Switches, stability and reversals in the evolutionary history of sexual systems in fish
Speijer, D., Lukeš, J. & Eliáš, M. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life. Proc. Natl Acad. Sci. 112, 8827–8834 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Bachtrog, D. et al. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
Ah-King, M. & Nylin, S. Sex in an evolutionary perspective: just another reaction norm. Evolut. Biol. 37, 234–246 (2010).Article
Google Scholar
Leonard, J. L. The evolution of sexual systems in animals. In: Leonard, J.L. (ed.). Transitions between sexual systems: understanding the mechanisms of, and pathways between, dioecy, hermaphroditism and other sexual systems, 1–58 Springer (2019).Weeks, S. C., Benvenuto, C. & Reed, S. K. When males and hermaphrodites coexist: a review of androdioecy in animals. Integr. Comp. Biol. 46, 449–464 (2006).PubMed
Article
Google Scholar
Goldberg, E. E. et al. Macroevolutionary synthesis of flowering plant sexual systems. Evolution 71, 898–912 (2017).PubMed
Article
Google Scholar
Waples, R. S., Mariani, S. & Benvenuto, C. Consequences of sex change for effective population size. Proc. R. Soc. B: Biol. Sci. 285, 20181702 (2018).Article
Google Scholar
Benvenuto, C. & Weeks, S. C. Hermaphroditism and gonochorism. The Natural History of the Crustacea: Reproductive Biology VI, 197–241 (2020).
Google Scholar
Mariani, S., Sala-Bozano, M., Chopelet, J. & Benvenuto, C. Spatial and temporal patterns of size-at-sex-change in two exploited coastal fish. Environ. Biol. Fishes 96, 535–541 (2013).Article
Google Scholar
Käfer, J., Marais, G. A. & Pannell, J. R. On the rarity of dioecy in flowering plants. Mol. Ecol. 26, 1225–1241 (2017).PubMed
Article
Google Scholar
Atz, J. Intersexuality in Fishes. In C.N. Amstrong and A.J. Marshall (eds). Intersexuality in vertebrates including man, 145–232 Academic Press, London (1964).Jarne, P. & Auld, J. R. Animals mix it up too: the distribution of self-fertilization among hermaphroditic animals. Evolution 60, 1816–1824 (2006).PubMed
Article
Google Scholar
Leonard, J. L. Williams’ paradox and the role of phenotypic plasticity in sexual systems. Integr. Comp. Biol. 53, 671–688 (2013).PubMed
Article
Google Scholar
Weeks, S. C. The role of androdioecy and gynodioecy in mediating evolutionary transitions between dioecy and hermaphroditism in the animalia. Evolution 66, 3670–3686 (2012).PubMed
Article
Google Scholar
Renner, S. S. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 101, 1588–1596 (2014).PubMed
Article
Google Scholar
Bawa, K. S. Evolution of dioecy in flowering plants. Annu. Rev. Ecol. Syst. 11, 15–39 (1980).Article
Google Scholar
Charlesworth, B. & Charlesworth, D. A model for the evolution of dioecy and gynodioecy. Am. Nat. 112, 975–997 (1978).Article
Google Scholar
Charlesworth, D. Androdioecy and the evolution of dioecy. Biol. J. Linn. Soc. 22, 333–348 (1984).Article
Google Scholar
Pannell, J. R. The evolution and maintenance of androdioecy. In: Annual Review of Ecology and Systematics 397–425 (2002).Bull, J. & Charnov, E. On irreversible evolution. Evolution 39, 1149–1155 (1985).CAS
PubMed
Article
Google Scholar
Barrett, S. C. The evolution of plant reproductive systems: how often are transitions irreversible? Proc. R. Soc. B: Biol. Sci. 280, 20130913 (2013).Article
Google Scholar
Oyarzún, P. A., Nuñez, J. J., Toro, J. E. & Gardner, J. P. Trioecy in the marine mussel Semimytilus algosus (Mollusca, Bivalvia): stable sex ratios across 22 degrees of a latitudinal gradient. Front. Mar. Sci. 7, 348 (2020).Article
Google Scholar
Dani, K. & Kodandaramaiah, U. Plant and animal reproductive strategies: lessons from offspring size and number tradeoffs. Front. Ecol. Evol. 5, 38 (2017).Article
Google Scholar
Avise, J. & Mank, J. Evolutionary perspectives on hermaphroditism in fishes. Sex. Dev. 3, 152–163 (2009).CAS
PubMed
Article
Google Scholar
Dornburg, A. & Near, T. J. The Emerging phylogenetic perspective on the evolution of Actinopterygian fishes. Annu. Rev. Ecol. Evol. Syst. 52, 427–452 (2021).Article
Google Scholar
Costa, W. J., Lima, S. M. & Bartolette, R. Androdioecy in Kryptolebias killifish and the evolution of self-fertilizing hermaphroditism. Biol. J. Linn. Soc. 99, 344–349 (2010).Article
Google Scholar
Costa, W. Colouration, taxonomy and geographical distribution of mangrove killifishes, the Kryptolebias marmoratus species group, in southern Atlantic coastal plains of Brazil (Cyprinodontiformes: Rivulidae). Ichthyol. Explor. Freshw. 27, 183–192 (2016).
Google Scholar
Powell, M. L., Kavanaugh, S. I. & Sower, S. A. Seasonal concentrations of reproductive steroids in the gonads of the Atlantic hagfish, Myxine glutinosa. J. Exp. Zool. Part A Comp. Exp. Biol. 301, 352–360 (2004).Article
CAS
Google Scholar
Pennell, M. W., Mank, J. E. & Peichel, C. L. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 27, 3950–3963 (2018).PubMed
PubMed Central
Article
Google Scholar
Ghiselin, M. T. The evolution of hermaphroditism among animals. Q. Rev. Biol. 44, 189–208 (1969).CAS
PubMed
Article
Google Scholar
Eppley, S. M. & Jesson, L. K. Moving to mate: the evolution of separate and combined sexes in multicellular organisms. J. Evol. Biol. 21, 727–736 (2008).CAS
PubMed
Article
Google Scholar
Warner, R. R. The adaptive significance of sequential hermaphroditism in animals. Am. Nat. 109, 61–82 (1975).Article
Google Scholar
Warner, R. R., Robertson, D. R. & Leigh, E. G. Sex change and sexual selection. Science 190, 633–638 (1975).ADS
CAS
PubMed
Article
Google Scholar
Charnov, E. L. The Theory of Sex Allocation. Princeton University Press, USA (1982).Policansky, D. Sex change in plants and animals. Annu. Rev. Ecol. Syst. 13, 471–495 (1982).Article
Google Scholar
Benvenuto, C., Coscia, I., Chopelet, J., Sala-Bozano, M. & Mariani, S. Ecological and evolutionary consequences of alternative sex-change pathways in fish. Sci. Rep. 7, 9084 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Charnov, E. L. Natural selection and sex change in pandalid shrimp: test of a life-history theory. Am. Nat. 113, 715–734 (1979).MathSciNet
Article
Google Scholar
Broquet, T. et al. The size advantage model of sex allocation in the protandrous sex-changer Crepidula fornicata: role of the mating system, sperm storage, and male mobility. Am. Nat. 186, 404–420 (2015).PubMed
Article
Google Scholar
Erisman, B. E., Craig, M. T. & Hastings, P. A. A phylogenetic test of the size-advantage model: evolutionary changes in mating behavior influence the loss of sex change in a fish lineage. Am. Nat. 174, E83–E99 (2009).PubMed
Article
Google Scholar
Buxton, C. D. & Garratt, P. A. Alternative reproductive styles in seabreams (Pisces: Sparidae). Environ. Biol. Fishes 28, 113–124 (1990).Article
Google Scholar
Shapiro, D. Y. Social behavior, group structure, and the control of sex reversal in hermaphroditic fish. Adv. Study Behav. 10, 43–102 (1979).Article
Google Scholar
Stearns, S. C. Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).ADS
CAS
PubMed
Article
Google Scholar
Waples, R. S., Luikart, G., Faulkner, J. R. & Tallmon, D. A. Simple life-history traits explain key effective population size ratios across diverse taxa. Proc. R. Soc. Lond. B: Biol. Sci. 280, 20131339 (2013).
Google Scholar
Martinez, A. S., Willoughby, J. R. & Christie, M. R. Genetic diversity in fishes is influenced by habitat type and life-history variation. Ecol. Evolution 8, 12022–12031 (2018).Article
Google Scholar
Harvey, P. H. & Pagel, M. D. The comparative method in evolutionary biology. (Oxford University Press, USA, 1991).Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).ADS
CAS
PubMed
Article
Google Scholar
Brandl, S. J. & Bellwood, D. R. Pair-formation in coral reef fishes: an ecological perspective. Oceanogr. Mar. Biol.: Annu. Rev. 52, 1–80 (2014).
Google Scholar
Fitzpatrick, J. L. Sperm competition and fertilization mode in fishes. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20200074 (2020).Article
Google Scholar
Parker, G. A. Conceptual developments in sperm competition: a very brief synopsis. Philos. Trans. R. Soc. B: Biol. Sci. 375, 20200061 (2020).Article
Google Scholar
Warner, R. R. Sex change in fishes: hypotheses, evidence, and objections. Environ. Biol. Fishes 22, 81–90 (1988).Article
Google Scholar
Molloy, P. P., Goodwin, N. B., Côté, I. M., Reynolds, J. D. & Gage, M. J. Sperm competition and sex change: a comparative analysis across fishes. Evolution 61, 640–652 (2007).PubMed
Article
Google Scholar
Erisman, B. E., Petersen, C. W., Hastings, P. A. & Warner, R. R. Phylogenetic perspectives on the evolution of functional hermaphroditism in teleost fishes. Integr. Comp. Biol. 53, 736–754 (2013).PubMed
Article
Google Scholar
Sadovy, Y., Colin, P. & Domeier, M. Aggregation and spawning in the tiger grouper, Mycteroperca tigris (Pisces: Serranidae). Copeia 1994, 511–516 (1994).Article
Google Scholar
Muñoz, R. C. & Warner, R. R. A new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size-fecundity skew. Am. Nat. 161, 749–761 (2003).PubMed
Article
Google Scholar
Horne, C. R., Hirst, A. G. & Atkinson, D. Selection for increased male size predicts variation in sexual size dimorphism among fish species. Proc. R. Soc. B: Biol. Sci. 287, 20192640 (2020).Article
Google Scholar
Parker, G. The evolution of expenditure on testes. J. Zool. 298, 3–19 (2016).Article
Google Scholar
Stockley, P., Gage, M., Parker, G. & Møller, A. Sperm competition in fishes: the evolution of testis size and ejaculate characteristics. Am. Nat. 149, 933–954 (1997).CAS
PubMed
Article
Google Scholar
Pla, S., Benvenuto, C., Capellini, I. & Piferrer, F. A phylogenetic comparative analysis on the evolution of sequential hermaphroditism in seabreams (Teleostei: Sparidae). Sci. Rep. 10, 3606 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Vrijenhoek, R. C. Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71–96 (1994).Article
Google Scholar
Sadovy de Mitcheson, Y. & Liu, M. Functional hermaphroditism in teleosts. Fish. Fish. 9, 1–43 (2008).Article
Google Scholar
Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392 (2018).ADS
CAS
PubMed
Article
Google Scholar
Froese, R., Pauly, D. & Editors. FishBase. World Wide Web electronic publication. www.fishbase.org (2018).Moore, W. S. Evolutionary ecology of unisexual fishes. In: Evolutionary genetics of fishes, 329–398 (Springer, 1984).Collin, R. & Miglietta, M. P. Reversing opinions on Dollo’s Law. Trends Ecol. Evol. 23, 602–609 (2008).PubMed
Article
Google Scholar
Domes, K., Norton, R. A., Maraun, M. & Scheu, S. Re-evolution of sexuality breaks Dollo’s law. Proc. Natl Acad. Sci. 104, 7139–7144 (2007).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
Dollo, L. Les lois de l’évolution. Bull. Soc. Belge Géol. Paléont. Hydrol. 7, 164–166 (1893).
Google Scholar
King, B. & Lee, M. S. Ancestral state reconstruction, rate heterogeneity, and the evolution of reptile viviparity. Syst. Biol. 64, 532–544 (2015).CAS
PubMed
Article
Google Scholar
Uller, T. & Helanterä, H. From the origin of sex-determining factors to the evolution of sex-determining systems. Q. Rev. Biol. 86, 163–180 (2011).PubMed
Article
Google Scholar
Devlin, R. H. & Nagahama, Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208, 191–364 (2002).CAS
Article
Google Scholar
Volff, J.-N., Nanda, I., Schmid, M. & Schartl, M. Governing sex determination in fish: regulatory putsches and ephemeral dictators. Sex. Dev. 1, 85–99 (2007).PubMed
Article
Google Scholar
Nagahama, Y., Chakraborty, T., Paul-Prasanth, B., Ohta, K. & Nakamura, M. Sex determination, gonadal sex differentiation and plasticity in vertebrate species. Physiol. Rev. 101, 1237–1308 (2020).PubMed
Article
Google Scholar
Penman, D. J. & Piferrer, F. Fish gonadogenesis. Part I: genetic and environmental mechanisms of sex determination. Rev. Fish. Sci. 16(S1), 16–34 (2008).CAS
Article
Google Scholar
Mank, J. E., Promislow, D. E. L. & Avise, J. C. Evolution of alternative sex-determining mechanisms in teleost fishes. Biol. J. Linn. Soc. 87, 83–93 (2006).Article
Google Scholar
Galetti, P. M., Aguilar, C. T. & Molina, W. F. An overview of marine fish cytogenetics. Hydrobiologia 420, 55–62 (2000).Article
Google Scholar
Yoshida, K. et al. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species. PLoS Genet. 10, e1004223 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
Ross, J. A., Urton, J. R., Boland, J., Shapiro, M. D. & Peichel, C. L. Turnover of sex chromosomes in the stickleback fishes (Gasterosteidae). PLoS Genet. 5, e1000391 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
Vicoso, B. Molecular and evolutionary dynamics of animal sex-chromosome turnover. Nature Ecology & Evolution 1–10 (2019).Gamble, T. et al. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296–1309 (2015).CAS
PubMed
Article
Google Scholar
Pokorná, M. & Kratochvíl, L. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 156, 168–183 (2009).Article
Google Scholar
Furman, B. L. et al. Sex chromosome evolution: sso many exceptions to the rules. Genome Biol. Evol. 12, 750–763 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Carvalho, N. D. M. et al. Cytogenetics of Synbranchiformes: a comparative analysis of two Synbranchus Bloch, 1795 species from the Amazon. Genetica 140, 149–158 (2012).CAS
PubMed
Article
Google Scholar
Piferrer, F. Epigenetic mechanisms in sex determination and in the evolutionary transitions between sexual systems. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20200110 (2021).Article
CAS
Google Scholar
Grant, S. et al. Genetics of sex determination in flowering plants. Dev. Genet. 15, 214–230 (1994).Article
Google Scholar
Harrington Jr, R. W. How ecological and genetic factors interact to determine when self-fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes. Copeia 389–432 (1971).Adolfi, M. C., Nakajima, R. T., Nóbrega, R. H. & Schartl, M. Intersex, Hermaphroditism, and gonadal plasticity in vertebrates: Evolution of the Müllerian duct and Amh/Amhr2 signalling. Annual Review of Animal Biosciences (2018).Adkins-Regan, E. Early organizational effects of hormones: an evolutionary perspective. In Adler, N.T. (ed.) Neuroendocrinology of reproduction: physiology and behavior, 159–228 (Springer, USA, 1981).Navara, K. J. The truth about Nemo’s dad: sex-changing behaviors in fishes. In Choosing Sexes 183–212 (Springer, Cham, 2018).Orban, L., Sreenivasan, R. & Olsson, P. E. Long and winding roads: testis differentiation in zebrafish. Mol. Cell. Endocrinol. 312, 35–41 (2009).CAS
PubMed
Article
Google Scholar
Zohar, Y., Abraham, M. & Gordin, H. The gonadal cycle of the captivity-reared hermaphroditic teleost Sparus aurata (L.) during the first two years of life. Annales de. Biologie Anim. Biochim. Biophys. 18, 877–882 (1978).Article
Google Scholar
Chang, C.-F. & Yueh, W.-S. Annual cycle of gonadal histology and steroid profiles in the juvenile males and adult females of the protandrous black porgy, Acanthopagrus schlegelii. Aquaculture 91, 179–196 (1990).CAS
Article
Google Scholar
Miura, S., Nakamura, S., Kobayashi, Y., Piferrer, F. & Nakamura, M. Differentiation of ambisexual gonads and immunohistochemical localization of P450 cholesterol side-chain cleavage enzyme during gonadal sex differentiation in the protandrous anemonefish, Amphiprion clarkii. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 149, 29–37 (2008).Article
CAS
Google Scholar
Yamaguchi, S. & Iwasa, Y. Advantage for the sex changer who retains the gonad of the nonfunctional sex. Behav. Ecol. Sociobiol. 71, 39 (2017).Article
Google Scholar
Munday, P. L., Kuwamura, T. & Kroon, F. J. Bi-directional sex change in marine fishes. In: Cole, K.S. (ed.) Reproduction and sexuality in marine fishes: Patterns and processes. 241–271 (University of California Press, Berkeley, USA, 2010).Uller, T., Feiner, N., Radersma, R., Jackson, I. S. & Rago, A. Developmental plasticity and evolutionary explanations. Evol. Dev. 22, 47–55 (2020).PubMed
Article
Google Scholar
Pla, S., Maynou, F. & Piferrer, F. Hermaphroditism in fish: incidence, distribution and associations with abiotic environmental factors. Rev. Fish. Biol. Fish. 31, 935–955 (2021).Article
Google Scholar
Boettiger, C., Lang, D. T. & Wainwright, P. C. rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).CAS
PubMed
Article
Google Scholar
Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).PubMed
Article
Google Scholar
Pagel, M. & Meade, A. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. Am. Nat. 167, 808–825 (2006).PubMed
Article
Google Scholar
Pagel, M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete. Proc. R. Soc. B: Biol. Sci. 255, 37–45 (1994).ADS
Article
Google Scholar
Currie, T. E. & Meade, A. In Modern phylogenetic comparative methods and their application in evolutionary biology, 263–286 (Springer, 2014).Furness, A. I. & Capellini, I. The evolution of parental care diversity in amphibians. Nat. Commun. 10, 1–12 (2019).CAS
Article
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS
PubMed
Article
Google Scholar
Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS
PubMed
Article
Google Scholar
Pagel, M. Inferring evolutionary processes from phylogenies. Zool. Scr. 26, 331–348 (1997).Article
Google Scholar
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS
CAS
PubMed
Article
Google Scholar
Orme, D. The caper package: comparative analysis of phylogenetics and evolution in R. https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2018).Schiettekatte, N., Brandl, S. & Casey, J. Fishualize: Color palettes based on fish species. R package v0.2.2 (2021). More