More stories

  • in

    A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Muhlfeld, C. C. et al. Invasive hybridization in a threatened species is accelerated by climate change. Nat. Clim. Change 4, 620–624 (2014).Article 

    Google Scholar 
    Taylor, S. A. et al. Climate-mediated movement of an avian hybrid zone. Curr. Biol. 24, 671–676 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mao, Y., Economo, E. P. & Satoh, N. The roles of introgression and climate change in the rise to dominance of Acropora corals. Curr. Biol. 28, 3373–3382.e5 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vianna, J. A. et al. Genome-wide analyses reveal drivers of penguin diversification. Proc. Natl Acad. Sci. USA 117, 22303–22310 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Racimo, F., Sankararaman, S., Nielsen, R. & Huerta-Sánchez, E. Evidence for archaic adaptive introgression in humans. Nat. Rev. Genet. 16, 359–371 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKelvey, K. S. et al. Patterns of hybridization among cutthroat trout and rainbow trout in northern Rocky Mountain streams. Ecol. Evol. 6, 688–706 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, B. Y., Huber, C. D. & Lohmueller, K. E. Deleterious variation shapes the genomic landscape of introgression. PLoS Genet. 14, e1007741 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, D.-D. et al. Pervasive introgression facilitated domestication and adaptation in the Bos species complex. Nat. Ecol. Evol. 2, 1139–1145 (2018).Article 
    PubMed 

    Google Scholar 
    Wang, M.-S. et al. Ancient hybridization with an unknown population facilitated high-altitude adaptation of canids. Mol. Biol. Evol. 37, 2616–2629 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Meier, J. I. et al. Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nat. Commun. 8, 14363 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haig, S. M., Mullins, T. D., Forsman, E. D., Trail, P. W. & Wennerberg, L. I. V. Genetic identification of spotted owls, barred owls, and their hybrids: legal implications of hybrid identity. Conserv. Biol. 18, 1347–1357 (2004).Article 

    Google Scholar 
    vonHoldt, B. M. et al. Whole-genome sequence analysis shows that two endemic species of North American wolf are admixtures of the coyote and gray wolf. Sci. Adv. 2, e1501714 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, S. et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157, 785–794 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, V. et al. The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 46487 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Preuß, A., Gansloßer, U., Purschke, G. & Magiera, U. Bear-hybrids: behaviour and phenotype. Zool. Gart. 78, 204–220 (2009).Article 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet. 9, e1003345 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pongracz, J. D., Paetkau, D., Branigan, M. & Richardson, E. Recent hybridization between a polar bear and grizzly bears in the Canadian Arctic. Arctic 70, 151–160 (2017).Article 

    Google Scholar 
    Pugach, I., Matveyev, R., Wollstein, A., Kayser, M. & Stoneking, M. Dating the age of admixture via wavelet transform analysis of genome-wide data. Genome Biol. 12, R19 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farquharson, L. et al. Alaskan marine transgressions record out-of-phase Arctic Ocean glaciation during the last interglacial. Geology 46, 783–786 (2018).Article 

    Google Scholar 
    Kapp, J. D., Green, R. E. & Shapiro, B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J. Hered. 112, 241–249 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pease, J. B. & Hahn, M. W. Detection and polarization of introgression in a five-taxon phylogeny. Syst. Biol. 64, 651–662 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barlow, A. et al. Middle Pleistocene genome calibrates a revised evolutionary history of extinct cave bears. Curr. Biol. 31, 1771–1779.e7 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barlow, A. et al. Partial genomic survival of cave bears in living brown bears. Nat. Ecol. Evol. 2, 1563–1570 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, K., Mathieson, I., O’Connell, J. & Schiffels, S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 16, e1008552 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polyak, L. et al. History of sea ice in the Arctic. Quat. Sci. Rev. 29, 1757–1778 (2010).Article 

    Google Scholar 
    Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Salonen, J. S. et al. Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian. Nat. Commun. 9, 2851 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guarino, M.-V. et al. Sea-ice-free Arctic during the Last Interglacial supports fast future loss. Nat. Clim. Change 10, 928–932 (2020).Article 

    Google Scholar 
    Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities? Front. Ecol. Environ. 13, 138–145 (2015).Article 

    Google Scholar 
    Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524 (2018).Article 

    Google Scholar 
    Miller, S., Wilder, J. & Wilson, R. R. Polar bear–grizzly bear interactions during the autumn open-water period in Alaska. J. Mammal. 96, 1317–1325 (2015).Article 

    Google Scholar 
    Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. The mating system of the brown bear Ursus arctos. Mamm. Rev. 42, 12–34 (2012).Article 

    Google Scholar 
    Stirling, I., Spencer, C. & Andriashek, D. Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Mar. Mamm. Sci. 32, 13–37 (2016).Article 

    Google Scholar 
    Méheust, M., Stein, R., Fahl, K. & Gersonde, R. Sea-ice variability in the subarctic North Pacific and adjacent Bering Sea during the past 25 ka: new insights from IP25 and Uk′37 proxy records. Arktos 4, 1–19 (2018).Article 

    Google Scholar 
    Brigham-Grette, J. & Hopkins, D. M. Emergent marine record and paleoclimate of the last interglaciation along the northwest Alaskan coast. Quat. Res. 43, 159–173 (1995).Article 

    Google Scholar 
    Boessenkool, S. et al. Combining bleach and mild predigestion improves ancient DNA recovery from bones. Mol. Ecol. Resour. 17, 742–751 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).Article 
    PubMed 

    Google Scholar 
    Kircher, M., Sawyer, S. & Meyer, M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prüfer, K. snpAD: an ancient DNA genotype caller. Bioinformatics 34, 4165–4171 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA–MEM. Preprint at https://doi.org/10.48550/arXiv.1303.3997 (2013).McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G., Peterson, D. & Tamura, K. MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 28, 2685–2686 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vihtakari, M. PlotSvalbard: User Manual. Github https://mikkovihtakari.github.io/PlotSvalbard/articles/PlotSvalbard.html (2020).Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    Yu, G. Using ggtree to visualize data on tree-like structures. Curr. Protoc. Bioinformatics 69, e96 (2020).Article 
    PubMed 

    Google Scholar 
    Yu, G., Lam, T. T., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, L.-G. et al. Treeio: an R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37, 599–603 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lindqvist, C. et al. Complete mitochondrial genome of a Pleistocene jawbone unveils the origin of polar bear. Proc. Natl Acad. Sci. USA 107, 5053–5057 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Browning, B. L. & Browning, S. R. Genotype imputation with millions of reference samples. Am. J. Hum. Genet. 98, 116–126 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kelleher, J., Etheridge, A. M. & McVean, G. Efficient coalescent simulation and genealogical analysis for large sample sizes. PLoS Comput. Biol. 12, e1004842 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palkopoulou, E. et al. Complete genomes reveal signatures of demographic and genetic declines in the woolly mammoth. Curr. Biol. 25, 1395–1400 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vershinina, A. O. et al. Ancient horse genomes reveal the timing and extent of dispersals across the Bering Land Bridge. Mol. Ecol. 30, 6144–6161 (2021).Article 
    PubMed 

    Google Scholar 
    Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and interpreting apparent Neanderthal ancestry in African individuals. Cell 180, 677–687.e16 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).
    Google Scholar  More

  • in

    Expected contraction in the distribution ranges of demersal fish of high economic value in the Mediterranean and European Seas

    Gattuso, J.-P. et al. Ocean solutions to address climate change and its effects on marine ecosystems. Front. Mar. Sci. 5, 337 (2018).Article 

    Google Scholar 
    Pauly, D. The gill-oxygen limitation theory (GOLT) and its critics. Sci. Adv. 7, 6050 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros-Montemayor, A. M. & Cheung, W. W. L. Adaptation strategies to climate change in marine systems. Glob. Change Biol. 24, e1–e14 (2018).Article 
    ADS 

    Google Scholar 
    Chan, F. T. et al. Climate change opens new frontiers for marine species in the Arctic: Current trends and future invasion risks. Glob. Change Biol. 25, 25–38 (2019).Article 
    ADS 

    Google Scholar 
    Cheung, W. W. L. et al. Structural uncertainty in projecting global fisheries catches under climate change. Ecol. Model. 325, 57–66 (2016).CAS 
    Article 

    Google Scholar 
    Pita, I., Mouillot, D., Moullec, F. & Shin, Y. Contrasted patterns in climate change risk for Mediterranean fisheries. Glob. Change Biol. 27, 5920–5933 (2021).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Fishing for aquaculture: Non-food use of small pelagic forage fish—a global perspective. Rev. Fish. Sci. 17, 305–317 (2009).Article 

    Google Scholar 
    Coll, M., Pennino, M. G., Steenbeek, J., Sole, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).Article 

    Google Scholar 
    Schickele, A. et al. Improving predictions of invasive fish ranges combining functional and ecological traits with environmental suitability under climate change scenarios. Glob. Change Biol. 27, 6086–6102 (2021).Article 

    Google Scholar 
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).PubMed 
    Article 

    Google Scholar 
    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).Article 
    ADS 

    Google Scholar 
    FAO. The State of Mediterranean and Black Sea Fisheries 2020—At a glance. 20 (2020).McGinty, N., Barton, A. D., Finkel, Z. V., Johns, D. G. & Irwin, A. J. Niche conservation in copepods between ocean basins. Ecography https://doi.org/10.1111/ecog.05690 (2021).Article 

    Google Scholar 
    Dormann, C. F. et al. Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glob. Ecol. Biogeogr. 27, 1004–1016 (2018).Article 

    Google Scholar 
    Hannemann, H., Willis, K. J. & Macias-Fauria, M. The devil is in the detail: unstable response functions in species distribution models challenge bulk ensemble modelling: Unstable response functions in SDMs. Glob. Ecol. Biogeogr. 25, 26–35 (2016).Article 

    Google Scholar 
    Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Chang. 9, 237–243 (2019).Article 
    ADS 

    Google Scholar 
    Lasram, B. R. et al. An open-source framework to model present and future marine species distributions at local scale. Ecol. Inform. 59, 101130 (2020).Article 

    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, 4858 (2019).Article 
    ADS 

    Google Scholar 
    Schickele, A. et al. European small pelagic fish distribution under global change scenarios. Fish Fish 22, 212–225 (2021).Article 

    Google Scholar 
    Duarte, R., Azevedo, M., Landa, J. & Pereda, P. Reproduction of angler®sh (Lophius budegassa Spinola and Lophius piscatorius Linnaeus) from the Atlantic Iberian coast. Fish. Res. 13, 2 (2001).
    Google Scholar 
    Nunes, P., Svensson, L. & Markandya, A. Handbook on the Economics and Management of Sustainable Oceans (Edward Elgar Publishing, 2017).Book 

    Google Scholar 
    Schickele, A. et al. Modelling European small pelagic fish distribution: Methodological insights. Ecol. Model. 416, 108902 (2020).Article 

    Google Scholar 
    Cheung, W. W. L., Jones, M. C., Reygondeau, G. & Frölicher, T. L. Opportunities for climate-risk reduction through effective fisheries management. Glob. Change Biol. 24, 5149–5163 (2018).Article 
    ADS 

    Google Scholar 
    Bossier, S. et al. The Baltic Sea Atlantis: An integrated end-to-end modelling framework evaluating ecosystem-wide effects of human-induced pressures. PLoS ONE 13, e0199168 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dahlke, F. T., Wohlrab, S., Butzin, M. & Pörtner, H.-O. Thermal bottlenecks in the life cycle define climate vulnerability of fish. Science 369, 65–70 (2020).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Valle, C., Bayle-Sempere, J. T., Dempster, T., Sanchez-Jerez, P. & Giménez-Casalduero, F. Temporal variability of wild fish assemblages associated with a sea-cage fish farm in the south-western Mediterranean Sea. Estuar. Coast. Shelf Sci. 72, 299–307 (2007).Article 
    ADS 

    Google Scholar 
    Madurell, T., Cartes, J. E. & Labropoulou, M. Changes in the structure of fish assemblages in a bathyal site of the Ionian Sea (eastern Mediterranean). Fish. Res. 66, 245–260 (2004).Article 

    Google Scholar 
    Volkoff, H. & Rønnestad, I. Effects of temperature on feeding and digestive processes in fish. Temperature 7, 307–320 (2020).Article 

    Google Scholar 
    Rutterford, L. A. et al. Future fish distributions constrained by depth in warming seas. Nat. Clim. Change 5, 569–573 (2015).Article 
    ADS 

    Google Scholar 
    Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    Conti, L. & Scardi, M. Fisheries yield and primary productivity in large marine ecosystems. Mar. Ecol. Prog. Ser. 410, 233–244 (2010).Article 
    ADS 

    Google Scholar 
    Chérif, M. et al. Food and feeding habits of the red mullet, Mullus barbatus (Actinopterygii: Perciformes: Mullidae), off the northern Tunisian coast (central Mediterranean). Acta Icth et Piscat 41, 109–116 (2011).Article 

    Google Scholar 
    Mellon-Duval, C. et al. Trophic ecology of the European hake in the Gulf of Lions, northwestern Mediterranean Sea. Sci. Mar. 81, 7 (2017).Article 

    Google Scholar 
    Steingrund, P. & Gaard, E. Relationship between phytoplankton production and cod production on the Faroe Shelf. ICES J. Mar. Sci. 62, 163–176 (2005).Article 

    Google Scholar 
    Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Frederiksen, M., Edwards, M., Richardson, A. J., Halliday, N. C. & Wanless, S. From plankton to top predators: Bottom-up control of a marine food web across four trophic levels. J. Anim. Ecol. 75, 1259–1268 (2006).PubMed 
    Article 

    Google Scholar 
    Vasilakopoulos, P., Raitsos, D. E., Tzanatos, E. & Maravelias, C. D. Resilience and regime shifts in a marine biodiversity hotspot. Sci. Rep. 7, 13647 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Issifu, I., Alava, J. J., Lam, V. W. Y. & Sumaila, U. R. Impact of ocean warming, overfishing and mercury on European fisheries: A risk assessment and policy solution framework. Front. Mar. Sci. 8, 770805 (2022).Article 

    Google Scholar 
    Lima, A. R. A. et al. Forecasting shifts in habitat suitability across the distribution range of a temperate small pelagic fish under different scenarios of climate change. Sci. Total Environ. 804, 150167 (2022).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, 3855 (2019).Article 
    ADS 

    Google Scholar 
    Holsman, K. K. et al. Ecosystem-based fisheries management forestalls climate-driven collapse. Nat. Commun. 11, 4579 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Sumaila, U. R. & Tai, T. C. End overfishing and increase the resilience of the ocean to climate change. Front. Mar. Sci. 7, 523 (2020).Article 

    Google Scholar 
    Lindegren, M. & Brander, K. Adapting fisheries and their management to climate change: A review of concepts, tools, frameworks, and current progress toward implementation. Rev. Fish. Sci. Aquacult. 26, 400–415 (2018).Article 

    Google Scholar 
    Demirel, N., Zengin, M. & Ulman, A. First large-scale eastern mediterranean and black sea stock assessment reveals a dramatic decline. Front. Mar. Sci. 7, 103 (2020).Article 

    Google Scholar 
    Weiss, C. V. C. et al. Climate change effects on marine renewable energy resources and environmental conditions for offshore aquaculture in Europe. ICES J. Mar. Sci. 77, 3168–3182 (2020).Article 

    Google Scholar 
    Cascarano, M. C. et al. Mediterranean aquaculture in a changing climate: temperature effects on pathogens and diseases of three farmed fish species. Pathogens 10, 1205 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kleitou, P. et al. Fishery reforms for the management of non-indigenous species. J. Environ. Manag. 280, 111690 (2021).Article 

    Google Scholar 
    Hamida, B.-B. & O, Ben Hadj Hamida N, Chaouch H, Missaoui H,. Allometry, condition factor and growth of the swimming blue crab Portunus segnis in the Gulf of Gabes, Southeastern Tunisia (Central Mediterranean). Medit. Mar. Sci. 20, 566 (2019).Article 

    Google Scholar 
    Wisz, M. S. et al. Reply to ‘Sources of uncertainties in cod distribution models’. Nat. Clim. Change 5, 790–791 (2015).Article 
    ADS 

    Google Scholar 
    Kramer-Schadt, S. et al. The importance of correcting for sampling bias in MaxEnt species distribution models. Divers. Distrib. 19, 1366–1379 (2013).Article 

    Google Scholar 
    Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).Article 
    ADS 

    Google Scholar 
    Hao, T., Elith, J., Lahoz-Monfort, J. J. & Guillera-Arroita, G. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography 43, 549–558 (2020).Article 

    Google Scholar 
    Thuiller, W., Damie, G., Robin, E., Frank, F.Biomod2: Ensemble Platform for Species Distribution Modeling (2016).Stolar, J. & Nielsen, S. E. Accounting for spatially biased sampling effort in presence-only species distribution modelling. Divers. Distrib. 21, 595–608 (2015).Article 

    Google Scholar 
    Stockwell, D. The GARP modelling system: Problems and solutions to automated spatial prediction. Int. J. Geogr. Inf. Sci. 13, 143–158 (1999).Article 

    Google Scholar 
    Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. A trait-based test for habitat filtering: Convex hull volume. Ecology 87(6), 1465–1471 (2003).Article 

    Google Scholar 
    Hengl, T., Sierdsema, H., Radović, A. & Dilo, A. Spatial prediction of species’ distributions from occurrence-only records: Combining point pattern analysis ENFA and regression-kriging. Ecol. Modell. 220, 3499–3511 (2009).Article 

    Google Scholar 
    Faillettaz, R., Beaugrand, G., Goberville, E. & Kirby, R. R. Atlantic Multidecadal Oscillations drive the basin-scale distribution of Atlantic bluefin tuna. Sci. Adv. 5, eaar6993 (2019).Lavoie, D., Lambert, N. & Gilbert, D. Projections of future trends in biogeochemical conditions in the northwest Atlantic using CMIP5 earth system models. Atmos. Ocean 57, 18–40 (2019).CAS 
    Article 

    Google Scholar 
    Taylor, K. E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 106, 7183–7192 (2001).Article 
    ADS 

    Google Scholar 
    Cristofari, R. et al. Climate-driven range shifts of the king penguin in a fragmented ecosystem. Nat. Clim. Change 8, 245–251 (2018).Article 
    ADS 

    Google Scholar 
    Zeller, D. et al. Still catching attention: Sea Around Us reconstructed global catch data, their spatial expression and public accessibility. Mar. Policy 70, 145–152 (2016).Article 

    Google Scholar 
    GBIF.org (27 May 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.2crvdpGBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.y8ujd7GBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.hs8py7GBIF.org (7 June 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.kqwq3aGBIF.org (14 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.raka7jGBIF.org (14 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.fwbk43GBIF.org (30 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.845mcwGBIF.org (30 July 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.wdavbrGBIF.org (11 September 2020) GBIF Occurrence Download https://doi.org/10.15468/dl.ucuavw More

  • in

    Population dynamics of synanthropic rodents after a chemical and infrastructural intervention in an urban low-income community

    Panti-May, J. A. et al. A two-year ecological study of Norway rats (Rattus norvegicus) in a Brazilian Urban Slum. PLoS ONE 11(3), 1–12. https://doi.org/10.1371/journal.pone.0152511 (2016).CAS 
    Article 

    Google Scholar 
    Himsworth, C. G. et al. A mixed methods approach to exploring the relationship between Norway rat (Rattus norvegicus) abundance and features of the urban environment in an inner-city neighborhood of Vancouver, Canada. PLoS ONE 9(5), 97776. https://doi.org/10.1371/journal.pone.0097776 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Lambert, M. S., Quy, R. J., Smith, R. H. & Cowan, D. P. The effect of habitat management on home-range size and survival of rural Norway rat populations. J. Appl. Ecol. 45(6), 1753–1761. https://doi.org/10.1111/j.1365-2664.2008.01543.x (2008).Article 

    Google Scholar 
    Meerburg, B. G., Singleton, G. R. & Kijlstra, A. Rodent-borne diseases and their risks for public health (Vol. 7828). https://doi.org/10.1080/10408410902989837 (2009)Buckle, A. & Smith, R. Rodent Pests and Their Control 2nd edn. (CABI Press, Wallingford, 2015).Book 

    Google Scholar 
    Byers, K. A., Lee, M. J., Patrick, D. M. & Himsworth, C. G. Rats about town: A systematic review of rat movement in urban ecosystems. Front. Ecol. Evol. 7, 1–12. https://doi.org/10.3389/fevo.2019.00013 (2019).Article 

    Google Scholar 
    Carvalho-Pereira, T. et al. The helminth community of a population of Rattus norvegicus from an urban Brazilian slum and the threat of zoonotic diseases. Parasitology 145(6), 797–806. https://doi.org/10.1017/S0031182017001755 (2018).Article 
    PubMed 

    Google Scholar 
    Costa, F. et al. Patterns in Leptospira shedding in Norway rats (Rattus norvegicus) from Brazilian slum communities at high risk of disease transmission. PLoS Negl. Trop. Dis. 9(6), 1–14. https://doi.org/10.1371/journal.pntd.0003819 (2015).CAS 
    Article 

    Google Scholar 
    Parsons, M. H. et al. Rats and the COVID-19 pandemic: Early data on the global emergence of rats in response to social distancing. MedRxiv https://doi.org/10.1101/2020.07.05.20146779 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Awoniyi, A. M. et al. Effect of chemical and sanitary intervention on rat sightings in urban communities of New Providence, the Bahamas. SN Appl. Sci. 3, 495. https://doi.org/10.1007/s42452-021-04459-x (2021).CAS 
    Article 

    Google Scholar 
    Costa, F. et al. Influence of household rat infestation on leptospira transmission in the urban slum environment. PLoS Negl. Trop. Dis. 8(12), 3338. https://doi.org/10.1371/journal.pntd.0003338 (2014).Article 

    Google Scholar 
    Khalil, H. et al. Poverty, sanitation, and Leptospira transmission pathways in residents from four Brazilian slums. PLoS Negl. Trop. Dis. 15(3), 1–15. https://doi.org/10.1371/journal.pntd.0009256 (2021).Article 

    Google Scholar 
    Zeppelini, C. G. et al. Demographic drivers of Norway rat populations from urban slums in Brazil. Urban Ecosyst. https://doi.org/10.1007/s11252-020-01075-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations -UN. World Urbanization Prospects: The 2018 Revision. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html. Accessed 24 Dec 2020 (2018)United Nations UN-SDG. Sustainable Development Goals: Make cities and human settlements inclusive, safe, resilient and sustainable. https://unstats.un.org/sdgs/report/2019/goal-11/#:~:text=The%20absolute%20number%20of%20people,Southern%20Asia%20(227%20million). Accessed 24 Dec 2020 (2018)Russell, J. C., Towns, D. R. & Clout, M. N. Review of rat invasion biology: Implications for island biosecurity. Sci. Conserv. 286, 1–53 (2008).
    Google Scholar 
    Minter, A. et al. Optimal control of rat-borne leptospirosis in an urban environment. Front. Ecol. Evol. 7, 1–10. https://doi.org/10.3389/fevo.2019.00209 (2019).ADS 
    Article 

    Google Scholar 
    Mathur, R. P. Effectiveness of various rodent control measures in cereal crops and plantations in India. In: Leirs H. and Schockaert E. ed. Proceedings of the International Workshop on Rodent Biology and Integrated Pest Management in Africa, 21-25 October 1996, Morogoro, Tanzania. Belg. J. Zool. 127(supplement 1), 137–144 (1997).
    Google Scholar 
    Pascal, M., Siorat, F., Lorvelec, O., Yésou, P. & Simberloff, D. A pleasing consequence of Norway rat eradication : Two shrew species recover. Divers. Distrib. 11, 193–198. https://doi.org/10.1111/j.1366-9516.2005.00137.x (2005).Article 

    Google Scholar 
    Singleton, G. R., Hinds, L. & Leirs, H. Ecologically-based management of rodent pests. Australian Centre for International Agricultural Research, (ACIAR Monograph 59), 494. (1999)Sullivan, L. M. Roof rat control around homes and other structures. Cooper. Extens. Bull. AZ 1280, 1–6 (2002).
    Google Scholar 
    Childs, J. E. Size-dependent predation on rats (Rattus norvegicus) by house cats (Felis catus) in an urban setting. J. Mammol. 67(1), 196–199 (1986).Article 

    Google Scholar 
    Davis, D. E. The characteristics of rat populations. Quart. Rev. Biol. 28, 373–401. https://doi.org/10.1086/399860 (1953).CAS 
    Article 
    PubMed 

    Google Scholar 
    Glass, G. E. et al. Trophic garnishes: Cat-Rat interactions in an urban environment. PLoS ONE 4(6), e5794. https://doi.org/10.1371/journal.pone.0005794 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lenton, G. M. Biological control of rats by owls in oil palm and other plantations. Biotrop Spec. Publ. 12, 87–94 (1980).
    Google Scholar 
    Smith, R. H. & Meyer, A. N. Rodent controlmethods: Non-chemical and non-lethal chemical, with special reference to food stores. In Rodent Pests and Their Control 2nd edn (eds Buckle, A. & Smith, R.) 81–101 (CABI International, 2015) (ISBN-13: 978-1-84593-817-8).
    Google Scholar 
    Oyedele, D. T., Sah, S. A. M., Kairuddin, L. & Ibrahim, W. M. M. W. Range measurement and a habitat suitability map for the Norway rat in a highly developed urban environment. Trop. Life Sci. Res. 26(2), 27–44 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hansen, N., Hughes, N. K., Bryom, A. E. & Banks, P. B. Population recovery of alien black rats Rattus rattus: A test of reinvasion theory. Austral Ecol. 45, 291–304. https://doi.org/10.1111/aec.12855 (2020).Article 

    Google Scholar 
    Awoniyi, A. M. et al. Using Rhodamine B to assess the movement of small mammals in an urban slum. Methods Ecol. Evol. 12(11), 2234–2242. https://doi.org/10.1111/2041-210X.13693 (2021).Article 

    Google Scholar 
    Glass, G. E., Klein, S. L., Norris, D. E. & Gardner, L. C. Multiple paternity in urban Norway rats: Extended ranging for mates. Vector-Borne Zoonotic Dis. 16(5), 342–248. https://doi.org/10.1089/vbz.2015.1816 (2016).Article 
    PubMed 

    Google Scholar 
    Buckle, A. P. & Eason, C. T. Rodent control methods: Chemical. In Rodent Pests and Their Control 2nd edn (eds Buckle, A. & Smith, R.) 81–101 (CABI International, Wallingford, 2015) (ISBN-13: 978-1-84593-817-8).Chapter 

    Google Scholar 
    de Masi, E., Pedro, J. V. & Maria, T. P. Evaluation on the effectiveness of actions for controlling infestation by rodents in Campo Limpo region, São Paulo Municipality, Brazil Access details: Access Details: [subscription number 913003116]. Int. J. Environ. Health Res. 19(4), 291–304. https://doi.org/10.1080/09603120802592723 (2009).Article 
    PubMed 

    Google Scholar 
    Lambropoulos, A. S. et al. Rodent control in urban areas—An interdisciplinary approach. J. Environ. Health 61, 12–17 (1999).
    Google Scholar 
    Reis, R. B. et al. Impact of environment and social gradient on Leptospira infection in urban slums. PLoS Negl. Trop. Dis. 2(4), 11–18. https://doi.org/10.1371/journal.pntd.0000228 (2008).MathSciNet 
    Article 

    Google Scholar 
    Instituto Brasileiro de Geografia e Estatistica (IBGE). Accessed 15 November 2019 (2010)CDC. Integrated pest management: conducting urban rodent surveys. Centers for Disease Control and Prevention-Atlanta: US Department of Health and Human Services (2006)Hacker, K. P. et al. A comparative assessment of track plates to quantify fine scale variations in the relative abundance of Norway rats in urban slums. Urban Ecosyst. 19(2), 561–575. https://doi.org/10.1007/s11252-015-0519-8 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eyre, M. T. et al. A multivariate geostatistical framework for combining multiple indices of abundance for disease vectors and reservoirs: A case study of rattiness in a low-income urban Brazilian community: A multivariate geostatistical framework for combining multiple ind. J. R. Soc. Interface 17(170), 1–21. https://doi.org/10.1098/rsif.2020.0398 (2020).Article 

    Google Scholar 
    Bursac, Z., Gauss, C. H., Williams, D. K. & Hosmer, D. W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 8, 1–8. https://doi.org/10.1186/1751-0473-3-17 (2008).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model selection and multimodel inference: A practical information-theoretic approach (Springer, 2002).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org (2019).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020)Kassambara A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr (2020)Richardson, J. L. et al. Using fine-scale spatial genetics of Norway rats to improve control efforts and reduce leptospirosis risk in urban slum environments. Evol. Appl. 10(4), 323–337. https://doi.org/10.1111/eva.12449 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Santos, N. D. J., Sousa, E., Reis, M. G., Ko, A. I. & Costa, F. Rat infestation associated with environmental deficiencies in an urban slum community with high risk of leptospirosis. Cad. Saúde Pública 33(2), 1–13. https://doi.org/10.1590/0102-311X00132115 (2017).CAS 
    Article 

    Google Scholar 
    Murray, M. H. & Sanchez, C. A. Urban rat exposure to anticoagulant rodenticides and zoonotic infection risk. Biol. Lett. 17, 20210311. https://doi.org/10.1098/rsbl.2021.0311 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Parsons, M. H., Banks, P. B., Deutsch, M. A., Corrigan, R. F. & Munshi-South, J. Trends in urban rat ecology: A framework to define the prevailing knowledge gaps and incentives for academia, pest management professionals (PMPs) and public health agencies to participate. J. Urban Ecol. 3(1), 1–8. https://doi.org/10.1093/jue/jux005 (2017).Article 

    Google Scholar 
    Costa, F. et al. Household rat infestation in urban slum populations: Development and validation of a predictive score for leptospirosis Household rat infestation in urban slum populations: Development and validation of a predictive score for leptospirosis. PLoS Negl. Trop. Dis. 15(3), 9154. https://doi.org/10.1371/journal.pntd.0009154 (2021).Article 

    Google Scholar 
    Mwanjabe, P. S. & Leirs, H. An early warning system for IPM-based rodent control in smallholder farming systems in Tanzania. In: Leirs, H., & Schockaert, E., ed., Proceedings of the International Workshop on Rodent Biology and Integrated Pest Management in Africa, 21-25 October 1996, Morogoro, Tanzania. Belg. J. Zool. 127(supplement 1), 4–58 (1997).
    Google Scholar 
    Richards, C. G. J. R. & Buckle, A. P. Towards integrated rodent pest management at the village level. In Control of Mammal Pests (eds Richards, C. G. J. R. & Ku, T. Y.) 293–312 (Taylor and Francis, 1987).
    Google Scholar 
    Masi, E. Socioeconomic and environmental risk factors for urban rodent infestation in Sao Paulo, Brazil. J. Pest Sci. 83(3), 231–241. https://doi.org/10.1007/s10340-010-0290-9 (2010).Article 

    Google Scholar 
    Brooks, J. E. Methods of sewer rat control. In Proceedings of the 1st Vertebrate Pest Conference. https://digitalcommons.unl.edu/vpcone/17. Accessed 20 August 2021 (1962) More

  • in

    Climate warming threatens soil microbial diversity

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Wu, L. et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming. Nat. Microbiol. https://doi.org/10.1038/s41564-022-01147-3 (2022). More

  • in

    Splitting tensile strength and microstructure of xanthan gum-treated loess

    Mu, Q. Y., Zhou, C. & Ng, C. W. W. Compression and wetting induced volumetric behavior of loess: Macro- and micro-investigations. Transp. Geotech. 23, 100345 (2020).Article 

    Google Scholar 
    Pan, L., Zhu, J. G. & Zhang, Y. F. Evaluation of structural strength and parameters of collapsible loess. Int. J. Geomech. 21, 04021066 (2021).Article 

    Google Scholar 
    He, S. X., Bai, H. B. & Xu, Z. W. Evaluation on tensile behavior characteristics of undisturbed loess. Energies 11, 1974 (2018).Article 
    CAS 

    Google Scholar 
    He, S. X. & Bai, H. B. Elastic-plastic behavior of compacted loess under direct and cyclic tension. Adv. Mater. Sci. Eng. 2019, 1–12 (2019).
    Google Scholar 
    Wu, X. Y., Niu, F. J., Liang, Q. G. & Li, G. Y. Study on tensile strength and tensile-shear coupling mechanism of loess around Lanzhou and Yanan city in china by unconfined penetration test. KSCE J. Civ. Eng. 23, 1–12 (2019).Article 

    Google Scholar 
    You, Z. L., Zhang, M. Y., Liu, F. & Ma, Y. M. Numerical investigation of the tensile strength of loess using discrete element method. Eng. Fract. Mech. 247, 107610 (2021).Article 

    Google Scholar 
    Zhang, F. Y., Pei, X. J. & Yan, X. D. Physicochemical and mechanical properties of lime-treated loess. Geotech. Geol. Eng. 36, 685–696 (2018).Article 

    Google Scholar 
    Gu, K. & Chen, B. Loess stabilization using cement, waste phosphogypsum, fly ash and quicklime for self-compacting rammed earth construction. Constr. Build. Mater. 231, 117195–117195 (2020).CAS 
    Article 

    Google Scholar 
    Xue, Z. F., Cheng, W. C., Wang, L. & Song, G. Y. Improvement of the shearing behaviour of loess using recycled straw fiber reinforcement. KSCE J. Civ. Eng. 25, 3319–3335 (2021).Article 

    Google Scholar 
    Chu, F., Luo, J. B. & Deng, G. H. Experimental study of dynamic deformation and strength properties and seismic subsidence characteristics of fiber yarn reinforced loess. J. Rock. Mech. Geotech. 39, 2306–2320 (2020).
    Google Scholar 
    Liu, W., Wang, Q., Lin, G. C. & Tian, X. X. Variations of suction and suction stress of unsaturated loess due to changes in lignin content and sample preparation method. J. Mt. Sci. Engl. 18, 16 (2021).
    Google Scholar 
    Wang, X. G., Liu, K. & Lian, B. Q. Experimental study on ring shear properties of fiber-reinforced loess. Bull. Eng. Geol. Environ. 80, 5021–5029 (2021).Article 

    Google Scholar 
    Lian, B. Q., Peng, J. B., Zhan, H. B. & Wang, X. G. Mechanical response of root-reinforced loess with various water contents. Soil. Tillage Res. 193, 85–94 (2019).Article 

    Google Scholar 
    Xu, J. et al. Triaxial shear behavior of basalt fiber-reinforced loess based on digital image technology. KSCE J. Civ. Eng. 1, 1–13 (2021).
    Google Scholar 
    Li, J. D. et al. Study on strength characteristics and mechanism of loess stabilized by F1 ionic soil stabilizer. Arab. J. Geosci. 14, 1162 (2021).Article 

    Google Scholar 
    Lv, Q. F., Chang, C. R., Zhao, B. H. & Ma, B. Loess soil stabilization by means of SiO2 nanoparticles. Soil Mech. Found. Eng. 54, 409–413 (2018).Article 

    Google Scholar 
    Ma, W. J., Wang, B. L., Wang, X., Jiang, D. J. & Li, Z. Y. Experimental study on mechanical properties of modified loess. Water. Resour. Hydropower Eng. 49, 150–156 (2018).
    Google Scholar 
    Hou, Y. F., Li, P. & Wang, J. D. Review of chemical stabilizing agents for improving the physical and mechanical properties of loess. Bull. Eng. Geol. Environ. 80, 9201–9215 (2021).Article 

    Google Scholar 
    Liu, X. J., Fan, J. Y., Yu, J. & Gao, X. Solidification of loess using microbial induced carbonate precipitation. J. Mt. Sci. Engl. 18, 265–274 (2021).Article 

    Google Scholar 
    Chang, I., Im, J. & Cho, G. C. Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 8, 251 (2016).Article 

    Google Scholar 
    Jang, J. A review of the application of biopolymers on geotechnical engineering and the strengthening mechanisms between typical biopolymers and soils. Adv. Mater. Sci. Eng. 2020, 1465709 (2020).Article 
    CAS 

    Google Scholar 
    Chang, I., Lee, M., Tran, T., Lee, S. & Cho, G. C. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 24, 100385 (2020).Article 

    Google Scholar 
    Mendonça, A., Morais, P. V., Pires, A. C., Chung, A. P. & Oliveira, P. V. A review on the importance of microbial biopolymers such as xanthan gum to improve soil properties. Appl. Sci. 11, 170 (2020).Article 
    CAS 

    Google Scholar 
    Rosalam, S. & England, R. Review of xanthan gum production from unmodified starches by Xanthomonas campestris sp. Microb. Technol. 39, 197–207 (2006).CAS 
    Article 

    Google Scholar 
    Moghal, A. A. B. & Vydehi, K. V. State-of-the-art review on efficacy of xanthan gum and guar gum inclusion on the engineering behavior of soils. Innov. Infrastruct. Solut. 6, 1–14 (2021).Article 

    Google Scholar 
    Shimizu, Y. et al. Viscosity measurement of Xanthan–Poly(vinyl alcohol) mixture and its effect on the mechanical properties of the hydrogel for 3D modeling. Sci. Rep. 8, 16538 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Kumar, S. A. & Sujatha, E. R. An Appraisal of the Hydro-mechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil. Carbohyd. Polym. 265, 118083 (2021).Article 
    CAS 

    Google Scholar 
    Chang, I., Prasidhi, A. K., Im, J., Shi, H. D. & Cho, G. C. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253–254, 39–47 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Fatehi, H., Ong, D. E. L., Yu, J. & Chang, I. Biopolymers as green binders for soil improvement in geotechnical applications: A review. Geosciences (Switzerland). 11, 291 (2021).CAS 
    ADS 

    Google Scholar 
    Lee, S., Chang, I., Chung, M. K., Kim, Y. & Kee, J. Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing. Geomech. Eng. 12, 831–847 (2017).Article 

    Google Scholar 
    Lee, S., Im, J., Cho, G. C. & Chang, I. Laboratory triaxial test behavior of xanthan gum biopolymer treated sands. Geomech. Eng. 17, 445–452 (2019).
    Google Scholar 
    Chang, I., Im, J., Prasidhi, A. K. & Cho, G. C. Effects of xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 74, 65–72 (2015).Article 

    Google Scholar 
    Liu, J. E. et al. The impact of natural polymer derivatives on sheet erosion on experimental loess hillslope. Soil. Tillage Res. 139, 23–27 (2014).Article 

    Google Scholar 
    Pu, S. et al. Stabilization behavior and performance of loess using a novel biomass-based polymeric soil stabilizer. Environ. Eng. Geosci. 25, 103–114 (2019).Article 

    Google Scholar 
    Zhang, X. C., Zhong, Y. J., Pei, X. J. & Duan, Y. Y. A cross-linked polymer soil stabilizer for hillslope conservation on the loess plateau. Front. Earth Sci. 9, 771316 (2021).Article 

    Google Scholar 
    Ni, J., Li, S. S., Ma, L. & Geng, X. Y. Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests. Constr. Build. Mater. 263, 120039 (2020).CAS 
    Article 

    Google Scholar 
    Kameda, J. & Yohei, H. Influence of biopolymers on the rheological properties of seafloor sediments and the runout behavior of submarine debris flows. Sci. Rep. 11, 1493 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Ramani, S., Atchaya, S., Sivasaran, A. & Keerdthe, R. S. Enhancing the geotechnical properties of soil using xanthan gum—An eco-friendly alternative to traditional stabilizers. Bull. Eng. Geol. Environ. 80, 1157–1167 (2020).
    Google Scholar 
    Cabalar, A. F., Awraheem, M. H. & Khalaf, M. M. Geotechnical properties of a low-plasticity clay with biopolymer. J. Mater. Civ. Eng. 30, 04018170 (2018).Article 

    Google Scholar 
    Reddy, J. J. & Varaprasad, B. J. S. Long-term and durability properties of xanthan gum treated dispersive soils—An eco-friendly material. Mater. Today. 44, 309–314 (2021).CAS 

    Google Scholar 
    Joga, J. R. & Varaprasad, B. J. S. Effect of xanthan gum biopolymer on dispersive properties of soils. J. Eng. Technol. 17, 563–571 (2020).CAS 

    Google Scholar 
    Muguda, S. et al. Mechanical properties of biopolymer-stabilised soil-based construction materials. Géotech. Lett. 7, 309–314 (2017).Article 

    Google Scholar 
    Muguda, S., et al. Cross-linking of biopolymers for stabilizing earthen construction materials. Build. Res. Inf. 1–13 (2021).Soldo, A., Miletić, M. & Auad, M. L. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 10, 267 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Jiang, T., et al. Diametric splitting tests on loess based on PIV technique. Rock Soil Mech. 42, 2120–2126+2140 (2021).Zhang, J. R., Wang, L. J., Jiang, T., Ren, M. & Wei, M. Diametric splitting tests on unsaturated expansive soil with different dry densities based on the particle image velocimetry technique. Acta Geotech. Slov. 18, 15–27 (2021).Article 

    Google Scholar 
    Qureshi, M. U., Chang, I. & Al-Sadarani, K. Strength and durability characteristics of biopolymer-treated desert sand. Geomech. Eng. 12, 785–801 (2017).Article 

    Google Scholar 
    Ng, C. W. W. et al. Influence of biopolymer on gas permeability in compacted clay at different densities and water contents. Eng. Geol. 272, 105631 (2020).Article 

    Google Scholar 
    Kwon, Y. M., Ham, S. M., Kwon, T. H., Cho, G. C. & Chang, I. Surface-erosion behaviour of biopolymer-treated soils assessed by EFA. Géotech. Lett. 10, 106–112 (2020).Article 

    Google Scholar 
    Ramachandran, A. L., Dubey, A. A., Dhami, N. K. & Mukherjee, A. Multiscale study of soil stabilisation using bacterial biopolymers. J. Geotech. Geoenviron. Eng. 147, 04021074 (2021).CAS 
    Article 

    Google Scholar 
    Nugent, R. A., Zhang, G. & Gambrell, R. P. Effect of exopolymers on the liquid limit of clays and its engineering implications. Transp. Res. Rec. 2101, 34–43 (2009).Article 

    Google Scholar 
    Wang, Y., Li, T. L., Zhao, C. X., Hou, X. K. & Zhang, Y. G. A study on the effect of pore and particle distributions on the soil water characteristic curve of compacted loess. Environ. Earth. Sci. 80, 764 (2021).Article 

    Google Scholar 
    Gao, Y., Sun, D. A., Zhu, Z. C. & Xu, Y. F. Hydromechanical behavior of unsaturated soil with different initial densities over a wide suction range. Acta. Geotech. 14, 417–428 (2018).Article 

    Google Scholar 
    Li, B. & Chen, Y. L. Influence of dry density on soil-water retention curve of unsaturated soils and its mechanism based on mercury intrusion porosimetry. Trans. Tianjin Univ. 22, 268–272 (2016).CAS 
    Article 

    Google Scholar 
    Xu, W. S., Li, K. S., Chen, L. X., Kong, W. H. & Liu, C. X. The impacts of freeze-thaw cycles on saturated hydraulic conductivity and microstructure of saline-alkali soils. Sci. Rep. 11, 18655 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Li, Z. Q., Qi, Z. Y., Qi, S. W., Zhang, L. X. & Hou, X. H. Microstructural changes and micro-macro-relationships of an intact, compacted and remolded loess for land-creation project from the Loess Plateau. Environ. Earth. Sci. 80, 593 (2021).Article 

    Google Scholar  More

  • in

    FutureStreams, a global dataset of future streamflow and water temperature

    Variable names, units and timestampsStreamflow is runoff routed along a drainage network, in m3/s, also known as discharge, which is the variable name used in the files. Water temperature is given in units of Kelvin. Filenames include the variable name, GCM, scenario (hist for historical, or one of the RCPs) and the time period (years). The timestamps in the files reflect the last date of the period over which the output was averaged, so the first timestamp of the weekly averages is January 7th 1976.Ecologically-relevant variablesThe ecologically-relevant streamflow and water temperature variables derived from the weekly values are established based on a combination of classification frameworks, i.e., indicators of hydrologic alteration19, terrestrial bioclimatic variables in the worldclim dataset20 as well as the CMCC-BioClimInd dataset21, aggregated accordingly: 1976–2005 (1979–2005 for E2O); 2021–2040; 2041–2060; 2061–2080; 2081–2099. The scripts used to compute these derived variables can be found under Code Availability.For files containing information on timing (see Tables 2–3), note that the counting is 0-indexed. So week numbers run from 0 through 51, months from 0 to 11. For timing of quarters, 0 is DJF, 1 is MAM, 2 is JJA, 3 is SON. The week number (for WT-wmin, WT-wmax, Q-wmin, Q-wmax) is determined as the mode, i.e. the most frequent week number within a period. For each period (20, 25 or 30 years) we looked for the week number in which the minimum or maximum water temperature or discharge occurs. If that happens most often in week X, that week number is stored. It can however occur that a certain minimum/maximum temperature or discharge occurs equally often in multiple weeks – then we assign a missing value.The variables Q-bfi and Q-vi are calculated according to Pastor et al.30. The baseflow index is an indicator of the importance of stored sources; a high index indicates that flow is mostly sustained by stored sources such as groundwater.Scripts used to create the derived variables are available through the FutureStreams GitHub repository (see Code Availability below).Multi-model set-upWe provide future scenarios for four RCPs (representative concentration pathways; 2.6, 4.5, 6.0 and 8.5 W/m2 in 2100) for the five ISI-MIP GCMs. Projections differ across RCPs due to differences in greenhouse gas forcing, and across GCMs due to differences in e.g model parameterization and resolution. Generally the spread across GCMs is larger than that across RCPs7,31. When interested in the general effect of climate change, users are advised to use the mean or median across the GCMs, rather than selecting a specific GCM. When interested in the spread across GCMs, users can explore or represent that in various ways, such as color intensity indicating agreement amongst models5, bar or violin plots7 etc.Warming levelsTo facilitate assessments and comparisons of streamflow and water temperature at a certain air temperature rise rather than specific years5,7, we provide a table with the years in which each GCM/RCP reaches the global mean temperature rises 1.5°, 2.0°, 3.2°, 4.5° compared to pre-industrial temperatures (as used by Barbarossa et al.7) with our scripts (see Code Availability). These years represent the central value of a 30-year running mean, so users should evaluate the 30-year mean (or other statistic) of discharge or water temperature centered around the year that a certain warming level is reached, which is specific to each RCP and GCM combination. For instance, if 1.5° warming is reached in 2040, the 30-year period 2025–2054 should be considered.GCMs, bias-correction and reanalysis dataThe majority of our simulations are forced with meteorological time series from GCMs. Those are bias-corrected27 before being applied to impact models such as PCR-GLOBWB, which corrects for systematic deviations of the simulated historical data from observations. For instance, for temperature the offset in average temperature in the historical GCM simulation with respect to observations is subtracted from temperatures in all scenarios of that GCM. The bias-corrected GCM forcing should thus well represent climatology, but not necessarily timing of actual events such as floods and droughts. Reanalysis data is created by assimilating observations into weather models, to obtain consistent and globally complete time series. The output of the simulation forced with meteorological time series from the (E2O) reanalysis data should therefore reflect not only the average streamflow and water temperatures, but also timing of actual events such as droughts.If users want to check for themselves how the GCM-forced historical simulations discussed here deviate from reanalysis-forced simulations, they can use the output from the E2O-forced simulation provided here, the monthly output linked to Wanders et al.13 (see also Code Availability) or the daily output of those simulations which are available from Niko Wanders upon request. The latter are forced with ERA-40/ERA-Interim reanalysis data.Notes of cautionBeware of temperature in grid cells where streamflow is low, which can cause temperatures to become unrealistically high due to strong fluctuations in the water level. The computational timesteps currently implemented in DynWat are not sufficiently small to provide stable solutions for these conditions. For some lakes and reservoirs we observe a similar problem when lakes expand or shrink as a result of water levels changes. These locations can be masked and we can assume that water temperature follows the air temperature for these very shallow water layers. A file with locations of lakes and reservoirs is provided in the data repository (under indicators/mask) so users can mask these if desired.Furthermore, we provide masks for each GCM-RCP-period which users can apply to the derived variables if desired. These masks are based on Q-mean and WT-mean and thresholds of 10 m3/s and 350 K, respectively. They can be found in the data repository (i.e. indicators/waterTemperature/WT-mask). The scripts used to create these masks are provided through the FutureStreams GitHub repository (see Code Availability below), which can be used to create masks with different thresholds. These scripts are called mask_unrealistic_values.py and maskFunctions.py.We also provide scripts to mask out unrealistic values directly in the weekly Q and WT files, these scripts are mask_unrealistic_values_weekly.py and maskFunctions_weekly.py. In all these scripts the threshold for discharge is set to 10 m3/s and for water temperature to 350 K, but users can change those to their preferred values. The threshold value will be included in the resulting output file name.Furthermore, we encountered spin-up issues in some pixels for the future RCP simulations. Instead of following the temperatures from the end of the historical simulation, temperatures drop at the beginning of the future simulation, so the first few weeks of 2006 temperatures can be unrealistically low. In Fig. 2, output of the year 2007 is used for the year 2006 .Fig. 2Water temperature [°C] anomaly. The maps show the difference between the mean water temperature over the period 2070–2099 (RCP8p5) and the historical period 1975–2005. The map shows values only for rivers with streamflow greater than 50 m3/s and the width of the rivers is scaled based on the streamflow values for clarity of representation. Insets below the map show the original gridded resolution at 5 arcminute for cells with streamflow values greater than 10 m3/s. The bottom insets show water temperature time series sampled at specific grid-cell locations (white crosses in the insets) for the Amazon (−57.2083° longitude, −2.625° latitude), Danube (20.125° lon, 45.2083° lat) and Ganges (88.375° lon, 24.375° lat). Time series are represented for each GCM and RCP available within FutureStreams; thin lines represent weekly values, thick lines represent 10 year rolling means.Full size imageFig. 3Streamflow [m3/s] anomaly. The maps show the difference between the log10 transformed mean streamflow over the period 2070–2099 (RCP8p5) and the log10 transformed mean streamflow over historical period 1975–2005. The map shows values only for rivers with streamflow values greater than 50 m3/s and the width of the rivers is scaled based on the streamflow values for clarity of representation. Insets below the map show the original gridded resolution at 5 arcminute for cells with streamflow values greater than 10 m3/s. The bottom insets show water temperature time series sampled at specific grid-cell locations (white crosses in the insets) for the Amazon (−57.2083° longitude, −2.625° latitude), Danube (20.125° lon, 45.2083° lat) and Ganges (88.375° lon, 24.375° lat). Time series are represented for each GCM and RCP available within FutureStreams; thin lines represent weekly values and thick lines represent 10 year rolling means.Full size imageFig. 4Anomalies for selected ecologically relevant derived variables (bioclimatic indicators) for the same areas in the Amazone (left), Danube (middle) and Ganges (right) basins as used in Figs. 2 and 3. Differences are shown between RCP8.5 2080–2099 and 1976–2005. WT-cq is the water temperature of the coldest quarter, WT-range is temperature range, Q-max is maximum streamflow, Q-dm is streamflow of the driest month (see also Tables 2 and 3 below). For streamflow we show the difference between log10-transformed flow.Full size image More

  • in

    Demographic characteristics shape patterns of dawn swarming during roost switching in tree-dwelling Daubenton’s bat

    Green, P. A., Brandley, N. C. & Nowicki, S. Categorical perception in animal communication and decision-making. Behav. Ecol. 31, 859–867 (2020).
    Google Scholar 
    Petak, I. Ritualization. In Encyclopedia of Animal Cognition and Behavior (eds Vonk, J. & Shackelford, T.) 1–4 (Springer International Publishing, Cham, 2019).
    Google Scholar 
    Fernandez, A. A., Fasel, N., Knörnschild, M. & Richner, H. When bats are boxing: Aggressive behaviour and communication in male Seba’s short-tailed fruit bat. Anim. Behav. 98, 149–156 (2014).
    Google Scholar 
    van Schaik, J. et al. Bats swarm where they hibernate: Compositional similarity between autumn swarming and winter hibernation assemblages at five underground sites. PLoS ONE 10, e0130850 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Vaughan, T. & O’Shea, T. Roosting ecology of the Pallid bat, Antrozous pallidus. J. Mammal. 57, 19–42 (1976).
    Google Scholar 
    Kunz, T. H. Roosting ecology. In Ecology of Bats (ed. Kunz, T. H.) (Plennum Press, 1982).
    Google Scholar 
    Kaňuch, P. Evening and morning activity schedules of the noctule bat (Nyctalus noctula) in Western Carpathians. Mammalia 71, 126–130 (2007).
    Google Scholar 
    Naďo, L. & Kaňuch, P. Swarming behaviour associated with group cohesion in tree-dwelling bats. Behav. Processes. 120, 80–86 (2015).PubMed 

    Google Scholar 
    Zelenka, Z., Kasanický, T., Budinská, I. & Kaňuch, P. An agent-based algorithm resembles behaviour of tree-dwelling bats under fission–fusion dynamics. Sci. Rep. 10, 16793 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aureli, F. et al. Fission-fusion dynamics: New research frameworks. Curr. Anthropol. 49, 627–654 (2008).
    Google Scholar 
    Willis, C. K. R. & Brigham, R. M. Roost switching, roost sharing and social cohesion: Forest-dwelling big brown bats, Eptesicus fuscus, conform to the fission-fusion model. Anim. Behav. 68, 495–505 (2004).
    Google Scholar 
    Dietz, C. & Kiefer, A. Bats of Britain and Europe (Bloomsbury Publishing, 2016).
    Google Scholar 
    Kerth, G., Weissmann, G. & König, B. Day roost selection in female Bechstein’s bats. Oecologia 126, 1–9 (2001).ADS 
    PubMed 

    Google Scholar 
    Reckardth, K. & Kerth, G. Roost selection and roost switching of female Bechstein’s bats. Oecologia 154, 581–588 (2007).ADS 

    Google Scholar 
    Mikula, P., Hromada, M. & Tryjanowski, P. Bats and swifts as food of the European kestrel (Falco tinnunculus) in small town in Slovakia. Ornis Fennica 90, 178–185 (2013).
    Google Scholar 
    Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission-fusion societies in an aerial-hawking carnivorous bat. Anim. Behav. 75, 471–482 (2008).
    Google Scholar 
    Patriquin, K. J., Palstra, F., Leonard, M. L. & Broders, H. G. Female northern myotis (Myotis septentrionalis) that roost together are related. Behav. Ecol. 24, 949–954 (2013).
    Google Scholar 
    Sherman, P. W. Nepotism and the evolution of alarm calls. Science 197, 1246–1253 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kerth, G., Almasi, B., Ribi, N., Thiel, D. & Lüpold, S. Social interactions among wild female Bechstein’s bats (Myotis bechsteinii) living in a maternity colony. Acta Ethol. 5, 107–114 (2003).
    Google Scholar 
    Dietz, M. & Kalko, E. K. V. Reproduction affects flight activity in female and male Daubenton’s bats, Myotis daubentonii. Can. J. Zool. 85, 653–664 (2007).
    Google Scholar 
    Nelson, R. J. & Kriegsfeld, L. J. An Introduction to Behavioral Endocrinology (Sinauer Associates, 2017).
    Google Scholar 
    Choleris, E. & Kavaliers, M. Social learning in animals: Sex differences and neurobiological analysis. Pharmacol. Biochem. Behav. 64, 767–776 (1999).CAS 
    PubMed 

    Google Scholar 
    McCracken, G. F. & Wilkinson, G. S. Bat mating systems. In Reproductive Biology of Bats (eds Crichton, E. G. & Krutzsch, P. H.) 321–362 (Academic Press, 2000).
    Google Scholar 
    Safi, K. Social bats: The males’ perspective. J. Mammal. 89, 1342–1350 (2008).
    Google Scholar 
    Linton, D. M. & Macdonald, D. W. Roost composition and sexual segregation in a lowland population of Daubenton’s bats (Myotis daubentonii). Acta Chiropterol. 21, 129–137 (2019).
    Google Scholar 
    Ružinská, R. & Kaňuch, P. Adult males in maternity colonies of Daubenton’s bat, Myotis daubentonii: What are they?. Mammalia 85, 551–556 (2021).
    Google Scholar 
    Barale, C. L., Rubenstein, D. I. & Beehner, J. C. Juvenile social relationships reflect adult patterns of behavior in wild geladas. Am. J. Primatol. 77, 1086–1096 (2015).PubMed 

    Google Scholar 
    McFarland, D. A Dictionary of Animal Behaviour (Oxford University Press, 2006).
    Google Scholar 
    Ratcliffe, J. & Hofstede, H. Roosts as information centres: Social learning of food preferences in bats. Biol. Lett. 1, 72–74 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez, A. A., Burchardt, L. S., Nagy, M. & Knörnschild, M. Babbling in a vocal learning bat resembles human infant babbling. Science 373, 923–926 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wilkinson, G. S. Information transfer at evening bat colonies. Anim. Behav. 44, 501–518 (1992).
    Google Scholar 
    Vesterinen, E. J. et al. What you need is what you eat? Prey selection by the bat Myotis daubentonii. Mol. Ecol. 25, 1581–1594 (2016).CAS 
    PubMed 

    Google Scholar 
    Todd, V. L. G. & Waters, D. A. Small scale habitat preferences of Myotis daubentonii, Pipistrellus pipistrellus, and potential aerial prey in an upland river valley. Acta Chiropterol. 19, 255–272 (2017).
    Google Scholar 
    Kaňuch, P. Roosting and population ecology of three syntopic tree-dwelling bat species (Myotis nattereri, M. daubentonii and Nyctalus noctula). Biologia 60, 579–587 (2005).
    Google Scholar 
    Lučan, R. K. & Hanák, V. Population ecology of Myotis daubentonii (Mammalia: Chiroptera) in South Bohemia: Summary of two long-term studies: 1968–1984 and 1999–2009. Acta Soc. Zool. Bohem. 75, 67–85 (2011).
    Google Scholar 
    Patriquin, K. J. & Ratcliffe, J. M. Should I stay or should I go? Fission-fusion dynamics in bats. In Sociality in Bats (ed. Ortega, J.) 65–104 (Springer, 2016).
    Google Scholar 
    Bogdanowicz, W. Myotis daubentonii. Mamm. Species 475, 1–9 (1994).
    Google Scholar 
    Rigby, E. L., Aegerter, J., Brash, M. & Altringham, J. D. Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton’s bats (Myotis daubentonii). Vet. Rec. 170, 101 (2012).CAS 
    PubMed 

    Google Scholar 
    Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating Little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).
    Google Scholar 
    Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats. In Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    Richardson, P. W. A new method of distinguishing Daubenton’s bats (Myotis daubentonii) up to one year old from adults. J. Zool. 233, 307–344 (1994).
    Google Scholar 
    Haarsma, A. & van Alphen, J. Chin-spot as an indicator of age in pond bats. Lutra 52, 97–107 (2009).
    Google Scholar 
    Burland, T. M., Barratt, E. M. & Racey, P. A. Isolation and characterization of microsatellite loci in the brown long-eared bat, Plecotus auritus, and cross-species amplification within the family Vespertilionidae. Mol. Ecol. 7, 136–138 (1998).CAS 

    Google Scholar 
    Castella, V. & Ruedi, M. Characterization of highly variable microsatellite loci in the bat Myotis myotis (Chiroptera: Vespertilionidae). Mol. Ecol. 9, 1000–1002 (2000).CAS 
    PubMed 

    Google Scholar 
    Kerth, G., Safi, K. & König, B. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav. Ecol. Sociobiol. 52, 203–210 (2002).
    Google Scholar 
    Jan, C., Dawson, D. A., Altringham, J. D., Burke, T. & Butlin, R. K. Development of conserved microsatellite markers of high cross-species utility in bat species (Vespertilionidae, Chiroptera, Mammalia). Mol. Ecol. Resour. 12, 532–548 (2012).CAS 
    PubMed 

    Google Scholar 
    Gruber, B. & Adamack, A. PopGenReport: A simple framework to analyse population and landscape genetic data. R package version 3.04. https://cran.r-project.org/package=popgenreport (2019).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).Dowd, C. twosamples: Fast permutation based two sample tests. R package version 1.1.1. https://cran.r-project.org/package=twosamples (2020).Kampstra, P. Beanplot: A boxplot alternative for visual comparison of distributions. J. Stat. Soft. Code Snippets 28, 1–9 (2008).
    Google Scholar 
    Kampstra, P. beanplot: Visualization via beanplots (like boxplot/stripchart/violin plot). R package version 1.2. https://cran.r-project.org/package=beanplot (2014).Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries stock analysis. R package version 0.8.30. https://github.com/droglenc/FSA (2020).Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 

    Google Scholar 
    Kassambara, A. (2020) ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0. https://cran.r-project.org/package=ggpubr (2020).Animal Behaviour. Guidelines for the treatment of animals in behavioural research and teaching. Anim. Behav. 159, I–X (2020).Russo, D. L., Cistrone, L., Jones, G. & Mazzoleni, S. Roost selection by barbastelle bats (Barbastella barbastellus, Chiroptera: Vespertilionidae) in beech woodlands of central Italy: Consequences for conservation. Biol. Conserv. 117, 73–81 (2004).
    Google Scholar 
    Arnold, B. D. & Wilkinson, G. S. Female natal philopatry and gene flow between divergent clades of pallid bats (Antrozous pallidus). J. Mammal. 96, 531–540 (2015).
    Google Scholar 
    Barclay, R. M. R. & Harder, L. D. Life histories of bats: Life in the slow lane. In Bat Ecology (eds Kunz, T. H. & Fenton, M. B.) 209–253 (University of Chicago Press, 2003).
    Google Scholar 
    Sun, D. et al. Behavioural patterns and postnatal development in pups of the Asian parti-coloured bat, Vespertilio sinensis. Animals 10, 1325 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Mavrodiev, P., Fleischmann, D., Kerth, G. & Schweitzer, F. Quantifying individual influence in leading-following behavior of Bechstein’s bats. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    Bekoff, M. The development of social interaction, play, and metacommunication in mammals: An ethological perspective. Q. Rev. Biol. 47, 412–434 (1972).
    Google Scholar 
    Dunbar, R. I. M. & Shultz, S. Bondedness and sociality. Behaviour 147, 775–803 (2010).
    Google Scholar 
    Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B 278, 2761–2767 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ruczyński, I. & Bartoń, K. A. Seasonal changes and the influence of tree species and ambient temperature on the fission-fusion dynamics of tree-roosting bats. Behav. Ecol. Sociobiol. 74, 63 (2020).
    Google Scholar 
    Červený, J. & Bürger, P. Density and structure of the bat community occupying an old park at Žihobce (Czechoslovakia). In European Bat Research 1987 (eds Hanák, V. et al.) (Charles University Press, 1989).
    Google Scholar 
    Ripperger, S. et al. Proximity sensors on common noctule bats reveal evidence that mothers guide juveniles to roosts but not food. Biol. Lett. 15, 20180884 (2019).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Ecohydrological effects of water conveyance in a disconnected river in an arid inland river basin

    The water table depth, surface water body area, and surface ecological processes have all changed significantly during the 20 years the ecological water conveyance projects have been underway in the lower reaches of the Tarim River. Specifically, there has been a notable increase in the water table, surface water body area, vegetation density and coverage, the vegetation index (NDVI), Net Primary Production (NPP) of natural vegetation, and ecosystem function and health. The following sections provide details on these changes.Changes in groundwater table depthGroundwater (soil water) is the most important water source for maintaining natural vegetation in the lower reaches of the Tarim River, as the climate is extremely arid and atmospheric precipitation has little ecological significance. The changes in water table depth are directly related to the composition, distribution, and growth of the natural vegetation of the desert riparian forest, which in this case is mainly P. euphratica5. During the past 20 years, the ecological water conveyance in the lower reaches of the Tarim has been intermittent, and the groundwater table elevation has been closely related to the water conveyance. From the analysis of the groundwater table’s rise in the upper, middle, and lower reaches of the Tarim River (Fig. 1), the magnitude of the uplift is clearly related to four crucial factors: the groundwater table depth prior to the water conveyance, the volume of water discharge, the duration of the transfer, and the water head location.Figure 1Changes in groundwater depth of typical monitoring cross-sections pre- and post-conveyance of water in the lower reaches of Tarim River from 2000 to 2020. Yengsu, Karday, Argan and Yikanbujima are four monitoring sections in the lower reaches of Tarim River. “#1”is the No. 1 groundwater level monitoring well on each monitoring section, which is located 50 m away from the river.Full size imageIn the early stages of the water conveyance projects (2000–2010), the groundwater table in the upper and middle segments of the lower reaches of the Tarim River rose to a relatively large extent, while the groundwater table in the lower segment of the river only showed an increasing rising trend after 2011. The monitoring results reveal that after nearly 20 years of ecological water conveyance, the groundwater table in three sections of the lower reaches of the Tarim has been affected at a range of more than 1000 m. The three sections are the Yengsu section in the upper segment, the Karday section in the middle segment, and the Yiganbujima section in the lower segment. Furthermore, the groundwater table has risen by 2.69, 1.38 and 1.59 m, respectively, in these three sections22. Within 100 m from the river, the water table depth rose from 7.76, 9.31 and 7.82 m prior to ecological water conveyance to 3.70, 4.48, and 2.69 m, and 4.06, 4.83, and 5.13 m, respectively, after it. Within 500 m from the river, the water table rose by 1.6, 3.99, and 5.26 m, respectively. The shallow groundwater in the lower reaches of the Tarim River has also been recharged to a certain extent, and the lateral influence range is still gradually expanding.Changes in water body areaThe changes in water body area in the lower reaches of the Tarim River are closely related to the amount of water delivered via conveyance. During the past 20 years, the surface water body area, seasonal water body area, and permanent water body area all decreased to the lowest point in 2009, with the river water failing to reach Taitema Lake, the river’s terminal, in 2006, 2007, and 200923. The surface water body area, seasonal water body area and permanent water body area in the river’s lower reaches fluctuated and increased during the ecological water conveyance process. In particular, the seasonal water body area in the upstream section showed a significant expansion. The area increase rate of surface water, seasonal water, and permanent water in the middle section from Yengsu to Argan is 1.75 km2 a−1, 1.58 km2 a−1, and 0.16 km2 a−1, respectively. Similarly, the area of surface water bodies, seasonal water bodies, and permanent water bodies in the lower section (below Argan) increased at the rate of 13.48 km2 a−1, 8.24 km2 a−1, and 5.23 km2 a−1, respectively. It is worth mentioning that the area of surface permanent water body and seasonal water body in Taitema Lake significantly increased, with the area of the lake waters expanding 417.08 km2, from 38.19 km2 in 2000 to 455.27 km2 in 2019. This represents a nearly 12-fold increase (Fig. 2).Figure 2Spatial distribution of water surface area in lower reaches of Tarim River in 2000 and 2019. The subfigures were generated in R 4.0.2 (https://cran.r-project.org/bin/windows/), and then merged in Microsoft PowerPoint 2013 (https://www.microsoft.com/).Full size imageVegetation sample site monitoring analysisThe vegetation species in the lower reaches of the Tarim River were sparsely distributed, with P. euphratica and Tamarix sp. as the main established species. In the longitudinal direction, surface vegetation coverage and species number decreased as the water table depth increased from the upper and middle segments to the lower segment. In the lateral direction, surface vegetation shows the same trend, with groundwater table depth increasing the greater the distance from the river13.The surface ecological processes in the lower reaches of the Tarim River have responded positively to the water conveyance project, with density, coverage and the number and diversity of species significantly increasing. However, the response of surface ecological processes to the changes in groundwater table uplift has varied from section to section. In the lateral direction, the groundwater table in areas nearer to the river had a more prominent rise and the response of surface vegetation was stronger, whereas the groundwater table rise in areas farther from the river was smaller and so the response of surface vegetation was weaker. In the longitudinal direction, the same trend was observed from the upper to the lower segments in response to changes in the groundwater table. In this paper, we analyze the changes in detail by taking a closer look at the Yengsu section, which is located at the beginning of the middle section of the lower reaches of the Tarim River. In so doing, we apply sample site investigation and dynamic monitoring of the groundwater table to the study area.Changes in vegetation density and coverageThe results of our sample site monitoring show notable positive changes in groundwater depth between 2000 and 2021 as a direct result of the ecological water conveyance initiative. At 150 m from the river, the groundwater table depth rose from 8.47 m to 4.34 m, respectively, representing an uplift of 4.13 m (Fig. 3c). Moreover, the vegetation coverage and density increased from 18.77% and 0.016 plants/m2 to 46.51% and 0.049 plants/m2, and the number of species doubled from three to six.Figure 3Changes in vegetation coverage, density and number of species (a), species diversity indices (b), and groundwater depth (c) for each site at Yengsu section in the lower reaches of Tarim River.Full size imageAt 250 m from the river, the groundwater table depth rose from 8.07 m in 2000 to 4.85 m in 2021, representing an uplift of 3.22 m. The vegetation coverage and density increased from 10.89% and 0.020 plants/m2 to 31.24% and 0.160 plants/m2, respectively, and the number of species jumped from five to seven.At 350 m from the river, the water table rose 2.48 m between 2000 and 2021. The vegetation coverage and density increased from 3.69% and 0.010 plants/m2 to 22.27% and 0.022 plants/m2, respectively, and the number of species increased from two to three. It is worth noting that the expansion in vegetation cover in the first three sample sites was mainly due to the increase in the number and canopy width of herbs and shrubs that occurred as a direct result of the ecological water conveyance process.At 750 m from the river, the groundwater table depth rose from 5.96 m to 4.98 m between 2005 and 2021, respectively, representing an uplift of 0.64 m, while the vegetation coverage and density increased from 20.07% and 0.011 plants/m2 to 26.43% and 0.019 plants/m2, respectively.At 1050 m from the river, the sample site had an elevated water table of 1.22 m. The vegetation coverage and density increased from 2.41% and 0.004 plants/m2 in 2005 to 5.89% and 0.0148 plants/m2 in 2021, respectively (Fig. 3a). Among them, the increase in canopy area of Tamarix sp. and P. euphratica in the sample site was the main reason for the expansion in coverage.Changes in species diversity indicesPlant richness and evenness in the lower reaches of the Tarim River were low, with species diversity indices showing significant changes in response to the ecological water conveyance and the rise in the groundwater table (Fig. 3b). For example, at the Yengsu section, the Simpson dominance index, McIntosh evenness index and Margalef richness index, which reflect changes in species diversity, decreased from 0.58, 0.45 and 0.74 in 2005 to 0.46, 0.03 and 0.03, respectively. These changes occurred in response to the increase in groundwater depth from the first sample site at 150 m to the sixth sample site at 1050 m from the river channel. After 20 years of ecological water conveyance, the Simpson dominance index, McIntosh evenness index and Margalef richness index had increased on average by 0.33, 0.35 and 0.49, respectively, in the first three sample sites (Fig. 3b).Vegetation index (NDVI) changesThe Normalized Difference Vegetation Index (NDVI) is an important indicator of vegetation growth24. The study results reveal that the NDVI of the lower reaches of the Tarim River increased from 0.14 in 2000 to 0.21 in 2020, representing a rise of about 33.3%. The ecological water conveyance expanded the river region’s natural vegetation 188%, from 492 km2 in 2000 to 1423 km2 in 2020. Specifically, the area of low, medium, and high vegetation cover expanded by 277 km2, 537 km2 and 132 km2, representing increases of 20.8%, 448% and 190%, respectively. Further analysis of changes in vegetation coverage at different river sections indicate that the area of low vegetation coverage in the upper and middle segments showed a decreasing trend, whereas the area of medium and high vegetation coverage in the upper and middle segments showed an increasing trend. This latter trend was especially prominent in the middle segment, where the increase in the area covered by medium and high vegetation was relatively large.In the downstream segment, the area covered by all types of vegetation showed an upward trend, with the area covered by low vegetation expanding significantly (Fig. 4). In the lateral direction, the NDVI within 2 km of the water conveyance channel showed a more obvious response with greater increases, while NDVI beyond 2 km from the channel revealed smaller increases25. These differences reflect the influence range of the ecological water conveyance.Figure 4Variation of vegetation cover in the lower reaches of Tarim River. Spatial distribution of fraction of vegetation cover in (a) 2000, (b) 2010 and (c) 2020. Trends of (d) high fraction of vegetation cover, (e) middle fraction of vegetation cover and (f) low fraction of vegetation cover in different river sections. (g) Vegetation area and (h) change trend at different distances from the river.Full size imageChanges in net primary production (NPP) of natural vegetationNet primary production (NPP) is a key parameter of carbon cycling and energy flow in terrestrial ecosystems. NPP not only reflects terrestrial ecosystem productivity, but also characterizes the quality of terrestrial ecosystems and plays an important role in global change and carbon balance26,27. The results of our study show that the area of natural vegetation in the lower reaches of the Tarim River with highly significant and significant increases in NPP during the study period accounted for 31.93% (P  herbaceous community. The largest increase in NPP was observed in the Tamarix spp. community, rising 350.20% from 2001 to 201928.Area changes in vegetation carbon sink areaThe ecological water conveyance project in the lower reaches of the Tarim expanded the vegetation coverage and enhanced the carbon sequestration capacity of the region through photosynthesis. The lower reaches of the river are dominated by desert and sparse vegetation, and the ecosystem carbon sinks are mainly low carbon sinks. The monitoring results of the study show that the vegetation carbon sink area in the river’s lower reaches indicate a gradual expansion under the influence of the ecological water conveyance29, increasing from 1.54% of the study area in 2001 to 7.8% in 2020. As well, the Net Ecosystem Productivity (NEP) of the area’s vegetation showed an increasing trend at a rate of 0.541 g C·m−2·a−1, with the largest increase – 0.406 g C·m−2·a−1 – occurring in summer29and no significant carbon sink area in winter.Furthermore, in order to quantitatively investigate the degree of influence of ecological water conveyance on the carbon sink area in the lower reaches of the Tarim, a linear fit of cumulative water conveyance and carbon sink area was performed (Fig. 5). Based on the results, a strong linear correlation was found between cumulative water conveyance and carbon sink area (R2 = 0.958, p  More