More stories

  • in

    Comparative metagenomics reveals expanded insights into intra- and interspecific variation among wild bee microbiomes

    Engel, M. S. A new interpretation of the oldest fossil bee (Hymenoptera: Apidae). Am. Mus. Novit. 3296, 1–11 (2000).Article 

    Google Scholar 
    Michener, C. D. The Bees of the World 2nd edn, (John Hopkins University Press, 2007).Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B. 274, 303–313 (2007).PubMed 
    Article 

    Google Scholar 
    Fürst, M., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McMahon, D. P., Wilfert, L., Paxton, R. J. & Brown, M. J. F. Emerging viruses in bees: from molecules to ecology. Adv. Virus Res. 101, 251–291 (2015).Article 

    Google Scholar 
    Koch, H., Abrol, D. P., Li, J. & Schmid-Hempel, P. Diversity of evolutionary patterns of bacterial gut associates of corbiculate bees. Mol. Ecol. 22, 2028–2044 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S. et al. Environment or kin: whence do bees obtain acidophilic bacteria? Mol. Ecol. 21, 1754–1768 (2012).PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S., Wcislo, W. T., Hout, M. C. & Mueller, U. G. Host species and developmental stage, but not host social structure, affects bacterial community structure in social polymorphic bees. FEMS Microbiol. Ecol. 88, 398–406 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    McFrederick, Q. S. et al. Flowers and wild megachilid bees share microbes. Microb. Ecol. 73, 188–200 (2017).PubMed 
    Article 

    Google Scholar 
    Jones, J. C. et al. The gut microbiome is associated with behavioural task in honey bees. Insectes Sociaux 65, 419–429 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kristensen, T. N., Schonherz, A., Rohde, P. D., Sorensen, J. G. & Loeschcke, V. Strong experimental support for the hologenome hypothesis revealed from Drosophila melanogaster selection lines. bioRxiv https://doi.org/10.1101/2021.09.09.459587 (2021)Bovo, S., Utzeri, V. J., Ribani, A., Cabbri, R. & Fontanesi, L. Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Sci. Rep. 10, 1–17 (2020).Article 
    CAS 

    Google Scholar 
    Dharampal, P. S., Carlson, C., Currie, C. R. & Steffan, S. A. Pollen-borne microbes shape bee fitness. Proc. R. Soc. B. 286, 20182894 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graystock, P., Rehan, S. M. & McFrederick, Q. S. Hunting for healthy microbiomes: determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conserv. Genet. 18, 701–711 (2017).Article 

    Google Scholar 
    Engel, P. et al. The bee microbiome: impact on bee health and model for evolution and ecology of host-microbe interactions. MBio 7, e02164–15 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Voulgari-Kokota, A., McFrederick, Q. S., Steffan-Dewenter, I. & Keller, A. Drivers, diversity, and functions of the solitary-bee microbiota. Trends Microbiol 27, 1034–1044 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rothman, J. A., Leger, L., Graystock, P., Russell, K. & McFrederick, Q. S. The bumble bee microbiome increases survival of bees exposed to selenate toxicity. Environ. Microbiol. 21, 3417–3429 (2019).CAS 
    Article 

    Google Scholar 
    Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. PNAS 109, 11002–11007 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut Microbes 4, 60–65 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kwong, W. K. et al. Dynamic microbiome evolution in social bees. Sci. Adv. 3, e1600513 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Breeze, T. D., Bailey, A. P., Balcombe, K. G. & Potts, S. G. Pollination services in the UK: How important are honeybees? Agric. Ecosyst. Environ. 142, 137–143 (2011).Article 

    Google Scholar 
    Dharampal, P. S., Hetherington, M. C. & Steffan, S. A. Microbes make the meal: oligolectic bees require microbes within their host pollen to thrive. Ecol. Entomol. 45, 1418–1427 (2020).Article 

    Google Scholar 
    Keller, A. et al. (More than) hitchhikers through the network: the shared microbiome of bees and flowers. Curr. Opin. Insect 44, 8–15 (2021).Article 

    Google Scholar 
    Hugenholtz, P. & Tyson, G. W. Metagenomics. Nature 455, 481–483 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Galbraith, D. A. et al. Investigating the viral ecology of global bee communities with high- throughput metagenomics. Sci. Rep. 8, 8879 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Regan, T. et al. Characterisation of the British honey bee metagenome. Nat. Commun. 9, 1–13 (2018).CAS 
    Article 

    Google Scholar 
    Bovo, S. et al. Shotgun metagenomics of honey DNA: Evaluation of a methodological approach to describe a multi-kingdom honey bee derived environmental DNA signature. PLOS ONE 13, e0205575 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Schoonvaere, K. et al. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLOS ONE 11, e0168456 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318, 283–287 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rehan, S. M., Leys, R. & Schwarz, M. P. A mid-cretaceous origin of sociality in xylocopine bees with only two origins of true worker castes. PLOS ONE 7, e34690 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rehan, S. M. Small carpenter bees (Ceratina). Encyclopedia of Social Insects (ed Chris, S.) (Springer, 2020).Sakagami, S. F. & Maeta, Y. Multifemale nests and rudimentary castes in the normally solitary bee Ceratina japonica (Hymenoptera: Xylocopinae). J. Kans. Entomol. 57, 639–656 (1984).
    Google Scholar 
    Huisken, J. L., Shell, W. A., Pare, H. K. & Rehan, S. M. The influence of social environment on cooperating and conflict in an incipiently social bee, Ceratina calcarata. Behav. Ecol. 75, 74 (2021).Article 

    Google Scholar 
    Rehan, S. M., Glastad, K. M., Lawson, S. P. & Hunt, B. G. The genome and methylome of a subsocial small carpenter bee, Ceratina calcarata. GBE 8, 1401–1410 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rehan, S. M. et al. Conserved genes underlie phenotypic plasticity in an incipiently social bee. GBE 10, 2749–2758 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arsenault, S. V., Hunt, B. G. & Rehan, S. M. The effect of maternal care on gene expression and DNA methylation in a subsocial bee. Nat. Commun. 9, 3468 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shell, W. A. et al. Sociality sculpts similar patterns of molecular evolution in two independently evolved lineages of eusocial bees. Comms. Biol. 4, 1–9 (2021).Article 
    CAS 

    Google Scholar 
    Dew, R. M., McFrederick, Q. S. & Rehan, S. M. Diverse diets with consistent core microbiome in wild bee pollen provisions. Insects 11, 49 (2020).Article 

    Google Scholar 
    Lawson, S. P., Kennedy, K. & Rehan, S. M. Pollen composition significantly impacts development and survival of the native small carpenter bee, Ceratina calcarata. Ecol. Entomol. 46, 232–239 (2021).Article 

    Google Scholar 
    Oppenheimer, R. L., Shell, W. A. & Rehan, S. M. Phylogeography and population genetics of the Australian small carpenter bee, Ceratina australensis. Biol. J. Linn. Soc. 124, 747–755 (2018).Article 

    Google Scholar 
    McFrederick, Q. S. & Rehan, S. M. Wild bee pollen usage and microbial communities co- vary across landscapes. Microb. Ecol. 77, 513–522 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rehan, S. M., Richards, M. H. & Schwarz, M. P. Sociality in the Australian small carpenter bee Ceratina (Neoceratina) australensis. Insectes Sociaux 57, 403–412 (2010).Article 

    Google Scholar 
    Harpur, B. A. & Rehan, S. M. Connecting social polymorphism to single nucleotide polymorphism: population genomics of the small carpenter bee, Ceratina australensis. Biol. J. Linn. Soc. 132, 945–954 (2021).Article 

    Google Scholar 
    Neu, A. T., Allen, E. E. & Roy, K. Defining and quantifying the core microbiome: challenges and prospects. PNAS 118, e2104429118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lawson, S. P., Ciaccio, K. N. & Rehan, S. M. Maternal manipulation of pollen provisions affects worker production in a small carpenter bee. Behav. Ecol. 70, 1891–1900 (2016).Article 

    Google Scholar 
    Ganeshprasad, D. N., Jani, K., Shouche, Y. S. & Sneharani, A. H. Gut bacterial inhabitants of open nested honey bee, Apis florea. Preprint at https://assets.researchsquare.com/files/rs-225332/v1/ddf21abe-2456-4f45-af61-4ba3e81d16e7.pdf?c=1641312753 (2021).Rothman, J. A., Cox-Foster, D. L., Andrikopoulos, C. & McFrederick, Q. S. Diet breadth affects bacterial identity but not diversity in the pollen provisions of closely related polylectic and oligolectic bees. Insects 11, 1–13 (2020).Article 

    Google Scholar 
    Cohen, H., McFrederick, Q. S. & Philpott, S. M. Environment shapes the microbiome of the blue orchard bee, Osmia lignaria. Microb. Ecol. 80, 897–907 (2020).PubMed 
    Article 

    Google Scholar 
    Dew, R. M., Rehan, S. M. & Schwarz, M. P. Biogeography and demography of an Australian native bee Ceratina australensis (Hymenoptera: Apidae) since the last glacial maximum. J. Hymenopt. Res. 49, 25–41 (2016).Article 

    Google Scholar 
    Pinto-Tomás, A. A. et al. Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120–1123 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Walterson, A. M. & Stavrinides, J. Pantoea insights into a highly versatile and diverse genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 39, 968–984 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scheiner, R., Strauß, S., Thamm, M., Farré-Armengol, G. & Junker, R. R. The bacterium Pantoea ananatis modifies behavioral responses to sugar solutions in honeybees. Insects 11, 692 (2020).PubMed Central 
    Article 

    Google Scholar 
    Leonhardt, S. D. & Kaltenpoth, M. Microbial communities of three sympatric Australian stingless bee species. Plos ONE 9, e105718 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bailey, L. & Ball, B. V. Honey Bee Pathology (Academic Press, 1991).Tham, V. L. Isolation of Streptococcus pluton from the larvae of European honey bees in Australia. Aust. Vet. J. 54, 406–407 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bowman, J. The genus Flavobacterium. Prokaryotes 7, 481–531 (2006).
    Google Scholar 
    Voordouw, G. The genus Desulovibrio: The centennial. Appl. Environ. Microbiol. 61, 2813–2819 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Singaravelen, N., Nee’man, G., Inbar, M. & Izhaki, I. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. J. Chem. Ecol. 31, 2791–2804 (2005).Article 
    CAS 

    Google Scholar 
    Baracchi, D., Marples, A., Jenkins, A. J., Leitch, A. R. & Chittka, L. Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Sci. Rep. 7, 1951 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adler, L. S. & Irwin, R. E. Ecological costs and benefits of defenses in nectar. Ecology 86, 2968–2978 (2005).Article 

    Google Scholar 
    Bally, J. et al. Nicotiana paulineana, a new Australian species in Nicotiana section Suaveolentes. Aust. Syst. Bot. 34, 477–484 (2021).Article 

    Google Scholar 
    Coenye, T. & Vandamme, P. Diversity and significance of Burkholderia species occupying diverse ecology niches. Environ. Microbiol. 5, 719–729 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy, A., Merritt, A. J., Aravena-Roman, M., Hodge, M. M. & Inglis, T. J. J. Expanded range of Burkholderia species in Australia. Am. J. Trop. Med. Hyg. 78, 599–604 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaltenpoth, M. & Flórez, L. V. Versatile and dynamic symbioses between insects and Burkholderia bacteria. Annu. Rev. Entomol. 65, 145–170 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Foley, K., Fazio, G., Jensen, A. B. & Hughes, W. O. H. Nutritional limitation and resistance to opportunistic Aspergillus parasites in honey bee larvae. J. Invertebr. Pathol. 111, 68–73 (2012).PubMed 
    Article 

    Google Scholar 
    Yoder, J. A. et al. Fungicide contamination reduces beneficial fungi in bee bread based on an area-wide field study in honey bee, Apis mellifera, colonies. J. Toxicol. Environ. Health Part A 76, 587–600 (2013).CAS 
    Article 

    Google Scholar 
    Yun, J.-H., Jung, M.-J., Kim, P. S. & Bae, J.-W. Social status shapes the bacterial and fungal gut communities of the honey bee. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    Dew, R. M., Silva, D. P. & Rehan, S. M. Range expansion of an already widespread bee under climate change. GECCO 17, e00584 (2019).
    Google Scholar 
    Cambra, M., Capote, N. & Myrta, A. & Llácer, G. Plum pox virus and the estimated costs associated with sharka disease. EPPO Bull. 36, 202–204 (2006).Article 

    Google Scholar 
    Roberts, J. M. K., Ireland, K. B., Tay, W. T. & Paini, D. Honey bee-assisted surveillance for early plant virus detection. Ann. Appl. Biol. 173, 285–293 (2018).CAS 
    Article 

    Google Scholar 
    Elliott, B. et al. Pollen diets and niche overlap of honey bees and native bees in protected areas. BAAE 50, 169–180 (2021).
    Google Scholar 
    Porrini, C. et al. Use of honey bees as bioindicators of environmental pollution in Italy. in Honey bees: estimating the environmental impact of chemicals (eds Devillers, J. & Pham-Delegue, M.-H.) (Taylor & Francis Press, 2002).Kennedy, P., Higginson, A. D., Radford, A. N. & Sumner, S. Altruism in a volatile world. Nature 555, 359–362 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rubin, B. E. R., Sanders, J. G., Turner, K. M., Pierce, N. E. & Kocher, S. D. Social behaviour in bees influences the abundance of Sodalis (Enterobacteriaceae) symbionts. R. Soc. Open Sci. 5, 180369 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohr, K. I. & Tebbe, C. C. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8, 258–272 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr. Opin. Insect Sci. 26, 97–104 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amin, F. A. Z. et al. Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. Int. J. Envrion. Res. Public Health 17, 1–15 (2020).
    Google Scholar 
    Takeshita, K. & Kikuchi, Y. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect-microbe symbiotic associations. Res. Microbiol. 168, 175–187 (2017).PubMed 
    Article 

    Google Scholar 
    Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).PubMed 
    Article 

    Google Scholar 
    D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).Article 
    CAS 

    Google Scholar 
    Wang, L. et al. Dynamic changes of gut microbial communities of bumble bee queens through important life stages. mSystems 4, e00631–19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kapheim, K. M., Johnson, M. M. & Jolley, M. Composition and acquisition of the microbiome in solitary, ground-nesting alkali bees. Sci. Rep. 11, 2993 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abdelazez, A. et al. Potential benefits of Lactobacillus plantarum as probiotic and its advantages in human health and industrial applications: A review. Adv. Environ. Biol. 12, 16–27 (2018).CAS 

    Google Scholar 
    Frese, S. A. et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7, e1001314 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).PubMed 
    Article 

    Google Scholar 
    Tejerina, M. R., Cabana, M. J. & Benitez-Ahrendts, M. R. Strains of Lactobacillus spp. reduce chalkbrood in Apis mellifera. J. Invertebr. Pathol. 178, 107521 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vásquez, A. et al. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLOS ONE 7, e33188 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Voulgari-Kokota, A., Steffan-Dewenter, I. & Keller, A. Susceptibility of red mason bee larvae to bacterial threats due to microbiome exchange with imported pollen provisions. Insects 11, 1–14 (2020).Article 

    Google Scholar 
    Steffan, S. A. et al. Omnivory in bees: Elevated trophic positions among all major bee families. Am. Nat. 194, 414–421 (2019).PubMed 
    Article 

    Google Scholar 
    Hurst, P. S. Social biology of Exoneurella tridentata, an allodapine bee with morphological castes and perennial colonies. Unpublished D. Phil. Thesis (Flinders University, 2001).Chalita, M. et al. Improved metagenomic taxonomic profiling using a curated core gene- based bacterial database reveals unrecognized species in the genus Streptococcus. Pathogens 9, 204 (2021).Article 

    Google Scholar 
    Rehan, S. M. & Toth, A. L. Climbing the social ladder: molecular evolution of sociality. Trends Ecol. Evol. 30, 426–433 (2015).PubMed 
    Article 

    Google Scholar 
    Shell, W. A. & Rehan, S. M. Behavioral and genetic mechanisms of social evolution: insights from incipiently and facultatively social bees. Apidologie 49, 13–30 (2018).CAS 
    Article 

    Google Scholar 
    Kirby, K. S. Isolation and characterization of ribosomal ribonucleic acid. Biochem. J. 96, 266–269 (1956).Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2019).Article 
    CAS 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tsilimigras, M. C. B. & Fodor, A. A. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann. Epidemiol. 26, 330–335 (2016).PubMed 
    Article 

    Google Scholar 
    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27, 824–834 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’. Community Ecology package, version 2, 1–295 (2013).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mina, R., Haixu, T. & Yuzhen, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010).Article 
    CAS 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf 9, 599 (2008).Article 
    CAS 

    Google Scholar 
    Langfelder, P. & Horvath, S. Tutorials for the WGCNA package. https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/ (2016).Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).Article 

    Google Scholar 
    Paluszynska, A. Structure mining and knowledge extraction from random forest with applications to The Cancer Genome Atlas project. Master’s Thesis (University of Warsaw, 2017). More

  • in

    Reply to: Evidence confirms an anthropic origin of Amazonian Dark Earths

    Lombardo et al. argue that, if our hypothesis is correct, ADEs should be continuous rather than patchy. However, alluvium deposition can be a patchy process and the distribution of large and small ADE patches can be predicted regionally based on fluvial geomorphology. For example, 89% of all known ADEs have been predictively mapped using elevation, distance to bluff, and geological provenance as the key predictors (with a false negative rate of 6.5% and a false positive rate of 4.7%)10. Predicted areas include small and large ADE patches, up to several square kilometres in size, and indicate that ADEs cover ~154,000 km2 mostly in central and western Amazonia. This may seem to be a very large area ( >3% of the Amazon basin) but it is only a fraction of the projections found in some of the most cited anthropogenic theory literature11. Assuming the same excess fertility observed at our site, the creation of those ADEs would have required a prohibitive amount of biomass burning, in areas 800–1680 times larger (Fig. 1), which is inconsistent with the centralised small-scale deposition proposed by Lombardo et al. In this regional scenario, it remains unclear how many Amazons would have been needed to build the already-mapped ADEs.Lombardo et al. centre their opinion on settlements in other parts of the Amazon basin, under different socioecological and geomorphological contexts, and where the data we have developed are not available for comparison. Their narrative conflates the Brazilian lowland with other regions, such as the Llanos de Moxos and other systems in the Bolivian-Peruvian foreland basins, where older archeological sites occur. Their comments about the mineral composition of ADEs appear to contradict recent discoveries (made by some of their co-authors)12 which show that some oxides found at our ADE site bear “no relationship to anthropogenic activity” because “their sources are attributed to the weathering of micas, feldspars, mafic minerals (pyroxene), and sodic plagioclase” that are not found locally. To explain the inconsistency between those findings and the current theory of ADE formation, Macedo et al. argue that “sediment depositions in floodplain soils” that “are not related to human occupation” should be considered. That suggestion is consistent with our data which indicate deposition of exogenous materials to the site prior to the invention of agriculture in central Amazonia.Our study area is on a Tertiary terrace, and we acknowledge in our paper that it lies above the modern 100-year flood height for Manaus. However, significant Pleistocene and Holocene tectonic activity and river aggradation/degradation demonstrably affected the flood height over time. A complex neotectonic history has affected terrace elevations, nutrient deposition, and remobilisation, as well as flood heights and aggradation, resulting in higher base levels that were many metres above flood waters today in past millennia13,14,15. In addition, rivers transported and dispersed sediments from the Andes to the lowland, which were re-mobilised, and re-deposited in patchy patterns, from floodplains several times between 20 and 5 thousand years ago16,17,18. Such mineral inputs by past avulsion events may have occurred earlier in the Quaternary and remain as a relict soil where it has not subsequently eroded19. The older weathered sediments on the upper terraces lining the river look nothing like recent alluvium and the distribution of elements and their assemblages at our site are consistent with alluvial deposits in other sites. This process is explained in studies cited by Lombardo et al. (e.g., Pupim et al.), which note several periods of river aggradation, that support our hypothesis.As explained in our original paper, our data do not preclude a more recent human effect on the local landscape. The wisdom of indigenous populations, manifested in the application of waste materials to agricultural sites (since at least the late Holocene), may have further enriched ADEs or countered their natural degradation. Recent studies12, 16, 17, which post-date the studies that Lombardo et al. cite to argue against a geogenic influence, reveal a dynamic neotectonic history and support our hypothesis. Thus, the extent to which other ADE sites originated from depositional processes should be investigated based on evidence that goes beyond those presented by Lombardo et al. More

  • in

    SEM/EDX analysis of stomach contents of a sea slug snacking on a polluted seafloor reveal microplastics as a component of its diet

    Derraik, J. G. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44(9), 842–852 (2002).CAS 
    PubMed 

    Google Scholar 
    Gregory, M. R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 364(1526), 2013–2025 (2009).
    Google Scholar 
    Claessens, M., Van Cauwenberghe, L., Vandegehuchte, M. B. & Janssen, C. R. New techniques for the detection of microplastics in sediments and field collected organisms. Mar. Pollut. Bull. 70(1–2), 227–233 (2013).CAS 
    PubMed 

    Google Scholar 
    Auta, H. S., Emenike, C. U. & Fauziah, S. H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 102, 165–176 (2017).CAS 
    PubMed 

    Google Scholar 
    Zobkov, M. B. & Esiukova, E. E. Microplastics in a Marine Environment: Review of Methods for Sampling, Processing, and Analyzing Microplastics in Water, Bottom Sediments, and Coastal Deposits (2018).Coyle, R., Hardiman, G. & O’Driscoll, K. Microplastics in the marine environment: A review of their sources, distribution processes, uptake and exchange in ecosystems. Case Stud. Chem. Environ. Eng. 2, 100010 (2020).
    Google Scholar 
    Barnes, D. K., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 1985–1998 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment: Part 2 of a Global Assessment. A Report to Inform the Second United Nations Environment Assembly, 220 (Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2016).
    Google Scholar 
    Kroon, F. J., Motti, C. E., Jensen, L. H. & Berry, K. L. Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. Sci. Rep. 8(1), 1–15. https://doi.org/10.1038/s41598-018-34590-6 (2018).CAS 
    Article 

    Google Scholar 
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62(12), 2588–2597 (2011).CAS 
    PubMed 

    Google Scholar 
    Cole, M. A novel method for preparing microplastic fibers. Sci. Rep. 6(1), 1–7. https://doi.org/10.1038/srep34519 (2016).CAS 
    Article 

    Google Scholar 
    Costa, M. et al. On the importance of size of plastic fragments and pellets on the strandline: A snapshot of a Brazilian beach. Environ. Monit. Assess. 168, 299–304 (2010).PubMed 

    Google Scholar 
    Kershaw, P. J. et al. (eds) GESAMP Guidelines or the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean, Rep. Stud. GESAMP No. 99 130 (IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/UNEP/UNDP/ISA Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 2019).
    Google Scholar 
    Lusher, A. L., Welden, N. A., Sobral, P. & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. Anal. Methods 9, 1346 (2017).
    Google Scholar 
    Lusher, A., Bråte, I. L. N., Hurley, R., Iversen, K. & Olsen, M. Testing of Methodology for Measuring Microplastics in Blue Mussels (Mytilus spp) and Sediments, and Recommendations for Future Monitoring of Microplastics (R & D-project) (2017).Laist, D. W. Impacts of marine debris: Entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. In Marine debris, 99–139 (Springer, 1997).Denuncio, P. et al. Plastic ingestion in Franciscana dolphins, Pontoporia blainvillei (Gervais and d’Orbigny, 1844), from Argentina. Mar. Pollut. Bull. 62(8), 1836–1841 (2011).CAS 
    PubMed 

    Google Scholar 
    Do Sul, J. A. I., Santos, I. R., Friedrich, A. C., Matthiensen, A. & Fillmann, G. Plastic pollution at a sea turtle conservation area in NE Brazil: Contrasting developed and undeveloped beaches. Estuar. Coasts 34(4), 814–823 (2011).
    Google Scholar 
    Lazar, B. & Gračan, R. Ingestion of marine debris by loggerhead sea turtles, Caretta caretta, in the Adriatic Sea. Mar. Pollut. Bull. 62(1), 43–47 (2011).CAS 
    PubMed 

    Google Scholar 
    Poppi, L. et al. Post-mortem investigations on a leatherback turtle Dermochelys coriacea stranded along the Northern Adriatic coastline. Dis. Aquat. Org. 100(1), 71–76 (2012).
    Google Scholar 
    Van Franeker, J. A. et al. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environ. Pollut. 159(10), 2609–2615 (2011).PubMed 

    Google Scholar 
    Betts, K. Why Small Plastic Particles May Pose a Big Problem in the Oceans 8995–8995 (ACS Publications, 2008).
    Google Scholar 
    Cefas, L. Programme 8: Bass gillnet selectivity. Fish. Sci. 09 (2008).Priscilla, V., Sedayu, A. & Patria, M. P. Microplastic abundance in the water, seagrass, and sea hare Dolabella auricularia in Pramuka Island, Seribu Islands, Jakarta Bay, Indonesia. J. Phys. Conf. Ser. 1402, 033073. https://doi.org/10.1088/1742-6596/1402/3/033073 (2019).Article 

    Google Scholar 
    Graham, E. R. & Thompson, J. T. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Ecol. 368(1), 22–29 (2009).
    Google Scholar 
    Thompson, R. C. et al. Lost at sea: Where is all the plastic? Science 304(5672), 838–838 (2004).CAS 
    PubMed 

    Google Scholar 
    Hämer, J., Gutow, L., Köhler, A. & Saborowski, R. Fate of microplastics in the marine isopod Idotea emarginata. Environ. Sci. Technol. 48(22), 13451–13458 (2014).ADS 
    PubMed 

    Google Scholar 
    Setälä, O., Fleming-Lehtinen, V. & Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185, 77–83 (2014).PubMed 

    Google Scholar 
    Cole, M. et al. Microplastics alter the properties and sinking rates of zooplankton faecal pellets. Environ. Sci. Technol. 50(6), 3239–3246 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gutow, L., Eckerlebe, A., Giménez, L. & Saborowski, R. Experimental evaluation of seaweeds as a vector for microplastics into marine food webs. Environ. Sci. Technol. 50(2), 915–923 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Naji, A., Nuri, M. & Vethaak, A. D. Microplastics contamination in molluscs from the northern part of the Persian Gulf. Environ. Pollut. 235, 113–120 (2018).CAS 
    PubMed 

    Google Scholar 
    Ding, J. et al. Detection of microplastics in local marine organisms using a multi-technology system. Anal. Methods 11(1), 78–87 (2019).CAS 

    Google Scholar 
    Gniadek, M. & Dąbrowska, A. The marine nano-and microplastics characterisation by SEM-EDX: The potential of the method in comparison with various physical and chemical approaches. Mar. Pollut. Bull. 148, 210–216 (2019).CAS 
    PubMed 

    Google Scholar 
    Dąbrowska, A. A roadmap for a plastisphere. Mar. Pollut. Bull. 167, 112322 (2021).PubMed 

    Google Scholar 
    Ebere, E. C. & Ngozi, V. E. Microplastics, an emerging concern: A review of analytical techniques for detecting and quantifying microplatics. Anal. Methods Environ. Chem. J. 2(2), 13–30 (2019).
    Google Scholar 
    Mariano, S., Tacconi, S., Fidaleo, M., Rossi, M. & Dini, L. Micro and nanoplastics identification: Classic methods and innovative detection techniques. Front. Toxicol. https://doi.org/10.3389/ftox.2021.636640 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrante, M. et al. Microplastics in fillets of Mediterranean seafood. A risk assessment study. Environ. Res. 204, 112247 (2022).CAS 
    PubMed 

    Google Scholar 
    Li, J. et al. Characterization, source, and retention of microplastic in sandy beaches and mangrove wetlands of the Qinzhou Bay, China. Mar. Pollut. Bull. 136, 401–406 (2018).CAS 
    PubMed 

    Google Scholar 
    Liu, J. et al. Pollution characteristics of microplastics in mollusks from the coastal Area of Yantai. China. Bull. Environ. Contamin. Toxicol. 107, 1–7 (2021).
    Google Scholar 
    Tarjuelo, I., Posada, D., Crandall, K., Pascual, M. & Turon, X. Cryptic species of Clavelina (Ascidiacea) in two different habitats: Harbours and rocky littoral zones in the northwestern Mediterranean. Mar. Biol. 139(3), 455–462 (2001).
    Google Scholar 
    Brunetti, R. & Mastrototaro, F. Botrylloides pizoni, a new species of Botryllinae (Ascidiacea) from the Mediterranean Sea R. Zootaxa 3258(1), 28–36 (2012).
    Google Scholar 
    Beli, E. et al. The zoogeography of extant rhabdopleurid hemichordates (Pterobranchia: Graptolithina), with a new species from the Mediterranean Sea. Invertebr. Syst. 32(1), 100–110 (2018).
    Google Scholar 
    Chimienti, G., Angeletti, L., Furfaro, G., Canese, S. & Taviani, M. Habitat, morphology and trophism of Tritonia callogorgiae sp. nov., a large nudibranch inhabiting Callogorgia verticillata forests in the Mediterranean Sea. Deep Sea Res. I Oceanogr. Res. Pap. 165, 103364 (2020).
    Google Scholar 
    Furfaro, G. & Mariottini, P. A new Dondice Marcus Er. 1958 (Gastropoda: Nudibranchia) from the Mediterranean Sea reveals interesting insights into the phylogenetic history of a group of Facelinidae taxa. Zootaxa 4731(1), 1–22. https://doi.org/10.11646/zootaxa.4731.1.1 (2020).Article 

    Google Scholar 
    Cózar, A. et al. Plastic accumulation in the Mediterranean Sea. PLoS ONE 10(4), e0121762. https://doi.org/10.1371/journal.pone.0121762 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, S., Sharma, V. & Chatterjee, S. Microplastics in the Mediterranean Sea: Sources, pollution intensity, sea health, and regulatory policies. Front. Mar. Sci. 8, 634934. https://doi.org/10.3389/fmars.2021.634934 (2021).Article 

    Google Scholar 
    Pinardi, N. & Masetti, E. Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: A review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158(3–4), 153–173 (2000).
    Google Scholar 
    Suaria, G. et al. The Mediterranean Plastic soup: Synthetic polymers in Mediterranean surface waters. Sci. Rep. 6(1), 1–10 (2016).
    Google Scholar 
    Vianello, A. et al. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuar. Coast. Shelf. Sci. 130, 54–61. https://doi.org/10.1016/j.ecss.2013.03.022 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Parenzan, P. Il Mar Piccolo di Taranto. Ciem. Comm. Taranto (1984).Cavallo, R. A. & Stabili, L. Presence of vibrios in seawater and Mytilus galloprovincialis (Lam.) from the Mar Piccolo of Taranto (Ionian Sea). Water Res. 36(15), 3719–3726 (2002).CAS 
    PubMed 

    Google Scholar 
    Cardellicchio, N. et al. Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy). Mar. Pollut. Bull. 55(10–12), 451–458 (2007).CAS 
    PubMed 

    Google Scholar 
    Cardellicchio, N., Annicchiarico, C., Di Leo, A., Giandomenico, S. & Spada, L. The Mar Piccolo of Taranto: An interesting marine ecosystem for the environmental problems studies. Environ. Sci. Pollut. Res. 23(13), 12495–12501 (2016).
    Google Scholar 
    Tursi, A. et al. Mega-litter and remediation: The case of Mar Piccolo of Taranto (Ionian Sea). Rendiconti Lincei. Sci. Fisiche e Nat. 29(4), 817–824 (2018).
    Google Scholar 
    Mastrototaro, F. et al. Benthic diversity of the soft bottoms in a semi-enclosed basin of the Mediterranean Sea. Marine Biological Association of the United Kingdom. J. Mar. Biol. Assoc. U.K. 88(2), 247 (2008).
    Google Scholar 
    Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533 (2019).CAS 
    PubMed 

    Google Scholar 
    Corami, F. et al. Evidence of small microplastics (< 100 μm) ingestion by Pacific oysters (Crassostrea gigas): A novel method of extraction, purification, and analysis using Micro-FTIR. Mar. Pollut. Bull. 160, 111606 (2020).CAS  PubMed  Google Scholar  De-la-Torre, G. E., Apaza-Vargas, D. M. & Santillán, L. L. Microplastic ingestion and feeding ecology in three intertidal mollusk species from Lima, Peru. Rev. Biol. Mar. Oceanogr. 55(2), 167–171 (2020). Google Scholar  Jiang, Y. et al. A review of microplastic pollution in seawater, sediments and organisms of the Chinese coastal and marginal seas. Chemosphere 286, 131677 (2021).ADS  PubMed  Google Scholar  Haszprunar, G. The heterobranchia—A new concept of the phylogeny of the higher Gastropoda. J. Zool. Syst. Evol. Res. 23(1), 15–37 (1985). Google Scholar  Wägele, H., Klussmann-Kolb, A., Vonnemann, V. & Medina, M. Heterobranchia I: The Opisthobranchia. In Phylogeny and Evolution of the Mollusca (eds Ponder, W. F. & Lindberg, D.) 385–408 (University of California Press, 2008). Google Scholar  Prkic, J. et al. First record of Calma gobioophaga Calado and Urgorri, 2002 (Gastropoda: Nudibranchia) in the Mediterranean Sea. Mediterr. Mar. Sci. 15(2), 423–428 (2014). Google Scholar  Furfaro, G., Trainito, E., De Lorenzi, F., Fantin, M. & Doneddu, M. Tritonia nilsodhneri Marcus Ev., 1983 (Gastropoda, Heterobranchia, Tritoniidae): First records for the Adriatic Sea and new data on ecology and distribution of Mediterranean populations. Acta Adriat. 58, 2 (2017). Google Scholar  Thompson, T. E. Studies on ontogeny of Tritonia hombergi Cuvier (Gastropoda: Opisthobranchia). Philos. Trans. R. Soc. Lond. B 245, 171–218. https://doi.org/10.1098/rstb.1962.0009 (1962).ADS  Article  Google Scholar  Cattaneo-Vietti, R., Angelini, S. & Bavestrello, G. Skin and gut spicules in Discodoris atromaculata (Bergh, 1880) (Mollusca: Nudibranchia). Bollettino Malacol. 28, 173–180 (1993). Google Scholar  Cattaneo-Vietti, R., Angelini, S., Gaggero, L. & Lucchetti, G. Mineral composition of nudibranch spicules. J. Molluscan Stud. 61(3), 331–337. https://doi.org/10.1093/mollus/61.3.331 (1995).Article  Google Scholar  Garese, A., García-Matucheski, S., Acuña, F. H. & Muniain, C. Feeding behavior of Spurilla sp. (Mollusca: Opisthobranchia) with a description of the kleptocnidae sequestered from its sea anemone prey. Zool. Stud. 51(7), 905–912 (2012).CAS  Google Scholar  Braga, T. et al. Bursatella leachii from Mar Menor as a source of bioactive molecules: Preliminary evaluation of the nutritional profile, in vitro biological activities and fatty acids contents. J. Aquat. Food Prod. Technol. 26(10), 1337–1350 (2017).CAS  Google Scholar  Willis, T. J. et al. Kleptopredation: A mechanism to facilitate planktivory in a benthic mollusc. Biol. Let. 13, 20170447. https://doi.org/10.1098/rsbl.2017.0447 (2017).Article  Google Scholar  Goodheart, J. A. et al. Comparative morphology and evolution of the cnidosac in Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). Front. Zool. 15(1), 1–18. https://doi.org/10.1186/s12983-018-0289-2 (2018).CAS  Article  Google Scholar  Marin, A. & Ros, J. Chemical defenses in Sacoglossan Opisthobranchs: Taxonomic trends and evolutive implications. Sci. Mar. 67(Suppl. 1), 227–241 (2004). Google Scholar  Wägele, H., Ballestero, M. & Avila, C. Defensive glandular structures in opisthobranch molluscs—From histology to ecology. Oceanogr. Mar. Biol. Annu. Rev. 44, 197–276 (2006). Google Scholar  Pavlik, J. R. Antipredatory defensive roles of natural products from marine invertebrates. In Handbook of Marine Natural Products Vol. 12 (eds Fattorusso, E. et al.) 677–710 (Springer, 2012). Google Scholar  Avila, C., Nuñez-Pons, L. & Moles, J. From the tropics to the poles chemical defense strategies in sea slugs (Mollusca: Heterobranchia). In Chemical Ecology: The Ecological Impact of Marine Natural Products (eds Puglisi, M. P. & Becerro, M. A.) 93 (CRC Press, 2018). Google Scholar  Capper, A., Tibbetts, I. R., O’Neil, J. M. & Shaw, G. R. The fate of Lyngbya majuscula toxins in three potential consumers. J. Chem. Ecol. 31(7), 1595–1606 (2005).CAS  PubMed  Google Scholar  Dean, L. J. & Prinsep, M. R. The chemistry and chemical ecology of nudibranchs. Nat. Prod. Rep. 34(12), 1359–1390 (2017).CAS  PubMed  Google Scholar  Simmons, T. L., Andrianasolo, E., McPhail, K., Flatt, P. & Gerwick, W. H. Marine natural products as anticancer drugs. Mol. Cancer Ther. 4(2), 333–342 (2005).CAS  PubMed  Google Scholar  Klussmann-Kolb, A. Phylogeny of the Aplysiidae (Gastropoda, Opisthobranchia) with new aspects of the evolution of seahares. Zool. Scr. 33, 439–462 (2004). Google Scholar  Willan, R. C. Phylogenetic systematics of the Notaspidea (Opisthobranchia) with reappraisal of families and genera. Am. Malacol. Bull. 5, 215–241 (1987). Google Scholar  Medina, M. & Walsh, P. J. Molecular systematics of the order Anaspidea based on mitochondrial DNA sequences (12S, 16S, and COI). Mol. Phylogenet. Evol. 15, 41–58 (2000).CAS  PubMed  Google Scholar  Furfaro, G., De Matteo, S., Mariottini, P. & Giacobbe, S. Ecological notes of the alien species Godiva quadricolor (Gastropoda: Nudibranchia) occurring in Faro Lake (Italy). J. Nat. Hist. 52(11–12), 645–657 (2018). Google Scholar  Appleton, D. R., Sewell, M. A., Berridge, M. V. & Copp, B. R. A new biologically active malyngamide from a New Zealand collection of the sea hare Bursatella leachii. J. Nat. Prod. 65(4), 630–631 (2002).CAS  PubMed  Google Scholar  Rajaganapathi, J., Kathiresan, K. & Singh, T. P. Purification of anti-HIV protein from purple fluid of the sea hare Bursatella leachii de Blainville. Mar. Biotechnol. 4(5), 447–453 (2002).CAS  Google Scholar  Suntornchashwej, S., Chaichit, N., Isobe, M. & Suwanborirux, K. Hectochlorin and morpholine derivatives from the Thai Sea Hare, Bursatella leachii. J. Nat. Prod. 68(6), 951–955 (2005).CAS  PubMed  Google Scholar  Dhahri, M. et al. Extraction, characterization, and anticoagulant activity of a sulfated polysaccharide from Bursatella leachii viscera. ACS Omega 5(24), 14786–14795 (2020).CAS  PubMed  PubMed Central  Google Scholar  Clarke, C. L. The population dynamics and feeding preferences of Bursatella leachii (Opisthobranchia: Anaspidea) in northeast Queensland, Australia. Rec. West. Austral. Museum Suppl. 69, 11–21 (2006). Google Scholar  Blainville, H. M. D. de. Bursatella, p. 138, in: Dictionnaire des Sciences Naturelles (F. Cuvier, ed.), Vol. 5, Supplément. Levrault, Strasbourg & Le Normant, Paris (1817).Trainito, E. & Doneddu, M. Nudibranchi del Mediterraneo 2nd edn, 192 (Il Castello, 2014). Google Scholar  Zbyszewski, M., Corcoran, P. L. & Hockin, A. Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J. Great Lakes Res. 40(2), 288–299 (2014).CAS  Google Scholar  Wang, Z. M., Wagner, J., Ghosal, S., Bedi, G. & Wall, S. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci. Total Environ. 603, 616–626 (2017).ADS  PubMed  Google Scholar  Gewert, B., Plassmann, M. & MacLeod, M. Pathways for degradation of plastic polymers floating in the marine environment. Environ. Sci. Process. Impacts 17, 1513–1521 (2015).CAS  PubMed  Google Scholar  Gewert, B., Plassmann, M., Sandblom, O. & MacLeod, M. Identification of chain scission products released to water by plastic exposed to ultraviolet light. Environ. Sci. Technol. Lett. 5, 272–276 (2018).CAS  Google Scholar  Lang, M. et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics. Sci. Total Environ. 722, 137762 (2020).ADS  CAS  PubMed  Google Scholar  Ding, L., Mao, R., Ma, S., Guo, X. & Zhu, L. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Res. 174, 115634 (2020).CAS  PubMed  Google Scholar  Wang, F. et al. The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment. J. Hazard. Mater. 394, 122517 (2020).CAS  PubMed  Google Scholar  Ouyang, Z. et al. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process. J. Hazard. Mater. 424, 127461 (2022).CAS  PubMed  Google Scholar  Dehaut, A. et al. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 215, 223–233 (2016).CAS  PubMed  Google Scholar  Besley, A., Vijver, M. G., Behrens, P. & Bosker, T. A standardized method for sampling and extraction methods for quantifying microplastics in beach sand. Mar. Pollut. Bull. 114(1), 77–83 (2017).CAS  PubMed  Google Scholar  Karami, A. et al. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 578, 485–494 (2017).ADS  CAS  PubMed  Google Scholar  Caron, A. G. et al. Ingestion of microplastic debris by green sea turtles (Chelonia mydas) in the Great Barrier Reef: Validation of a sequential extraction protocol. Mar. Pollut. Bull. 127, 743–751 (2018).CAS  PubMed  Google Scholar  Piarulli, S. et al. Microplastic in wild populations of the omnivorous crab Carcinus aestuarii: A review and a regional-scale test of extraction methods, including microfibres. Environ. Pollut. 251, 117–127 (2019).CAS  PubMed  Google Scholar  Pfohl, P. et al. Microplastic extraction protocols can impact the polymer structure. Microplast. Nanoplast. 1(1), 1–13 (2021). Google Scholar  Qiu, Q. et al. Extraction, enumeration and identification methods for monitoring microplastics in the environment. Estuar. Coast. Shelf Sci. 176, 102–109 (2016).ADS  CAS  Google Scholar  Lusher, A. L., Munno, K., Hermabessiere, L. & Carr, S. Isolation and extraction of microplastics from environmental samples: An evaluation of practical approaches and recommendations for further harmonization. Appl. Spectrosc. 74(9), 1049–1065 (2020).ADS  CAS  PubMed  Google Scholar  Bellasi, A., Binda, G., Pozzi, A., Boldrocchi, G. & Bettinetti, R. The extraction of microplastics from sediments: An overview of existing methods and the proposal of a new and green alternative. Chemosphere 278, 130357 (2021).ADS  CAS  PubMed  Google Scholar  Essa, A. M. & Khallaf, M. K. Antimicrobial potential of consolidation polymers loaded with biological copper nanoparticles. BMC Microbiol. 16(1), 1–8 (2016). Google Scholar  Etcheverry, M., Ferreira, M. L., Capiati, N. J., Pegoretti, A. & Barbosa, S. E. Strengthening of polypropylene–glass fiber interface by direct metallocenic polymerization of propylene onto the fibers. Compos. A Appl. Sci. Manuf. 39(12), 1915–1923 (2008). Google Scholar  Ivanič, A., Kravanja, G., Kidess, W., Rudolf, R. & Lubej, S. The influences of moisture on the mechanical, morphological and thermogravimetric properties of mineral wool made from basalt glass fibers. Materials 13(10), 2392 (2020).ADS  PubMed Central  Google Scholar  Kavad, B. V., Pandey, A. B., Tadavi, M. V. & Jakharia, H. C. A review paper on effects of drilling on glass fiber reinforced plastic. Procedia Technol. 14, 457–464 (2014). Google Scholar  Alsayed, S. H., Al-Salloum, Y. A. & Almusallam, T. H. Performance of glass fiber reinforced plastic bars as a reinforcing material for concrete structures. Compos. B Eng. 31(6–7), 555–567 (2000). Google Scholar  Fries, E. et al. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ. Sci. Process Impacts 15(10), 1949–1956 (2013).CAS  PubMed  Google Scholar  Turner, A. & Filella, M. The influence of additives on the fate of plastics in the marine environment, exemplified with barium sulphate. Mar. Pollut. Bull. 158, 111352 (2020).CAS  PubMed  Google Scholar  Barathi, M., Kumar, A. S. K. & Rajesh, N. Efficacy of novel Al–Zr impregnated cellulose adsorbent prepared using microwave irradiation for the facile defluoridation of water. J. Environ. Chem. Eng. 1(4), 1325–1335 (2013).CAS  Google Scholar  Bahsis, L. et al. Cellulose-copper as bio-supported recyclable catalyst for the clickable azide-alkyne [3+2] cycloaddition reaction in water. Int. J. Biol. Macromol. 119, 849–856 (2018).CAS  PubMed  Google Scholar  Ibrahim, N. A., Eid, B. M., Abd El-Aziz, E., Abou Elmaaty, T. M. & Ramadan, S. M. Multifunctional cellulose-containing fabrics using modified finishing formulations. RSC Adv. 7(53), 33219–33230 (2017).ADS  CAS  Google Scholar  Van, H. T., Le Sy, H., Nguyen, T. M. L. & Nguyen, D. K. Application of Mussell-derived biosorbent to remove NH 4+ from aqueous solution: Equilibrium and Kinetics. SN Appl. Sci. 3(4), 1–12 (2021). Google Scholar  Lakshmanna, B. et al. Data on Molluscan Shells in parts of Nellore Coast, southeast coast of India. Data Brief 16, 705–712 (2018).CAS  PubMed  Google Scholar  Taylor, P. D., Vinn, O., Kudryavtsev, A. & Schopf, J. W. Raman spectroscopic study of the mineral composition of cirratulid tubes (Annelida, Polychaeta). J. Struct. Biol. 171(3), 402–405 (2010).CAS  PubMed  Google Scholar  Schröder, V. et al. Micromorphological details and identification of chitinous wall structures in Rapana venosa (Gastropoda, Mollusca) egg capsules. Sci. Rep. 10(1), 1–13 (2020). Google Scholar  Ngamniyom, A., Wongroj, W., Karnchaisri, K. & Siriwattanarat, R. Ophidascaris baylisi (Nematoda: Ascarididae): Scanning electron microscopic study of the adult surface with ultrastructure and chemical composition analysis of eggshells. Sci. Technol. Asia 26, 189–198 (2021). Google Scholar  Fabra, M. et al. The plastic Trojan horse: Biofilms increase microplastic uptake in marine filter feeders impacting microbial transfer and organism health. Sci. Total Environ. 797, 149217 (2021).ADS  CAS  PubMed  Google Scholar  Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the “Plastisphere”. Front. Microbiol. 10, 865 (2019).PubMed  PubMed Central  Google Scholar  More

  • in

    Sex-specific movement ecology of the shortest-lived tetrapod during the mating season

    Dunham, A. E. & Miles, D. B. Patterns of covariation in life history traits of squamate reptiles: The effects of size and phylogeny reconsidered. Am. Nat. 126, 231–257 (1985).Article 

    Google Scholar 
    Dobson, F. S. & Oli, M. K. Fast and slow life histories of mammals. Ecoscience 14, 292–299 (2007).Article 

    Google Scholar 
    Sæther, B. E. Pattern of covariation between life-history traits of European birds. Nature 1, 616–617 (1988).ADS 
    Article 

    Google Scholar 
    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).Article 

    Google Scholar 
    De Magalhaes, J. P. & Costa, J. A database of vertebrate longevity records and their relation to other life—history traits. J. Evol. Biol. 22, 1770–1774 (2009).PubMed 
    Article 

    Google Scholar 
    Fisher, D. O., Dickman, C. R., Jones, M. E. & Blomberg, S. P. Sperm competition drives the evolution of suicidal reproduction in mammals. Proc. Natl. Acad. Sci. USA 44, 17910–17914 (2013).ADS 
    Article 

    Google Scholar 
    Blanco, M. A. & Sherman, P. W. Maximum longevities of chemically protected and non-protected fishes, reptiles, and amphibians support evolutionary hypotheses of aging. Mech. Ageing Dev. 126, 794–803 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shine, R. & Charnov, E. L. Patterns of survival, growth, and maturation in snakes and lizards. Am. Nat. 139, 1257–1269 (1992).Article 

    Google Scholar 
    Pedrono, M. et al. Using a surviving lineage of Madagascar’s vanished megafauna for ecological restoration. Biol. Cons. 159, 501–506 (2013).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. A unique life history among tetrapods: An annual chameleon living mostly as an egg. Proc. Natl. Acad. Sci. USA 105, 8980–8984 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Uetz, P., Freed, P. & Hošek, J. (eds) The reptile database. http://www.reptile-database.org (2020).Glaw, F. & Vences, M. A Field Guide to the Amphibians and Reptiles of Madagascar (Vences and Glaw, 2007).
    Google Scholar 
    Anderson, C. V. Off like a shot: Scaling of ballistic tongue projection reveals extremely high performance in small chameleons. Sci. Rep. 6, 18625 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keren-Rotem, T., Levy, N., Wolf, L., Bouskila, A. & Geffen, E. Male preference for sexual signalling over crypsis is associated with alternative mating tactics. Anim. Behav. 117, 43–49 (2016).Article 

    Google Scholar 
    Keren-Rotem, T., Levy, N., Wolf, L., Bouskila, A. & Geffen, E. Alternative mating tactics in male chameleons (Chamaeleo chamaeleon) are evident in both long-term body color and short-term courtship pattern. PLoS ONE 11, e0159032 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ligon, R. A. & McGraw, K. J. Chameleons communicate with complex colour changes during contests: Different body regions convey different information. Biol. Lett. 9, 20130892 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Prötzel, D. et al. Widespread bone-based fluorescence in chameleons. Sci. Rep. 8, 698 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tolley, K. A. & Herrel, A. (eds) The Biology of Chameleons (University of California Press, 2014).
    Google Scholar 
    Andreone, F., Guarino, F. M. & Randrianirina, J. E. Life history traits, age profile, and conservation of the panther chameleon, Furcifer pardalis (Cuvier 1829), at Nosy Be, NW Madagascar. Trop. Zool. 18, 209–225 (2005).Article 

    Google Scholar 
    Tessa, G., Glaw, F. & Andreone, F. Longevity in Calumma parsonii, the World’s largest chameleon. Exp. Geront. 89, 41–44 (2017).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. Sexual selection on body size and secondary sexual characters in 2 closely related, sympatric chameleons in Madagascar. Behav. Ecol. 20, 1079–1088 (2009).Article 

    Google Scholar 
    Eckhardt, F., Kappeler, P. M. & Kraus, C. Highly variable lifespan in an annual reptile, Labord’s chameleon (Furcifer labordi). Sci. Rep. 7, 11397 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Eckhardt, F., Kraus, C. & Kappeler, P. M. Life histories, demographies and population dynamics of three sympatric chameleon species (Furcifer spp.) from western Madagascar. Amphibia-Reptilia 40, 41–54 (2018).Article 

    Google Scholar 
    Karsten, K. B., Andriamandimbiarisoa, L. N., Fox, S. F. & Raxworthy, C. J. Social behavior of two species of chameleons in Madagascar: Insights into sexual selection. Herpetologica 65, 54–69 (2009).Article 

    Google Scholar 
    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chiaverano, L. M., Wright, M. J. & Holland, B. S. Movement behavior is habitat dependent in invasive Jackson’s chameleons in Hawaii. J. Herpetol. 48, 471–479 (2014).Article 

    Google Scholar 
    Smith, D. et al. Observations on nesting and clutch size in Furcifer oustaleti (Oustalet’s chameleon) in South Florida. Southeast Nat. 15, 75–88 (2016).Article 

    Google Scholar 
    Van Kleeck, M. J., Smith, T. A. & Holland, B. S. Paedophagic cannibalism, resource partitioning, and ontogenetic habitat use in an invasive lizard. Ethol. Ecol. Evol. 30, 497–514 (2018).Article 

    Google Scholar 
    Tolley, K. A., Raw, R. N., Altwegg, R. & Measey, J. G. Chameleons on the move: Survival and movement of the Cape dwarf chameleon, Bradypodion pumilum, within a fragmented urban habitat. Afr. Zool. 45, 99–106 (2010).Article 

    Google Scholar 
    Cuadrado, M. The influence of female size on the extent and intensity of mate guarding by males in Chamaeleo chamaeleon. J. Zool. 246, 351–358 (1998).Article 

    Google Scholar 
    Cuadrado, M. Mating asynchrony favors no assortative mating by size and serial-type polygyny in common chameleons, Chamaeleo chamaeleon. Herpetologica 55, 523–530 (1999).
    Google Scholar 
    Cuadrado, M. Influence of female’s sexual stage and number of available males on the intensity of guarding behavior by male common chameleons: A test of different predictions. Herpetologica 56, 387–393 (2000).
    Google Scholar 
    Cuadrado, M. Mate guarding and social mating system in male common chameleons (Chamaeleo chamaeleon). J. Zool. 255, 425–435 (2001).Article 

    Google Scholar 
    Kauffmann, J. L. D., Brady, L. D. & Jenkins, R. K. B. Behavioural observations of the chameleon Calumma oshaughnessyi oshaughnessyi in Madagascar. Herpetol. J. 7, 77–80 (1997).
    Google Scholar 
    Greenwood, P. J. Mating systems, philopatry and dispersal in birds and mammals. Anim. Behav. 28, 1140–1162 (1980).Article 

    Google Scholar 
    Kappeler, P. M. Intrasexual selection in Mirza coquereli: Evidence for scramble competition polygyny in a solitary primate. Behav. Ecol. Sociobiol. 41, 115–127 (1997).Article 

    Google Scholar 
    Croft, D. P. et al. Sex-biased movement in the guppy (Poecilia reticulata). Oecologia 137, 62–68 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Glaudas, X. & Rodriguez-Robles, J. A. Vagabond males and sedentary females: Spatial ecology and mating system of the speckled rattlesnake (Crotalus mitchellii). Biol. J. Linn. Soc. 103, 681–695 (2011).Article 

    Google Scholar 
    Taborsky, M. & Brockmann, H. J. Alternative reproductive tactics and life history phenotypes. In Animal Behaviour: Evolution and Mechanisms (ed. Kappeler, P. M.) 537–586 (Springer, 2010).Chapter 

    Google Scholar 
    Tolley, K. A., Chauke, L. F., Jackson, J. C. & Feldheim, K. A. Multiple paternity and sperm storage in the Cape dwarf chameleon (Bradypodion pumilum). Afr. J. Herpetol. 63, 47–56 (2014).Article 

    Google Scholar 
    Rebelo, A. D., Altwegg, R., Katz, E. M. & Tolley, K. A. Out on a limb: Female chameleons (Bradypodion pumilum) position themselves to minimise detection, whereas males maximise mating opportunity. Afr. J. Herpetol https://doi.org/10.1080/21564574.2021.1998233 (2022).Article 

    Google Scholar 
    Dollion, A. Y., Herrel, A., Marquis, O., Leroux-Coyau, M. & Meylan, S. The colour of success: Does female mate choice rely on male colour change in the chameleon Furcifer pardalis?. J. Exp. Biol. 223, jeb224550 (2020).PubMed 
    Article 

    Google Scholar 
    Dollion, A. Y., Meylan, S., Marquis, O., Leroux-Coyau, M. & Herrel, A. Do male panther chameleons use different aspects of color change to settle disputes?. Sci. Nat. 109, 13 (2022).CAS 
    Article 

    Google Scholar 
    Shine, R. Reproductive strategies in snakes. Proc. R. Soc. Lond. B 270, 995–1004 (2003).Article 

    Google Scholar 
    Andrews, R. M. & Karsten, K. B. Evolutionary innovations of squamate reproductive and developmental biology in the family Chamaeleonidae. Biol. J. Linn. Soc. 100, 656–668 (2010).Article 

    Google Scholar 
    Sever, D. M. & Hamlett, W. C. Female sperm storage in reptiles. J. Exp. Zool. 292, 187–199 (2002).PubMed 
    Article 

    Google Scholar 
    Friesen, C. R., Kahrl, A. F. & Olsson, M. Sperm competition in squamate reptiles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20200079 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parker, G. A. & Birkhead, T. R. Polyandry: The history of a revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120335 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Székely, T., Weissing, F. J. & Komdeur, J. Adult sex ratio variation: Implications for breeding system evolution. J. Evol. Biol. 27, 1500–1512 (2014).PubMed 
    Article 

    Google Scholar 
    Kokko, H. & Jennions, M. D. Parental investment, sexual selection and sex ratios. J. Evol. Biol. 21, 919–948 (2008).PubMed 
    Article 

    Google Scholar 
    Holleley, C. E., Dickman, C. R., Crowther, M. S. & Oldroyd, B. P. Size breeds success: Multiple paternity, multivariate selection and male semelparity in a small marsupial, Antechinus stuartii. Mol. Ecol. 15, 3439–3448 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kappeler, P. M. & Fichtel, C. A 15-year perspective on the social organization and life history of sifaka in Kirindy forest. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 101–121 (Springer, 2012).Chapter 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2020).RStudio Team. RStudio: Integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2020).Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40, 1–29 (2011).
    Google Scholar 
    Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A grammar of data manipulation. R package version 102. https://cran.r-project.org/package=dplyr (2020).Grolemund, G. & Wickham, H. Dates and times made easy with lubridate. J. Stat. Softw. 40, 1–25 (2011).Article 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Wilke, C. O. cowplot: Streamlined plot theme and plot annotations for ggplot2. R package version 100. https://cran.r-project.org/package=cowplot (2019).Revelle, W. psych: Procedures for personality and psychological research, Northwestern University, Evanston, IL. https://cran.r-project.org/package=psych (2020).Wickham, H. modelr: Modelling functions that work with the pipe. R package version 018. https://cran.r-project.org/package=modelr (2020).Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage, 2019).
    Google Scholar 
    Ara, T. brunnermunzel: (Permuted) Brunner–Munzel Test R Package Version 133 (2019).Crane, M., Silva, I., Marshall, B. M. & Strine, C. T. Lots of movement, little progress: A review of reptile home range literature. PeerJ 9, e11742 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Signer, J. & Fieberg, J. A fresh look at an old concept: Home-range estimation in a tidy world. PeerJ 9, e11031 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laver, P. N. & Kelly, M. J. A critical review of home range studies. J. Wildl. Manag. 72, 290–298 (2008).Article 

    Google Scholar 
    Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).Getz, W. M. & Wilmers, C. C. A local nearest-neighbor convex-hull construction of home ranges and utilization distributions. Ecography 27, 489–505 (2004).Article 

    Google Scholar 
    Worton, B. J. Kernel methods for estimating the utilization distribution in homerange studies. Ecology 70, 1641–1668 (1989).Article 

    Google Scholar 
    Yagi, K. T. & Green, D. M. Performance and movement in relation to postmetamorphic body size in a pond-breeding amphibian. J. Herpetol. 51, 482–489 (2017).Article 

    Google Scholar  More

  • in

    Cat predation of Kangaroo Island dunnarts in aftermath of bushfire

    Kangaroo Island (~ 4400 km2, KI hereafter) is the third largest island in Australia. It underwent substantial land clearing, and consequent fragmentation of the natural bushland habitat, after World War II1,2. Relatively intact western KI was eventually identified as a key biodiversity hotspot3, home to several endangered and endemic native species including the KI dunnart.Dunnarts (Sminthopsis spp.) are small insectivorous dasyurid marsupials. The KI dunnart is distinguished from the other 17 dunnart species found in Australia by morphological features, including manus, pes, and penis shape4. This endangered species is the only dasyurid found on the island, exclusively resident in ~ 342 km2 before 20205, and found nowhere else in the world2. The species is rarely recorded, with only 28 individuals found during  > 33,000 trap-nights pre-20195. With a low number of individuals restricted to a small geographic area, the KI dunnart is exceptionally vulnerable to stochastic events. Predation by feral cats (Felis catus) is likely to be another source of pressure on the KI dunnart. Cats were introduced to KI during European settlement and quickly became apex predators, reaching higher relative abundance than adjacent mainland6 with an estimated density of 0.37 ± 0.15 cat/km25. Cat predation has been the cause for extinction or near-extinction of several native species around the globe7, with the extinction risk becoming increasingly acute in insular islands like KI. Cat predation on islands has contributed to  > 13% of globally recorded extinction events, accounting for  > 8% of instances within these taxa of species being pushed to critically endangered status8. A recent meta-analysis found evidence of cat predation for three critically endangered species and four endangered species in Australia on the IUCN Red List of Threatened Species7.Australian bushfires in 2019–2020 burnt ~ 97,000 km2 of vegetation9,10, with damage overlapping with habitats of  > 100 threatened species. Dry lightning storms in the remote and vegetated northwest of the Island started the bushfire in the KI. The bushfire eventually spread easterly, burning approximately 98% of the known and predicted habitat of the KI dunnart10.In this study, we have analysed the diet of feral cats humanely euthanized in designated areas of local conservation interest immediately after the 2019 KI bushfire. More

  • in

    Assessing the impact of land use land cover change on regulatory ecosystem services of subtropical scrub forest, Soan Valley Pakistan

    FAO. Global Forest Resource Assessment 2020—Key Findings (FAO, 2020).
    Google Scholar 
    Rasmussen, L. V. et al. A combination of methods needed to assess the actual use of provisioning ecosystem services. Ecosyst. Serv. 17, 75–86 (2016).Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the World’s Forests. Science 333, 988 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Gao, J., Tang, X. G., Lin, S. Q. & Bian, H. Y. The influence of land use change on key ecosystem services and their relationships in a mountain region from past to future (1995–2050). Forests 12, 616 (2021).Article 

    Google Scholar 
    Rodríguez-Echeverry, J., Echeverría, C., Oyarzún, C. & Morales, L. Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc. Ecol. 33(3), 439–453 (2018).Article 

    Google Scholar 
    Hoque, M. Z., Islam, I., Ahmed, M., Hasan, S. S. & Prodhan, F. A. Spatio-temporal changes of land use land cover and ecosystem service values in coastal Bangladesh. Egypt. J. Remote Sens. Space Sci. 25(1), 173–180 (2022).
    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    Sil, Â. et al. Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: Insights for management and planning. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 13(2), 82–104 (2017).Article 

    Google Scholar 
    Xu, Y., Tang, H., Wang, B. & Chen, J. Effects of land-use intensity on ecosystem services and human well-being: A case study in Huailai County, China. Environ. Earth. Sci. 75(5), 416 (2016).Article 

    Google Scholar 
    Liang, Y., Liu, L. & Huang, J. Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China. PLoS ONE 12(2), e0172494 (2017).Article 

    Google Scholar 
    Zhao, M. et al. Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models. Ecol. Indic. 98, 29–38 (2019).Article 

    Google Scholar 
    Leh, M. D., Matlock, M. D., Cummings, E. C. & Nalley, L. L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 165, 6–18 (2013).Article 

    Google Scholar 
    Zhao, Z. et al. Assessment of carbon storage and its influencing factors in Qinghai-Tibet Plateau. Sustainability 10(6), 1864 (2018).Article 

    Google Scholar 
    Fu, Q. et al. Scenario analysis of ecosystem service changes and interactions in a mountain-oasis-desert system: A case study in Altay Prefecture, China. Sci. Rep. 8(1), 1–13 (2018).ADS 

    Google Scholar 
    Li, Z., Cheng, X. & Han, H. Future impacts of land use change on ecosystem services under different scenarios in the ecological conservation area, Beijing, China. Forests 11(5), 584 (2020).CAS 
    Article 

    Google Scholar 
    Liu, H., Xiao, W., Li, Q., Tian, Y. & Zhu, J. Spatio-temporal change of multiple ecosystem services and their driving factors: A case study in Beijing, China. Forests 13(2), 260 (2022).CAS 
    Article 

    Google Scholar 
    Nizami, S. M. The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. J. For. Res. 23(3), 377–384 (2012).CAS 
    Article 

    Google Scholar 
    Ghafoor, G. Z., Sharif, F., Khan, A. U., Shahzad, L. & Hayyat, M. U. Assessment of tree biomass carbon stock of subtropical scrub forest, Soan valley Pakistan. App. Ecol. Environ. Res. 18(2), 2231–2245 (2020).Article 

    Google Scholar 
    Siddiq, Z. et al. Models to estimate the above and below ground carbon stocks from a subtropical scrub forest of Pakistan. Glob. Ecol. Conserv. 27, e01539 (2021).Article 

    Google Scholar 
    Ali, A., Ashraf, M. I., Gulzar, S. & Akmal, M. Estimation of forest carbon stocks in temperate and subtropical mountain systems of Pakistan: Implications for REDD+ and climate change mitigation. Environ. Monit. Assess. 192(3), 1–13 (2020).Article 

    Google Scholar 
    Mannan, A. et al. Application of land-use/land cover changes in monitoring and projecting forest biomass carbon loss in Pakistan. Glob. Ecol. Conserv. 17, e00535 (2019).Article 

    Google Scholar 
    Khan, A. U. et al. Piloting restoration initiatives in subtropical scrub forest: Specifying areas asserting adaptive management. Environ. Monit. Assess. 191(11), 675 (2019).Article 

    Google Scholar 
    Mohajane, M. et al. Land use/land cover (LULC) using Landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5(12), 131 (2018).Article 

    Google Scholar 
    Brown, J. NDVI, the foundation for remote sensing phenology. In USGS Remote Sensing Phenology: Vegetation Indices (2015).Liping, C., Yujun, S. & Saeed, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques—A case study of a hilly area, Jiangle, China. PLoS ONE 13(7), e0200493 (2018).Article 

    Google Scholar 
    Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8(10), 895–900 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Salehi, M. H., Beni, O. H., Harchegani, H. B., Borujeni, I. E. & Motaghian, H. R. Refining soil organic matter determination by loss-on-ignition. Pedosphere 21(4), 473–482 (2011).Article 

    Google Scholar 
    Tivet, F. et al. Soil carbon inventory by wet oxidation and dry combustion methods: Effects of land use, soil texture gradients, and sampling depth on the linear model of C-equivalent correction factor. Soil Sci. Soc. Am. J. 76(3), 1048–1059 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Government of Punjab. The Punjab Forest (Amendment) Act, 2010 (Government of the Punjab, 2010).
    Google Scholar 
    Kamwi, J. M., Kaetsch, C., Graz, F. P., Chirwa, P. & Manda, S. Trends in land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Environ. Monit. Assess. 189(5), 242 (2017).Article 

    Google Scholar 
    Negassa, M. D., Mallie, D. T. & Gemeda, D. O. Forest cover change detection using Geographic Information Systems and remote sensing techniques: A spatio-temporal study on Komto Protected forest priority area, East Wollega Zone, Ethiopia. Environ. Syst. Res. 9(1), 1 (2020).Article 

    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2007. Burreau of Statistics (Government of the Punjab, 2007).
    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2013. Burreau of Statistics (Government of the Punjab, 2013).
    Google Scholar 
    Government of Punjab. Punjab Development Statistics 2019. Burreau of Statistics (Government of the Punjab, 2019).
    Google Scholar 
    Dunn, R. J. H., Stanitski, D. M., Gobron, N. & Willett, K. M. State of the climate in 2019: Global climate. Special online supplement to the B. Am. Meteorol. Soc. 101(8), S9. https://doi.org/10.1175/BAMS-D-20-0104.1 (2020).Article 

    Google Scholar 
    Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419(1), 64–77 (2016).CAS 
    Article 

    Google Scholar 
    Ghafoor, G. Z. et al. Effect of climate warming on seedling growth and biomass accumulation of Acacia modesta and Olea ferruginea in a subtropical scrub forest of Pakistan. Écoscience 29, 1–14 (2021).
    Google Scholar 
    Bibi, S., Sultana, J., Sultana, H. & Malik, R. N. Ethnobotanical uses of medicinal plants in the highlands of Soan valley, salt range, Pakistan. J. Ethnopharmacol. 155(1), 352–361 (2014).Article 

    Google Scholar 
    Chaudhry, Q. U. Z. Climate Change Profile of Pakistan (Asian Development Bank, 2017).
    Google Scholar 
    Shaheen, H. et al. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas. Pak. J. Bot. 48, 2351–2357 (2016).CAS 

    Google Scholar 
    Arunyawat, S. & Shrestha, R. P. Assessing land use change and its impact on ecosystem services in Northern Thailand. Sustainability 8(8), 768 (2016).Article 

    Google Scholar 
    Sing, L., Metzger, M. J., Paterson, J. S. & Ray, D. A review of the effects of forest management intensity on ecosystem services for northern European temperate forests with a focus on the UK. For. Int. J. For. Res. 91(2), 151–164 (2018).
    Google Scholar  More

  • in

    Statistical considerations of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action

    Suding, K. Understanding successes and failures in restoration ecology. Annu. Rev. Ecol. Evol. Syst. 42, (2011).Brudvig, L. A. et al. Interpreting variation to advance predictive restoration science. J. Appl. Ecol. 54, 1018–1027 (2017).Article 

    Google Scholar 
    Germino, M. J. et al. Thresholds and hotspots for shrub restoration following a heterogeneous megafire. Landsc. Ecol. 33, 1177–1194 (2018).Article 

    Google Scholar 
    Shriver, R. K. et al. Transient population dynamics impede restoration and may promote ecosystem transformation after disturbance. Ecol. Lett. 22, 1357–1366 (2019).PubMed 
    Article 

    Google Scholar 
    Chambers, J. C. et al. Resilience and resistance of sagebrush ecosystems: implications for state and transition models and management treatments. Rangel. Ecol. Manag. 67, 440–454 (2014).Article 

    Google Scholar 
    Pilliod, D. S., Welty, J. L. & Toevs, G. R. Seventy-five years of vegetation treatments on public rangelands in the great basin of North America. Rangelands 39, 1–9 (2017).Article 

    Google Scholar 
    Applestein, C., Germino, M. J., Pilliod, D. S., Fisk, M. R. & Arkle, R. S. Appropriate sample sizes for monitoring burned pastures in sagebrush steppe: how many plots are enough, and can one size fit all? Rangel. Ecol. Manag. 71, 721–726 (2018).Article 

    Google Scholar 
    Homer, C. et al. Completion of the 2011 National Land Cover Database for the Conterminous United States-Representing a Decade of Land Cover Change Information Landsat-based mapping project. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar 
    Homer, C. G., Aldridge, C. L., Meyer, D. K. & Schell, S. J. Multi-scale remote sensing sagebrush characterization with regression trees over Wyoming, USA: Laying a foundation for monitoring. Int. J. Appl. Earth Obs. Geoinf. 14, 233–244 (2012).ADS 

    Google Scholar 
    Tredennick, A. T. et al. Forecasting climate change impacts on plant populations over large spatial extents. Ecosphere 7, 1–16 (2016).Article 

    Google Scholar 
    Rigge, M. et al. Quantifying western U.S. rangelands as fractional components with multi-resolution remote sensing and in situ data. Remote Sens. 12, 1–26 (2020).Article 

    Google Scholar 
    Shi, H., Homer, C., Rigge, M., Postma, K. & Xian, G. Analyzing vegetation change in a sagebrush ecosystem using long-term field observations and Landsat imagery in Wyoming. Ecosphere 11, 1–20 (2020).Article 

    Google Scholar 
    Williamson, M. A., Schwartz, M. W. & Lubell, M. N. Spatially explicit analytical models for social–ecological systems. Bioscience 68, 885–895 (2018).
    Google Scholar 
    Reid, J. L., Fagan, M. E. & Zahawi, R. A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 4, 1–4 (2018).Article 

    Google Scholar 
    Joppa, L. N. & Pfaff, A. High and far: biases in the location of protected areas. PLoS One 4, 1–6 (2009).Article 
    CAS 

    Google Scholar 
    Prach, K., Šebelíková, L., Řehounková, K. & del Moral, R. Possibilities and limitations of passive restoration of heavily disturbed sites. Landsc. Res. 45, 247–253 (2020).Article 

    Google Scholar 
    Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A. & Robalino, J. A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl Acad. Sci. USA 105, 16089–16094 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Jones, K. W. & Lewis, D. J. Estimating the counterfactual impact of conservation programs on land cover outcomes: The role of matching and panel regression techniques. PLoS One 10, 1–22 (2015).
    Google Scholar 
    Christie, A. P. et al. Simple study designs in ecology produce inaccurate estimates of biodiversity responses. J. Appl. Ecol. 56, 2742–2754 (2019).Article 

    Google Scholar 
    Larsen, A. E., Meng, K. & Kendall, B. E. Causal analysis in control–impact ecological studies with observational data. Methods Ecol. Evol. 10, 924–934 (2019).Article 

    Google Scholar 
    Parkhurst, T., Prober, S. M., Hobbs, R. J. & Standish, R. J. Global meta-analysis reveals incomplete recovery of soil conditions and invertebrate assemblages after ecological restoration in agricultural landscapes. J. Appl. Ecol. 1–15. https://doi.org/10.1111/1365-2664.13852. (2021)Crouzeilles, R. et al. A global meta-Analysis on the ecological drivers of forest restoration success. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Kettenring, K. M. & Adams, C. R. Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J. Appl. Ecol. 48, 970–979 (2011).Article 

    Google Scholar 
    Atkinson, J. & Bonser, S. P. “Active” and “passive” ecological restoration strategies in meta-analysis. Restor. Ecol. 28, 1032–1035 (2020).Article 

    Google Scholar 
    Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 170–184. https://doi.org/10.1017/CBO9780511810725.016. (1983)Angrist, J. D., & Pischke, J. S. Mostly harmless econometrics. (Princeton University Press, 2009).Bernes, C. et al. How are biodiversity and dispersal of species affected by the management of roadsides? A systematic map. Environ. Evid. 6, 1–16 (2017).Article 

    Google Scholar 
    França, F. et al. Do space-for-time assessments underestimate the impacts of logging on tropical biodiversity? An Amazonian case study using dung beetles. J. Appl. Ecol. 53, 1098–1105 (2016).Article 

    Google Scholar 
    Davies, K. W. et al. Saving the sagebrush sea: an ecosystem conservation plan for big sagebrush plant communities. Biol. Conserv. 144, 2573–2584 (2011).Article 

    Google Scholar 
    Miller, R. F. et al. Characteristics of Sagebrush Habitats and Limitations to Long-term Conservation. Greater sage-grouse: ecology and conservation of a landscape species and its habitats. USGS Adm. Rep. (2011).Pierson, F. B. et al. Hydrologic and erosion responses of sagebrush steppe following juniper encroachment, wildfire, and tree cutting. Rangel. Ecol. Manag. 66, 274–289 (2013).Article 

    Google Scholar 
    Wijayratne, U. C. & Pyke, D. A. Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies. Am. J. Bot. 99, 438–447 (2012).PubMed 
    Article 

    Google Scholar 
    Pyke, D. A., Wirth, T. A. & Beyers, J. L. Does seeding after wildfires in rangelands reduce erosion or invasive species? Restor. Ecol. 21, 415–421 (2013).Article 

    Google Scholar 
    Knutson, K. C. et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 51, 1414–1424 (2014).Article 

    Google Scholar 
    Shriver, R. K. et al. Adapting management to a changing world: Warm temperatures, dry soil, and interannual variability limit restoration success of a dominant woody shrub in temperate drylands. Glob. Chang. Biol. 24, 4972–4982 (2018).PubMed 
    Article 
    ADS 

    Google Scholar 
    Eiswerth, M. E., Krauter, K., Swanson, S. R. & Zielinski, M. Post-fire seeding on Wyoming big sagebrush ecological sites: Regression analyses of seeded nonnative and native species densities. J. Environ. Manag. 90, 1320–1325 (2009).Article 

    Google Scholar 
    Arkle, R. S. et al. Quantifying restoration effectiveness using multi-scale habitat models: Implications for sage-grouse in the Great Basin. Ecosphere 5, 1–32 (2014).Article 

    Google Scholar 
    Davies, K. W. & Bates, J. D. Restoring big sagebrush after controlling encroaching western juniper with fire: aspect and subspecies effects. Restor. Ecol. 25, 33–41 (2017).Article 

    Google Scholar 
    Davies, K. W., Bates, J. D. & Boyd, C. S. Postwildfire seeding to restore native vegetation and limit exotic annuals: an evaluation in juniper-dominated sagebrush steppe. Restor. Ecol. 27, 120–127 (2019).Article 

    Google Scholar 
    Davies, K. W., Boyd, C. S., Madsen, M. D., Kerby, J. & Hulet, A. Evaluating a seed technology for Sagebrush restoration across an elevation gradient: support for Bet Hedging. Rangel. Ecol. Manag. 71, 19–24 (2018).Article 

    Google Scholar 
    Rinella, M. J. et al. High precipitation and seeded species competition reduce seeded shrub establishment during dryland restoration. Ecol. Appl. 25, 1044–1053 (2015).Davies, K. W., Boyd, C. S. & Nafus, A. M. Restoring the sagebrush component in crested wheatgrass-dominated communities. Rangel. Ecol. Manag. 66, 472–478 (2013).Article 

    Google Scholar 
    United States General Accounting. WILDLAND FIRES: Better Information Needed on Effectiveness of Emergency Stabilization and Rehabilitation Treatments. Report to Congressional Requesters. https://doi.org/10.1089/blr.2006.9996. (2003)Requena-Mullor, J. M., Maguire, K. C., Shinneman, D. J. & Caughlin, T. T. Integrating anthropogenic factors into regional-scale species distribution models—A novel application in the imperiled sagebrush biome. Glob. Chang. Biol. 00, 1–15 (2019).
    Google Scholar 
    Pyke, D. A. et al. Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 3. Site level restoration decisions. U.S. Geological Survey Circular 1426 (2017).Chambers, J. C. et al. Science framework for conservation and restoration of the sagebrush biome: Linking the department of the interior’s integrated rangeland fire management strategy to long-term strategic conservation actions. USDA . Serv. – Gen. Tech. Rep. RMRS-GTR 2017, 1–217 (2017).
    Google Scholar 
    US-BLM. Burned Area Emergency Stabilization and Rehabilitation – BLM Handbook H-1742-1. 2, (2007).Pilliod, D. S. & Welty, J. L. Land Treatment Digital Library. Data Series. https://doi.org/10.3133/ds806. (2013)Bradley, B. A. et al. Cheatgrass (Bromus tectorum) distribution in the intermountain Western United States and its relationship to fire frequency, seasonality, and ignitions. Biol. Invasions 20, 1493–1506 (2018).Article 

    Google Scholar 
    Fusco, E. J., Finn, J. T., Balch, J. K., Chelsea Nagy, R. & Bradley, B. A. Invasive grasses increase fire occurrence and frequency across US ecoregions. Proc. Natl Acad. Sci. USA 116, 23594–23599 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    O’Connor, R. C. et al. Small-scale water deficits after wildfires create long-lasting ecological impacts. Environ. Res. Lett. 15, 044001 (2020).Applestein, C., Caughlin, T. T. & Germino, M. J. Weather affects post‐fire recovery of sagebrush‐steppe communities and model transferability among sites. Ecosphere 12, (2021).Cameron, A. C. & Miller, D. L. A. Practitioner’ s Guide to Cluster-Robust Inference. J. Human Resources. 50, 317–372 (2015).Oshchepkov, A. & Shirokanova, A. Bridging the gap between multilevel modeling and economic methods. Soc. Sci. Res. in press, (2022).Aldridge, C. L. & Boyce, M. S. Linking occurrence and fitness to persistence: habitat-based approach for endangered Greater Sage-Grouse. Ecol. Appl. 17, 508–526 (2007).PubMed 
    Article 

    Google Scholar 
    Allen-Diaz, B. & Bartolome, J. W. Sagebrush-grass vegetation dynamics: Comparing Classical and State-Transition models. Ecol. Appl. 8, 795–804 (1998).
    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Natural regeneration processes in big sagebrush (Artemisia tridentata). Rangel. Ecol. Manag. 67, 344–357 (2014).Article 

    Google Scholar 
    Melgoza, G., Nowak, R. S. & Tausch, R. J. Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83, 7–13 (1990).PubMed 
    Article 
    ADS 

    Google Scholar 
    Williamson, M. A. et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum) in the central Great Basin, USA. Biol. Invasions 22, 663–680 (2020).Article 

    Google Scholar 
    Groves, A. M., Bauer, J. T. & Brudvig, L. A. Lasting signature of planting year weather on restored grasslands. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    Groves, A. M. & Brudvig, L. A. Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restor. Ecol. 27, 128–137 (2019).Article 

    Google Scholar 
    Werner, C. M., Stuble, K. L., Groves, A. M. & Young, T. P. Year effects: Interannual variation as a driver of community assembly dynamics. Ecology 0, 1–8 (2020).
    Google Scholar 
    Stuble, K. L., Fick, S. E. & Young, T. P. Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. J. Appl. Ecol. 54, 1051–1057 (2017).Article 

    Google Scholar 
    Stuble, K. L., Zefferman, E. P., Wolf, K. M., Vaughn, K. J. & Young, T. P. Outside the envelope: rare events disrupt the relationshipbetween climate factors and species interactions. Ecology 98, 1623–1630 (2017).PubMed 
    Article 

    Google Scholar 
    Hardegree, S. P. et al. Weather-Centric Rangeland Revegetation Planning. Rangel. Ecol. Manag. 71, 1–11 (2018).Article 

    Google Scholar 
    Allison, B., Cara, S-W. & Applestein, M. J., Germino Interannual variation in climate contributes to contingency in post‐fire restoration outcomes in seeded sagebrush steppe. Conservation Science and Practice https://doi.org/10.1111/csp2.12737.Callaway, B. & Sant’Anna, P. H. C. Difference-in-Differences with multiple time periods. J. Econom. 225, 200–230 (2021).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 225, 254–277 (2021).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Starrs, C. F., Butsic, V., Stephens, C. & Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 13, (2018).Ferraro, P. J. & Miranda, J. J. Panel data designs and estimators as substitutes for randomized controlled trials in the evaluation of public programs. J. Assoc. Environ. Resour. Econ. 4, 281–317 (2017).
    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions. Ecol. Modell. 286, 66–77 (2014).Article 

    Google Scholar 
    Kleinhesselink, A. R. & Adler, P. B. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range. Ecology 99, 1139–1149 (2018).PubMed 
    Article 

    Google Scholar 
    Brabec, M. M., Germino, M. J. & Richardson, B. A. Climate adaption and post-fire restoration of a foundational perennial in cold desert: insights from intraspecific variation in response to weather. J. Appl. Ecol. 54, 293–302 (2017).Article 

    Google Scholar 
    Eidenshink, J. C. et al. A project for monitoring trends in burn severity. Fire Ecol. 3, 3–21 (2007).Article 

    Google Scholar 
    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5. http://cran.r-project.org/doc/Rnews/ (2005).Applestein, C. & Germino, M. J. Detecting shrub recovery in sagebrush steppe: comparing Landsat-derived maps with field data on historical wildfires. Fire Ecol. 17, (2021).Rigge, M. et al. Rangeland fractional components across the western United States from 1985 to 2018. Remote Sens. 13, 1–26 (2021).Article 

    Google Scholar 
    Hijmans, R. J. & van Etten, J. raster: Geographic analysis and modeling with raster data. (2012).U.S. Geological, S. 1/3rd arc-second Digital Elevation Models (DEMs)–USGS National Map 3DEP Downloadable Data Collection. (2017).Walkinshaw, Mike, A. T. O’Geen, D. E. B. Soil Properties. California Soil Resource Lab,McCune, B. & Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 13, 603–606 (2002).Article 

    Google Scholar 
    Abatzoglou, J. T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 33, 121–131 (2013).Article 

    Google Scholar 
    Ferraro, P. J. & Hanauer, M. M. Advances in measuring the environmental and social impacts of environmental programs. Annu. Rev. Environ. Resour. 39, 495–517 (2014).Article 

    Google Scholar 
    Butsic, V., Lewis, D. J., Radeloff, V. C., Baumann, M. & Kuemmerle, T. Quasi-experimental methods enable stronger inferences from observational data in ecology. Basic Appl. Ecol. 19, 1–10 (2017).Article 

    Google Scholar 
    Ho, D., Imai, K., King, G. & Stuart, E. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28, https://www.jstatsoft.org/v42/i08/ (2011).Article 

    Google Scholar 
    Guo, S. & Fraser, M. Propensity score analysis: statistical methods and applications. (Sage Publications, 2010).Puhani, P. A. The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models. Econ. Lett. 115, 85–87 (2012).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Schlaepfer, D. R., Lauenroth, W. K. & Bradford, J. B. Effects of ecohydrological variables on current and future ranges, local suitability patterns, and model accuracy in big sagebrush. Ecography (Cop.). 35, 374–384 (2012).Article 

    Google Scholar 
    Stan Development Team. RStan: the R interface to Stan. R package version 2.16.2. http://mc-stan.org (2020).Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, (2017).Mahr, T. & Gabry, J. bayesplot: Plotting for Bayesian Models. https://mc-stan.org/bayesplot/ R package version (2021).Kay, M. tidybayes: Tidy Data and Geoms for Bayesian Models. https://doi.org/10.5281/zenodo.1308151 R package version 3.0.1. (2021).Simler-Williamson, A. & Germino, M. J. Data associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.25338/B8W63R (2022).Simler‐Williamson, A. B. R code associated with “Statistical consideration of nonrandom treatment applications reveal region-wide benefits of widespread post-fire restoration action”. https://doi.org/10.5281/zenodo.6565074 (2022). More

  • in

    Biotic induction and microbial ecological dynamics of Oceanic Anoxic Event 2

    The biotic induction of OAE-2The rapid proliferation of select microbial communities at 427.54 mcd likely represents a pre-OAE biotic perturbation (pre-OAE BP) presaging the protracted period of widespread marine deoxygenation during OAE-2, and progressive deoxygenation predating the +CIE7 (Fig. 4). At the beginning of the pre-OAE BP (427.54 mcd), abruptly elevated tetrapyrroles and crenarchaeol concentrations signify an abrupt increase in primary production by photoautotrophs and chemoautotrophs residing above the chemocline. Increased volumes of precipitating biogenic snow concordantly consumed oxygen, expanding the preexisting OMZ as anaerobic bacteria thrived based on accelerated obGDGTs synthesis. Euxinia did not penetrate the photic zone at the outset of the productivity bloom as isorenieratane was not detected and heightened rates of microbial sulfate reduction were seemingly transient, inferred from the DAGEs profile, and limited to pre-OAE BP initiation. The lack of a well-stratified water column, evinced by absent to low concentrations of halophilic archaeal lipids (i.e., extended archaeols), relatively low rates of microbial sulfate reduction, and a dense oxygenic microbial plate likely precluded the development of PZE initially.Establishing a definitive causal mechanism for the pre-OAE BP is difficult, but the concomitance of LIP activity with the productivity spike is intriguing. Application of a linear sedimentation rate from OAE-2 to the pre-OAE BP interval following previous works6,7 approximated the pre-OAE BP occurring 220 ± 4 kyr before OAE-2, lasting for ~100 kyr (427.54–426.88 mcd; see Estimating the duration of the pre-OAE BP in Supplementary Information for rationale and calculation). Significantly, this was roughly coincident with the onset of LIP activity (~200–300 kyr before OAE-2) inferred from marine osmium isotope stratigraphy27. Similarities in the modern planktonic community response, such as elevated productivity and compositional changes, between the 2018 Kilauea eruption28 and the pre-OAE BP reinforce inference of a potential magmatic trigger for this event (see Evidence for LIP trigger of the pre-OAE biotic perturbation in Supplementary Information for additional details).A constant, yet overall lower, nutrient and trace metal inventory6 (Fig. S4) combined with a redox-driven shift in fixed N species (from NO3− to NH4+)15, potentially leading to a fixed N shortage29 via intensified denitrification and annamox reactions30, were probable culprits in the failure to sustain prolific rates of primary production beyond 100 kyr at the Demerara Rise. The gradual decline in biomass production, indicated by decreasing tetrapyrrole and crenarchaeol profiles (Fig. 4), was accompanied by a notable shift in deep water communities. Sulfate-reducing bacteria exerted increasing predominance over methanogenic archaea, a trend coeval with the primary productivity spike and extending well into the OAE (Fig. 3). A collapse of autotrophic communities to pre-perturbation levels was concordant with the progressive shoaling of H2S-laden waters. Continued vertical migration of the chemocline intruded the photic zone, producing PZE that enabled anoxygenic photosynthesis by Chlorobiaceae (Fig. 4). Unlike the overall oscillatory character of PZE throughout the studied section, this protracted phase of PZE was sustained until the onset of OAE-2 (426.43–426.00 mcd, Figs. 3 and 4) and is approximately contemporaneous with a thallium (Tl) isotope excursion7 (426.40–426.30 mcd).The positive Tl isotope excursion represents the progressive expansion of bottom water anoxia predating OAE-2 by 43 ± 11 kyr6,7. However, evidence for a causal mechanism of pre-OAE deoxygenation remains indeterminate. Our comprehensive biomarker inventory provides an interpreted sequence of events culminating in the regional to global expansion of anoxia predating OAE-2. A protracted phase of enhanced primary productivity began ~220 ± 4 kyr prior to OAE-2, increasing localized production and export of organic carbon at Demerara Rise. Similar productivity spikes likely occurred in settings of comparable paleogeographic configuration (e.g., equatorial, continental margins/shelves), seeding the oceans with fixed carbon. Continued scavenging of marine oxygen via organic carbon remineralization resulted in OMZ expansion locally, and likely initiated oxygen drawdown in much of the proto-North Atlantic Ocean. Stratigraphic records of sulfur isotopes of pyrite (δ34Spyrite) from the proto-North Atlantic and Tethys Oceans11 validate the areal extrapolation of our interpretations. A gradual decline in δ34Spyrite values at Demerara Rise begins at 427.50 mcd, nearly identical to the onset of the pre-OAE BP (427.54 mcd, Fig. 4). Correlation of δ34Spyrite in a global transect (Western Interior Seaway, proto-North Atlantic, Tethys) revealed consistent behavior in δ34Spyrite prior to the +CIE, indicating increasingly expansive marine deoxygenation on a global scale11. Over ~100 kyr, increased regional biomass production induced pervasive marine anoxia, inhibiting Mn-oxide formation, producing the observed positive Tl isotope excursion, and ultimately, the globally observed +CIE reflecting enhanced organic carbon burial signaling the onset of OAE-2. Thus, the local biotic signal recorded at ODP Site 1258 underlines the crucial role the Demerara Rise, and similar undocumented settings, served in initiating deoxygenation of the global ocean.Microbial ecological dynamics during and after OAE-2Changes in microbial community compositions during OAE-2 were apparent, signified by a shift in the normalized total biomarker pool (Fig. 3) and variations in the absolute concentrations of individual biomarkers (Fig. 4). In general, OAE-2 was defined by an expansion and diversification of intermediate and deep water communities (426.00–423.07 mcd), followed by a period of instability leading to the termination of the OAE (423.07–422.00 mcd). Photo- and chemoautotrophs residing above the chemocline were adversely affected, evinced by relatively low, invariant tetrapyrrole and crenarchaeol profiles (Fig. 4). Based on these observations, we divided OAE-2 into two periods defined by contrasting paleoenvironmental conditions modulating the microbial inhabitants of Demerara Rise.The first period of OAE-2 (426.00–423.07 mcd, Fig. 4) was marked by the intrusion of a euxinic OMZ into the photic zone. Elevated, yet fluctuating isorenieratane concentrations suggest relatively persistent PZE of varying vertical extent, in agreement with previous investigations using biomarkers and nitrogen isotopes at nearby sites12,13,31. During this interval, microbial sulfate reduction was likely active as DAGEs continually increased, aligning with estimates of expanded seafloor euxinia32. The co-occurrence of abundant extended archaeols and isorenieratane intimates the role that density stratification served in maintaining the protracted PZE of OAE-2, substantiating concurrent findings based on neodymium33 and oxygen isotopes34. Vertical nutrient advection via upwelling35 led to preferential exposure to expanding intermediate water communities tolerant to sulfidic conditions in the OMZ. Scavenging of a potentially limited fixed N inventory30, depleted in NO3− and predominated by NH4+[ 15,29, and inhibition of efficient nutrient transfer by pronounced density stratification likely induced severe N deficiency in surface water communities, explaining the relatively muted productivity of oxygenic photoautotrophs (i.e., tetrapyrroles) and chemoautotrophs (i.e., crenarchaeol) observed (Fig. 4). The concentration and predominant utilization of fixed N in the OMZ led to the proliferation and diversification of intermediate and deep water microbial taxa, while a shoaling chemocline led to increased nutrient (i.e., fixed N) competition between photoautotrophs and retreating Thaumarchaeota as highlighted by our biomarker inventory and the nitrogen isotopic record31. These findings challenge previous interpretations of highly productive, predominantly eukaryotic primary producers reliant on the upwelling of isotopically depleted NH4+ during OAE-215. Instead, the decline of C30-17-nor-DPEP (Fig. S5; Supplementary Data 3), a source-specific tetrapyrrole diagenetically derived from algal chlorophyll-c36, and reconstructed water column conditions during OAE-2 indirectly support a rise in cyanobacteria, diazotrophs able to fix N2, in oxygenated, nutrient-depleted shallow waters. Increased cyanobacterial contribution is further supported by C and N stable isotopes16,37, as well as the prominence of potentially phylum-specific biomarkers across OAE-2 (e.g., 2-methylhopanoids6,14).Fig. 5: Contrasting biogeochemical conditions between the pre-OAE BP and OAE-2.a, b Microbial ecology and water column conditions during the pre-OAE BP, reflecting high primary production of organic carbon (a) and OAE-2, characterized by relatively lower organic carbon production, but substantially enhanced biomass preservation (b). c, d Averaged fractional abundances of individual biomarkers throughout the pre-OAE BP (c) and OAE-2 (d). Biomarker source organisms are abbreviated as follows: phytoplankton (P), ammonia oxidizing archaea (AOA), sulfur oxidizing bacteria (SOB), unknown anaerobic bacteria (UAB), sulfate reducing bacteria (SRB), halophilic archaea (HA), methanogenic archaea (MA).Full size imageA reversal from the formerly outlined conditions typified the second period of OAE-2 (423.07–421.99 mcd, Fig. 4). Destabilization of the stratified water column and reduced production of H2S led to deepening and contraction of the euxinic OMZ. The observed decline in halophilic archaea, coincident with an overall decline in Chlorobiaceae populations, is roughly coeval with positive neodymium isotopic excursions observed across the proto-North Atlantic33 attributed to the enhanced latitudinal commingling of proto-North Atlantic water masses38. Although detrimental to sustained PZE, the persistence of a well-developed anaerobic bacterial community (i.e., obGDGTs) suggests the lasting presence of a non-euxinic OMZ despite improved bottom water circulation. A premature recovery of the chemoautotrophic Thaumarchaeota, inhabiting the base of the photic zone, relative to the shallower dwelling obligately oxygenic phototrophs (Fig. 3) likely reflects reduced toxicity associated with retreating euxinic waters, lessened resource competition with [primarily] Chlorobiaceae, and a competitive advantage tied to preferential exposure to upwelled nutrients and tolerance to low O2 conditions.The termination of OAE-2 was marked by the temporary re-establishment of microbial community compositions mirroring those observed prior to the pre-OAE BP (Figs. 3 and 4). Contraction of the OMZ led to a deep chemocline, with PZE restricted to the basal photic zone as the production of reduced sulfide species diminished. The Thaumarchaeota continued the recovery initiated towards the latter half of OAE-2, accompanied by the rebounding oxygenic photoautotrophs. However, the recovery of shallow autotrophic communities was halted by an episode of PZE (421.19–421.04 mcd) based on abrupt increases in isorenieratane concentrations (Fig. 4). Temporary development of pronounced density stratification likely facilitated the accumulation of H2S in the lower to intermediate photic zone, producing the short-lived PZE episode. Interestingly, covariant responses observed in additional biomarker profiles (e.g., obGDGTs) to PZE during OAE-2 were not evident across this post-OAE interval, possibly due to the transient nature of PZE at this time. For example, the initial increase in isorenieratane concentrations at the onset of OAE-2 was not immediately accompanied by shifts in other biomarker classes (e.g., obGDGTs; Fig. 4), suggesting frequent recurrences of PZE may be required to illicit a major microbial ecological response as observed later during the OAE. Still, this brief episode of post-OAE PZE (421.19–421.04 mcd) coincides with a positive organic carbon isotope excursion9 (Fig. S5), trace metal drawdown6 (Fig. S4), and minor positive Tl isotope excursion7 at the Demerara Rise. Prior study7 tentatively attributed this interval to enhanced carbon burial during a post-OAE deoxygenation event of smaller magnitude, with subsequent work revealing continued pyrite burial post-OAE 211. Our biomarker inventory revealed some environmental consistencies (e.g., PZE) between this interval and OAE-2, but the overall biotic response to this post-OAE geochemical perturbation was relatively subdued and requires additional sampling and investigation to properly constrain.Broader implicationsThe recognition of the pre-OAE BP and evolving water column conditions at Demerara Rise highlights additional complexities of a dynamic ocean relevant to interpretations of OAE-2 and the +CIE. Enhanced, sustained, and widespread carbon burial is required to produce the +CIE used to define OAE-28,10. Still, the principal forcing, productivity or preservation, remains enigmatic as evidence for the former mounts12,39.Based on the tetrapyrrole profiles (Fig. 4) primary production was greatest during the pre-OAE BP and relatively muted throughout OAE-2 at Demerara Rise, assuming minimal alteration to the genetic tetrapyrrole stratigraphic signal. Biomass preservation was presumedly enhanced during OAE-2 through sulfurization11, as the OMZ transitioned from anoxic to euxinic and penetrated the photic zone, yet low tetrapyrrole concentrations persist. Previous work noted a similar discrepancy between preservation potential and porphyrin abundance, postulating a paucity of trace metals to chelate with the free-base porphyrins induced poor preservation as desulfurization did not reveal additional porphyrin content16. However, both the pre-OAE BP and OAE-2 were characterized by relatively depleted trace metal inventories6 (Fig. S4), yet exhibit contrasting tetrapyrrole profiles, suggesting relative changes in primary production were the predominate control on the stratigraphic distribution of tetrapyrroles across the studied interval at the Demerara Rise. The strong covariance between tetrapyrrole and crenarchaeol concentrations reinforces the interpretation tetrapyrroles faithfully reflect primary production (Fig. S6). Crenarchaeol, a biosynthetic product of chemoautotrophic archaea (Thaumarchaeota) comprising up to 20% of all archaea and bacteria in the modern ocean40, is structurally distinct from the tetrapyrroles making it likely that diagenetic alteration of the two biomarkers is not consistent in rate or form. Thus, the positive correlation between key proxies for major contributors to primary production, the photoautotrophs and chemoautotrophs, minimizes concern for the integrity of the biotic signal at Demerara Rise (see Tetrapyrroles as a record of primary production in Supplementary Information for additional details).These findings provide direct evidence for a causal mechanism resulting in both the Tl isotope excursion and +CIE as previously described. It is highly probable the pre-OAE BP was not exclusive to the Demerara Rise based on the immense and presently unconstrained organic carbon burial required to produce the +CIE10. Further characterization of comparable localities to Demerara Rise may reveal similar high productivity events, as primed, highly productive settings likely capitalized on exogenous nutrient delivery via efficient upwelling to the photic zone prior to stratification during OAE-2. Hence, OAE-2 and the +CIE were not coincident with heightened surface water productivity relative to the pre-OAE BP at the Demerara Rise. Rather, antecedent increases in primary production locally facilitated the initiation of the OAE as a mechanism to consume marine oxygen and subsequently enhance organic carbon preservation globally. This highlights how OAE-2, and perhaps other OAEs in the geologic record, were not instantaneously induced but rather a gradual transition stemming from sustained forcing(s). In addition, the occurrence of the pre-OAE BP well before the established onset of OAE-2 reveals how fluctuations in primary production can be linked to marine deoxygenation but may not necessarily be concurrent. As shown here, OAE-2 at the Demerara Rise was preceded by elevated primary production that progressively attenuated towards event onset. While the hallmark features of an OAE are well-established, further identification and refinement of trends preceding widespread anoxia in the past will improve our understanding of how marine deoxygenation develops, as well as our ability to assess planetary health today.A shift from a productivity- to preservation-dominant system during OAE-2 at Demerara Rise, and possibly similar paleogeographic settings experiencing the pre-OAE BP, facilitated substantial organic carbon burial producing the +CIE. Distinct shifts in water column chemistry and structure from the pre-OAE BP to OAE-2 imparted considerable changes on microbial life, which altered the primary driver governing biomass sequestration (Fig. 5). Yet, both intervals reveal relatively comparable carbonate-corrected total organic carbon values6 (Fig. S5), signifying enhanced preservation as a critical component of organic carbon burial during OAE-2 at Demerara Rise. Consequently, this work suggests that sustained increases in primary production prior to OAE-2 initiated and regulated pre-OAE deoxygenation, resulting in a progressive shift to preservation as the primary control on organic carbon accumulation in sediments. Expanding euxinia and attendant changes to biogeochemical cycling adversely affected primary producers while simultaneously enhancing organic matter preservation via sulfurization11. Flourishment of Thaumarchaeota in oligotrophic settings in the modern open ocean41, and lack thereof during OAE-2 based on diminished crenarchaeol concentrations, underscores the scarcity of bioessential elements (e.g., fixed N) caused by microbial utilization of electron acceptors further down the redox ladder due to intensified marine anoxia, ultimately limiting primary production. The switch from a productivity to preservation model, reconstructed using biomarkers (Fig. 5) and initially suggested based on drawdown of the trace metal inventory6, was also concomitant with relative warming4. Simulated projections of the marine microbial response to continued global warming in the future revealed similar biotic trends (e.g., decreased primary productivity) to warming-induced oceanographic changes42 (e.g., intensified stratification) observed during OAE-2. Thus, an abundance of proxy- and model-based results paired with conceptual evidence suggest relatively low production and enhanced preservation of organic carbon throughout OAE-2 at the equatorial Demerara Rise.The pre-OAE BP may foreshadow greater regional trends observed during OAE-2. Equatorial upwelling centers, like Demerara Rise, are spatially restricted and represent regions of already high primary production before OAE-2. Climatic shifts concurrent with OAE-2 may have produced favorable conditions for elevated primary productivity in regions unable to capitalize on or exposed to allochthonous nutrient delivery prior to the +CIE. While the pre-OAE BP offers a causal mechanism for the Tl isotope excursion and +CIE initiation, areal expansion of organic carbon preservation and production is necessary to sustain enhanced organic carbon burial for the duration of the +CIE.Continued development of preexisting proxies is critical to extract and clarify current understandings of major climatic events in Earth history. Although reliant on excellent preservation of the microbial signal, the analytical and interpretative approach used here enables simultaneous examination of a wide array of biomarkers, producing a more holistic reconstruction of oceanographic changes inferred from microbial ecological variations spanning the surface to the sediment. This is timely, as investigations of the sedimentary archives become increasingly valuable analogs to understand the response of modern oceans to natural and anthropogenic forcings. Similarities between the pre-OAE BP and modern, climate-driven marine deoxygenation are concerning, while particular attention to preexisting highly productive settings may hold the key to forecasting the geologically rapid transition to a global OAE. Even though natural processes are currently beyond our control, stifling anthropogenic catalysts of climate change may decelerate the unfortunate, progressive suitability of OAEs as climate analogs in the future. More