More stories

  • in

    John Macfarlane was the first to recognize Eukaryota as a group

    Woese, C. R., Kandler, O. & Wheelis, M. L. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).CAS 
    Article 

    Google Scholar 
    Sapp, J. Microbiol. Mol. Biol. Rev. 69, 292–305 (2005).CAS 
    Article 

    Google Scholar 
    Chatton, É. Ann. Sci. Nat. Zool. 8, 1–84 (1925).
    Google Scholar 
    Soyer-Gobillard, M.-O. & Schrevel, J. The Discoveries and Artistic Talents of Édouard Chatton and André Lwoff, Famous Biologists (Cambridge Scholars Publishing, 2020).Macfarlane, J. M. The Causes and Course of Organic Evolution: A Study in Bioenergics (Macmillan, 1918).Haeckel, E. Systematische Phylogenie. Erster Theil (Verlag von Georg Reimer, 1894).Stanier, R. Y., Douderoff, M. & Adelberg, E. The Microbial World 2nd edn (Prentice Hall, 1963).Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Nat. Ecol. Evol. 4, 138–147 (2020).Article 

    Google Scholar 
    Steckbeck, W. Science 98, 487–488 (1943).CAS 
    Article 

    Google Scholar 
    Creese, M. R. S. & Creese, T. M. Ladies in the Laboratory III (Scarecrow Press, 2010). More

  • in

    Cover crop-driven shifts in soil microbial communities could modulate early tomato biomass via plant-soil feedbacks

    Mariotte, P. et al. Plant–soil feedback: Bridging natural and agricultural sciences. Trends Ecol. Evol. 33, 129–142 (2018).PubMed 
    Article 

    Google Scholar 
    Daryanto, S., Fu, B., Wang, L., Jacinthe, P. A. & Zhao, W. Quantitative synthesis on the ecosystem services of cover crops. Earth-Sci. Rev. 185, 357–373 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Shackelford, G. E., Kelsey, R. & Dicks, L. V. Effects of cover crops on multiple ecosystem services: Ten meta-analyses of data from arable farmland in California and the Mediterranean. Land Use Policy 88, 104204 (2019).Article 

    Google Scholar 
    McDaniel, M. D., Tiemann, L. K. & Grandy, A. S. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis. Ecol. Appl. 24, 560–570 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wittwer, R. A., Dorn, B., Jossi, W. & van der Heijden, M. G. A. A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 7, 41911 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chahal, I. & Van Eerd, L. L. Cover crops increase tomato productivity and reduce nitrogen losses in a temperate humid climate. Nutr. Cycl. Agroecosyst. 119, 195–211 (2021).CAS 
    Article 

    Google Scholar 
    Belfry, K. D., Trueman, C., Vyn, R. J., Loewen, S. A. & Van Eerd, L. L. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins. PLoS ONE 12, 1–17 (2017).Article 
    CAS 

    Google Scholar 
    Wall, L. G. et al. Changes of paradigms in agriculture soil microbiology and new challenges in microbial ecology. Acta Oecologica 95, 68–73 (2019).ADS 
    Article 

    Google Scholar 
    Schmidt, R., Gravuer, K., Bossange, A. V., Mitchell, J. & Scow, K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE 13, 1–19 (2018).
    Google Scholar 
    Schmidt, R., Mitchell, J. & Scow, K. Cover cropping and no-till increase diversity and symbiotroph:saprotroph ratios of soil fungal communities. Soil Biol. Biochem. 129, 99–109 (2019).CAS 
    Article 

    Google Scholar 
    Ali, A. et al. Hiseq base molecular characterization of soil microbial community, diversity structure, and predictive functional profiling in continuous cucumber planted soil affected by diverse cropping systems in an intensive greenhouse region of Northern China. Int. J. Mol. Sci. 20, 2619 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Kim, N., Zabaloy, M. C., Guan, K. & Villamil, M. B. Do cover crops benefit soil microbiome? A meta-analysis of current research. Soil Biol. Biochem. 142, 107701 (2020).CAS 
    Article 

    Google Scholar 
    Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. 36, 1–14 (2016).CAS 
    Article 

    Google Scholar 
    Nevins, C. J., Nakatsu, C. & Armstrong, S. Characterization of microbial community response to cover crop residue decomposition. Soil Biol. Biochem. 127, 39–49 (2018).CAS 
    Article 

    Google Scholar 
    Peralta, A. L., Sun, Y., McDaniel, M. D. & Lennon, J. T. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 9, e02235 (2018).Article 

    Google Scholar 
    Cloutier, M. L. et al. Fungal community shifts in soils with varied cover crop treatments and edaphic properties. Sci. Rep. 10, 1–15 (2020).Article 
    CAS 

    Google Scholar 
    Finney, D. M., Buyer, J. S. & Kaye, J. P. Living cover crops have immediate impacts on soil microbial community structure and function. J. Soil Water Conserv. 72, 361–373 (2017).Article 

    Google Scholar 
    Calderón, F. J., Nielsen, D., Acosta-Martínez, V., Vigil, M. F. & Lyon, D. Cover crop and irrigation effects on soil microbial communities and enzymes in semiarid agroecosystems of the central great plains of North America. Pedosphere 26, 192–205 (2016).Article 
    CAS 

    Google Scholar 
    Romdhane, S. et al. Cover crop management practices rather than composition of cover crop mixtures affect bacterial communities in no-till agroecosystems. Front. Microbiol. 10, 1–11 (2019).Article 

    Google Scholar 
    Blanco-Canqui, H. & Lal, R. Crop residue removal impacts on soil productivity and environmental quality. CRC. Crit. Rev. Plant Sci. 28, 139–163 (2009).CAS 
    Article 

    Google Scholar 
    Turmel, M. S., Speratti, A., Baudron, F., Verhulst, N. & Govaerts, B. Crop residue management and soil health: A systems analysis. Agric. Syst. 134, 6–16 (2015).Article 

    Google Scholar 
    Yang, Q., Wang, X. & Shen, Y. Comparison of soil microbial community catabolic diversity between rhizosphere and bulk soil induced by tillage or residue retention. J. Soil Sci. Plant Nutr. https://doi.org/10.4067/S0718-95162013005000017 (2013).Article 

    Google Scholar 
    Tang, H. et al. Tillage and crop residue incorporation effects on soil bacterial diversity in the double-cropping paddy field of southern China. Arch. Agron. Soil Sci. 67, 435–446 (2021).CAS 
    Article 

    Google Scholar 
    Zhang, Y. et al. Long-term harvest residue retention could decrease soil bacterial diversities probably due to favouring oligotrophic lineages. Microb. Ecol. 76, 771–781 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, C. et al. Straw retention efficiently improves fungal communities and functions in the fallow ecosystem. BMC Microbiol. 21, 52 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chahal, I. & Van Eerd, L. L. Cover crop and crop residue removal effects on temporal dynamics of soil carbon and nitrogen in a temperate, humid climate. PLoS ONE 15, e0235665 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chahal, I. & Van Eerd, L. L. Evaluation of commercial soil health tests using a medium-term cover crop experiment in a humid, temperate climate. Plant Soil 427, 351–367 (2018).CAS 
    Article 

    Google Scholar 
    Ruis, S. J. & Blanco-Canqui, H. Cover crops could offset crop residue removal effects on soil carbon and other properties: A review. Agron. J. 109, 1785–1805 (2017).CAS 
    Article 

    Google Scholar 
    Zhao, M. et al. Intercropping affects genetic potential for inorganic nitrogen cycling by root-associated microorganisms in Medicago sativa and Dactylis glomerata. Appl. Soil Ecol. 119, 260–266 (2017).ADS 
    Article 

    Google Scholar 
    Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science (80-). 304, 1629–1633 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Xiong, C. et al. Host selection shapes crop microbiome assembly and network complexity. New Phytol. 229, 1091–1104 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    McDaniel, M. D., Grandy, A. S., Tiemann, L. K. & Weintraub, M. N. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil. Ecosphere 7, e01426 (2016).Article 

    Google Scholar 
    Buyer, J. S., Teasdale, J. R., Roberts, D. P., Zasada, I. A. & Maul, J. E. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biol. Biochem. 42, 831–841 (2010).CAS 
    Article 

    Google Scholar 
    Fernandez-Gnecco, G. et al. Microbial community analysis of soils under different soybean cropping regimes in the Argentinean south-eastern Humid Pampas. FEMS Microbiol. Ecol. 97, 1–14 (2021).Article 
    CAS 

    Google Scholar 
    Semenov, M. V., Krasnov, G. S., Semenov, V. M. & van Bruggen, A. H. C. Long-term fertilization rather than plant species shapes rhizosphere and bulk soil prokaryotic communities in agroecosystems. Appl. Soil Ecol. 154, 103641 (2020).Article 

    Google Scholar 
    White, C. M. & Weil, R. R. Forage radish cover crops increase soil test phosphorus surrounding radish taproot holes. Soil Sci. Soc. Am. J. 75, 121–130 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Schulz, M., Marocco, A., Tabaglio, V., Macias, F. A. & Molinillo, J. M. G. Benzoxazinoids in rye allelopathy—From discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 39, 154–174 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1020 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Thapa, V. R., Ghimire, R., Acosta-Martínez, V., Marsalis, M. A. & Schipanski, M. E. Cover crop biomass and species composition affect soil microbial community structure and enzyme activities in semiarid cropping systems. Appl. Soil Ecol. 157, 103735 (2021).Article 

    Google Scholar 
    Drost, S. M., Rutgers, M., Wouterse, M., de Boer, W. & Bodelier, P. L. E. Decomposition of mixtures of cover crop residues increases microbial functional diversity. Geoderma 361, 114060 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Di Rauso Simeone, G., Müller, M., Felgentreu, C. & Glaser, B. Soil microbial biomass and community composition as affected by cover crop diversity in a short-term field experiment on a podzolized Stagnosol-Cambisol. J. Plant Nutr. Soil Sci. 183, 539–549 (2020).Article 
    CAS 

    Google Scholar 
    Maul, J. E. et al. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops. Appl. Soil Ecol. 77, 42–50 (2014).Article 

    Google Scholar 
    Huang, J. et al. Allocation and turnover of rhizodeposited carbon in different soil microbial groups. Soil Biol. Biochem. 150, 107973 (2020).CAS 
    Article 

    Google Scholar 
    Strickland, M. S. & Rousk, J. Considering fungal:bacterial dominance in soils—Methods, controls, and ecosystem implications. Soil Biol. Biochem. 42, 1385–1395 (2010).CAS 
    Article 

    Google Scholar 
    Leff, J. W. et al. Predicting the structure of soil communities from plant community taxonomy, phylogeny, and traits. ISME J. 12, 1794–1805 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milcu, A. et al. Functionally and phylogenetically diverse plant communities key to soil biota. Ecology 94, 1878–1885 (2013).PubMed 
    Article 

    Google Scholar 
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. 73, 1576–1585 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lay, C.-Y., Hamel, C. & St-Arnaud, M. Taxonomy and pathogenicity of Olpidium brassicae and its allied species. Fungal Biol. 122, 837–846 (2018).PubMed 
    Article 

    Google Scholar 
    Liu, L., Zhu, K., Wurzburger, N. & Zhang, J. Relationships between plant diversity and soil microbial diversity vary across taxonomic groups and spatial scales. Ecosphere 11, e02999 (2020).
    Google Scholar 
    Hartwright, L. M., Hunter, P. J. & Walsh, J. A. A comparison of Olpidium isolates from a range of host plants using internal transcribed spacer sequence analysis and host range studies. Fungal Biol. 114, 26–33 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barel, J. M. et al. Winter cover crop legacy effects on litter decomposition act through litter quality and microbial community changes. J. Appl. Ecol. 56, 132–143 (2019).CAS 
    Article 

    Google Scholar 
    Austin, E. E., Wickings, K., McDaniel, M. D., Robertson, G. P. & Grandy, A. S. Cover crop root contributions to soil carbon in a no-till corn bioenergy cropping system. GCB Bioenergy 9, 1252–1263 (2017).CAS 
    Article 

    Google Scholar 
    Bai, Z., Liang, C., Bodé, S., Huygens, D. & Boeckx, P. Phospholipid 13C stable isotopic probing during decomposition of wheat residues. Appl. Soil Ecol. 98, 65–74 (2016).Article 

    Google Scholar 
    Põlme, S. et al. FungalTraits: A user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Pepe, A., Giovannetti, M. & Sbrana, C. Lifespan and functionality of mycorrhizal fungal mycelium are uncoupled from host plant lifespan. Sci. Rep. 8, 1–10 (2018).
    Google Scholar 
    Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).Article 

    Google Scholar 
    Saleem, M., Hu, J. & Jousset, A. More than the sum of its parts: Microbiome biodiversity as a driver of plant growth and soil health. Annu. Rev. Ecol. Evol. Syst. 50, 145–168 (2019).Article 

    Google Scholar 
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 1–12 (2019).
    Google Scholar 
    Ozimek, E. & Hanaka, A. Mortierella species as the plant growth-promoting fungi present in the agricultural soils. Agriculture 11, 7 (2020).Article 
    CAS 

    Google Scholar 
    Li, F. et al. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil. L. Degrad. Dev. 29, 1642–1651 (2018).Article 

    Google Scholar 
    Sansinenea, E. Bacillus spp.: As plant growth-promoting bacteria. in Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms: Discovery and Applications 225–237 (Springer, 2019). https://doi.org/10.1007/978-981-13-5862-3_11.Palaniyandi, S. A., Yang, S. H., Zhang, L. & Suh, J.-W. Effects of actinobacteria on plant disease suppression and growth promotion. Appl. Microbiol. Biotechnol. 97, 9621–9636 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jung, M.-Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhong, Y. et al. Microbial community assembly and metabolic function during wheat straw decomposition under different nitrogen fertilization treatments. Biol. Fertil. Soils 56, 697–710 (2020).CAS 
    Article 

    Google Scholar 
    Liu, X. et al. Decomposing cover crops modify root-associated microbiome composition and disease tolerance of cash crop seedlings. Soil Biol. Biochem. 160, 108343 (2021).CAS 
    Article 

    Google Scholar 
    Larkin, R. P., Griffin, T. S. & Honeycutt, C. W. Rotation and cover crop effects on soilborne potato diseases, tuber yield, and soil microbial communities. Plant Dis. 94, 1491–1502 (2010).PubMed 
    Article 

    Google Scholar 
    van der Putten, W. H., Bradford, M. A., Brinkman, E. P., van de Voorde, T. F. J. & Veen, G. F. Where, when and how plant–soil feedback matters in a changing world. Funct. Ecol. 30, 1109–1121 (2016).Article 

    Google Scholar 
    Menalled, U. D., Seipel, T. & Menalled, F. D. Farming system effects on biologically mediated plant–soil feedbacks. Renew. Agric. Food Syst. 36, 1–7 (2021).Article 

    Google Scholar 
    Fierer, N. & Jackson, J. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl. Environ. Microbiol. 71, 4117 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vainio, E. J. & Hantula, J. Direct analysis of wood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104, 927–936 (2000).CAS 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990).

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: Software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7, 1418 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—Approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Abarenkov, K. et al. UNITE QIIME release for Fungi. https://doi.org/10.15156/bio/786385 (2020).R Core Team. R: A Language and Environment for Statistical Computing. (2020).Oksanen, J. et al. vegan: Community Ecology Package. (2020).Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. (PRIMER-E, 2008).Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).Article 

    Google Scholar 
    Cáceres, M. D. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 
    Article 

    Google Scholar 
    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Population density mediates induced immune response, but not physiological condition in a well-adapted urban bird

    Marzluff, J. M. Worldwide urbanization and its effects on birds. In Avian Ecology and Conservation in an Urbanizing World (eds Marzluff, J. et al.) 19–47 (Springer, Boston, 2001).Chapter 

    Google Scholar 
    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    Luniak, M. Synurbization–adaptation of animal wildlife to urban development in Proceedings 4th international urban wildlife symposium (eds. Shaw, W., Harris, L.,Vandruff, L.) 50–55 (University of Arizona, Tucson, ARI, 2004).Isaksson, C. Impact of urbanization on birds in Bird Species how they arise, modify and vanish (ed. Tietze D. T.) 235–257 (Springer, 2018).Minias, P. Successful colonization of a novel urban environment is associated with an urban behavioural syndrome in a reed-nesting waterbird. Ethology 121, 1178–1190 (2015).Article 

    Google Scholar 
    Møller, A. P. et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 26, 861–865 (2015).Article 

    Google Scholar 
    Jokimäki, J. & Suhonen, J. Distribution and habitat selection of wintering birds in urban environments. Landsc. Urban Plan. 39, 253–263 (1998).Article 

    Google Scholar 
    Francis, R. A. & Chadwick, M. A. What makes a species synurbic?. Appl. Geogr. 32, 514–521 (2012).Article 

    Google Scholar 
    Møller, A. P. et al. High urban population density of birds reflects their timing of urbanization. Oecologia 170, 867–875 (2012).PubMed 
    Article 
    ADS 

    Google Scholar 
    Tella, J. L. et al. Offspring body condition and immunocompetence are negatively affected by high breeding densities in a colonial seabird: A multiscale approach. Proc. R. Soc. B 268, 1455–1461 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savoca, M. S., Bonter, D. N., Zuckerberg, B., Dickinson, J. L. & Ellis, J. C. Nesting density is an important factor affecting chick growth and survival in the Herring Gull. Condor 113, 565–571 (2011).Article 

    Google Scholar 
    Minias, P., Włodarczyk, R. & Janiszewski, T. Opposing selective pressures may act on the colony size in a waterbird species. Evol. Ecol. 29, 283–297 (2015).Article 

    Google Scholar 
    Kamiński, M. et al. Density-dependence of nestling immune function and physiological condition in semi-precocial colonial bird: A cross-fostering experiment. Front. Zool. 18, 7 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ward, P. & Zahavi, A. The importance of certain assemblages of birds as “information-centres” for food-finding. Ibis 115, 517–534 (1973).Article 

    Google Scholar 
    Danchin, E. & Wagner, R. H. The evolution of coloniality: The emergence of new perspectives. Trends Ecol. Evol. 12, 342–347 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Coloniality in the Cliff Swallow: The Effect of Group Size on Social Behavior (University of Chicago Press, 1996).
    Google Scholar 
    Evans, J. C., Votier, S. C. & Dall, S. R. Information use in colonial living. Biol. Rev. 91, 658–672 (2016).PubMed 
    Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Avian coloniality. In Current Ornithology (eds Brown, C. R. & Brown, M. B.) 1–82 (Springer, Boston, 2001).
    Google Scholar 
    Coulson, J. C., Duncan, N. & Thomas, C. Changes in the breeding biology of the herring gull (Larus argentatus) induced by reduction in the size and density of the colony. J. Anim. Ecol. 51, 739–756 (1982).Article 

    Google Scholar 
    Ots, I. & Horak, P. Great tits Parus major trade health for reproduction. Proc. R. Soc. B. 263, 1443–1447 (1996).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Richner, H. & Tripet, F. Ectoparasitism and the trade-off between current and future reproduction. Oikos 86, 535–538 (1999).Article 

    Google Scholar 
    Fokkema, R. W., Ubels, R. & Tinbergen, J. M. Great tits trade off future competitive advantage for current reproduction. Behav. Ecol. 27, 1656–1664 (2016).
    Google Scholar 
    Horak, P. & Leberton, J. D. Survival of adult Great Tits Parus major in relation to sex and habitat; a comparison of urban and rural populations. Ibis 140, 205–209 (1998).Article 

    Google Scholar 
    Stracey, C. M. & Robinson, S. K. Are urban habitats ecological traps for a native songbird? Season-long productivity, apparent survival, and site fidelity in urban and rural habitats. J. Avian Biol. 43, 50–60 (2012).Article 

    Google Scholar 
    Sepp, T., McGraw, K. J., Kaasik, A. & Giraudeau, M. A review of urban impacts on avian life-history evolution: Does city living lead to slower pace of life?. Glob. Change Biol. 24, 1452–1469 (2018).Article 
    ADS 

    Google Scholar 
    Phillips, J. N., Gentry, K. E., Luther, D. A. & Derryberry, E. P. Surviving in the city: Higher apparent survival for urban birds but worse condition on noisy territories. Ecosphere 9, e02440 (2018).Article 

    Google Scholar 
    Johnston, R. F. & Janiga, M. Feral Pigeons (Oxford University Press on Demand, 1995).
    Google Scholar 
    Giunchi, D., Mucci, N., Bigi, D., Mengoni, C. & Baldaccini, N. E. Feral pigeon populations: Their gene pool and links with local domestic breeds. Zoology 142, 125817 (2020).PubMed 
    Article 

    Google Scholar 
    Sol, D. Artificial selection, naturalization, and fitness: Darwin’s pigeons revisited. Biol. J. Linn. Soc. 93, 657–665 (2008).Article 

    Google Scholar 
    Giunchi, D., Albores-Barajas, Y. V., Baldaccini, N. E., Vanni, L. & Soldatini, C. Feral pigeons: Problems, dynamics and control methods. In Integrated Pest Management and Pest Control. Current and Future Tactics (eds Soloneski, S. & Larramendy, M.) 215–240 (InTechOpen, London, 2012).
    Google Scholar 
    Senar, J. C., Navalpotro, H., Pascual, J. & Montalvo, T. Nicarbazin has no effect on reducing feral pigeon populations in Barcelona. Pest Manag. Sci. 77, 131–137 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rose, E., Nagel, P. & Haag-Wackernagel, D. Spatio-temporal use of the urban habitat by feral pigeons (Columba livia). Behav. Ecol. Sociobiol. 60, 242–254 (2006).Article 

    Google Scholar 
    Corbel, H. et al. Stress response varies with plumage colour and local habitat in feral pigeons. J. Ornithol. 157, 825–837 (2016).Article 

    Google Scholar 
    Møller, A. P., Merino, S., Brown, C. R. & Robertson, R. J. Immune defense and host sociality: A comparative study of swallows and martins. Am. Nat. 158, 136–145 (2001).PubMed 
    Article 

    Google Scholar 
    Drzewińska-Chańko, J. et al. Immunocompetent birds choose larger breeding colonies. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13540 (2021).Article 
    PubMed 

    Google Scholar 
    Saino, N., Suffritti, C., Martinelli, R., Rubolini, D. & Møller, A. P. Immune response covaries with corticosterone plasma levels under experimentally stressful conditions in nestling barn swallows (Hirundo rustica). Behav. Ecol. 14, 318–325 (2003).Article 

    Google Scholar 
    Goutte, A. et al. Long-term survival effect of corticosterone manipulation in black-legged kittiwakes. Gen. Comp. Endocrinol. 167, 246–251 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Møller, A. P., Christe, P., Erritzøe, J. & Mavarez, J. Condition, disease and immune defence. Oikos 83, 301–306 (1998).Article 

    Google Scholar 
    Navarro, C., Marzal, A., De Lope, F. & Møller, A. P. Dynamics of an immune response in house sparrows Passer domesticus in relation to time of day, body condition and blood parasite infection. Oikos 101, 291–298 (2003).Article 

    Google Scholar 
    Toïgo, C., Gaillard, J. M., Van Laere, G., Hewison, M. & Morellet, N. How does environmental variation influence body mass, body size, and body condition? Roe deer as a case study. Ecography 29, 301–308 (2006).Article 

    Google Scholar 
    Jacquin, L. et al. A potential role for parasites in the maintenance of color polymorphism in urban birds. Oecologia 173, 1089–1099 (2013).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Meillère, A., Brischoux, F., Parenteau, C. & Angelier, F. Influence of urbanization on body size, condition, and physiology in an urban exploiter: A multi-component approach. PLoS ONE https://doi.org/10.1371/journal.pone.0135685 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).Article 

    Google Scholar 
    Jacquin, L. et al. Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: The feral pigeon Columba livia. J. Avian Biol. 42, 11–15 (2011).Article 

    Google Scholar 
    Liker, A., Papp, Z., Bókony, V. & Lendvai, A. Z. Lean birds in the city: Body size and condition of house sparrows along the urbanization gradient. J. Anim. Ecol. 77, 789–795 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Audet, J. N., Ducatez, S. & Lefebvre, L. The town bird and the country bird: Problem solving and immunocompetence vary with urbanization. Behav. Ecol. 27, 637–644 (2016).Article 

    Google Scholar 
    Kurucz, K., Purger, J. J. & Batáry, P. Urbanization shapes bird communities and nest survival, but not their food quantity. Glob. Ecol. Conserv. 26, e01475 (2021).Article 

    Google Scholar 
    Partecke, J., Schwabl, I. & Gwinner, E. Stress and the city: Urbanization and its effects on the stress physiology in European blackbirds. Ecology 87, 1945–1952 (2006).PubMed 
    Article 

    Google Scholar 
    Bailly, J. et al. Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia 182, 1053–1062 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Glądalski, M. et al. Differences in use of bryophyte species in tit nests between two contrasting habitats: An urban park and a forest. Eur. Zool. J. 88, 807–815 (2021).Article 

    Google Scholar 
    Tella, J. L., Scheuerlein, A. & Ricklefs, R. E. Is cell–mediated immunity related to the evolution of life-history strategies in birds?. Proc. R. Soc. B 269, 1059–1066 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brown, C. R. & Brown, M. B. Empirical measurement of parasite transmission between groups in a colonial bird. Ecology 85, 1619–1626 (2004).Article 

    Google Scholar 
    O’Brien, V. A. & Brown, C. R. Group size and nest spacing affect Buggy Creek virus (Togaviridae: Alphavirus) infection in nestling house sparrows. PLoS ONE 6, e25521 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol. 3, cov058 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B 373, 20170090 (2018).Article 
    CAS 

    Google Scholar 
    Møller, A. P. Successful city dwellers: A comparative study of the ecological characteristics of urban birds in the Western Palearctic. Oecologia 159, 849–858 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Watson, H., Videvall, E., Andersson, M. N. & Isaksson, C. Transcriptome analysis of a wild bird reveals physiological responses to the urban environment. Sci. Rep. 7, 44180 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hasselquist, D. & Nilsson, J. Å. Physiological mechanisms mediating costs of immune responses: What can we learn from studies of birds?. Anim. Behav. 83, 1303–1312 (2012).Article 

    Google Scholar 
    Biard, C., Monceau, K., Motreuil, S. & Moreau, J. Interpreting immunological indices: The importance of taking parasite community into account. An example in blackbirds Turdus merula. Methods Ecol. Evol. 6, 960–972 (2015).Article 

    Google Scholar 
    Leclaire, S., Czirják, G. Á., Hammouda, A. & Gasparini, J. Feather bacterial load shapes the trade-off between preening and immunity in pigeons. BMC Evol. Biol. 15, 60 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vinkler, M., Adelman, J. S. & Ardia, D. R. Evolutionary and ecological immunology. In Avian Immunology 3rd edn (eds Kaspers, B. et al.) 519–558 (Academic Press, London, 2021).
    Google Scholar 
    Davis, A. K., Maney, D. L. & Maerz, J. C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologists. Funct. Ecol. 22, 760–772 (2008).Article 

    Google Scholar 
    Indykiewicz, P., Podlaszczuk, P., Kamiński, M., Włodarczyk, R. & Minias, P. Central–periphery gradient of individual quality within a colony of Black-headed Gulls. Ibis 161, 744–758 (2019).Article 

    Google Scholar 
    Vleck, C. M., Vertalino, N., Vleck, D. & Bucher, T. L. Stress, corticosterone, and heterophil to lymphocyte ratios in free-living Adélie penguins. Condor 102, 392–400 (2000).Article 

    Google Scholar 
    Davis, A. K., Cook, K. C. & Altizer, S. Leukocyte profiles in wild house finches with and without mycoplasmal conjunctivitis, a recently emerged bacterial disease. EcoHealth 1, 362–373 (2004).Article 

    Google Scholar 
    Lobato, E., Moreno, J., Merino, S., Sanz, J. J. & Arriero, E. Haematological variables are good predictors of recruitment in nestling pied flycatchers (Ficedula hypoleuca). Ecoscience 12, 27–34 (2005).Article 

    Google Scholar 
    Bobby Fokidis, H., Greiner, E. C. & Deviche, P. Interspecific variation in avian blood parasites and haematology associated with urbanization in a desert habitat. J. Avian Biol. 39, 300–310 (2008).Article 

    Google Scholar 
    Padgett, D. A. & Glaser, R. How stress influences the immune response. Trends Immunol. 24, 444–448 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dimitrov, S. et al. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113, 5134–5143 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ilmonen, P., Hasselquist, D., Langefors, Å. & Wiehn, J. Stress, immunocompetence and leukocyte profiles of pied flycatchers in relation to brood size manipulation. Oecologia 136, 148–154 (2003).PubMed 
    Article 
    ADS 

    Google Scholar 
    Minias, P., Gach, K., Włodarczyk, R. & Janiszewski, T. Colony size affects nestling immune function: A cross-fostering experiment in a colonial waterbird. Oecologia 190, 333–341 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Cyr, N. E., Earle, K., Tam, C. & Romero, L. M. The effect of chronic psychological stress on corticosterone, plasma metabolites, and immune responsiveness in European starlings. Gen. Comp. Endocrinol. 154, 59–66 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schoech, S. J., Bowman, R. & Reynolds, S. J. Food supplementation and possible mechanisms underlying early breeding in the Florida Scrub-Jay (Aphelocoma coerulescens). Horm. Behav. 46, 565–573 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ibáñez-Álamo, J. D. et al. Physiological stress does not increase with urbanization in European blackbirds: Evidence from hormonal, immunological and cellular indicators. Sci. Total Environ. 721, 137332 (2020).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Bonier, F. Hormones in the city: Endocrine ecology of urban birds. Horm. Behav. 61, 763–772 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Valdebenito, J. O. et al. Seasonal variation in sex-specific immunity in wild birds. Sci. Rep. 11, 1349 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Hetmański, T. Timing of breeding in the Feral Pigeon Columba livia f. domestica in Słupsk (NW Poland). Acta Ornithol. 39, 105–110 (2004).Article 

    Google Scholar 
    Dijkstra, C. et al. An adaptive annual rhythm in the sex of first pigeon eggs. Behav. Ecol. Sociobiol. 64, 1393–1402 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swanson, D. L. Seasonal variation of vascular oxygen transport in the dark-eyed junco. Condor 92, 62–66 (1990).Article 

    Google Scholar 
    Niedojadlo, J., Bury, A., Cichoń, M., Sadowska, E. T. & Bauchinger, U. Lower haematocrit, haemoglobin and red blood cell number in zebra finches acclimated to cold compared to thermoneutral temperature. J. Avian Biol. 49, e01596 (2018).Article 

    Google Scholar 
    Roulin, A. Condition-dependence, pleiotropy and the handicap principle of sexual selection in melanin-based colouration. Biol. Rev. 91, 328–348 (2016).PubMed 
    Article 

    Google Scholar 
    Statistics Poland. https://stat.gov.pl/en/ (2021).Sol, D. & Senar, J. C. Urban pigeon populations: Stability, home range, and the effect of removing individuals. Can. J. Zool. 73, 1154–1160 (1995).Article 

    Google Scholar 
    Minias, P. Reproduction and survival in the city: Which fitness components drive urban colonization in a reed-nesting waterbird?. Curr. Zool. 62, 79–87 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meissner, W. & Fischer, I. Sexing of common gull, Larus canus, using linear measurements. Folia Zool. 66, 183–188 (2017).Article 

    Google Scholar 
    Haag-Wackernagel, D., Heeb, P. & Leiss, A. Phenotype-dependent selection of juvenile urban feral pigeons Columba livia. Bird Study 53, 163–170 (2006).Article 

    Google Scholar 
    Harter, T. S., Reichert, M., Brauner, C. J. & Milsom, W. K. Validation of the i-STAT and HemoCue systems for the analysis of blood parameters in the bar-headed goose, Anser indicus. Conserv. Physiol. 3, cov021 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minias, P. The use of haemoglobin concentrations to assess physiological condition in birds: A review. Conserv. Physiol. 3, cov007 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, L. B. et al. Phytohemagglutinin-induced skin swelling in birds: Histological support for a classic immunoecological technique. Funct. Ecol. 20, 290–299 (2006).Article 

    Google Scholar 
    Brown, G. P., Shilton, C. M. & Shine, R. Measuring amphibian immunocompetence: Validation of the phytohemagglutinin skin-swelling assay in the cane toad, Rhinella marina. Methods Ecol. Evol. 2, 341–348 (2011).Article 

    Google Scholar 
    Kennedy, M. W. & Nager, R. G. The perils and prospects of using phytohaemagglutinin in evolutionary ecology. Trends Ecol. Evol. 21, 653–655 (2006).PubMed 
    Article 

    Google Scholar 
    Vinkler, M., Bainová, H. & Albrecht, T. Functional analysis of the skin-swelling response to phytohaemagglutinin. Funct. Ecol. 24, 1081–1086 (2010).Article 

    Google Scholar 
    Turmelle, A. S., Ellison, J. A., Mendonça, M. T. & McCracken, G. F. Histological assessment of cellular immune response to the phytohemagglutinin skin test in Brazilian free-tailed bats (Tadarida brasiliensis). J. Comp. Physiol. B 180, 1155–1164 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Griffiths, R., Double, M. C., Orr, K. & Dawson, R. J. A DNA test to sex most birds. Mol. Ecol. 7, 1071–1075 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Çakmak, E., Akın Pekşen, Ç. & Bilgin, C. C. Comparison of three different primer sets for sexing birds. J. Vet. Diagn. Investig. 29, 59–63 (2017).Article 
    CAS 

    Google Scholar 
    Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Jaeger, B. C., Edwards, L. J., Das, K. & Sen, P. K. An R 2 statistic for fixed effects in the generalized linear mixed model. J. Appl. Stat. 44, 1086–1105 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bartoń, K. MuMIn: Multi-model inference. R package ver. 1.43.17. CRAN: The Comprehensive R Archive Network, Berkeley, CA, USA. https://CRAN.R-project.org/package=MuMIn (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Kahle, D. J. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J. 5, 144–161 (2013).Article 

    Google Scholar  More

  • in

    Ploidy dynamics in aphid host cells harboring bacterial symbionts

    General observation and methods for ploidy analysis on aphid bacteriome cellsConsistent with previous observations9,21,22,40, the bacteriome of viviparous aphids consisted of two types of cells: bacteriocytes and sheath cells (Fig. 2). Bacteriocytes contained Buchnera cells and were much larger than sheath cells. Sheath cells exhibited a flattened morphology and surrounded the bacteriocytes. Both cell types possessed a single nucleus. Bacteriocytes had a single prominent nucleolus, which was not stained using DAPI, but using “Nucleolus Bright Red” staining (Fig. 2). Most sheath cells also had a single nucleolus, yet a small number had two. “Nucleolus Bright Red” also stained the peripheral region of Buchnera, probably because of the richness of RNA around Buchnera cells.Figure 2Morphology of bacteriocytes and sheath cells from each morph of aphids visualized using DAPI/Phalloidin/Nucleolus Bright Red staining. DNA and F-actin were stained by DAPI (gray or blue) and Phalloidin (green), respectively. The nucleolus, which is the site of ribosome biogenesis, was visualized by Nucleolus Bright Red (red). This dye binds RNA electrostatically, therefore the cytoplasm of bacteriocytes and Buchnera cells were also stained. Bacteriocytes (white arrows) had single prominent nucleolus, and the cell sizes were much larger than sheath cells (white arrowheads) in all aphid morphs.Full size imageTo determine the most suitable methods for ploidy analysis of aphid bacteriocytes, three types of methods, flow cytometry, Feulgen densitometry, and fluorometry were compared. First, flow cytometry successfully detected the nuclei of bacteriome cells and heads, and distinct peaks were present (Fig. S3). There were several peaks, which can be categorized as ploidy classes based on head peaks, assuming that the smallest peaks correspond to a diploid population. We recognized peaks up to 256C (256-ploidy) cells but could not distinguish cell types (i.e., bacteriocytes or sheath cells) in this method due to a lack of cytological information. Note that “C” means haploid genome size, for example, 2C = diploid and 8C = octoploid. Second, Feulgen densitometry also showed several ploidy levels of up to 128C (Fig. S4) in bacteriocytes. Sheath cells mainly consisted of 16-32C cells. However, we found that many cells were lost during the experimental procedures, probably due to the repeated washing processes and the long incubation time.We found the third method, image-based fluorometry for isolated nuclei, the best for quantitative ploidy analysis of aphid bacteriocytes (Fig. 3). Fluorometry showed distinct peaks of integrated fluorescence intensity, and they could be categorized as each ploidy class based on the intensity of the smallest peak in head cells (diploid population). The results were consistent with other methods; ploidy levels were 32C-256C in bacteriocytes and 16C-32C in sheath cells. In this analysis, the nucleolus size was used to discriminate between cell types. During cytological observation, we obtained the size distribution of the nucleolus, and it was revealed that the nucleolus of bacteriocytes was always larger than that of sheath cells (Fig. S5). Based on the results, we determined the threshold of the size of the nucleolus. More specifically, in viviparous females, nuclei that have nucleoli larger than 20 μm2 were categorized into bacteriocytes. Note that the peaks of sheath cells were not distinct or reliable for categorizing their ploidy class; therefore, we showed results focusing on bacteriocytes in the following sections.Figure 3Ploidy analysis of aphid bacteriocytes using DAPI-fluorometry. A representative result from the analysis of adult viviparous females is presented. An image of DAPI-stained nuclei was also shown (the blue channel was extracted). Isolated nuclei of bacteriome cells were stained using DAPI, image-captured with a CCD camera, and their integrated fluorescence intensity was measured using ImageJ software. Nuclei were categorized into “bacteriocytes” or “sheath cells,” based on the size distribution of nucleolus (see “Materials and Methods”). Relative ploidy levels were calculated based on the data from head cells which are mainly diploid. Bacteriocytes of adult viviparous aphids consisted of 16C-256C cells, and 64–128 cells were dominant, while sheath cells exhibited lower ploidy levels (mainly 16C). “C” means haploid genome size, for example, 2C = diploid and 8C = octoploid.Full size imageCellular features of bacteriome cells in viviparous and oviparous females, and malesThe cellular features were generally consistent among young adults (within 5 days of adult eclosion) of three morphs, viviparous and oviparous females, and males (Fig. 2). Nevertheless, Buchnera-absence zones in the cytoplasm of bacteriocytes, which are considered to be degeneration of Buchnera45, and bacteriocytes degeneration46 were both observed more frequently in male bacteriocytes than in females (Fig. 2). The cell size of bacteriocytes was significantly different among morphs (LM with type II test, F = 286.15, df = 2, p  More

  • in

    Optimal Channel Networks accurately model ecologically-relevant geomorphological features of branching river networks

    Drainage area and branching ratio: a matter of scaleGeomorphological and ecological viewpoints on river networks generally differ owing to discordant definitions of the fundamental unit (the node) used to analyze them. From a geomorphological perspective, the determination of a river network entails the definition of an observational scale. Real river networks can be extracted from digital elevation models (DEMs) via algorithms for flow direction determination such as D8 (i.e., each pixel drains towards the lowest of its 8 nearest neighbors53). After the outlet location has been specified (and hence the upstream area A spanned by the river network), the first observational scale required is thus the pixel length l of the DEM, which defines the extent of a network node. A second scale is then needed to distinguish the portion of the drainage network effectively belonging to the channel network. The simplest but still widely used method53 defines channels as those pixels whose drainage area exceeds a threshold value AT. Hydrologically based criteria to determine the appropriate value for AT exist54; however, for the sake of simplicity, we here consider AT as a free parameter.BBTs and RBNs are random constructs, and as such they do not satisfy the optimality criterion of minimizing total energy expenditure, which is the fundamental physical process shaping fluvial landscapes. Furthermore, neither of these networks is a spanning tree, which is a key attribute of real fluvial landforms10: in fact, in both BBTs and RBNs, the extent of the drained domain is not defined. As a result, the drainage area at an arbitrary network node cannot in principle be attributed, unless by using the number of upstream nodes as a proxy. This has practical implications from an ecological viewpoint because drainage area is the master variable controlling several attributes of a river, such as width, depth, discharge, or slope3,55, which in turn impact habitat characteristics and the ecology of organisms therein56.In BBTs and RBNs, branching probability p has been defined35,38,45,46,47 as the probability that a network node is branching, i.e. connected to two upstream nodes. As such, the branching probability of a realized river network (be it a real river or a synthetic construct) could be evaluated as the ratio between the number of links NL constituting a network and the total number of network nodes N; if a unit distance between two adjacent nodes is assumed, the denominator equals the total network length. We note that the former definition of branching probability only holds in the context of the generation of a synthetic random network; it is in fact improper to refer to a “probability” when analyzing the properties of a realized river network. We clarify this aspect by introducing the concept of branching ratio pr for the latter definition (pr = NL/N). Moreover, in the case of BBTs, p and pr do not coincide (see Methods). Importantly, p and pr have no parallel in the literature on fluvial forms, nor do they refer to any of the well-studied measures of rivers’ fractal character.The choice of different observational scales for the same drainage network results in different values of NL and N, and hence of pr. Remarkably, the very same drainage network can result in river networks that virtually assume any value of pr (ranging from 0 to 1) and N (up to the upper bound A) depending on the choice of AT and A (the latter corresponding to a given l value when measured in the number of pixels; Fig. 1d–i); networks with low AT/A ratios result in high N (Fig. 2a), while networks with low AT result in high pr (Fig. 2b). Furthermore, pr does not identify the inherent (i.e., scale-independent) branching character of a given river network in relation to other river networks. In fact, by extracting different river networks at various scales (i.e., various AT values) and assessing the rivers’ rank in terms of pr, one observes that rivers that look more “branching” (i.e., have higher pr) than others for a given AT value can become less “branching” for a different AT value (Fig. 3). We therefore conclude that branching probability is a non-descriptive property of a river network, which by no means describes its inherent branching character, and depends on the observational scale.Fig. 2: Variation of N and pr as a function of observational scales for OCNs and real river networks.a Expected value of number of network nodes N as a function of threshold area AT and total drained area A (from Eq. (1)); the white dots indicate the values of AT and A used to generate the OCNs used in this analysis. b Expected value of branching ratio pr as a function of AT and A (from Eq. (1)); symbols as in a.Full size imageFig. 3: Values of branching ratio as a function of AT for the 50 real river networks analyzed in this study.a Natural values of pr in logarithmic scale. b z-normalized branching ratios (i.e., for each AT value, values of pr are normalized so that they have null mean and unit standard deviation), which better shows how rivers rank differently in terms of pr for different observation scales (i.e., AT). Lines connect dots relative to the same river. For visual purposes, rivers that rank first, second, second-to-last or last in at least one of the AT groups are displayed in colors; the other rivers are displayed in grey.Full size imageScaling is also crucial when looking at river networks from an ecological perspective. In this case, the relevant scale determining the dimension l of a node is the extent of habitat within which individuals (due to e.g. physical constrains) can be assigned to a single population57,58; the riverine connectivity and ensuing dispersal among these populations give rise to a metapopulation at the river network level. The specific spatial scale largely depends on the targeted species (e.g. being larger for fish than for aquatic insects), and it is conceivably much larger than (or, at least, it has no reason to be equal to) the pixel size of the DEM on which the river network is extracted. Since the evaluation of pr depends on the number of nodes N, which, in turn, is defined based on the scale length l, the resulting pr of a river network under this perspective would depend on the characteristics of the target taxa, which is inconsistent with the alleged role of pr as a scale-invariant property of river networks.Note also that using the ecological definition of l (i.e., spatial range of a local population) to discretize a real river network into N nodes, and from there calculate the branching ratio pr = NL/N, is problematic. Indeed, this would imply an elongation of all links shorter than l (which constitute a non-negligible fraction of the total links, under the assumption of exponential distribution of link lengths51), hence preventing a correct estimation of the connectivity patterns (i.e., distances between nodes) and the resulting ecological metrics of the river network (see section Ecological implications).From an ecological perspective, it could be reasonable to consider AT as a parameter expressing how a particular taxon perceives the suitable landscape, rather than a value to be determined from geomorphological arguments: for instance, large fishes inhabit wide and deep river reaches, and do not access small headwaters56. In this case, imposing a large AT would result in a coarser, less branching network constituted by few main channels (Fig. 1f, i), which could mimic the potentially available habitat for such species. Conversely, aquatic insects inhabit also small headwaters17,59, therefore their perceived landscape would resemble the finely resolved networks of Fig. 1d, g, characterized by low AT and higher (apparent) pr.Topology and scaling of river networks and random analoguesTo verify the topological (i.e., Horton’s laws on bifurcation and length ratios) and scaling (i.e., probability distribution of drainage areas) relationships of the different network types, we extracted from DEMs 50 real river networks encompassing a wide range of drainage areas (Fig. 4), and we generated 50 OCNs, 50 RBNs and 50 BBTs of comparable size (see Methods).Fig. 4: Location of real river basins used in the analysis.River basins are shown in dark grey; countries in light grey. Rivers’ numbering is sorted in ascending order according to drainage area values.Full size imageTypical values3,7,60 for the bifurcation ratio RB lie between 3 and 5, while length ratios (RL) range between 1.5 and 3.5. As expected, we observed that the real rivers and OCNs used in our analysis have RB and RL values within the aforementioned ranges (Fig. 5a, b). The same is true for RBNs, while the RB and RL values found for BBTs are lower than the typical ranges. This finding holds regardless of the scale (subsumed by AT) at which real river networks and OCNs are extracted (Supplementary Figs. 1 and 2). Remarkably, BBTs fail to satisfy Horton’s laws despite the statistical inevitability of such laws for any network argued by ref. 61. To this regard, we note that the networks analyzed by ref. 61 did not include constructs where all paths from the source nodes to the outlet have the same length, which is the defining feature of BBTs (Fig. 1a).Fig. 5: Comparison of topological and scaling properties of the different networks.a Scaling of number of network links Nω as a function of stream order ω for the various network types (rivers and OCNs obtained with AT = 20 pixels; RBNs and BBTs derived accordingly – see Methods). b Mean link length Lω (in units of l) as a function of ω. Networks used are as in panel a. c Scaling of drainage areas: probability P[A ≥ a] to randomly sample a node with drainage area A ≥ a as a function of a. The displayed trend lines are fitted on the ensemble values for the 50 network replicates, by excluding nodes with drainage area larger than 2000 pixels (cutoff value marked with a black solid line). The scaling coefficients β reported correspond to the slopes of the fitted trend lines. Extended details on all panels are provided in the Supplementary Methods.Full size imageWhile the power-law scaling of areas in OCNs (Fig. 5c) has an exponent β ≈ 0.45 that closely resembles the one found for the real rivers (β ≈ 0.46) and within the typically observed range8,10 β = 0.43 ± 0.02, drainage areas of RBNs scale as a power law with an exponent β ≈ 0.51, which departs from the observed range. Conversely, BBTs do not show any power-law scaling of areas. Scaling exponents of drainage areas fitted separately for each real river network yielded values in the range 0.36÷0.57 (Supplementary Table 1). In particular, we observed that these values tend to the expected range β = 0.43 ± 0.02 for increasing values of A, expressed in number of pixels (Supplementary Fig. 3), hence implying that highly resolved catchments are required in order to properly estimate β. Interestingly, the observed values of Horton ratios and scaling exponent β for RBNs are compatible with the values RB = 4, RL = 2, β = 0.5 predicted for Shreve’s random topology model3,60,62, which is actually equivalent to a RBN with infinite links.Ecological implicationsWe compared the different network types via two metrics that express the ecological value of a landscape for a metapopulation: the coefficient of variation of a metapopulation CVM and the metapopulation capacity λM. The coefficient of variation of a metapopulation63 is a measure of metapopulation stability (a metapopulation being more stable the lower CVM is), while the metapopulation capacity42,64 expresses the potential for a metapopulation to persist in the long run (persistence being more likely the higher λM is). Both measures are among the most universal metrics describing dynamics of spatially fragmented populations24,40. In order to assess the impact of the two landscape features mostly affecting metapopulation dynamics, i.e. spatial connectivity and spatial distribution of habitat patches, we calculated these metrics for the four network types under two different scenarios: uniform (CVM,U, λM,U) and non-uniform (CVM,H, λM,H) spatial distribution of habitat patch sizes. In the first scenario, CVM,U and λM,U assess stability and persistence (respectively) of a metapopulation solely based on pairwise distances between network nodes; in the second scenario, CVM,H and λM,H depend on the interplay between pairwise distances and spatially heterogeneous habitat availability (namely, downstream nodes being larger than upstream ones).We found that the values of CVM (be it derived with uniform (CVM,U) or nonuniform (CVM,H) distributions of patch sizes) obtained for OCNs match strikingly well those of real rivers (Fig. 6). These CVM values are consistently lower than those found for RBNs, while values of CVM for BBTs are even higher. Notably, this result holds for different values of AT (and hence different pr values) at which real rivers and OCNs are extracted (Fig. 6a–c; g–i), and for values of mean dispersal distance α (see Methods) spanning multiple orders of magnitude (Supplementary Figs. 4–7).Fig. 6: Comparison of values of metapopulation metrics across river network types and observational scales (AT).a–c CVM,U. d–f λM,U. g–i CVM,H. j–l λM,H. Boxplot elements are as follows: center line, median; notches, (pm 1.58cdot {{{{{{{rm{IQR}}}}}}}}/sqrt{50}), where IQR is the interquartile range; box limits, upper and lower quartiles; whiskers, extending up to the most extreme data points that are within ±1.5 ⋅ IQR; circles, outliers. Metapopulation metric values were obtained by setting α = 100 l. Note that in Eq. (1), given A = 40, 000, AT = 20 results in E[N] ≈ 4574, E[pr] ≈ 0.228; AT = 100 yields E[N] ≈ 2231, E[pr] ≈ 0.098; AT = 500 results in E[N] ≈ 1088, E[pr] ≈ 0.042.Full size imageFor a constant α value, the CVM of real rivers, OCNs and RBNs decreases as the resolution at which the network is extracted increases (i.e., AT decreases; see Fig. 6 and Supplementary Figs. 4–7). This is expected63, since a decrease in AT corresponds to an increase in N (Fig. 2a), leading to a decrease in CVM. Indeed, a larger ecosystem, constituted of more patches, has the potential to include a larger (and more diverse) number of subpopulations, which increases stability at a metapopulation level through statistical averaging–a phenomenon widely known as the portfolio effect65. We also found that BBT networks do not generally follow the above-described pattern of decreasing CVM with increasing N; rather, the CVM of BBTs increases with N when the mean dispersal distance α is set to intermediate to high values (Fig. 6 and Supplementary Figs. 5–7), and only when α is very low (e.g. α = 10 l as in Supplementary Fig. 4) and a uniform patch-size distribution is assumed does CVM,U follow the expected decreasing trend with increasing N.However, we need to warn against the conclusion that river networks with higher values of pr (and hence lower AT, see Fig. 2b) are inherently associated with higher metapopulation stability. Indeed, our result was obtained by changing the scale at which we observed the same river networks, and not by increasing the river networks’ size. If the number of network nodes (and, consequently, the branching ratio pr) is determined by the scale at which the landscape is observed, one cannot directly assume that any of such nodes is a node (or patch) in the ecological sense, i.e. the geographical span of a local population: the extent of such patches should be determined based on the mobility characteristics of the focus species, and should be independent of the scale at which the river network is observed. In contrast, we note that, if different river networks spanning different catchment areas (say, in km2) are compared, all of them extracted from the same DEM (same l and same AT in km2), then the larger river network will appear more branching (i.e., have larger pr). Indeed, by selecting catchments with larger A (in km2) for fixed l and AT (in km2), one moves towards the top-left corner of Fig. 2a, b (i.e., perpendicular to the level curves AT/A). The apparent higher “branchiness” of the river network with larger A will result in lower values of CVM; however, the higher metapopulation stability of the larger network will not be due to its (alleged) inherent more branching character, but only dictated by its larger habitat availability.We observed that metapopulation capacity λM values of OCNs (be it evaluated under uniform (λM,U) or non-uniform (λM,H) patch-size distribution assumption) are the closest to those of real rivers, while RBNs (and even more so BBTs) generally overestimate λM with respect to real rivers and OCNs (Fig. 6d–f; j–l). This result holds irrespective of the choice of AT and for intermediate to high values of α (Supplementary Figs. 5–7). When the mean dispersal distance is instead set to very low values (α = 10 l – Supplementary Fig. 4) and the river network is extracted at a high resolution (i.e., low AT), the metapopulation capacity of OCNs under assumption of uniform patch-size distribution (λM,U) is underestimated with respect to that of real rivers. A likely explanation for this apparent mismatch is that, for low values of AT, the number of nodes N tends to be somewhat higher for the extracted river networks used in this analysis than for OCNs (Supplementary Fig. 8), and the effect of the different dimensionality of real rivers and OCNs in the metapopulation capacity estimation tends to be more evident as the mean dispersal distance decreases. Interestingly, such mismatch is absent when a non-uniform patch size distribution is assumed, as λM,H values for OCNs match those for real rivers regardless of the mean dispersal distance value and the river network resolution (Fig. 6; Supplementary Figs. 4–7).The OCN construct encapsulates both random and deterministic processes, the former related to the stochastic nature of the OCN generation algorithm, and the latter pertaining to the minimization of total energy expenditure that characterizes OCN configurations. As such, OCNs reproduce the aggregation patterns of real river networks. From an ecological viewpoint, this implies that both pairwise distances between nodes and the distribution of patch sizes (expressed as a function of drainage areas, or of a proxy thereof such as the number of nodes upstream) are much closer to those of real networks than is the case for fully random synthetic networks as BBTs and RBNs. In particular, BBTs and (to a lesser extent) RBNs tend to underestimate pairwise distances with respect to real rivers and OCNs, as documented by a comparison of mean pairwise distances across network types (Supplementary Fig. 9a–c). Our analysis shows that the connectivity structure of these random networks (subsumed by the matrix of pairwise distances) is too compact with respect to that of real rivers, which leads to an overestimation of the role of dispersal in increasing the ability of a metapopulation to persist in the long run, but also an increased likelihood of synchrony among the different local populations, which results in higher instability.Comparison of patch size distributions among the network types expressed in terms of CVM,0 (i.e., the portion of CVM,H that uniquely depends on the distribution of patch sizes and not on pairwise distances) shows that, while for coarsely resolved networks (AT = 500) no clear differences in CVM,0 emerged, for highly resolved networks (AT = 20) BBTs heavily underestimate the CVM,0 of real rivers and OCNs, while RBNs slightly overestimate it (Supplementary Fig. 9d–f). As a result of the interplay of differences in distance matrices and patch size distributions, BBTs and (to a lesser extent) RBNs generally tend to overestimate the coefficient of variation of a metapopulation and the metapopulation capacity of real rivers and OCNs in both scenarios of uniform and non-uniform patch size distribution. The only exception to this trend occurs for the metapopulation capacity λM,H of very large BBTs (corresponding to AT = 20) in the case of very high dispersal distances (α = 1000 l – Supplementary Fig. 7): here, the patch-size effect (i.e., underestimation of CVM,0) predominates over the distance effect (i.e., overestimation of mean dij), resulting in an underestimation of λM,H with respect to real rivers and OCNs.Our results were derived under a number of simplifying assumptions. In particular, we acknowledge that, while the distance matrix of a landscape and the distribution of patch sizes have in general important implications for metapopulation dynamics, other factors not considered here, such as Euclidean between-patch distance48, fat-tailed dispersal kernel66 and density-dependent dispersal67 could also play a relevant role in this respect. However, it needs to be noted that, especially with regards to the assessment of the Moran effect in metapopulation synchrony (i.e., increased synchrony in local fluvial populations that are geographically close but not flow-connected48), the use of OCNs allows integration of Euclidean distances in a metapopulation model, while this is not possible for RBNs and BBTs, where Euclidean distances are not defined. Moreover, if a larger degree of realism is required for a specific ecological modelling study, such as heterogeneity in abiotic factors (e.g. water temperature or flow rates), the use of OCNs as model landscapes allows a direct integration of these variables, as they can conveniently be expressed as functions of drainage area3,55. In contrast, this is not possible for RBNs or BBTs, because only OCNs verify the scaling of areas (Fig. 5c), while RBNs and BBTs lack a proper definition of drainage areas.Our comparison of synthetic and real river networks showed that riverine metapopulations are more stable and less invasible than what would be predicted by random network analogues. Conversely, the use of OCNs as model landscapes allows capturing not only the scaling features of real rivers, but also drawing ecological conclusions that are in line with those that could be observed in real river networks. We thus support the use of OCNs as analogues of real river networks in theoretical and applied ecological modelling studies. While we found that BBTs are highly inaccurate in reproducing ecological metrics of real river networks and should be therefore discarded altogether in future modelling applications, RBNs show a certain degree of similarity with OCNs and real river networks in this respect; moreover, RBNs (as is the case for any random tree61) satisfy Horton’s laws on bifurcation and length ratios. A relevant advantage of RBNs over OCNs is that their generation algorithm is at least one order of magnitude faster49. Therefore, we acknowledge that RBNs could be considered as a suitable surrogate for real river networks as null models in cases where a large number of network replicates is required. To this end, we encourage researchers exploiting synthetic river networks (whether they be OCNs or RBNs) to always clarify the observational scales (that is, total area drained, size of a node, area drained by a headwater) subsumed by the synthetic network and which give rise to a certain complexity measure (i.e., branching ratio). Only in such a way could the predictions from these studies be compared with real river networks.In conclusion, our results advocate a tighter integration between physical (geomorphology, hydrology) and biological (ecology) disciplines in the study of freshwater ecosystems, and particularly in the perspective of a mechanistic understanding of drivers of persistence and loss of biodiversity. More

  • in

    Molecular phylogenies map to biogeography better than morphological ones

    Harvey, P. H. & Pagel, M. D. The comparative method in evolutionary biology. Vol. 239 (Oxford University Press, 1991).Oyston, J. W., Hughes, M., Wagner, P. J., Gerber, S. & Wills, M. A. What limits the morphological disparity of clades? Interface Focus 5, 0042 (2015).Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Webb, C. O. Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am. Naturalist 156, 145–155 (2000).Article 

    Google Scholar 
    Purvis, A., Gittleman, J. L. & Brooks, T. Phylogeny and conservation. (Cambridge University Press, 2005).Page, R. D. M. Parallel phylogenies: reconstructing the history of host-parasite assemblages. Cladistics 10, 155–173 (1994).Article 

    Google Scholar 
    Weaver, S. C. & Vasilakis, N. Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect., Genet. Evolution 9, 523–540 (2009).CAS 
    Article 

    Google Scholar 
    Tassy, P. Trees before and after Darwin. J. Zool. Syst. Evolut. Res. 49, 89–101 (2011).Article 

    Google Scholar 
    Heather, J. M. & Chain, B. The sequence of sequencers: The history of sequencing DNA. Genomics 107, 1–8 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pyron, R. A. Post-molecular systematics and the future of phylogenetics. Trends Ecol. Evolution 30, 384–389 (2015).Article 

    Google Scholar 
    Sansom, R. S. & Wills, M. A. Differences between hard and soft phylogenetic data. Proc. R. Soc. B: Biol. Sci. 284, 20172150 (2017).Article 

    Google Scholar 
    Scotland, R. W., Olmstead, R. G. & Bennett, J. R. Phylogeny reconstruction: the role of morphology. Syst. Biol. 52, 539–548 (2003).PubMed 
    Article 

    Google Scholar 
    Regier, J. C. et al. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463, 1079–1083 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Callender-Crowe, L. M. & Sansom, R. S. Osteological characters of birds and reptiles are more congruent with molecular phylogenies than soft characters are. Zool. J. Linn. Soc. 194, 1–13 (2022).Article 

    Google Scholar 
    Wahlberg, N. et al. Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc. R. Soc. B: Biol. Sci. 272, 1577–1586 (2005).CAS 
    Article 

    Google Scholar 
    He, L. et al. A molecular phylogeny of selligueoid ferns (Polypodiaceae): Implications for a natural delimitation despite homoplasy and rapid radiation. Taxon 67, 237–249 (2018).Article 

    Google Scholar 
    Fernández, R., Edgecombe, G. D. & Giribet, G. Phylogenomics illuminates the backbone of the Myriapoda Tree of Life and reconciles morphological and molecular phylogenies. Sci. Rep. 8, 1–7 (2018).
    Google Scholar 
    Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Asher, R. J., Bennett, N. & Lehmann, T. The new framework for understanding placental mammal evolution. BioEssays 31, 853–864 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shoshani, J. & McKenna, M. C. Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Mol. Phylogenetics Evolution 9, 572–584 (1998).CAS 
    Article 

    Google Scholar 
    Beck, R. M. D. & Baillie, C. Improvements in the fossil record may largely resolve current conflicts between morphological and molecular estimates of mammal phylogeny. Proc. R. Soc. B: Biol. Sci. 285, 20181632 (2018).Article 

    Google Scholar 
    Zou, Z. T. & Zhang, J. Z. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 7, 1–9 (2016).
    Google Scholar 
    Hillis, D. M. Molecular versus morphological approaches to systematics. Annu. Rev. Ecol. Syst. 18, 23–42 (1987).Article 

    Google Scholar 
    Thompson, N. Alfred Russell Wallace Contributions to the theory of Natural Selection, 1870, and Charles Darwin and Alfred Wallace, ‘On the Tendency of Species to form Varieties’ (Papers presented to the Linnean Society 30th June 1858). (Routledge, 2004).Croizat, L. Panbiogeography; or an introductory synthesis of zoogeography, phytogeography, and geology, with notes on evolution, systematics, ecology, anthropology, etc., Vol. 1, 2a & 2b (Published by the author, Caracas., 1958).Means, J. C. & Marek, P. E. Is geography an accurate predictor of evolutionary history in the millipede family Xystodesmidae? PeerJ 5, e3854 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wills, M. A., Barrett, P. M. & Heathcote, J. F. The modified gap excess ratio (GER*) and the stratigraphic congruence of dinosaur phylogenies. Syst. Biol. 57, 891–904 (2008).PubMed 
    Article 

    Google Scholar 
    Fisher, D. C. Stratocladistics: integrating temporal data and character data in phylogenetic inference. Annu. Rev. Ecol., Evolution Syst. 39, 365–385 (2008).Article 

    Google Scholar 
    Lazarus, D. B. & Prothero, D. R. The role of stratigraphic and morphologic data in phylogeny. J. Paleontol. 58, 163–172 (1984).
    Google Scholar 
    Camerini, J. R. Evolution, biogeography, and maps: an early history of Wallace’s Line. Isis 84, 700–727 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Upchurch, P., Hunn, C. A. & Norman, D. B. An analysis of dinosaurian biogeography: evidence for the existence of vicariance and dispersal patterns caused by geological events. Proc. R. Soc. B: Biol. Sci. 269, 613–621 (2002).Article 

    Google Scholar 
    Ferreira, G. S., Bronzati, M., Langer, M. C. & Sterli, J. Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira). R. Soc. Open Sci. 5, 171773 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. & Sanmartín, I. Phylogenetic methods in biogeography. Annu. Rev. Ecol., Evolution, Syst. 42, 441–464 (2011).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2019-2., https://www.iucnredlist.org (2019).GBIF.org. GBIF Home Page, https://www.gbif.org/ (2019).Uetz, P., Freed, P., Aguilar, R. & Hošek, J. The reptile database., http://www.reptiledatabase.org (2019).Archie, J. W. Homoplasy excess ratios: new indices for measuring levels of homoplasy in phylogenetic systematics and a critique of the consistency index. Syst. Zool. 38, 253–269 (1989).Article 

    Google Scholar 
    Wilkinson, M. On phylogenetic relationships within Dendrotriton (Amphibia: Caudata: Plethodontidae) is there sufficient evidence? Herpetological J. 7, 55–65 (1997).
    Google Scholar 
    O’Connor, A. & Wills, M. A. Measuring stratigraphic congruence across trees, higher taxa, and time. Syst. Biol. 65, 792–811 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colless, D. H. Review of phylogenetics: the theory and practice of phylogenetic systematics. Syst. Zool. 31, 100–104 (1982).Article 

    Google Scholar 
    Lartillot, N. & Philippe, H. Improvement of molecular phylogenetic inference and the phylogeny of Bilateria. Philos. Trans. R. Soc. B: Biol. Sci. 363, 1463–1472 (2008).Article 

    Google Scholar 
    Sansom, R. S., Choate, P. G., Keating, J. N. & Randle, E. Parsimony, not Bayesian analysis, recovers more stratigraphically congruent phylogenetic trees. Biol. Lett. 14, 20180263 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosa, B. B., Melo, G. A. & Barbeitos, M. S. Homoplasy-based partitioning outperforms alternatives in Bayesian analysis of discrete morphological data. Syst. Biol. 68, 657–671 (2019).PubMed 
    Article 

    Google Scholar 
    Lucena, D. A. & Almeida, E. A. Morphology and Bayesian tip-dating recover deep Cretaceous-age divergences among major chrysidid lineages (Hymenoptera: Chrysididae). Zool. J. Linn. Soc. 194, 36–79 (2022).Article 

    Google Scholar 
    O’Reilly, J. E. et al. Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biol. Lett. 12, 20160081 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, M. R. Bayesian and parsimony approaches reconstruct informative trees from simulated morphological datasets. Biol. Lett. 15, 20180632 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wiens, J. The role of morphological data in phylogeny reconstruction. Syst. Biol. 53, 653–661 (2004).PubMed 
    Article 

    Google Scholar 
    O’Leary, M. A. & Kaufman, S. G. MorphoBank 3.0: Web application for morphological phylogenetics and taxonomy., http://www.morphobank.org (2012).de Queiroz, A. & Gatesy, J. The supermatrix approach to systematics. Trends Ecol. Evolution 22, 34–41 (2007).Article 

    Google Scholar 
    Wilkinson, M. A comparison of two methods of character construction. Cladistics 11, 297–308 (1995).Article 

    Google Scholar 
    Brazeau, M. D. Problematic character coding methods in morphology and their effects. Biol. J. Linn. Soc. 104, 489–498 (2011).Article 

    Google Scholar 
    Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    O’Reilly, J. E., Puttick, M. N., Pisani, D. & Donoghue, P. C. Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Palaeontology 61, 105–118 (2018).PubMed 
    Article 

    Google Scholar 
    Keating, J. N., Sansom, R. S., Sutton, M. D., Knight, C. G. & Garwood, R. J. Morphological phylogenetics evaluated using novel evolutionary simulations. Syst. Biol. 69, 897–912 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Makarenkov, V. et al. Weighted bootstrapping: a correction method for assessing the robustness of phylogenetic trees. BMC Evolut. Biol. 10, 1–16 (2010).Article 
    CAS 

    Google Scholar 
    Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).PubMed 
    Article 

    Google Scholar 
    Sattler, R. Homology – a continuing challenge. Syst. Bot. 9, 382–394 (1984).Article 

    Google Scholar 
    Jenner, R. A. & Schram, F. R. The grand game of metazoan phylogeny: rules and strategies. Biol. Rev. 74, 121–142 (1999).Article 

    Google Scholar 
    Pisani, D. & Wilkinson, M. Matrix representation with parsimony, taxonomic congruence, and total evidence. Syst. Biol. 51, 151–155 (2002).PubMed 
    Article 

    Google Scholar 
    Arcila, D. et al. Testing the utility of alternative metrics of branch support to address the ancient evolutionary radiation of tunas, stromateoids, and allies (Teleostei: Pelagiaria). Syst. Biol. 70, 1123–1144 (2021).PubMed 
    Article 

    Google Scholar 
    Felsenstein, J. Phylogenies and the comparative method. Am. Naturalist 125, 1–15 (1985).Article 

    Google Scholar 
    Bremer, K. Branch support and tree stability. Cladistics 10, 295–304 (1994).Article 

    Google Scholar 
    Johnson, W. E. et al. The late Miocene radiation of modern Felidae: a genetic assessment. Science 311, 73–77 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van der Made, J. Biogeography and climatic change as a context to human dispersal out of Africa and within Eurasia. Quat. Sci. Rev. 30, 1353–1367 (2011).Article 

    Google Scholar 
    May, F., Rosenbaum, B., Schurr, F. M. & Chase, J. M. The geometry of habitat fragmentation: Effects of species distribution patterns on extinction risk due to habitat conversion. Ecol. Evolution 9, 2775–2790 (2019).Article 

    Google Scholar 
    Swofford, D. L. et al. Bias in phylogenetic estimation and its relevance to the choice between parsimony and likelihood methods. Syst. Biol. 50, 525–539 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jaeger, J. J. & Martin, M. African marsupials – vicariance or dispersion? Nature 312, 379–379 (1984).Article 

    Google Scholar 
    Smith, B. T. et al. The drivers of tropical speciation. Nature 515, 406–409 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simkanin, C. et al. Exploring potential establishment of marine rafting species after transoceanic long-distance dispersal. Glob. Ecol. Biogeogr. 28, 588–600 (2019).Article 

    Google Scholar 
    Raxworthy, C. J., Forstner, M. R. J. & Nussbaum, R. A. Chameleon radiation by oceanic dispersal. Nature 415, 784–787 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stehli, F. G. & Webb, S. D. The great American biotic interchange., Vol. 4 (Springer Science & Business Media, 2013).Ronquist, F. Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 46, 195–203 (1997).Article 

    Google Scholar 
    Ricklefs, R. E. & Bermingham, E. The concept of the taxon cycle in biogeography. Glob. Ecol. Biogeogr. 11, 353–361 (2002).Article 

    Google Scholar 
    Ma, H. An analysis of the equilibrium of migration models for biogeography-based optimization. Inf. Sci. 180, 3444–3464 (2010).Article 

    Google Scholar 
    Yiming, L., Niemelä, J. & Dianmo, L. Nested distribution of amphibians in the Zhoushan archipelago, China: can selective extinction cause nested subsets of species? Oecologia 113, 557–564 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Crisci, J. V., Katinas, L. & Posadas, P. Historical Biogeography: An Introduction. (Harvard University Press, 2003).Chen, R. et al. Adaptive innovation of green plants by horizontal gene transfer. Biotechnol. Adv. 46, 107671 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schönknecht, G., Weber, A. P. & Lercher, M. J. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36, 9–20 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Smith, A. B. Echinoderm phylogeny: morphology and molecules approach accord. Trends Ecol. Evolution 7, 224–229 (1992).CAS 
    Article 

    Google Scholar 
    Bateman, R. M., Hilton, J. & Rudall, P. J. Morphological and molecular phylogenetic context of the angiosperms: contrasting the ‘top-down’ and ‘bottom-up’ approaches used to infer the likely characteristics of the first flowers. J. Exp. Bot. 57, 3471–3503 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl Acad. Sci. 115, E2274–E2283 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richter, S. The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org. Diversity Evolution 2, 217–237 (2002).Article 

    Google Scholar 
    Dunn, C. W. et al. Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452, 745–749 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caravas, J. & Friedrich, M. Of mites and millipedes: recent progress in resolving the base of the arthropod tree. BioEssays 32, 488–495 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard, R. J. et al. The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data. J. Geol. Soc. https://doi.org/10.1144/jgs2021-107 (2022).Newman, M. E. J. A model of mass extinction. J. Theor. Biol. 189, 235–252 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cobbett, A., Wilkinson, M. & Wills, M. A. Fossils impact as hard as living taxa in parsimony analyses of morphology. Syst. Biol. 56, 753–766 (2007).PubMed 
    Article 

    Google Scholar 
    Ruta, M., Krieger, J., Angielczyk, K. & Wills, M. A. The evolution of the tetrapod humerus: morphometrics, disparity, and evolutionary rates. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 351–369 (2018).
    Google Scholar 
    Puttick, M. N., Thomas, G. H. & Benton, M. J. High rates of evolution preceded the origins of birds. Evolution 68, 1497–1510 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sansom, R. S. & Wills, M. A. Fossilization causes organisms to appear erroneously primitive by distorting evolutionary trees. Sci. Rep. 3, 1–5 (2013).Article 

    Google Scholar 
    Brinkworth, A., Sansom, R. & Wills, M. A. Phylogenetic incongruence and homoplasy in the appendages and bodies of arthropods: why broad character sampling is best. Zool. J. Linn. Soc. 187, 100–116 (2019).Article 

    Google Scholar 
    Brown, J. W. & Smith, S. A. The past sure is tense: on interpreting phylogenetic divergence time estimates. Syst. Biol. 67, 340–353 (2018).PubMed 
    Article 

    Google Scholar 
    Barba-Montoya, J., Dos Reis, M. & Yang, Z. H. Comparison of different strategies for using fossil calibrations to generate the time prior in Bayesian molecular clock dating. Mol. Phylogenetics Evolution 114, 386–400 (2017).CAS 
    Article 

    Google Scholar 
    Sanderson, M. J. & Donoghue, M. J. Patterns of variation in levels of homoplasy. Evolution 43, 1781–1795 (1989).PubMed 
    Article 

    Google Scholar 
    Alroy, J. Fossilworks: Gateway to the Paleobiology Database, http://fossilworks.org (2019).Benton, M. J. The Fossil Record 2. (Chapman & Hall, 1993).Cohen, K. M., Harper, D. A. T. & Gibbard, P. L. ICS International Chronostratigraphic Chart 2021/02, http://www.stratigraphy.org/ (2021).Gradstein, F. & Ogg, J. Geologic time scale 2004–why, how, and where next! Lethaia 37, 175–181 (2004).Article 

    Google Scholar 
    Rohde, R. A. The GeoWhen Database, (2005).O’Leary, M. A. et al. The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339, 662–667 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kluge, A. G. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Biol. 38, 7–25 (1989).Article 

    Google Scholar 
    Tolson, P. J. Phylogenetics of the boid snake genus Epicrates and Caribbean vicariance theory. Occasional Pap. Mus. Zool., Univ. Mich. 715, 1–68 (1987).
    Google Scholar 
    Clopper, C. J. & Pearson, E. S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934).Article 

    Google Scholar  More

  • in

    25 years of valuing ecosystems in decision-making

    Costanza, R. et al. Nature 387, 253–260 (1997).Article 

    Google Scholar 
    Toman, M. Ecol. Econom. 25, 57–60 (1998).Article 

    Google Scholar 
    Barbier, E. B., Burgess, J. C. & Folke, C. (eds) Paradise Lost? The Ecological Economics of Biodiversity (Routledge, 1994).
    Google Scholar 
    Daily, G. C. (ed.) Nature’s Services: Societal Dependence on Natural Ecosystems (Island, 1997).
    Google Scholar 
    Watson, R. T. et al. (eds) Global Biodiversity Assessment: Summary for Policy-Makers (Cambridge Univ. Press, 1995).
    Google Scholar 
    Reid, W. V. et al. Ecosystems and Human Well-Being: Synthesis (A Report of the Millennium Ecosystem Assessment) (Island, 2005).
    Google Scholar 
    Chichilnisky, G. & Heal, G. Nature 391, 629–630 (1998).Article 

    Google Scholar 
    Umaña Quesada, A. in Green Growth That Works: Natural Capital Policy and Finance Mechanisms from Around the World (eds Mandle, L. et al.) Ch. 13, 195–212 (Island, 2019).
    Google Scholar 
    Ouyang, Z. et al. in Green Growth That Works: Natural Capital Policy and Finance Mechanisms from Around the World (eds Mandle, L. et al.) Ch. 12, 177–194 (Island, 2019).
    Google Scholar 
    Salzman, J., Bennett, G., Carroll, N., Goldstein, A. & Jenkins, M. Nature Sustain. 1, 136–144 (2018).Article 

    Google Scholar 
    Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. The Global Assessment Report on Biodiversity and Ecosystem Services: Summary for Policymakers (eds Díaz, S. et al.) (IPBES, 2019).
    Google Scholar 
    Chaplin-Kramer, R. et al. Science 366, 255–258 (2019).PubMed 
    Article 

    Google Scholar 
    Hamel, P. et al. npj Nature Urban Sustain. 1, 25 (2021).Article 

    Google Scholar 
    Mandle, L., Ouyang, Z., Salzman, J. & Daily, G. C. (eds) Green Growth That Works: Natural Capital Policy and Finance Mechanisms from Around the World (Island, 2019).
    Google Scholar 
    Dasgupta, P. The Economics of Biodiversity: The Dasgupta Review. Abridged Version (HM Treasury, 2021).
    Google Scholar 
    Arkema, K. K. et al. Proc. Natl Acad. Sci. USA 112, 7390–7395 (2015).PubMed 
    Article 

    Google Scholar 
    Ouyang, Z. et al. Proc. Natl Acad. Sci. USA 117, 14593–14601 (2020).PubMed 
    Article 

    Google Scholar  More

  • in

    Optical vegetation indices for monitoring terrestrial ecosystems globally

    Houborg, R., Fisher, J. B. & Skidmore, A. K. Advances in remote sensing of vegetation function and traits. Int. J. Appl. Earth Obs. Geoinf. 43, 1–6 (2015).
    Google Scholar 
    Bannari, A., Morin, D., Bonn, F. & Huete, A. A review of vegetation indices. Remote Sens. Rev. 13, 95–120 (1995).Article 

    Google Scholar 
    Gao, X., Huete, A. R., Ni, W. & Miura, T. Optical–biophysical relationships of vegetation spectra without background contamination. Remote Sens. Environ. 74, 609–620 (2000).Article 

    Google Scholar 
    Huete, A. R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309 (1988).Article 

    Google Scholar 
    Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 3, e1602244 (2017).Article 

    Google Scholar 
    Gamon, J. A. et al. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl Acad. Sci. USA 113, 13087–13092 (2016).Article 

    Google Scholar 
    Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).Article 

    Google Scholar 
    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).Article 

    Google Scholar 
    Tian, F. et al. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 163, 326–340 (2015).Article 

    Google Scholar 
    Fan, X. & Liu, Y. A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS J. Photogramm. Remote Sens. 121, 177–191 (2016).Article 

    Google Scholar 
    AghaKouchak, A. et al. Remote sensing of drought: progress, challenges and opportunities. Rev. Geophys. 53, 452–480 (2015).Article 

    Google Scholar 
    Anyamba, A. & Tucker, in Remote Sensing of Drought: Innovative Monitoring Approaches Ch. 2 (eds Wardlow, B. D., Anderson, M. C. & Verdin, J. P.) (Taylor & Francis, 2012).Veraverbeke, S. et al. Hyperspectral remote sensing of fire: state-of-the-art and future perspectives. Remote Sens. Environ. 216, 105–121 (2018).Article 

    Google Scholar 
    Tucker, C. J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).Article 

    Google Scholar 
    Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 351, 309 (1974).
    Google Scholar 
    Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D. W. & Harlan, J. C. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. NASA/GSFCT Type III Final Report, 371 (NASA, 1974).Gutman, G., Skakun, S. & Gitelson, A. Revisiting the use of red and near-infrared reflectances in vegetation studies and numerical climate models. Sci. Remote Sens. 4, 100025 (2021).Article 

    Google Scholar 
    Jackson, R. D. & Huete, A. R. Interpreting vegetation indices. Prev. Vet. Med. 11, 185–200 (1991).Article 

    Google Scholar 
    Richardson, A. J. & Wiegand, C. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 43, 1541–1552 (1977).
    Google Scholar 
    Baret, F., Guyot, G. & Major, D. in 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium 1355–1358 (IEEE, 1989).Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994).Article 

    Google Scholar 
    Chen, J. M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 22, 229–242 (1996).Article 

    Google Scholar 
    Brown, L., Chen, J. M., Leblanc, S. G. & Cihlar, J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: an image and model analysis. Remote Sens. Environ. 71, 16–25 (2000).Article 

    Google Scholar 
    Pinty, B. & Verstraete, M. GEMI: a non-linear index to monitor global vegetation from satellites. Vegetatio 101, 15–20 (1992).Article 

    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 

    Google Scholar 
    Kaufman, Y. J. & Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 30, 261–270 (1992).Article 

    Google Scholar 
    Jiang, Z., Huete, A. R., Didan, K. & Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112, 3833–3845 (2008).Article 

    Google Scholar 
    Jin, H. & Eklundh, L. A physically based vegetation index for improved monitoring of plant phenology. Remote Sens. Environ. 152, 512–525 (2014).Article 

    Google Scholar 
    Yang, P., van der Tol, C., Campbell, P. K. & Middleton, E. M. Fluorescence Correction Vegetation Index (FCVI): A physically based reflectance index to separate physiological and non-physiological information in far-red sun-induced chlorophyll fluorescence. Remote Sens. Environ. 240, 111676 (2020).Article 

    Google Scholar 
    Badgley, G., Anderegg, L. D., Berry, J. A. & Field, C. B. Terrestrial gross primary production: Using NIRV to scale from site to globe. Glob. Change Biol. 25, 3731–3740 (2019).Article 

    Google Scholar 
    Camps-Valls, G. et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 7, eabc7447 (2021).Article 

    Google Scholar 
    Roberts, D. A., Roth, K. L. & Perroy, R. L. in Hyperspectral Remote Sensing of Vegetation Ch. 14 (eds Thenkabail, P. S., Lyon, J. G. & Huete, A.) (CRC, 2016).Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D. C. & Arkebauer, T. J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 32, L08403 (2005).Article 

    Google Scholar 
    Gitelson, A. & Merzlyak, M. N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 143, 286–292 (1994).Article 

    Google Scholar 
    Dash, J. & Curran, P. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 25, 5403–5413 (2004).Article 

    Google Scholar 
    Penuelas, J., Baret, F. & Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31, 221–230 (1995).
    Google Scholar 
    Peñuelas, J., Gamon, J., Fredeen, A., Merino, J. & Field, C. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 48, 135–146 (1994).Article 

    Google Scholar 
    Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B. & Rakitin, V. Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 106, 135–141 (1999).Article 

    Google Scholar 
    Gitelson, A. A., Merzlyak, M. N. & Chivkunova, O. B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochem. Photobiol. 74, 38–45 (2001).Article 

    Google Scholar 
    van den Berg, A. K. & Perkins, T. D. Nondestructive estimation of anthocyanin content in autumn sugar maple leaves. HortScience 40, 685–686 (2005).Article 

    Google Scholar 
    Gamon, J. & Surfus, J. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 143, 105–117 (1999).Article 

    Google Scholar 
    Gao, B.-C. NDWI — a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996).Article 

    Google Scholar 
    Xiao, X., Boles, S., Liu, J., Zhuang, D. & Liu, M. Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data. Remote Sens. Environ. 82, 335–348 (2002).Article 

    Google Scholar 
    Xiao, X. et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89, 519–534 (2004).Article 

    Google Scholar 
    Yilmaz, M. T., Hunt, E. R. Jr & Jackson, T. J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ. 112, 2514–2522 (2008).Article 

    Google Scholar 
    Cheng, Y.-B., Ustin, S. L., Riaño, D. & Vanderbilt, V. C. Water content estimation from hyperspectral images and MODIS indexes in Southeastern Arizona. Remote Sens. Environ. 112, 363–374 (2008).Article 

    Google Scholar 
    Serrano, L., Penuelas, J. & Ustin, S. L. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sens. Environ. 81, 355–364 (2002).Article 

    Google Scholar 
    Filella, I. et al. PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. Int. J. Remote Sens. 30, 4443–4455 (2009).Article 

    Google Scholar 
    Gamon, J., Penuelas, J. & Field, C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 41, 35–44 (1992).Article 

    Google Scholar 
    Cheng, R. et al. Decomposing reflectance spectra to track gross primary production in a subalpine evergreen forest. Biogeosciences 17, 4523–4544 (2020).Article 

    Google Scholar 
    Seyednasrollah, B. et al. Seasonal variation in the canopy color of temperate evergreen conifer forests. New Phytol. 229, 2586–2600 (2021).Article 

    Google Scholar 
    Merton, R. in Proceedings of the Seventh Annual JPL Airborne Earth Science Workshop 12–16 (NASA, 2004).Naidu, R. A., Perry, E. M., Pierce, F. J. & Mekuria, T. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Comput. Electron. Agric. 66, 38–45 (2009).Article 

    Google Scholar 
    Chen, Y. et al. Generation and evaluation of LAI and FPAR products from Himawari-8 Advanced Himawari imager (AHI) data. Remote Sens. 11, 1517 (2019).Article 

    Google Scholar 
    Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens. 5, 927–948 (2013).Article 

    Google Scholar 
    Liu, Y., Liu, R. & Chen, J. M. Retrospective retrieval of long-term consistent global leaf area index (1981–2011) from combined AVHRR and MODIS data. J. Geophys. Res. 117, G04003 (2012).
    Google Scholar 
    Croft, H. et al. The global distribution of leaf chlorophyll content. Remote Sens. Environ. 236, 111479 (2020).Article 

    Google Scholar 
    Bayat, B. et al. Toward operational validation systems for global satellite-based terrestrial essential climate variables. Int. J. Appl. Earth Obs. Geoinf. 95, 102240 (2021).
    Google Scholar 
    Cui, Y., Song, L. & Fan, W. Generation of spatio-temporally continuous evapotranspiration and its components by coupling a two-source energy balance model and a deep neural network over the Heihe River Basin. J. Hydrol. 597, 126176 (2021).Article 

    Google Scholar 
    Ali, I., Greifeneder, F., Stamenkovic, J., Neumann, M. & Notarnicola, C. Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data. Remote Sens. 7, 16398–16421 (2015).Article 

    Google Scholar 
    Gitelson, A. A. et al. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 30, 1248 (2003).Article 

    Google Scholar 
    Huang, M. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).Article 

    Google Scholar 
    Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).Article 

    Google Scholar 
    Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).Article 

    Google Scholar 
    Jiang, Z. et al. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 101, 366–378 (2006).Article 

    Google Scholar 
    Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J. & Strachan, I. B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90, 337–352 (2004).Article 

    Google Scholar 
    Wu, C., Wang, L., Niu, Z., Gao, S. & Wu, M. Nondestructive estimation of canopy chlorophyll content using Hyperion and Landsat/TM images. Int. J. Remote Sens. 31, 2159–2167 (2010).Article 

    Google Scholar 
    Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).Article 

    Google Scholar 
    Ustin, S. L. & Gamon, J. A. Remote sensing of plant functional types. New Phytol. 186, 795–816 (2010).Article 

    Google Scholar 
    Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).Article 

    Google Scholar 
    Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).Article 

    Google Scholar 
    Weber, M. et al. Exploring the use of DSCOVR/EPIC satellite observations to monitor vegetation phenology. Remote Sens. 12, 2384 (2020).Article 

    Google Scholar 
    Ganguly, S., Friedl, M. A., Tan, B., Zhang, X. & Verma, M. Land surface phenology from MODIS: characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 114, 1805–1816 (2010).Article 

    Google Scholar 
    Gray, J., Sulla-Menashe, D. & Friedl, M. A. User Guide to Collection 6 MODIS Land Cover Dynamics Product (MCD12Q2) (NASA, 2019).Wang, S., Zhang, Y., Ju, W., Qiu, B. & Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data. Sci. Total Environ. 755, 142569 (2021).Article 

    Google Scholar 
    Tian, F. et al. Calibrating vegetation phenology from Sentinel-2 using eddy covariance, PhenoCam, and PEP725 networks across Europe. Remote Sens. Environ. 260, 112456 (2021).Article 

    Google Scholar 
    Yin, G., Verger, A., Filella, I., Descals, A. & Peñuelas, J. Divergent estimates of forest photosynthetic phenology using structural and physiological vegetation indices. Geophys. Res. Lett. 47, e2020GL089167 (2020).Article 

    Google Scholar 
    Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Change 11, 442–448 (2021).Article 

    Google Scholar 
    Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 37, L05401 (2010).Article 

    Google Scholar 
    Shi, Y., Huang, W., Luo, J., Huang, L. & Zhou, X. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agric. 141, 171–180 (2017).Article 

    Google Scholar 
    Zhang, Z., Liu, M., Liu, X. & Zhou, G. A new vegetation index based on multitemporal Sentinel-2 images for discriminating heavy metal stress levels in rice. Sensors 18, 2172 (2018).Article 

    Google Scholar 
    Yengoh, G. T., Dent, D., Olsson, L., Tengberg, A. E. & Tucker III, C. J. Use of the Normalized Difference Vegetation Index (NDVI) to Assess Land Degradation at Multiple Scales: Current Status, Future Trends, and Practical Considerations (Springer, 2015).Potter, C. S. et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Glob. Biogeochem. Cycles 7, 811–841 (1993).Article 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    Yuan, W. et al. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 143, 189–207 (2007).Article 

    Google Scholar 
    Chen, M. et al. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data. Biogeosciences 8, 2665–2688 (2011).Article 

    Google Scholar 
    Xiao, J. et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data. Remote Sens. Environ. 114, 576–591 (2010).Article 

    Google Scholar 
    Jiang, C., Guan, K., Wu, G., Peng, B. & Wang, S. A daily, 250 m, and real-time gross primary productivity product (2000–present) covering the contiguous United States. Earth Syst. Sci. Data Discuss. 2020, 1–28 (2020).
    Google Scholar 
    Schubert, P. et al. Modeling GPP in the Nordic forest landscape with MODIS time series data — comparison with the MODIS GPP product. Remote Sens. Environ. 126, 136–147 (2012).Article 

    Google Scholar 
    Zeng, Y. et al. A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sens. Environ. 232, 111209 (2019).Article 

    Google Scholar 
    Baldocchi, D. D. et al. Outgoing near infrared radiation from vegetation scales with canopy photosynthesis across a spectrum of function, structure, physiological capacity and weather. J. Geophys. Res. 125, e2019JG005534 (2020).
    Google Scholar 
    Dechant, B. et al. Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sens. Environ. 241, 111733 (2020).Article 

    Google Scholar 
    Rahman, A. F., Gamon, J. A., Fuentes, D. A., Roberts, D. A. & Prentiss, D. Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. J. Geophys. Res. Atmos. 106, 33579–33591 (2001).Article 

    Google Scholar 
    Zhu, Z. et al. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eabg5673 (2021).Article 

    Google Scholar 
    Doughty, R. et al. Small anomalies in dry-season greenness and chlorophyll fluorescence for Amazon moist tropical forests during El Niño and La Niña. Remote Sens. Environ. 253, 112196 (2021).Article 

    Google Scholar 
    Huang, N. et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 6, eabb8508 (2020).Article 

    Google Scholar 
    Huang, N., He, J.-S. & Niu, Z. Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data. Ecol. Indic. 26, 117–125 (2013).Article 

    Google Scholar 
    Neale, C. M., Gonzalez-Dugo, M. P., Serrano-Perez, A., Campos, I. & Mateos, L. Cotton canopy reflectance under variable solar zenith angles: implications of use in evapotranspiration models. Hydrol. Process. 35, e14162 (2021).Article 

    Google Scholar 
    Chen, J. M. & Liu, J. Evolution of evapotranspiration models using thermal and shortwave remote sensing data. Remote Sens. Environ. 237, 111594 (2020).Article 

    Google Scholar 
    Glenn, E. P., Huete, A. R., Nagler, P. L. & Nelson, S. G. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors 8, 2136–2160 (2008).Article 

    Google Scholar 
    Cui, Y., Jia, L. & Fan, W. Estimation of actual evapotranspiration and its components in an irrigated area by integrating the Shuttleworth-Wallace and surface temperature-vegetation index schemes using the particle swarm optimization algorithm. Agric. For. Meteorol. 307, 108488 (2021).Article 

    Google Scholar 
    Glenn, E. P., Neale, C. M., Hunsaker, D. J. & Nagler, P. L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 25, 4050–4062 (2011).Article 

    Google Scholar 
    French, A. N. et al. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 239, 106266 (2020).Article 

    Google Scholar 
    Lotsch, A., Friedl, M. A., Anderson, B. T. & Tucker, C. J. Coupled vegetation-precipitation variability observed from satellite and climate records. Geophys. Res. Lett. 30, 1774 (2003).Article 

    Google Scholar 
    Nezlin, N. P., Kostianoy, A. G. & Li, B.-L. Inter-annual variability and interaction of remote-sensed vegetation index and atmospheric precipitation in the Aral Sea region. J. Arid Environ. 62, 677–700 (2005).Article 

    Google Scholar 
    Notaro, M., Liu, Z. & Williams, J. W. Observed vegetation–climate feedbacks in the United States. J. Clim. 19, 763–786 (2006).Article 

    Google Scholar 
    Fensholt, R. & Proud, S. R. Evaluation of earth observation based global long term vegetation trends — Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 119, 131–147 (2012).Article 

    Google Scholar 
    Trishchenko, A. P., Cihlar, J. & Li, Z. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 81, 1–18 (2002).Article 

    Google Scholar 
    Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).Article 

    Google Scholar 
    Wang, D. et al. Impact of sensor degradation on the MODIS NDVI time series. Remote Sens. Environ. 119, 55–61 (2012).Article 

    Google Scholar 
    Zhang, Y., Song, C., Band, L. E., Sun, G. & Li, J. Reanalysis of global terrestrial vegetation trends from MODIS products: browning or greening? Remote Sens. Environ. 191, 145–155 (2017).Article 

    Google Scholar 
    Bhatt, R. et al. A consistent AVHRR visible calibration record based on multiple methods applicable for the NOAA degrading orbits. Part I: Methodology. J. Atmos. Ocean. Technol. 33, 2499–2515 (2016).Article 

    Google Scholar 
    Frankenberg, C., Yin, Y., Byrne, B., He, L. & Gentine, P. Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, eabg2947 (2021).Article 

    Google Scholar 
    Los, S. O. Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites. IEEE Trans. Geosci. Remote Sens. 36, 206–213 (1998).Article 

    Google Scholar 
    Jiang, C. et al. Inconsistencies of interannual variability and trends in long-term satellite leaf area index products. Glob. Change Biol. 23, 4133–4146 (2017).Article 

    Google Scholar 
    de Beurs, K. M. & Henebry, G. M. Trend analysis of the Pathfinder AVHRR Land (PAL) NDVI data for the deserts of Central Asia. IEEE Geosci. Remote Sens. Lett. 1, 282–286 (2004).Article 

    Google Scholar 
    Wang, Z. et al. Large discrepancies of global greening: indication of multi-source remote sensing data. Global Ecol. Conserv. 34, e02016 (2022).Article 

    Google Scholar 
    Miura, T., Huete, A. R. & Yoshioka, H. Evaluation of sensor calibration uncertainties on vegetation indices for MODIS. IEEE Trans Geosci. Remote Sens. 38, 1399–1409 (2000).Article 

    Google Scholar 
    Lyapustin, A. et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 7, 4353–4365 (2014).Article 

    Google Scholar 
    Buchhorn, M., Raynolds, M. K. & Walker, D. A. Influence of BRDF on NDVI and biomass estimations of Alaska Arctic tundra. Environ. Res. Lett. 11, 125002 (2016).Article 

    Google Scholar 
    Fensholt, R., Sandholt, I., Proud, S. R., Stisen, S. & Rasmussen, M. O. Assessment of MODIS sun-sensor geometry variations effect on observed NDVI using MSG SEVIRI geostationary data. Int. J. Remote Sens. 31, 6163–6187 (2010).Article 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016).Article 

    Google Scholar 
    Lyapustin, A. I. et al. Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction. Remote Sens. Environ. 127, 385–393 (2012).Article 

    Google Scholar 
    Norris, J. R. & Walker, J. J. Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States. Remote Sens. Environ. 249, 112013 (2020).Article 

    Google Scholar 
    Roy, D. P. et al. A general method to normalize Landsat reflectance data to nadir BRDF adjusted reflectance. Remote Sens. Environ. 176, 255–271 (2016).Article 

    Google Scholar 
    Schaaf, C. B. et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 83, 135–148 (2002).Article 

    Google Scholar 
    Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series) (Univ. Arizona, 2015).Wang, Z., Schaaf, C. B., Sun, Q., Shuai, Y. & Román, M. O. Capturing rapid land surface dynamics with Collection V006 MODIS BRDF/NBAR/Albedo (MCD43) products. Remote Sens. Environ. 207, 50–64 (2018).Article 

    Google Scholar 
    Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612 (2007).Article 

    Google Scholar 
    Vargas, M., Miura, T., Shabanov, N. & Kato, A. An initial assessment of Suomi NPP VIIRS vegetation index EDR. J. Geophys. Res. Atmos. 118, 12,301–12,316 (2013).Article 

    Google Scholar 
    Kobayashi, H. & Dye, D. G. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 97, 519–525 (2005).Article 

    Google Scholar 
    Jiang, C. & Fang, H. GSV: a general model for hyperspectral soil reflectance simulation. Int. J. Appl. Earth Obs. Geoinf. 83, 101932 (2019).
    Google Scholar 
    Verrelst, J., Schaepman, M. E., Malenovský, Z. & Clevers, J. G. Effects of woody elements on simulated canopy reflectance: Implications for forest chlorophyll content retrieval. Remote Sens. Environ. 114, 647–656 (2010).Article 

    Google Scholar 
    Huete, A. & Tucker, C. Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery. Int. J. Remote Sens. 12, 1223–1242 (1991).Article 

    Google Scholar 
    Farrar, T., Nicholson, S. & Lare, A. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. II. NDVI response to soil oisture. Remote Sens. Environ. 50, 121–133 (1994).Article 

    Google Scholar 
    Huete, A. & Warrick, A. Assessment of vegetation and soil water regimes in partial canopies with optical remotely sensed data. Remote Sens. Environ. 32, 155–167 (1990).Article 

    Google Scholar 
    Wang, C. et al. A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 196, 1–12 (2017).Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Change 10, 106–117 (2020).Article 

    Google Scholar 
    Shen, M. et al. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc. Natl Acad. Sci. 110, E2329 (2013).
    Google Scholar 
    Hao, D. et al. Modeling anisotropic reflectance over composite sloping terrain. IEEE Trans. Geosci. Remote Sens. 56, 3903–3923 (2018).Article 

    Google Scholar 
    Matsushita, B., Yang, W., Chen, J., Onda, Y. & Qiu, G. Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: a case study in high-density cypress forest. Sensors 7, 2636–2651 (2007).Article 

    Google Scholar 
    Wen, J. et al. Characterizing land surface anisotropic reflectance over rugged terrain: a review of concepts and recent developments. Remote Sens. 10, 370 (2018).Article 

    Google Scholar 
    Friedl, M. A., Davis, F. W., Michaelsen, J. & Moritz, M. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: an analysis using a scene simulation model and data from FIFE. Remote Sens. Environ. 54, 233–246 (1995).Article 

    Google Scholar 
    Tan, B. et al. The impact of gridding artifacts on the local spatial properties of MODIS data: implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ. 105, 98–114 (2006).Article 

    Google Scholar 
    Wolfe, R. E. et al. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 83, 31–49 (2002).Article 

    Google Scholar 
    Ferreira, M. P. et al. Retrieving structural and chemical properties of individual tree crowns in a highly diverse tropical forest with 3D radiative transfer modeling and imaging spectroscopy. Remote Sens. Environ. 211, 276–291 (2018).Article 

    Google Scholar 
    Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405 (2006).Article 

    Google Scholar 
    Herrmann, S. M. & Tappan, G. G. Vegetation impoverishment despite greening: a case study from central Senegal. J. Arid Environ. 90, 55–66 (2013).Article 

    Google Scholar 
    Wang, X. et al. No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 122, 3288–3305 (2017).Article 

    Google Scholar 
    Donnelly, A., Yu, R. & Liu, L. Comparing in situ spring phenology and satellite-derived start of season at rural and urban sites in Ireland. Int. J. Remote Sens. 42, 7821–7841 (2021).Article 

    Google Scholar 
    Templ, B. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int. J. Biometeorol. 62, 1109–1113 (2018).Article 

    Google Scholar 
    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).Article 

    Google Scholar 
    Chen, X. & Yang, Y. Observed earlier start of the growing season from middle to high latitudes across the Northern Hemisphere snow-covered landmass for the period 2001–2014. Environ. Res. Lett. 15, 034042 (2020).Article 

    Google Scholar 
    Alatorre, L. C. et al. Temporal changes of NDVI for qualitative environmental assessment of mangroves: shrimp farming impact on the health decline of the arid mangroves in the Gulf of California (1990–2010). J. Arid Environ. 125, 98–109 (2016).Article 

    Google Scholar 
    Jacquemoud, S. & Baret, F. PROSPECT: a model of leaf optical properties spectra. Remote Sens. Environ. 34, 75–91 (1990).Article 

    Google Scholar 
    Wu, S. et al. Quantifying leaf optical properties with spectral invariants theory. Remote Sens. Environ. 253, 112131 (2021).Article 

    Google Scholar 
    Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416 (2019).Article 

    Google Scholar 
    Van Leeuwen, W. & Huete, A. Effects of standing litter on the biophysical interpretation of plant canopies with spectral indices. Remote Sens. Environ. 55, 123–138 (1996).Article 

    Google Scholar 
    Dechant, B. et al. NIRvP: a robust structural proxy for sun-induced chlorophyll fluorescence and photosynthesis across scales. Remote Sens. Environ. 268, 112763 (2022).Article 

    Google Scholar 
    Zeng, Y. et al. Estimating near-infrared reflectance of vegetation from hyperspectral data. Remote Sens. Environ. 267, 112723 (2021).Article 

    Google Scholar 
    Claverie, M. et al. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 219, 145–161 (2018).Article 

    Google Scholar 
    Hantson, S. & Chuvieco, E. Evaluation of different topographic correction methods for Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 13, 691–700 (2011).
    Google Scholar 
    Zhang, H. K. et al. Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote Sens. Environ. 215, 482–494 (2018).Article 

    Google Scholar 
    Gao, F., Masek, J., Schwaller, M. & Hall, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207–2218 (2006).Article 

    Google Scholar 
    Zhu, X. et al. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 172, 165–177 (2016).Article 

    Google Scholar 
    Luo, Y., Guan, K. & Peng, J. STAIR: A generic and fully-automated method to fuse multiple sources of optical satellite data to generate a high-resolution, daily and cloud-/gap-free surface reflectance product. Remote Sens. Environ. 214, 87–99 (2018).Article 

    Google Scholar 
    Houborg, R. & McCabe, M. F. Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sens. 10, 890 (2018).Article 

    Google Scholar 
    Kimm, H. et al. Deriving high-spatiotemporal-resolution leaf area index for agroecosystems in the US Corn Belt using Planet Labs CubeSat and STAIR fusion data. Remote Sens. Environ. 239, 111615 (2020).Article 

    Google Scholar 
    Kong, J. et al. Evaluation of four image fusion NDVI products against in-situ spectral-measurements over a heterogeneous rice paddy landscape. Agric. For. Meteorol. 297, 108255 (2021).Article 

    Google Scholar 
    Köhler, P. et al. Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: first results and intersensor comparison to OCO-2. Geophys. Res. Lett. 45, 10,456–10,463 (2018).Article 

    Google Scholar 
    Sun, Y. et al. OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science 358, eaam5747 (2017).Article 

    Google Scholar 
    Joiner, J., Yoshida, Y., Vasilkov, A. & Middleton, E. First observations of global and seasonal terrestrial chlorophyll fluorescence from space. Biogeosciences 8, 637–651 (2011).Article 

    Google Scholar 
    Frankenberg, C. et al. New global observations of the terrestrial carbon cycle from GOSAT: patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett. 38, L17706 (2011).Article 

    Google Scholar 
    Qiu, B., Ge, J., Guo, W., Pitman, A. J. & Mu, M. Responses of Australian dryland vegetation to the 2019 heat wave at a subdaily scale. Geophys. Res. Lett. 47, e2019GL086569 (2020).
    Google Scholar 
    Magney, T. S. et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl Acad. Sci. USA 116, 11640–11645 (2019).Article 

    Google Scholar 
    Guanter, L. et al. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmos. Meas. Tech. 8, 1337–1352 (2015).Article 

    Google Scholar 
    Knyazikhin, Y. et al. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl Acad. Sci. USA 110, E185–E192 (2013).
    Google Scholar 
    Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).Article 

    Google Scholar 
    Zeng, Y. et al. Combining near-infrared radiance of vegetation and fluorescence spectroscopy to detect effects of abiotic changes and stresses. Remote Sens. Environ. 270, 112856 (2022).Article 

    Google Scholar 
    Shi, J. et al. Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E. Remote Sens. Environ. 112, 4285–4300 (2008).Article 

    Google Scholar 
    Talebiesfandarani, S. et al. Microwave vegetation index from multi-angular observations and its application in vegetation properties retrieval: theoretical modelling. Remote Sens. 11, 730 (2019).Article 

    Google Scholar 
    Wigneron, J.-P. et al. SMOS-IC data record of soil moisture and L-VOD: historical development, applications and perspectives. Remote Sens. Environ. 254, 112238 (2021).Article 

    Google Scholar 
    Zhang, Y., Zhou, S., Gentine, P. & Xiao, X. Can vegetation optical depth reflect changes in leaf water potential during soil moisture dry-down events? Remote Sens. Environ. 234, 111451 (2019).Article 

    Google Scholar 
    Frappart, F. et al. Global monitoring of the vegetation dynamics from the vegetation optical depth (VOD): a review. Remote Sens. 12, 2915 (2020).Article 

    Google Scholar 
    Xiao, J., Fisher, J. B., Hashimoto, H., Ichii, K. & Parazoo, N. C. Emerging satellite observations for diurnal cycling of ecosystem processes. Nat. Plants 7, 877–887 (2021).Article 

    Google Scholar 
    Hashimoto, H. et al. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 12, 684 (2021).Article 

    Google Scholar 
    Somkuti, P. et al. Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): An extensive simulation study. Remote Sens. Environ. 263, 112565 (2021).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    Richardson, A. D., Braswell, B. H., Hollinger, D. Y., Jenkins, J. P. & Ollinger, S. V. Near-surface remote sensing of spatial and temporal variation in canopy phenology. Ecol. Appl. 19, 1417–1428 (2009).Article 

    Google Scholar 
    Daughtry, C. S. Discriminating crop residues from soil by shortwave infrared reflectance. Agron. J. 93, 125–131 (2001).Article 

    Google Scholar  More