More stories

  • in

    Characterization of intestinal microbiota in normal weight and overweight Border Collie and Labrador Retriever dogs

    Lund, E. M., Armstrong, P. J., Kirk, C. A. & Klausner, J. S. Prevalence and risk factors for obesity in adult dogs from private US veterinary practices. Int. J. Appl. Res. Vet. Med. 4(2), 177 (2006).
    Google Scholar 
    German, A. J. The growing problem of obesity in dogs and cats. J. Nutr. 136(7), 1940S-1946S (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Courcier, E. A., Thomson, R. M., Mellor, D. J. & Yam, P. S. An epidemiological study of environmental factors associated with canine obesity. J. Small Anim. Pract. 51(7), 362–367 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mao, J., Xia, Z., Chen, J. & Yu, J. Prevalence and risk factors for canine obesity surveyed in veterinary practices in Beijing, China. Prev. Vet. Med. 112(3–4), 438–442 (2013).PubMed 
    Article 

    Google Scholar 
    Payan-Carreira, R., Sargo, T. & Nascimento, M. M. Canine obesity in Portugal: Perceptions on occurrence and treatment determinants. Acta Vet. Scand. 57(1), 1–1 (2015).Article 

    Google Scholar 
    Chandler, M. et al. Obesity and associated comorbidities in people and companion animals: A one health perspective. J. Comp. Pathol. 156(4), 296–309 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Montoya-Alonso, J. A. et al. Prevalence of canine obesity, obesity-related metabolic dysfunction, and relationship with owner obesity in an obesogenic region of Spain. Front. Vet. Sci. 4, 59 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Muñoz-Prieto, A. et al. European dog owner perceptions of obesity and factors associated with human and canine obesity. Sci. Rep. 8(1), 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Marshall, W. G., Bockstahler, B. A., Hulse, D. A. & Carmichael, S. A review of osteoarthritis and obesity: Current understanding of the relationship and benefit of obesity treatment and prevention in the dog. Vet. Comp. Orthop. Traumatol. 22(05), 339–345 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zoran, D. L. Obesity in dogs and cats: A metabolic and endocrine disorder. Vet. Clin. N. Am. Small Anim. Pract. 40(2), 221–239 (2010).Article 

    Google Scholar 
    Tvarijonaviciute, A. et al. Obesity-related metabolic dysfunction in dogs: A comparison with human metabolic syndrome. BMC Vet. Res. 8(1), 147 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoenig, M. Comparative aspects of human, canine, and feline obesity and factors predicting progression to diabetes. Vet. Sci. 1(2), 121–135 (2014).Article 

    Google Scholar 
    Yam, P. S. et al. Impact of canine overweight and obesity on health-related quality of life. Prev. Vet. Med. 127, 64–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sandøe, P., Palmer, C., Corr, S., Astrup, A. & Bjørnvad, C. R. Canine and feline obesity: A One Health perspective. Vet. Rec. 175(24), 610–616 (2014).PubMed 
    Article 

    Google Scholar 
    Salt, C., Morris, P. J., Wilson, D., Lund, E. M. & German, A. J. Association between life span and body condition in neutered client-owned dogs. J. Vet. Intern. Med. 33(1), 89–99 (2019).PubMed 

    Google Scholar 
    Switonski, M. & Mankowska, M. Dog obesity—The need for identifying predisposing genetic markers. Res. Vet. Sci. 95(3), 831–836 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mankowska, M. et al. Sequence analysis of three canine adipokine genes revealed an association between TNF polymorphisms and obesity in Labrador dogs. Anim. Genet. 47(2), 245–249 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raffan, E. et al. A deletion in the canine POMC gene is associated with weight and appetite in obesity-prone Labrador retriever dogs. Cell Metab. 23(5), 893–900 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Suchodolski, J. S. Intestinal microbiota of dogs and cats: A bigger world than we thought. Anim. Pract. 41(2), 261–272 (2011).
    Google Scholar 
    Barko, P. C., McMichael, M. A., Swanson, K. S. & Williams, D. A. The gastrointestinal microbiome: A review. J. Vet. Intern. Med. 32(1), 9–25 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122), 1027–1031 (2006).PubMed 
    Article 
    ADS 

    Google Scholar 
    Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. 101(44), 15718–15723 (2004).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Ghazalpour, A., Cespedes, I., Bennett, B. J. & Allayee, H. Expanding role of gut microbiota in lipid metabolism. Curr. Opin. Lipidol. 27(2), 141 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Losasso, C. et al. Assessing the influence of vegan, vegetarian and omnivore oriented westernized dietary styles on human gut microbiota: A cross sectional study. Front. Microbiol. 9, 317 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pizarroso, N. A., Fuciños, P., Gonçalves, C., Pastrana, L. & Amado, I. R. A Review on the role of food-derived bioactive molecules and the microbiota—Gut–brain axis in satiety regulation. Nutrients 13(2), 632. https://doi.org/10.3390/nu13020632 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boulangé, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K. & Dumas, M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8(1), 1–12 (2016).Article 
    CAS 

    Google Scholar 
    Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 102(31), 11070–11075 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Human gut microbes associated with obesity. Nature 444(7122), 1022–1023 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Zhi, C. et al. Connection between gut microbiome and the development of obesity. Eur. J. Clin. Microbiol. Infect. Dis. 38(11), 1987–1998 (2019).PubMed 
    Article 

    Google Scholar 
    Huang, Z., Pan, Z., Yang, R., Bi, Y. & Xiong, X. The canine gastrointestinal microbiota: Early studies and research frontiers. Gut Microbes 11(4), 635–654 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Swanson, K. S. et al. Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice. ISME J. 5(4), 639–649 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coelho, L. P. et al. Similarity of the dog and human gut microbiomes in gene content and response to diet. Microbiome 6(1), 1–11 (2018).Article 

    Google Scholar 
    Hand, D., Wallis, C., Colyer, A. & Penn, C. W. Pyrosequencing the canine faecal microbiota: Breadth and depth of biodiversity. PLoS ONE 8(1), e53115 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Handl, S. et al. Faecal microbiota in lean and obese dogs. FEMS Microbiol. Ecol. 84(2), 332–343 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Park, H. J. et al. Association of obesity with serum leptin, adiponectin, and serotonin and gut microflora in beagle dogs. J. Vet. Intern. Med. 29(1), 43–50 (2015).PubMed 
    Article 

    Google Scholar 
    Park, H. J. et al. Fecal microbiota analysis of obese dogs with underlying diseases: A pilot study. Korean J. Vet. Res. 55(3), 205–208 (2015).Article 

    Google Scholar 
    Beloshapka, A. N., Forster, G. M., Holscher, H. D., Swanson, K. S. & Ryan, E. P. Fecal microbial communities of overweight and obese client-owned dogs fed cooked bean powders as assessed by 454-pyrosequencing. J. Vet. Sci. Technol. 7(366), 2 (2016).
    Google Scholar 
    Li, Q., Lauber, C. L., Czarnecki-Maulden, G., Pan, Y. & Hannah, S. S. Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. MBio 8(1), e01703-e1716 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kieler, I. N. et al. Gut microbiota composition may relate to weight loss rate in obese pet dogs. Vet. Med. Sci. 3(4), 252–262 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Forster, G. M. et al. A comparative study of serum biochemistry, metabolome and microbiome parameters of clinically healthy, normal weight, overweight, and obese companion dogs. Top. Companion Anim. Med. 33(4), 126–135 (2018).PubMed 
    Article 

    Google Scholar 
    Salas-Mani, A. et al. Fecal microbiota composition changes after a BW loss diet in beagle dogs. J. Anim. Sci. 96(8), 3102–3111 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alexander, C. et al. Effects of prebiotic inulin-type fructans on blood metabolite and hormone concentrations and faecal microbiota and metabolites in overweight dogs. Br. J. Nutr. 120(6), 711–720 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herstad, K. M. et al. A diet change from dry food to beef induces reversible changes on the faecal microbiota in healthy, adult client-owned dogs. BMC Vet. Res. 13(1), 147 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kim, Y. S., Unno, T., Kim, B. Y. & Park, M. S. Sex differences in gut microbiota. World J. Mens Health 38(1), 48–60 (2020).PubMed 
    Article 

    Google Scholar 
    Xu, J. et al. The response of canine faecal microbiota to increased dietary protein is influenced by body condition. BMC Vet. Res. 13(1), 374 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Masuoka, H. et al. Transition of the intestinal microbiota of dogs with age. PLoS ONE 12, e0181739 (2016).Article 
    CAS 

    Google Scholar 
    Mizukami, K. et al. Age-related analysis of the gut microbiome in a purebred dog colony. FEMS Microbiol. Lett. 366(8), fnz095 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alessandri, G. et al. Metagenomic dissection of the canine gut microbiota: Insights into taxonomic, metabolic and nutritional features. Environ. Microbiol. 21(4), 1331–1343 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, H. et al. Oral administration of compound probiotics improved canine feed intake, weight gain, immunity and intestinal microbiota. Front. Immunol. 10, 666 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reddy, K. E. et al. Impact of breed on the fecal microbiome of dogs under the same dietary condition. J. Microbiol. Biotechnol. 29(12), 1947–1956 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Neill, D. G., Church, D. B., McGreevy, P. D., Thomson, P. C. & Brodbelt, D. C. Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. PLoS ONE 9(3), e90501 (2014).PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Vilson, Å. et al. Disentangling factors that shape the gut microbiota in German Shepherd dogs. PLoS ONE 13(3), e0193507 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Song, S. J. et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2, e00458 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guard, B. C. et al. Characterization of the fecal microbiome during neonatal and early pediatric development in puppies. PLoS ONE 12(4), e0175718 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Greer, K. A., Canterberry, S. C. & Murphy, K. E. Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res. Vet. Sci. 82(2), 208–214 (2007).PubMed 
    Article 

    Google Scholar 
    Fleming, J. M., Creevy, K. E. & Promislow, D. E. L. Mortality in North American dogs from 1984 to 2004: An investigation into age-, size-, and breed-related causes of death. J. Vet. Int. Med. 25(2), 187–198 (2011).CAS 
    Article 

    Google Scholar 
    Oberbauer, A. M., Belanger, J. & Famula, T. R. A review of the impact of neuter status on expression of inherited conditions in dogs. Front. Vet. Sci. 6, 397 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pilla, R. & Suchodolski, J. S. The role of the canine gut microbiome and metabolome in health and gastrointestinal disease. Front. Vet. Sci. 6, 498 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bermingham, E. N., Maclean, P., Thomas, D. G., Cave, N. J. & Young, W. Key bacterial families (Clostridiaceae, Erysipelotrichaceae and Bacteroidaceae) are related to the digestion of protein and energy in dogs. PeerJ 5, e3019 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kim, J., An, J. U., Kim, W., Lee, S. & Cho, S. Differences in the gut microbiota of dogs (Canis lupus familiaris) fed a natural diet or a commercial feed revealed by the Illumina MiSeq platform. Gut Pathog. 9, 68–68 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mori, A. et al. Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs. J. Vet. Med. Sci. 81, 1783–1790 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Apper, E. et al. Relationships between gut microbiota, metabolome, body weight, and glucose homeostasis of obese dogs fed with diets differing in prebiotic and protein content. Microorganisms 8(4), 513 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Wernimont, S. M. et al. The effects of nutrition on the gastrointestinal microbiome of cats and dogs: Impact on health and disease. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01266 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schauf, S. et al. Effect of dietary fat to starch content on fecal microbiota composition and activity in dogs. J. Anim. Sci. 96(9), 3684–3698 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bresciani, F. et al. Effect of an extruded animal protein-free diet on fecal microbiota of dogs with food-responsive enteropathy. J. Vet. Intern. Med. 32(6), 1903–1910 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madsen, L., Myrmel, L. S., Fjære, E., Liaset, B. & Kristiansen, K. Links between dietary protein sources, the gut microbiota, and obesity. Front. Physiol. 8, 1047 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    EU law and publications. Regulation (EC) No 767/2009 of the European parliament and of the council of 13 July 2009 on the placing on the market and use of feed, amending European Parliament and council regulation (EC) No 1831/2003 and repealing council directive 79/373/EEC, commission directive 80/511/EEC, council directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and commission decision 2004/217/EC. OJEC L229, 1–28 (2009).
    Google Scholar 
    Paßlack, N. et al. Impact of the dietary inclusion of dried food residues on the apparent nutrient digestibility and the intestinal microbiota of dogs. Arch. Anim. Nutr. 75(4), 311–327 (2021).PubMed 
    Article 

    Google Scholar 
    Macedo, H. T. et al. Weight-loss in obese dogs promotes important shifts in fecal microbiota profile to the extent of resembling microbiota of lean dogs. Anim. Microbiome 4(1), 1–13 (2022).Article 
    CAS 

    Google Scholar 
    Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8(8), e71108 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Remely, M. et al. Microbiota and epigenetic regulation of inflammatory mediators in type 2 diabetes and obesity. Benef. Microbes 5(1), 33–43 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tamanai-Shacoori, Z. et al. Roseburia spp.: A marker of health?. Future Microbiol. 12(2), 157–170 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Herrmann, E. et al. RNA-based stable isotope probing suggests Allobaculum spp. as particularly active glucose assimilators in a complex murine microbiota cultured in vitro. BioMed Res. Int. 5, 1. https://doi.org/10.1155/2017/1829685 (2017).CAS 
    Article 

    Google Scholar 
    Wang, J., Wang, P., Li, D., Hu, X. & Chen, F. Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. Eur. J. Nutr. 59(2), 699–718 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Garcia-Mazcorro, J. F., Ivanov, I., Mills, D. A. & Noratto, G. Influence of whole-wheat consumption on fecal microbial community structure of obese diabetic mice. PeerJ 4, e1702 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, K. et al. Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep. 26(1), 222–235 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, T. R. et al. Gut commensal Parabacteroides goldsteinii plays a predominant role in the anti-obesity effects of polysaccharides isolated from Hirsutella sinensis. Gut 68(2), 248–262 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Karl, J. P. et al. Effects of psychological, environmental and physical stressors on the gut microbiota. Front. Microbiol. 9, 2013 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gallè, F. et al. Exploring the association between physical activity and gut microbiota composition: a review of current evidence. Ann. Ig. Med. Prev. Comunita 31(6), 582–589 (2019).
    Google Scholar 
    Laflamme, D. R. P. C. Development and validation of a body condition score system for dogs. Canine Practice (Santa Barbara, Calif.: 1990, USA) (1997).FEDIAF. Nutritional Guidelines for Complete and Complementary Pet Food for Cats and Dogs https://fediaf.org/self-regulation/nutrition.html#guidelines (2021).Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41(1), e1–e1 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Research 5, 2122 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Gong, W., Kwak, I. Y., Pota, P., Koyano-Nakagawa, N. & Garry, D. J. DrImpute: Imputing dropout events in single cell RNA sequencing data. BMC Bioinform. 19(1), 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41(D1), D590–D596 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Finotello, F., Mastrorilli, E. & Di Camillo, B. Measuring the diversity of the human microbiota with targeted next-generation sequencing. Brief. Bioinform. 19(4), 679–692 (2018).PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. Software http://CRAN.R-project.org/package=vegan (2012). More

  • in

    Dental macrowear reveals ecological diversity of Gorilla spp.

    Fossey, D. & Harcourt, D. H. Feeding ecology of free-ranging mountain gorilla (Gorilla gorilla beringei). In Primate ecology (ed. Clutton-Brock, T. H.) 415–447 (Academy Press, New York, 1977).Watts, D. P. Composition and variability of mountain gorilla diets in the central Virungas. Am. J. Primatol. 7, 323–356 (1984).PubMed 
    Article 

    Google Scholar 
    Watts, D. Comparative socio-ecology of gorillas. In Great Ape Societies (eds. McGrew, W. C., Marchant, L. F. & Nishida, T.) 16–28 (Cambridge University Press, Cambridge, 1986).Doran, D. M. & McNeilage, A. Gorilla ecology and behavior. Evol. Anthropol. 6, 120–131 (1988).Article 

    Google Scholar 
    Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mittermeier, R. A., Rylands, A. B. & Wilson, D. E. Handbook of the mammals of the world. Primates Vol. 3 (Lynx Edicions, 2013).
    Google Scholar 
    Groves, C. Primate Taxonomy (Smithsonian Institution Press, 2001).
    Google Scholar 
    Cooksey, K. E. & Morgan, D. B. Gorilla (Gorilla). In The International encyclopedia of primatology, Vol. 1 (ed. Fuentes, A.) 472–477 (Wiley, Hoboken, 2017).McFarland, K. L. Ecology of cross river gorillas (Gorilla gorilla diehli) on Afi mountain, Cross River State, Nigeria. Ph.D. Dissertation. City University of New York, USA (2007).Rogers, M. E., Maisels, F., Wiliamson, E. A., Fernandez, M. & Tutin, C. E. G. Gorilla diet in the Lopé Reserve, Gabon: a nutritional analysis. Oecologia 84, 326–339 (1990).ADS 
    Article 

    Google Scholar 
    van Casteren, A., Wright, E., Kupczik, K. & Robbins, M. M. Unexpected hard-object feeding in Western lowland gorillas. Am. J. Phys. Anthropol. 170, 433–438 (2019).PubMed 
    Article 

    Google Scholar 
    Masi, S., Cipolletta, C. & Robbins, M. M. Western lowland gorillas (Gorilla gorilla gorilla) change their activity patterns in response to frugivory. Am. J. Primatol. 71, 91–100 (2009).PubMed 
    Article 

    Google Scholar 
    Yamagiwa, J., Basabose, A. K., Kaleme, K. & Yumoto, T. Diet of grauer’s gorillas in montane forest of Kahuzi, Democratic Republic of Congo. Int. J. Primatol. 26, 1345–1373 (2005).Article 

    Google Scholar 
    Grueter, C. C. et al. Long-term temporal and spatial dynamics of food availability for endangered mountain gorillas in Volcanoes National Park, Rwanda. Am. J. Primatol. 75, 267–280 (2013).PubMed 
    Article 

    Google Scholar 
    Ostrofsky, K. R. & Robbins, M. M. Fruit-feeding and activity patterns of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Am. J. Phys. Anthropol. 173, 3–20 (2020).PubMed 
    Article 

    Google Scholar 
    Berthaume, M. A. Tooth cusp sharpness as a dietary correlate in great apes. Am. J. Phys. Anthropol. 153, 226–235 (2014).PubMed 
    Article 

    Google Scholar 
    King, S. J. et al. Dental senescence in a long-lived primate links infant survival to rainfall. Proc. Natl. Acad. Sci. USA 102, 16579–16583 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berthaume, M. A. & Schroer, K. Extant ape dental topography and its implications for reconstructing the emergence of early Homo. J. Hum. Evol. 112, 15–29 (2017).PubMed 
    Article 

    Google Scholar 
    Sheine, W. S. & Kay, R. F. An analysis of chewed food particle size and its relationship to molar structure in the primates Cheirogaleus medius and Galago senegalensis and the insectivoran Tupaia glis. Am. J. Phys. Anthropol. 47, 15–20 (1977).Article 

    Google Scholar 
    Galbany, J., Estebaranz, F., Martínez, L. M. & Pérez-Pérez, A. Buccal dental microwear variability in extant African Hominoidea: taxonomy versus ecology. Primates 50, 221–230 (2009).PubMed 
    Article 

    Google Scholar 
    Scott, R. S., Teaford, M. F. & Ungar, P. S. Dental microwear texture and anthropoid diets. Am. J. Phys. Anthropol. 147, 551–579 (2012).PubMed 
    Article 

    Google Scholar 
    Teaford, M. F. & Oyen, O. J. In vivo and in vitro turnover in dental microwear. Am. J. Phys. Anhtropol. 80, 447–460 (1989).CAS 
    Article 

    Google Scholar 
    Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elgart, A. A. Dental wear, wear rate, and dental disease in the African apes. Am. J. Primatol. 72, 481–491 (2010).PubMed 

    Google Scholar 
    Berthaume, M. A. Food mechanical properties and dietary ecology. Am. J. Phys. Anhtropol. 159, 79–104 (2016).Article 

    Google Scholar 
    Galbany, J. et al. Tooth wear and feeding ecology in mountain gorillas from Volcanoes National Park, Rwanda. Am. J. Phys. Anhtropol. 159, 457–465 (2016).Article 

    Google Scholar 
    Janis, C. M. The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species, in Evolutionary paleobiology of behavior and coevolution (ed. Boucot, A. J.) 241–259 (Elsevier, Amsterdam, 1990).Knight-Sadler, J. & Fiorenza, L. Tooth wear inclination in great ape molars. Folia Primatol. 88, 223–236 (2017).Article 

    Google Scholar 
    Kullmer, O. et al. Technical note: Occlusal fingerprint analysis: Quantification of tooth wear pattern. Am. J. Phys. Anthropol. 139, 600–605 (2009).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. et al. Molar macrowear reveals Neanderthal eco-geographical dietary variation. PLoS ONE 6, e14769 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Oxilia, G. & Kullmer, O. Functional relationship between dental macrowear and diet in Late Pleistocene and recent modern human populations. Int. J. Osteoarchaeol. 28, 153–161 (2018).Article 

    Google Scholar 
    Fiorenza, L. et al. The functional role of the Carabelli trait in early and late hominins. J. Hum. Evol. 145, 102816 (2020).PubMed 
    Article 

    Google Scholar 
    Fiorenza, L. & Kullmer, O. Occlusion in an adult male gorilla with a supernumerary maxillary premolar. Int. J. Primatol. 37, 762–777 (2016).Article 

    Google Scholar 
    Kullmer, O., Menz, U., & Fiorenza, L. Occlusal fingerprint analysis (OFA) reveal dental occlusal behaviour in primate teeth. In T. Martin & W. von Koenigswald (Eds.), T Martin, W von Koenigswald, K-H Südekum), Mammalian teeth: form and function. (pp. 25–43). Munich, Germany: Dr. F. Pfeil (2020)Stuhlträger, J. et al. Dental wear patterns reveal dietary ecology and season of death in a historical chimpanzee population. PLoS ONE 16, e0251309 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Estalrrich, A., & Kullmer, O. Diet and cultural diversity in Neanderthals and modern humans from dental macrowear analyses. In C. Schmidt & J. T. Watson (Eds.), Dental wear in evolutionary and biocultural contexts (pp. 39–72). London, UK: Academic Press (2020).M’Kirera, F. & Ungar, P. S. Occlusal relief changes with molar wear in Pan troglodytes troglodytes and Gorilla gorilla gorilla. Am. J. Primatol. 60, 31–41 (2003).PubMed 
    Article 

    Google Scholar 
    Galbany, J. et al. Age-related tooth wear differs between forest and savanna primates. PLoS ONE 9, e94938 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, S. R. & Shea, B. T. Ontogeny and the evolution of adult body size dimorphism in apes. Am. J. Primatol. 36, 37–60 (1995).PubMed 
    Article 

    Google Scholar 
    Watts, D. P. Environmental influences on mountain gorilla time budgets. Am. J. Primatol. 15, 195–211 (1988).PubMed 
    Article 

    Google Scholar 
    Doran, D. M. et al. Western lowland gorilla diet and resource availability: New evidence, cross-site comparisons, and reflections on indirect sampling methods. Am. J. Primatol. 58, 91–116 (2002).PubMed 
    Article 

    Google Scholar 
    Zanolli, C. et al. Evidence of increased hominid diversity in the Early and Middle Pleistocene of Indonesia. Nat. Ecol. Evol. 3, 755–764 (2019).PubMed 
    Article 

    Google Scholar 
    Krueger, K. L., Scott, J. R., Kay, R. F. & Ungar, P. S. Dental microwear textures of “phase I” and “phase II” facets. Am. J. Phys. Anthropol. 137, 485–490 (2008).PubMed 
    Article 

    Google Scholar 
    Kay, R. F. & Hiiemae, K. M. Jaw movement and tooth use in recent and fossil primates. Am. J. Phys. Anthropol. 40, 227–256 (1974).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wall, C. E., Vinyard, C. J., Johnson, K. R., Williams, S. H. & Hylander, W. L. Phase II jaw movements and masseter muscle activity during chewing in Papio anubis. Am. J. Phys. Anthropol. 129, 215–224 (2006).PubMed 
    Article 

    Google Scholar 
    Glowacka, H. et al. Toughness of the Virunga mountain gorilla (Gorilla beringei beringei) diet across an altitudinal gradient. Am. J. Primatol. 79, e22661 (2017).Article 

    Google Scholar 
    Cooper, J. E. & Hull, G. Gorilla pathology and health (Academic Press, 2017).
    Google Scholar 
    Hammerton, R., Hunt, K. A. & Riley, L. M. An investigation into keeper opinions of great apes diet and abnormal behaviour. J. Zoo Aquar. Res. 7, 170–178 (2019).
    Google Scholar 
    Kay, R. F. Mastication, molar tooth structure and diet in primates. Ph.D. thesis, Yale University, New Haven, CT (1973).Smith, B. H. Patterns of molar wear in hunter-gatherers and agriculturalists. Am. J. Phys. Anhtropol. 63, 39–56 (1984).CAS 
    Article 

    Google Scholar 
    Maier, W. & Schneck, G. Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Z. Morphol. Anthropol. 72, 127–169 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fiorenza, L., Benazzi, S., Tausch, J., Kullmer, O. & Schrenk, F. Identification reassessment of the isolated tooth Krapina D58 through Occlusal Fingerprint Analysis. Am. J. Phys. Anthropol. 143, 306–312 (2010).PubMed 
    Article 

    Google Scholar 
    Kullmer, O., Huck, M., Engel, K., Schrenk, F. & Bromage, T. Hominid Tooth Pattern Database (HOTPAD) derived from optical 3D topometry. In Three-dimensional imaging in paleoanthropology and prehistoric archaeology (eds. Mafart, B. & Delingette, H.) 71–82 (Acts of the XIVth UISPP Congress, BAR Int. Ser.1049, 2002).Hammer, Ø. & Harper, D. Paleontological data analysis (Blackwell Publishing, 2006).
    Google Scholar 
    Brown, M. B. & Forsythe, A. B. Robust tests for the equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974).MATH 
    Article 

    Google Scholar 
    Noguchi, K. & Gel, Y. R. Combination of Levene-type tests and a finite-intersection method for testing equality of variances against ordered alternatives. J. Nonparam. Stat. 22, 897–913 (2010).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Gastwirth, J. L., et al. Lawstat: tools for biostatistics, public policy, and law. R package version 3.4. https://CRAN.R-project.org/package=lawstat (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (2021)Oksanen, J. et al. Vegan: Community Ecology Package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Martinez Arbizu, P. PairwiseAdonis: pairwise multilevel comparison using adonis. R package version 0.4 (2017).Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Palaeontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar  More

  • in

    Metagenomic assembled plasmids of the human microbiome vary across disease cohorts

    Dollive, S. A tool kit for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 13, 60 (2012).Article 

    Google Scholar 
    Pausan, M. R. Exploring the archaeome: Detection of archaeal signatures in the human body. Front. Microbiol 10, 2796 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: The “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, D. P., Pazdernik, N. J. & McGehee, M. R. Plasmids. in Molecular Biology, 712–748 (Elsevier, 2019). https://doi.org/10.1016/B978-0-12-813288-3.00023-9.Meinhardt, F., Schaffrath, R. & Larsen, M. Microbial linear plasmids. Appl. Microbiol. Biotechnol 47, 329–336 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lacroix, B. & Citovsky, V. Transfer of DNA from bacteria to eukaryotes. MBio 7, 00863–16 (2016).Article 

    Google Scholar 
    Łobocka, M. B. Genome of bacteriophage P1. J. Bacteriol. 186, 7032–7068 (2004).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spaziante, M., Oliva, A., Ceccarelli, G. & Venditti, M. What are the treatment options for resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria?. Expert Opin. Pharmacother. 21, 1781–1787 (2020).PubMed 
    Article 

    Google Scholar 
    Kopotsa, K., Osei Sekyere, J. & Mbelle, N. M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 1457, 61–91 (2019).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Ogilvie, L. A., Firouzmand, S. & Jones, B. V. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioengineered 3, 13–31 (2012).Article 

    Google Scholar 
    Jørgensen, T. S., Xu, Z., Hansen, M. A., Sørensen, S. J. & Hansen, L. H. Hundreds of circular novel plasmids and DNA elements identified in a rat cecum metamobilome. PLoS ONE 9, 87924 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Kav, A. B. Insights into the bovine rumen plasmidome. Proc. Natl. Acad. Sci. 109, 5452–5457 (2012).CAS 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Brown Kav, A. Unravelling plasmidome distribution and interaction with its hosting microbiome. Environ. Microbiol. 22, 32–44 (2020).PubMed 
    Article 

    Google Scholar 
    Norman, J. M. et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160, 447–460 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krishnamurthy, S. R. & Wang, D. Origins and challenges of viral dark matter. Virus Res. 239, 136–142 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Clooney, A. G. et al. Whole-virome analysis sheds light on viral dark matter in inflammatory bowel disease. Cell Host. Microbe 26, 764-778.e5 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sutton, T. D. S., Clooney, A. G. & Hill, C. Giant oversights in the human gut virome. Gut 69, 1357–1358 (2020).PubMed 
    Article 

    Google Scholar 
    Zuo, T. Gut mucosal virome alterations in ulcerative colitis. Gut 68, 1169–1179 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649-662.e20 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tamminen, M., Virta, M., Fani, R. & Fondi, M. Large-scale analysis of plasmid relationships through gene-sharing networks. Mol. Biol. Evol. 29, 1225–1240 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Angelakis, E. et al. Treponema species enrich the gut microbiota of traditional rural populations but are absent from urban individuals. New Microbes New Infect 27, 14–21 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mackie, R. I. et al. Ecology of uncultivated oscillospira species in the rumen of cattle, sheep, and reindeer as assessed by microscopy and molecular approaches. Appl. Environ. Microbiol. 69, 6808–6815 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Konikoff, T. & Gophna, U. Oscillospira: A central, enigmatic component of the human gut microbiota. Trends Microbiol. 24, 523–524 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, Y. et al. High Oscillospira abundance indicates constipation and low BMI in the Guangdong Gut Microbiome Project. Sci. Rep. 10, (2020).Bushman, F. D. Multi-omic analysis of the interaction between clostridioides difficile infection and pediatric inflammatory bowel disease. Cell Host Microbe 28, 422–433 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willing, B. P. et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139, 1844–1854 (2010).PubMed 
    Article 

    Google Scholar 
    Wills, E. S. et al. Fecal microbial composition of ulcerative colitis and Crohn’s disease patients in remission and subsequent exacerbation. PLoS ONE 9, e90981 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halfvarson, J. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat. Microbiol. 2, 17004 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pascal, V. A microbial signature for Crohn’s disease. Gut 66, 813–822 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nitzan, O., Elias, M., Chazan, B., Raz, R. & Saliba, W. Clostridium difficile and inflammatory bowel disease: Role in pathogenesis and implications in treatment. World J. Gastroenterol. 19, 7577–7585 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clayton, E. M. et al. The vexed relationship between Clostridium difficile and inflammatory bowel disease: an assessment of carriage in an outpatient setting among patients in remission. Am. J. Gastroenterol. 104, 1162–1169 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Tariq, R. et al. Efficacy of fecal microbiota transplantation for recurrent C.Marcella, C. Systematic review: The global incidence of faecal microbiota transplantation-related adverse events from 2000 to 2020. Aliment. Pharmacol. Ther. https://doi.org/10.1111/apt.16148 (2020).Article 
    PubMed 

    Google Scholar 
    Shkoporov, A. N. et al. The human gut virome is highly diverse, stable, and individual specific. Cell Host Microbe 26, 527-541.e5 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fraser-Liggett, C. Metagenomic analysis of the structure and function of the human gut microbiota in Crohn’s disease. Nat. Preced. [Internet] (2010).Barton, W. et al. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut (2017).Mira-Pascual, L. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J. Gastroenterol. 50, 167–179 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Rampelli, S. Shotgun metagenomics of gut microbiota in humans with up to extreme longevity and the increasing role of xenobiotic degradation. mSystems 5, (2020).Monaghan, T. M. Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome. Gut Microbes 12, 1752605 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Chu, D. M. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 23, 314–326 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MD, D. G., K, F., C, C. & EL, C. Whole genome metagenomic analysis of the gut microbiome of differently fed infants identifies differences in microbial composition and functional genes, including an absent CRISPR/Cas9 gene in the formula-fed cohort. Hum. Microbiome J. 12, (2019).Qian, Y. et al. Gut metagenomics-derived genes as potential biomarkers of Parkinson’s disease. Brain J. Neurol. 143, 2474–2489 (2020).Article 

    Google Scholar 
    Kao, D. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent clostridium difficile infection: A randomized clinical trial. JAMA 318, 1985–1993 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 39, W29–W37 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerin, E. et al. Biology and taxonomy of crAss-like bacteriophages, the most abundant virus in the human gut. (2018). https://doi.org/10.1101/295642.Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic Virus Orthologous Groups (pVOGs): A resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar, R. C. PILER-CR: Fast and accurate identification of CRISPR repeats. BMC Bioinform. 8, 18 (2007).Article 
    CAS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/. (2019). Accessed Aug 2021–Mar 2022.Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 21, 1–20 (2007).Article 

    Google Scholar 
    Jari Oksanen et al. vegan: Community Ecology Package. (2019).McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. (2019).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Flor M. chorddiag: Interactive Chord Diagrams [Internet]. (2020).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hulsen, T., Vlieg, J. & Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 9, (2008).Stothard, P. & Wishart, D. S. Circular genome visualization and exploration using CGView. Bioinform. Oxf. Engl. 21, 537–539 (2005).CAS 
    Article 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinform. Oxf. Engl. 30, 2068–2069 (2014).CAS 
    Article 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Res. 44, D286–D293 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    McArthur, A. G. et al. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57, 3348–3357 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, W. & Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Harnessing solar power: photoautotrophy supplements the diet of a low-light dwelling sponge

    Fox MD, Williams GJ, Johnson MD, Radice VZ, Zgliczynski BJ, Kelly ELA, et al. Gradients in primary production predict trophic strategies of mixotrophic corals across spatial scales. Curr Biol. 2018;28:3355–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Selosse MA, Charpin M, Not F. Mixotrophy everywhere on land and in water: the grand écart hypothesis. Ecol Lett. 2017;20:246–63.PubMed 
    Article 

    Google Scholar 
    Ferrier-Pagès C, Hoogenboom M, Houlbreque F. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N (eds). Coral Reefs: An Ecosystem in Transition. 2011. Springer, pp 215–29.Hartmann M, Grob C, Tarran GA, Martin AP, Burkill PH, Scanlan DJ, et al. Mixotrophic basis of Atlantic oligotrophic ecosystems. Proc Natl Acad Sci USA. 2012;109:5756–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoecker DK, Hansen PJ, Caron DA, Mitra A. Mixotrophy in the marine plankton. Ann Rev Mar Sci. 2017;9:311–35.PubMed 
    Article 

    Google Scholar 
    Fabricius KE, Klumpp DW. Widespread mixotrophy in reef-inhabiting soft corals: the influence of depth, and colony expansion and contraction on photosynthesis. Mar Ecol Prog Ser. 1995;125:195–204.Article 

    Google Scholar 
    Bell JJ, McGrath E, Kandler NM, Marlow J, Beepat SS, Bachtiar R, et al. Interocean patterns in shallow water sponge assemblage structure and function. Biol Rev. 2020;95:1720–58.PubMed 
    Article 

    Google Scholar 
    Freeman CJ, Easson CG, Fiore CL, Thacker RW. Sponge–microbe interactions on coral reefs: multiple evolutionary solutions to a complex environment. Front Mar Sci. 2021;8:1–24.Article 

    Google Scholar 
    Yin Z, Zhu M, Davidson EH, Bottjer DJ, Zhao F, Tafforeau P. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc Natl Acad Sci USA. 2015;112:E1453–60.
    Google Scholar 
    Taylor MW, Radax R, Steger D, Wagner M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev. 2007;71:295–347.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:1–12.CAS 

    Google Scholar 
    Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weisz JB, Massaro AJ, Ramsby BD, Hill MS. Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. Biol Bull. 2010;219:189–97.Zhang F, Blasiak LC, Karolin JO, Powell RJ, Geddes CD, Hill RT, et al. Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges. Proc Natl Acad Sci USA. 2015;112:4381–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rützler K. Associations between Caribbean sponges and photosynthetic organisms. In: New Perspectives in Sponge Biology: 3d International Sponge Conference, 1985. 1990. Smithsonian Institution Press.Trautman DA, Hinde R, Borowitzka MA. Population dynamics of an association between a coral reef sponge and a red macroalga. J Exp Mar Bio Ecol. 2000;244:87–105.Article 

    Google Scholar 
    Sarà M. Ultrastructural aspects of the symbiosis between two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol. 1971;11:214–21.Article 

    Google Scholar 
    Erwin PM, Thacker RW. Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages. J Mar Biol Assoc U Kingd. 2007;87:1683–92.CAS 
    Article 

    Google Scholar 
    Arillo A, Bavestrello G, Burlando B, Sarà M. Metabolic integration between symbiotic cyanobacteria and sponges: a possible mechanism. Mar Biol. 1993;117:159–62.CAS 
    Article 

    Google Scholar 
    Wilkinson CR, Fay P. Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature. 1979;279:527–9.CAS 
    Article 

    Google Scholar 
    Regoli F, Cerrano C, Chierici E, Bompadre S, Bavestrello G. Susceptibility to oxidative stress of the Mediterranean demosponge Petrosia ficiformis: role of endosymbionts and solar irradiance. Mar Biol. 2000;137:453–61.CAS 
    Article 

    Google Scholar 
    Unson MD, Faulkner DJ. Cyanobacterial symbiont biosynthesis of chlorinated metabolites from Dysidea herbacea (Porifera). Experientia. 1993;49:349–53.CAS 
    Article 

    Google Scholar 
    Freeman CJ, Thacker RW, Baker DM, Fogel ML. Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J. 2013;7:1116–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkinson CR. Net primary productivity in coral reef sponges. Science. 1983;219:410–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilkinson CR. Productivity and abundance of large sponge populations on Flinders Reef flats, Coral Sea. Coral Reefs. 1987;5:183–8.Article 

    Google Scholar 
    Cheshire AC, Wilkinson CR, Seddon S, Westphalen G. Bathymetric and seasonal changes in photosynthesis and respiration of the phototrophic sponge Phyllospongia lamellosa in comparison with respiration by the heterotrophic sponge Ianthella basta on Davies Reef, Great Barrier Reef. Mar Freshw Res. 1997;48:589–99.Article 

    Google Scholar 
    Thacker RW, Diaz MC, Rützler K, Erwin PM, Kimble SJ, Pierce MJ, et al. Phylogenetic relationships among the filamentous cyanobacterial symbionts of Caribbean sponges and a comparison of photosynthetic production between sponges hosting filamentous and unicellular cyanobacteria. In: Hajdu E, Muricy G (eds). Porifera Research: Biodiversity, Innovation and Sustainability. 2007. Museu Nacional: Rio de Janeiro, pp 621–6.Erwin PM, Thacker RW. Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses. Mar Ecol Prog Ser. 2008;362:139–47.CAS 
    Article 

    Google Scholar 
    Wilkinson CR, Trott L. Light as a factor determining the distribution of sponges across the central Great Barrier Reef. Proc. 5th Int. Coral Reef Congr. 1985. pp 125–30.Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature. 2001;413:726–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gerovasileiou V, Voultsiadou E. Marine caves of the mediterranean sea: a sponge biodiversity reservoir within a biodiversity hotspot. PLoS One. 2012;7:1–17.Article 
    CAS 

    Google Scholar 
    Kornder NA, Cappelletto J, Mueller B, Zalm MJL, Martinez SJ, Vermeij MJA, et al. Implications of 2D versus 3D surveys to measure the abundance and composition of benthic coral reef communities. Coral Reefs. 2021;40:1137–53.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vicente J, Webb MK, Paulay G, Rakchai W, Timmers MA, Jury CP, et al. Unveiling hidden sponge biodiversity within the Hawaiian reef cryptofauna. Coral Reefs 2021; https://doi.org/10.1007/s00338-021-02109-7.Beer S, Ilan M. In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar Biol. 1998;131:613–7.Article 

    Google Scholar 
    Erwin PM, López-Legentil S, Turon X. Ultrastructure, molecular phylogenetics, and chlorophyll a content of novel cyanobacterial symbionts in temperate sponges. Micro Ecol. 2012;64:771–83.CAS 
    Article 

    Google Scholar 
    Thacker RW. Impacts of shading on sponge-cyanobacteria symbioses: a comparison between host-specific and generalist associations. Integr Comp Biol. 2005;45:369–76.PubMed 
    Article 

    Google Scholar 
    Biggerstaff A, Smith DJ, Jompa J, Bell JJ. Photoacclimation supports environmental tolerance of a sponge to turbid low-light conditions. Coral Reefs. 2015;34:1049–61.Article 

    Google Scholar 
    Freeman CJ, Baker DM, Easson CG, Thacker RW. Shifts in sponge-microbe mutualisms across an experimental irradiance gradient. Mar Ecol Prog Ser. 2015;526:41–53.Article 

    Google Scholar 
    Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, et al. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. ISME J. 2021;16:1163–75.Achlatis M, Pernice M, Green K, de Goeij JM, Guagliardo P, Kilburn MR, et al. Single-cell visualization indicates direct role of sponge host in uptake of dissolved organic matter. Proc R Soc B Biol Sci 2019;286:20192153.Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    Rützler K, Duran S, Piantoni C. Adaptation of reef and mangrove sponges to stress: evidence for ecological speciation exemplified by Chondrilla caribensis new species (Demospongiae, Chondrosida). Mar Ecol. 2007;28:95–111.Article 

    Google Scholar 
    de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science. 2013;342:108–10.PubMed 
    Article 
    CAS 

    Google Scholar 
    Chalker BE. Simulating light-saturation curves for photosynthesis and calcification by reef-building corals. Mar Biol. 1981;63:135–41.Article 

    Google Scholar 
    Cheshire AC, Wilkinson CR. Modelling the photosynthetic production by sponges on Davies Reef, Great Barrier Reef. Mar Biol. 1991;109:13–18.Article 

    Google Scholar 
    Muscatine L, McCloskey LR, Marian R. Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr. 1981;26:601–611.CAS 
    Article 

    Google Scholar 
    Koopmans M, Martens D, Wijffels RH. Growth efficiency and carbon balance for the sponge Haliclona oculata. Mar Biotechnol. 2010;12:340–349.CAS 
    Article 

    Google Scholar 
    Leys SP, Kahn AS, Fang JKH, Kutti T, Bannister RJ. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep-water boreal sponge Geodia barretti. Limnol Oceanogr. 2018;63:187–202.CAS 
    Article 

    Google Scholar 
    de Kluijver A, Bart MC, van Oevelen D, de Goeij JM, Leys SP, Maier SR, et al. An integrative model of carbon and nitrogen metabolism in a common deep-sea sponge (Geodia barretti). Front Mar Sci. 2021;7:1–18.Article 

    Google Scholar 
    de Goeij JM, van den Berg H, van Oostveen MM, Epping EHG, van Duyl FC. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser. 2008;357:139–51.Article 
    CAS 

    Google Scholar 
    Bart MC, Mueller B, Rombouts T, van de Ven C, Tompkins G, Osinga R, et al. Dissolved organic carbon (DOC) is essential to balance the metabolic demands of four dominant North-Atlantic deep-sea sponges. Limnol Oceanogr. 2021;66:925–38.CAS 
    Article 

    Google Scholar 
    Scheffers SR, Nieuwland G, Bak RPM, Van Duyl FC. Removal of bacteria and nutrient dynamics within the coral reef framework of Curaçao (Netherlands Antilles). Coral Reefs. 2004;23:413–22.Article 

    Google Scholar 
    Pernice M, Dunn SR, Tonk L, Dove S, Domart-Coulon I, Hoppe P, et al. A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. Environ Microbiol. 2015;17:3570–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hudspith M, Rix L, Achlatis M, Bougoure J, Guagliardo P, Clode P, et al. Subcellular view of host–microbiome nutrient exchange in sponges: insights into the ecological success of an early metazoan–microbe symbiosis. Microbiome. 2021;9:1–15.Article 
    CAS 

    Google Scholar 
    Clarke KR, Gorley RN. PRIMER v7: User Manual/Tutorial. Plymouth, UK. 2015. pp 1–296.Anderson MJ, Gorley RN, Clarke KR. PERMANOVA+ for PRIMER: Guide to software and statistical methods. Plymouth, UK. 2008. pp 1–214.Muscatine L, Falkowski PG, Porter JW, Dubinsky Z. Fate of photosynthetically fixed carbon in light- and shade-adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc B Biol Sci. 1984;222:181–202.CAS 

    Google Scholar 
    Grottoli AG, Rodrigues LJ, Palardy JE. Heterotrophic plasticity and resilience in bleached corals. Nature. 2006;440:1186–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fang JKH, Schönberg CHL, Mello-Athayde MA, Hoegh-Guldberg O, Dove S. Effects of ocean warming and acidification on the energy budget of an excavating sponge. Glob Chang Biol. 2014;20:1043–54.PubMed 
    Article 

    Google Scholar 
    Li G, Cheng L, Zhu J, Trenberth KE, Mann ME, Abraham JP. Increasing ocean stratification over the past half-century. Nat Clim Chang. 2020;10:1116–23.Article 

    Google Scholar 
    Coma R, Ribes M, Serrano E, Jiménez E, Salat J, Pascual J. Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA. 2009;106:6176–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stoecker DK. Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur J Protistol. 1998;34:281–90.Article 

    Google Scholar 
    de Goeij JM, Lesser MP, Pawlik JR. Nutrient fluxes and ecological functions of coral reef sponges in a changing ocean. In: Carballo JL, Bell JJ (eds). Climate Change, Ocean Acidification and Sponges. 2017. Springer, Cham, pp 373–410.Hoer DR, Gibson PJ, Tommerdahl JP, Lindquist NL, Martens CS. Consumption of dissolved organic carbon by Caribbean reef sponges. Limnol Oceanogr. 2018;63:337–51.CAS 
    Article 

    Google Scholar 
    McMurray SE, Stubler AD, Erwin PM, Finelli CM, Pawlik JR. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar Ecol Prog Ser. 2018;588:1–14.CAS 
    Article 

    Google Scholar 
    Morganti T, Coma R, Yahel G, Ribes M. Trophic niche separation that facilitates co-existence of high and low microbial abundance sponges is revealed by in situ study of carbon and nitrogen fluxes. Limnol Oceanogr. 2017;62:1963–83.CAS 
    Article 

    Google Scholar 
    Fang JKH, Schönberg CHL, Hoegh-Guldberg O, Dove S. Day–night ecophysiology of the photosymbiotic bioeroding sponge Cliona orientalis, Thiele, 1900. Mar Biol. 2016;163:100.Article 

    Google Scholar 
    Pineda MC, Strehlow B, Duckworth A, Doyle J, Jones R, Webster NS. Effects of light attenuation on the sponge holobiont-implications for dredging management. Sci Rep. 2016;6:39038.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mews LK. The green hydra symbiosis. III. The biotrophic transport of carbohydrate from alga to animal. Proc R Soc Lond Ser B Biol Sci. 1980;209:377–401.CAS 

    Google Scholar 
    Titlyanov EA, Titlyanova TV, Leletkin VA, Tsukahara J, van Woesik R, Yamazato K. Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar Ecol Prog Ser. 1996;139:167–178.Article 

    Google Scholar 
    Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M, Meibom A. Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio. 2015;6:1–9.CAS 
    Article 

    Google Scholar 
    Wilkinson CR. Nutrient translocation from symbiotic cyanobacteria to coral reef sponges. In: Levi C, Boury-Esnault N (eds). Biologie des Spongiaires. 1979. Coli. Int. C.N.R.S., Paris, p No. 291.Wilkinson CR. Microbial associations in sponges. III. Ultrastructure of the in situ associations in coral reef sponges. Mar Biol. 1978;49:177–85.Article 

    Google Scholar 
    Berthold RJ, Borowitzka MA, Mackay MA. The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia. 1982;21:327–35.Article 

    Google Scholar 
    Burgsdorf I, Slaby BM, Handley KM, Haber M, Blom J, Marshall CW, et al. Lifestyle evolution in cyanobacterial symbionts of sponges. mBio. 2015;6:1–14.Article 
    CAS 

    Google Scholar 
    Nguyen MTHD, Liu M, Thomas T. Ankyrin-repeat proteins from sponge symbionts modulate amoebal phagocytosis. Mol Ecol. 2014;23:1635–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao ZM, Zhou GW, Huang H, Wang Y. The cyanobacteria-dominated sponge Dactylospongia elegans in the South China Sea: prokaryotic community and metagenomic insights. Front Microbiol. 2017;8:1–12.
    Google Scholar 
    Reynolds D, Thomas T. Evolution and function of eukaryotic-like proteins from sponge symbionts. Mol Ecol. 2016;25:5242–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    Trautman DA, Hinde R. Sponge/algal symbioses: a diversity of associations. In: Seckback J (ed). Symbiosis. Springer, Dordrecht; 2006, pp 521–37.Pile AJ, Grant A, Hinde R, Borowitzka MA. Heterotrophy on ultraplankton communities is an important source of nitrogen for a sponge-rhodophyte symbiosis. J Exp Biol. 2003;206:4533–8.PubMed 
    Article 

    Google Scholar 
    Davy SK, Lucas IAN, Turner JR. Carbon budgets in temperate anthozoan-dinoflagellate symbioses. Mar Biol. 1996;126:773–83.Article 

    Google Scholar 
    Pupier CA, Fine M, Bednarz VN, Rottier C, Grover R, Ferrier-Pagès C. Productivity and carbon fluxes depend on species and symbiont density in soft coral symbioses. Sci Rep. 2019;9:1–10.CAS 
    Article 

    Google Scholar 
    Podell S, Blanton JM, Oliver A, Schorn MA, Agarwal V, Biggs JS, et al. A genomic view of trophic and metabolic diversity in clade-specific Lamellodysidea sponge microbiomes. Microbiome. 2020;8:1–17.Article 
    CAS 

    Google Scholar 
    Koch H, Lücker S, Albertsen M, Kitzinger K, Herbold C, Spieck E, et al. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc Natl Acad Sci USA. 2015;112:11371–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Engelberts JP, Robbins SJ, de Goeij JM, Aranda M, Bell SC, Webster NS. Characterization of a sponge microbiome using an integrative genome-centric approach. ISME J. 2020;14:1100–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Botté ES, Nielsen S, Abdul Wahab MA, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wilkinson CR. Interocean differences in size and nutrition of coral reef sponge populations. Science. 1987;236:1654–1657.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilken S, Huisman J, Naus-Wiezer S, Van Donk E. Mixotrophic organisms become more heterotrophic with rising temperature. Ecol Lett. 2013;16:225–233.PubMed 
    Article 

    Google Scholar 
    Steindler L, Beer S, Ilan M. Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis. 2002;33:263–73.
    Google Scholar 
    Lemloh M-L, Fromont J, Brümmer F, Usher KM. Diversity and abundance of photosynthetic sponges in temperate Western Australia. BMC Ecol. 2009;9:4.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    The microbiome of cryospheric ecosystems

    The datasetWe curated and explored 695 published 16S rRNA gene samples from cryospheric ecosystems (Methods section and Supplementary Table 7), including polar ice sheets, mountain glaciers and their proglacial lakes, permafrost soils and the coastal ocean under the influence of glacier runoff, and compared these to 3552 published 16S rRNA gene samples from non-cryospheric ecosystems, including temperate and tropical lakes and soils (Supplementary Table 7). This approach allowed us to identify and explore features specific to the cryospheric microbiome and compare it to other environmental microbiomes. However, we note a geographical bias towards polar regions in current publicly available repositories, and the paucity of alpine samples specifically highlights the need to further characterise these habitats given that they are among the most endangered cryospheric ecosystems globally. This bias is further compounded by the inconsistent methodologies applied across studies (e.g. primer pairs and sequencers used). To account for potential primer biases, we analysed two 16S rRNA primer pairs (Primer Pair 1, PP1: 341f-785r; Primer Pair 2, PP2: 515f-806r)12,13 commonly used in amplicon high-throughput sequencing. In total, this dataset contains 241,502,708 paired sequence reads, resulting in 530,254 and 410,931 amplicon sequence variants (ASVs) for PP1 and PP2, respectively. Moreover, all taxonomic analyses were performed at the genus level, to account for the limitations of 16s rRNA amplicon data. To gain deeper insights into the functional space of the cryospheric microbiome, we compared 34 published metagenomes from cryospheric ecosystems with 56 metagenomes from similar but non-cryospheric ecosystems (Fig. 1A). Given the difficulty of obtaining high-quality metagenomes from cryospheric ecosystems, we restricted our analyses to glacier surfaces, ice-covered lakes, and Antarctic soils. Although our analyses were limited to samples where raw sequence data are available (Methods section), the breadth of habitats covered are representative of the most abundant cryospheric ecosystems, e.g., glacier ice, cryoconites, subglacial lakes and sea ice. On the other hand, several niches such as glacier snow, glacier-fed rivers/streams, and the full-breadth of permafrost may not entirely be represented due to data unavailability. We reanalysed all metagenomes using the same bioinformatic pipeline (IMP3; see Methods section) to avoid analytical biases. Overall, the metagenomic analyses from 2,427,818,072 paired reads yielded 41,068,842 gene sequences. Thus, we here present a catalogue representing a snapshot of the functional diversity in the cryospheric microbiome, integrating across diverse habitats. This represents what we believe to be the first global overview of the functional repertoire of the Earth’s cryosphere compared to other ecosystems.Fig. 1: A unique cryospheric microbiome.A Geographic distribution of the 16 S rRNA gene samples for the two primer pairs (PP) and metagenomes for both cryospheric and non-cryospheric ecosystems, where GPS coordinates were available on NCBI. Symbol size denotes the number of samples per site (see Supplementary Table 7). B Phylogenetic tree based on abundant ASVs ( >0.5% relative abundance in at least one sample) in the PP1 dataset. The heatmap (inner rings) shows the presence (at a  > 0.5% relative abundance threshold) of ASVs in the four ecosystem types of the cryosphere (ice and snow, terrestrial, coastal ocean and freshwater). The barplot (outer ring) represents the coefficient for the SVM classifier analysis, highlighting discriminating ASVs. C Sorensen’s phylogenetic index of β-diversity (n1 = n2 = 84,461 for PP1, and n1 = n2 = 99,000 for PP2) and D β-MNTD calculated across pairs of samples in the cryospheric samples (Cryo-Cryo), pairs of cryospheric and non-cryospheric samples (Cryo-Others) and pairs of non-cryospheric (Others-Others) samples (sample sizes are listed in Supplementary Table 2). The top panel (shades of blue) is for PP1, the bottom one (shades of red) for PP2; two-sided Wilcoxon tests were performed to assess significance in panels C and D; the Holm method was used to correct for multiple testing (****: 0–0.0001). Boxplots depict the median and the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile range, and the remaining points are outliers. Effect sizes and exact p-values are available in Supplementary Table 2. Source data are provided as a Source Data file.Full size imageA cryospheric microbiomeGiven the communal constraints imposed by the harsh environment of cryospheric ecosystems (e.g., low temperature, oligotrophy), we expected them to harbour a specific microbiome. Accordingly, machine-learning classification (logistic regression models, Methods) based on community composition was able to differentiate between cryospheric and non-cryospheric microbiomes with high accuracy (balanced accuracy >0.96, Supplementary Table 1). Both primer pairs consistently yielded a high classification accuracy and especially a high precision. Interestingly, many of the discriminating cryospheric ASVs were spread widely across the bacterial tree of life (Fig. 1A and Supplementary Fig. 1).The notion that a part of the microbiome is specific to the cryosphere is also strongly supported by phylogenetic analyses of the 16 S rRNA gene amplicon dataset. First, we found higher pairwise phylogenetic overlap among cryospheric samples than among cryospheric/non-cryospheric or non-cryospheric samples (Sorensen’s index, Fig. 1C; Wilcoxon test, Holm adj. p  More

  • in

    Ploidy dynamics in aphid host cells harboring bacterial symbionts

    General observation and methods for ploidy analysis on aphid bacteriome cellsConsistent with previous observations9,21,22,40, the bacteriome of viviparous aphids consisted of two types of cells: bacteriocytes and sheath cells (Fig. 2). Bacteriocytes contained Buchnera cells and were much larger than sheath cells. Sheath cells exhibited a flattened morphology and surrounded the bacteriocytes. Both cell types possessed a single nucleus. Bacteriocytes had a single prominent nucleolus, which was not stained using DAPI, but using “Nucleolus Bright Red” staining (Fig. 2). Most sheath cells also had a single nucleolus, yet a small number had two. “Nucleolus Bright Red” also stained the peripheral region of Buchnera, probably because of the richness of RNA around Buchnera cells.Figure 2Morphology of bacteriocytes and sheath cells from each morph of aphids visualized using DAPI/Phalloidin/Nucleolus Bright Red staining. DNA and F-actin were stained by DAPI (gray or blue) and Phalloidin (green), respectively. The nucleolus, which is the site of ribosome biogenesis, was visualized by Nucleolus Bright Red (red). This dye binds RNA electrostatically, therefore the cytoplasm of bacteriocytes and Buchnera cells were also stained. Bacteriocytes (white arrows) had single prominent nucleolus, and the cell sizes were much larger than sheath cells (white arrowheads) in all aphid morphs.Full size imageTo determine the most suitable methods for ploidy analysis of aphid bacteriocytes, three types of methods, flow cytometry, Feulgen densitometry, and fluorometry were compared. First, flow cytometry successfully detected the nuclei of bacteriome cells and heads, and distinct peaks were present (Fig. S3). There were several peaks, which can be categorized as ploidy classes based on head peaks, assuming that the smallest peaks correspond to a diploid population. We recognized peaks up to 256C (256-ploidy) cells but could not distinguish cell types (i.e., bacteriocytes or sheath cells) in this method due to a lack of cytological information. Note that “C” means haploid genome size, for example, 2C = diploid and 8C = octoploid. Second, Feulgen densitometry also showed several ploidy levels of up to 128C (Fig. S4) in bacteriocytes. Sheath cells mainly consisted of 16-32C cells. However, we found that many cells were lost during the experimental procedures, probably due to the repeated washing processes and the long incubation time.We found the third method, image-based fluorometry for isolated nuclei, the best for quantitative ploidy analysis of aphid bacteriocytes (Fig. 3). Fluorometry showed distinct peaks of integrated fluorescence intensity, and they could be categorized as each ploidy class based on the intensity of the smallest peak in head cells (diploid population). The results were consistent with other methods; ploidy levels were 32C-256C in bacteriocytes and 16C-32C in sheath cells. In this analysis, the nucleolus size was used to discriminate between cell types. During cytological observation, we obtained the size distribution of the nucleolus, and it was revealed that the nucleolus of bacteriocytes was always larger than that of sheath cells (Fig. S5). Based on the results, we determined the threshold of the size of the nucleolus. More specifically, in viviparous females, nuclei that have nucleoli larger than 20 μm2 were categorized into bacteriocytes. Note that the peaks of sheath cells were not distinct or reliable for categorizing their ploidy class; therefore, we showed results focusing on bacteriocytes in the following sections.Figure 3Ploidy analysis of aphid bacteriocytes using DAPI-fluorometry. A representative result from the analysis of adult viviparous females is presented. An image of DAPI-stained nuclei was also shown (the blue channel was extracted). Isolated nuclei of bacteriome cells were stained using DAPI, image-captured with a CCD camera, and their integrated fluorescence intensity was measured using ImageJ software. Nuclei were categorized into “bacteriocytes” or “sheath cells,” based on the size distribution of nucleolus (see “Materials and Methods”). Relative ploidy levels were calculated based on the data from head cells which are mainly diploid. Bacteriocytes of adult viviparous aphids consisted of 16C-256C cells, and 64–128 cells were dominant, while sheath cells exhibited lower ploidy levels (mainly 16C). “C” means haploid genome size, for example, 2C = diploid and 8C = octoploid.Full size imageCellular features of bacteriome cells in viviparous and oviparous females, and malesThe cellular features were generally consistent among young adults (within 5 days of adult eclosion) of three morphs, viviparous and oviparous females, and males (Fig. 2). Nevertheless, Buchnera-absence zones in the cytoplasm of bacteriocytes, which are considered to be degeneration of Buchnera45, and bacteriocytes degeneration46 were both observed more frequently in male bacteriocytes than in females (Fig. 2). The cell size of bacteriocytes was significantly different among morphs (LM with type II test, F = 286.15, df = 2, p  More

  • in

    The sustainability movement is 50. Why are world leaders ignoring it?

    Swedish environment minister Annika Strandhäll before the start of the Stockholm +50 Climate Summit. Few world leaders will be attending.Credit: Fredrik Persson/TT News Agency/AFP/Getty

    Sustainability is now a household term, but it wasn’t always so.Fifty years ago, the United Nations held its Conference on the Human Environment in Stockholm. This landmark event gave the concept of sustainable development its first international recognition. Sweden and the UN are marking the occasion this week with Stockholm+50, an international meeting that serves as both commemoration and call to action.The world is deep in planetary and human crises, with the UN’s Sustainable Development Goals off track and multilateral agreements on climate change and biodiversity behind schedule. Governments need to integrate sustainability into economic planning — and listen to researchers, who are ready with evidence-based arguments and tools to help them do so.Fifty years ago, the time was ripe for an environmental agenda to enter the world stage. Optimistic ideas of economic growth as a driver of progress, propelled by the Industrial Revolution, needed to accommodate concerns over damage to the natural environment. Books such as Rachel Carson’s Silent Spring (1962) — which raised awareness about harms caused by pesticides — brought scientific information about environmental risks into the mainstream.In March 1972, a team of researchers and policymakers sounded another alarm in The Limits to Growth, one of the first reports to forecast catastrophic consequences if humans kept exploiting Earth’s limited supply of natural resources. The conference in Stockholm followed a few months later, steered to success by its secretary-general, Canadian industrialist Maurice Strong. That set crucial institutions in motion, starting with the establishment of the UN Environment Programme (UNEP), based in Nairobi — the first UN body to be headquartered in a developing country. UNEP went on to facilitate a new international law — the 1987 Montreal Protocol to phase out ozone-depleting substances — and co-founded the Intergovernmental Panel on Climate Change (IPCC). It assisted in establishing the first action plans for sustainable development through landmark international agreements on biodiversity, climate and desertification.But there were mistakes and missed opportunities. The establishment of multiple agencies and policy instruments created a disjointed governance system. Newly created environment ministers wielded little power. In national budgets, environmental protection was siloed away from economic development and social concerns. For a long time, action on climate change remained unfocused. And the economic drivers of environmental change were overlooked.And so, 50 years after that momentous conference, the world remains in crisis. With impending climate and biodiversity crises, the warnings issued by visionaries now hit even closer.Stockholm+50 promises “clear and concrete recommendations and messages for action at all levels”. More than 90 ministers are expected to attend, but only 10 heads of government. That’s a missed opportunity for high-level action. World leaders are needed because their presence signals that sustainability remains at the top of their agendas.Awareness of the need to embed sustainability into policymaking has broken into the mainstream, although much of it is still talk. City governments around the world are implementing ambitious climate action plans through the C40 Cities network. Some companies, too, are adopting sustainability principles, from reporting (and reducing) their carbon footprints to ensuring that investments, as far as possible, do not harm the environment.But this urgency has not ascended to heads of state and government. With a handful of exceptions — such as Finland, Iceland, New Zealand, Scotland and Wales — most nations seem unwilling to systemically integrate their economic, environmental and social policymaking.Doing so is not only good for the environment; it is also sound economics and good for well-being. The food and energy crisis driving poverty and diminishing living standards around the world might have been triggered by the shocks of a pandemic and war on Ukraine — but it is driven just as much by the depletion of natural resources.Ahead of the 1972 conference, 2,200 environmental scientists signed a letter — called the Menton Message — to then UN secretary-general U Thant. The signatories had a sense that the world was moving towards multiple crises. They urged “massive research into the problems that threaten the survival of mankind”, such as hunger, wars, environmental degradation and natural-resource depletion. The UN system went on to play a big part in building the body of knowledge that has shown why sustainability is necessary, and in creating the policy architecture to make it happen. But to do the Stockholm vision justice, there must be bolder action from heads of government and from the UN system. The planned creation of a board of science advisers to UN secretary-general António Guterres needs to be accelerated. Once established, the board must find a way to bring joined-up action on sustainability closer to world leaders.Researchers can now join a successor to the Menton Message that has been organized by the International Science Council, the global science network Future Earth and the Stockholm Environment Institute. In an open letter addressed to world citizens, the authors write: “After 50 years, pro-environmental action seems like one step forward and two back. The world produces more food than needed, yet many people still go hungry. We continue to subsidize and invest in fossil fuels, even though renewable energy is increasingly cost-effective. We extract resources where the price is lowest, often in direct disregard of local rights and values.”World leaders must listen to the research community, and accept the evidence and narrative offered to help them to navigate meaningful change. Environmental sustainability does not impede prosperity and well-being — in fact, it is vital to them. People in power need to sit up and take notice. More

  • in

    Below ground efficiency of a parasitic wasp for Drosophila suzukii biocontrol in different soil types

    Di Giacomo, G., Hadrich, J., Hutchison, W. D., Peterson, H. & Rogers, M. Economic impact of spotted wing drosophila (Diptera: Drosophilidae) yield loss on minnesota raspberry farms: A grower survey. J. Integr. Pest Manag. https://doi.org/10.1093/jipm/pmz006 (2019).Article 

    Google Scholar 
    Farnsworth, D. et al. Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. Pest. Manag. Sci. 73, 1083–1090. https://doi.org/10.1002/ps.4497 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beers, E. H., Van Steenwyk, R. A., Shearer, P. W., Coates, W. W. & Grant, J. A. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag. Sci. 67, 1386–1395. https://doi.org/10.1002/ps.2279 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tait, G. et al. Drosophila suzukii (Diptera: Drosophilidae): A decade of research towards a sustainable integrated pest management program. J. Econ. Entomol. 114, 1950–1974. https://doi.org/10.1093/jee/toab158 (2021).Article 
    PubMed 

    Google Scholar 
    Daane, K. M. et al. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J. Pest Sci. 89, 823–835. https://doi.org/10.1007/s10340-016-0740-0 (2016).ADS 
    Article 

    Google Scholar 
    Abram, P. K. et al. New records of Leptopilina, Ganaspis, and Asobara species associated with Drosophila suzukii in North America, including detections of L. japonica and G. brasiliensis. J. Hymenoptera Res. 78, 1–17. https://doi.org/10.3897/jhr.78.55026 (2020).Article 

    Google Scholar 
    Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47. https://doi.org/10.1016/j.biocontrol.2012.05.005 (2012).Article 

    Google Scholar 
    Gonzalez-Cabrera, J., Moreno-Carrillo, G., Sanchez-Gonzalez, J. A., Mendoza-Ceballos, M. Y. & Arredondo-Bernal, H. C. Single and Combined Release of Trichopria drosophilae (Hymenoptera: Diapriidae) to Control Drosophila suzukii (Diptera: Drosophilidae). Neotrop. Entomol. 48, 949–956. https://doi.org/10.1007/s13744-019-00707-3 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rossi Stacconi, M. V., Grassi, A., Ioriatti, C. & Anfora, G. Augmentative releases of Trichopria drosophilae for the suppression of early season Drosophila suzukii populations. Biocontrol 64, 9–19. https://doi.org/10.1007/s10526-018-09914-0 (2018).CAS 
    Article 

    Google Scholar 
    Poyet, M. et al. The wide potential trophic niche of the asiatic fruit fly Drosophila suzukii: The key of its invasion success in temperate Europe?. PLoS ONE 10, e0142785. https://doi.org/10.1371/journal.pone.0142785 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mazzetto, F. et al. Drosophila parasitoids in northern Italy and their potential to attack the exotic pest Drosophila suzukii. J. Pest Sci. 89, 837–850. https://doi.org/10.1007/s10340-016-0746-7 (2016).Article 

    Google Scholar 
    Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Foraging efficiency and outcomes of interactions of two pupal parasitoids attacking the invasive spotted wing drosophila. Biol. Control 96, 64–71. https://doi.org/10.1016/j.biocontrol.2016.02.004 (2016).Article 

    Google Scholar 
    Rossi Stacconi, M. V. et al. Host location and dispersal ability of the cosmopolitan parasitoid Trichopria drosophilae released to control the invasive spotted wing Drosophila. Biol. Control 117, 188–196. https://doi.org/10.1016/j.biocontrol.2017.11.013 (2018).Article 

    Google Scholar 
    Esteban-Santiago, J. M., Rodríguez-Leyva, E., Lomeli-Flores, J. R. & González-Cabrera, J. Demographic parameters of Trichopria drosophilae in three host species. Entomol. Exp. Appl. 169, 330–337. https://doi.org/10.1111/eea.13026 (2021).CAS 
    Article 

    Google Scholar 
    Häussling, B. J. M., Lienenluke, J. & Stokl, J. The preference of Trichopria drosophilae for pupae of Drosophila suzukii is independent of host size. Sci. Rep. 11, 995. https://doi.org/10.1038/s41598-020-80355-5 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. G., Kacar, G., Biondi, A. & Daane, K. M. Life-history and host preference of Trichopria drosophilae, a pupal parasitoid of spotted wing drosophila. Biocontrol 61, 387–397. https://doi.org/10.1007/s10526-016-9720-9 (2016).CAS 
    Article 

    Google Scholar 
    Woltz, J. M. & Lee, J. C. Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field. Biol. Control 110, 62–69. https://doi.org/10.1016/j.biocontrol.2017.04.007 (2017).Article 

    Google Scholar 
    Ballman, E. S., Collins, J. A. & Drummond, F. A. Pupation behavior and predation on Drosophila suzukii (Diptera: Drosophilidae) Pupae in Maine wild blueberry fields. J. Econ. Entomol. 110, 2308–2317. https://doi.org/10.1093/jee/tox233 (2017).Article 
    PubMed 

    Google Scholar 
    Guillén, L., Aluja, M. N., Equihua, M. & Sivinski, J. Performance of two fruit fly (Diptera: Tephritidae) pupal parasitoids (Coptera haywardi [Hymenoptera: Diapriidae] and Pachycrepoideus vindemiae [Hymenoptera: Pteromalidae]) under different environmental soil conditions. Biol. Control 23, 219–227. https://doi.org/10.1006/bcon.2001.1011 (2002).Article 

    Google Scholar 
    Yi, C. et al. Life history and host preference of Trichopria drosophilae from Southern China, one of the effective pupal parasitoids on the Drosophila species. Insects 11, 103. https://doi.org/10.3390/insects11020103 (2020).Article 
    PubMed Central 

    Google Scholar 
    BoychevaWoltering, S., Romeis, J. & Collatz, J. Influence of the rearing host on biological parameters of Trichopria drosophilae, a potential biological control agent of Drosophila suzukii. Insects. https://doi.org/10.3390/insects10060183 (2019).Article 

    Google Scholar 
    Otto, M. & Mackauer, M. The developmental strategy of an idiobiont ectoparasitoid, Dendrocerus carpenteri: Influence of variations in host quality on offspring growth and fitness. Oecologia 117, 353–364. https://doi.org/10.1007/s004420050668 (1998).ADS 
    Article 
    PubMed 

    Google Scholar 
    Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing (Vienna, Austria, 2008).Johnson, S. N. & Gregory, P. J. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 31, 1–13. https://doi.org/10.1111/j.1365-3032.2005.00487.x (2006).CAS 
    Article 

    Google Scholar 
    Bezerra Da Silva, C. S., Park, K. R., Blood, R. A. & Walton, V. M. Intraspecific competition affects the pupation behavior of spotted-wing drosophila (Drosophila suzukii). Sci. Rep. 9, 7775. https://doi.org/10.1038/s41598-019-44248-6 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renkema, J. M. & Devkota, S. Pupation depth of spotted wing drosophila (Drosophila suzukii) and effects of field sanitation in Florida strawberries. Viii Int. Strawberry Symp. 1156, 849–855. https://doi.org/10.17660/ActaHortic.2017.1156.125 (2017).Article 

    Google Scholar 
    Tsitsipis, J. A. & Papanicolaou, E. P. Pupation depth in artificially reared olive fruits-flies Dacus-oleae (Diptera, Tephritidae), as affected by several physical characteristics of the substrates. Annales De Zoologie Ecologie Animale 11, 31–40 (1979).
    Google Scholar 
    Dimou, I., Koutsikopoulos, C., Economopoulos, A. P. & Lykakis, J. Depth of pupation of the wild olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Dipt., Tephritidae), as affected by soil abiotic factors. J. Appl. Entomol. 127, 12–17. https://doi.org/10.1046/j.1439-0418.2003.00686.x (2003).Article 

    Google Scholar 
    de Belle, J. S., Hilliker, A. J. & Sokolowski, M. B. Genetic localization of foraging (for): A major gene for larval behavior in Drosophila melanogaster. Genetics 123, 157–163. https://doi.org/10.1093/genetics/123.1.157 (1989).Article 
    PubMed 

    Google Scholar 
    Sokolowski, M. B. et al. Ecological genetics and behaviour of Drosophila melanogaster larvae in nature. Anim. Behav. 34, 403–408. https://doi.org/10.1016/S0003-3472(86)80109-9 (1986).Article 

    Google Scholar 
    Rodriguez, L., Sokolowski, M. B. & Shore, J. S. Habitat selection by Drosophila melanogaster larvae. J. Evol. Biol. 5, 61–70. https://doi.org/10.1046/j.1420-9101.1992.5010061.x (1992).Article 

    Google Scholar 
    McIntosh, H., Atucha, A., Townsend, P. A., Hills, W. B. & Guédot, C. Plastic mulches reduce adult and larval populations of Drosophila suzukii in fall-bearing raspberry. J. Pest. Sci. 95, 525–536. https://doi.org/10.1007/s10340-021-01456-2 (2021).Article 

    Google Scholar 
    Ballman, E. & Drummond, F. Larval movement of spotted wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). J. Kansas Entomol. Soc. 92, 412–421. https://doi.org/10.2317/0022-8567-92.1.412 (2019).Article 

    Google Scholar  More