More stories

  • in

    Viral communities in the parasite Varroa destructor and in colonies of their honey bee host (Apis mellifera) in New Zealand

    Traynor, K. S. et al. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. 36, 592–606. https://doi.org/10.1016/j.pt.2020.04.004 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rosenkranz, P., Aumeier, P. & Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 103, S96–S119. https://doi.org/10.1016/j.jip.2009.07.016 (2010).Article 
    PubMed 

    Google Scholar 
    Noel, A., Le Conte, Y. & Mondet, F. Varroa destructor: how does it harm Apis mellifera honey bees and what can be done about it?. Emerg. Top. Life Sci. 4, 45–57. https://doi.org/10.1042/ETLS20190125 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boncristiani, H. et al. World honey bee health: the global distribution of western honey bee (Apis mellifera L.) pests and pathogens. Bee World 98, 2–6 (2020).Article 

    Google Scholar 
    Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. U.S.A. 116, 1792–1801. https://doi.org/10.1073/pnas.1818371116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Di Prisco, G. et al. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health. Proc. Natl. Acad. Sci. USA 113, 3203–3208. https://doi.org/10.1073/pnas.1523515113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mondet, F. et al. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci. Rep. 5, 10454. https://doi.org/10.1038/srep10454 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMenamin, A. J. & Genersch, E. Honey bee colony losses and associated viruses. Curr. Opin. Insect Sci. 8, 121–129. https://doi.org/10.1016/j.cois.2015.01.015 (2015).Article 
    PubMed 

    Google Scholar 
    Beaurepaire, A. et al. Diversity and global distribution of viruses of the western honey bee Apis mellifera. Insects 11, 239. https://doi.org/10.3390/insects11040239 (2020).Article 
    PubMed Central 

    Google Scholar 
    Levin, S. et al. New viruses from the ectoparasite mite Varroa destructor infesting Apis mellifera and Apis cerana. Viruses 11, 94. https://doi.org/10.3390/v11020094 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Chen, G. et al. A new strain of virus discovered in China specific to the parasitic mite Varroa destructor poses a potential threat to honey bees. Viruses 13, 679. https://doi.org/10.3390/v13040679 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kraberger, S. et al. Genome sequences of two single-stranded DNA viruses identified in Varroa destructor. Genome Announc. 6, e00107-00118. https://doi.org/10.1128/genomeA.00107-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haddad, N., Horth, L., Al-Shagour, B., Adjlane, N. & Loucif-Ayad, W. Next-generation sequence data demonstrate several pathogenic bee viruses in Middle East and African honey bee subspecies (Apis mellifera syriaca, Apis mellifera intermissa) as well as their cohabiting pathogenic mites (Varroa destructor). Virus Genes 54, 694–705. https://doi.org/10.1007/s11262-018-1593-9 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597. https://doi.org/10.1126/science.aac9976 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Remnant, E. J., Mather, N., Gillard, T. L., Yagound, B. & Beekman, M. Direct transmission by injection affects competition among RNA viruses in honeybees. Proc. Royal Soc. B 286, 20182452. https://doi.org/10.1098/rspb.2018.2452 (2019).CAS 
    Article 

    Google Scholar 
    Martin, S. J. & Brettell, L. E. Deformed wing virus in honeybees and other insects. Ann. Rev. Virol. 6, 49–69. https://doi.org/10.1146/annurev-virology-092818-015700 (2019).CAS 
    Article 

    Google Scholar 
    Martin, S. J. et al. Global honey bee viral landscape altered by a parasitic mite. Science 336, 1304–1306. https://doi.org/10.1126/science.1220941 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Loope, K. J., Baty, J. W., Lester, P. J. & Wilson Rankin, E. E. Pathogen shifts in a honeybee predator following the arrival of the Varroa mite. Proc. Royal Soc. B 286, 20182499. https://doi.org/10.1098/rspb.2018.2499 (2019).CAS 
    Article 

    Google Scholar 
    McMahon, D. P. et al. Elevated virulence of an emerging viral genotype as a driver of honeybee loss. Proc. Royal Soc. B https://doi.org/10.1098/rspb.2016.0811 (2016).Article 

    Google Scholar 
    Grindrod, I., Kevill, J. L., Villalobos, E. M., Schroeder, D. C. & Ten Martin, S. J. years of Deformed wing virus (DWV) in Hawaiian honey bees (Apis mellifera), the dominant DWV-A variant is potentially being replaced by variants with a DWV-B coding sequence. Viruses 13, 969. https://doi.org/10.3390/v13060969 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kevill, J. L., Stainton, K. C., Schroeder, D. C. & Martin, S. J. Deformed wing virus variant shift from 2010 to 2016 in managed and feral UK honey bee colonies. Arch. Virol. 166, 2693–2702. https://doi.org/10.1007/s00705-021-05162-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226. https://doi.org/10.1146/annurev-ento-011118-111942 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Natsopoulou, M. E. et al. The virulent, emerging genotype B of Deformed wing virus is closely linked to overwinter honeybee worker loss. Sci. Rep. 7, 5242. https://doi.org/10.1038/s41598-017-05596-3 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iwasaki, J. M., Barratt, B. I., Lord, J. M., Mercer, A. R. & Dickinson, K. J. The New Zealand experience of varroa invasion highlights research opportunities for Australia. Ambio 44, 694–704. https://doi.org/10.1007/s13280-015-0679-z (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Solignac, M. et al. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones. Proc. Royal Soc. B 272, 411–419. https://doi.org/10.1098/rspb.2004.2853 (2005).Article 

    Google Scholar 
    Hall, R. J. et al. Apicultural practice and disease prevalence in Apis mellifera, New Zealand: A longitudinal study. J. Apic. Res. 60, 644–658. https://doi.org/10.1080/00218839.2021.1936422 (2021).Article 

    Google Scholar 
    Mondet, F., de Miranda, J. R., Kretzschmar, A., Le Conte, Y. & Mercer, A. R. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 10, e1004323 (2014).Article 

    Google Scholar 
    McFadden, A. M. J. et al. Israeli acute paralysis virus not detected in Apis mellifera in New Zealand in a national survey. J. Apic. Res. 53, 520–527. https://doi.org/10.3896/ibra.1.53.5.03 (2015).Article 

    Google Scholar 
    Dobelmann, J., Felden, A. & Lester, P. J. Genetic strain diversity of multi-host RNA viruses that infect a wide range of pollinators and associates is shaped by geographic origins. Viruses 12, 358. https://doi.org/10.3390/v12030358 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Gruber, M. A. M. et al. Single-stranded RNA viruses infecting the invasive argentine ant Linepithema humile. Sci. Rep. 7, 3304. https://doi.org/10.1038/s41598-017-03508-z (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brenton-Rule, E. C. et al. The origins of global invasions of the German wasp (Vespula germanica) and its infection with four honey bee viruses. Biol. Invasions 20, 3445–3460. https://doi.org/10.1007/s10530-018-1786-0 (2018).Article 

    Google Scholar 
    Lester, P. J., Buick, K. H., Baty, J. W., Felden, A. & Haywood, J. Different bacterial and viral pathogens trigger distinct immune responses in a globally invasive ant. Sci. Rep. 9, 5780. https://doi.org/10.1038/s41598-019-41843-5 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS ONE 10, e0121358. https://doi.org/10.1371/journal.pone.0121358 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Levin, S., Sela, N. & Chejanovsky, N. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor. Sci. Rep. 6, 37710. https://doi.org/10.1038/srep37710 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cornman, S. R. et al. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera. BMC Genom. 11, 602. https://doi.org/10.1186/1471-2164-11-602 (2010).CAS 
    Article 

    Google Scholar 
    Gauthier, L. et al. The Apis mellifera filamentous virus genome. Viruses 7, 3798–3815. https://doi.org/10.3390/v7072798 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giuffre, C., Lubkin, S. R. & Tarpy, D. R. Does viral load alter behavior of the bee parasite Varroa destructor?. PLoS ONE 14, e0217975. https://doi.org/10.1371/journal.pone.0217975 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Smet, L. et al. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS ONE 7, e47953. https://doi.org/10.1371/journal.pone.0047953 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Runckel, C. et al. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE 6, e20656. https://doi.org/10.1371/journal.pone.0020656 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Remnant, E. J. et al. A diverse range of novel RNA viruses in geographically distinct honey bee populations. J. Virol. 91, e00158. https://doi.org/10.1128/JVI.00158-17 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Navajas, M. et al. New Asian types of Varroa destructor: a potential new threat for world apiculture. Apidologie 41, 181–193. https://doi.org/10.1051/apido/2009068 (2010).CAS 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360. https://doi.org/10.1038/nmeth.3317 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wallberg, A. et al. A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds. BMC Genom. 20, 275. https://doi.org/10.1186/s12864-019-5642-0 (2019).Article 

    Google Scholar 
    Techer, M. A. et al. Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun. Biol. 2, 357. https://doi.org/10.1038/s42003-019-0606-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512. https://doi.org/10.1038/nprot.2013.084 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using Diamond. Nat. Methods 12, 59–60. https://doi.org/10.1038/nmeth.3176 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    National Center for Biotechnology Information (NCBI). Bethesda (MD), National Library of Medicine (US), National Center for Biotechnology Information; [1988]–[cited 2017 Apr 06]. Available from: https://www.ncbi.nlm.nih.gov/.Camacho, C. et al. BLAST+: Architecture and applications. BMC Bioinform. 10, 421. https://doi.org/10.1186/1471-2105-10-421 (2009).CAS 
    Article 

    Google Scholar 
    Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419. https://doi.org/10.1038/nmeth.4197 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R: A language and environment for statistical computing v. 4.0.2 (R Foundation for Statistical Computing, Vienna, Austria, 2020).Oksanen, J. et al. vegan: community ecology package. (R package version 2.4–0. https://CRAN.R-project.org/package=vegan., 2016).Li, D. et al. Molecular detection of small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae): DNA barcoding and development of a real-time PCR assay. Sci. Rep. 8, 9623. https://doi.org/10.1038/s41598-018-27603-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, D. L. & Trueman, J. W. H. Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp. Appl. Acarol. 24, 165–189. https://doi.org/10.1023/a:1006456720416 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bradford, E. L., Christie, C. R., Campbell, E. M. & Bowman, A. S. A real-time PCR method for quantification of the total and major variant strains of the Deformed wing virus. PLoS ONE 12, e0190017. https://doi.org/10.1371/journal.pone.0190017 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dynes, T. L. et al. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie 48, 93–101. https://doi.org/10.1007/s13592-016-0453-7 (2017).Article 

    Google Scholar 
    Maggi, M. et al. Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina. Exp. Appl. Acarol. 56, 309–318. https://doi.org/10.1007/s10493-012-9526-0 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hasegawa, N., Techer, M. & Mikheyev, A. S. A toolkit for studying Varroa genomics and transcriptomics: preservation, extraction, and sequencing library preparation. BMC Genom. 22, 54. https://doi.org/10.1186/s12864-020-07363-7 (2021).CAS 
    Article 

    Google Scholar 
    Gisder, S. & Genersch, E. Direct evidence for infection of Varroa destructor mites with the bee-pathogenic Deformed wing virus variant B, but not variant A, via fluorescence in situ hybridization analysis. J. Virol. 95, e01786. https://doi.org/10.1128/JVI.01786-20 (2021).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Gisder, S., Aumeier, P. & Genersch, E. Deformed wing virus: replication and viral load in mites (Varroa destructor). J. Gen. Virol. 90, 463–467. https://doi.org/10.1099/vir.0.005579-0 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yue, C. & Genersch, E. RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J. Gen. Virol. 86, 3419–3424. https://doi.org/10.1099/vir.0.81401-0 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Posada-Florez, F. et al. Deformed wing virus type A, a major honey bee pathogen, is vectored by the mite Varroa destructor in a non-propagative manner. Sci. Rep. 9, 12445. https://doi.org/10.1038/s41598-019-47447-3 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Budge, G. E. et al. Chronic bee paralysis as a serious emerging threat to honey bees. Nat. Commun. 11, 2164. https://doi.org/10.1038/s41467-020-15919-0 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Graystock, P. et al. The Trojan hives: pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50, 1207–1215. https://doi.org/10.1111/1365-2664.12134 (2013).Article 

    Google Scholar 
    Roberts, J. M. K., Simbiken, N., Dale, C., Armstrong, J. & Anderson, D. L. Tolerance of honey bees to Varroa mite in the absence of deformed wing virus. Viruses https://doi.org/10.3390/v12050575 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brettell, L. E. & Martin, S. J. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees. Sci. Rep. 7, 45953. https://doi.org/10.1038/srep45953 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herrero, S. et al. Identification of new viral variants specific to the honey bee mite Varroa destructor. Exp. Appl. Acarol. 79, 157–168. https://doi.org/10.1007/s10493-019-00425-w (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dobelmann, J. et al. Fitness in invasive social wasps: the role of variation in viral load, immune response and paternity in predicting nest size and reproductive output. Oikos 126, 1208–1218. https://doi.org/10.1111/oik.04117 (2017).CAS 
    Article 

    Google Scholar 
    Shojaei, A., Nourian, A., Khanjani, M. & Mahmoodi, P. The first molecular characterization of Lake Sinai virus in honey bees (Apis mellifera) and Varroa destructor mites in Iran. J. Apic. Res. https://doi.org/10.1080/00218839.2021.1921467 (2021).Article 

    Google Scholar 
    Hartmann, U., Forsgren, E., Charriere, J. D., Neumann, P. & Gauthier, L. Dynamics of Apis mellifera filamentous Virus (AmFV) infections in honey bees and relationships with other parasites. Viruses 7, 2654–2667. https://doi.org/10.3390/v7052654 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nanetti, A., Bortolotti, L. & Cilia, G. Pathogens spillover from honey bees to other arthropods. Pathogens 10, 1044. https://doi.org/10.3390/pathogens10081044 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Norton, A. M., Remnant, E. J., Buchmann, G. & Beekman, M. Accumulation and competition amongst Deformed wing virus genotypes in naive Australian honeybees provides insight into the increasing global prevalence of genotype B. Front. Microbiol. 11, 620. https://doi.org/10.3389/fmicb.2020.00620 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mordecai, G. J. et al. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies. ISME J. 10, 1182–1191. https://doi.org/10.1038/ismej.2015.186 (2016).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Long-term seed burial reveals differences in the seed-banking strategies of naturalized and invasive alien herbs

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).PubMed 
    Article 

    Google Scholar 
    Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    Daru, B. H. et al. Widespread homogenization of plant communities in the Anthropocene. Nat. Commun. 12, 6983 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bradley, B. A. et al. Global change, global trade, and the next wave of plant invasions. Front. Ecol. Environ. 10, 20–28 (2012).Article 

    Google Scholar 
    Pyšek, P. & Richardson, D. M. Traits associated with invasiveness in alien plants: Where do we stand? In Biological Invasions (ed. Nentwig, W.) 97–125 (Springer, Berlin, 2007).Chapter 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015).PubMed 
    Article 

    Google Scholar 
    Colautti, R. I., Grigorovich, I. A. & MacIsaac, H. J. Propagule pressure: A null model for biological invasions. Biol. Invasions 8, 1023–1037 (2006).Article 

    Google Scholar 
    Richardson, D. M. & Pyšek, P. Naturalization of introduced plants: Ecological drivers of biogeographic patterns. New Phytol. 196, 383–396 (2012).PubMed 
    Article 

    Google Scholar 
    Moravcová, L., Pyšek, P., Jarošík, V. & Pergl, J. Getting the right traits: Reproductive and dispersal characteristics predict the invasiveness of herbaceous plant species. PLoS ONE 10, e0123634 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thompson, K., Bakker, J. P. & Bekker, R. M. Soil Seed Banks of NW Europe: Methodology, Density and Longevity (Cambridge University Press, Cambridge, 1997).
    Google Scholar 
    Walck, J. L., Baskin, J. M., Baskin, C. C. & Hidayati, S. N. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed Sci. Res. 15, 189–196 (2005).Article 

    Google Scholar 
    Gioria, M., Le Roux, J. J., Hirsch, H., Moravcová, L. & Pyšek, P. Characteristics of the soil seed bank of invasive and non-invasive plants in their native and alien distribution range. Biol. Invasions 21, 2313–2332 (2019).Article 

    Google Scholar 
    Gioria, M. et al. Persistent soil seed banks promote naturalization and invasiveness in flowering plants. Ecol. Lett. 24, 1655–1667 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Moravcová, L. Soil seed banks in plant invasions: Promoting species invasiveness and long-term impact on plant community dynamics. Preslia 84, 327–350 (2012).
    Google Scholar 
    Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090 (2007).PubMed 
    Article 

    Google Scholar 
    Venable, D. L. & Brown, J. S. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am. Nat. 131, 360–384 (1988).Article 

    Google Scholar 
    Adams, V. M., Marsh, D. M. & Knox, J. S. Importance of the seed bank for population viability and population monitoring in a threatened wetland herb. Biol. Conserv. 124, 425–436 (2005).Article 

    Google Scholar 
    Harper, J. The Population Biology of Plants (Academic Press, London, 1977).
    Google Scholar 
    Warr, S. J., Thompson, K. & Kent, M. Seed banks as a neglected area of biogeographic research: A review of literature and sampling techniques. Progr. Phys. Geogr. 17, 329–347 (1993).Article 

    Google Scholar 
    Thompson, K., Bakker, J. P., Bekker, R. M. & Hodgson, J. Ecological correlates of seed persistence in soil in the north-west European flora. J. Ecol. 86, 163–169 (1998).Article 

    Google Scholar 
    Gioria, M., Pyšek, P., Baskin, C. & Carta, A. Phylogenetic relatedness mediates persistence and density of soil seed banks. J. Ecol. 108, 2121–2131 (2020).Article 

    Google Scholar 
    Pyšek, P. et al. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891–903 (2009).Article 

    Google Scholar 
    Gallagher, R. V., Randall, R. P. & Leishman, M. R. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 29, 360–369 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117, 923–943 (1981).MathSciNet 
    Article 

    Google Scholar 
    Gioria, M. & Pyšek, P. Early bird catches the worm: Germination as a critical step in plant invasion. Biol. Invasions 19, 1055–1080 (2017).Article 

    Google Scholar 
    Gioria, M., Pyšek, P. & Osborne, B. Timing is everything: Does early and late germination favor invasions by herbaceous alien plants?. J. Plant Ecol. 11, 4–16 (2018).
    Google Scholar 
    Gioria, M. & Osborne, B. A. Resource competition in plant invasions: Emerging patterns and research needs. Front. Plant Sci. 5, 1–21 (2014).Article 

    Google Scholar 
    D’Antonio, C. M., Dudley, T. L. & Mack, M. C. Disturbance and biological invasions: Direct effects and feedbacks. In Ecosystems of Disturbed Ground (ed. Walker, L.) 413–452 (Elsevier, Oxford, 1999).
    Google Scholar 
    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: A general theory of invasibility. J. Ecol. 88, 528–534 (2000).Article 

    Google Scholar 
    Hierro, J. L., Villarreal, D., Eren, Ö., Graham, J. M. & Callaway, R. M. Disturbance facilitates invasion: The effects are stronger abroad than at home. Am. Nat. 168, 144–156 (2006).PubMed 
    Article 

    Google Scholar 
    Chytrý, M. et al. Habitat invasions by alien plants: A quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 45, 448–458 (2008).Article 

    Google Scholar 
    Templeton, A. & Levin, D. Evolutionary consequences of seed pools. Am. Nat. 114, 232–249 (1979).Article 

    Google Scholar 
    Honnay, O., Bossuyt, B., Jacquemyn, H., Shimono, A. & Uchiyama, K. Can a seed bank maintain the genetic variation in the above ground plant population?. Oikos 117, 1–5 (2008).Article 

    Google Scholar 
    Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C. G. Germination, post-germination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41, 293–319 (2010).Article 

    Google Scholar 
    Gioria, M., Osborne, B. & Pyšek, P. Soil seed banks under a warming climate. In Plant Regeneration from Seeds: A global Warming Perspective (eds Baskin, C. & Baskin, J.) 285–298 (Academic Press, London, 2022).Chapter 

    Google Scholar 
    Blossey, B., Nuzzo, V. & Davalos, A. Climate and rapid local adaptation as drivers of germination and seed bank dynamics of Alliaria petiolata (garlic mustard) in North America. J. Ecol. 105, 1485–1495 (2017).Article 

    Google Scholar 
    Hamilton, M. A. et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett. 8, 1066–1074 (2005).Article 

    Google Scholar 
    Richardson, D. M. & Kluge, R. L. Seed banks of invasive Australian Acacia species in South Africa: Role in invasiveness and options for management. Persp. Plant Ecol. Evol. Syst. 10, 161–177 (2008).Article 

    Google Scholar 
    Hartzler, R. G., Buhler, D. D. & Stoltenberg, D. E. Emergence characteristics of four annual weed species. Weed Sci. 47, 578–584 (1999).CAS 
    Article 

    Google Scholar 
    Skálová, H., Moravcová, L., Čuda, J. & Pyšek, P. Seed-bank dynamics of native and invasive Impatiens species during a five-year field experiment under various environmental conditions. NeoBiota 50, 75–95 (2019).Article 

    Google Scholar 
    Moravcová, L. et al. Seed germination, dispersal and seed bank in Heracleum mantegazzianum. In Ecology and Management of Giant Hogweed (Heracleum mantegazzianum) (eds Pyšek, P. et al.) 74–91 (CAB International, Wallingford, 2007).Chapter 

    Google Scholar 
    Gioria, M. & Osborne, B. Assessing the impact of plant invasions on soil seed bank communities: Use of univariate and multivariate statistical approaches. J. Veg. Sci. 20, 547–556 (2009).Article 

    Google Scholar 
    Long, R. L. et al. Seed persistence in the field may be predicted by laboratory-controlled aging. Weed Sci. 56, 523–528 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Carta, A., Bottega, S. & Spanò, C. Aerobic environment ensures viability and antioxidant capacity when seeds are wet with negative effect when moist: Implications for persistence in the soil. Seed Sci. Res. 28, 16–23 (2018).CAS 
    Article 

    Google Scholar 
    Pyšek, P. et al. Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns. Preslia 84, 155–255 (2012).
    Google Scholar 
    Thompson, K., Band, S. & Hodgson, J. Seed size and shape predict persistence in soil. Funct. Ecol. 7, 236–241 (1993).Article 

    Google Scholar 
    Moles, A. T., Hodson, D. W. & Webb, C. J. Seed size and shape and persistence in the soil in the New Zealand flora. Oikos 89, 541–545 (2000).Article 

    Google Scholar 
    Leon, R. G. & Owen, M. D. K. Artificial and natural seed banks differ in seedling emergence patterns. Weed Sci. 52, 531–537 (2004).CAS 
    Article 

    Google Scholar 
    Thompson, K. & Grime, P. J. Seasonal variation in seed banks of herbaceous species in ten contrasting habitats. J. Ecol. 67, 893–921 (1979).Article 

    Google Scholar 
    Lambrinos, J. G. Spatially variable propagule pressure and herbivory influence invasion of chaparral shrubland by an exotic grass. Oecologia 147, 327–334 (2006).ADS 
    PubMed 
    Article 

    Google Scholar 
    Wainwright, C. E., Wolkovich, E. M. & Cleland, E. E. Seasonal priority effects: Implications for invasion and restoration in a semi-arid system. J. Appl. Ecol. 49, 234–241 (2012).Article 

    Google Scholar 
    Moravcová, L., Pyšek, P., Jarošík, V., Havlíčková, V. & Zákravský, P. Reproductive characteristics of neophytes in the Czech Republic: Traits of invasive and non-invasive species. Preslia 82, 365–390 (2010).
    Google Scholar 
    Grime, J. P. Plant Strategies, Vegetation Processes, and Ecosystem Properties 2nd edn. (John Wiley & Sons, Oxford, 2001).
    Google Scholar 
    Mihulka, S., Pyšek, P. & Pyšek, A. Oenothera coronifera, a new alien species for the Czech flora, and Oenothera stricta, recorded again after two centuries. Preslia 75, 263–270 (2003).
    Google Scholar 
    Fenner, M. & Thompson, K. The Ecology of Seeds (Cambridge University Press, Cambridge, 2005).Book 

    Google Scholar 
    Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species 2nd edn. (Castlepoint Press, Colvend, Dalbeattie, Kirkcudrightshire, Scotland, 2007).
    Google Scholar 
    Gioria, M. & Osborne, B. Similarities in the impact of three large invasive plant species on soil seed bank communities. Biol. Invasions 12, 1671–1683 (2010).Article 

    Google Scholar 
    Gioria, M. & Pyšek, P. The legacy of plant invasions: Changes in the soil seed bank of invaded plant communities. Bioscience 66, 40–53 (2016).Article 

    Google Scholar 
    Carta, A., Hanson, S. & Müller, J. V. Plant regeneration from seeds responds to phylogenetic relatedness and local adaptation in Mediterranean Romulea (Iridaceae) species. Ecol. Evol. 6, 4166–4178 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arène, F., Affre, L., Doxa, A. & Saatkamp, A. Temperature but not moisture response of germination shows phylogenetic constraints while both interact with seed mass and lifespan. Seed Sci. Res. 27, 110–120 (2017).Article 

    Google Scholar 
    Zhang, C., Willis, C. G., Donohue, K., Ma, Z. & Du, G. Effects of environment, life-history and phylogeny on germination strategy of 789 angiosperms species on the eastern Tibetan Plateau. Ecol. Indic. 129, 107974 (2021).Article 

    Google Scholar 
    Zheng, J., Guo, Z. & Wang, X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 7, 2741 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Thompson, K., Ceriani, R. M., Bakker, J. P. & Bekker, R. M. Are seed dormancy and persistence in soil related?. Seed Sci. Res. 13, 97–100 (2003).Article 

    Google Scholar 
    Long, R. L. et al. The ecophysiology of seed persistence: A mechanistic view of the journey to germination or demise. Biol. Rev. Camb. Philos. Soc. 90, 31–59 (2015).PubMed 
    Article 

    Google Scholar 
    Moodley, D., Geerts, S., Richardson, D. M. & Wilson, J. R. U. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 8, e75078 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pyšek, P., Sádlo, J. & Mandák, B. Catalogue of alien plants of the Czech Republic. Preslia 74, 97–186 (2002).
    Google Scholar 
    Pyšek, P. et al. Alien plants in checklists and floras: Towards better communication between taxonomists and ecologists. Taxon 53, 131–143 (2004).Article 

    Google Scholar 
    WFO World Flora Online. http://www.worldfloraonline.org (2021).Hadfield, J. D. & Nakagawa, S. General quantitative genetic methods for comparative biology: Phylogenies, taxonomies and multi-trait models for continuous and categorical characters. J. Evol. Biol. 23, 494–508 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ellis, R. H. & Roberts, E. H. Improved equations for the prediction of seed longevity. Ann. Bot. 45, 13–30 (1980).Article 

    Google Scholar 
    Butler, L. H., Hay, F. R., Ellis, R. H., Smith, R. D. & Murray, T. B. Priming and re-drying improve the survival of mature seeds of Digitalis purpurea during storage. Ann. Bot. 103, 1261–1270 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jin, Y. & Qian, H. V. PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    Qian, H. & Jin, Y. Are phylogenies resolved at the genus level appropriate for studies on phylogenetic structure of species assemblages?. Plant Divers. 43, 255–263 (2021).PubMed 
    Article 

    Google Scholar 
    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    de Villemereuil, P. & Nakagawa, S. General quantitative genetic methods for comparative biology. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 287–303 (Springer-Verlag, Berlin, 2014).Chapter 

    Google Scholar 
    Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 

    Google Scholar 
    Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57, 591–601 (2008).PubMed 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2022). Available online at: https://www.R-project.org More

  • in

    A population genetic analysis of the Critically Endangered Madagascar big-headed turtle, Erymnochelys madagascariensis across captive and wild populations

    Storey, M. et al. Timing of hot spot—Related volcanism and the breakup of Madagascar and India. Science (80-) 267, 852–855 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    Wilmé, L., Goodman, S. M. & Ganzhorn, J. U. Biogeographic evolution of Madagascar’s microendemic biota. Science (80-) 312, 1063–1065 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends Ecol. Evol. 24, 456–465 (2009).PubMed 
    Article 

    Google Scholar 
    Rakotomanana, H., Jenkins, R. K. B. & Ratsimbazafy, J. Conservation challenges for Madagascar in the next decade. In Conservation Biology: Voices from the Tropics (eds Raven, P. H., Sodhi, N. S. & Gibson, L.) 33–39 (Wiley-Blackwell, 2013). https://doi.org/10.1002/9781118679838.ch5.Jenkins, R. K. B. et al. Extinction risks and the conservation of Madagascar’s reptiles. PLoS ONE 9, 1 – 14 (2014). https://doi.org/10.1371/journal.pone.0100173Velosoa, J. et al. An integrated research, management, and community conservation program for the Rere (Madagascar Big-headed turtle), Erymnochelys madagascariensis. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 171–177 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a27p171.Leuteritz, T., Kuchling, G., Garcia, G. & Velosoa, J. Erymnochelys madagascariensis. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 56–58 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a11p56.Rafeliarisoa, T., Shore, G., Engberg, S., Louis, E. & Brenneman, R. Characterization of 11 microsatellite marker loci in the Malagasy big-headed turtle (Erymnochelys madagascariensis). Mol. Ecol. Notes 6, 1228–1230 (2006).CAS 
    Article 

    Google Scholar 
    Roca, V., García, G. & Montesinos, A. Gastrointestinal helminths found in the three freshwater turtles (Erymnochelys madagascariensis, Pelomedusa subrufa and Pelusios castanoides) from Ankarafantsika National Park, Madagascar. Helminthologia 44, 177–182 (2007).Article 

    Google Scholar 
    Kuchling, G. & Garcia, G. Pelomedusidae, freshwater turtles. In The Natural History of Madagascar (eds Goodman, S. M. & Benstead, J. P.) 956–960 (University of Chicago Press, 2003).
    Google Scholar 
    Pedrono, M. & Smith, L. Overview of the natural history of Madagascar’s endemic tortoises and freshwater turtles: Essential components for effective conservation. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 59–66 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a12p59.Kuchling, G. Population structure, reproductive potential and increasing exploitation of the freshwater turtle Erymnochelys madagascariensis. Biol. Conserv. 43, 107–113 (1988).Article 

    Google Scholar 
    Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).Article 

    Google Scholar 
    Leuteritz, T., Kuchling, G., Garcia, G. & Velosoa, J. Erymnochelys madagascariensis (errata version published in 2016). The IUCN Red List of Threatened Species. 2008, 1–3 (2008).Kuchling, G. Concept and design of the Madagascar side-necked turtle Erymnochelys madagascariensis breeding facility at Ampijoroa, Madagascar. Dodo 36, 62–74 (2000).
    Google Scholar 
    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861 (2011).Article 

    Google Scholar 
    Stanton, D. W. G. et al. Genetic structure of captive and free-ranging okapi (Okapia johnstoni) with implications for management. Conserv. Genet. 16, 1115–1126 (2015).Article 

    Google Scholar 
    Boumans, L., Vieites, D. R., Glaw, F. & Vences, M. Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol. Phylogenet. Evol. 45, 822–839 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Orozco-Terwengel, P., Andreone, F., Louis, E. & Vences, M. Mitochondrial introgressive hybridization following a demographic expansion in the tomato frogs of Madagascar, genus Dyscophus. Mol. Ecol. 22, 6074–6090 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, R. G. & Raxworthy, C. J. The evolution of local endemism in Madagascar: Watershed versus climatic gradient hypotheses evaluated by null biogeographic models. Evolution (New York) 63, 959–967 (2009).
    Google Scholar 
    Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hulce, D., Li, X., Snyder-Leiby, T. & Liu, J. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. J. Biomol. Tech. https://doi.org/10.1002/wps.20394 (2011).Article 
    PubMed Central 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    Carlsson, J. Effects of microsatellite null alleles on assignment testing. J. Hered. 99, 616–623 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl. Acad. Sci. U. S. A. 97, 6585–6590 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    Beaumont, M. A. Detecting population expansion and decline using microsatellites. Genetics 153, 2013–2029 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bulut, Z. et al. Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetica 136, 501–504 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Plummer, M. & Murrell, P. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News. 6, 7–11 (2006).R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008). https://doi.org/10.1017/CBO9781107415324.004.Book 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155, 945–959 (2000). https://doi.org/10.1111/j.1471-8286.2007.01758.x.Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).PubMed 
    Article 

    Google Scholar 
    Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Res. 17, 27–32 (2017).Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).CAS 
    Article 

    Google Scholar 
    Narum, S. R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).CAS 
    Article 

    Google Scholar 
    Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prost, S. & Anderson, C. N. K. TempNet: A method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).Article 

    Google Scholar 
    Paquette, S. R. et al. Riverbeds demarcate distinct conservation units of the radiated tortoise (Geochelone radiata) in southern Madagascar. Conserv. Genet. 8, 797–807 (2007).CAS 
    Article 

    Google Scholar 
    Bouchard, C., Tessier, N. & Lapointe, F. J. Watersheds influence the wood turtle’s (Glyptemys insculpta) genetic structure. Conserv. Genet. 20, 653–664 (2019).Article 

    Google Scholar 
    Perlman, S. J., Hodson, C. N., Hamilton, P. T., Opit, G. P. & Gowen, B. E. Maternal transmission, sex ratio distortion, and mitochondria. Proc. Natl. Acad. Sci. U. S. A. 112, 10162–10168 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Pearse, D. E. et al. Estimating population structure under nonequilibrium conditions in a conservation context: Continent-wide population genetics of the giant Amazon river turtle, Podocnemis expansa (Chelonia; Podocnemididae). Mol. Ecol. 15, 985–1006 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearse, D. E. & Avise, J. C. Turtle mating systems: Behavior, sperm storage, and genetic paternity. J. Hered. 92, 206–211 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claussen, M. et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Lett. 26, 2037–2040 (1999).Article 
    ADS 

    Google Scholar 
    Virah-Sawmy, M., Willis, K. J. & Gillson, L. Threshold response of Madagascar’s littoral forest to sea-level rise. Glob. Ecol. Biogeogr. 18, 98–110 (2009).Article 

    Google Scholar 
    Wahlund, S. Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11, 65–106 (1928).Article 

    Google Scholar 
    Hurst, G. D. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B Biol. Sci. 272, 1525–1534 (2005).CAS 
    Article 

    Google Scholar 
    Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. (Camb.) 89, 311–336 (2008).Article 

    Google Scholar 
    Valenzuela, N. Multiple paternity in side-neck turtles Podocnemis expansa: Evidence from microsatellite DNA data. Mol. Ecol. 9, 99–105 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Volkmann, L., Martyn, I., Moulton, V., Spillner, A. & Mooers, A. O. Prioritizing populations for conservation using phylogenetic networks. PLoS ONE 9, 1–10 (2014). https://doi.org/10.1371/journal.pone.0088945Article 
    CAS 

    Google Scholar 
    García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv. Genet. 22, 541–545 (2021).Article 

    Google Scholar 
    Frankham, R. Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618 (2015).PubMed 
    Article 

    Google Scholar 
    Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, 1–10 (2021). https://doi.org/10.1073/pnas.2015096118Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science (80-) 318, 100–103 (2007).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    Multi-storm analysis reveals distinct zooplankton communities following freshening of the Gulf of Mexico shelf by Hurricane Harvey

    In this study, we aimed to determine if tropical cyclones in the northwestern GOM differentially affected mesozooplankton community structure. We found that multivariate community structure varied between storm and non-storm years. However, among the three hurricanes, only the post-Harvey mesozooplankton communities were distinct from years where no storms occurred. Multivariate dispersion, a measure of variance within community structure, did not differ between storm and non-storm years. This result refutes our hypothesis that variability in zooplankton community structure would be higher during storm years opposed to non-storm years. Our prediction that post-storm mesozooplankton communities would differ from non-storm communities was supported, as was our expectation that mesozooplankton community structure varied among storms. We hypothesized that due to the major flooding and rainfall of Harvey, reduced salinity would likely be the main driver of mesozooplankton community differences relative to non-storm years. This expectation was partially met; differences in mesozooplankton community structure between Harvey and years with no storms were driven by salinity, stratification, and ‘distance-from-shore’ rather than solely salinity. This indicates that NWGOM zooplankton community structure varies holistically with biophysical conditions rather than being primarily driven by one or two dominating factors24. Moreover, we found that the presence of Hurricane Harvey, rather than temperature, explained the second greatest amount of variance in zooplankton community structure reflecting the importance of considering how complex disturbance mechanisms might compound and result in a unique ecological responses following a tropical cyclone. The overall PSEM showed that high salinity was directly associated with reduced fluorescence and depressed zooplankton abundance. Higher abundances were found to result in higher community dominance (i.e., lower evenness). Conversely, high salinities indirectly reduced zooplankton evenness via greater water column stratification. Lower fluorescence at higher salinities supports the spatial patterns in NWGOM phytoplankton identified by Kurtay et al.20 following Hurricane Harvey. Those authors observed declines in overall phytoplankton abundance and communities increasingly dominated by cells  More

  • in

    Mothers with higher twinning propensity had lower fertility in pre-industrial Europe

    Data preparationHistorical dataThe primary source of data is historical parish registers, which have been transcribed under the supervision of many of the study authors over a number of decades, primarily for evolutionary demographic research. Our dataset (Supplementary Data 1) includes nine European populations, including some for which the positive relationship between maternal lifetime twinning status and maternal total births has been described previously5,6,8,10. Details for the populations used in this study are given in Table 1 and in Supplementary Table 14. The sourcing of each dataset and the socio-ecological background of each population have already been described in previous studies (see Table 1 for references). Overall, there is no reason to suspect a high level of consanguinity in these populations62, so our analyses do not account for the variable level of relatedness between individuals. The datasets cover pre-industrial periods in which the lifetime reproductive success was high and the majority of people were living and working in agrarian communities, except for the Samis (from northern Finland and Sweden) who made their living fully or in part from a combination of herding, fishing and hunting. The smooth decline of the probability of parity progression with parity (Fig. 4a) suggests that mothers did not effectively limit their reproductive success with the aim of achieving a small family size, as found in populations that have undergone a demographic transition.Data selectionWe use the term family to describe a mother and all individuals to whom she gave birth over her life. For our analyses, all families considered met the following criteria: the mother’s age was known at a monthly resolution and her life course traced until at least age 45 (approximating full reproductive life), the birth year and month of all offspring must have been recorded and consecutive births were all at least nine months apart from one another. In the case of one population (Norway) and of a few observations in the other populations, the month of birth was not available. These data were thus not considered in the results presented in main text because some of our analyses require an accurate estimation of the interbirth interval. Most analyses are thus based on data from eight populations. Nevertheless, the slope of the negative relationship between twinning and total birth remained very similar irrespectively of whether or not such data were included (Supplementary Fig. 5), which suggests that the exclusion of Norwegian data does not alter our main conclusions. Information on the populations considering also the data for which the birth months were missing is provided in Supplementary Table 14.Twin identificationIn our data, the maximum number of offspring to constitute a multiple birth was three. We use the term twin(s) to refer to offspring who were the result of the same multiple birth (including 1745 sets of twins sensu stricto and 19 sets of triplets in the filtered dataset and, respectively, 1915 and 20 in the dataset including observations that lack birth months). Although twins are sometimes explicitly indicated in the data sources, this is not always the case. Thus, for the sake of consistency across our populations, twin births were identified when at least two individuals born to the same mother appeared with similar birth dates, according to strict criteria: if the exact birth dates were available, then offspring were identified as twins if their birth dates were no more than one day apart. If the exact birth dates were not available, then an identical birth year and month were considered sufficient for positive twin identification.Analyses and simulationsCharacterisation of the relationship between twinning and fertilityWe began by characterising the relationship between lifetime twinning status and maternal total births by fitting two models. For the first, we used a Generalised Linear Mixed-effects Model (GLMM) to investigate whether the mothers of twins (twinners) had experienced a larger or smaller number of births than mothers who only had singletons (non-twinners). We fitted this GLMM on the mother-level data with the R package spaMM63 using the call:$$begin{array}{c}{{{rm{fitme}}}}left({{{{rm{births}}}}}_{{{{rm{total}}}}}sim 1+{{{rm{twinner}}}}+(1|{{{rm{pop}}}}),right.\ {{{rm{data}}}}={{{rm{mother}}}}_{{{rm{level}}}}_{{{rm{data}}}},\ left.{{{rm{family}}}}={{{rm{Tnegbin}}}}({{{rm{link}}}}={hbox{“}}{{{mathrm{log}}}}{hbox{”}})right)end{array}$$
    (1)
    The response variable births_total refers to all births recorded over a mother’s observed lifetime (count data). The term 1 informs the function to fit an intercept (which happens by default, but is indicated here for clarity). The predictor twinner refers to maternal lifetime twinning status (binary: twinner vs non-twinner) and is modelled as a fixed effect. The term pop refers to the population identity (qualitative variable with eight levels) and is modelled by a Gaussian random effect acting on the intercept, which allows for the modelling of the heterogeneity between populations that is not captured by the fixed effects. The argument family is used to define the error structure and the link function of the GLMM (more on this below).In a second model, we reversed which variable is used as a response and which is used as the fixed-effect predictor. This allowed us to analyse how maternal total births predicted the probability of a mother producing twins during her lifetime using the call:$$begin{array}{c}{{{{{rm{fitme}}}}}}left({{{{{rm{twinner}}}}}} sim 1+{{{{{rm{births}}}}}}_{{{{{rm{total}}}}}}+(1|{{{{{rm{pop}}}}}}),right.\ {{{{{rm{data}}}}}}={{{{{rm{mother}}}}}}_{{{{{rm{level}}}}}}_{{{{{rm{data}}}}}},\ left.{{{{{rm{family}}}}}}={{{{{rm{binomial}}}}}}({{{{{rm{link}}}}}}={hbox{“}}{{{{{rm{logit}}}}}}{hbox{”}})right)end{array}$$
    (2)
    The fitted models 1 and 2 are depicted in Fig. 1a, b and Supplementary Tables 1,2. While models 1 and 2 represent two sides of the same coin, the fit of both models is justified because each model formulation provides complementary information: expressing the effect of twinning on fertility relates to previous work5,6,7,8,9,10,57 and expressing the effect of fertility on twinning is a first step toward identifying what shapes twinning propensity, the focus of this paper.For the model predicting total births (model 1), we chose to use a negative binomial error structure. Using this error structure produced a fit of the data that was better than a (truncated) Poisson—the usual alternative for count data—as evidenced by much smaller marginal and conditional AIC values64. Here we specifically used a truncated negative binomial distribution because the data do not possess zeros by construction (only mothers are present in the dataset, i.e. there are no nulliparous women). For the model predicting lifetime twinning status (model 2), we chose a binomial error structure which is appropriate for binary data.Modelling the proportion of twin births among all births per mother is an effective way to avoid biases caused by differences in exposure to the risk of having twins affecting the relationship between twinning and fertility. For this, we fitted the following third model:$$begin{array}{l}{{{{{rm{fitme}}}}}}left({{{{{rm{cbind}}}}}};({{{{{rm{twin}}}}}}_{{{{{rm{total}}}}}},{{{{{rm{singleton}}}}}}_{{{{{rm{total}}}}}})right.\ sim ,1+{{{{{rm{births}}}}}}_{{{{{rm{total}}}}}}+(1|{{{{{rm{pop}}}}}}),\ ,{{{{{rm{data}}}}}}={{{{{rm{mother}}}}}}_{{{{{rm{level}}}}}}_{{{{{rm{data}}}}}},\ ,left.{{{{{rm{family}}}}}}={{{{{rm{binomial}}}}}};({{{{{rm{link}}}}}}={hbox{“}}{{{{{rm{logit}}}}}}{hbox{”}})right)end{array}$$
    (3)
    In this model, the variable twin_total refers to the mother’s total number of twin births (i.e. one for each twinning event), singleton_total refers to the lifetime number of singleton births, and the cbind() function serves to indicate the fitting function to model the frequency of twinning events based on these two variables, which is interpreted as number of successes and failures of a binomial experience. The fitted model 3 is depicted in Fig. 2 and Supplementary Table 3.We modified model 3 so as to test whether the effect of total births differed significantly between populations. To do so, we considered that the effect of populations on total births could either be modelled as an interaction between fixed effects or as a random slope. For the former representation, we thus compared the fit of a model with linear predictor structure defined in spaMM as 1+births_total*pop to that of a model with the structure 1+births_total+pop. For the latter representation, we compared the fit with linear predictor structure 1+births_total + (1|pop) (i.e. model 3 as introduced above) to that of 1+births_total + (1+births_total|pop). We performed this testing procedure by comparing the likelihood ratio between each pair of alternative fits to the expectation of such a ratio under the null hypothesis. The distribution of the statistics used for the test was computed using 1000 parametric bootstrap replicates, which we generated using the function anova() provided by spaMM63. The test revealed a small non-significant variation in slopes between populations (see Results). For the sake of simplicity, we thus considered the effect of births_total the same across populations in all other analyses.Modelling life-history events using GLMMsTo reveal the biological mechanisms responsible for the relationship between twinning and fertility, we first fitted statistical models describing how age, parity and twin/singleton status, as well as individual and population differences influenced three key life-history events: parity progression (PP), the duration of interbirth intervals (IBI) and the twinning outcome of births (T). These models were fitted on birth-level data by the following calls:$$begin{array}{l}{{{{{rm{fitme}}}}}}left({{{{{rm{PP}}}}}} sim 1+{{{{{rm{twin}}}}}}+{{{{{rm{poly}}}}}}({{{{{rm{cbind}}}}}}({{{{{rm{age}}}}}},,{{{{{rm{parity}}}}}}),,{{{{{rm{best}}}}}}_{{{{{rm{order}}}}}})right.\ ,+,(1|{{{{{rm{maternal}}}}}}_{{{{{rm{id}}}}}})+(1|{{{{{rm{pop}}}}}}),\ ,{{{{{rm{data}}}}}}={{{{{rm{birth}}}}}}_{{{{{rm{level}}}}}}_{{{{{rm{data}}}}}},\ ,{{{{{rm{family}}}}}}={{{{{rm{binomial}}}}}};({{{{{rm{link}}}}}}={hbox{“}}{{{{{rm{logit}}}}}}{hbox{”}})end{array}$$
    (4)
    $$begin{array}{l}{{{{{rm{fitme}}}}}}left({{{{{rm{IBI}}}}}} sim 1+{{{{{rm{twin}}}}}}+{{{{{rm{poly}}}}}};({{{{{rm{cbind}}}}}}({{{{{rm{age}}}}}},,{{{{{rm{parity}}}}}}),{{{{{rm{best}}}}}}_{{{{{rm{order}}}}}})right.\ ,+,(1|{{{{{rm{maternal}}}}}}_{{{{{rm{id}}}}}})+(1|{{{{{rm{pop}}}}}}),\ ,{{{{{rm{data}}}}}}={{{{{rm{birth}}}}}}_{{{{{rm{level}}}}}}_{{{{{rm{data}}}}}},\ ,left.{{{{{rm{family}}}}}}={{{{{rm{negbin}}}}}}({{{{{rm{link}}}}}}={hbox{“}}{rm log} {hbox{”}})right)end{array}$$
    (5)
    $$begin{array}{l}{{{{{rm{fitme}}}}}}left({{{{{rm{T}}}}}} sim 1+{{{{{rm{poly}}}}}}({{{{{rm{cbind}}}}}}({{{{{rm{age}}}}}},,{{{{{rm{parity}}}}}}),,{{{{{rm{best}}}}}}_{{{{{rm{order}}}}}})right.\ ,+,(1|{{{{{rm{maternal}}}}}}_{{{{{rm{id}}}}}})+(1|{{{{{rm{pop}}}}}}),\ ,{{{{{rm{data}}}}}}={{{{{rm{birth}}}}}}_{{{{{rm{level}}}}}}_{{{{{rm{data}}}}}},\ ,left.{{{{{rm{family}}}}}}={{{{{rm{binomial}}}}}};({{{{{rm{link}}}}}}={hbox{“}}{{{{{rm{logit}}}}}}{hbox{”}})right).end{array}$$
    (6)
    The response variables of models 4, 5 and 6 are thus PP, IBI and T, which refer to whether the mother went on to reproduce again or not (a boolean), the duration of the interbirth interval between the focal birth and the next (a discrete number of months) and whether the birth resulted in twins or not (a boolean), respectively. In addition to the terms that have already been defined, we now have the term poly(cbind(age, parity), best_order) to code for a polynomial describing the effect of maternal age, parity and their possible interaction. The two-variable polynomial function was applied on maternal age (with a monthly resolution) and parity (i.e. the current birth rank). Such a polynomial term allowed us to explore the influences of maternal age and parity on each response variable while encompassing the non-linearity of these predictors. We also have the predictor variable twin, which is a boolean that indicates if the previous birth event of a given mother resulted in twins or not (the variable twin and T are the same, but we used two different names to clarify when it is used as a response or as a predictor). Finally, we have the random effect “maternal identity” (maternal_id), which is used to represent intrinsic variation among mothers, that is, heterogeneity of expected response among individuals, beyond that due to the fixed effects and the population random effect. This random effect therefore measures maternal intrinsic fertility (in models 4 & 5) and twinning propensity (in model 6).To determine the best polynomial order (best_order) for the polynomial term we attempted orders from 0 to 6 and selected, for each model, the order leading to the model fit associated with the smallest marginal AIC. A polynomial of order 6 is sufficient to fit very complex shapes. Polynomial orders obtained by this procedure are given in the summary tables of the model fits given in Supplementary Tables. Importantly, maternal age and parity are highly correlated together (Spearman’s rho = 0.69), unequally correlated to response variables and exert non-linear effects. These are precisely the conditions in which collinearity issues are the most severe65. This justifies why we considered them jointly in all statistical models, as well as why we did not attempt to partition their respective biological effects in our analyses (except for the visual representation in Fig. 4).In order to study how the lifetime twinning status influenced maternal age at first birth, we also fitted the following model:$$begin{array}{l}{{{{{rm{fitme}}}}}}left({{{{{rm{AFB}}}}}} sim 1+{{{{{rm{twinner}}}}}}* {{{{{rm{births}}}}}}_{{{{{rm{total}}}}}}_{{{{{rm{fac}}}}}}+(1|{{{{{rm{pop}}}}}}),right.\ ,{{{{{rm{data}}}}}}={{{{{rm{mother}}}}}}_{{{{{rm{level}}}}}}_{{{{{rm{data}}}}}},\ ,left.{{{{{rm{family}}}}}}={{{{{rm{negbin}}}}}}({{{{{rm{link}}}}}}={hbox{“}}{rm log} {hbox{”}})right)end{array}$$
    (7)
    In this model, the response variable AFB corresponds to the age at first birth expressed as a number of months (discrete data) and the predictor births_total_fac corresponds to a qualitative variable referring to maternal total births (10 levels: 1, 2, …, 9, 10 + ). We here considered a possible interaction between twinner and births_total_fac. We used the negative binomial family as in model 1 but as for model 5 there is no need to consider here the truncated form of the distribution. All other terms have already been defined. The fitted model is depicted in Supplementary Fig. 1 and Supplementary Table 7.Marginal predictions for GLMMsAll predictions shown in plots or given in text represent marginal predictions. This means that the predictions for the quantities of interest (maternal lifetime births, twinning probabilities and age at first birth) are a function of coefficients of the fixed effects, and of the variance of the random effects. To be more precise, we averaged, over the fitted distribution of random effects, the predictions expressed on the scale of the response (i.e. back-transformed from the scale of the linear predictor) and conditional on the fixed and random effects. Unlike the traditional conditional predictions computed for a specific value of the random effects (often 0), such computation provides unbiased predictions and should be favoured in the context of GLMMs where random effects act non-additively on the expected response (which is the case when the link function of the model is not identity66). We estimated 95% intervals for these marginal predictions (CI95%) using parametric bootstraps with the help of the function spaMM_boot() from the R package spaMM and boot.ci() from the R package boot. More details can be found by looking at the code of the functions compute_predictions() and compare_prediction() in our supporting R package twinR (see Code availability).Simulating the life history of mothersWe produced an individual-based simulation model of human female life history to investigate the contribution of four mechanisms to the relationship, shown in Fig. 2, between per-birth twinning probability and maternal total births—an approach generally known as pattern-oriented modelling67. Each simulation proceeds in the following way: first, we initialised the simulation with representations of the exact same mothers present in the observed dataset, setting their population and maternal identities as the real ones, their starting ages at the observed values for age at first birth and their parity to one. Following this initialisation, the virtual lives of mothers proceeded as multiple iterations of a sequence of three life-history events, informed by statistical models (see below) and subject to the hypothesis being tested (Supplementary Figs. 3, 4). Specifically, for each mother, the twin/singleton status (T) of the current birth was first determined using a GLMM predicting T. Then, whether or not she will go on to reproduce at least once more was determined by simulating her parity progression status (PP) using a GLMM predicting the parity progression probability. For mothers who do continue reproducing, we finally used a third GLMM to determine the length of the interval between the current birth and the next one (IBI). At each iteration, a mother’s parity is increased by one, and age is increased by the simulated length of the interbirth interval. All predictions were performed conditionally on the value for the predictor characterised by both fixed and random effects. The process of simulating PP, IBI and T was then reiterated until all women had ceased reproduction, which happens necessarily since the probability of parity progression is lower than one. We also set this probability to zero once women reached 60 years old to save computation time in particular simulation scenarios leading to unrealistic life histories (and bad goodness of fit). Note that the maximum recorded age at which a mother gave birth was 55.1 years in our data. For the same reason, we also capped the maximum simulated duration for the interbirth interval to 30 years.Drawing life-history events from the fit of the model formulas shown above for models 4, 5 and 6 corresponds to simulating the scenario PISH (i.e. all four hypothetical mechanisms are activated). For simulating other simulation scenarios, we had to fit additional GLMMs derived from models presented above. Specifically, the term twin was dropped from model 4 to deactivate mechanism P (model 8; Supplementary Table 8); the term twin was dropped from model 5 to deactivate mechanism I (model 9; Supplementary Table 9); the term poly(cbind(age, parity), best_order) was dropped from model 6 to deactivate the mechanism S (model 10 and 11; Supplementary Tables 10, 11); and the term (1|maternal_id) was dropped from model 6 to deactivate mechanism H (model 11 and 12; Supplementary Tables 11, 12).Testing candidate mechanisms using simulationsTo test how each mechanism or association of mechanisms influenced the relationship between twinning and fertility, we ran simulations under each possible set of activated or inactivated mechanisms. We tested all possible sets and we thus built a total of 42 = 16 simulation scenarios (Supplementary Figs. 3, 4).For each simulation scenario, we ran simulation replicates (see Supplementary Notes for details and information on the numbers of replicates), then fitted model 3 on the dataset produced by each replicate and extracted the estimate for the slope associated with the term births_total in that model (β*). We then consider, in turn, that each simulation scenario may have generated the data. Each simulation scenario is thus considered as a null hypothesis which we aim at testing. Such a test is traditionally referred to as a goodness-of-fit test68. The result of such a test, a p-value, answers the question: what is the probability of obtaining a value equal to, or more extreme than, the statistic of interest, if the null hypothesis were true? The rejection of the null hypothesis by the test (i.e. a p-value ≤ 0.05) signifies a rejection of the null hypothesis, and thus, here, the rejection of a simulation scenario which represents a particular mechanism, or combination of mechanisms. In contrast, a large (i.e. non-significant) p-value would here denote support for the simulation scenario under consideration.A first candidate, as a statistic of interest to build our goodness-of-fit test, is the slope β*. However, when viewed as a goodness-of-fit test, the direct comparison of the observed and simulated slopes may be conservative when other life-history parameters are fitted to the data. This is because the data tend to be more likely given parameter values fitted to the data than given the actual (unknown) parameter values that generated the data. The goodness-of-fit test is however only guaranteed to provide uniformly distributed p-values (a feature necessary for the correctness of any null hypothesis testing) when samples are drawn under the latter parameter values. This is a general issue in statistics which has also been discussed long ago, for example, when the data-generating process is the normal distribution and a Kolmogorov–Smirnov test of goodness-of-fit is applied69. We thus designed and validated a specific procedure to correct for such bias while testing each simulation scenario (Supplementary Notes). In the text, we only report outcomes from this unbiased goodness-of-fit test (for details, see Supplementary Notes and Supplementary Table 13).Studying the effect of twinning propensity on the number of offspring using simulationsTo study how twinning propensity influences the total number of offspring that mothers produced during their lifetime, we ran two sets of simulations, each with 100 replicates. In the first set, we ran the simulation as described in the section “Simulating the life history of mothers” using the fits of the models associated with the simulation scenario PIS (i.e. fits of models 4, 5 and 12). In the second set, we did the same, except that we modified the intercept of the model predicting twinning events (fit of the model 12) by adding 2.5 to its intercept. We also tried other values, some smaller (e.g. 0.25), some larger (e.g. 5), to make sure that the magnitudes of the change of the intercept did not impact our qualitative statements. For each set of replicates, we extracted the twinning rate, the twinner rate, the mean number of offspring produced and the mean total number of births. We report the means of these metrics, as well as the 95% Central Range from simulation replicates (CR95%), which we directly computed by extracting the corresponding quantiles from the distribution generated by the replicates.Realism of the simulationsWe checked that the simulated life history closely matched that of the real mothers represented in our dataset beyond what is captured by the relationship between twinning and fertility. To do so, we compared different metrics related to fertility and twinning between the real and simulated data. We chose to perform this comparison under the simulation scenario PIS since it produces the best goodness-of-fit. The results of this quality check confirm that our simulations represent the reproductive lives of the mothers appropriately (Supplementary Fig. 6).Studying the effect of mortality on the number of offspring using simulationsTo account for the fact that not all offspring have the same expected survival, we also applied a survival weight to each simulated offspring before averaging the numbers for a given simulation set (baseline twinning propensity or enhanced, see Results). We used as weights the estimates for the probability of offspring survival between birth and adulthood provided by two publications associated with some of the data we used there. Specifically, following Helle et al.8, we used a weight of 0.603 for twins, 0.838 for singletons from twinners and 0.815 for singletons from non-twinners. Alternatively, following Haukioja et al.3, we used a weight of 0.337 for twins and 0.706 for singletons from all mothers.Implementation detailsAll statistical analyses were performed in R version 4.170. The main R packages we used were spaMM63 version 3.9.40 for the fit of all the statistical models, boot71,72 version 1.3-28 for the computation of confidence intervals based on parametric bootstraps, and R673 version 2.5.1 for defining the object used to run the simulations. The DESCRIPTION file from our package twinR (see Code availability) lists the additional R packages required for this project (e.g. those used for plotting and data manipulation).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Paleoclimate-induced stress on polar forested ecosystems prior to the Permian–Triassic mass extinction

    Shen, S.-Z. et al. A sudden end-Permian mass extinction in South China. GSA Bull. 131(1–2), 205–223. https://doi.org/10.1130/B31909.1 (2019).CAS 
    Article 

    Google Scholar 
    Rampino, M. R. & Caldeira, K. Major perturbation of ocean chemistry and a ‘Strangelove Ocean’ after the end-Permian mass extinction. Terra Nova 17, 554–559. https://doi.org/10.1111/j.1365-3121.2005.00648.x (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Cascales-Miñana, B. & Cleal, C. The plant fossil record reflects just two great extinction events. Terra Nova 26, 195–200. https://doi.org/10.1111/ter.12086 (2014).ADS 
    Article 

    Google Scholar 
    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385. https://doi.org/10.1038/s41467-018-07934-z (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian–Triassic transition. Nat. Commun. 10, 384. https://doi.org/10.1038/s41467-018-07945-w (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: What physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. 134, 691–721. https://doi.org/10.1130/B35830.1 (2021).Article 

    Google Scholar 
    Xiong, C. & Wang, Q. Permian–Triassic land-plant diversity in South China: Was there a mass extinction at the Permian/Triassic boundary?. Paleobiology 37(1), 157–167 (2011).Article 

    Google Scholar 
    Feng, Z. et al. From rainforest to herbland: New insights into land plant responses to the end-Permian mass extinction. Earth Sci. Rev. 204, 103153 (2020).ADS 
    Article 

    Google Scholar 
    McLoughlin, S. Glossopteris–insights into the architecture and relationships of an iconic Permian Gondwanan plant. J. Bot. Soc. Bengal 65, 93–106 (2011).
    Google Scholar 
    Rigby, J. F. The Gondwana palaeobotanical province at the end of the Palaeozoic. In 24th International Geological Congress (Montreal, 1972). Proceedings, Section 7, 324–330 (International Geological Congress, 1972).Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).Article 

    Google Scholar 
    Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. PNAS 96, 13857–13862 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Gabites, H. I. Triassic paleoecology of the Lashly Formation, Transantarctic Mountains, Antarctica. M.Sc. Thesis, 1–148 (Victoria University of Wellington, New Zealand, 1985).Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513. https://doi.org/10.1130/B35355.1 (2020).CAS 
    Article 

    Google Scholar 
    Escapa, I. H. et al. Triassic floras of Antarctica: Plant diversity and distribution in high paleolatitude communities. Palaios 26, 522–544 (2011).ADS 
    Article 

    Google Scholar 
    Retallack, G. J. & Krull, E. S. Landscape ecological shift at the Permian–Triassic boundary in Antarctica. Aust. J. Earth Sci. 46, 785–812 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Gulbranson, E. L., Cornamusini, G., Ryberg, P. E. & Corti, V. When does large woody debris influence ancient rivers? Dendrochronology applications in the Permian and Triassic, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 541, 109544. https://doi.org/10.1016/j.palaeo.2019.109544 (2020).Article 

    Google Scholar 
    Sheldon, N. D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315–321 (2006).Article 

    Google Scholar 
    Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology https://doi.org/10.1130/G48795.1 (2021).Article 

    Google Scholar 
    Collinson, J. W., Hammer, W. R., Askin, R. A. & Elliot, D. H. Permian–Triassic boundary in the central Transantarctic Mountains, Antarctica. GSA Bull. 118, 747–763 (2006).Article 

    Google Scholar 
    Elliot, D. H., Fanning, C. M., Isbell, J. L. & Hulett, S. R. W. The Permo–Triassic Gondwana sequence, central Transantarctic Mountains, Antarctica: Zircon geochronology, provenance, and basin evolution. Geosphere 13, 155–178 (2017).ADS 
    Article 

    Google Scholar 
    Barbolini, N., Bamford, M. K. & Rubidge, B. Radiometric dating demonstrates that Permian spore-pollen zones of Australia and South Africa are diachronous. Gondwana Res. 37, 241–251 (2016).ADS 
    Article 

    Google Scholar 
    Sidor, C. A., Smith, R. M. H., Huttenlocker, A. K. & Peecook, B. R. New Middle Triassic tetrapods from the Upper Fremouw Formation of Antarctica and their depositional setting. J. Vertebr. Paleontol. 34, 793–801 (2014).Article 

    Google Scholar 
    Hancox, P. J., Neveling, J. & Rubidge, B. S. Biostratigraphy of the Cynognathus Assemblage Zone (Beaufort Group, Karoo Supergroup), South Africa. S. Afr. J. Geol. 123, 217–238. https://doi.org/10.25131/sajg.123.0016 (2020).Article 

    Google Scholar 
    Askin, R. A. Permian palynomorphs from southern Victoria Land, Antarctica. Antarct. J. US. 30, 47–48 (1995).
    Google Scholar 
    Kyle, R. A. & Schopf, J. M. Permian and Triassic palynostratigraphy of the Victoria Group, Transantarctic Mountains. In Antarctic Geosciences (ed. Craddock, C.) 649–659 (University of Wisconsin Press, 1982).
    Google Scholar 
    Fritts, H. C. Tree Rings and Climate (Academic Press, 1976).
    Google Scholar 
    Lu, J., Zhang, P., Yang, M., Shao, L. & Hilton, J. Continental records of organic carbon isotopic composition (δ13Corg), weathering, paleoclimate and wildfire linked to the End-Permian Mass Extinction. Chem. Geol. 558, 119764 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, J., Cawood, P. A., Du, Y., Feng, B. & Yan, J. Global continental weathering trends across the Early Permian glacial to postglacial transition: correlating high- and low-paleolatitude sedimentary records. Geology 42, 835–838 (2014).ADS 
    Article 

    Google Scholar 
    Panahi, A., Young, G. M. & Rainbird, R. H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. Acta 64, 2199–2220 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Gulbranson, E. L., Montañez, I. P. & Tabor, N. J. A proxy for humidity and floral province from paleosols. J. Geol. 119, 559–573 (2011).ADS 
    Article 

    Google Scholar 
    Sheldon, N. D., Retallack, G. J. & Tenaka, S. Geochemical climofunctions from North American soils and application to paleosols across the eocene–oligocene boundary in Oregon. J. Geol. 110, 687–696 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bul. Am. Meteorol. Soc. 79, 61–78 (1998).ADS 
    Article 

    Google Scholar 
    Fielding, C. R. et al. Environmental change in the late Permian of Queensland, NE Australia: The warmup to the end-Permian Extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. https://doi.org/10.1016/j.palaeo.2022.110936 (2022).Article 

    Google Scholar 
    Gulbranson, E. L. et al. Leaf habit of Late Permian Glossopteris trees from high palaeolatitude forests. J. Geol. Soc. 171, 493–507 (2014).ADS 
    Article 

    Google Scholar 
    Ryberg, P. E. Reproductive diversity of Antarctic glossopterid seed ferns. Rev. Palaeobot. Palynol. 158, 167–179 (2009).Article 

    Google Scholar 
    Mays, C. et al. Lethal microbial blooms delayed freshwater ecosystem recovery following the end-Permian extinction. Nat. Commun. 12, 5511. https://doi.org/10.1038/s41467-021-25711-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Decombeix, A. L., Bomfleur, B., Taylor, E. L. & Taylor, T. N. New insights into the anatomy, development, and affinities of corystosperm trees from the Triassic of Antarctica. Rev. Palaeobot. Palynol. 203, 22–34 (2014).Article 

    Google Scholar 
    Cui, C. & Cao, C. Increased aridity across the Permian–Triassic transition in the mid-latitude NE Pangea. Geol. J. 56, 6162–6175. https://doi.org/10.1002/gj.4123 (2021).Article 

    Google Scholar 
    Yu, Y., Chu, D., Song, H., Guo, W. & Tong, J. Latest Permian–Early Triassic paleoclimatic reconstruction by sedimentary and isotopic analyses of paleosols from the Schichuanhe section in central North China Basin. Palaeogeogr. Palaeoclimatol. Palaeoecol. 585, 110726 (2022).Article 

    Google Scholar 
    Rees, P. M. Land-plant diversity and the end-Permian mass extinction. Geology 30, 827–830 (2002).ADS 
    Article 

    Google Scholar 
    Domeier, M. & Torsvik, T. H. Plate tectonics in the late Paleozoic. Geosci. Front. 5, 303–350. https://doi.org/10.1016/j.gsf.2014.01.002 (2014).Article 

    Google Scholar 
    Jasper, A. et al. The burning of Gondwana: Permian fires on the southern continent–a palaeobotanical approach. Gondwana Res. 24, 148–160. https://doi.org/10.1016/j.gr.2012.08.017 (2013).ADS 
    Article 

    Google Scholar 
    Taylor, G. H., Liu, S. Y. & Diessel, C. F. K. The cold climate origin of inertinite-rich Gondwana coals. Int. J. Coal Geol. 11, 1–22 (1989).CAS 
    Article 

    Google Scholar 
    Mays, C. & McLoughlin, S. End-Permian burnout: The role of Permian–Triassic wildfires in extinction, carbon cycling, and environmental change in eastern Gondwana. Palaios https://doi.org/10.2110/palo.2021.051 (2022).Article 

    Google Scholar 
    Corti, V. Palynology and paleobotany of Permo–Triassic Beacon Supergroup at Allan Hills, South Victoria Land, Antarctica: Stratigraphical and paleoenvironmental change implications. Ph.D. Dissertation, 1–186 (Università di Siena, Italy, 2021).Sheldon, N. D., Chakrabarti, R., Retallack, G. J. & Smith, R. M. H. Contrasting geochemical signatures on land from the Middle to Late Permian extinction events. Sedimentology 61, 1812–1829 (2014).CAS 
    Article 

    Google Scholar 
    Cúneo, N. R., Taylor, E. L., Taylor, T. N. & Krings, M. In situ fossil forest from the upper Fremouw Formation (Triassic) of Antarctica: Paleoenvironmental setting and paleoclimate analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 197, 239–261 (2003).Article 

    Google Scholar 
    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—An ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).CAS 
    Article 

    Google Scholar 
    Francis, J. E., Woolfe, K. J., Arnott, M. J. & Barrett, P. J. Permian climates of the southern margin of Pangea: Evidence from fossil wood of Antarctica. In Pangea: Global Environments and Resources (eds Embry, A. F. et al.) 275–282 (AAPG Memoir 17, 1994).
    Google Scholar 
    Wright, W. E., Baisan, C., Streck, M., Wright, W. W. & Szejner, P. Dendrochronology and middle Miocene petrified oak: Modern counterparts and interpretation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 445, 38–49 (2016).Article 

    Google Scholar 
    Luthardt, L. & Rößler, R. Fossil forest reveals sunspot activity in the early Permian. Geology 45, 279–282 (2017).ADS 
    Article 

    Google Scholar 
    St. George, S. & Telford, R. J. Fossil forest reveals sunspot activity in the Early Permian: COMMENT. Geology 45, 427 (2017).ADS 
    Article 

    Google Scholar 
    Baillie, M. G. L. & Pilcher, J. R. A simple cross-dating program for tree-ring research. Tree Ring Bull. 33, 7–14 (1973).
    Google Scholar 
    Hollstein, E. Mitteleuropäische Eichenchronologie, Trierer Grabungen und Forschungen XI, Philip von Zabern (1980).Bunn, A. G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258. https://doi.org/10.1016/j.dendro.2009.12.001 (2010).Article 

    Google Scholar 
    Buras, A. A comment on the expressed population signal. Dendrochronologia 44, 130–132 (2017).Article 

    Google Scholar 
    Roesch, A. & Schmidbauer, H. WaveletComp Computational Wavelet Analysis https://CRAN.R-project.org/package=WaveletComp. R package version 1.1 (2018). More

  • in

    Correction: Do habitat and elevation promote hybridization during secondary contact between three genetically distinct groups of warbling vireo (Vireo gilvus)?

    Author notesThese authors contributed equally: AM Carpenter, BA Graham.Authors and AffiliationsUniversity of Lethbridge, Lethbridge, AB, CanadaA. M. Carpenter, B. A. Graham & T. M. BurgBiological Sciences Department, Auburn University, Auburn, AL, USAA. M. CarpenterDenver Museum of Nature and Science, Denver, CO, USAG. M. SpellmanAuthorsA. M. CarpenterB. A. GrahamG. M. SpellmanT. M. BurgCorresponding authorCorrespondence to
    A. M. Carpenter. More