The role of zinc in the adaptive evolution of polar phytoplankton
Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237 (1998).CAS
PubMed
Google Scholar
Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).CAS
PubMed
Google Scholar
Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).CAS
Google Scholar
Morel, F. M. M., Lam, P. J. & Saito, M. A. Trace metal substitution in marine phytoplankton. Annu. Rev. Earth Planet Sci. 48, 491–517 (2020).CAS
Google Scholar
Morel, F. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS
PubMed
Google Scholar
Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).
Google Scholar
Ho, T.-Y. et al. The elemental composition of some marine phytoplankton. J. Phycol. 39, 1145–1159 (2003).CAS
Google Scholar
Ellwood, M. J. Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the subantarctic zone between 40–52°S; 155–160°E. Mar. Chem. 112, 107–117 (2008).CAS
Google Scholar
Zhao, Y., Vance, D., Abouchami, W. & de Baar, H. J. W. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Cosmochim. Acta 125, 653–667 (2014).CAS
Google Scholar
John, S. G., Helgoe, J. & Townsend, E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Mar. Chem. 201, 256–262 (2018).CAS
Google Scholar
Middag, R., de Baar, H. J. W. & Bruland, K. W. The relationships between dissolved zinc and major nutrients phosphate and silicate along the GEOTRACES GA02 transect in the West Atlantic Ocean. Glob. Biogeochem. Cy. 33, 63–84 (2019).CAS
Google Scholar
Sunda, W. G. & Huntsman, S. A. Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr. 37, 25–40 (1992).CAS
Google Scholar
Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).CAS
Google Scholar
Vance, D. et al. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nat. Geosci. 10, 202 (2017).CAS
Google Scholar
Weber, T., John, S., Tagliabue, A. & DeVries, T. Biological uptake and reversible scavenging of zinc in the global ocean. Science 361, 72 (2018).CAS
PubMed
Google Scholar
Roshan, S., DeVries, T., Wu, J. & Chen, G. The internal cycling of zinc in the ocean. Glob. Biogeochem. Cy. 32, 1833–1849 (2018).CAS
Google Scholar
Scott, C. et al. Bioavailability of zinc in marine systems through time. Nat. Geosci. 6, 125–128 (2012).
Google Scholar
Mock, T. et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540 (2017).CAS
PubMed
Google Scholar
Blaby-Haas, C. E. & Merchant, S. S. Comparative and functional algal genomics. Annu. Rev. Plant Biol. 70, 605–638 (2019).CAS
PubMed
Google Scholar
Zhang, Z. H. et al. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr. Biol. 30, 3330–3341 (2020).CAS
PubMed
Google Scholar
Clarke, A. et al. The Southern Ocean benthic fauna and climate change: a historical perspective. Philos. Trans. R. Soc. Lond. B 338, 299–309 (1992).
Google Scholar
Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231 (2010).CAS
PubMed
Google Scholar
Krishna, S. S., Majumdar, I. & Grishin, N. V. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31, 532–550 (2003).CAS
PubMed
PubMed Central
Google Scholar
Barlow, P. N. et al. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy: a new structural class of zinc-finger. J. Mol. Biol. 237, 201–211 (1994).CAS
PubMed
Google Scholar
Stephens, T. G. et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol. 18, 56 (2020).Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).CAS
PubMed
PubMed Central
Google Scholar
Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral–dinoflagellate symbiosis. Commun. Biol. 1, 95 (2018).PubMed
PubMed Central
Google Scholar
Shoguchi, E. et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23, 1399–1408 (2013).CAS
PubMed
Google Scholar
Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19, 458 (2018).PubMed
PubMed Central
Google Scholar
Hoppe, C. J. M., Flintrop, C. M. & Rost, B. The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification. Biogeosciences 15, 4353–4365 (2018).CAS
Google Scholar
Ferguson, R. E. et al. Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5, 566–571 (2005).CAS
PubMed
Google Scholar
Aslam, S. N. et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice. ISME J. 12, 1237–1251 (2018).CAS
PubMed
PubMed Central
Google Scholar
Valenzuela, J. J. et al. Ocean acidification conditions increase resilience of marine diatoms. Nat. Commun. 9, 2328 (2018).PubMed
PubMed Central
Google Scholar
Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).CAS
PubMed
PubMed Central
Google Scholar
Mock, Thomas. Sea of Change: Eukaryotic Phytoplankton Communities in the Arctic Ocean. United States. https://doi.org/10.25585/1488054Duncan, A. et al. Metagenome-assembled genomes of phytoplankton communities across the Arctic Circle and Atlantic Oceans. Microbiome 10 https://doi.org/10.1186/s40168-022-01254-7 (2022).Persi, E., Wolf, Y. I. & Koonin, E. V. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat. Commun. 7, 13570 (2016).CAS
PubMed
PubMed Central
Google Scholar
Mock, T. & Gradinger, R. Determination of Arctic ice algal production with a new in situ incubation technique. Mar. Ecol. Prog. Ser. 177, 15–26 (1999).CAS
Google Scholar
Rühle, T., Hemschemeier, A., Melis, A. & Happe, T. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 8, 107 (2008).PubMed
PubMed Central
Google Scholar
Crawford, D. W. et al. Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol. Oceanogr. 48, 1583–1600 (2003).CAS
Google Scholar
Provasoli, L. Media and prospects for the cultivation of marine algae. In Cultures and Collections of Algae. Proc. US-Japan Conference, Hakone, 12-15 September 1966 (eds Watanabe, A & Hattori, A.) 63–75 (Japanese Society of Plant Physiology, 1968).Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS
PubMed
PubMed Central
Google Scholar
Ye, C. X. et al. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016).CAS
PubMed
PubMed Central
Google Scholar
Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS
PubMed
PubMed Central
Google Scholar
Qin, M. et al. LRScaf: improving draft genomes using long noisy reads. BMC Genomics 20, 955 (2019).CAS
PubMed
PubMed Central
Google Scholar
Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS
PubMed
Google Scholar
Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed
PubMed Central
Google Scholar
Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18 (2008).
Google Scholar
Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).PubMed
PubMed Central
Google Scholar
Ou, S. J. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).CAS
PubMed
Google Scholar
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).
Google Scholar
Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinf. 7, 62 (2006).
Google Scholar
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed
PubMed Central
Google Scholar
Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).CAS
PubMed
PubMed Central
Google Scholar
Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).PubMed
PubMed Central
Google Scholar
Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2018).PubMed Central
Google Scholar
Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).CAS
PubMed
Google Scholar
Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).CAS
PubMed
Google Scholar
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed
PubMed Central
Google Scholar
Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinf. 4, 259–263 (2006).CAS
Google Scholar
Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS
PubMed
Google Scholar
Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS
PubMed
Google Scholar
Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell Proteom. 13, 3497–3506 (2014).
Google Scholar
Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MGAP v.4). Stand. Genomic Sci. 10, 86 (2016).
Google Scholar
Fu, L. et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS
PubMed
PubMed Central
Google Scholar
Bushnell, B. BBMap: A Fast, Accurate, Splice-aware Aligner (Lawrence Berkeley National Laboratory, 2014).Löytynoja, A. Phylogeny-aware Alignment with PRANK: Multiple Sequence Alignment Methods (Humana Press, 2014).Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS
PubMed
Google Scholar More