More stories

  • in

    A catastrophic collapse for the ‘flying banana’ of the Kalahari

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Spotted lanternfly predicted to establish in California by 2033 without preventative management

    Model structureWe used the PoPS (Pest or Pathogen Spread) Forecasting System11 version 2.0.0 to simulate the spread of SLF and calibrated the model (Fig. 6) using Approximate Bayesian Computation (ABC) with sequential Markov chain and a multivariate normal perturbation kernel18,19. We simulated the reproduction and dispersal of SLF groups (at the grid cell level) rather than individuals, as exact measures of SLF populations are not the goal of surveys conducted by USDA and state departments of agriculture. Reproduction was simulated as a Poisson process with mean β that is modified by local conditions. For example, if we have 5 SLF groups in a cell, a β value of 2.2, and a temperature coefficient of 0.7, our modified β value becomes 1.54 and we draw five numbers from a Poisson distribution with a λ value of 1.54. β and dispersal parameters were calibrated to fit the observed patterns of spread. For this application of PoPS, we replaced the long-distance kernel (α2) with a network dispersal kernel based on railroads, along which SLF and tree of heaven are commonly observed7. For each SLF group dispersing, if a railroad is in the grid cell with SLF, we used a Bernoulli distribution with mean of γ (probability of natural dispersal) to determine if an SLF group dispersed via the natural Cauchy kernel with scale (α) or along the rail network. This network dispersal kernel accounts for dispersal along railways if SLF is present in a cell containing a rail line. The network dispersal kernel added three new parameters to the PoPS model: a network file that contained the nodes and edges, minimum distance that each railcar travels, and the maximum distance that each railcar travels. Unlike typical network models, which simulate transport simply between nodes, our approach allows for SLF to disembark a railcar at any point along an edge, more closely mimicking their actual behavior. This network therefore captures the main pathway of SLF long-distance dispersal, i.e., along railways.Fig. 6: Model structure for spotted lanternfly (SLF, Lycorma delicatula).Unused modules in the PoPS model are gray in the equation. a The number of pests that disperse from a single host under optimal environmental conditions (β) is modified by the number of currently infested hosts (I) and environmental conditions in a location (i) at a particular time (t); environmental conditions include seasonality (X) and temperature (T) (see supplementary Fig. 3 for details on temperature). Dispersal is a function of gamma (γ), which is the probability of short-distance dispersal (alpha-1, α1) or long-distance via the rail network (N (dmin, dmax)). For the natural-distance Cauchy kernel, the direction is selected using 0-359 with 0 representing North. For the network kernel, the direction along the rail is selected randomly, and then travel continues in that direction until the drawn distance is reached. Once SLF has landed in a new location, its establishment depends on environmental conditions (X, T) and the availability of suitable hosts (number of susceptible hosts [S] divided by total number of potential hosts [N]). b We used a custom host map for tree of heaven (Ailanthus altissima) to determine the locations of susceptible hosts. The number of newly infested hosts (ψ) is predicted for each cell across the contiguous US.Full size imageSpotted lanternfly model calibrationWe used 2015–2019 data (over 300,000 total observations including both positive and negative surveys) provided by the USDA APHIS and the state Departments of Agriculture of Pennsylvania, New Jersey, Delaware, Maryland, Virginia, and West Virginia to calibrate model parameters (β, α1, γ, dmin, dmax). The calibration process starts by drawing a set of parameters from a uniform distribution. Simulated results for each model run are then compared to observed data within the year they were collected, and accuracy, precision, recall, and specificity are calculated for the simulation period. If each of these statistics is above 65% the parameter set is kept. This process repeats until 10,000 parameter sets are kept; then, the next generation of the ABC process begins: the mean of each accuracy statistic becomes the new accuracy threshold, and parameters are drawn from a multivariate normal distribution based on the means and covariance matrix of the first 10,000 kept parameters. This process repeats for a total of seven generations. Compared to the 2020 and 2021 observation data (over 100,000 total observations including both positive and negative surveys), the model performed well, with an accuracy of 84.4%, precision of 79.7%, recall of 91.55%, and specificity of 77.6%. In contrast, a model run using PoPS’ previous long-distance kernel (α2) instead of the network dispersal kernel had an accuracy of 76.5%, precision of 68.1%, recall of 92.68%, and specificity of 57.2%.We applied the calibrated parameters and their uncertainties (Fig. 7) to forecast the future spread of SLF, using the status of the infestation as of January 1, 2020 as a starting point and data for temperature and the distribution of SLF’s presumed primary host (tree of heaven, Ailanthus altissima) for the contiguous US at a spatial resolution of 5 km.Fig. 7: Parameter distributions.a Reproductive rate (β), b natural dispersal distance (α1), c percent natural dispersal (γ), d minimum distance (dmin), e maximum distance (dmax).Full size imageWeather dataOverwinter survival of SLF egg masses, and therefore spread, is sensitive to temperature (see ref. 2). To run a spread model in PoPS, all raw temperature values are first converted to indices ranging 0–1 to describe their impact on a species’ ability to survive and reproduce. We converted daily Daymet20 temperature into a monthly coefficient ranging 0–1 (Supplementary Fig. 1) and then rescaled from 1 to 5 km by averaging 1-km pixel values. We used weather data 1980–2019 and randomly drew from those historical data to simulate future weather conditions in our simulations, to account for uncertainty in future weather conditions.Tree of heaven distribution mappingSLF is known to feed on >70 species of mainly woody plants7, but tree of heaven is commonly viewed as necessary, or at least highly important, for SLF spread. Young nymphs are host generalists, but older nymphs and adults strongly prefer tree of heaven (in Korea21; in Pennsylvania, US22), and experiments in captivity23 and in situ9 have shown that adult survivorship is higher on the tree of heaven and grapevine than other host plants, likely due to the presence and proportion of sugar compounds important for SLF survival23. Secondary compounds found in tree of heaven also make adult SLF more unpalatable to avian predators24, and researchers have hypothesized that these protective compounds may be passed on to eggs21. For these reasons, tree of heaven is widely considered the primary host for SLF and linked to SLF spread1,25.We, therefore, used tree of heaven as the host in our spread forecast. We estimated the geographic range of tree of heaven using the Maximum Entropy (MaxEnt) model26,27. We chose to use niche modeling because tree of heaven has been in the US for over 200 years and is well past the early stage of invasion at which niche models perform poorly; instead, tree of heaven is well into the intermediate to equilibrium stage of invasion, when niche models perform well28. We obtained 19,282 presences for tree of heaven in the US from BIEN29,30 and EDDmaps31 and selected the most important variables from an initial MaxEnt model of all 19 WorldClim bioclimatic variables32. Our final climate variables were mean annual temperature, precipitation of the coldest quarter, and precipitation of the driest quarter. Given that tree of heaven is non-native and invasive in the US, prefers open and disturbed habitat, and is commonly found along roadsides and in urban landscapes33, we also included distance to major roads and railroads as an additional variable in our model, to account for the presence of disturbed habitat as well as approximate urbanization and anthropogenic degradation. For each 1-km cell in the extent, we calculated distance to the nearest road and nearest railroad using the US Census Bureau’s TIGER data set of primary roads and railroads34. We used our final MaxEnt model to generate the probability of the presence of tree of heaven for each 1-km cell, then reset all cells with a probability ≤0.2 to a value of 0 to minimize overprediction of the tree of heaven locations (because cells ≤0.2 contained less than 1% of the presences used to build the model). We rescaled the remaining probability values 0–1. We used 10% of the tree of heaven presence data to validate the model, which performed well: 95% of the validation data set locations had a probability of presence greater than 65%. We then rescaled the 1-km MaxEnt output to 5 km using the mean value of our 1-km cells, in order to reduce computational time.Forecasting spotted lanternflyWe used the Daymet temperature data and distribution of tree of heaven to simulate SLF spread with PoPS, assuming no further efforts to contain or eradicate either tree of heaven or SLF. We ran the spread simulation 10,000 times from 2020 to 2050 for the contiguous US. After running all 10,000 iterations, we created a probability of occurrence for each cell for each year by dividing the number of simulations in which a cell was simulated as being infested in that year by 10,000 (the total number of simulations). This gave us a probability of occurrence per year. We downscaled our probability of occurrence per year from 5 km to 1 km and set the probability to 0 in 1-km pixels with no tree of heaven occurrence.Data for mapping and comparisonWe compared our probability of occurrence map in 2050 to the SLF suitability map created by Wakie et al.1 using niche modeling to see how well the two modeling approaches would agree if SLF were allowed to spread unmanaged (Fig. 5). Wakie et al.1 categorized pixels below 8.359% as unsuitable, between 8.359% and 26.89% as low risk, between 26.89% and 51.99% as medium risk, and above 51.99% as high risk. To facilitate comparison, we used this same schema to categorize pixels as low, medium, or high probability of spread.We converted the yearly raster probability maps to county-level probabilities in order to examine the yearly risk to crops in counties. We performed this conversion using two methods: (1) the highest probability of occurrence in the county (Supplementary Movie 2) and (2) the mean probability of occurrence in the county (Fig. 1 and Supplementary Movie 1). The first method provides a simple, non-statistical estimate of the probability of SLF presence by assigning the county the value of the highest cell-level probability; the second accounts for all of the probabilities of the cells in the county and typically results in a higher county-level probability. We used USDA county-level production data10 for grapes, almonds, apples, walnuts, cherries, hops, peaches, plums, and apricots to determine the amount of production at risk each year (Fig. 2).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Identification of nosZ-expressing microorganisms consuming trace N2O in microaerobic chemostat consortia dominated by an uncultured Burkholderiales

    Montzka SA, Dlugokencky EJ, Butler JH. Non-CO2 greenhouse gases and climate change. Nature 2011;476:43–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. (eds). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2021. (in press).Wuebbles DJ. Nitrous oxide: no laughing matter. Science. 2009;326:56–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kool DM, Dolfing J, Wrage N, van Groenigen JW. Nitrifier denitrification as a distinct and significant source of nitrous oxide from soil. Soil Biol Biochem. 2011;43:174–8.CAS 
    Article 

    Google Scholar 
    Yoon S, Song B, Phillips RL, Chang J, Song MJ. Ecological and physiological implications of nitrogen oxide reduction pathways on greenhouse gas emissions in agroecosystems. FEMS Microbiol Ecol. 2019;95:fiz066.CAS 
    PubMed 
    Article 

    Google Scholar 
    Sanford RA, Wagner DD, Wu Q, Chee-Sanford JC, Thomas SH, Cruz-García C, et al. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci USA. 2012;109:19709–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hallin S, Philippot L, Löffler FE, Sanford RA, Jones CM. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 2018;26:43–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    Graf DR, Jones CM, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One. 2014;9:e114118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roco CA, Bergaust LL, Bakken LR, Yavitt JB, Shapleigh JP. Modularity of nitrogen‐oxide reducing soil bacteria: linking phenotype to genotype. Environ Microbiol. 2017;19:2507–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones CM, Graf DR, Bru D, Philippot L, Hallin S. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. ISME J. 2013;7:417–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    Frostegård Å, Vick SH, Lim NY, Bakken LR, Shapleigh JP. Linking meta-omics to the kinetics of denitrification intermediates reveals pH-dependent causes of N2O emissions and nitrite accumulation in soil. ISME J. 2022;16:26–37.PubMed 
    Article 
    CAS 

    Google Scholar 
    Simon J, Einsle O, Kroneck PMH, Zumft WG. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase. FEBS Lett. 2004;569:7–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Foley J, De Haas D, Yuan Z, Lant P. Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Water Res. 2010;44:831–44.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng J, Doskey PV. Simulated rainfall on agricultural soil reveals enzymatic regulation of short-term nitrous oxide profiles in soil gas and emissions from the surface. Biogeochemistry. 2016;128:327–38.CAS 
    Article 

    Google Scholar 
    Kern M, Simon J. Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in Wolinella succinogenes. Environ Microbiol. 2016;18:2899–912.CAS 
    PubMed 
    Article 

    Google Scholar 
    Suenaga T, Riya S, Hosomi M, Terada A. Biokinetic characterization and activities of N2O-reducing bacteria in response to various oxygen levels. Front Microbiol. 2018;9:697.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kim DD, Park D, Yoon H, Yun T, Song MJ, Yoon S. Quantification of nosZ genes and transcripts in activated sludge microbiomes with novel group-specific qPCR methods validated with metagenomic analyses. Water Res. 2020;185:116261.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yoon S, Nissen S, Park D, Sanford RA, Löffler FE. Nitrous oxide reduction kinetics distinguish bacteria harboring clade I NosZ from those harboring clade II NosZ. Appl Environ Microbiol. 2016;82:3793–800.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon H, Song MJ, Kim DD, Sabba F, Yoon S. A serial biofiltration system for effective removal of low-concentration nitrous oxide in oxic gas streams: mathematical modeling of reactor performance and experimental validation. Environ Sci Technol. 2019;53:2063–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    Suenaga T, Hori T, Riya S, Hosomi M, Smets BF, Terada A. Enrichment, isolation, and characterization of high-affinity N2O-reducing bacteria in a gas-permeable membrane reactor. Environ Sci Technol. 2019;53:12101–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    Conthe M, Wittorf L, Kuenen JG, Kleerebezem R, van Loosdrecht MC, Hallin S. Life on N2O: Deciphering the ecophysiology of N2O respiring bacterial communities in a continuous culture. ISME J. 2018;12:1142–53.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Henry S, Bru D, Stres B, Hallet S, Philippot L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol. 2006;72:5181–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Qi C, Zhou Y, Suenaga T, Oba K, Lu J, Wang G, et al. Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: Genomic and biokinetic insights. Water Res. 2022;209:117910.CAS 
    Article 

    Google Scholar 
    Gao Y, Mania D, Mousavi SA, Lycus P, Arntzen MØ, Woliy K, et al. Competition for electrons favours N2O reduction in denitrifying Bradyrhizobium isolates. Environ Microbiol. 2021;23:2244–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    Song MJ, Choi S, Bae WB, Lee J, Han H, Kim DD, et al. Identification of primary effecters of N2O emissions from full-scale biological nitrogen removal systems using random forest approach. Water Res. 2020;184:116144.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ahn JH, Kim S, Park H, Rahm B, Pagilla K, Chandran K. N2O emissions from activated sludge processes, 2008−2009: results of a national monitoring survey in the United States. Environ Sci Technol. 2010;44:4505–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bollmann A, Conrad R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Glob Chang Biol 1998;4:387–96.Article 

    Google Scholar 
    Morris RL, Schmidt TM. Shallow breathing: Bacterial life at low O2. Nat Rev Microbiol. 2013;11:205–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799–812.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Camejo PY, Oyserman BO, McMahon KD, Noguera DR. Integrated omic analyses provide evidence that a “Candidatus Accumulibacter phosphatis” strain performs denitrification under microaerobic conditions. mSystems. 2019;4:e00193–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yoon S, Sanford RA, Löffler FE. Shewanella spp. use acetate as an electron donor for denitrification but not ferric iron or fumarate reduction. Appl Environ Microbiol. 2013;79:2818–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van den Berg EM, Boleij M, Kuenen JG, Kleerebezem R, van Loosdrecht M. DNRA and denitrification coexist over a broad range of acetate/N-NO3− ratios, in a chemostat enrichment culture. Front Microbiol. 2016;7:1842.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sander R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys. 2015;15:4399–981.CAS 
    Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Binder BJ, Liu YC. Growth rate regulation of rRNA content of a marine Synechococcus (cyanobacterium) strain. Appl Environ Microbiol. 1998;64:3346–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shrestha PM, Rotaru AE, Aklujkar M, Liu F, Shrestha M, Summers ZM, et al. Syntrophic growth with direct interspecies electron transfer as the primary mechanism for energy exchange. Environ Microbiol Rep. 2013;5:904–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Löffler FE. Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol. 2006;72:2765–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:1–11.Article 
    CAS 

    Google Scholar 
    Buchfink B, Reuter K, Drost H-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat Methods. 2021;18:366–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huang Y, Gilna P, Li W. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 2009;25:1338–40.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller CS, Baker BJ, Thomas BC, Singer SW, Banfield JF. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 2011;12:R44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint arXiv:13033997. 2013.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics 2009;25:2078–9.PubMed 
    PubMed Central 

    Google Scholar 
    Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nayfach S, Pollard KS. Toward accurate and quantitative comparative metagenomics. Cell 2016;166:1103–16.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:1–16.Article 

    Google Scholar 
    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Parks DH, Rinke C, Chuvochina M, Chaumeil P-A, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol 2017;2:1533–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Banfield JF. dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Harvey WT, Rosselló-Mora R, Tiedje JM, Cole JR, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomic and gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 2018;46:W282–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Darling AE, Jospin G, Lowe E, Matsen FA IV, Bik HM, Eisen JA. PhyloSift: Phylogenetic analysis of genomes and metagenomes. PeerJ. 2014;2:e243.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007;56:564–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    Salazar G, Paoli L, Alberti A, Huerta-Cepas J, Ruscheweyh H-J, Cuenca M, et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 2019;179:1068–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J, Cuenca M, et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat Commun. 2019;10:1014.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR, et al. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods. 2013;10:1196–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Yap CX, Henders AK, Alvares GA, Wood DL, Krause L, Tyson GW, et al. Autism-related dietary preferences mediate autism-gut microbiome associations. Cell 2021;184:5916–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    Shan J, Sanford RA, Chee‐Sanford J, Ooi SK, Löffler FE, Konstantinidis KT, et al. Beyond denitrification: the role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Glob Chang Biol. 2021;27:2669–83.PubMed 
    Article 

    Google Scholar 
    Jones CM, Spor A, Brennan FP, Breuil M-C, Bru D, Lemanceau P, et al. Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Chang. 2014;4:801–5.Kim J, Kim DD, Yoon S. Rapid isolation of fast-growing methanotrophs from environmental samples using continuous cultivation with gradually increased dilution rates. Appl Microbiol Biotechnol. 2018;102:5707–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Betlach MR, Tiedje JM. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981;42:1074–84.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: Redox control. Antioxid Redox Signal. 2012;16:819–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rauhamäki V, Bloch DA, Wikström M. Mechanistic stoichiometry of proton translocation by cytochrome cbb3. Proc Natl Acad Sci USA. 2012;109:7286–91.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta – Bioenerg. 2011;1807:1398–413.CAS 
    Article 

    Google Scholar 
    Lee A, Winther M, Priemé A, Blunier T, Christensen S. Hot spots of N2O emission move with the seasonally mobile oxic-anoxic interface in drained organic soils. Soil Biol Biochem. 2017;115:178–86.CAS 
    Article 

    Google Scholar 
    Orellana L, Rodriguez-R L, Higgins S, Chee-Sanford J, Sanford R, Ritalahti K, et al. Detecting nitrous oxide reductase (nosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. MBio 2014;5:e01193–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ormeño-Orrillo E, Martínez-Romero E. A genomotaxonomy view of the Bradyrhizobium genus. Front Microbiol. 2019;10:1334.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tong W, Li X, Wang E, Cao Y, Chen W, Tao S, et al. Genomic insight into the origins and evolution of symbiosis genes in Phaseolus vulgaris microsymbionts. BMC Genom. 2020;21:186.CAS 
    Article 

    Google Scholar 
    Conthe M, Lycus P, Arntzen MØ, da Silva AR, Frostegård Å, Bakken LR, et al. Denitrification as an N2O sink. Water Res. 2019;151:381–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldblatt C, Lenton TM, Watson AJ. Bistability of atmospheric oxygen and the Great Oxidation. Nature. 2006;443:683–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brewer PG, Hofmann AF, Peltzer ET, Ussler W III. Evaluating microbial chemical choices: The ocean chemistry basis for the competition between use of O2 or NO3− as an electron acceptor. Deep Sea Res Part I Oceanogr Res Pap. 2014;87:35–42.CAS 
    Article 

    Google Scholar 
    Bianchi D, Dunne JP, Sarmiento JL, Galbraith ED. Data‐based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2. Global Biogeochem Cycles 2012;26:GB2009.Stolper DA, Revsbech NP, Canfield DE. Aerobic growth at nanomolar oxygen concentrations. Proc Natl Acad Sci USA. 2010;107:18755–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zakem E, Follows M. A theoretical basis for a nanomolar critical oxygen concentration. Limnol Oceanogr. 2017;62:795–805.Article 

    Google Scholar 
    Liengaard L, Nielsen LP, Revsbech NP, Priemé A, Elberling B, Enrich-Prast A, et al. Extreme emission of N2O from tropical wetland soil (Pantanal, South America). Front Microbiol. 2013;3:433.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Shcherbak I, Robertson GP. Nitrous oxide (N2O) emissions from subsurface soils of agricultural ecosystems. Ecosystems. 2019;22:1650–63.CAS 
    Article 

    Google Scholar 
    Qu Z, Bakken LR, Molstad L, Frostegård Å, Bergaust LL. Transcriptional and metabolic regulation of denitrification in Paracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environ Microbiol. 2016;18:2951–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    Desloover J, Roobroeck D, Heylen K, Puig S, Boeckx P, Verstraete W, et al. Pathway of nitrous oxide consumption in isolated Pseudomonas stutzeri strains under anoxic and oxic conditions. Environ Microbiol. 2014;16:3143–52.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Important marine areas for endangered African penguins before and after the crucial stage of moulting

    Game, E. T. et al. Pelagic protected areas: The missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).PubMed 
    Article 

    Google Scholar 
    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641–1255647 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Paleczny, M., Hammill, E., Karpouzi, V. & Pauly, D. Population trend of the world’s monitored seabirds, 1950–2010. PLoS ONE 10, e0129342 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Croxall, J. P. et al. Seabird conservation status and threats: A global assessment of priorities. Bird Conserv. Int. 22, 1–34 (2012).Article 

    Google Scholar 
    Dias, M. P. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).Article 

    Google Scholar 
    Trathan, P. N. et al. Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conserv. Biol. 29, 31–41 (2014).PubMed 
    Article 

    Google Scholar 
    Boersma, D. et al. Applying science to pressing conservation needs for penguins. Conserv. Biol. 34, 103–112 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ropert-Coudert, Y. et al. Happy feet in a hostile world? The future of penguins depends on proactive management of current and expected threats. Front. Mar. Sci. 6, 248 (2019).Article 

    Google Scholar 
    Maestro, M., Pérez-Cayeiro, M. L., Chica-Ruiz, J. A. & Reyes, H. Marine protected areas in the 21st century: Current situation and trends. Ocean Coast. Manag. 171, 28–36 (2019).Article 

    Google Scholar 
    Hays, G. C. et al. Key questions in marine megafauna movement ecology. Trends Ecol. Evol. 31, 463–475 (2016).PubMed 
    Article 

    Google Scholar 
    Boyd, C. et al. Spatial scale and the conservation of threatened species. Conserv. Lett. 1, 37–43 (2008).Article 

    Google Scholar 
    Marra, P. P., Cohen, E. B., Loss, S. R., Rutter, J. E. & Tonra, C. M. A call for full annual cycle research in animal ecology. Biol. Lett. 11, 20150552 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kürten, N. et al. High individual repeatability of the migratory behaviour of a long-distance migratory seabird. Mov. Ecol. 10, 5 (2022).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weimerskirch, H. et al. Lifetime foraging patterns of the wandering albatross: Life on the move!. J. Exp. Mar. Biol. Ecol. 450, 68–78 (2014).Article 

    Google Scholar 
    Trebilco, R., Gales, R., Baker, G. B., Terauds, A. & Sumner, M. D. At sea movement of Macquarie Island giant petrels: Relationships with marine protected areas and Regional Fisheries Management Organisations. Biol. Conserv. 141, 2942–2958 (2008).Article 

    Google Scholar 
    Clay, T. A. et al. A comprehensive large-scale assessment of fisheries bycatch risk to threatened seabird populations. J. Appl. Ecol. 56, 1882–1893 (2019).Article 

    Google Scholar 
    Meier, R. E. et al. Tracking, feather moult and stable isotopes reveal foraging behaviour of a critically endangered seabird during the non-breeding season. Divers. Distrib. 23, 130–145 (2017).Article 

    Google Scholar 
    Frankish, C. K., Phillips, R. A., Clay, T. A., Somveille, M. & Manica, A. Environmental drivers of movement in a threatened seabird: Insights from a mechanistic model and implications for conservation. Divers. Distrib. 26, 1315–1329 (2020).Article 

    Google Scholar 
    Ratcliffe, N. et al. Changes in prey fields increase the potential for spatial overlap between gentoo penguins and a krill fishery within a marine protected area. Divers. Distrib. 27, 552–563 (2021).Article 

    Google Scholar 
    Grémillet, D. et al. Persisting worldwide seabird-fishery competition despite seabird community decline. Curr. Biol. 28, 4009–4013 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bogdanova, M. I. et al. Multi-colony tracking reveals spatio-temporal variation in carry-over effects between breeding success and winter. Mar. Ecol. Prog. Ser. 578, 167–181 (2017).Article 
    ADS 

    Google Scholar 
    van Bemmelen, R. et al. Flexibility in otherwise consistent non-breeding movements of a long-distance migratory seabird, the long-tailed skua. Mar. Ecol. Prog. Ser. 578, 197–211 (2017).Article 
    ADS 

    Google Scholar 
    Robinson, W. M. L., Butterworth, D. S. & Plagányi, É. E. Quantifying the projected impact of the South African sardine fishery on the Robben Island penguin colony. ICES J. Mar. Sci. 72, 1882–1883 (2015).Article 

    Google Scholar 
    Sherley, R. B. et al. Bottom-up effects of a no-take zone on endangered penguin demographics. Biol. Lett. 11, 20150237 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Studholme, K. R., Hipfner, J. M., Domalik, A. D., Ivrson, S. J. & Crossin, G. T. Year-round tracking reveals multiple migratory tactics in a sentinel North Pacific seabird, Cassin’s auklet. Mar. Ecol. Prog. Ser. 619, 169–185 (2019).Article 
    ADS 

    Google Scholar 
    Salton, M., Saraux, C., Dann, P. & Chiaradia, A. Carry-over body mass effect from winter to breeding in a resident seabird, the little penguin. R. Soc. Open Sci. 2, 140390 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Barbraud, C. et al. Density dependence, prey accessibility and prey depletion by fisheries drive Peruvian seabird population dynamics. Ecography 41, 1092–1102 (2018).Article 

    Google Scholar 
    Grémillet, D. et al. Starving seabirds: Unprofitable foraging and its fitness consequences in Cape gannets competing with fisheries in the Benguela upwelling ecosystem. Mar. Biol. 163, 1–11 (2016).Article 

    Google Scholar 
    Cook, A. S. C. P., Dadam, D., Mitchell, I., Ross-Smith, V. H. & Robinson, R. A. Indicators of seabird reproductive performance demonstrate the impact of commercial fisheries on seabird populations in the North Sea. Ecol. Indic. 38, 1–11 (2014).Article 

    Google Scholar 
    Thiebot, J.-B. et al. Adjustment of pre-moult foraging strategies in Macaroni Penguins Eudyptes chrysolophus according to locality, sex and breeding status. Ibis 156, 511–522 (2014).Article 

    Google Scholar 
    Brasso, R. L. et al. Unique pattern of molt leads to low intraindividual variation in feather mercury concentrations in penguins. Environ. Toxicol. Chem. 32, 2331–2334 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cooper, J. Moult of the black-footed penguin. Int. Zoo Yearb. 18, 22–27 (1978).Article 

    Google Scholar 
    Cherel, Y., Charrassin, J. & Challet, E. Energy and protein requirements for molt in the king penguin Aptenodytes patagonicus. Am. J. Physiol. 266, R1182–R1188 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, C. R. Energetic cost of moult in macaroni penguins (Eudyptes chrysolophus) and rockhopper penguins (E. chrysocome). J. Comp. Physiol. B 155, 515–520 (1985).Article 

    Google Scholar 
    Dehnhard, N. et al. Survival of rockhopper penguins in times of global climate change. Aquat. Conserv. Mar. Freshw. Ecosyst. 23, 777–789 (2013).
    Google Scholar 
    Rebstock, G. & Boersma, D. Oceanographic conditions in wintering grounds affect arrival date and body condition in breeding female Magellanic penguins. Mar. Ecol. Prog. Ser. 601, 253–267 (2018).Article 
    ADS 

    Google Scholar 
    Green, J. A., Boyd, I. L., Woakes, A. J., Warren, N. L. & Butler, P. J. Evaluating the prudence of parents: Daily energy expenditure throughout the annual cycle of a free-ranging bird, the macaroni penguin Eudyptes chrysolophus. J. Avian Biol. 40, 529–538 (2009).Article 

    Google Scholar 
    Crawford, R. J. M., Makhado, A. B., Upfold, L. & Dyer, B. M. Mass on arrival of rockhopper penguins at Marion Island correlated with breeding success. Afr. J. Mar. Sci. 30, 185–188 (2008).Article 

    Google Scholar 
    Crawford, R. J. M. et al. Food habits of an endangered seabird indicate recent poor forage fish availability off western South Africa. ICES J. Mar. Sci. 76, 1344–1352 (2019).
    Google Scholar 
    Okes, N. C. et al. Competition for shifting resources in the southern Benguela upwelling: Seabirds versus purse-seine fisheries. Biol. Conserv. 142, 2361–2368 (2009).Article 

    Google Scholar 
    Campbell, K. J. et al. Local forage fish abundance influences foraging effort and offspring condition in an endangered marine predator. J. Appl. Ecol. 56, 1751–1760 (2019).Article 

    Google Scholar 
    Grémillet, D. et al. Spatial match-mismatch in the Benguela upwelling zone: Should we expect chlorophyll and sea-surface temperature to predict marine predator distributions?. J. Appl. Ecol. 45, 610–621 (2008).Article 
    CAS 

    Google Scholar 
    Sherley, R. B. et al. Metapopulation tracking juvenile penguins reveals an ecosystem-wide ecological trap. Curr. Biol. 27, 1–6 (2017).Article 
    CAS 

    Google Scholar 
    Sherley, R. B. et al. Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Mar. Ecol. Prog. Ser. 473, 291–301 (2013).Article 
    ADS 

    Google Scholar 
    Cury, P. M. et al. Global seabird response to forage fish depletion—One-third for the birds. Science 334, 1703–1706 (2011).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Crawford, R. J. M. et al. Collapse of South Africa’s penguins in the early 21st century. Afr. J. Mar. Sci. 33, 139–156 (2011).Article 

    Google Scholar 
    Sherley, R. B. et al. The conservation status and population decline of the African penguin deconstructed in space and time. Ecol. Evol. 10, 8506–8516 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weller, F. et al. A system dynamics approach to modelling multiple drivers of the African penguin population on Robben Island, South Africa. Ecol. Model. 277, 38–56 (2014).Article 

    Google Scholar 
    Pichegru, L. Increasing breeding success of an Endangered penguin: Artificial nests or culling predatory gulls?. Bird Conserv. Int. 23, 296–308 (2013).Article 

    Google Scholar 
    Weller, F. et al. System dynamics modelling of the Endangered African penguin populations on Robben and Dyer islands, South Africa. Ecol. Model. 327, 44–56 (2016).Article 

    Google Scholar 
    Pichegru, L. et al. Overlap between vulnerable top predators and fisheries in the Benguela upwelling system: Implications for marine protected areas. Mar. Ecol. Prog. Ser. 391, 199–208 (2009).Article 
    ADS 

    Google Scholar 
    Sherley, R. B. et al. Bayesian inference reveals positive but subtle effects of experimental fishery closures on marine predator demographics. Proc. R. Soc. B 285, 20172443 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pichegru, L., Grémillet, D., Crawford, R. J. M. & Ryan, P. G. Marine no-take zone rapidly benefits endangered penguin. Biol. Lett. 6, 498–501 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weller, F. et al. Penguins’ perilous conservation status calls for complementary approach based on sound ecological principles: Reply to Butterworth et al. (2015). Ecol. Model. 337, 1–3 (2016).Article 

    Google Scholar 
    Butterworth, D. S., Plagányi, E. E., Robinson, W. M. L., Moosa, N. & de Moor, C. L. Penguin modelling approach queried. Ecol. Model. 316, 78–80 (2015).Article 

    Google Scholar 
    Pichegru, L. et al. Sex-specific foraging behaviour and a field sexing technique for Endangered African penguins. Endanger. Species Res. 19, 255–264 (2013).Article 

    Google Scholar 
    Roberts, J. African Penguin (Spheniscus demersus) Distribution During the Non-breeding Season: Preparation for, and Recovery from, a Moulting Fast (University of Cape Town, 2016).
    Google Scholar 
    Dias, M. P. et al. Identification of marine Important Bird and Biodiversity Areas for penguins around the South Shetland Islands and South Orkney Islands. Ecol. Evol. 8, 10520–10529 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lascelles, B. G. et al. Applying global criteria to tracking data to define important areas for marine conservation. Divers. Distrib. 22, 422–431 (2016).Article 

    Google Scholar 
    Department of Forestry, Fisheries and Environment, T. National data and information report for marine spatial planning: Knowledge baseline for marine spatial planning in South Africa. (2021).Kirkman, S. P. et al. Evaluating the evidence for ecological effectiveness of South Africa’s marine protected areas. Afr. J. Mar. Sci. 43, 389–412 (2021).Article 

    Google Scholar 
    Harris, L. R. et al. Practical marine spatial management of ecologically or biologically significant marine areas: Emerging lessons from evidence-based planning and implementation in a developing-world context. Front. Mar. Sci. 9, 831678 (2022).Article 

    Google Scholar 
    Whitehead, T. O., Kato, A., Ropert-Coudert, Y. & Ryan, P. G. Habitat use and diving behaviour of macaroni Eudyptes chrysolophus and eastern rockhopper E. chrysocome filholi penguins during the critical pre-moult period. Mar. Biol. 163, 19 (2016).Article 

    Google Scholar 
    Warwick-Evans, V., Downie, R., Santos, M. & Trathan, P. N. Habitat preferences of Adélie Pygoscelis adeliae and Chinstrap Penguins Pygoscelis antarctica during pre-moult in the Weddell Sea (Southern Ocean). Polar Biol. 42, 703–714 (2019).Article 

    Google Scholar 
    Green, C.-P. et al. The role of allochrony in influencing interspecific differences in foraging distribution during the non-breeding season between two congeneric crested penguin species. PLoS ONE 17, e0262901 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pütz, K., Ingham, R. J. & Smith, J. G. Satellite tracking of the winter migration of Magellanic Penguins Spheniscus magellanicus breeding in the Falkland Islands. Ibis 142, 614–622 (2000).Article 

    Google Scholar 
    Pütz, K. et al. Post-moult movements of sympatrically breeding Humboldt and Magellanic Penguins in south-central Chile. Glob. Ecol. Conserv. 7, 49–58 (2016).Article 

    Google Scholar 
    Pütz, K., Ingham, R. J., Smith, J. G. & Lüthi, B. H. Winter dispersal of rockhopper penguins Eudyptes chrysocome from the Falkland Islands and its implications for conservation. Mar. Ecol. Prog. Ser. 240, 273–284 (2002).Article 
    ADS 

    Google Scholar 
    Thiebot, J.-B., Cherel, Y., Trathan, P. N. & Bost, C. A. Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology 93, 122–130 (2012).PubMed 
    Article 

    Google Scholar 
    Thiebot, J.-B., Bost, C.-A., Poupart, T. A., Filippi, D. & Waugh, S. M. Extensive use of the high seas by Vulnerable Fiordland Penguins across non-breeding stages. J. Ornithol. 161, 1033–1043 (2020).Article 

    Google Scholar 
    Mattern, T. et al. Marathon penguins—Reasons and consequences of long-range dispersal in Fiordland penguins/Tawaki during the pre-moult period. PLoS ONE 13, e0198688 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bost, C.-A., Thiebot, J.-B., Pinaud, D., Cherel, Y. & Trathan, P. N. Where do penguins go during the inter-breeding period? Using geolocation to track the winter dispersion of the macaroni penguin. Biol. Lett. 5, 473–476 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baylis, A. M. M., Tierney, M., Orben, R. A., González de la Peña, D. & Brickle, P. Non-breeding movements of gentoo penguins at the Falkland Islands. Ibis 163, 507–518 (2021).Article 

    Google Scholar 
    Orgeret, F. et al. Exploration during early life: Distribution, habitat and orientation preferences in juvenile king penguins. Mov. Ecol. 7, 29 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thiebot, J. B., Lescroël, A., Barbraud, C. & Bost, C. A. Three-dimensional use of marine habitats by juvenile emperor penguins Aptenodytes forsteri during post-natal dispersal. Antarct. Sci. 25, 536–544 (2013).Article 
    ADS 

    Google Scholar 
    Pütz, K. et al. Post-fledging dispersal of king penguins (Aptenodytes patagonicus) from two breeding sites in the South Atlantic. PLoS ONE 9, e97164 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Birt, V., Birt, T., Goulet, D., Cairns, D. & Montevecchi, W. Ashmole’s halo: Direct evidence for prey depletion by a seabird. Mar. Ecol. Prog. Ser. 40, 205–208 (1987).Article 
    ADS 

    Google Scholar 
    Furness, R. W. & Birkhead, T. R. Seabird colony distributions suggest competition for food supplies during the breeding season. Nature 311, 655–656 (1984).Article 
    ADS 

    Google Scholar 
    Carpenter-Kling, T. et al. Foraging in a dynamic environment: Response of four sympatric sub-Antarctic albatross species to interannual environmental variability. Ecol. Evol. 10, 11277–11295 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kowalczyk, N. D., Reina, R. D., Preston, T. J. & Chiaradia, A. Environmental variability drives shifts in the foraging behaviour and reproductive success of an inshore seabird. Oecologia 178, 967–979 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Machovsky-Capuska, G. E. et al. The nutritional nexus: Linking niche, habitat variability and prey composition in a generalist marine predator. J. Anim. Ecol. 87, 1286–1298 (2018).PubMed 
    Article 

    Google Scholar 
    Hays, G. C. et al. Translating marine animal tracking data into conservation policy and management. Trends Ecol. Evol. 34, 459–473 (2019).PubMed 
    Article 

    Google Scholar 
    Kappes, M. A. et al. Hawaiian albatrosses track interannual variability of marine habitats in the North Pacific. Prog. Oceanogr. 86, 246–260 (2010).Article 
    ADS 

    Google Scholar 
    Bost, C. A. et al. Large-scale climatic anomalies affect marine predator foraging behaviour and demography. Nat. Commun. 6, 8220 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Brown, C. J. et al. Effects of climate-driven primary production change on marine food webs: Implications for fisheries and conservation. Glob. Chang. Biol. 16, 1194–1212 (2010).Article 
    ADS 

    Google Scholar 
    Beever, E. A. et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 15, 299–308 (2017).Article 

    Google Scholar 
    McInnes, A. M., Ryan, P. G., Lacerda, M. & Pichegru, L. Targeted prey fields determine foraging effort thresholds of a marine diver: Important cues for the sustainable management of fisheries. J. Appl. Ecol. 56, 2206–2215 (2019).Article 

    Google Scholar 
    van Eeden, R., Reid, T., Ryan, P. G. & Pichegru, L. Fine-scale foraging cues for African penguins in a highly variable marine environment. Mar. Ecol. Prog. Ser. 543, 257–271 (2016).Article 
    ADS 

    Google Scholar 
    Coetzee, J. C., van der Lingen, C. D., Hutchings, L. & Fairweather, T. P. Has the fishery contributed to a major shift in the distribution of South African sardine?. ICES J. Mar. Sci. 65, 1676–1688 (2008).Article 

    Google Scholar 
    Blamey, L. K. et al. Ecosystem change in the southern Benguela and the underlying processes. J. Mar. Syst. 144, 9–29 (2015).Article 

    Google Scholar 
    Roy, C., Van Der Lingen, C. D., Coetzee, J. C. & Lutjeharms, J. R. E. Abrupt environmental shift associated with changes in the distribution of Cape anchovy Engraulis encrasicolus spawners in the southern Benguela. Afr. J. Mar. Sci. 29, 309–319 (2007).Article 

    Google Scholar 
    McInnes, A. M. et al. Small pelagic fish responses to fine-scale oceanographic conditions: Implications for the endangered African penguin. Mar. Ecol. Prog. Ser. 569, 187–203 (2017).CAS 
    Article 
    ADS 

    Google Scholar 
    Barange, M., Hampton, I. & Roel, B. A. Trends in the abundance and distribution of anchovy and sardine on the South African continental shelf in the 1990s, deduced from acoustic surveys. S. Afr. J. Mar. Sci. 21, 367–391 (1999).Article 

    Google Scholar 
    Hutchings, L. et al. Spawning on the edge: Spawning grounds and nursery areas around the southern African coastline. Mar. Freshw. Res. 53, 307–318 (2002).Article 

    Google Scholar 
    Verheye, H. M., Hutchings, L., Huggett, J. A. & Painting, S. J. Mesozooplankton dynamics in the Benguela ecosystem, with emphasis on the herbivorous copepods. S. Afr. J. Mar. Sci. 12, 561–584 (1992).Article 

    Google Scholar 
    Hutchings, L., Jarre, A., Lamont, T., van den Berg, M. & Kirkman, S. P. St Helena Bay (southern Benguela) then and now: Muted climate signals, large human impact. Afr. J. Mar. Sci. 34, 559–583 (2012).Article 

    Google Scholar 
    Goschen, W. S. & Schumann, E. H. Upwelling and the occurrence of cold water around Cape Recife, Algoa Bay, South Africa. S. Afr. J. Mar. Sci. 16, 57–67 (1995).Article 

    Google Scholar 
    Hutchings, L. et al. The Benguela Current: An ecosystem of four components. Prog. Oceanogr. 83, 15–32 (2009).Article 
    ADS 

    Google Scholar 
    Goschen, W. S., Schumann, E. H., Bernard, K. S., Bailey, S. E. & Deyzel, S. H. P. Upwelling and ocean structures off Algoa Bay and the south-east coast of South Africa. Afr. J. Mar. Sci. 34, 525–536 (2012).Article 

    Google Scholar 
    van der Lingen, C. D. Diet of sardine Sardinops sagax in the southern Benguela upwelling ecosystem. S. Afr. J. Mar. Sci. 24, 301–316 (2002).Article 

    Google Scholar 
    van der Lingen, C. D., Hutchings, L. & Field, J. G. Comparative trophodynamics of anchovy Engraulis encrasicolus and sardine Sardinops sagax in the southern Benguela: Are species alternations between small pelagic fish trophodynamically mediated?. Afr. J. Mar. Sci. 28, 465–477 (2006).Article 

    Google Scholar 
    Wright, K. L. B., Pichegru, L. & Ryan, P. G. Penguins are attracted to dimethyl sulphide at sea. J. Exp. Biol. 214, 2509–2511 (2011).PubMed 
    Article 

    Google Scholar 
    Hagen, C. et al. Evaluating the state of knowledge on fishing exclusions around major African Penguin colonies. (2014).Fort, J. et al. Multicolony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea ice cover. Divers. Distrib. 19, 1322–1332 (2013).Article 

    Google Scholar 
    Reiertsen, T. K. et al. Prey density in non-breeding areas affects adult survival of black-legged kittiwakes Rissa tridactyla. Mar. Ecol. Prog. Ser. 509, 289–302 (2014).Article 
    ADS 

    Google Scholar 
    Fayet, A. L. et al. Ocean-wide drivers of migration strategies and their influence on population breeding performance in a declining seabird. Curr. Biol. 27, 3871–3878 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Desprez, M., Jenouvrier, S., Barbraud, C., Delord, K. & Weimerskirch, H. Linking oceanographic conditions, migratory schedules and foraging behaviour during the non-breeding season to reproductive performance in a long-lived seabird. Funct. Ecol. 32, 2040–2053 (2018).Article 

    Google Scholar 
    Randall, R. M. & Randall, B. The annual cycle of the Jackass Penguin Spheniscus demersus at St Croix Island, South Africa. In Proc. Symp. Birds Sea Shore 427–450 (1981).Wolfaardt, A. C., Underhill, L. G. & Visagie, J. Breeding and moult phenology of African penguins Spheniscus demersus at Dassen Island. Afr. J. Mar. Sci. 31, 119–132 (2009).Article 

    Google Scholar 
    Crawford, R. J. M. et al. Molt of the African penguin, Spheniscus demersus, in relation to its breeding season and food availability. Acta Zool. Sin. 52, 444–447 (2006).
    Google Scholar 
    Randall, R. M. Biology of the Jackass Penguin Spheniscus demersus (L.) at St Croix, South Africa (Univeristy of Port Elizabeth, 1983).
    Google Scholar 
    Harding, C. T. Tracking African Penguins (Spheniscus demersus) Outside of the Breeding Season: Regional Effects and Fishing Pressure During the Pre-moult Period (University of Cape Town, 2013).
    Google Scholar 
    Wilson, R. P. The Jackass Penguin (Spheniscus demersus) as a pelagic predator. Mar. Ecol. Prog. Ser. 25, 219–227 (1985).Article 
    ADS 

    Google Scholar 
    Freitas, C. argosfilter: Argos locations filter. (2012).Worton, B. J. Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70, 164–168 (1989).Article 

    Google Scholar 
    Calenge, C. The package ‘adehabitat’ for the R software: A tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Vander Wal, E. & Rodgers, A. R. An individual-based quantitative approach for delineating core areas of animal space use. Ecol. Model. 224, 48–53 (2012).Article 

    Google Scholar 
    Dinno, A. dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums (2017).Bhattacharyya, A. On a measure of divergence between two multinomial populations. Indian J. Stat. 7, 401–406 (1946).MathSciNet 
    MATH 

    Google Scholar 
    Beal, M. et al. track2KBA: An R package for identifying important sites for biodiversity from tracking data. Methods Ecol. https://doi.org/10.1111/2041-210X.13713 (2021).Article 

    Google Scholar 
    Donald, P. F. et al. Important Bird and Biodiversity Areas (IBAs): The development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. 29, 177–198 (2019).Article 

    Google Scholar 
    Handley, J. M. et al. Evaluating the effectiveness of a large multi-use MPA in protecting Key Biodiversity Areas for marine predators. Divers. Distrib. 26, 715–729 (2020).Article 

    Google Scholar 
    Strimas-Mackey, M. smoothr: Smooth and tidy spatial features. R package version 0.2.2. https://CRAN.R-project.org/package=smoothr (2018).Department of Forestry Fisheries and the Environment, T. South Africa Marine Protected Area Zonations (SAMPAZ_OR_2021_Q3). https://egis.environment.gov.za/data_egis/data_dow (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2021). More

  • in

    Governance modes

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Carbon impacts

    Share this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard
    Provided by the Springer Nature SharedIt content-sharing initiative More

  • in

    Repeated introduction of micropollutants enhances microbial succession despite stable degradation patterns

    Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, Von Gunten U, et al. The challenge of micropollutants in aquatic systems. Science (80-). 2006;313:1072–7.Article 

    Google Scholar 
    Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health. 2011;214:442–8.Article 

    Google Scholar 
    Wang M, Cernava T. Overhauling the assessment of agrochemical-driven interferences with microbial communities for improved global ecosystem integrity. Environ Sci Ecotechnol. 2020;4:100061.Article 

    Google Scholar 
    Luo Y, Guo W, Ngo HH, Nghiem LD, Hai FI, Zhang J, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–41.Article 

    Google Scholar 
    Wang Z, Zhang XH, Huang Y, Wang H. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China. Environ Pollut. 2015;204:223–32.Article 

    Google Scholar 
    Eggen RIL, Hollender J, Joss A, Schärer M, Stamm C. Reducing the discharge of micropollutants in the aquatic environment: the benefits of upgrading wastewater treatment plants. Environ Sci Technol. 2014;48:7683–9.Article 

    Google Scholar 
    Vila-Costa M, Cerro-Gálvez E, Martínez-Varela A, Casas G, Dachs J. Anthropogenic dissolved organic carbon and marine microbiomes. ISME J. 2020;14:2646–8.Article 

    Google Scholar 
    da Silva GCX, Medeiros de Abreu CH, Ward ND, Belúcio LP, Brito DC, Cunha HFA, et al. Environmental impacts of dam reservoir filling in the East Amazon. Front Water. 2020;2:11.Article 

    Google Scholar 
    Kuroda K, Murakami M, Oguma K, Muramatsu Y, Takada H, Takizawa S. Assessment of groundwater pollution in Tokyo using PPCPs as sewage markers. Environ Sci Technol. 2012;46:1455–64.Article 

    Google Scholar 
    Liu WR, Zhao JL, Liu YS, Chen ZF, Yang YY, Zhang QQ, et al. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment. Environ Pollut. 2015;200:53–63.Article 

    Google Scholar 
    Roberts J, Kumar A, Du J, Hepplewhite C, Ellis DJ, Christy AG, et al. Pharmaceuticals and personal care products (PPCPs) in Australia’s largest inland sewage treatment plant, and its contribution to a major Australian river during high and low flow. Sci Total Environ. 2016;541:1625–37.Article 

    Google Scholar 
    Rodea-Palomares I, Gonzalez-Pleiter M, Gonzalo S, Rosal R, Leganes F, Sabater S, et al. Hidden drivers of low-dose pharmaceutical pollutant mixtures revealed by the novel GSA-QHTS screening method. Sci Adv. 2016;2:1–12.Article 

    Google Scholar 
    Yang X, Chen F, Meng F, Xie Y, Chen H, Young K, et al. Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ Sci Pollut Res. 2013;20:5864–75.Article 

    Google Scholar 
    Cerro-Gálvez E, Dachs J, Lundin D, Fernández-Pinos MC, Sebastián M, Vila-Costa M. Responses of coastal marine microbiomes exposed to anthropogenic dissolved organic carbon. Environ Sci Technol. 2021;55:9609–21.Article 

    Google Scholar 
    Martinez-Varela A, Cerro-Gálvez E, Auladell A, Sharma S, Moran MA, Kiene RP, et al. Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. Environ Microbiol. 2021;23:4532–46.Article 

    Google Scholar 
    Bob A, Shen D, Li S, Zhang L, Rashid A, Sun Q, et al. Strong impact of micropollutants on prokaryotic communities at the horizontal but not vertical scales in a subtropical reservoir, China. Sci Total Environ. 2020;721:137767.Article 

    Google Scholar 
    Tlili A, Corcoll N, Arrhenius Å, Backhaus T, Hollender J, Creusot N, et al. Tolerance patterns in stream biofilms link complex chemical pollution to ecological impacts. Environ Sci Technol. 2020;54:10745–53.Article 

    Google Scholar 
    Chalew TEA, Halden RU. Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Resour Assoc. 2009;45:4–13.Article 

    Google Scholar 
    Zhang W, Yin K, Chen L. Bacteria-mediated bisphenol A degradation. Appl Microbiol Biotechnol. 2013;97:5681–9.Article 

    Google Scholar 
    Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998;36:2149–73.Article 

    Google Scholar 
    Choi YJ, Lee LS. Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA. Environ Sci Technol. 2017;51:13698–704.Article 

    Google Scholar 
    McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis [4]. Nature. 1998;394:531–2.Article 

    Google Scholar 
    Cabana H, Jiwan JLH, Rozenberg R, Elisashvili V, Penninckx M, Agathos SN, et al. Elimination of endocrine disrupting chemicals nonylphenol and bisphenol A and personal care product ingredient triclosan using enzyme preparation from the white rot fungus Coriolopsis polyzona. Chemosphere. 2007;67:770–8.Article 

    Google Scholar 
    Hu A, Ju F, Hou L, Li J, Yang X, Wang H, et al. Strong impact of anthropogenic contamination on the co-occurrence patterns of a riverine microbial community. Environ Microbiol. 2017;19:4993–5009.Article 

    Google Scholar 
    Boyd TJ, Smith DC, Apple JK, Hamdan LJ, Osburn CL, Montgomery MT. Evaluating PAH biodegradation relative to total bacterial carbon demand in coastal ecosystems: Are PAHs truly recalcitrant? In: Van Dijk T. (ed). Microbial Ecology Research Trends. Nova Science Publishers, 2008. pp 1–38.Okere UV, Cabrerizo A, Dachs J, Ogbonnaya UO, Jones KC, Semple KT. Effects of pre-exposure on the indigenous biodegradation of 14C-phenanthrene in Antarctic soils. Int Biodeterior Biodegrad. 2017;125:189–99.Article 

    Google Scholar 
    Coll C, Bier R, Li Z, Langenheder S, Gorokhova E, Sobek A. Association between aquatic micropollutant dissipation and river sediment bacterial communities. Environ Sci Technol. 2020;54:14380–92.Article 

    Google Scholar 
    Bender EA, Case TJ, Gilpin ME. Perturbation experiments in community ecology: Theory and practice. Ecology. 1984;65:1–13.Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:1–19.Article 

    Google Scholar 
    Buerger S, Spoering A, Gavrish E, Leslin C, Ling L, Epstein SS. Microbial scout hypothesis, stochastic exit from dormancy, and the nature of slow growers. Appl Environ Microbiol. 2012;78:3221–8.Article 

    Google Scholar 
    Lee SH, Sorensen JW, Grady KL, Tobin TC, Shade A. Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. ISME J. 2017;11:1447–59.Article 

    Google Scholar 
    Lennon JT, den Hollander F, Wilke-Berenguer M, Blath J. Principles of seed banks and the emergence of complexity from dormancy. Nat Commun. 2021;12:1–16.Article 

    Google Scholar 
    Philippot L, Griffiths BS, Langenheder S. Microbial community resilience across ecosystems and multiple disturbances. Microbiol Mol Biol Rev. 2021;85:e00026–20.Article 

    Google Scholar 
    Hu A, Li S, Zhang L, Wang H, Yang J, Luo Z, et al. Prokaryotic footprints in urban water ecosystems: a case study of urban landscape ponds in a coastal city, China. Environ Pollut. 2018;242:1729–39.Article 

    Google Scholar 
    Im J, Löffler FE. Fate of bisphenol A in terrestrial and aquatic environments. Environ Sci Technol. 2016;50:8403–16.Article 

    Google Scholar 
    Sun Q, Li M, Ma C, Chen X, Xie X, Yu CP. Seasonal and spatial variations of PPCP occurrence, removal and mass loading in three wastewater treatment plants located in different urbanization areas in Xiamen, China. Environ Pollut. 2016;208:371–81.Article 

    Google Scholar 
    Sun Q, Wang Y, Li Y, Ashfaq M, Dai L, Xie X, et al. Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China. Environ Pollut. 2017;225:542–9.Article 

    Google Scholar 
    Sun Q, Li Y, Chou PH, Peng PY, Yu CP. Transformation of bisphenol A and alkylphenols by ammonia-oxidizing bacteria through nitration. Environ Sci Technol. 2012;46:4442–8.Article 

    Google Scholar 
    Zaayman M, Siggins A, Horne D, Lowe H, Horswell J. Investigation of triclosan contamination on microbial biomass and other soil health indicators. FEMS Microbiol Lett. 2017;364:1–6.Article 

    Google Scholar 
    Xie J, Zhao N, Zhang Y, Hu H, Zhao M, Jin H. Occurrence and partitioning of bisphenol analogues, triclocarban, and triclosan in seawater and sediment from East China Sea. Chemosphere. 2022;287:132218.Article 

    Google Scholar 
    Yamazaki E, Yamashita N, Taniyasu S, Lam J, Lam PKS, Moon HB, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf. 2015;122:565–72.Article 

    Google Scholar 
    Kalyuzhny M, Shnerb NM. Dissimilarity-overlap analysis of community dynamics: opportunities and pitfalls. Methods Ecol Evol. 2017;8:1764–73.Article 

    Google Scholar 
    Wang J, Pan F, Soininen J, Heino J, Shen J. Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nat Commun. 2016;7:1–9.
    Google Scholar 
    Hildebrand F, Tito RY, Voigt AY, Bork P, Raes J. Correction to: LotuS: an efficient and user-friendly OTU processing pipeline [Microbiome, 2, (2014), 30]. Microbiome. 2014;2:1–7.Article 

    Google Scholar 
    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 

    Google Scholar 
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nat Methods. 2010;7:335–6.Article 

    Google Scholar 
    Klappenbach JA, Saxman PR, Cole JR, Schmidt TM. Rrndb: the ribosomal RNA operon copy number database. Nucleic Acids Res. 2001;29:181–4.Article 

    Google Scholar 
    Wu L, Yang Y, Chen S, Zhao M, Zhu Z, Yang S, et al. Long-term successional dynamics of microbial association networks in anaerobic digestion processes. Water Res. 2016;104:1–10.Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Chen X, Kennedy DW, Murray CJ, et al. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013;7:2069–79.Article 

    Google Scholar 
    Stegen JC, Lin X, Fredrickson JK, Konopka AE. Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol. 2015;6:1–15.Article 

    Google Scholar 
    Webb CO, Ackerly DD, Kembel SW. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics. 2008;24:2098–2100.Article 

    Google Scholar 
    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 

    Google Scholar 
    Letunic I, Bork P. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:2–5.Article 

    Google Scholar 
    Anderson MJ. Permutation tests for univariate or multivariate analysis of variance and regression. Can J Fish Aquat Sci. 2001;58:626–39.Article 

    Google Scholar 
    Oksanen AJ, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Vegan: community ecology package. Encyclopedia of Food and Agricultural Ethics. 2019; 2395–6.Bashan A, Gibson TE, Friedman J, Carey VJ, Weiss ST, Hohmann EL, et al. Universality of human microbial dynamics. Nature. 2016;534:259–62.Article 

    Google Scholar 
    Vila JCC, Liu YY, Sanchez A. Dissimilarity–overlap analysis of replicate enrichment communities. ISME J. 2020;14:2505–13.Article 

    Google Scholar 
    Ahlmann-Eltze C, Patil I. ggsignif: significance Brackets for ‘ggplot2’. R package version 0.6.1. 2021.Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    Glassman SI, Martiny JBH. Broadscale ecological patterns are robust to use of exact. mSphere. 2018;3:e00148–18.Article 

    Google Scholar 
    Lindström ES, Östman Ö. The importance of dispersal for bacterial community composition and functioning. PLoS One. 2011;6:e25883.Article 

    Google Scholar 
    Shen D, Langenheder S, Jürgens K. Dispersal modifies the diversity and composition of active bacterial communities in response to a salinity disturbance. Front Microbiol. 2018;9:2188.Article 

    Google Scholar 
    Zhou NA, Lutovsky AC, Andaker GL, Gough HL, Ferguson JF. Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegradation. 2013;24:813–27.Article 

    Google Scholar 
    Thelusmond JR, Strathmann TJ, Cupples AM. Carbamazepine, triclocarban and triclosan biodegradation and the phylotypes and functional genes associated with xenobiotic degradation in four agricultural soils. Sci Total Environ. 2019;657:1138–49.Article 

    Google Scholar 
    Danzl E, Sei K, Soda S, Ike M, Fujita M. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater. Int J Environ Res Public Health. 2009;6:1472–84.Article 

    Google Scholar 
    Zaborowska M, Wyszkowska J, Borowik A. Soil microbiome response to contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int J Mol Sci. 2020;21:3529.Article 

    Google Scholar 
    Freilich S, Zarecki R, Eilam O, Segal ES, Henry CS, Kupiec M, et al. Competitive and cooperative metabolic interactions in bacterial communities. Nat Commun. 2011;2:587–9.Article 

    Google Scholar 
    Pacheco AR, Moel M, Segrè D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat Commun. 2019;10:103.Article 

    Google Scholar 
    Oh S, Choi D, Cha C-J. Ecological processes underpinning microbial community structure during exposure to subinhibitory level of triclosan. Sci Rep. 2019;9:4598.Article 

    Google Scholar 
    Hagberg A, Gupta S, Rzhepishevska O, Fick J, Burmølle M, Ramstedt M. Do environmental pharmaceuticals affect the composition of bacterial communities in a freshwater stream? A case study of the Knivsta river in the south of Sweden. Sci Total Environ. 2021;763:142991.Article 

    Google Scholar 
    Gao H, LaVergne JM, Carpenter CMG, Desai R, Zhang X, Gray K, et al. Exploring co-occurrence patterns between organic micropollutants and bacterial community structure in a mixed-use watershed. Environ Sci Process Impacts. 2019;21:867–80.Article 

    Google Scholar 
    Wolff D, Krah D, Dötsch A, Ghattas AK, Wick A, Ternes TA. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems. Water Res. 2018;143:313–24.Article 

    Google Scholar 
    Bajić D, Vila JCC, Blount ZD, Sánchez A. On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci USA. 2018;115:11286–91.Article 

    Google Scholar 
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and Processes of Microbial Community Assembly. Microbiol Mol Biol Rev. 2013;77:342–56.Article 

    Google Scholar 
    Zhou J, Ning D. Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev. 2017;81:1–32.Article 

    Google Scholar 
    Vellend M. Conceptual synthesis in community ecology. Q Rev Biol. 2010;85:183–206.Article 

    Google Scholar 
    Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S. Dispersal timing determines the importance of priority effects in bacterial communities. ISME J. 2018;12:644–6.Article 

    Google Scholar 
    Bernstein HC. Reconciling ecological and engineering design principles for building microbiomes. mSystems. 2019;4:1–5.Article 

    Google Scholar 
    Borchert E, Hammerschmidt K, Hentschel U, Deines P. Enhancing microbial pollutant degradation by integrating eco-evolutionary principles with environmental biotechnology. Trends Microbiol. 2021;29:908–18.Article 

    Google Scholar 
    Rocca JD, Muscarella ME, Peralta AL, Izabel-Shen D, Simonin M. Guided by microbes: applying community coalescence principles for predictive microbiome engineering. mSystems. 2021;6:e00538–21.Article 

    Google Scholar 
    Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 2016;10:1147–56.Article 

    Google Scholar 
    Frost LS, Leplae R, Summers AO, Toussaint A, Edmonton A. Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol. 2005;3:722–32.Ullastres A, Merenciano M, Guio L, Gonz J. Transposable elements: a toolkit for stress and environmental adaptation in bacteria. Stress Environ Regul Gene Expr Adapt Bact. 2016;1:137–45.
    Google Scholar 
    Chang CY, Vila JCC, Bender M, Li R, Mankowski MC, Bassette M, et al. Engineering complex communities by directed evolution. Nat Ecol Evol. 2021;5:1011–23.Article 

    Google Scholar  More

  • in

    Pingers are effective in reducing net entanglement of river dolphins

    Lal Mohan, R. S., Dey, S. C., Bairagi, S. P. & Roy, S. On a survey of the Ganges River dolphin Platanista gangetica of Bramaputra River, Assam. J. Bombay Nat. Hist. Soc. 94, 483–495 (1997).
    Google Scholar 
    Sinha, R.K., et al. Status and distribution of the Ganges susu (Platanista gangetica) in Ganges River system of India and Nepal in Biology and conservation of freshwater cetaceans in Asia (eds. Reeves, R. R., Smith, B. D. & Kasuya, T). 42–48 (Switzerland: Occasional Paper of the IUCN Species Survival Commission, 2000)Sinha, R. K. & Kannan, K. Ganges River dolphin: an overview of biology, ecology, and conservation status in India. Ambio. 43,1029–1046 (2014).
    Google Scholar 
    Anderson, J. Anatomical and Zoological Researches: Comprising an Account of the Zoological Results of the Two Expeditions to Western Yunnan in 1868 and 1875; and A Monograph of the Two Cetacean Genera, Platanista and Orcella-Vol. 1 (Text). Vol. 1 (Bernard Quaritch, 1878).Herald, E. S. et al. Blind river dolphin: first side-swimming cetacean. Science 166, 1408–1410 (1969).ADS 
    CAS 

    Google Scholar 
    Herald, E. S. Field and aquarium study of the blind River Dolphin (Platanista Gangetica) (California Academy of Sciences San Fransico Steinhart Aquarium, 1969).Pilleri, G., Zbinden, K., Gihr, M. & Kraus, C. Sonar clicks, directionality of the emission field and echolocating behaviour of the Indus dolphin (Platanista indi, Blyth, 1859). Invest. Cetacea Brain Anat. Inst. Berne Switzerl. 13–43 (1976).Jensen, F. H. et al. Clicking in shallow rivers: short-range echolocation of Irrawaddy and Ganges river dolphins in a shallow, acoustically complex habitat. PLoS ONE 8, e59284 (2013).ADS 
    CAS 

    Google Scholar 
    Pence, E.A. Monofilament gill net acoustic study. (National Mammal Laboratory, Contract 40-ABNF-5-1988,1986)Jefferson, T. A., Würsig, B. & Fertl, D. Cetacean Detection and Responses to Fishing Gear in Marine Mammal Sensory Systems (eds. Thomas, J.A., Kastelein, R.A. & Supin, A.Y.) 663–684 (Springer, 1992)
    Google Scholar 
    Mansur, E. F., Smith, B. D., Mowgli, R. M. & Diyan, M. A. A. Two incidents of fishing gear entanglement of Ganges River dolphins (Platanista gangetica gangetica) in waterways of the Sundarbans mangrove forest, Bangladesh. Aquat. Mamm. 34, 362 (2008).
    Google Scholar 
    Sinha, R. K. An alternative to dolphin oil as a fish attractant in the Ganges River system: conservation of the Ganges River dolphin.
    Biol. Conserv. 107, 253–257 https://doi.org/10.1016/S0006-3207(02)00058-7 (2002).Article 

    Google Scholar 
    Qureshi, Q. et al. Development of conservation action plan for river dolphin. 228 (Wildlife Institute of India, Dehradun, Uttarakhand, 2018).Kolipakam, V. et al. Evidence for the continued use of river dolphin oil for bait fishing and traditional medicine: implications for conservation. Heliyon 6, e04690 (2020).
    Google Scholar 
    Wakid, A. Initiative to reduce the fishing pressures in and around identified habitats of endangered Gangetic dolphin in Brahmaputra River system. (Assam, 2010).Braulik, G.T. & Smith, B.D. Platanista gangetica (amended version of 2017
    assessment). The IUCN Red List of Threatened Species, e.T41758A151913336. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41758A151913336.en (2019).Dawson, S. M., Northridge, S., Waples, D. & Read, A. J. To ping or not to ping: the use of active acoustic devices in mitigating interactions between small cetaceans and gillnet fisheries. Endanger. Species Res. 19, 201–221 (2013)
    Google Scholar 
    Reeves, R. R., McClellan, K. & Werner, T. B. Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. Endanger. Species Res. 20, 71–97 (2013).
    Google Scholar 
    Moore, M. J. et al. Fatally entangled right whales can die extremely slowly in OCEANS 2006. 1–3 (IEEE, 2006).Meÿer, M.A. et al. Trends and interventions in large whale entanglement along the South African coast. Afr. J. Mar. Sci. 33, 429–439 (2011).
    Google Scholar 
    Knowlton, A. R., Hamilton, P. K., Marx, M. K., Pettis, H. M. & Kraus, S. D. Monitoring North Atlantic right whale Eubalaena glacialis entanglement rates: a 30 year retrospective. Mar. Ecol. Prog. Ser. 466, 293–302 (2012).ADS 

    Google Scholar 
    Knowlton, A. R. et al. Effects of fishing rope strength on the severity of large whale entanglements. Conserv. Biol. 30, 318–328 (2016).
    Google Scholar 
    Pace, R. M. III., Cole, T. V. & Henry, A. G. Incremental fishing gear modifications fail to significantly reduce large whale serious injury rates. Endanger. Species Res. 26, 115–126 (2014).
    Google Scholar 
    Salvador, G., Kenney, J. & Higgins, J. 2008 Supplement to the Large whale gear research summary. NOAA/Fisheries Northeast Regional Office, Protected Resources Division, Gloucester, MA (2008).van der Hoop, J. M. et al. Assessment of management to mitigate anthropogenic effects on large whales. Conserv. Biol. 27, 121–133 (2013).
    Google Scholar 
    Hamilton, S. & Baker, G. B. Technical mitigation to reduce marine mammal bycatch and entanglement in commercial fishing gear: lessons learnt and future directions. Rev. Fish Biol. Fish. 29, 223–247 (2019).
    Google Scholar 
    Bordino, P., Mackay, A. I., Werner, T. B., Northridge, S. & Read, A. Franciscana bycatch is not reduced by acoustically reflective or physically stiffened gillnets. Endanger. Species Res. 21, 1–12 (2013).
    Google Scholar 
    Dawson, S. M. Incidental catch of Hector’s dolphin in inshore gillnets. Mar. Mamm. Sci. 7, 283–295 (1991).
    Google Scholar 
    Mooney, T. A., Nachtigall, P. E. & Au, W. W. Target strength of a nylon monofilament and an acoustically enhanced gillnet: predictions of biosonar detection ranges. Aquat. Mamm. 30, 220–226 (2004).
    Google Scholar 
    Northridge, S., Sanderson, D., Mackay, A. & Hammond, P. Analysis and mitigation of cetacean bycatch in UK fisheries. Final Report
    to DEFRA, Project MF0726, Sea Mammal Research Unit, School of Biology, University of St. Andrews (2003).Mangel, J. C. et al. Illuminating gillnets to save seabirds and the potential for multi-taxa bycatch mitigation. R. Soc. Open Sci. 5, 180254 (2018).ADS 

    Google Scholar 
    Stephenson, P. C. & Wells, S. Evaluation of the effectiveness of reducing dolphin catches with pingers and exclusion grids in the Pilbara trawl fishery. (Department of Fisheries, Western Australia, 2006).Santana-Garcon, J. et al. Risk versus reward: Interactions, depredation rates, and bycatch mitigation of dolphins in demersal fish trawls. Can. J. Fish. Aquat. Sci. 75, 2233–2240 (2018).
    Google Scholar 
    Carretta, J., Barlow, J. & Enriquez, L. Acoustic pingers eliminate beaked whale bycatch in a gill net fishery. Mar. Mamm. Sci. 24, 956–961 (2008).
    Google Scholar 
    Bordino, P. et al. Reducing incidental mortality of Franciscana dolphin Pontoporia blainvillei with acoustic warning devices attached to fishing nets. Mar. Mamm. Sci. 18, 833–842 (2002).
    Google Scholar 
    Khan, U. & Willems, D. Report of the Trinational workshop on the Irrawaddy Dolphin, 1st to 4th December 2020. 41 (WWF, Pakistan & Netherlands, 2021).Deori, S. et al. PINGERS: can be the eyes of blind ganges dolphins (Platanista Gangetica Gangetica, Roxburgh 1801). J. Sci. Trans. Environ. Technov. 11, 169–178 (2018).
    Google Scholar 
    Kraus, S. D. The once and future ping: challenges for the use of acoustic deterrents in fisheries. Mar. Technol. Soc. J. 33, 90 (1999).
    Google Scholar 
    Mate, B. R. & Harvey, J. T. Acoustical deterrents in marine mammal conflicts with fisheries. a workshop held February 17–18, 1986 at Newport, Oregon. NTIS, SPRINGFIELD, VA(USA) (1987).Favaro, L., Gnone, G. & Pessani, D. Postnatal development of echolocation abilities in a bottlenose dolphin (Tursiops truncatus): Temporal organization. Zoo Biol. 32, 210–215 (2013).
    Google Scholar 
    Dey, M., Krishnaswamy, J., Morisaka, T. & Kelkar, N. Interacting effects of vessel noise and shallow river depth elevate metabolic stress in Ganges river dolphins. Sci. Rep. 9, 15426. https://doi.org/10.1038/s41598-019-51664-1 (2019).ADS 

    Google Scholar 
    Kastelein, R. A. et al. Effects of acoustic alarms, designed to reduce small cetacean bycatch in gillnet fisheries, on the behaviour of North Sea fish species in a large tank. Mar. Environ. Res. 64, 160–180 (2007).CAS 

    Google Scholar 
    Kraus, S. et al. Acoustic alarms reduce porpoise mortality. Nature 388, 525 (1997).ADS 
    CAS 

    Google Scholar 
    Roberts, B. L. & Read, A. J. Field assessment of C-POD performance in detecting echolocation click trains of bottlenose dolphins (Tursiops truncatus). Mar. Mamm. Sci. 31, 169–190 (2015).
    Google Scholar 
    Wickham, H. ggplot2: elegant graphics for data analysis. (Springer-Verlag, New York, 2009).RStudio Team. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/ (2021).Crawley, M. J. Statistics: An Introduction using R (Wiley, 2005).MATH 

    Google Scholar 
    Perrin, W. F., Donovan, G.P. & Barlow, J. Report of the workshop on mortality of cetaceans in passive fishing nets and traps. Rep. Int. Whal. Commn. 1–71 (Cambridge: IWC, 1994).Read, A. J., Drinker, P. & Northridge, S. Bycatch of marine mammals in US and global fisheries. Conserv. Biol. 20, 163–169 (2006).
    Google Scholar 
    Reeves, R. & Leatherwood, S. Action plan for the conservation of cetaceans: dolphins, porpoises, and whales. IUCN/SSC Cetacean Specialist Group (IUCN Cambridge, 1998).Smith, B. D. & Braulik, G. Susu and Bhulan : Platanista gangetica gangetica and P. g. minor in Encyclopedia of Marine Mammals. 1135–1139 (Academic Press Ltd – Elsevier Science Ltd, 2009).Wakid, A. Status and distribution of the endangered Gangetic dolphin (Platanista gangetica gangetica) in the Brahmaputra River within India in 2005. Curr. Sci., 97, 1143–1151 (2009).
    Google Scholar 
    D’agrosa, C., Lennert-Cody, C. E. & Vidal, O. Vaquita bycatch in Mexico’s artisanal gillnet fisheries: driving a small population to extinction. Conserv. Biol. 14, 1110–1119 (2000).
    Google Scholar 
    Jaramillo-Legorreta, A. et al. Saving the vaquita: immediate action, not more data. Conserv. Biol., 21, 1653–1655 (2007).
    Google Scholar 
    Turvey, S. T. et al. First human-caused extinction of a cetacean species?. Biol. Lett. 3, 537–540 (2007).
    Google Scholar 
    Bashir, T., Khan, A., Gautam, P. & Behera, S. K. Abundance and prey availability assessment of Ganges River dolphin (Platanista gangetica gangetica) in a stretch of Upper Ganges River, India. Aquat. Mamm. 36, 19–26 (2010).
    Google Scholar 
    Braulik, G.T. & Smith, B.D. Platanista gangetica. The IUCN Red List of Threatened Species, e.T41758A50383612. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41758A50383612.en (2017).Hastie, G. D., Wilson, B., Wilson, L., Parsons, K. M. & Thompson, P. M. Functional mechanisms underlying cetacean distribution patterns: hotspots for bottlenose dolphins are linked to foraging. Mar. Biol. 144, 397–403 (2004).
    Google Scholar 
    Smith, A. M. & Smith, B. D. Review of status and threats to river cetaceans and recommendations for their conservation. Environ. Rev. 6, 189–206 (1998).
    Google Scholar 
    Wedekin, L., Daura-Jorge, F., Piacentini, V. & Simões-Lopes, P. Seasonal variations in spatial usage by the estuarine dolphin, Sotalia guianensis (van Bénéden, 1864)(Cetacea; Delphinidae) at its southern limit of distribution. Brazil. J. Biol. 67, 1–8 (2007).CAS 

    Google Scholar 
    Omeyer, L. et al. Assessing the effects of banana pingers as a bycatch mitigation device for harbour porpoises (Phocoena phocoena). Front. Mar. Sci. 285 (2020).Barlow, J. & Cameron, G. A. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gill net fishery. Mar. Mamm. Sci. 19, 265–283 (2003).
    Google Scholar 
    Amano, M., Kusumoto, M., Abe, M. & Akamatsu, T. Long-term effectiveness of pingers on a small population of finless porpoises in Japan. Endanger. Species Res. 32, 35–40 (2017).
    Google Scholar 
    Clay, T. A., Alfaro-Shigueto, J., Godley, B. J., Tregenza, N. & Mangel, J. C. Pingers reduce the activity of Burmeister’s porpoise around small-scale gillnet vessels. Mar. Ecol. Prog. Ser. 626, 197–208 (2019).ADS 

    Google Scholar 
    Kyhn, L. A. et al. Pingers cause temporary habitat displacement in the harbour porpoise Phocoena phocoena. Mar. Ecol. Prog. Ser. 526, 253–265 (2015).ADS 

    Google Scholar 
    Sugimatsu, H. et al. Study of acoustic characteristics of Ganges river dolphin calf using echolocation clicks recorded during long-term in-situ observation in 2012 OCEANS. 1–7 (IEEE, 2012).Ayadi, A., Ghorbel, M. & Bradai, M. N. Do pingers reduce interactions between bottlenose dolphins and trammel nets around the Kerkennah Islands (Central Mediterranean Sea)?. Cahiers Biol. Mar. 54, 375–383 (2013).
    Google Scholar 
    Carretta, J. V. & Barlow, J. Long-term effectiveness, failure rates, and “dinner bell” properties of acoustic pingers in a gillnet fishery. Mar. Technol. Soc. J. 45, 7–19 (2011).
    Google Scholar 
    Read, A. J., Waples, D. M., Urian, K. W. & Swanner, D. Fine-scale behaviour of bottlenose dolphins around gillnets. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, S90–S92 (2003).
    Google Scholar 
    Olesiuk, P. F., Nichol, L. M., Sowden, M. J. & Ford, J. K. Effect of the sound generated by an acoustic harassment device on the relative abundance and distribution of harbor porpoises (Phocoena phocoena) in Retreat Passage, British Columbia. Mar. Mamm. Sci. 18, 843–862 (2002).
    Google Scholar 
    Cox, T. M., Read, A. J., Solow, A. & Tregenza, N. Will harbour porpoises (Phocoena phocoena) habituate to pingers?. J. Cetacean Res. Manag. 3, 81–86 (2001).
    Google Scholar 
    Bruno, C. A. et al. Acoustic deterrent devices as mitigation tool to prevent dolphin-fishery interactions in the Aeolian Archipelago (Southern Tyrrhenian Sea, Italy). Mediterr. Mar. Sci. 22, 408–421 (2021).
    Google Scholar 
    Enger, P. S. Frequency discrimination in teleosts—central or peripheral in Hearing and sound communication in fishes (eds. Tavolga, W. N. et al.) 243–255 (Springer-Verlag, New York, 1981).
    Google Scholar 
    Halvorsen, M. B., Casper, B. M., Matthews, F., Carlson, T. J. & Popper, A. N. Effects of exposure to pile-driving sounds on the lake sturgeon, Nile tilapia and hogchoker. Proc. R. Soc. B Biol. Sci. 279, 4705–4714 (2012).
    Google Scholar 
    Ladich, F. Sound communication in fishes and the influence of ambient and anthropogenic noise. Bioacoustics 17, 34–38 (2008).
    Google Scholar 
    McCauley, R. D., Fewtrell, J. & Popper, A. N. High intensity anthropogenic sound damages fish ears. J. Acoust. Soc. Am. 113, 638–642 (2003).ADS 

    Google Scholar 
    Slabbekoorn, H. et al. A noisy spring: the impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).
    Google Scholar 
    Gazo, M., Gonzalvo, J. & Aguilar, A. Pingers as deterrents of bottlenose dolphins interacting with trammel nets. Fish. Res. 92, 70–75 (2008).
    Google Scholar 
    Waples, D. M. et al. A field test of acoustic deterrent devices used to reduce interactions between bottlenose dolphins and a coastal gillnet fishery. Biol. Conserv. 157, 163–171 (2013).
    Google Scholar 
    Leaper, R. & Calderan, S. Review of methods used to reduce risks of cetacean bycatch and entanglements. CMS Tech. Ser. 38 (UNEP/CMS Secretariat, Bonn, Germany, 2018). More