGBIE24 2010 estimates of abundance per class (sole and Norway lobster), to inform their abundance at the initial time step; 2010–2012 yearly fishing mortality estimates per age class (sole) to calibrate the database (named Other 2 in Fig. 1).

    Other population, exploitation and management assumptions were informed with scientific literature25 and grey literature26,27 (Literature block in Fig. 1).

    Management assumptions were informed with legal texts2,4,28,29,30,31,32,33,34 and reported quota values in working group reports24.

    About populationsThis section describes for each species the assumptions and parameters values, except for accessibility, which has been calibrated, as described in section Calibration procedure. For all assumptions and values, more details are provided in Supplementary Information’s section 2.2.HakeThe stock size structure was defined with 1 cm size bins for [1;40[cm individuals, 2 cm for [40;100[cm individuals, and 10 cm for [100;130+] cm individuals35. Areas of presence were defined based on 2010 SACROIS French landings data per commercial category and statistical rectangle23, leading to the definition of a presence, a recruitment, an interim recruitment and a spawning area25 (see Supplementary Information’s section 2.2 and Figure S1). These areas allow for the description of intra-Bay of Biscay migrations related to spawning and recruitment processes: mature individuals aggregate at the beginning of the year on the shelf break to spawn, and then disperse on the shelf36,37,38,39,40 (at the beginning of April and July in the model). Also, from age 1 (around 20 cm), individuals in recruitment zone spread in interim recruitment zone, to model a diffusion towards areas neighbouring the nursery area, at the beginning of each time step (see Supplementary Information’s section 2.2 and Table S11). Maturity-at-size and weight-at-length relationships were the same functions as used by ICES working group35,41. Natural mortality was fixed at 0.5, basing on preliminar runs, instead of the commonly used 0.442. Recruitment values were defined prior to the simulation for 2010–2020 using available estimates on the 2010–2015 time series21,27. Deterministic estimates from these sources were allocated to the recruitment area in the Bay of Biscay and the beginning of each month in January-September on the whole time series, of which values are provided in the Supplementary Information’s section 2.2 and Table S3. Growth is modelled through monthly growth increments5,25. However, given the different widths of size bins in the implemented size structure, a correction was provided to values in the transition matrix to eliminate artifacts when growing to a size bin wider than the size bin of origin, as detailed in Supplementary Information’s section 2.2. Abundance at the initial step in each zone was estimated from Bay of Biscay abundance estimates for 201021. Mature individuals over 20 cm were allocated to the spawning area, all individuals strictly shorter than 20 cm were allocated to the recruitment area (as they were assumed to be less than 1 year old), and remaining individuals were allocated to the interim recruitment area. None were allocated to the presence area, in which individuals will go later in the time series, after disaggregating from the spawning area25 (Table S13).SoleThe stock is age structured, with 7 classes going from ages 2 to 7+43 (Table S2). No seasonal variations were implemented. Only a single presence zone was defined (see Supplementary Information’s section 2.2 and Figure S1), as in preliminary runs defining more presence areas for sole did not yield more knowledge in this study. We implemented ICES working group values for natural mortality, weight-at-age (Table S1) and maturity-at-age43. Recruitment occurs at the beginning of each year, individuals being recruited at age 2 (ages 0–1 were not modelled; Table S4). We implemented ICES working group estimates27 for abundance at initial time step (Table S14).Norway lobsterThe stock has a sex-size structure, with 1 mixed recruitment class at 0 cm; 33 length classes for males at 2 carapace length mm intervals, from [10;12[to [72;74[carapace length mm; 23 length classes for females at 2 carapace length mm intervals, from [10;12[to [52;54[carapace length mm. A single presence area was defined: the Great Mudbank21 (see Supplementary Information’s section 2.2 and Figure S1). Several seasonal processes occur for this stock, impacting recruitment, accessibility and growth: 1/ January, begins with the annual recruitment. Females are inside their burrows, less accessible; 2/ February-March females are inside their burrows, less accessible; 3/ April: Spring moulting, females are more accessible; 4–5/ May-August females are more accessible; 6/ September, females are inside their burrows, less accessible; 7/ October: Autumn moulting only for immature females and all males, females are inside their burrows, less accessible; 8/ November-December, females are inside their burrows, less accessible44. We implemented ICES working group values for natural mortality, weight-at-class and maturity-at-class45,46,47. Growth occurs twice a year, when moulting in April and October, and is modelled with growth increments. Recruitment occurs at the beginning of each year, modelled with a Beverton-Holt relationship26, and was assumed to have the same spatial distribution as spawning stock biomass. Abundance at initial step was derived from LANGOLF survey observations and ICES WGBIE estimates25,26 (Table S16).About exploitationThe fishing exploitation structure (fleets, strategies, métiers and gears) were derived following a classification method on SACROIS 2010 landings and effort data13,23 from French fleets, and taken from a TECTAC project (https://cordis.europa.eu/project/id/Q5RS-2002-01291) database for Spanish trawlers. More details on their definition are provided in Supplementary Information’s section 2.3, Tables S5–S9 and S20–S21 and Figure S3. Spanish longliners and gillnetters fleets exploitation was described based on catch (observations from Intercatch48) rather than effort.Hake selectivity and discarding functions (one for each gear) were taken from estimates of a spatial hake stock assessment model21. Parameters values and formulæ are provided in Supplementary Information’s section 2.3 and Tables S6-S7. On top of this, inter-annual fleet dynamics factors were included in equation (21) of ISIS-Fish documentation8 in order to account for observed catch temporal variations. These factors are therefore multiplicative parameters of the target factor of each species for each métier. They are computed using observed catch27 and differ according to the period and targeted species:

    over 2010–2016, it is a ratio of observed catch in weight per year over catch observations for 2010: for hake, one per métier *season*year (left(frac{ObservedCatc{h}_{metier,season,year}}{ObservedCatc{h}_{metier,season,2010}}right)), for sole, one per métier *year (left(frac{ObservedCatc{h}_{metier,year}}{ObservedCatc{h}_{metier,2010}}right)), and for Norway lobster, one per year (identical for each métier catching Norway lobster) (left(frac{ObservedCatc{h}_{year}}{ObservedCatc{h}_{2010}}right));

    over 2017–2020: at the time of writing these assumptions, more recent data was not available, and ratios were deduced from trends on 2014–2016. A linear model was fitted on ratios deduced earlier on 2014–2016. If a significant trend was identified (hake: whitefish trawlers quarters 2 and 4, longliners and gillnetters seasons 2–3; sole and Norway lobster: all métiers), the slope was used to deduce 2017–2020 ratios (the slope was halved for hake whitefish trawlers and sole and Norway lobster values to avoid unrealistic high values of effort). Otherwise, 2016 ratios were used.

    All values are provided in Supplementary Information’s section A.2 Tables S22–S24, and the final values of target factors are derived from the Calibration procedure.About managementWe implemented a set of management rules close to what is currently implemented in the Bay of Biscay.All stocks are managed by TALs (Total Allowable Landings) until 2015 and then by TACs (Total Allowable Catch), except for Norway lobster, managed by TALs on the whole time series, not being under the landings obligation. To favour a better parametrisation, allowing for more reliable dynamics on the following years of the time series, no TALs were implemented during the calibration period (2010–2012; Fig. 1). These regulations were implemented from 2013 using historically TALs and TACs values24.Landings of the three stocks are also constrained by a Minimum Conservation Reference Size regulation that was implemented for all stocks using values currently enforced in the studied fishery28. Likewise, from 2016, the Landings Obligation was implemented, with de minimis exemptions for hake and sole, depending on the year and the gear used to fish them2,31,32,33,34. See Supplementary Information’s sections 2.4 and A.3, Figure S2 and Table S10 for further details on these restrictions.In response to the above management rules, a fishers’ behaviour algorithm has been developed to describe fishermen adaptation. Some métiers may be forbidden, depending on some conditions – the catch quota has been reached, the landings obligation is enforced – but also some values – the proportion of discarded catch, and also catch on previous years. Therefore fishermen change métiers within their strategy métiers set through a re-allocation of fishing effort to the latter set. This re-allocation aims to avoid quota overshooting. Further details about this algorithm are provided in the Supplementary Information’s sections 2.4 and A.3 and Figure S2.Calibration procedureThe model has been calibrated using two parameters (population accessibility and fishing target factor) involved in the catchability process (equation (21) in ISIS-Fish documentation8). The objective of the calibration is to reproduce the dynamics of catch over 2010–2012 at the species*métiers group scale, for each year or quarter depending on available data’s granularity. Calibration is sequentially performed: accessibility parameters for each population were estimated first followed by the target factors. The estimation of each parameter set (parameter type * population) combination was separated, and values were estimated jointly within each parameter set. To account for the specificity of each population model dynamics (global age-based for sole, spatial and size-based for hake, spatial, sex and size-based for Norway lobster), an objective function is defined for each population to calibrate their accessibility. More details on objective functions and procedures are provided in Supplementary Information’s section 2.5, as well as estimated values in Tables S17–S19.Hake accessibilityThe calibration for hake accessibility is based on a procedure developed for a former version of the database25. One parameter was estimated per quarter, all values being equal across length classes. The model outputs were fitted to hake catch observations in weight in the Bay of Biscay in 2010–2012 per length class.Sole accessibilityOne parameter was estimated per age class. The model outputs were fitted to WGBIE fishing mortality per age class for sole27 in 2010–2012.Norway lobster accessibilityOne parameter was calibrated per sex and length class. The model outputs were fitted to catch in numbers per length class and sex in 2010 per quarter provided by WGBIE.About target factorsTarget factors drive how the effort is distributed between populations, métiers and season*year combinations. They were split in 3 components: a fixed component derived from the SACROIS effort dataset analysis (Tables S25–S27), another fixed component driving inter-annual variations of fishing effort (Tables S22–S24), derived from catch observations, and finally an estimated component (Tables S28–S30), allowing to tune the model’s dynamics to observed catch. This section focuses on the estimation of the latter.Hake target factors20 parameters were defined, for each combination of the 5 groups of métiers (longliners, gillnetters, whitefish trawler (coastal), whitefish trawler (not coastal), Norway lobster trawler, see definition Table S8) and 4 quarters. We fitted the model’s outputs to the same data and with the same objective function as for hake’s accessibilities estimation.Sole target factors1 estimated component per group of métiers (gillnetters, Norway lobster trawlers and whitefish trawlers) and quarter. We fitted the model’s outputs to sole catch in weight on 2010–2012 for each métier and quarter.Norway lobster target factors1 estimated component per group of métiers (Norway lobster trawlers and whitefish trawlers). We fitted the model’s outputs to monthly Norway lobster landings data per length and sex class for 2010.Base simulationThe base simulation ran from January 2010 to December 2020 inclusive, with a monthly time step, using the database and parameters values described in this document. Several outputs of interest may be explored after a run: catch (discards and landings), as done in several figures in this paper, but also biomass (total biomass or mature biomass), fishing mortality values, or effort, all at a fine spatio-temporal scale. More

  • in

    Genetic structure of American bullfrog populations in Brazil

    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20(3), 5451. https://doi.org/10.1016/j.tree.2005.01.003 (2005).Article 

    Google Scholar 
    Duenas, M. A., Hemming, D. J., Roberts, A. & Diaz-Soltero, H. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Glob. Ecol. Conserv. p. e01476 (2021).Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7(1), 1–12 (2020).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592(7855), 571–576 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gregory, R. & Long, G. Using structured decision making to help implement a precautionary approach to endangered species management. Risk Anal. 29(4), 518–532. https://doi.org/10.1111/j.1539-6924.2008.01182.x (2009).Article 
    PubMed 

    Google Scholar 
    Berroneau, M., Detaint, M. & Coi, C. Bilan du programme de mise en place d’une stratégie d’éradication de la grenouille taureau Lithobates catesbeianus (Shaw 1802) en Aquitaine (2003–2007) et perspectives. Bull. Soc. Herpétol. France 127, 35–45 (2008).
    Google Scholar 
    Orchard, S. A. Removal of the American bullfrog, Rana (Lithobates) catesbeiana, from a pond and a lake on Vancouver Island, British Columbia, Canada. Island invasives: eradication and management. IUCN (Gland, Switzerland), 1–542 (2011).Robertson, B. C. & Gemmell, N. J. Defining eradication units to control invasive pests. J. Appl. Ecol. 41(6), 1042–1048 (2004).Article 

    Google Scholar 
    Shaw, G. General Zoology or Systematic Natural History Vol. 3, 106–108 (Society for the study of Amphibians and Reptiles, 1802).
    Google Scholar 
    Howard, R. D. Sexual dimorphism in bullfrogs. Ecology 62(2), 303–310 (1981).Article 

    Google Scholar 
    Kaefer, Í. L., Boelter, R. A. & Cechin, S. Z. Reproductive biology of the invasive bullfrog Lithobates catesbeianus in southern Brazil. In Annales Zoologici Fennici 435–444 (2007).Bissattini, A. M. & Vignoli, L. Let’s eat out, there’s crayfish for dinner: American bullfrog niche shifts inside and outside native ranges and the effect of introduced crayfish. Biol. Invasions 19(9), 2633–2646 (2017).Article 

    Google Scholar 
    Boelter, R. A. & Cechin, S. Z. Impacto da dieta de rã-touro (Lithobates catesbeianus – Anura, Ranidae) sobre a fauna nativa: estudo de caso na região de Agudo – RS – Brasil 1. Nat. Conserv. 5(2), 45–53 (2007).
    Google Scholar 
    Govindarajulu, P., Price, W. S. & Anholt, B. R. Introduced bullfrogs (Rana catesbeiana) in western Canada: has their ecology diverged?. J. Herpetol. 40(2), 249–261 (2006).Article 

    Google Scholar 
    McCoy, C. J. Diet of bullfrogs (Rana catesbeiana) in Central Oklahoma farm ponds. In Proceedings of the Oklahoma Academy of Sciences 44–45 (1967).Teixeira, E., Silva, D., Pinto, O., Filho, R. & Feio, R. N. Predation of native anurans by invasive bullfrogs in Southeastern Brazil: spatial variation and effect of microhabitat use by prey. S. Am. J. Herpetol. 6(1), 1–11. https://doi.org/10.2994/057.006.0101 (2011).Article 

    Google Scholar 
    Wu, Z., Li, Y., Wang, Y. & Adams, M. J. Diet of introduced Bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island China. J. Herpetol. 39(4), 668–675 (2005).Article 

    Google Scholar 
    Howard, R. D. The influence of male-defended oviposition sites on early embryo mortality in bullfrogs. Ecol. Soc. Am. 59(4), 789–798 (1978).
    Google Scholar 
    Van Wilgen, N. J., Gillespie, M. S., Richardson, D. M. & Measey, J. A taxonomically and geographically constrained information base limits non-native reptile and amphibian risk assessment: a systematic review. PeerJ 6, 5850 (2018).Article 

    Google Scholar 
    Sales, L., Rebouças, R. & Toledo, L. F. Native range climate is insufficient to predict anuran invasive potential. Biol. Invasions 23, 2635–2647 (2021).Article 

    Google Scholar 
    Kumschick, S. et al. How repeatable is the Environmental Impact Classification of Alien Taxa (EICAT)? Comparing independent global impact assessments of amphibians. Ecol. Evol. 7(8), 2661–2670 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kupferberg, S. J. Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78(6), 1736–1751 (1997).Article 

    Google Scholar 
    Toledo, L. F., Ribeiro, R. S. & Haddad, C. F. Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J. Zool. 271(2), 170–177 (2007).Article 

    Google Scholar 
    Daszak, P. et al. Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol. J. 14, 201–208 (2004).
    Google Scholar 
    Gervasi, S. S. et al. Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 10(2), 166–171 (2013).PubMed 
    Article 

    Google Scholar 
    Urbina, J., Bredeweg, E. M., Garcia, T. S. & Blaustein, A. R. Host–pathogen dynamics among the invasive American bullfrog (Lithobates catesbeianus) and chytrid fungus (Batrachochytrium dendrobatidis). Hydrobiologia 817(1), 267–277 (2018).CAS 
    Article 

    Google Scholar 
    Schloegel, L. M. et al. The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim. Conserv. 13, 53–61. https://doi.org/10.1111/j.1469-1795.2009.00307.x (2010).Article 

    Google Scholar 
    Ohanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360(6389), 621–627 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Adams, A. J. et al. Extreme drought, host density, sex, and bullfrogs influence fungal pathogen infection in a declining lotic amphibian. Ecosphere 8(3), 01740 (2017).Article 

    Google Scholar 
    Santos, R. C. et al. High prevalence and low intensity of infection by Batrachochytrium dendrobatidis in rainforest bullfrog populations in southern Brazil. Herpetol. Conserv. Biol. 15(1), 118–130 (2020).
    Google Scholar 
    Ribeiro, L. P. et al. Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Sci. Rep. 9, 13422 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Both, C. & Grant, T. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Let. 8(5), 1–3. https://doi.org/10.1098/rsbl.2012.0412 (2012).Article 

    Google Scholar 
    Medeiros, C. I., Both, C., Grant, T. & Hartz, S. M. Invasion of the acoustic niche: variable responses by native species to invasive American bullfrog calls. Biol. Invasions 19(2), 675–690 (2017).Article 

    Google Scholar 
    Ferrante, L., Kaefer, I. L. & Baccaro, F. B. Aliens in the backyard: Did the American bullfrog conquer the habitat of native frogs in the semi-deciduous Atlantic Forest?. Herpetol. J. 30, 93–98 (2020).Article 

    Google Scholar 
    da Silva Silveira, S. & Guimarães, M. The enemy within: consequences of the invasive bullfrog on native anuran populations. Biol. Invasions 23(2), 373–378 (2021).Article 

    Google Scholar 
    Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).Article 

    Google Scholar 
    Ribeiro, L. P. & Toledo, L. F. An overview of the Brazilian frog farming. Aquaculture 548, 737623 (2022).Article 

    Google Scholar 
    Cunha, E. R. & Delariva, R. L. Introdução da rã-touro, Lithobates catesbeianus (SHAW, 1802): uma revisão. Saúde e Biologia 4(2), 34–46 (2009).
    Google Scholar 
    Ferreira, C. M., Pimenta, A. G. C. & Neto, J. S. P. Introdução à ranicultura. Boletim Técnico Do Instituto de Pesca 33, 15 (2002).
    Google Scholar 
    Fontanello, D. & Ferreira, C. M. Histórico da ranicultura nacional. Instituto de Pesca de São Paulo (2007).Both, C. et al. Widespread occurrence of the American bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil. S. Am. J. Herpetol. 6(2), 127–135 (2011).Article 

    Google Scholar 
    Bai, C., Ke, Z., Consuegra, S., Liu, X. & Yiming, L. The role of founder effects on the genetic structure of the invasive bullfrog (Lithobates catesbeianaus) in China. Biol. Invasions 14, 1785–1796. https://doi.org/10.1007/s10530-012-0189-x (2012).Article 

    Google Scholar 
    Liu, X. & Li, Y. Aquaculture enclosures relate to the establishment of feral populations of introduced species. PLoS ONE https://doi.org/10.1371/journal.pone.0006199 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos-pereira, M. & Rocha, C. F. D. Invasive bullfrog Lithobates catesbeianus (Anura: Ranidae) in the Paraná state, Southern Brazil : a summary of the species spread. Revista Brasileira De Zoociências 16, 141–147 (2015).
    Google Scholar 
    Moreira, C. R., Henriques, M. B. & Ferreira, C. M. Frog farms as proposed in agribusiness aquaculture: economic viability based in feed conversion. Pesca Inst. Bull. 39(4), 389–399 (2018).
    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Miaud, C. Prediction and validation of the potential global distribution of a problematic alien invasive species – The American bullfrog. Divers. Distrib. 13(4), 476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x (2007).Article 

    Google Scholar 
    Funk, W. C., Garcia, T. S., Cortina, G. A. & Hill, R. H. Population genetics of introduced bullfrogs, Rana (Lithobates) catesbeianus, in the Willamette Valley, Oregon, USA. Biol. Invasions 13, 651–658. https://doi.org/10.1007/s10530-010-9855-z (2011).Article 

    Google Scholar 
    Rollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R. & Sherwin, W. B. Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol. Ecol. 18, 1560–1573. https://doi.org/10.1111/j.1365-294X.2009.04132.x (2009).Article 
    PubMed 

    Google Scholar 
    Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22(1), 25–33. https://doi.org/10.1016/j.tree.2006.08.009 (2007).Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Bonin, A. & Miaud, C. Population genetics reveals origin and number of founders in a biological invasion. Mol. Ecol. 17, 773–782. https://doi.org/10.1111/j.1365-294X.2007.03622.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamath, P. L., Sepulveda, A. J. & Layhee, M. Genetic reconstruction of a bullfrog invasion to elucidate vectors of introduction and secondary spread. Ecol. Evol. 6(15), 5221–5233. https://doi.org/10.1002/ece3.2278 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411 (2020).Article 
    CAS 

    Google Scholar 
    Austin, J. D. Genetic evidence for female-biased dispersal in the bullfrog, Rana catesbeiana (Ranidae). Mol. Ecol. 12(11), 3165–3172. https://doi.org/10.1046/j.1365-294X.2003.01948.x (2003).Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4(3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11(1), 94. https://doi.org/10.1186/1471-2156-11-94 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17(18), 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x (2008).Article 
    PubMed 

    Google Scholar 
    Winter, D. J. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12(6), 1158–1160. https://doi.org/10.1111/j.1755-0998.2012.03174.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gerlach, G. Calculations of population differentiation based on GST and D: forget GST but not all of statistics!. Mol. Ecol. 19(18), 3845–3852 (2010).PubMed 
    Article 

    Google Scholar 
    Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple statistical significance testing. Stat. Med. 9, 811–818 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hauser, S., Wakeland, K. & Leberg, P. Inconsistent use of multiple comparison corrections in studies of population genetic structure: Are some type I errors more tolerable than others?. Mol. Ecol. Resour. 19(1), 144–148 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Team R Core. R: A language and environment for statistical computing. R Foundation for Statistical Computing URL. Vienna, Austria. Retrieved from https://www.r-project.org/. (2017).Dyer, R. J. gstudio: Analyses and functions related to the spatial analysis of genetic marker data. R Package Version (2014).Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8(1), 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A., vonHoldt, B. & M.,. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Moritz, C., Schneider, C. J. & Wake, D. B. Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst. Biol. 41(3), 273–291 (1992).Article 

    Google Scholar 
    Goebel, A. M., Donnelly, J. M. & Atz, M. E. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochromebin bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol. Phylogenet. Evol. 11(1), 163–199 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labonne, J. et al. From the bare minimum: genetics and selection in populations founded by only a few parents. Evol. Ecol. Res. 17(1), 21–34 (2016).
    Google Scholar 
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Carlsson, J. Effects of microsatellite null alleles on assignment testing. J. Hered. 99(6), 616–623 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Consuegra, S., Phillips, N., Gajardo, G. & Leaniz, C. G. Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of non-native rainbow trout. Evol. Appl. 4, 660–671. https://doi.org/10.1111/j.1752-4571.2011.00189.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peacock, M. M., Beard, K. H., O’Neill, E. M., Kirchoff, V. S. & Peters, M. B. Strong founder effects and low genetic diversity in introduced populations of Coqui frogs. Mol. Ecol. 18(17), 3603–3615. https://doi.org/10.1111/j.1365-294X.2009.04308.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Austin, J. D., Lougheed, S. C. & Boag, P. T. Discordant temporal and geographic patterns in maternal lineages of eastern north American frogs, Rana catesbeiana (Ranidae) and Pseudacris crucifer (Hylidae). Mol. Phylogenet. Evol. 32, 799–816. https://doi.org/10.1016/j.ympev.2004.03.006 (2004).Article 
    PubMed 

    Google Scholar 
    Selechnik, D. et al. Increased adaptive variation despite reduced overall genetic diversity in a rapidly adapting invader. Front. Genet. 10, 1221 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Climatic and tectonic drivers shaped the tropical distribution of coral reefs

    Spalding, M. D. & Grenfell, A. M. New estimates of global and regional coral reef areas. Coral Reefs 16, 225–230 (1997).Article 

    Google Scholar 
    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    Roberts, C. M. et al. Marine Biodiversity Hotspots and Conservation Priorities for Tropical Reefs. Science 295, 1280–1284 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Johannes, R., Wiebe, W., Crossland, C., Rimmer, D. & Smith, S. Latitudinal limits of coral reef growth. Mar. Ecol. Prog. Ser. 11, 105–111 (1983).ADS 
    Article 

    Google Scholar 
    Kleypas, J. A., Mcmanus, J. W. & Meñez, L. A. B. Environmental Limits to Coral Reef Development: Where Do We Draw the Line? Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    Yamano, H., Hori, K., Yamauchi, M., Yamagawa, O. & Ohmura, A. Highest-latitude coral reef at Iki Island, Japan. Coral Reefs 20, 9–12 (2001).Article 

    Google Scholar 
    Guan, Y., Hohn, S. & Merico, A. Suitable Environmental Ranges for Potential Coral Reef Habitats in the Tropical Ocean. PLOS ONE 10, e0128831 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bellwood, D. R. & Hughes, T. P. Regional-Scale Assembly Rules and Biodiversity of Coral Reefs. Science 292, 1532–1535 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Connolly, S. R., Bellwood, D. R. & Hughes, T. P. Indo-Pacific Biodiversity of Coral Reefs: Deviations from a Mid-Domain Model. Ecology 84, 2178–2190 (2003).Article 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Connolly, S. R. & Tanner, J. Environmental and geometric constraints on Indo‐Pacific coral reef biodiversity. Ecol. Lett. 8, 643–651 (2005).Article 

    Google Scholar 
    Kiessling, W., Simpson, C., Beck, B., Mewis, H. & Pandolfi, J. M. Equatorial decline of reef corals during the last Pleistocene interglacial. Proc. Natl Acad. Sci. 109, 21378–21383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veron, J. E. N. et al. Delineating the Coral Triangle. Galaxea. J. Coral Reef. Stud. 11, 91–100 (2009).Article 

    Google Scholar 
    Briggs, J. C. Marine Longitudinal Biodiversity: Causes and Conservation. Divers. Distrib. 13, 544–555 (2007).Article 

    Google Scholar 
    Renema, W. et al. Hopping Hotspots: Global Shifts in Marine Biodiversity. Science 321, 654–657 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kiessling, W. Paleoclimatic significance of Phanerozoic reefs. Geology 29, 751–754 (2001).ADS 
    Article 

    Google Scholar 
    Wallace, C. & Rosen, B. Diverse staghorn corals (Acropora) in high-latitude Eocene assemblages: Implications for the evolution of modern diversity patterns of reef corals. Proc. Biol. Sci. 273, 975–982 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Perrin, C. & Kiessling, W. Latitudinal trends in Cenozoic reef patterns and their relationship to climate. Carbonate Syst. Oligocene–Miocene Clim. Transit. 17–33 (Wiley-Blackwell, 2010).Kiessling, W. Habitat effects and sampling bias on Phanerozoic reef distribution. Facies 51, 24–32 (2005).Article 

    Google Scholar 
    Kiessling, W. Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 290, 11–19 (2010).Article 

    Google Scholar 
    Ziegler, A. M., Hulver, M. L., Lotts, A. L. & Schmachtenberg, W. F. Uniformitarianism and palaeoclimates: inferences from the distribution of carbonate rocks. In: Fossils and Climate (ed. Brenchley, P. J.), 3–25 (Wiley, Chichester, 1984).Crame, J. A. & Rosen, B. R. Cenozoic palaeogeography and the rise of modern biodiversity patterns. Geol. Soc. Lond. Spec. Publ. 194, 153–168 (2002).ADS 
    Article 

    Google Scholar 
    Leprieur, F. et al. Plate tectonics drive tropical reef biodiversity dynamics. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. U. S. A. 114, 5653–5658 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roberts, G. G. & Mannion, P. D. Timing and periodicity of Phanerozoic marine biodiversity and environmental change. Sci. Rep. 9, 6116 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Valentine, J. W. & Moores, E. M. Global Tectonics and the Fossil Record. J. Geol. 80, 167–184 (1972).ADS 
    Article 

    Google Scholar 
    Pellissier, L., Heine, C., Rosauer, D. F. & Albouy, C. Are global hotspots of endemic richness shaped by plate tectonics? Biol. J. Linn. Soc. 123, 247–261 (2017).Article 

    Google Scholar 
    Chittaro, P. M. Species-area relationships for coral reef fish assemblages of St. Croix, US Virgin Islands. Mar. Ecol. Prog. Ser. 233, 253–261 (2002).ADS 
    Article 

    Google Scholar 
    Tittensor, D. P., Micheli, F., Nyström, M. & Worm, B. Human impacts on the species–area relationship in reef fish assemblages. Ecol. Lett. 10, 760–772 (2007).PubMed 
    Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Huntington, B. E. & Lirman, D. Species-area relationships in coral communities: evaluating mechanisms for a commonly observed pattern. Coral Reefs 31, 929–938 (2012).ADS 
    Article 

    Google Scholar 
    Kiessling, W., Simpson, C. & Foote, M. Reefs as cradles of evolution and sources of biodiversity in the Phanerozoic. Science 327, 196–198 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pandolfi, J. M. et al. Global Trajectories of the Long-Term Decline of Coral Reef Ecosystems. Science 301, 955–958 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. Coral reef ecosystems and anthropogenic climate change. Reg. Environ. Change 11, 215–227 (2011).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, S. W. et al. Refugia under threat: Mass bleaching of coral assemblages in high-latitude eastern Australia. Glob. Change Biol. 25, 3918–3931 (2019).ADS 
    Article 

    Google Scholar 
    Pörtner, H.-O. et al. IPCC special report on the ocean and cryosphere in a changing climate. IPCC Intergov. Panel Clim. Change Geneva Switz. 1, 1–755 (2019).Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Couce, E., Ridgwell, A. & Hendy, E. J. Future habitat suitability for coral reef ecosystems under global warming and ocean acidification. Glob. Change Biol. 19, 3592–3606 (2013).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral Reef Ecosystems under Climate Change and Ocean Acidification. Front. Mar. Sci. 4, 1–20 (2017).O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS 
    Article 

    Google Scholar 
    Precht, W. F. & Aronson, R. B. Climate flickers and range shifts of reef corals. Front. Ecol. Environ. 2, 307–314 (2004).Article 

    Google Scholar 
    Greenstein, B. J. & Pandolfi, J. M. Escaping the heat: range shifts of reef coral taxa in coastal Western Australia. Glob. Change Biol. 14, 513–528 (2008).ADS 
    Article 

    Google Scholar 
    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Vilhena, D. A. & Smith, A. B. Spatial Bias in the Marine Fossil Record. PLoS ONE 8, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    Close, R. A., Benson, R. B. J., Saupe, E. E., Clapham, M. E. & Butler, R. J. The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, L. A., Dean, C. D., Mannion, P. D., Farnsworth, A. & Allison, P. A. Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients. Proc. R. Soc. B Biol. Sci. 288, 20202762 (2021).Article 

    Google Scholar 
    Jones, L. A. & Eichenseer, K. Uneven spatial sampling distorts reconstructions of Phanerozoic seawater temperature. Geology (2021) https://doi.org/10.1130/G49132.1.Stolarski, J. et al. The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol. Biol. 11, 1–11 (2011).Article 

    Google Scholar 
    Frankowiak, K. et al. Photosymbiosis and the expansion of shallow-water corals. Sci. Adv. 2, e1601122 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893 (2017).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article 

    Google Scholar 
    Swets, J. A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    Hirzel, A. H., LeLay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    Miller, K. G. et al. The Phanerozoic Record of Global Sea-Level Change. Science 310, 1293–1298 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hallam, A., Grose, J. A. & Ruffell, A. H. Palaeoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France. Palaeogeogr. Palaeoclimatol. Palaeoecol. 81, 173–187 (1991).Article 

    Google Scholar 
    Gröcke, D. R., Price, G. D., Ruffell, A. H., Mutterlose, J. & Baraboshkin, E. Isotopic evidence for Late Jurassic–Early Cretaceous climate change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 202, 97–118 (2003).Article 

    Google Scholar 
    Royer, D. L., Berner, R. A., Montañez, I. P., Tabor, N. J. & Beerling, D. J. CO2 as a primary driver of Phanerozoic climate. GSA Today 14, 1–10 (2004).
    Google Scholar 
    Grabowski, J. et al. Magnetic susceptibility and spectral gamma logs in the Tithonian–Berriasian pelagic carbonates in the Tatra Mts (Western Carpathians, Poland): Palaeoenvironmental changes at the Jurassic/Cretaceous boundary. Cretac. Res. 43, 1–17 (2013).Article 

    Google Scholar 
    Vickers, M. L. et al. The duration and magnitude of Cretaceous cool events: Evidence from the northern high latitudes. GSA Bull. 131, 1979–1994 (2019).CAS 
    Article 

    Google Scholar 
    Hay, W. W. & Floegel, S. New thoughts about the Cretaceous climate and oceans. Earth-Sci. Rev. 115, 262–272 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Tennant, J. P., Mannion, P. D. & Upchurch, P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 7, 12737 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schouten, S. et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology 36, 147 (2008).ADS 
    Article 

    Google Scholar 
    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Crame, J. A. Taxonomic diversity gradients through geological time. Divers. Distrib. 7, 175–189 (2001).
    Google Scholar 
    Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).PubMed 
    Article 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Philos. Trans. R. Soc. B Biol. Sci. 371, 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Saupe, E. E. et al. Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic. Proc. Natl Acad. Sci. 116, 12895–12900 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).ADS 
    Article 

    Google Scholar 
    Hall, R. Southeast Asia’s changing palaeogeography. Blumea 54, 148–161 (2009).Article 

    Google Scholar 
    Gaboriau, T. et al. Ecological constraints coupled with deep-time habitat dynamics predict the latitudinal diversity gradient in reef fishes. Proc. R. Soc. B Biol. Sci. 286, 20191506 (2019).Article 

    Google Scholar 
    Saupe, E. E. et al. Extinction intensity during Ordovician and Cenozoic glaciations explained by cooling and palaeogeography. Nat. Geosci. 13, 65–70 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Lunt, D. J. et al. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Clim 17, 203–227 (2021).ADS 

    Google Scholar 
    Freeman, L. A., Kleypas, J. A. & Miller, A. J. Coral Reef Habitat Response to Climate Change Scenarios. PLoS ONE 8, 1–14 (2013).
    Google Scholar 
    Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 1–8 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Farnsworth, A. et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Zhang, L. et al. Consensus Forecasting of Species Distributions: The Effects of Niche Model Performance and Niche Properties. PLoS ONE 10, 1–18 (2015).
    Google Scholar 
    Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).ADS 
    Article 

    Google Scholar 
    Seo, C., Thorne, J. H., Hannah, L. & Thuiller, W. Scale effects in species distribution models: implications for conservation planning under climate change. Biol. Lett. 5, 39–43 (2009).PubMed 
    Article 

    Google Scholar 
    Couce, E., Ridgwell, A. & Hendy, E. J. Environmental controls on the global distribution of shallow-water coral reefs. J. Biogeogr. 39, 1508–1523 (2012).Article 

    Google Scholar 
    Laborel, J. West African reef corals: an hypothesis on their origin. in Proceedings of the Second International Coral Reef Symposium vol. 1 425–443 (Great Barrier Reef Committee Brisbane, 1974).Spalding, M., Spalding, M. D., Ravilious, C. & Green, E. P. World Atlas of Coral Reefs. (University of California Press, 2001).Block, S. et al. Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models. PLoS ONE 11, 1–16 (2016).Jones, L. A. et al. Coupling of palaeontological and neontological reef coral data improves forecasts of biodiversity responses under global climatic change. R. Soc. Open Sci. 6, 182111 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kusumoto, B. et al. Global distribution of coral diversity: Biodiversity knowledge gradients related to spatial resolution. Ecol. Res. 35, 315–326 (2020).Article 

    Google Scholar 
    Muir, P. R., Wallace, C. C., Done, T. & Aguirre, J. D. Limited scope for latitudinal extension of reef corals. Science 348, 1135–1138 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sillero, N. & Barbosa, A. M. Common mistakes in ecological niche models. Int. J. Geogr. Inf. Sci. 35, 213–226 (2021).Article 

    Google Scholar 
    Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models:HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Sheppard, C. R. C. Predicted recurrences of mass coral mortality in the Indian Ocean. Nature 425, 294–297 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Saupe, E. E. et al. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
    Google Scholar 
    Haywood, A. M. et al. What can Palaeoclimate Modelling do for you? Earth Syst. Environ. 3, 1–18 (2019).Article 

    Google Scholar 
    Sellwood, B. W. & Valdes, P. J. Mesozoic climates: General circulation models and the rock record. Sediment. Geol. 190, 269–287 (2006).ADS 
    Article 

    Google Scholar 
    Waterson, A. M. et al. Modelling the climatic niche of turtles: a deep-time perspective. Proc. R. Soc. B Biol. Sci. 283, 1–9 (2016).
    Google Scholar 
    Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10, 1–14 (2019).CAS 
    Article 

    Google Scholar 
    Dunne, E. M., Farnsworth, A., Greene, S. E., Lunt, D. J. & Butler, R. J. Climatic drivers of latitudinal variation in Late Triassic tetrapod diversity. Palaeontology 64, 101–117 (2020).Article 

    Google Scholar 
    Lyster, S. J., Whittaker, A. C., Allison, P. A., Lunt, D. J. & Farnsworth, A. Predicting sediment discharges and erosion rates in deep time—examples from the late Cretaceous North American continent. Basin Res. 1–27 (2020) https://doi.org/10.1111/bre.12442.Lunt, D. J. et al. Palaeogeographic controls on climate and proxy interpretation. Clim 12, 1181–1198 (2016).ADS 

    Google Scholar 
    Vasquez, V. L., de Lima, A. A., dos Santos, A. P. & Pinto, M. P. Influence of spatial extent on habitat suitability models for primate species of Atlantic Forest. Ecol. Inform. 61, 101179 (2021).Article 

    Google Scholar 
    Collins, D. S. et al. Controls on tidal sedimentation and preservation: Insights from numerical tidal modelling in the Late Oligocene–Miocene South China Sea, Southeast Asia. Sedimentology 65, 2468–2505 (2018).Article 

    Google Scholar 
    Dean, C. D., Collins, D. S., van Cappelle, M., Avdis, A. & Hampson, G. J. Regional-scale paleobathymetry controlled location, but not magnitude, of tidal dynamics in the Late Cretaceous Western Interior Seaway, USA. Geology 47, 1083–1087 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Markwick, P. J. & Valdes, P. J. Palaeo-digital elevation models for use as boundary conditions in coupled ocean–atmosphere GCM experiments: a Maastrichtian (late Cretaceous) example. Palaeogeogr. Palaeoclimatol. Palaeoecol. 213, 37–63 (2004).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 222, 1343–1346 (2011).Article 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat suitability and distribution models: with applications in R. (Cambridge University Press, 2017).Kearney, M. R., Wintle, B. A. & Porter, W. P. Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv. Lett. 3, 203–213 (2010).Article 

    Google Scholar 
    Owens, H. L. et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 263, 10–18 (2013).Article 

    Google Scholar 
    Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction. (Cambridge University Press, 2010). https://doi.org/10.1017/CBO9780511810602.Liu, C., White, M. & Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 40, 778–789 (2013).Article 

    Google Scholar 
    Liu, C., Newell, G. & White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 6, 337–348 (2016).PubMed 
    Article 

    Google Scholar 
    Kiessling, W. & Krause, M. C. PARED—An online database of Phanerozoic reefs. https://www.paleo-reefs.pal.uni-erlangen.de/ (2021).Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F. & Lunt, D. J. Code from ‘Climatic and tectonic drivers shaped the tropical distribution of coral reefs’. Zenodo (2022) https://doi.org/10.5281/zenodo.6458366. More

  • in

    Microbial isolates with Anti-Pseudogymnoascus destructans activities from Western Canadian bat wings

    Frick, W. F. et al. An emerging disease causes regional population collapse of a common North American bat species. Science 329, 679–682 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Froschauer, A. & Coleman, J. North American bat death toll exceeds 5.5 million from white-nose syndrome. Biol. Rep. US Fish Wildl. Serv. 2, 1–2 (2012).
    Google Scholar 
    Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen?. Science 323, 227 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meteyer, C. U. et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagn. Invest. 21, 411–414 (2009).PubMed 
    Article 

    Google Scholar 
    O’Donoghue, A. J. et al. Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc. Natl. Acad. Sci. USA. 112, 7478–7483 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cryan, P. M., Meteyer, C. U., Boyles, J. G. & Blehert, D. S. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8, 135 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: A mechanistic model linking wing damage to mortality. Biol. Lett. 9, 20130177 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Verant, M. L., Boyles, J. G., Waldrep, W., Wibbelt, G. & Blehert, D. S. Temperature-dependent growth of Geomyces destructans, the fungus that causes bat white-nose syndrome. PLoS ONE 7, e46280 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Field, K. A. et al. The white-nose syndrome transcriptome: Activation of anti-fungal host responses in wing tissue of hibernating little brown Myotis. PLoS Pathog. 11, e1005168 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boyles, J. G. & Willis, C. K. R. Could localized warm areas inside cold caves reduce mortality of hibernating bats affected by white-nose syndrome?. Front. Ecol. Environ. 8, 92–98 (2010).Article 

    Google Scholar 
    Storm, J. J. & Boyles, J. G. Body temperature and body mass of hibernating little brown bats Myotis lucifugus in hibernacula affected by white-nose syndrome. Acta Theriol. 56, 123–127 (2011).Article 

    Google Scholar 
    Lorch, J. M. et al. First detection of bat white-nose syndrome in western North America. MSphere 1, 4 (2016).Article 
    CAS 

    Google Scholar 
    White-Nose Syndrome Response Team. Where is WNS Now? White-Nose Syndrome https://www.whitenosesyndrome.org/spreadmap (2021).Turner, G. G., Reeder, D. & Coleman, J. T. H. A five-year assessment of mortality and geographic spread of white-nose syndrome in north American bats, with a look at the future: update of white-nose syndrome in bats. Bat Res. News 52, 13 (2011).
    Google Scholar 
    Dzal, Y., McGuire, L. P., Veselka, N. & Fenton, M. B. Going, going, gone: The impact of white-nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biol. Lett. 7, 392–394 (2011).PubMed 
    Article 

    Google Scholar 
    Ingersoll, T. E., Sewall, B. J. & Amelon, S. K. Improved analysis of long-term monitoring data demonstrates marked regional declines of bat populations in the eastern United States. PLoS ONE 8, e65907 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vanderwolf, K. J. & McAlpine, D. F. Hibernacula microclimate and declines in overwintering bats during an outbreak of white-nose syndrome near the northern range limit of infection in North America. Ecol. Evol. 11, 2273–2288 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boyles, J. G., Cryan, P. M., McCracken, G. F. & Kunz, T. H. Economic importance of bats in agriculture. Science 332, 41–42 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kunz, T. H., de Torrez, E. B., Bauer, D., Lobova, T. & Fleming, T. H. Ecosystem services provided by bats. Ann. N. Y. Acad. Sci. 1223, 1–38 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Puig‐Montserrat, X. & Flaquer, C. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. (2020).Micalizzi, E. W. & Smith, M. L. Volatile organic compounds kill the white-nose syndrome fungus, Pseudogymnoascus destructans, in hibernaculum sediment. Can. J. Microbiol. 66, 593–599 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Padhi, S., Dias, I., Korn, V. & Bennett, J. Pseudogymnoascus destructans: Causative agent of white-nose syndrome in bats is inhibited by safe volatile organic compounds. Journal of Fungi 4, 48 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chaturvedi, S. et al. Antifungal testing and high-throughput screening of compound library against Geomyces destructans, the etiologic agent of geomycosis (WNS) in bats. PLoS ONE 6, e17032 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cornelison, C. T. et al. A preliminary report on the contact-independent antagonism of Pseudogymnoascus destructans by Rhodococcus rhodochrous strain DAP96253. BMC Microbiol. 14, 246 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Boire, N. et al. Potent inhibition of Pseudogymnoascus destructans, the causative agent of white-nose syndrome in bats, by cold-pressed, terpeneless, Valencia orange oil. PLoS ONE 11, 1–10 (2016).Article 
    CAS 

    Google Scholar 
    Padhi, S., Dias, I. & Bennett, J. W. Two volatile-phase alcohols inhibit growth of Pseudogymnoascus destructans, causative agent of white-nose syndrome in bats. Mycology 8, 11–16 (2017).CAS 
    Article 

    Google Scholar 
    Raudabaugh, D. B. & Miller, A. N. Effect of Trans, trans-farnesol on Pseudogymnoascus destructans and several closely related species. Mycopathologia 180, 325–332 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kulhanek. The Application of Chitosan on an Experimental Infection of Pseudogymnoascus Destructans Increases Survival in Little Brown Bats. (Western Michigan University, 2016).Ghosh, S. et al. Evidence for Anti-Pseudogymnoascus destructans (Pd) activity of propolis. Antibiotics 7, 2 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bernard, R. F. & Grant, E. H. C. Identifying common decision problem elements for the management of emerging fungal diseases of wildlife. Soc. Nat. Resour. (2019).Haas, D. & Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3, 307–319 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Becker, M. H. & Harris, R. N. Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS ONE 5, e10957 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gerritsen, J., Smidt, H., Rijkers, G. T. & de Vos, W. M. Intestinal microbiota in human health and disease: The impact of probiotics. Genes Nutr. 6, 209–240 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bletz, M. C. et al. Mitigating amphibian chytridiomycosis with bioaugmentation: Characteristics of effective probiotics and strategies for their selection and use. Ecol. Lett. 16, 807–820 (2013).PubMed 
    Article 

    Google Scholar 
    Becker, M. H. et al. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc. Biol. Sci. 282, 2881 (2015).
    Google Scholar 
    Hamm, P. S. et al. Western bats as a reservoir of novel Streptomyces species with antifungal activity. Appl. Environ. Microbiol. 83, 1–10 (2017).Article 

    Google Scholar 
    Hoyt, J. R. et al. Bacteria isolated from bats inhibit the growth of Pseudogymnoascus destructans, the causative agent of white-nose syndrome. PLoS ONE https://doi.org/10.1371/journal.pone.0121329 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cheng, T. L. et al. Efficacy of a probiotic bacterium to treat bats affected by the disease white-nose syndrome. J. Appl. Ecol. 54, 701–708 (2017).Article 

    Google Scholar 
    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teplitski, M. & Ritchie, K. How feasible is the biological control of coral diseases?. Trends Ecol. Evol. 24, 378–385 (2009).PubMed 
    Article 

    Google Scholar 
    Clay, K. EDITORIAL: Defensive symbiosis: A microbial perspective. Funct. Ecol. 28, 293–298 (2014).Article 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. USA. 111, E5049–E5058 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lemieux-Labonté, V., Simard, A., Willis, C. K. R. & Lapointe, F.-J. Enrichment of beneficial bacteria in the skin microbiota of bats persisting with white-nose syndrome. Microbiome 5, 115 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Walke, J. B. et al. Most of the dominant members of amphibian skin bacterial communities can be readily cultured. Appl. Environ. Microbiol. 81, 6589–6600 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Avena, C. V. et al. Deconstructing the bat skin microbiome: Influences of the host and the environment. Front. Microbiol. 7, 1753 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J. 8, 830–840 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walke, J. B. et al. Amphibian skin may select for rare environmental microbes. ISME J. 8, 2207–2217 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loudon, A. H. et al. Vertebrate hosts as islands: Dynamics of selection, immigration, loss, persistence, and potential function of bacteria on salamander skin. Front. Microbiol. 7, 333 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winter, A. S. et al. Skin and fur bacterial diversity and community structure on American southwestern bats: Effects of habitat, geography and bat traits. PeerJ 5, e3944 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Perofsky, A. C., Lewis, R. J., Abondano, L. A., Di Fiore, A. & Meyers, L. A. Hierarchical social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc. Biol. Sci. 284, 2274 (2017).
    Google Scholar 
    Raulo, A. et al. Social behaviour and gut microbiota in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in the evolution of sociality. J. Anim. Ecol. 87, 388–399 (2018).PubMed 
    Article 

    Google Scholar 
    Tung, J. et al. Social networks predict gut microbiome composition in wild baboons. Elife 4, 5224 (2015).
    Google Scholar 
    Kolodny, O. et al. Coordinated change at the colony level in fruit bat fur microbiomes through time. Nat. Ecol. Evol. 3, 116–124 (2019).PubMed 
    Article 

    Google Scholar 
    Vuong, H. E., Yano, J. M., Fung, T. C. & Hsiao, E. Y. The microbiome and host behavior. Annu. Rev. Neurosci. 40, 21–49 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lausen, C. L., Nagorsen, D. N., Brigham, R. M. & Hobbs, J. Bats of British Columbia 2nd edn. (Royal BC Museum, 2022).
    Google Scholar 
    Spring Cleaning: Why Wash a Bridge? https://www.tranbc.ca/2011/06/22/spring-cleaning-why-wash-a-bridge/ (2012).Maron, P.-A. et al. High microbial diversity promotes soil ecosystem functioning. Appl. Environ. Microbiol. 84, 9 (2018).Article 

    Google Scholar 
    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA. 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Green, S. R. & Gray, P. P. A differential procedure for bacteriological studies useful in the fermentation industry. Arch. Biochem. Biophys. 32, 59–69 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Basu, S. et al. Evolution of bacterial and fungal growth media. Bioinformation 11, 182–184 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medina, D. et al. Culture media and individual hosts affect the recovery of culturable bacterial diversity from amphibian skin. Front. Microbiol. 8, 1574 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Piovia-Scott, J. et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb. Ecol. 74, 217–226 (2017).PubMed 
    Article 

    Google Scholar 
    Moeller, A. H. et al. Dispersal limitation promotes the diversification of the mammalian gut microbiota. Proc. Natl. Acad. Sci. USA. 114, 13768–13773 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ingala, M. R. et al. Comparing microbiome sampling methods in a wild mammal: Fecal and intestinal samples record different signals of host ecology, evolution. Front. Microbiol. 9, 1–10 (2018).Article 

    Google Scholar 
    Lewis, S. E. Night roosting ecology of pallid bats (Antrozous pallidus) in oregon. Am. Midl. Nat. 132, 219–226 (1994).Article 

    Google Scholar 
    Hershey, O. S. & Barton, H. A. The microbial diversity of caves. Cave Ecol. 1, 69–90. https://doi.org/10.1007/978-3-319-98852-8_5 (2018).Article 

    Google Scholar 
    British Columbia Government Mineral Inventory. https://www2.gov.bc.ca/gov/content/industry/mineral-exploration-mining/british-columbia-geological-survey/mineralinventory (2018).Weller, T. J. et al. A review of bat hibernacula across the western United States: Implications for white-nose syndrome surveillance and management. PLoS ONE 13, e0205647 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nagorsen, D. W., Brigham, R. M., Royal British Columbia Museum. Bats of British Columbia (UBC Press, 1993).
    Google Scholar 
    Fenton, M. B., Merriam, H. G. & Holroyd, G. L. Bats of Kootenay, Glacier, and Mount Revelstoke national parks in Canada: Identification by echolocation calls, distribution, and biology. Can. J. Zool. 61, 2503–2508 (1983).Article 

    Google Scholar 
    Bernard, R. F., Foster, J. T., Willcox, E. V., Parise, K. L. & McCracken, G. F. Molecular detection of the causative agent of white-nose syndrome on rafinesque’s big-eared bats (Corynorhinus rafinesquii) and two species of migratory bats in the Southeastern USA. J. Wildl. Dis. 51, 519–522 (2015).PubMed 
    Article 

    Google Scholar 
    Lutz, H. L. et al. Ecology and host identity outweigh evolutionary history in shaping the bat microbiome. MSystems 4, 1–10 (2019).
    Google Scholar 
    Gaona, O., Gómez-Acata, E. S., Cerqueda-García, D., Neri-Barrios, C. X. & Falcón, L. I. Fecal microbiota of different reproductive stages of the central population of the lesser-long nosed bat, Leptonycteris yerbabuenae. PLoS ONE 14, e0219982 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voigt, C. C., Caspers, B. & Speck, S. Bats, bacteria, and bat smell: Sex-specific diversity of microbes in a sexually selected scent organ. J. Mammal. 86, 745–749 (2005).Article 

    Google Scholar 
    Gharout-Sait, A. et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae in bat guano. Microb. Drug Resist. 25, 1057–1062 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez, C. et al. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Appl. Environ. Microbiol. 74, 1136–1144 (2008).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Charyulu, E. M. & Gnanamani, A. Condition stabilization for Pseudomonas aeruginosa MTCC 5210 to yield high titers of extra cellular antimicrobial secondary metabolite using response surface methodology. Curr. Res. Bacteriol. 4, 197–213 (2010).Article 

    Google Scholar 
    Shen, Y. et al. Psychrobacillus lasiicapitis sp. nov., isolated from the head of an ant (Lasius fuliginosus). Int. J. Syst. Evol. Microbiol. 67, 4462–4467 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodríguez, M., Reina, J. C., Béjar, V. & Llamas, I. Psychrobacillus vulpis sp. nov., a new species isolated from faeces of a red fox in Spain. Int. J. Syst. Evol. Microbiol. 70, 882–888 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pham, V. H. T., Jeong, S.-W. & Kim, J. Psychrobacillus soli sp. nov., capable of degrading oil, isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 65, 3046–3052 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kontro, M., Lignell, U., Hirvonen, M.-R. & Nevalainen, A. pH effects on 10 Streptomyces spp. growth and sporulation depend on nutrients. Lett. Appl. Microbiol. 41, 32–38 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wodzinski, R. S., Umholtz, T. E., Rundle, J. R. & Beer, S. V. Mechanisms of inhibition of Erwinia amylovora by Erw. herbicola in vitro and in vivo. J. Appl. Bacteriol. 76, 22–29 (1994).Article 

    Google Scholar 
    Kuncharoen, N. et al. Achromobacter aloeverae sp. nov., isolated from the root of Aloe vera (L.) Burm. f. Int. J. Syst. Evol. Microbiol. 67, 37–41 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aizawa, T. et al. Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam. Int. J. Syst. Evol. Microbiol. 57, 1447–1452 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaira, G. S., Dhakar, K. & Pandey, A. A psychrotolerant strain of Serratia marcescens (MTCC 4822) produces laccase at wide temperature and pH range. AMB Express 5, 92 (2015).PubMed 
    Article 

    Google Scholar 
    Moon, J. & Kim, J. Isolation of Paenibacillus pinesoli sp. Nov. from forest soil in Gyeonggi-Do, Korea. J. Microbiol. 52, 273–277 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heyrman, J. et al. Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. Int. J. Syst. Evol. Microbiol. 54, 47–57 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, K. L. & Sulaiman, I. The ecology of Rhodococcus equi and physicochemical influences on growth. Vet. Microbiol. 14, 241–250 (1987).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schrempf, H. Recognition and degradation of chitin by streptomycetes. Antonie Van Leeuwenhoek 79, 285–289 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Seco, E. M., Cuesta, T., Fotso, S., Laatsch, H. & Malpartida, F. Two polyene amides produced by genetically modified Streptomyces diastaticus var. 108. Chem. Biol. 12, 535–543 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kembel, S. W., Wu, M., Eisen, J. A. & Green, J. L. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput. Biol. 8, e1002743 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    León, M. et al. Antifungal activity of selected indigenous pseudomonas and bacillus from the soybean rhizosphere. Int. J. Microbiol. 2009, 572049 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Hai, N. & Fotedar, R. Comparison of the effects of the prebiotics (Bio-Mos® and β-1, 3-D-glucan) and the customised probiotics (Pseudomonas synxantha and P. aeruginosa) on the culture of juvenile western king prawns (Penaeus latisulcatus Kishinouye, 1896). Aquaculture 289, 310–316 (2009).Article 
    CAS 

    Google Scholar 
    Lauer, A., Simon, M. A., Banning, J. L., Lam, B. A. & Harris, R. N. Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J. 2, 145–157 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ligon, J. M. et al. Natural products with antifungal activity fromPseudomonas biocontrol bacteria. Pest Manag. Sci. 56, 688–695 (2000).CAS 
    Article 

    Google Scholar 
    Scholz-Schroeder, B. K., Hutchison, M. L., Grgurina, I. & Gross, D. C. The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol. Plant Microb. Interact. 14, 336–348 (2001).CAS 
    Article 

    Google Scholar 
    Souza, J. T. & Raaijmakers, J. M. Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol. Ecol. 43, 21–34 (2003).PubMed 
    Article 

    Google Scholar 
    Mavrodi, D. V. et al. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183, 6454–6465 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Diby, P. et al. Mycolytic enzymes produced by Pseudomonas fluorescens and Trichoderma spp. against Phytophthora capsici, the foot rot pathogen of black pepper (Piper nigrum L.). Ann. Microbiol. 55, 129–133 (2005).CAS 

    Google Scholar 
    Vengust, M., Knapic, T. & Weese, J. S. The fecal bacterial microbiota of bats; Slovenia. PLoS ONE 13, e0196728 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Banskar, S., Mourya, D. T. & Shouche, Y. S. Bacterial diversity indicates dietary overlap among bats of different feeding habits. Microbiol. Res. 182, 99–108 (2016).PubMed 
    Article 

    Google Scholar 
    Wolkers-Rooijackers, J. C. M., Rebmann, K., Bosch, T. & Hazeleger, W. C. Fecal Bacterial Communities in Insectivorous Bats from the Netherlands and Their Role as a Possible Vector for Foodborne Diseases. Acta Chiropterol. 20, 475 (2019).Article 

    Google Scholar 
    Weller, T. J., Scott, S. A., Rodhouse, T. J., Ormsbee, P. C. & Zinck, J. M. Field identification of the cryptic vespertilionid bats, Myotis lucifugus and M. yumanensis. Acta Chiropt. 9, 133–147 (2007).Article 

    Google Scholar 
    Khankhet, J. et al. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression. PLoS ONE 9, e104625 (2014).Article 
    CAS 

    Google Scholar 
    McArthur, R. L., Ghosh, S. & Cheeptham, N. Improvement of protocols for the screening of biological control agents against white-nose syndrome. JEMI 2, 1–7 (2017).
    Google Scholar 
    Rajkumar, S. S. et al. Clonal genotype of Geomyces destructans among bats with white nose syndrome, New York, USA. Emerg. Infect. Dis. 17, 1273–1276 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ren, P. et al. Clonal spread of Geomyces destructans among bats, Midwestern and Southern United States. Emerg. Infect. Dis. 18, 883–885 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson, K. Genomc DNA extraction using the modified CTAB method. Curr. Protoc. Mol. Biol. 1, 1–2 (1997).
    Google Scholar 
    Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E. C. Isolation and direct complete nucleotide determination of entire genes: Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17, 7843–7853 (1989).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stackebrandt, E. & Liesack, W. Handbook of New Bacterial Systematics (Springer, 1993).
    Google Scholar 
    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinformatics 10, 421 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2015).Venables, W. N. & Ripley, B. D. Modern applied statistics with S. Stat. Comput. https://doi.org/10.1007/978-0-387-21706-2 (2002).Article 
    MATH 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R. & Lenth, M. R. Package ‘lsmeans’. Am. Stat. 34, 216–221 (2018).
    Google Scholar 
    Kassambara, A. ggpubr:‘ggplot2’ based publication ready plots. R package version 0.1. 7 (2018). More

  • in

    Aurochs roamed along the SW coast of Andalusia (Spain) during Late Pleistocene

    Theodor, J. M., Erfort, J. & Métais, G. The earliest artiodactyls: Diacodexeidae, Dichobunidae, Homacodontidae, Leptochoeridae and Raoellidae. in Evolution of Artiodactyls (eds. Prothero, D.R. & Foss, S. E.). 32–58. (Johns Hopkins University, 2007).Badiola, A. et al. The role of new Iberian finds in understanding European Eocene mammalian paleobiogeography. Geol. Acta. 7(1–2), 243–258 (2009).
    Google Scholar 
    Boivin, M. et al. New material of Diacodexis (Mammalia, Artiodactyla) from the early Eocene of Southern Europe. Geobios 51(4), 285–306 (2018).Article 

    Google Scholar 
    Ellenberger, P. Sur les empreintes de pas des gros mammiféres de l’Eocene supérieur de Garrigues-Ste-Eulalie (Gard). Palaeovertebr. Mém. Jubil. R. Lavocat. 13, 37–78 (1980).
    Google Scholar 
    Santamaría, R. L. G. & Casanovas-Cladellas, M. L. Nuevos yacimientos con icnitas de mamíferos del Oligoceno de los alrededores de Agramunt (Lleida, España). Paleont. Evol. 23, 141–152 (1990).
    Google Scholar 
    Sarjeant, W. A. S. & Langston, W. Jr. Vertebrate footprints and invertebrate traces from the Chadronian (Late Eocene) of Trans-Pecos. Texas. Mem. Mus. Bull. 36, 1–86 (1994).
    Google Scholar 
    Costeur, L., Balme, C. & Legal, S. Early Oligocene mammal tracks from southeastern France. Hist. Biol. 16(4), 257–267. https://doi.org/10.1080/10420940902953197 (2009).Article 

    Google Scholar 
    Wroblewski, A.F.-J. & Gulas-Wroblewski, B. E. Earliest evidence of marine habitat use by mammals. Sci. Rep. 11, 8846. https://doi.org/10.1038/s41598-021-88412-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fornós, J. J. & Pons-Moya, J. Icnitas de Myotragus balearicus del yacimiento de Ses Piquetes (Santanyi, Mallorca). Bol. Soc. Hist. Nat. Balears 26, 135–144 (1982).
    Google Scholar 
    Flor, G. Estructuras de deformación por pisadas de cérvidos en la duna cementada de Gorliz (Vizcaya, N de España). Rev. Soc. Geol. Esp. 2(1–2), 23–29 (1989).
    Google Scholar 
    Fornós, J. J., Bromley, R. G., Clemmensen, L. B. & Rodríguez-Perea, A. Tracks and trackways of Myotragus balearicus Bate (Artiodactyla, Caprinae) in Pleistocene aeolianites from Mallorca (Balearic Islands, Western Mediterranean). Palaeogr. Palaeocl. Palaeoecol. 180, 277–313 (2002).ADS 
    Article 

    Google Scholar 
    Neto de Carvalho, C. Vertebrate tracksites from the Mid-Late Pleistocene eolianites of Portugal: The first record of elephant tracks in Europe. Geol. Q. 53(4), 407–414 (2009).
    Google Scholar 
    Neto de Carvalho, C., Saltão, S., Ramos, J. C. & Cachão, M. Pegadas de Cervus elaphus nos eolianitos plistocénicos da ilha do Pessegueiro (SW Alentejano, Portugal). Ciênc. Terra 5, 36–40 (2003).
    Google Scholar 
    Neto de Carvalho, C., Figueiredo, S. & Belo, J. Vertebrate tracks and trackways from the Pleistocene eolianites of SW Portugal. Commun. Geol. 103(1), 101–116 (2016).CAS 

    Google Scholar 
    Neto de Carvalho, C. et al. Paleoecological implications of large-sized wild boar tracks recorded during the Last Interglacial (MIS 5) at Huelva (SW Spain). Palaios https://doi.org/10.2110/palo.2020.058 (2020).Article 

    Google Scholar 
    Neto de Carvalho, C. et al. First vertebrate tracks and palaeoenvironment in a MIS-5 context in the Doñana National Park (Huelva, SW Spain). Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106508 (2020).Article 

    Google Scholar 
    Cardoso, J. L. Les grands mammifères du Pléistocène supérieur du Portugal. Essai de synthése. Geobios 29(2), 235–250 (1996).Article 

    Google Scholar 
    Sala, M. T. N., Pantoja, A., Arsuaga, J. L. & Algaba, M. Presencia de bisonte (Bison priscus Bojanus, 1827) y uro (Bos primigenius Bojanus, 1827) en las cuevas del Búho y de la Zarzamora (Segovia, España). Munibe 61, 43–55 (2010).
    Google Scholar 
    Figueiredo, S. D. & Sousa, M. F. O registo de bovídeos plistocénicos em Portugal. in Livro de Resumos das IV Jornadas de Arqueologia do Vale do Tejo. Vol. 10. (Centro Português de Geo-História e Pré-História, 2017).Barr, K. & Bell, M. Neolithic and Bronze age ungulate footprint-tracks of the Severn Estuary: Species, age, identification and the interpretation of husbandry practices. Environ. Archaeol. 22(1), 1–15 (2017).Article 

    Google Scholar 
    Bell, M. Making One’s Way in the World (Oxbow Books, 2020).Book 

    Google Scholar 
    Díaz-Martínez, I. et al. Multi-aged social behavior based on artiodactyl tracks in an early Miocene palustrine wetland (Ebro Basin, Spain). Sci. Rep. 10, 1099. https://doi.org/10.1038/s41598-020-57438-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quintana, J. Descripción de un rastro de Myotragus e icnitas de Hypnomys del yacimiento cuaternario de Ses Penyes d’es Perico (Ciutadella de Menorca, Balears). Paleont. Evol. 26–27, 271–279 (1993).
    Google Scholar 
    Muñiz, F. et al. Following the last Neanderthals: Mammal tracks in Late Pleistocene coastal dunes of Gibraltar (S Iberian Peninsula). Quat. Sci. Rev. 217, 297–309 (2019).ADS 
    Article 

    Google Scholar 
    Altuna, J. Fauna de mamíferos de los yacimientos prehistóricos de Guipúzcoa. Con catálogo de los mamíferos cuaternarios del Cantábrico y del Pirineo occidental. Munibe 24, 1–464 (1972).
    Google Scholar 
    López González, F., Vila Taboada, M. & Grandal d’Anglade. Sobre los grandes bóvidos pleistocenos (Bovidae, Mammalia) en el NO de la Península Ibérica. Cad. Lab. Xeol. Laxe 24, 57–71 (1999).Sommer, R. S., Kalbe, J., Ekström, J., Benecke, N. & Liljengren, R. Range dynamics of the reindeer in Europe during the last 25,000 years. J. Biogeogr. 41, 298–306. https://doi.org/10.1111/jbi.12193 (2014).Article 

    Google Scholar 
    Whittle, A., Antoine, S., Gardiner, N., Milles, A. & Webster, A. Two Later Bronze Age occupations and an Iron Age channel on the Gwent foreshore. Bull. Board Celt. Stud. 36, 200–223 (1989).
    Google Scholar 
    Aldhouse-Green, S. et al. Prehistoric human footprints from the Severn Estuary at Uskmouth and Magor Pill, Gwent, Wales. Archae. Cambr. 141, 4–55 (1992).
    Google Scholar 
    Allen, J. R. L. Subfossil mammalian tracks (Flandrian) in the Severn Estuary, S.W. Britain: Mechanics of formation, preservation and distribution. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 352(1352), 481–518 (1997).ADS 
    PubMed Central 
    Article 

    Google Scholar 
    Bell, M. Prehistoric coastal communities: the Mesolithic in western Britain. in CBA Research Report. Vol. 149. (Council for British Archaeology, 2007).Bell, M. The Bronze Age in the Severn estuary. in Research Report. Vol. 172. (Council for British Archaeology, 2013).Scales, R. Footprint tracks of people and animals. in Prehistoric Coastal Communities: The Mesolithic in Western Britain (ed. Bell, M.). Vol. 149. 139–147. CBA Research Report 149. (Council of British Archaeology, 2007).Roberts, G. Ephemeral, subfossil mammalian, avian and hominid footprints within Flandrian sediment exposures at Formby Point, Sefton Coast, North West England. Ichnos 16, 33–48 (2009).Article 

    Google Scholar 
    Waddington, C. Low Hauxley, Northumberland: A review of archaeological interventions and site condition. Archael. Res. Serv. 2010/25 (2010).Eadie, G. & Waddington, C. Rescue recording of an eroding inter-tidal peat bed at Lower Hauxley, Northumberland (6109). Archael. Res. Serv. 2013/17 (2013).Burns, A. The prehistoric footprints at Formby. in Sefton Coast Landscape Partnership Scheme (2014).Pandolfi, L., Petronio, C. & Salari, L. Bos primigenius Bojanus, 1827 from the Early Late Pleistocene deposit of Avetrana (southern Italy) and the variation in size of the species in southern Europe: Preliminary report. J. Geol. Res. https://doi.org/10.1155/2011/245408 (2011).Article 

    Google Scholar 
    Currant, A. P. A review of the Quaternary mammals of Gibraltar. in Neanderthals on the Edge: 150th Anniversary Conference of the Forbes’ Quarry Discovery, Gibraltar (eds. Stringer, C. B., Barton, R. N. E. & Finlayson, J.C.). 201–206. (Oxbow, 2000).Penela, A. J. M. Los grandes mamíferos del yacimiento acheulense de la Solana del Zamborino, Fonelas (Granada, España). Antr. Paleoecol. Hum. 5, 29–187 (1988).
    Google Scholar 
    Bataille, G. Prehistoric Painting. Lascaux or the Birth of Art (MacMillan, 1980).
    Google Scholar 
    Zazo, C. et al. Palaeoenvironmental evolution of the Barbate-Trafalgar coast (Cadiz) during the last ~140 ka: Climate, sea-level interactions and tectonics. Geomorphology 100, 212–222 (2008).ADS 
    Article 

    Google Scholar 
    Zazo, C. et al. Landscape evolution and geodynamic controls in the Gulf of Cadiz (Huelva coast, SW Spain) during the Late Quaternary. Geomorphology 68, 269–290. https://doi.org/10.1016/j.geomorph.2004.11.022 (2005).ADS 
    Article 

    Google Scholar 
    García de Domingo, A., González Lastra, J., Hernaiz Huerta, P. P., Zazo Cardeña, C. & Goy Goy, J. L. Mapa Geológico de la Hoja No. 1073 (Vejer de la Frontera). Mapa Geológico de España a Escala 1:50.000. Segunda Serie (MAGNA). http://info.igme.es/cartografiadigital/geologica/Magna50Hoja.aspx?Id=1073&language=es (©Instituto Geológico y Minero de España (IGME), 1990).Demathieu, G., Ginsburg, L., Guérin, C. & Truc, G. Étude paléontologique, ichnologique et paléoécologique du gisêment oligocène de Saignon (bassin d’Apt, Vaucluse). Bull. Mus. Natl. Hist. Nat. 6(2), 153–183 (1984).
    Google Scholar 
    Bang, P. & Dahlstrøm, P. Animal Tracks and Signs (Oxford University Press, 2001).
    Google Scholar 
    Wright, E. The History of the European Aurochs (Bos primigenius) from the Middle Pleistocene to Its Extinction: An Archaeological Investigation of Its Evolution, Morphological Variability and Response to Human Exploitation. (PhD. Thesis, University of Sheffield, 2013).Koenigswald, W. V., Sander, P. M. & Walders, M. The Upper Pleistocene tracksite Bottrop-Welheim (Germany). Acta Zool. Cracov. 39(1), 235–244 (1996).
    Google Scholar 
    Martínez-Navarro, B., Rook, L., Papini, M. & Libsekal, Y. A new species of bull from the Early Pleistocene paleoanthropological site of Buia (Eritrea): Parallelism on the dispersal of the genus Bos and the Acheulian culture. Quat. Intern. 212(2), 169–175. https://doi.org/10.1016/j.quaint.2009.09.003 (2010).Article 

    Google Scholar 
    Van Vuure, C. Retracing the Aurochs: History, Morphology and Ecology of an Extinct Ox (Coronet Books, 2005).
    Google Scholar 
    Franks, J. W. Interglacial deposits at Trafalgar Square, London. N. Phytologist 59(2), 145–152 (1960).Article 

    Google Scholar 
    Estévez, J. & Saña, M. Auerochsenfunde auf der Iberischen Halbinsel. in Archäologie und Biologie des Auerochsen (ed. Weniger, G.-C.) (Neanderthal Museum, 1999).Mona, S. et al. Population dynamic of the extinct European aurochs: Genetic evidence of a north-south differentiation pattern and no evidence of post-glacial expansion. BMC Evol. Biol. 10, 1–13 (2010).Article 
    CAS 

    Google Scholar 
    Rodríguez-Vidal, J. et al. Undrowning a lost world—The Marine isotope stage 3 landscape of Gibraltar. Geomorphology 203, 105–114 (2013).ADS 
    Article 

    Google Scholar 
    Pfeiffer, T. Systematic relationship between the Bovini with special references to the fossil taxa Bos primigenius Bojanus and Bison priscus Bojanus. in Archäologie und Biologie des Auerochsen (ed. Weniger, G.-C.). 59–70. (Neanderthal Museum, 1999).Zazula, G. D. et al. A late Pleistocene steppe bison (Bison priscus) partial carcass from Tsiigehtchic, Northwest Territories, Canada. Quat. Sci. Rev. 28(25–26), 2734–2742 (2009).ADS 
    Article 

    Google Scholar 
    Boeskorov, G. G. et al. The Yukagir Bison: The exterior morphology of a complete frozen mummy of the extinct steppe bison, Bison priscus from the early Holocene of northern Yakutia, Russia. Quat. Intern. 406, 94–110. https://doi.org/10.1016/j.quaint.2015.11.084 (2016).Article 

    Google Scholar 
    Ekström, J. The Late Quaternary History of the Urus (Bos primigenius Bojanus 1827) in Sweden. PhD. Thesis. (Lund University, 1993).Grange, T. et al. The evolution and population diversity of Bison in Pleistocene and Holocene Eurasia: Sex matters. Diversity 10(3), 65. https://doi.org/10.3390/d10030065 (2018).Article 

    Google Scholar 
    Castaños, J., Castaños, P. & Murelaga, X. First complete skull of a Late Pleistocene Steppe Bison (Bison priscus) in the Iberian Peninsula. Ameghiniana 53(5), 543–551. https://doi.org/10.5710/amgh.03.06.2016.2995 (2016).Article 

    Google Scholar 
    Álvarez-Lao, D. J., Kahlke, R.-D., García, N. & Mol, D. The Padul mammoth finds: On the southernmost record of Mammuthus primigenius in Europe and its southern spread during the Late Pleistocene. Palaeogeogr. Palaeocl. Palaeoecol. 278(1–4), 57–70 (2009).ADS 
    Article 

    Google Scholar 
    Loope, D. B. Recognizing and utilizing vertebrate tracks in cross section: Cenozoic hoofprints from Nebraska. Palaios 1, 141–151 (1986).ADS 
    Article 

    Google Scholar 
    Albarella, U., Dobney, K. & Rowley-Conwy, P. Size and shape of the Eurasian wild boar (Sus scrofa), with a view to the reconstruction of its Holocene history. Environ. Archaeol. 14, 103–136 (2009).Article 

    Google Scholar 
    Davis, S. J. M. The effects of temperature change and domestication on the body size of Late Pleistocene to Holocene mammals of Israel. Palaeobiology 7, 101–114 (1981).Article 

    Google Scholar 
    Cerilli, E. & Petronio, C. Biometrical variations of Bos primigenius Bojanus 1827 from middle Pleistocene to Holocene. in Proceedings of the International Symposium on ‘Ongulés/Ungulates’, Toulouse. 37–42. (1991).Davis, S. J. M. & Mataloto, R. Animal remains from Chalcolithic of São Pedro (Redondo, Alentejo): Evidence for a crisis in the Mesolithic. Rev. Port. Arqueol. 15, 47–85 (2012).
    Google Scholar 
    Mariezkurrena, K. & Altuna, J. Biometría y diformismo sexual en el esqueleto de Cervus elaphus würmiense, postwürmiense y actual del Cantábrico. Munibe (Antr.-Arkeol.) 35, 203–246 (1983).
    Google Scholar 
    Davis, S. J. M. The mammals and birds from the Gruta do Caldeirão, Portugal. Rev. Port. Arqueol. 5, 29–98 (2002).CAS 

    Google Scholar 
    Barr, K. Prehistoric Avian, Mammalian and H. sapiens Footprint—Tracks from Intertidal Sediments as Evidence of Human Palaeoecology. PhD. Thesis. (University of Reading, 2018).Hall, J. G. A comparative analysis of the habitat of the extinct aurochs and other prehistoric mammals in Britain. Ecography 31, 187–190 (2008).Article 

    Google Scholar 
    Bicho, N. F., Gibaja, J. F., Stiner, M. & Manne, T. L. Paléolithique supérieur au sud du Portugal: Le site du Vale do Boi. L’antropologie 114, 48–67 (2010).
    Google Scholar 
    Bicho, N. & Haws, J. The Magdelian in central and southern Portugal: Human ecology at the end of the Pleistocene. Quatern. Int. 272–273, 6–16 (2012).Article 

    Google Scholar 
    Cortés-Sánchez, M. et al. Palaeoenvironmental and cultural dynamics of the coast of Málaga (Andalusia, Spain) during the Upper Pleistocene and early Holocene. Quatern. Sci. Rev. 27, 2176–2193 (2008).ADS 
    Article 

    Google Scholar 
    Bohórquez, A. M., Ruiz, C. B., Caparrós, M. & Moigne, A. M. Una aproximación a la compreensión de la fauna de macromamiferos de la Cueva de Zafarraya (Alcaucín, Málaga). Menga Rev. Prehist. Andalucía 3, 83–105 (2012).
    Google Scholar 
    Ripoll, M. P. & Maroto, J. L. fauna mediterránea durante el Pleistoceno superior del Mediterráneo Ibérico. Kobie Serie Anejo 18, 27–38 (2021).
    Google Scholar 
    Lazo, A. Ranging behaviour of feral cattle (Bos taurus) in Doñana National Park, S.W. Spain. J. Zool. 236(3), 359–369. https://doi.org/10.1111/j.1469-7998.1995.tb02718.x (1995).Article 

    Google Scholar 
    AliceVision. Meshroom: V2021.1.0. GNU-GPL. https://alicevision.org/ (2020).OpenDroneMap Authors ODM. A Command Line Toolkit to Generate Maps, Point Clouds, 3D Models and DEMs from Drone, Balloon or Kite Images. OpenDroneMap/ODM GitHub Page. https://github.com/OpenDroneMap/WebODM (2020).Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. & Ranzuglia, G. MeshLab: an open-source mesh processing tool. in Sixth Eurographics Italian Chapter Conference. 129–136. MeshLab V. 2020.12. https://www.meshlab.net/ (2008).CloudCompare. V2.11.0. GNU-GPL. https://www.cloudcompare.org (2020).Zhukov, S., Iones, A. & Kronin, G. An ambient light illumination model. Render. Tech. 98, 45–55 (1998).Article 

    Google Scholar 
    Vergne, R., Pacanowski, R., Barla, P., Granier, X., & Schlick, C. Radiance scaling for versatile surface enhancement. in Proceedings of the 2010 ACMSIGGRAPH Symposium on Interactive 3D Graphics and Games.143–150. (2010). More