Incongruences between morphology and molecular phylogeny provide an insight into the diversification of the Crocidura poensis species complex
Foote, M. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28, 129–152 (1997).Article
Google Scholar
Félix, M. A. Phenotypic evolution with and beyond genome evolution. Curr. Top. Dev. Biol. 119, 291–347 (2016).PubMed
Article
CAS
Google Scholar
Carroll, S. B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 134, 25–36 (2008).CAS
PubMed
Article
Google Scholar
Harvey, P. & Pagel, M. The Comparative Method in Evolutionary Biology. (Oxford University Press, 1991).Huxley, J. S. & Teissier, G. Terminology of relative growth. Nature 137, 780–781 (1936).ADS
Article
Google Scholar
Klingenberg, C. P. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes Evol. 226, 113–137 (2016).PubMed
PubMed Central
Article
Google Scholar
Russell, E. S. Form and Function: A Contribution to the History of Animal Morphology. (John Murray, 1916).Goswami, A. & Polly, P. D. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 16, 213–243 (2010).Article
Google Scholar
Vidal-García, M., Byrne, P. G., Roberts, J. D. & Keogh, J. S. The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo-Papuan myobatrachid frogs. J. Evol. Biol. 27, 181–192 (2014).PubMed
Article
Google Scholar
Erwin, D. H. Disparity: Morphological pattern and developmental context. Palaeontology 50, 57–73 (2007).Article
Google Scholar
Fišer, C., Robinson, C. T. & Malard, F. Cryptic species as a window into the paradigm shift of the species concept. Mol. Ecol. 27, 613–635 (2018).PubMed
Article
Google Scholar
Wilson, D. E. & Mittermeier, R. A. Handbook of the Mammals of the World: Volume 8: Insectivores. vol. 8 (Lynx Edicions, 2018).Jacquet, F. et al. Phylogeography and evolutionary history of the Crocidura olivieri complex (Mammalia, Soricomorpha): From a forest origin to broad ecological expansion across Africa. BMC Evol. Biol. 15, 71. https://doi.org/10.1186/s12862-015-0344-y (2015).Article
PubMed
PubMed Central
Google Scholar
Ceríaco, L. M. P. et al. Description of a new endemic species of shrew (Mammalia, Soricomorpha) from PrÍncipe Island (Gulf of Guinea). Mammalia 79, 325–341 (2015).Article
Google Scholar
Nicolas, V. et al. Multilocus phylogeny of the Crocidura poensis species complex (Mammalia, Eulipotyphla): Influences of the palaeoclimate on its diversification and evolution. J. Biogeogr. 46, 871–883 (2019).Article
Google Scholar
Konečný, A., Hutterer, R., Meheretu, Y. & Bryja, J. Two new species of Crocidura (Mammalia: Soricidae) from Ethiopia and updates on the Ethiopian shrew fauna. J. Vertebr. Biol. 69, 20064.1. https://doi.org/10.25225/jvb.20064 (2020).Article
Google Scholar
Couvreur, T. L. P. et al. Tectonics, climate and the diversification of the tropical African terrestrial flora and fauna. Biol. Rev. 96, 16–51 (2021).PubMed
Article
Google Scholar
Mayr, E. & O’Hara, R. J. The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40, 55–67 (1986).PubMed
Article
Google Scholar
Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article
Google Scholar
Smith, T. B., Wayne, R. K., Girman, D. J. & Bruford, M. W. A role for ecotones in generating rainforest biodiversity. Science 276, 1855–1857 (1997).CAS
Article
Google Scholar
Needham, A. E. & Hardy, A. C. The form-transformation of the abdomen of the female pea-crab, Pinnotheres pisum Leach. Proc. R Soc. Lond. Ser. B Biol. Sci. 137, 115–136 (1950).ADS
CAS
Google Scholar
Hanken, J. & Hall, B. K. The Skull, Volume 3: Functional and Evolutionary Mechanisms. (University of Chicago Press, 1993).Hautier, L., Lebrun, R. & Cox, P. G. Patterns of covariation in the masticatory apparatus of hystricognathous rodents: Implications for evolution and diversification. J. Morphol. 273, 1319–1337 (2012).PubMed
Article
Google Scholar
Aristide, L. et al. Multiple factors behind early diversification of skull morphology in the continental radiation of New World monkeys. Evolution 72, 2697–2711 (2018).PubMed
Article
Google Scholar
Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).ADS
CAS
PubMed
Article
Google Scholar
Denys, C. et al. Shrews (Mammalia, Eulipotyphla) from a biodiversity hotspot, Mount Nimba (West Africa), with a field identification key to species. Zoosystema 43, 729–757 (2021).Article
Google Scholar
Estevo, C. A., Nagy-Reis, M. B. & Nichols, J. D. When habitat matters: Habitat preferences can modulate co-occurrence patterns of similar sympatric species. PLoS One 12, e0179489. https://doi.org/10.1371/journal.pone.0179489 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
Spaeth, P. A. Morphological convergence and coexistence in three sympatric North American species of Microtus (Rodentia: Arvicolinae). J. Biogeogr. 36, 350–361 (2009).Article
Google Scholar
Adams, D. C., Berns, C. M., Kozak, K. H. & Wiens, J. J. Are rates of species diversification correlated with rates of morphological evolution?. Proc. R. Soc. B Biol. Sci. 276, 2729–2738 (2009).Article
Google Scholar
Caumul, R. & Polly, P. D. Phylogenetic and environmental components of morphological variation: Skull, mandible, and molar shape in marmots (marmota, Rodentia). Evolution 59, 2460–2472 (2005).PubMed
Article
Google Scholar
Da Silva, F. O. et al. The ecological origins of snakes as revealed by skull evolution. Nat. Commun. 9, 376. https://doi.org/10.1038/s41467-017-02788-3 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Hirano, T., Kameda, Y., Kimura, K. & Chiba, S. Substantial incongruence among the morphology, taxonomy, and molecular phylogeny of the land snails Aegista, Landouria, Trishoplita, and Pseudobuliminus (Pulmonata: Bradybaenidae) occurring in East Asia. Mol. Phylogenet. Evol. 70, 171–181 (2014).PubMed
Article
Google Scholar
Ge, D., Yao, L., Xia, L., Zhang, Z. & Yang, Q. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contrib. Zool. 84, 267–284 (2015).Article
Google Scholar
Zou, Z. & Zhang, J. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 7, 12758. https://doi.org/10.1038/ncomms12758 (2016).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Ananjeva, N. B. Current state of the problems in the phylogeny of squamate reptiles (Squamata, Reptilia). Biol. Bull. Rev. 9, 119–128 (2019).Article
Google Scholar
Revell, L. J., Harmon, L. J. & Collar, D. C. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 57, 591–601 (2008).PubMed
Article
Google Scholar
Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).PubMed
Article
Google Scholar
Cardini, A. & Polly, P. D. Larger mammals have longer faces because of size-related constraints on skull form. Nat. Commun. 4, 2458. https://doi.org/10.1038/ncomms3458 (2013).ADS
CAS
Article
PubMed
Google Scholar
Esquerré, D., Sherratt, E. & Keogh, J. S. Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes. Evolution 71, 2829–2844 (2017).PubMed
Article
Google Scholar
Marroig, G. & Cheverud, J. M. Size as a line of least evolutionary resistance: Diet and adaptive morphological radiation in New World monkeys. Evolution 59, 1128–1142 (2005).PubMed
Article
Google Scholar
Cornette, R., Tresset, A., Houssin, C., Pascal, M. & Herrel, A. Does bite force provide a competitive advantage in shrews? The case of the greater white-toothed shrew. Biol. J. Linn. Soc. 114, 795–807 (2015).Article
Google Scholar
Rodgers, G. M., Downing, B. & Morrell, L. J. Prey body size mediates the predation risk associated with being “odd”. Behav. Ecol. 26, 242–246 (2015).Article
Google Scholar
Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).ADS
Article
Google Scholar
Verschuren, D. Decadal and century-scale climate variability in tropical Africa during the past 2000 years. In Past Climate Variability Through Europe and Africa (eds. Battarbee, R. W., Gasse, F. & Stickley, C. E.) 139–158 (Springer Netherlands, 2004). https://doi.org/10.1007/978-1-4020-2121-3_8.Smith, T. B., Schneider, C. J. & Holder, K. Refugial isolation versus ecological gradients. Genetica 112, 383–398 (2001).PubMed
Article
Google Scholar
Brown, W. L. Jr. & Wilson, E. O. Character displacement. Syst. Biol. 5, 49–64 (1956).
Google Scholar
Vogel, P. et al. Genetic identity of the critically endangered Wimmer’s shrew Crocidura wimmeri. Biol. J. Linn. Soc. 111, 224–229 (2014).Article
Google Scholar
Esselstyn, J. A. et al. Fourteen new, endemic species of shrew (genus Crocidura) from Sulawesi reveal a spectacular island radiation. Bull. Am. Mus. Nat. Hist. 454, 1–108 (2021).Article
Google Scholar
Evin, A., Bonhomme, V. & Claude, J. Optimizing digitalization effort in morphometrics. Biol. Methods Protoc. 5, bpaa023. https://doi.org/10.1093/biomethods/bpaa023 (2020).Article
PubMed
PubMed Central
Google Scholar
Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed
Article
Google Scholar
Adams, D. C. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst. Biol. 63, 685–697 (2014).PubMed
Article
Google Scholar
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS
PubMed
Article
Google Scholar
Revell, L. J. phytools: Phylogenetic Tools for Comparative Biology (and Other Things). (2021).Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article
Google Scholar
Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).Article
Google Scholar
Oksanen, J. et al. vegan: Community Ecology Package. (2020).Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article
Google Scholar
Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R. (Springer, 2018).Dray, S. et al. adespatial: Multivariate Multiscale Spatial Analysis. (2021).Collyer, M. & Adams, D. RRPP: Linear Model Evaluation with Randomized Residuals in a Permutation Procedure. (2021).Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. (2021).Borcard, D., Legendre, P. & Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055 (1992).Article
Google Scholar
Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).CAS
PubMed
Article
Google Scholar
Schlager, S., Jefferis, G. & Ian, D. Morpho: Calculations and Visualisations Related to Geometric Morphometrics. (2020). More
