More stories

  • in

    Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).ADS 
    Article 

    Google Scholar 
    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).ADS 
    Article 

    Google Scholar 
    Rayner, P. J. et al. Interannual variability of the global carbon cycle (1992-2005) inferred by inversion of atmospheric CO2 and δ13CO2 measurements. Glob. Biogeochem. Cycles 22, 1–12 (2008).Article 
    CAS 

    Google Scholar 
    Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 26, 300–318 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Betts, R. A. et al. A successful prediction of the record CO2 rise associated with the 2015/2016 El Niño. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170301 (2018).Article 
    CAS 

    Google Scholar 
    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang, Y. et al. Global land carbon sink response to temperature and precipitation varies with ENSO phase. Environ. Res. Lett. 12, 064007 (2017).ADS 
    Article 

    Google Scholar 
    Humphrey, V. et al. Soil moisture–atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, W. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. USA 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marcolla, B., Rödenbeck, C. & Cescatti, A. Patterns and controls of inter-annual variability in the terrestrial carbon budget. Biogeosciences 14, 3815–3829 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Yin, Y. et al. Changes in the response of the northern hemisphere carbon uptake to temperature over the last three decades. Geophys. Res. Lett. 45, 4371–4380 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data. Biogeosciences 15, 2481–2498 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Palmer, P. I. et al. Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal. Nat. Commun. 10, 1–9 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants 5, 944–951 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hu, L. et al. Enhanced North American carbon uptake associated with El Niño. Sci. Adv. 5, 1–11 (2019).ADS 

    Google Scholar 
    Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Chang. Biol. 26, 682–696 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Reichstein, M. et al. Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    Shiga, Y. P. et al. Forests dominate the interannual variability of the North American carbon sink. Environ. Res. Lett. 13, 084015 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Wang, X., Ciais, P., Wang, Y. & Zhu, D. Divergent response of seasonally dry tropical vegetation to climatic variations in dry and wet seasons. Glob. Chang. Biol. 24, 4709–4717 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, J. et al. Detecting drought impact on terrestrial biosphere carbon fluxes over contiguous US with satellite observations. Environ. Res. Lett. 13, 095003 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Bastos, A. et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 6, eaba2724 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chevallier, F. et al. Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data. J. Geophys. Res. 110, D24309 (2005).ADS 
    Article 
    CAS 

    Google Scholar 
    Rödenbeck, C., Houweling, S., Gloor, M. & Heimann, M. CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys. 3, 1919–1964 (2003).ADS 
    Article 

    Google Scholar 
    Chevallier, F. et al. Objective evaluation of surface- and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys. 19, 14233–14251 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. The European carbon cycle response to heat and drought as seen from atmospheric CO2 data for 1999–2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190506 (2020).Article 
    CAS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 
    Article 

    Google Scholar 
    Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhou, S., Zhang, Y., Williams, A. P. & Gentine, P. Projected increases in intensity, frequency, and terrestrial carbon costs of compound drought and aridity events. Sci. Adv. 5, 1–9 (2019).CAS 

    Google Scholar 
    Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Turetsky, M. R. et al. Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, Z. L. et al. Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002–2017. Adv. Clim. Chang. Res. 12, 475–481 (2021).Article 

    Google Scholar 
    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Virkkala, A. M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: Regional patterns and uncertainties. Glob. Chang. Biol. 27, 4040–4059 (2021).PubMed 
    Article 

    Google Scholar 
    Randazzo, N. A. et al. Higher autumn temperatures lead to contrasting CO2 flux responses in boreal forests versus tundra and shrubland. Geophys. Res. Lett. 48, e2021GL093843 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos. Trans. R. Soc. B Biol. Sci. 365, 3227–3246 (2010).Article 

    Google Scholar 
    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Chang. 7, 359–363 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).PubMed 
    Article 

    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Randerson, J. T., Field, C. B., Fung, I. Y. & Tans, P. P. Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26, 2765–2768 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Black, T. A. et al. Increased carbon sequestration by a boreal deciduous forest in years with a warm spring. Geophys. Res. Lett. 27, 1271–1274 (2000).ADS 
    Article 

    Google Scholar 
    Wang, T. et al. Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nat. Commun. 9, 1–7 (2018).ADS 
    Article 
    CAS 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Buermann, W. et al. Recent shift in Eurasian boreal forest greening response may be associated with warmer and drier summers. Geophys. Res. Lett. 41, 1995–2002 (2014).ADS 
    Article 

    Google Scholar 
    Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, C. et al. Identifying critical climate periods for vegetation growth in the northern hemisphere. J. Geophys. Res. Biogeosci. 123, 2541–2552 (2018).Article 

    Google Scholar 
    Gloor, E. et al. Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170302 (2018).Article 
    CAS 

    Google Scholar 
    Saatchi, S. et al. Detecting vulnerability of humid tropical forests to multiple stressors. One Earth 4, 988–1003 (2021).ADS 
    Article 

    Google Scholar 
    Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Liu, J. et al. Carbon monitoring system flux net biosphere exchange 2020 (CMS-Flux NBE 2020). Earth Syst. Sci. Data 13, 299–330 (2021).ADS 
    Article 

    Google Scholar 
    Quetin, G. R., Bloom, A. A., Bowman, K. W. & Konings, A. G. Carbon flux variability from a relatively simple ecosystem model with assimilated data is consistent with terrestrial biosphere model estimates. J. Adv. Model. Earth Syst. 12, e2019MS001889 (2020).ADS 
    Article 

    Google Scholar 
    Schewe, J. et al. State-of-the-art global models underestimate impacts from climate extremes. Nat. Commun. 10, 1005 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gentine, P. et al. Coupling between the terrestrial carbon and water cycles – A review. Environ. Res. Lett. 14, 83003 (2019).CAS 
    Article 

    Google Scholar 
    Bastos, A. et al. Impacts of extreme summers on European ecosystems: a comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190507 (2020).CAS 
    Article 

    Google Scholar 
    Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haverd, V. et al. A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geosci. Model Dev. 11, 2995–3026 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Melton, J. R. & Arora, V. K. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0. Geosci. Model Dev. 9, 323–361 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).ADS 
    Article 

    Google Scholar 
    Tian, H. et al. North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget. Clim. Change 129, 413–426 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Meiyappan, P., Jain, A. K. & House, J. I. Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change. Glob. Biogeochem. Cycles 29, 1524–1548 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Mauritsen, T. et al. Developments in the MPI‐M Earth system model version 1.2 (MPI‐ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulter, B., Frank, D. C., Hodson, E. L. & Zimmermann, N. E. Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO2 airborne fraction. Biogeosciences 8, 2027–2036 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Lienert, S. & Joos, F. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions. Biogeosciences 15, 2909–2930 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Zaehle, S. & Friend, A. D. Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates. Glob. Biogeochem. Cycles 24, 1–13 (2010).
    Google Scholar 
    Goll, D. S. et al. A representation of the phosphorus cycle for ORCHIDEE (revision 4520). Geosci. Model Dev. 10, 3745–3770 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 1–33 (2005).Article 
    CAS 

    Google Scholar 
    Walker, A. P. et al. The impact of alternative trait‐scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. N. Phytol. 215, 1370–1386 (2017).CAS 
    Article 

    Google Scholar 
    Joetzjer, E. et al. Improving the ISBACC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest. Geosci. Model Dev. 8, 1709–1727 (2015).ADS 
    Article 

    Google Scholar 
    Kato, E., Kinoshita, T., Ito, A., Kawamiya, M. & Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J. Land Use Sci. 8, 104–122 (2013).Article 

    Google Scholar 
    Wei, Y. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project – Part 2: environmental driver data. Geosci. Model Dev. 7, 2875–2893 (2014).ADS 
    Article 

    Google Scholar 
    Dlugokencky, E. J., Thoning, K. W., Lang, P. M. & Tans, P. P. NOAA greenhouse gas reference from atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network. ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/surface/ (2017). More

  • in

    500 metagenome-assembled microbial genomes from 30 subtropical estuaries in South China

    Zhu, Y. G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270, https://doi.org/10.1038/nmicrobiol.2016.270 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058, https://doi.org/10.1038/nmicrobiol.2017.58 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, J. & Jia, H. Metagenome-wide association studies: fine-mining the microbiome. Nat. Rev. Microbiol. 14, 508–522, https://doi.org/10.1038/nrmicro.2016.83 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kan, J., Suzuki, M. T., Wang, K., Evans, S. E. & Chen, F. High temporal but low spatial heterogeneity of bacterioplankton in the Chesapeake bay. Appl. Environ. Microbiol. 73, 6776–6789, https://doi.org/10.1128/Aem.00541-07 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouvier, T. C. & del Giorgio, P. A. Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol. Oceanogr. 47, 453–470, https://doi.org/10.4319/lo.2002.47.2.0453 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220, https://doi.org/10.1038/ismej.2012.93 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fortunato, C. S., Herfort, L., Zuber, P., Baptista, A. M. & Crump, B. C. Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME J. 6, 554–563, https://doi.org/10.1038/ismej.2011.135 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ghosh, A. & Bhadury, P. Exploring biogeographic patterns of bacterioplankton communities across global estuaries. MicrobiologyOpen 8, https://doi.org/10.1002/mbo3.741 (2019).Zhang, C. J., Chen, Y. L., Pan, J., Wang, Y. M. & Li, M. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl. Microbiol. Biotechnol. 104, 4593–4603, https://doi.org/10.1007/s00253-020-10613-z (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, T. et al. Characteristics of Microbial Communities and Their Correlation With Environmental Substrates and Sediment Type in the Gas-Bearing Formation of Hangzhou Bay, China. Front. Microbiol. 10, https://doi.org/10.3389/fmicb.2019.02421 (2019).Zhou, L. et al. Stochastic determination of the spatial variation of potentially pathogenic bacteria communities in a large subtropical river. Environ. Pollut. 264, 114683, https://doi.org/10.1016/j.envpol.2020.114683 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhou, L. et al. Environmental filtering dominates bacterioplankton community assembly in a highly urbanized estuarine ecosystem. Environ. Res. 196, 110934, https://doi.org/10.1016/j.envres.2021.110934 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, D., Liu, C. M., Luo, R., Sadakane, K. & Lam, T. W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676, https://doi.org/10.1093/bioinformatics/btv033 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mikheenko, A., Saveliev, V. & Gurevich, A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics 32, 1088–1090, https://doi.org/10.1093/bioinformatics/btv697 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, https://doi.org/10.1186/s40168-018-0541-1 (2018).Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A. & Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinf. 70, e102, https://doi.org/10.1002/cpbi.102 (2020).CAS 
    Article 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication[J]. ISME J. 11, 2864–2868, https://doi.org/10.1038/ismej.2017.126 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uritskiy, G. et al. Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert. ISME J. 13, 2737–2749, https://doi.org/10.1038/s41396-019-0468-y (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419, https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927, https://doi.org/10.1093/bioinformatics/btz848 (2020).CAS 
    Article 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086, https://doi.org/10.1038/s41587-020-0501-8 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PloS one 5, e9490, https://doi.org/10.1371/journal.pone.0009490 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274, https://doi.org/10.1093/molbev/msu300 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296, https://doi.org/10.1093/nar/gkab301 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    NCBI Sequence Read Archive https://identifiers.org/ncbi/insdc.sra:SRP320016 (2021).Zhou, L., Huang, S., Gong, J., Xu, P. & Huang, X. 500 metagenome-assembled microbial genomes from 30 subtropical estuaries in South China. Figshare https://doi.org/10.6084/m9.figshare.14717061.v4 (2021).Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055, https://doi.org/10.1101/gr.186072.114 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Muhlfeld, C. C. et al. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change 4, 620–624 (2014).Article 

    Google Scholar 
    Taylor, S. A. et al. Climate-mediated movement of an avian hybrid zone. Curr. Biol. 24, 671–676 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mao, Y., Economo, E. P. & Satoh, N. The roles of introgression and climate change in the rise to dominance of Acropora corals. Curr. Biol. 28, 3373–3382.e5 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vianna, J. A. et al. Genome-wide analyses reveal drivers of penguin diversification. Proc. Natl Acad. Sci. USA 117, 22303–22310 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKelvey, K. S. et al. Patterns of hybridization among cutthroat trout and rainbow trout in northern Rocky Mountain streams. Ecol. Evol. 6, 688–706 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, B. Y., Huber, C. D. & Lohmueller, K. E. Deleterious variation shapes the genomic landscape of introgression. PLoS Genet. 14, e1007741 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, D.-D. et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2, 1139–1145 (2018).Article 
    PubMed 

    Google Scholar 
    Wang, M.-S. et al. Ancient hybridization with an unknown population facilitated high-altitude adaptation of canids. Mol. Biol. Evol. 37, 2616–2629 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haig, S. M., Mullins, T. D., Forsman, E. D., Trail, P. W. & Wennerberg, L. I. V. Genetic identification of spotted owls, barred owls, and their hybrids: legal implications of hybrid identity. Conserv. Biol. 18, 1347–1357 (2004).Article 

    Google Scholar 
    vonHoldt, B. M. et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2, e1501714 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, S. et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157, 785–794 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, V. et al. The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 46487 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Preuß, A., Gansloßer, U., Purschke, G. & Magiera, U. Bear-hybrids: behaviour and phenotype. Zool. Gart. 78, 204–220 (2009).Article 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet. 9, e1003345 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pongracz, J. D., Paetkau, D., Branigan, M. & Richardson, E. Recent hybridization between a polar bear and grizzly bears in the Canadian Arctic. Arctic 70, 151–160 (2017).Article 

    Google Scholar 
    Pugach, I., Matveyev, R., Wollstein, A., Kayser, M. & Stoneking, M. Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol. 12, R19 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farquharson, L. et al. Alaskan marine transgressions record out-of-phase Arctic Ocean glaciation during the last interglacial. Geology 46, 783–786 (2018).Article 

    Google Scholar 
    Kapp, J. D., Green, R. E. & Shapiro, B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J. Hered. 112, 241–249 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pease, J. B. & Hahn, M. W. Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64, 651–662 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barlow, A. et al. Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears. Curr. Biol. 31, 1771–1779.e7 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barlow, A. et al. Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol. 2, 1563–1570 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, K., Mathieson, I., O’Connell, J. & Schiffels, S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 16, e1008552 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polyak, L. et al. History of sea ice in the Arctic. Quat. Sci. Rev. 29, 1757–1778 (2010).Article 

    Google Scholar 
    Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guarino, M.-V. et al. Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nat. Clim. Change 10, 928–932 (2020).Article 

    Google Scholar 
    Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 13, 138–145 (2015).Article 

    Google Scholar 
    Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524 (2018).Article 

    Google Scholar 
    Miller, S., Wilder, J. & Wilson, R. R. Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. J. Mammal. 96, 1317–1325 (2015).Article 

    Google Scholar 
    Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. The mating system of the brown bear Ursus arctos. Mamm. Rev. 42, 12–34 (2012).Article 

    Google Scholar 
    Stirling, I., Spencer, C. & Andriashek, D. Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Mar. Mamm. Sci. 32, 13–37 (2016).Article 

    Google Scholar 
    Méheust, M., Stein, R., Fahl, K. & Gersonde, R. Sea-ice variability in the subarctic North Pacific and adjacent Bering Sea during the past 25 ka: new insights from IP25 and Uk′37 proxy records. Arktos 4, 1–19 (2018).Article 

    Google Scholar 
    Brigham-Grette, J. & Hopkins, D. M. Emergent marine record and paleoclimate of the last interglaciation along the northwest Alaskan coast. Quat. Res. 43, 159–173 (1995).Article 

    Google Scholar 
    Boessenkool, S. et al. Combining bleach and mild predigestion improves ancient DNA recovery from bones. Mol. Ecol. Resour. 17, 742–751 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).Article 
    PubMed 

    Google Scholar 
    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prüfer, K. snpAD: an ancient DNA genotype caller. Bioinformatics 34, 4165–4171 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA–MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G., Peterson, D. & Tamura, K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28, 2685–2686 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vihtakari, M. PlotSvalbard: User Manual. Github https://mikkovihtakari.github.io/PlotSvalbard/articles/PlotSvalbard.html (2020).Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinformatics 69, e96 (2020).Article 
    PubMed 

    Google Scholar 
    Yu, G., Lam, T. T., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, L.-G. et al. Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37, 599–603 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindqvist, C. et al. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear. Proc. Natl Acad. Sci. USA 107, 5053–5057 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelleher, J., Etheridge, A. M. & McVean, G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 12, e1004842 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395–1400 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vershinina, A. O. et al. Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Mol. Ecol. 30, 6144–6161 (2021).Article 
    PubMed 

    Google Scholar 
    Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and interpreting apparent Neanderthal ancestry in African individuals. Cell 180, 677–687.e16 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    Google Scholar  More

  • in

    Expected contraction in the distribution ranges of demersal fish of high economic value in the Mediterranean and European Seas

    Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).Article 

    Google Scholar 
    Pauly, D. The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv. 7, 6050 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros-Montemayor, A. M. & Cheung, W. W. L. Adaptation strategies to climate change in marine systems. Glob. Change Biol. 24, e1–e14 (2018).Article 
    ADS 

    Google Scholar 
    Chan, F. T. et al. Climate change opens new frontiers for marine species in the Arctic: Current trends and future invasion risks. Glob. Change Biol. 25, 25–38 (2019).Article 
    ADS 

    Google Scholar 
    Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Model. 325, 57–66 (2016).CAS 
    Article 

    Google Scholar 
    Pita, I., Mouillot, D., Moullec, F. & Shin, Y. Contrasted patterns in climate change risk for Mediterranean fisheries. Glob. Change Biol. 27, 5920–5933 (2021).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Fishing for aquaculture: Non-food use of small pelagic forage fish—a global perspective. Rev. Fish. Sci. 17, 305–317 (2009).Article 

    Google Scholar 
    Coll, M., Pennino, M. G., Steenbeek, J., Sole, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).Article 

    Google Scholar 
    Schickele, A. et al. Improving predictions of invasive fish ranges combining functional and ecological traits with environmental suitability under climate change scenarios. Glob. Change Biol. 27, 6086–6102 (2021).Article 

    Google Scholar 
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).PubMed 
    Article 

    Google Scholar 
    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).Article 
    ADS 

    Google Scholar 
    FAO. The State of Mediterranean and Black Sea Fisheries 2020—At a glance. 20 (2020).McGinty, N., Barton, A. D., Finkel, Z. V., Johns, D. G. & Irwin, A. J. Niche conservation in copepods between ocean basins. Ecography https://doi.org/10.1111/ecog.05690 (2021).Article 

    Google Scholar 
    Dormann, C. F. et al. Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glob. Ecol. Biogeogr. 27, 1004–1016 (2018).Article 

    Google Scholar 
    Hannemann, H., Willis, K. J. & Macias-Fauria, M. The devil is in the detail: unstable response functions in species distribution models challenge bulk ensemble modelling: Unstable response functions in SDMs. Glob. Ecol. Biogeogr. 25, 26–35 (2016).Article 

    Google Scholar 
    Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Chang. 9, 237–243 (2019).Article 
    ADS 

    Google Scholar 
    Lasram, B. R. et al. An open-source framework to model present and future marine species distributions at local scale. Ecol. Inform. 59, 101130 (2020).Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, 4858 (2019).Article 
    ADS 

    Google Scholar 
    Schickele, A. et al. European small pelagic fish distribution under global change scenarios. Fish Fish 22, 212–225 (2021).Article 

    Google Scholar 
    Duarte, R., Azevedo, M., Landa, J. & Pereda, P. Reproduction of angler®sh (Lophius budegassa Spinola and Lophius piscatorius Linnaeus) from the Atlantic Iberian coast. Fish. Res. 13, 2 (2001).
    Google Scholar 
    Nunes, P., Svensson, L. & Markandya, A. Handbook on the Economics and Management of Sustainable Oceans (Edward Elgar Publishing, 2017).Book 

    Google Scholar 
    Schickele, A. et al. Modelling European small pelagic fish distribution: Methodological insights. Ecol. Model. 416, 108902 (2020).Article 

    Google Scholar 
    Cheung, W. W. L., Jones, M. C., Reygondeau, G. & Frölicher, T. L. Opportunities for climate-risk reduction through effective fisheries management. Glob. Change Biol. 24, 5149–5163 (2018).Article 
    ADS 

    Google Scholar 
    Bossier, S. et al. The Baltic Sea Atlantis: An integrated end-to-end modelling framework evaluating ecosystem-wide effects of human-induced pressures. PLoS ONE 13, e0199168 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Valle, C., Bayle-Sempere, J. T., Dempster, T., Sanchez-Jerez, P. & Giménez-Casalduero, F. Temporal variability of wild fish assemblages associated with a sea-cage fish farm in the south-western Mediterranean Sea. Estuar. Coast. Shelf Sci. 72, 299–307 (2007).Article 
    ADS 

    Google Scholar 
    Madurell, T., Cartes, J. E. & Labropoulou, M. Changes in the structure of fish assemblages in a bathyal site of the Ionian Sea (eastern Mediterranean). Fish. Res. 66, 245–260 (2004).Article 

    Google Scholar 
    Volkoff, H. & Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 7, 307–320 (2020).Article 

    Google Scholar 
    Rutterford, L. A. et al. Future fish distributions constrained by depth in warming seas. Nat. Clim. Change 5, 569–573 (2015).Article 
    ADS 

    Google Scholar 
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    Conti, L. & Scardi, M. Fisheries yield and primary productivity in large marine ecosystems. Mar. Ecol. Prog. Ser. 410, 233–244 (2010).Article 
    ADS 

    Google Scholar 
    Chérif, M. et al. Food and feeding habits of the red mullet, Mullus barbatus (Actinopterygii: Perciformes: Mullidae), off the northern Tunisian coast (central Mediterranean). Acta Icth et Piscat 41, 109–116 (2011).Article 

    Google Scholar 
    Mellon-Duval, C. et al. Trophic ecology of the European hake in the Gulf of Lions, northwestern Mediterranean Sea. Sci. Mar. 81, 7 (2017).Article 

    Google Scholar 
    Steingrund, P. & Gaard, E. Relationship between phytoplankton production and cod production on the Faroe Shelf. ICES J. Mar. Sci. 62, 163–176 (2005).Article 

    Google Scholar 
    Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268 (2006).PubMed 
    Article 

    Google Scholar 
    Vasilakopoulos, P., Raitsos, D. E., Tzanatos, E. & Maravelias, C. D. Resilience and regime shifts in a marine biodiversity hotspot. Sci. Rep. 7, 13647 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Issifu, I., Alava, J. J., Lam, V. W. Y. & Sumaila, U. R. Impact of ocean warming, overfishing and mercury on European fisheries: A risk assessment and policy solution framework. Front. Mar. Sci. 8, 770805 (2022).Article 

    Google Scholar 
    Lima, A. R. A. et al. Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change. Sci. Total Environ. 804, 150167 (2022).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, 3855 (2019).Article 
    ADS 

    Google Scholar 
    Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nat. Commun. 11, 4579 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 523 (2020).Article 

    Google Scholar 
    Lindegren, M. & Brander, K. Adapting fisheries and their management to climate change: A review of concepts, tools, frameworks, and current progress toward implementation. Rev. Fish. Sci. Aquacult. 26, 400–415 (2018).Article 

    Google Scholar 
    Demirel, N., Zengin, M. & Ulman, A. First large-scale eastern mediterranean and black sea stock assessment reveals a dramatic decline. Front. Mar. Sci. 7, 103 (2020).Article 

    Google Scholar 
    Weiss, C. V. C. et al. Climate change effects on marine renewable energy resources and environmental conditions for offshore aquaculture in Europe. ICES J. Mar. Sci. 77, 3168–3182 (2020).Article 

    Google Scholar 
    Cascarano, M. C. et al. Mediterranean aquaculture in a changing climate: temperature effects on pathogens and diseases of three farmed fish species. Pathogens 10, 1205 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kleitou, P. et al. Fishery reforms for the management of non-indigenous species. J. Environ. Manag. 280, 111690 (2021).Article 

    Google Scholar 
    Hamida, B.-B. & O, Ben Hadj Hamida N, Chaouch H, Missaoui H,. Allometry, condition factor and growth of the swimming blue crab Portunus segnis in the Gulf of Gabes, Southeastern Tunisia (Central Mediterranean). Medit. Mar. Sci. 20, 566 (2019).Article 

    Google Scholar 
    Wisz, M. S. et al. Reply to ‘Sources of uncertainties in cod distribution models’. Nat. Clim. Change 5, 790–791 (2015).Article 
    ADS 

    Google Scholar 
    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).Article 

    Google Scholar 
    Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).Article 
    ADS 

    Google Scholar 
    Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558 (2020).Article 

    Google Scholar 
    Thuiller, W., Damie, G., Robin, E., Frank, F.Biomod2: Ensemble Platform for Species Distribution Modeling (2016).Stolar, J. & Nielsen, S. E. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608 (2015).Article 

    Google Scholar 
    Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).Article 

    Google Scholar 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87(6), 1465–1471 (2003).Article 

    Google Scholar 
    Hengl, T., Sierdsema, H., Radović, A. & Dilo, A. Spatial prediction of species’ distributions from occurrence-only records: Combining point pattern analysis ENFA and regression-kriging. Ecol. Modell. 220, 3499–3511 (2009).Article 

    Google Scholar 
    Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5, eaar6993 (2019).Lavoie, D., Lambert, N. & Gilbert, D. Projections of future trends in biogeochemical conditions in the northwest Atlantic using CMIP5 earth system models. Atmos. Ocean 57, 18–40 (2019).CAS 
    Article 

    Google Scholar 
    Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106, 7183–7192 (2001).Article 
    ADS 

    Google Scholar 
    Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8, 245–251 (2018).Article 
    ADS 

    Google Scholar 
    Zeller, D. et al. Still catching attention: Sea Around Us reconstructed global catch data, their spatial expression and public accessibility. Mar. Policy 70, 145–152 (2016).Article 

    Google Scholar 
    GBIF.org (27 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.2crvdpGBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.y8ujd7GBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.hs8py7GBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.kqwq3aGBIF.org (14 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.raka7jGBIF.org (14 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.fwbk43GBIF.org (30 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.845mcwGBIF.org (30 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.wdavbrGBIF.org (11 September 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.ucuavw More

  • in

    Genetic structure of American bullfrog populations in Brazil

    Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20(3), 5451. https://doi.org/10.1016/j.tree.2005.01.003 (2005).Article 

    Google Scholar 
    Duenas, M. A., Hemming, D. J., Roberts, A. & Diaz-Soltero, H. The threat of invasive species to IUCN-listed critically endangered species: a systematic review. Glob. Ecol. Conserv. p. e01476 (2021).Diagne, C. et al. InvaCost, a public database of the economic costs of biological invasions worldwide. Sci. Data 7(1), 1–12 (2020).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Global economic costs of aquatic invasive alien species. Sci. Total Environ. 775, 145238 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592(7855), 571–576 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gregory, R. & Long, G. Using structured decision making to help implement a precautionary approach to endangered species management. Risk Anal. 29(4), 518–532. https://doi.org/10.1111/j.1539-6924.2008.01182.x (2009).Article 
    PubMed 

    Google Scholar 
    Berroneau, M., Detaint, M. & Coi, C. Bilan du programme de mise en place d’une stratégie d’éradication de la grenouille taureau Lithobates catesbeianus (Shaw 1802) en Aquitaine (2003–2007) et perspectives. Bull. Soc. Herpétol. France 127, 35–45 (2008).
    Google Scholar 
    Orchard, S. A. Removal of the American bullfrog, Rana (Lithobates) catesbeiana, from a pond and a lake on Vancouver Island, British Columbia, Canada. Island invasives: eradication and management. IUCN (Gland, Switzerland), 1–542 (2011).Robertson, B. C. & Gemmell, N. J. Defining eradication units to control invasive pests. J. Appl. Ecol. 41(6), 1042–1048 (2004).Article 

    Google Scholar 
    Shaw, G. General Zoology or Systematic Natural History Vol. 3, 106–108 (Society for the study of Amphibians and Reptiles, 1802).
    Google Scholar 
    Howard, R. D. Sexual dimorphism in bullfrogs. Ecology 62(2), 303–310 (1981).Article 

    Google Scholar 
    Kaefer, Í. L., Boelter, R. A. & Cechin, S. Z. Reproductive biology of the invasive bullfrog Lithobates catesbeianus in southern Brazil. In Annales Zoologici Fennici 435–444 (2007).Bissattini, A. M. & Vignoli, L. Let’s eat out, there’s crayfish for dinner: American bullfrog niche shifts inside and outside native ranges and the effect of introduced crayfish. Biol. Invasions 19(9), 2633–2646 (2017).Article 

    Google Scholar 
    Boelter, R. A. & Cechin, S. Z. Impacto da dieta de rã-touro (Lithobates catesbeianus – Anura, Ranidae) sobre a fauna nativa: estudo de caso na região de Agudo – RS – Brasil 1. Nat. Conserv. 5(2), 45–53 (2007).
    Google Scholar 
    Govindarajulu, P., Price, W. S. & Anholt, B. R. Introduced bullfrogs (Rana catesbeiana) in western Canada: has their ecology diverged?. J. Herpetol. 40(2), 249–261 (2006).Article 

    Google Scholar 
    McCoy, C. J. Diet of bullfrogs (Rana catesbeiana) in Central Oklahoma farm ponds. In Proceedings of the Oklahoma Academy of Sciences 44–45 (1967).Teixeira, E., Silva, D., Pinto, O., Filho, R. & Feio, R. N. Predation of native anurans by invasive bullfrogs in Southeastern Brazil: spatial variation and effect of microhabitat use by prey. S. Am. J. Herpetol. 6(1), 1–11. https://doi.org/10.2994/057.006.0101 (2011).Article 

    Google Scholar 
    Wu, Z., Li, Y., Wang, Y. & Adams, M. J. Diet of introduced Bullfrogs (Rana catesbeiana): predation on and diet overlap with native frogs on Daishan Island China. J. Herpetol. 39(4), 668–675 (2005).Article 

    Google Scholar 
    Howard, R. D. The influence of male-defended oviposition sites on early embryo mortality in bullfrogs. Ecol. Soc. Am. 59(4), 789–798 (1978).
    Google Scholar 
    Van Wilgen, N. J., Gillespie, M. S., Richardson, D. M. & Measey, J. A taxonomically and geographically constrained information base limits non-native reptile and amphibian risk assessment: a systematic review. PeerJ 6, 5850 (2018).Article 

    Google Scholar 
    Sales, L., Rebouças, R. & Toledo, L. F. Native range climate is insufficient to predict anuran invasive potential. Biol. Invasions 23, 2635–2647 (2021).Article 

    Google Scholar 
    Kumschick, S. et al. How repeatable is the Environmental Impact Classification of Alien Taxa (EICAT)? Comparing independent global impact assessments of amphibians. Ecol. Evol. 7(8), 2661–2670 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kupferberg, S. J. Bullfrog (Rana catesbeiana) invasion of a California river: the role of larval competition. Ecology 78(6), 1736–1751 (1997).Article 

    Google Scholar 
    Toledo, L. F., Ribeiro, R. S. & Haddad, C. F. Anurans as prey: an exploratory analysis and size relationships between predators and their prey. J. Zool. 271(2), 170–177 (2007).Article 

    Google Scholar 
    Daszak, P. et al. Experimental evidence that the bullfrog (Rana catesbeiana) is a potential carrier of chytridiomycosis, an emerging fungal disease of amphibians. Herpetol. J. 14, 201–208 (2004).
    Google Scholar 
    Gervasi, S. S. et al. Experimental evidence for American bullfrog (Lithobates catesbeianus) susceptibility to chytrid fungus (Batrachochytrium dendrobatidis). EcoHealth 10(2), 166–171 (2013).PubMed 
    Article 

    Google Scholar 
    Urbina, J., Bredeweg, E. M., Garcia, T. S. & Blaustein, A. R. Host–pathogen dynamics among the invasive American bullfrog (Lithobates catesbeianus) and chytrid fungus (Batrachochytrium dendrobatidis). Hydrobiologia 817(1), 267–277 (2018).CAS 
    Article 

    Google Scholar 
    Schloegel, L. M. et al. The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim. Conserv. 13, 53–61. https://doi.org/10.1111/j.1469-1795.2009.00307.x (2010).Article 

    Google Scholar 
    Ohanlon, S. J. et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 360(6389), 621–627 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Adams, A. J. et al. Extreme drought, host density, sex, and bullfrogs influence fungal pathogen infection in a declining lotic amphibian. Ecosphere 8(3), 01740 (2017).Article 

    Google Scholar 
    Santos, R. C. et al. High prevalence and low intensity of infection by Batrachochytrium dendrobatidis in rainforest bullfrog populations in southern Brazil. Herpetol. Conserv. Biol. 15(1), 118–130 (2020).
    Google Scholar 
    Ribeiro, L. P. et al. Bullfrog farms release virulent zoospores of the frog-killing fungus into the natural environment. Sci. Rep. 9, 13422 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Both, C. & Grant, T. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs. Biol. Let. 8(5), 1–3. https://doi.org/10.1098/rsbl.2012.0412 (2012).Article 

    Google Scholar 
    Medeiros, C. I., Both, C., Grant, T. & Hartz, S. M. Invasion of the acoustic niche: variable responses by native species to invasive American bullfrog calls. Biol. Invasions 19(2), 675–690 (2017).Article 

    Google Scholar 
    Ferrante, L., Kaefer, I. L. & Baccaro, F. B. Aliens in the backyard: Did the American bullfrog conquer the habitat of native frogs in the semi-deciduous Atlantic Forest?. Herpetol. J. 30, 93–98 (2020).Article 

    Google Scholar 
    da Silva Silveira, S. & Guimarães, M. The enemy within: consequences of the invasive bullfrog on native anuran populations. Biol. Invasions 23(2), 373–378 (2021).Article 

    Google Scholar 
    Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).Article 

    Google Scholar 
    Ribeiro, L. P. & Toledo, L. F. An overview of the Brazilian frog farming. Aquaculture 548, 737623 (2022).Article 

    Google Scholar 
    Cunha, E. R. & Delariva, R. L. Introdução da rã-touro, Lithobates catesbeianus (SHAW, 1802): uma revisão. Saúde e Biologia 4(2), 34–46 (2009).
    Google Scholar 
    Ferreira, C. M., Pimenta, A. G. C. & Neto, J. S. P. Introdução à ranicultura. Boletim Técnico Do Instituto de Pesca 33, 15 (2002).
    Google Scholar 
    Fontanello, D. & Ferreira, C. M. Histórico da ranicultura nacional. Instituto de Pesca de São Paulo (2007).Both, C. et al. Widespread occurrence of the American bullfrog, Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae), in Brazil. S. Am. J. Herpetol. 6(2), 127–135 (2011).Article 

    Google Scholar 
    Bai, C., Ke, Z., Consuegra, S., Liu, X. & Yiming, L. The role of founder effects on the genetic structure of the invasive bullfrog (Lithobates catesbeianaus) in China. Biol. Invasions 14, 1785–1796. https://doi.org/10.1007/s10530-012-0189-x (2012).Article 

    Google Scholar 
    Liu, X. & Li, Y. Aquaculture enclosures relate to the establishment of feral populations of introduced species. PLoS ONE https://doi.org/10.1371/journal.pone.0006199 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos-pereira, M. & Rocha, C. F. D. Invasive bullfrog Lithobates catesbeianus (Anura: Ranidae) in the Paraná state, Southern Brazil : a summary of the species spread. Revista Brasileira De Zoociências 16, 141–147 (2015).
    Google Scholar 
    Moreira, C. R., Henriques, M. B. & Ferreira, C. M. Frog farms as proposed in agribusiness aquaculture: economic viability based in feed conversion. Pesca Inst. Bull. 39(4), 389–399 (2018).
    Google Scholar 
    Ficetola, G. F., Thuiller, W. & Miaud, C. Prediction and validation of the potential global distribution of a problematic alien invasive species – The American bullfrog. Divers. Distrib. 13(4), 476–485. https://doi.org/10.1111/j.1472-4642.2007.00377.x (2007).Article 

    Google Scholar 
    Funk, W. C., Garcia, T. S., Cortina, G. A. & Hill, R. H. Population genetics of introduced bullfrogs, Rana (Lithobates) catesbeianus, in the Willamette Valley, Oregon, USA. Biol. Invasions 13, 651–658. https://doi.org/10.1007/s10530-010-9855-z (2011).Article 

    Google Scholar 
    Rollins, L. A., Woolnough, A. P., Wilton, A. N., Sinclair, R. & Sherwin, W. B. Invasive species can’t cover their tracks: using microsatellites to assist management of starling (Sturnus vulgaris) populations in Western Australia. Mol. Ecol. 18, 1560–1573. https://doi.org/10.1111/j.1365-294X.2009.04132.x (2009).Article 
    PubMed 

    Google Scholar 
    Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for conservation and management. Trends Ecol. Evol. 22(1), 25–33. https://doi.org/10.1016/j.tree.2006.08.009 (2007).Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F., Bonin, A. & Miaud, C. Population genetics reveals origin and number of founders in a biological invasion. Mol. Ecol. 17, 773–782. https://doi.org/10.1111/j.1365-294X.2007.03622.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamath, P. L., Sepulveda, A. J. & Layhee, M. Genetic reconstruction of a bullfrog invasion to elucidate vectors of introduction and secondary spread. Ecol. Evol. 6(15), 5221–5233. https://doi.org/10.1002/ece3.2278 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du Sert, N. P. et al. Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18(7), e3000411 (2020).Article 
    CAS 

    Google Scholar 
    Austin, J. D. Genetic evidence for female-biased dispersal in the bullfrog, Rana catesbeiana (Ranidae). Mol. Ecol. 12(11), 3165–3172. https://doi.org/10.1046/j.1365-294X.2003.01948.x (2003).Article 
    PubMed 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4(3), 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11(1), 94. https://doi.org/10.1186/1471-2156-11-94 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405. https://doi.org/10.1093/bioinformatics/btn129 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17(18), 4015–4026. https://doi.org/10.1111/j.1365-294X.2008.03887.x (2008).Article 
    PubMed 

    Google Scholar 
    Winter, D. J. MMOD: An R library for the calculation of population differentiation statistics. Mol. Ecol. Resour. 12(6), 1158–1160. https://doi.org/10.1111/j.1755-0998.2012.03174.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gerlach, G. Calculations of population differentiation based on GST and D: forget GST but not all of statistics!. Mol. Ecol. 19(18), 3845–3852 (2010).PubMed 
    Article 

    Google Scholar 
    Hochberg, Y. & Benjamini, Y. More powerful procedures for multiple statistical significance testing. Stat. Med. 9, 811–818 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hauser, S., Wakeland, K. & Leberg, P. Inconsistent use of multiple comparison corrections in studies of population genetic structure: Are some type I errors more tolerable than others?. Mol. Ecol. Resour. 19(1), 144–148 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Team R Core. R: A language and environment for statistical computing. R Foundation for Statistical Computing URL. Vienna, Austria. Retrieved from https://www.r-project.org/. (2017).Dyer, R. J. gstudio: Analyses and functions related to the spatial analysis of genetic marker data. R Package Version (2014).Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8(1), 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A., vonHoldt, B. & M.,. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10(3), 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Moritz, C., Schneider, C. J. & Wake, D. B. Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst. Biol. 41(3), 273–291 (1992).Article 

    Google Scholar 
    Goebel, A. M., Donnelly, J. M. & Atz, M. E. PCR primers and amplification methods for 12S ribosomal DNA, the control region, cytochrome oxidase I, and cytochromebin bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol. Phylogenet. Evol. 11(1), 163–199 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30(4), 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labonne, J. et al. From the bare minimum: genetics and selection in populations founded by only a few parents. Evol. Ecol. Res. 17(1), 21–34 (2016).
    Google Scholar 
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Carlsson, J. Effects of microsatellite null alleles on assignment testing. J. Hered. 99(6), 616–623 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Consuegra, S., Phillips, N., Gajardo, G. & Leaniz, C. G. Winning the invasion roulette: escapes from fish farms increase admixture and facilitate establishment of non-native rainbow trout. Evol. Appl. 4, 660–671. https://doi.org/10.1111/j.1752-4571.2011.00189.x (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peacock, M. M., Beard, K. H., O’Neill, E. M., Kirchoff, V. S. & Peters, M. B. Strong founder effects and low genetic diversity in introduced populations of Coqui frogs. Mol. Ecol. 18(17), 3603–3615. https://doi.org/10.1111/j.1365-294X.2009.04308.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Austin, J. D., Lougheed, S. C. & Boag, P. T. Discordant temporal and geographic patterns in maternal lineages of eastern north American frogs, Rana catesbeiana (Ranidae) and Pseudacris crucifer (Hylidae). Mol. Phylogenet. Evol. 32, 799–816. https://doi.org/10.1016/j.ympev.2004.03.006 (2004).Article 
    PubMed 

    Google Scholar 
    Selechnik, D. et al. Increased adaptive variation despite reduced overall genetic diversity in a rapidly adapting invader. Front. Genet. 10, 1221 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Predicting ecological impacts of the invasive brush-clawed shore crab under environmental change

    Simberloff, D. et al. Impacts of biological invasions: What’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95(6), 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailey, S. A. et al. Trends in the detection of aquatic non–indigenous species across global marine, estuarine and freshwater ecosystems: A 50–year perspective. Divers. Distrib. 26, 1780–1797 (2020).MathSciNet 
    Article 

    Google Scholar 
    Ricciardi, A. Are modern biological invasions an unprecedented form of global change?. Conserv. Biol. 21, 329–336 (2007).PubMed 
    Article 

    Google Scholar 
    Meyerson, M. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).Article 

    Google Scholar 
    Bonnamour, A., Gippet, J. M. & Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecol. Lett. 24(11), 2418–2426 (2021).PubMed 
    Article 

    Google Scholar 
    Piola, R. F. & Johnston, E. L. Pollution reduces native diversity and increases invader dominance in marine hard-substrate communities. Divers. Distrib. 14, 329–342 (2008).Article 

    Google Scholar 
    Rahel, F. J. & Olden, J. D. Assessing the effects of climate change on aquatic invasive species. Conserv. Biol. 22, 521–533 (2008).PubMed 
    Article 

    Google Scholar 
    Kenworthy, J. M., Davoult, D. & Lejeusne, C. Compared stress tolerance to short-term exposure in native and invasive tunicates from the NE Atlantic: When the invader performs better. Mar. Biol. 165(10), 1–11 (2018).Article 

    Google Scholar 
    Gollasch, S., Galil, B. S., & Cohen, A. N. Bridging divides: Maritime canals as invasion corridors. In Bridging Divides: Maritime Canals as Invasion Corridors (Vol. 83). https://doi.org/10.1007/978-1-4020-5047-3 (2006).Galil, B. S. et al. ‘Double trouble’: The expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol. Invasions 17, 973–976 (2015).Article 

    Google Scholar 
    Jeschke, J. et al. Support for major hypotheses in invasion biology is uneven and declining. NeoBiota 14, 1–20 (2012).Article 

    Google Scholar 
    Lowry, E. et al. Biological invasions: A field synopsis, systematic review, and database of the literature. Ecol. Evol. 3, 182–196 (2012).PubMed 
    Article 

    Google Scholar 
    Brockerhoff, A., & McLay, C. Human-Mediated Spread of Alien Crabs. In In the Wrong Place – Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 27–106). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_2 (2011).Hammock, B. G. et al. Low food availability narrows the tolerance of the copepod eurytemora affinis to salinity, but not to temperature. Estuar. Coasts 39, 189–200 (2016).CAS 
    Article 

    Google Scholar 
    Rato, L. D., Crespo, D. & Lemos, M. F. L. Mechanisms of bioinvasions by coastal crabs using integrative approaches – A conceptual review. Ecol. Ind. 125, 107578 (2021).Article 

    Google Scholar 
    Weis, J. S. The role of behavior in the success of invasive crustaceans. Mar. Freshw. Behav. Physiol. 43, 83–98 (2010).Article 

    Google Scholar 
    Hänfling, B., Edwards, F. & Gherardi, F. Invasive alien Crustacea: Dispersal, establishment, impact and control. Biocontrol 56, 573–595 (2011).Article 

    Google Scholar 
    Kouba, A. et al. Identifying economic costs and knowledge gaps of invasive aquatic crustaceans. Sci. Total Environ. 813, 152325 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Geburzi, J. C., & McCarthy, M. L. How Do They Do It? – Understanding the Success of Marine Invasive Species. In YOUMARES 8 – Oceans Across Boundaries: Learning from each other (pp. 109–124). Springer International Publishing. https://doi.org/10.1007/978-3-319-93284-2_8 (2018).Casties, I. & Briski, E. Life history traits of aquatic non-indigenous species: Freshwater vs. marine habitats. Aquat. Invasions 14, 566–581 (2019).Article 

    Google Scholar 
    Grosholz, E. D. & Ruiz, G. M. Predicting the impact of introduced marine species: Lessons from the multiple invasions of the European green crab Carcinus maenas. Biol. Cons. 78, 59–66 (1996).Article 

    Google Scholar 
    Geburzi, J., Graumann, G., Köhnk, S. & Brandis, D. First record of the Asian crab Hemigrapsus takanoi Asakura & Watanabe, 2005 (Decapoda, Brachyura, Varunidae) in the Baltic Sea. BioInvasions Rec. 4, 103–107 (2015).Article 

    Google Scholar 
    Briski, E., Ghabooli, S., Bailey, S. A. & MacIsaac, H. J. Invasion risk posed by macroinvertebrates transported in ships’ ballast tanks. Biol. Invasions 14, 1843–1850 (2012).Article 

    Google Scholar 
    Wasserstraßen-und Schifffahrtsverwaltung des Bundes. Halbjahresbilanz Nord-Ostsee-Kanal 2021. www.wsv.de (2021).Nour, O. M., Stumpp, M., Morón Lugo, S. C., Barboza, F. R. & Pansch, C. Population structure of the recent invader Hemigrapsus takanoi and prey size selection on Baltic Sea mussels. Aquat. Invasions 15, 297–317 (2020).Article 

    Google Scholar 
    Andersson, A. et al. Projected future climate change and Baltic Sea ecosystem management. Ambio 44(Suppl 3), 345–356 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    BACC Author Team. Assessment of Climate Change for the Baltic Sea Basin. (2008).BACC Author Team. Second Assessment of Climate Change for the Baltic Sea Basin. (2015).Meier, H. E. M. et al. Modeling the combined impact of changing climate and changing nutrient loads on the Baltic Sea environment in an ensemble of transient simulations for 1961–2099. Clim. Dyn. 39, 2421–2441 (2012).Article 

    Google Scholar 
    Meier, H. E. M. et al. Climate change in the baltic sea region: A summary. Earth Syst. Dyn. Discuss. https://doi.org/10.5194/esd-2021-67 (2021).Article 

    Google Scholar 
    Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. Environ. Rev. 29, 119–141 (2021).Article 

    Google Scholar 
    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).Article 

    Google Scholar 
    Holling, C. S. Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959).Article 

    Google Scholar 
    Dick, J. T. A. et al. Advancing impact prediction and hypothesis testing in invasion ecology using a comparative functional response approach. Biol. Invasions 16, 735–753 (2014).Article 

    Google Scholar 
    Laverty, C. et al. Assessing the ecological impacts of invasive species based on their functional responses and abundances. Biol. Invasions 19, 1653–1665 (2017).Article 

    Google Scholar 
    Anton, A. et al. Global ecological impacts of marine exotic species. Nat. Ecol. Evol. 3, 787–800 (2019).PubMed 
    Article 

    Google Scholar 
    Crystal-Ornelas, R. & Lockwood, J. L. The ‘known unknowns’ of invasive species impact measurement. Biol. Invasions 22, 1513–1525 (2020).Article 

    Google Scholar 
    Boudreau, S. A. & Worm, B. Ecological role of large benthic decapods in marine ecosystems: A review. Mar. Ecol. Prog. Ser. 469, 195–213 (2012).ADS 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Invader relative impact potential: A new metric to understand and predict the ecological impacts of existing, emerging and future invasive alien species. J. Appl. Ecol. 54, 1259–1267 (2017).Article 

    Google Scholar 
    Cornelius, A., Wagner, K. & Buschbaum, C. Prey preferences, consumption rates and predation effects of Asian shore crabs (Hemigrapsus takanoi) in comparison to native shore crabs (Carcinus maenas) in northwestern Europe. Mar. Biodivers. 51(5), 1–17 (2021).Article 

    Google Scholar 
    Elner, R. W. The influence of temperature, sex and chela size in the foraging strategy of the shore crab, Carcinus maenas (L.). Mar. Behav. Physiol. 7, 15–24 (1980).Article 

    Google Scholar 
    Brose, U. Body-mass constraints on foraging behaviour determine population and food-web dynamics. Funct. Ecol. 24, 28–34 (2010).Article 

    Google Scholar 
    Cuthbert, R. N. et al. Influence of intra- and interspecific variation in predator-prey body size ratios on trophic interaction strengths. Ecol. Evol. 10, 5946–5962 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, A. & Kraemer, G. P. Morphometry and claw strength of the non-native asian shore crab, Hemigrapsus sanguineus. Northeast. Nat. 20, 478–492 (2013).Article 

    Google Scholar 
    Sedova, L. G. The effect of temperature on the rate of oxygen consumption in the sea urchin Strongylocentrotus intermedius. Russ. J. Mar. Biol. 26, 51–53 (2000).Article 

    Google Scholar 
    Saucedo, P. E., Ocampo, L., Monteforte, M. & Bervera, H. Effect of temperature on oxygen consumption and ammonia excretion in the Calafa mother-of-pearl oyster, Pinctada mazatlanica (Hanley, 1856). Aquaculture 229, 377–387 (2004).Article 

    Google Scholar 
    Nie, H. et al. Effects of temperature and salinity on oxygen consumption and ammonia excretion in different colour strains of the Manila clam, Ruditapes philippinarum. Aquac. Res. 48, 2778–2786 (2017).CAS 
    Article 

    Google Scholar 
    Nguyen, K. D. T. et al. Upper Temperature limits of tropical marine ectotherms: Global warming implications. PLoS ONE 6, e29340 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with thermal challenges: Physiological adaptations to environmental temperatures. In Comprehensive Physiology 2151–2202 (Wiley, Hoboken, 2012).Chapter 

    Google Scholar 
    Barrios-O’Neill, D., Dick, J. T., Emmerson, M. C., Ricciardi, A. & MacIsaac, H. J. Predator-free space, functional responses and biological invasions. Funct. Ecol. 29(3), 377–384 (2015).Article 

    Google Scholar 
    Tattersall, G. J. et al. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures Vol. 2 (Wiley, Hoboken, 2012).
    Google Scholar 
    Bollache, L., Dick, J., Farnsworth, K. & Montgomery, I. Comparison of the functional responses of invasive and native amphipods. Biol. Lett. 4, 166–169 (2008).PubMed 
    Article 

    Google Scholar 
    Dick, J. T. A. et al. Ecological impacts of an invasive predator explained and predicted by comparative functional responses. Biol. Invasions 15, 837–846 (2013).Article 

    Google Scholar 
    Cuthbert, R. N., Dickey, J. W. E., Coughlan, N. E., Joyce, P. W. S. & Dick, J. T. A. The functional response ratio (FRR): Advancing comparative metrics for predicting the ecological impacts of invasive alien species. Biol. Invasions 21, 2543–2547 (2019).Article 

    Google Scholar 
    Englund, G., Ohlund, G., Hein, C. L. & Diehl, S. Temperature dependence of the functional response. Ecol Lett 14, 914–921 (2011).PubMed 
    Article 

    Google Scholar 
    Jeschke, J. M., Kopp, M. & Tollrian, R. Predator functional responses: Discriminating between handling and digesting prey. Ecol. Monogr. 72(1), 95–112 (2002).Article 

    Google Scholar 
    Dell, A. I., Pawar, S. & van Savage, M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl. Acad. Sci. U.S.A 108, 10591–10596 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    South, J., Welsh, D., Anton, A., Sigwart, J. D. & Dick, J. T. A. Increasing temperature decreases the predatory effect of the intertidal shanny Lipophrys pholis on an amphipod prey. J. Fish Biol. 92, 150–164 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pörtner, H.-O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Dickey, J. W. E. et al. Breathing space: Deoxygenation of aquatic environments can drive differential ecological impacts across biological invasion stages. Biol. Invasions 23, 2831–2847 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Watanabe, S., Wilder, M. N., Strüssmann, C. A. & Shinji, J. Short-term responses of the adults of the common Japanese intertidal crab, Hemigrapsus takanoi (Decapoda: Brachyura: Grapsoidea) at different salinities: Osmoregulation, oxygen consumption, and ammonia excretion. J. Crustac. Biol. 29, 269–272 (2009).Article 

    Google Scholar 
    Wasserman, R. J. et al. Using functional responses to quantify interaction effects among predators. Funct. Ecol. 30, 1988–1998 (2016).Article 

    Google Scholar 
    Murdoch, W. W. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39, 335–354 (1969).Article 

    Google Scholar 
    Gonzalez, A., Lambert, A. & Ricciardi, A. When does ecosystem engineering cause invasion and species replacement?. Oikos 117, 1247–1257 (2008).Article 

    Google Scholar 
    King, J. R. & Tschinkel, W. R. Experimental evidence that human impacts drive fire ant invasions and ecological change. Proc. Natl. Acad. Sci. U.S.A 105, 20339–20343 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asakura, A. & Watanabe, S. Hemigrapsus takanoi, new species, a sibling species of the common Japanese Intertidal Crab H. penicillatus (Decapoda: Brachyura: Grapsoidea). J. Crustac. Biol. 25, 279–292 (2005).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (2021).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. R package version 0.4.3, https://CRAN.R-project.org/package=DHARMa (2021).Crawley, M. J. The R Book (Wiley, Hoboken, 2007).MATH 
    Book 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).
    Google Scholar 
    Lenth, R. v. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.2-1, https://CRAN.R-project.org/package=emmeans (2021).Pritchard, D. frair: Tools for Functional Response Analysis. R package version 0.5.100, https://CRAN.R-project.org/package=frair (2017).Juliano, S.A., Nonlinear Curve Fitting: Predation and Functional Response Curves. In: Cheiner, S.M. and Gurven, J., Eds., Design and Analysis of Ecological Experiments, 2nd Edition, Chapman and Hall, London, 178–196. (2001)Rogers, D. Random search and insect population models. J. Anim. Ecol. 41, 369 (1972).Article 

    Google Scholar  More

  • in

    Plant tissue characteristics of Miscanthus x giganteus

    Geospatial dataSampling locations were established, flagged, and recorded in June 2016, using a Trimble Geo7X global navigation satellite system (GNSS) receiver using the Trimble® VRS Now real-time kinematic (RTK) correction. Location accuracies were verified to within ±2 cm. Points were imported into a geodatabase using Esri ArcMap (Advanced license, Version 10.5) and projected using the Universal Transverse Mercator (UTM), Zone 17 North projection, with the 1983 North American datum (NAD83). Field investigators navigated to the flagged locations by visually locating them in the field or by using recreational grade GNSS receivers with the locations stored as waypoints.Plant tissue sampling and preparationMiscanthus x giganteus grows in clumps of bamboo-like canes. A single cane was cut at soil level from each of the five sample collection points in each circular plot, individually labelled, and brought to the lab for processing (Fig. 2). Each stem was measured from the cut at the base to the last leaf node, and the length was recorded. Green, fully expanded leaves were cut from each stem and leaves and stems from each plant were placed in separate paper bags and dried at 60 °C. The dry leaf and stem tissues were ground to pass a 1 mm screen (Wiley Mill Model 4, Thomas Scientific, Swedesboro, New Jersey, USA). Subsamples of the ground material were analyzed for total carbon (C) and nitrogen (N), acid-digested for the analysis of total macro- and micronutrients, and water-extracted for spectroscopic analysis and the characterization of the water extractable organic matter (WEOM) (Fig. 2).Fig. 2Images of field samples, and diagram of plant tissue processing. Center panel – flow chart outlining the procedures for plant tissue processing, the kinds of analyses performed, and the type of data generated. Upper left inset panel – ground level picture of Miscanthus x giganteus circular plots. Upper right inset panel – some plant samples on the day of collection.Full size imageTotal carbon and nitrogenDried and ground leaf and stem material (~4–6 mg) was analyzed for total C and N content by combustion (Vario EL III, Elementar Americas Inc., Mt. Laurel, New Jersey, USA). The instrument was calibrated using an aspartic acid standard (36.08% C ± 0.52% and 10.53% N ± 0.18%). Validation by inclusion of two aspartic acid samples as checks in each autosampler carousel (80 wells) resulted in a net positive bias of 1.44 and 1.68% for C and N, respectively. The mean C and N concentrations and standard deviations for the sample set are presented in Table 1.Table 1 Giant miscanthus composition including leaf (L) and stem (S) dry weight, length, and carbon (C) and nitrogen (N) concentrations (n = 165). Values are reported as means ± standard deviations.Full size tableMacro- and micronutrientsPlant tissue samples were analyzed for a suite of macro- and micronutrients including aluminum (Al), arsenic (As), boron (B), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), molybdenum (Mo), sodium (Na), nickel (Ni), phosphorus (P), lead (Pb), sulfur (S), selenium (Se), silicon (Si), titanium (Ti), vanadium (V), and zinc (Zn) using Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES). Samples (0.5 g) were digested using 10 mL of trace metal grade nitric acid (HNO3) in a microwave digestion system (Mars 6, CEM, Matthews, North Carolina, USA). During the digestion procedure (CEM Mars 6 Plant Material Method), the oven temperature was increased from room temperature to 200 °C in 15 minutes and held at 200 °C for 10 minutes. The pressure limit of the digestion vessels was set to 800 psi although it was not monitored during individual runs. Sample digestates were transferred quantitatively to centrifuge tubes, diluted to 50 mL with 2% HNO3 (prepared with lab grade deionized water), and centrifuged at 2500 rpm for 10 min (Sorvall ST8 centrifuge, Thermo Fisher Scientific, San Jose, California, USA). The digestates were decanted into clean centrifuge tubes and analyzed using an iCAP 7400 ICP-OES Duo equipped with a Charge Injection Device detector (Thermo Fisher Scientific, San Jose, California, USA). An aliquot of digested sample was aspirated from the centrifuge tube using a CETAC ASX-520 autosampler (Teledyne CETAC Technologies, Omaha, Nebraska, USA) and passed through a concentric tube nebulizer. The resulting aerosol was then swept through the plasma using argon as the carrier gas with a flow rate of 0.5 L/min and a nebulizer gas flow rate of 0.7 L/min. Macro- and micronutrients were quantified by monitoring the emission wavelengths (Em λ) reported in Table 2.Table 2 Macro- and micronutrients measured, and emission wavelengths (Em λ) used to quantify them in the miscanthus leaves (L) and stems (S), the total number and percentage detected (n = 150 for leaves and 162 for stems), the mean detected concentration ± standard deviation, and the mean method detection limit (MDL) ± standard deviation.Full size tableCharacterization of the water extractable organic matter (WEOM)The WEOM of the giant miscanthus leaves and stems was isolated by extracting the plant material with deionized water at room temperature6. The water extractions were performed by mixing ~0.2 g of dry, ground leaves and stems with 100 mL of deionized water in 125 mL pre-washed brown Nalgene bottles. All brown Nalgene bottles used for these extractions were pre-washed by soaking them for 24 hours in a 10% hydrochloric acid solution followed by 24 hours in a 10% sodium hydroxide solution, and a thorough rinse with deionized water. The bottles containing the extraction solution were shaken on an orbital shaker at 180 rpm for 24 hours. The extract was vacuum filtered using 0.45 µm glass fibre filters (GF/F, Whatman) into pre-washed 60 mL brown Nalgene bottles. The filtered water extracts containing the WEOM were stored in the dark in a refrigerator (4 °C) until analysis by UV-Visible and fluorescence spectroscopy. Samples were visually inspected just prior to analysis to ensure no colloids or precipitates had formed during storage. Samples that had become visually cloudy were re-filtered.On the day of analysis, the water extracts were removed from the refrigerator and allowed to warm up to room temperature. Chemical characteristics of the WEOM were assessed through the analysis of optical properties on an Aqualog spectrofluorometer (Horiba Scientific, New Jersey, USA) equipped with a 150 W continuous output Xenon arc lamp. Excitation-emission matrix (EEM) scans were acquired in a 1 cm quartz cuvette with excitation wavelengths (Ex λ) scanned using a double-grating monochrometer from 240 to 621 nm at 3 nm intervals. Emission wavelengths (Em λ) were scanned from 246 to 693 nm at 2 nm intervals and emission spectra were collected using a Charge Coupled Device (CCD) detector. All fluorescence spectra were acquired in sample over reference ratio mode to account for potential fluctuations and wavelength dependency of the excitation lamp output. Samples were corrected for the inner filter effect7 and each sample EEM underwent spectral subtraction with a deionized water blank to remove the effects due to Raman scattering. Rayleigh masking was applied to remove the signal intensities for both the first and second order Rayleigh lines. Instrument bias related to wavelength-dependent efficiencies of the specific instrument’s optical components (gratings, mirrors, etc.) was automatically corrected by the Aqualog software after each spectral acquisition. The fluorescence intensities were normalized to the area under the water Raman peak collected on each day of analysis and are expressed in Raman-normalized intensity units (RU). All sample EEM processing was performed with the Aqualog software (version 4.0.0.86).The optical data obtained from the EEM scans were used to calculate several indices representative of WEOM chemical composition (Table 3) including the absorbance at 254 nm (Abs254), the ratio of the absorbance at 254 to 365 nm (Abs254:365), the ratio of the absorbance at 280 to 465 nm (Abs280:465), the spectral slope ratio (SR), the fluorescence index (FI), the humification index (HIX), the biological index (BIX), and the freshness index (β:α). The SR was calculated as the ratio of two spectral slope regions of the absorbance spectra (275–295 and 350–400 nm)8. The FI was calculated as the ratio of the emission intensities at Em λ 470 and 520 nm, at an Ex λ of 370 nm9. The HIX was calculated by dividing the emission intensity in the 435–480 nm region by the sum of emission intensities in the 300–345 and 435–480 nm regions, at an Ex λ of 255 nm10. The BIX was calculated as the ratio of emission intensities at 380 and 430 nm, at an Ex λ of 310 nm11. The freshness index β:α was calculated as the emission intensity at 380 nm divided by the maximum emission intensity between 420 and 432 nm, at an Ex λ of 310 nm12. To further characterize the giant miscanthus WEOM, the fluorescence intensity at specific excitation-emission pairs was also identified. The fluorescence peaks identified here have previously been reported for surface water samples and water extracts13 and include peak A (Ex λ 260, Em λ 450), peak C (Ex λ 340, Em λ 440), peak M (Ex λ 300, Em λ 390), peak B (Ex λ 275, Em λ 310), and peak T (Ex λ 275, Em λ 340). A brief description of these optical indices is provided in Table 3.Table 3 Description of the optical indices calculated from the excitation-emission matrix (EEM) fluorescence scans and used to analyze the WEOM composition of giant miscanthus leaves and stems.Full size table More

  • in

    Utilisation of Oxford Nanopore sequencing to generate six complete gastropod mitochondrial genomes as part of a biodiversity curriculum

    Rasmussen, R. S. & Morrissey, M. T. Application of DNA-based methods to identify fish and seafood substitution on the commercial market. Compr. Rev. Food Sci. Food Saf. 8, 118–154 (2009).CAS 
    Article 

    Google Scholar 
    Chiu, M.-C., Huang, C.-G., Wu, W.-J. & Shiao, S.-F. A new horsehair worm, Chordodes formosanus sp. N. (Nematomorpha, Gordiida) from Hierodula mantids of Taiwan and Japan with redescription of a closely related species, Chordodes japonensis. ZooKeys 160, 1–22 (2011).Article 

    Google Scholar 
    Robins, J. H. et al. Phylogenetic species identification in Rattus highlights rapid radiation and morphological similarity of new Guinean species. PLoS One 9, e98002. https://doi.org/10.1371/journal.pone.0098002 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sutherland, W. J., Roy, D. B. & Amano, T. An agenda for the future of biological recording for ecological monitoring and citizen science. Biol. J. Linn. Soc. 115, 779–784 (2015).Article 

    Google Scholar 
    Ho, J. K. I., Puniamoorthy, J., Srivathsan, A. & Meier, R. MinION sequencing of seafood in Singapore reveals creatively labelled flatfishes, confused roe, pig DNA in squid balls, and phantom crustaceans. Food Control 112, 107144. https://doi.org/10.1016/j.foodcont.2020.107144 (2020).CAS 
    Article 

    Google Scholar 
    Elson, J. & Lightowlers, R. Mitochondrial DNA clonality in the dock: Can surveillance swing the case?. Trends Genet. 22, 603–607 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bernt, M., Braband, A., Schierwater, B. & Stadler, P. F. Genetic aspects of mitochondrial genome evolution. Mol. Phylogenet. Evol. 69, 328–338 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Blaxter, M. L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 669–679 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waugh, J. DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29, 188–197 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grandjean, F. et al. Rapid recovery of nuclear and mitochondrial genes by genome skimming from Northern Hemisphere freshwater crayfish. Zool. Scr. 46, 718–728 (2017).Article 

    Google Scholar 
    Trevisan, B., Alcantara, D. M. C., Machado, D. J., Marques, F. P. L. & Lahr, D. J. G. Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ 7, e7543. https://doi.org/10.7717/peerj.7543 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Franco-Sierra, N. D. & Díaz-Nieto, J. F. Rapid mitochondrial genome sequencing based on Oxford Nanopore Sequencing and a proxy for vertebrate species identification. Ecol. Evol. 10, 3544–3560 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baeza, J. A. Yes, we can use it: a formal test on the accuracy of low-pass nanopore long-read sequencing for mitophylogenomics and barcoding research using the Caribbean spiny lobster Panulirus argus. BMC Genomics 21, 882. https://doi.org/10.1186/s12864-020-07292-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, A. R., Robertson, A. L., Batzli, J., Harris, M. & Miller, S. Aligning goals, assessments, and activities: An approach to teaching PCR and gel electrophoresis. CBE Life Sci. Educ. 7, 96–106 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dhorne-Pollet, S., Barrey, E. & Pollet, N. A new method for long-read sequencing of animal mitochondrial genomes: application to the identification of equine mitochondrial DNA variants. BMC Genomics 21, 785. https://doi.org/10.1186/s12864-020-07183-9 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain, M., Olsen, H. E., Paten, B. & Akeson, M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239. https://doi.org/10.1186/s13059-016-1103-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006. https://doi.org/10.1093/gigascience/giz006 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Srivathsan, A. et al. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biol. 19, 217. https://doi.org/10.1186/s12915-021-01141-x (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prost, S. et al. Education in the genomics era: Generating high-quality genome assemblies in university courses. GigaScience 9, giaa058. https://doi.org/10.1093/gigascience/giaa058 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Salazar, A. N. et al. An educational guide for nanopore sequencing in the classroom. PLoS Comput. Biol. 16, e1007314. https://doi.org/10.1371/journal.pcbi.1007314 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watsa, M., Erkenswick, G. A., Pomerantz, A. & Prost, S. Portable sequencing as a teaching tool in conservation and biodiversity research. PLoS Biol. 18, e3000667. https://doi.org/10.1371/journal.pbio.3000667 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egeter, B. et al. Speeding up the detection of invasive bivalve species using environmental DNA: A Nanopore and Illumina sequencing comparison. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.13610 (2022).Article 
    PubMed 

    Google Scholar 
    Oxford Nanopore. Flongle. https://nanoporetech.com/products/flongle. Last accessed 05 May 2022 (2022).Oxford Nanopore. MinION. https://nanoporetech.com/products/minion. Last accessed 05 May 2022 (2022).Baeza, J. A. & García-De León, F. J. Are we there yet? Benchmarking low-coverage nanopore long-read sequencing for the assembling of mitochondrial genomes using the vulnerable silky shark Carcharhinus falciformis. BMC Genomics 23, 320. https://doi.org/10.1186/s12864-022-08482-z (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghiselli, F. et al. Molluscan mitochondrial genomes break the rules. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200159. https://doi.org/10.1098/rstb.2020.0159 (2021).Article 

    Google Scholar 
    Zhang, Z.-Q. Animal biodiversity: An introduction to higher-level classification and taxonomic richness. Zootaxa 3148, 7–12 (2011).Article 

    Google Scholar 
    Bouchet, P., Bary, S., Héros, V. & Marani, G. How many species of molluscs are there in the world’s oceans, and who is going to describe them? In Tropical Deep-Sea Benthos 29 (eds Héros, V. et al.) 9–24 (Muséum national d’histoire naturelle, 2016).
    Google Scholar 
    Reese, D. S. Palaikastro shells and bronze age purple-dye production in the Mediterranean Basin. Annu. Br. Sch. Athens 82, 201–206 (1987).Article 

    Google Scholar 
    Lardans, V. & Dissous, C. Snail control strategies for reduction of schistosomiasis transmission. Parasitol. Today 14, 413–417 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Baker, G. M. (ed.) Molluscs as Crop Pests. (CABI, 2002). https://doi.org/10.1079/9780851993201.0000Mannino, M. A. & Thomas, K. D. Depletion of a resource? The impact of prehistoric human foraging on intertidal mollusc communities and its significance for human settlement, mobility and dispersal. World Archaeol. 33, 452–474 (2002).Article 

    Google Scholar 
    Carter, R. The history and prehistory of pearling in the Persian Gulf. J. Econ. Soc. Hist. Orient 48, 139–209 (2005).Article 

    Google Scholar 
    Vilariño, M. L. et al. Assessment of human enteric viruses in cultured and wild bivalve molluscs. Int. Microbiol. Off. J. Span. Soc. Microbiol. 12, 145–151 (2009).
    Google Scholar 
    Tedde, T. et al. Toxoplasma gondii and other zoonotic protozoans in Mediterranean mussel (Mytilus galloprovincialis) and blue mussel (Mytilus edulis): A food safety concern?. J. Food Prot. 82, 535–542 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grande, C., Templado, J. & Zardoya, R. Evolution of gastropod mitochondrial genome arrangements. BMC Evol. Biol. 8, 61. https://doi.org/10.1186/1471-2148-8-61 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Formenti, G. et al. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications. Genome Biol. 22, 120. https://doi.org/10.1186/s13059-021-02336-9 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meng, G., Li, Y., Yang, C. & Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 47, e63. https://doi.org/10.1093/nar/gkz173 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernt, M. et al. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 69, 313–319 (2013).PubMed 
    Article 

    Google Scholar 
    Chaisson, M. J. P., Wilson, R. K. & Eichler, E. E. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16, 627–640 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander, J. & Valdés, A. The ring doesn’t mean a thing: Molecular data suggest a new taxonomy for two pacific species of sea hares (Mollusca: Opisthobranchia, Aplysiidae). Pac. Sci. 67, 283–294 (2013).Article 

    Google Scholar 
    WoRMS Editorial Board. World Register of Marine Species. https://www.marinespecies.org at VLIZ. Accessed 10 Jan 2022 (2022).Barco, A. et al. A molecular phylogenetic framework for the Muricidae, a diverse family of carnivorous gastropods. Mol. Phylogenet. Evol. 56, 1025–1039 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Houart, R. Description of eight new species and one new genus of Muricidae (Gastropoda) from the Indo-West Pacific. Novapex 18, 81–103 (2017).
    Google Scholar 
    Shao, K.-T. & Chung, K.-F. The National Checklist of Taiwan (Catalogue of Life in Taiwan, TaiCoL). GBIF. https://www.gbif.org/dataset/1ec61203-14fa-4fbd-8ee5-a4a80257b45a (2021).Gaitán-Espitia, J. D., González-Wevar, C. A., Poulin, E. & Cardenas, L. Antarctic and sub-Antarctic Nacella limpets reveal novel evolutionary characteristics of mitochondrial genomes in Patellogastropoda. Mol. Phylogenet. Evol. 131, 1–7 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Feng, J. et al. Comparative analysis of the complete mitochondrial genomes in two limpets from Lottiidae (Gastropoda: Patellogastropoda): rare irregular gene rearrangement within Gastropoda. Sci. Rep. 10, 19277. https://doi.org/10.1038/s41598-020-76410-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, T., Qi, L., Kong, L. & Li, Q. Mitogenomics reveals phylogenetic relationships of Patellogastropoda (Mollusca, Gastropoda) and dynamic gene rearrangements. Zool. Scr. 51, 147–160 (2022).Article 

    Google Scholar 
    Ranjard, L. et al. Complete mitochondrial genome of the green-lipped mussel, Perna canaliculus (Mollusca: Mytiloidea), from long nanopore sequencing reads. Mitoch. DNA Part B 3, 175–176 (2018).Article 

    Google Scholar 
    Sun, J. et al. The Scaly-foot Snail genome and implications for the origins of biomineralised armour. Nat. Commun. 11, 1657. https://doi.org/10.1038/s41467-020-15522-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dixit, B., Vanhoozer, S., Anti, N. A., O’Connor, M. S. & Boominathan, A. Rapid enrichment of mitochondria from mammalian cell cultures using digitonin. MethodsX 8, 101197. https://doi.org/10.1016/j.mex.2020.101197 (2021).Article 
    PubMed 

    Google Scholar 
    Wanner, N., Larsen, P. A., McLain, A. & Faulk, C. The mitochondrial genome and Epigenome of the Golden lion Tamarin from fecal DNA using Nanopore adaptive sequencing. BMC Genomics 22, 726. https://doi.org/10.1186/s12864-021-08046-7 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malukiewicz, J. et al. Genomic skimming and nanopore sequencing uncover cryptic hybridization in one of world’s most threatened primates. Sci. Rep. 11, 17279. https://doi.org/10.1038/s41598-021-96404-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kipp, E. J. et al. Nanopore adaptive sampling for mitogenome sequencing and bloodmeal identification in hematophagous insects. bioRxiv. https://doi.org/10.1101/2021.11.11.468279 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sereika, M. et al. Oxford Nanopore R10.4 long-read sequencing enables near-perfect bacterial genomes from pure cultures and metagenomes without short-read or reference polishing. bioRxiv. https://doi.org/10.1101/2021.10.27.466057 (2021).Article 

    Google Scholar 
    Oxford Nanopore. Nanopore Community. https://nanoporetech.com/community. Last accessed 05 May 2022 (2022).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oxford Nanopore. medaka. https://github.com/nanoporetech/medaka. Last accessed 05 May 2022 (2022).Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, e112963. https://doi.org/10.1371/journal.pone.0112963 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust, G. G. & Hall, I. M. SAMBLASTER: Fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pedersen, B. S. & Quinlan, A. R. Mosdepth: Quick coverage calculation for genomes and exomes. Bioinformatics 34, 867–868 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tsai, I. J. Genome skimming exercise (last updated 2022.04.14). https://introtogenomics.readthedocs.io/en/latest/emcgs.html (2022).Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).PubMed 
    Article 

    Google Scholar 
    Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377 (2021).Article 

    Google Scholar 
    Rabiee, M., Sayyari, E. & Mirarab, S. Multi-allele species reconstruction using ASTRAL. Mol. Phylogenet. Evol. 130, 286–296 (2019).PubMed 
    Article 

    Google Scholar 
    Rambaut, A. FigTree, version 1.4.4. http://tree.bio.ed.ac.uk/software/figtree/ (2018).Hackl, T. & Ankenbrand, M. J. gggenomes: A Grammar of Graphics for Comparative Genomics. https://github.com/thackl/gggenomes (2022).Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More