Shoaling guppies evade predation but have deadlier parasites
Everard, M., Johnston, P., Santillo, D. & Staddon, C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy 111, 7–17 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade‐off hypothesis: history, current state of affairs and the future. J. Evolut. Biol. 22, 245–259 (2009).CAS
Article
Google Scholar
Cressler, C. E., McLeod, D. V., Rozins, C., Van Den Hoogen, J. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016).PubMed
Article
Google Scholar
Acevedo, M. A., Dillemuth, F. P., Flick, A. J., Faldyn, M. J. & Elderd, B. D. Virulence‐driven trade‐offs in disease transmission: a meta‐analysis. Evolution 73, 636–647 (2019).PubMed
Article
Google Scholar
Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).PubMed
Article
Google Scholar
McKay, B., Ebell, M., Dale, A. P., Shen, Y. & Handel, A. Virulence-mediated infectiousness and activity trade-offs and their impact on transmission potential of influenza patients. Proc. R. Soc. B 287, 20200496 (2020).PubMed
PubMed Central
Article
Google Scholar
Bonneaud, C. et al. Experimental evidence for stabilizing selection on virulence in a bacterial pathogen. Evol. Lett. 4, 491–501 (2020).PubMed
PubMed Central
Article
Google Scholar
De Roode, J. C., Yates, A. J. & Altizer, S. Virulence–transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl Acad. Sci. USA 105, 7489–7494 (2008).PubMed
PubMed Central
Article
Google Scholar
Fraser, C., Hollingsworth, T. D., Chapman, R., de Wolf, F. & Hanage, W. P. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc. Natl Acad. Sci. USA 104, 17441–17446 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
Choo, K., Williams, P. D. & Day, T. Host mortality, predation and the evolution of parasite virulence. Ecol. Lett. 6, 310–315 (2003).Article
Google Scholar
Williams, P. D. & Day, T. Interactions between sources of mortality and the evolution of parasite virulence. Proc. R. Soc. B 268, 2331–2337 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
Gandon, S., Jansen, V. A. & Van Baalen, M. Host life history and the evolution of parasite virulence. Evolution 55, 1056–1062 (2001).CAS
PubMed
Article
Google Scholar
Prado, F., Sheih, A., West, J. D. & Kerr, B. Coevolutionary cycling of host sociality and pathogen virulence in contact networks. J. Theor. Biol. 261, 561–569 (2009).PubMed
Article
Google Scholar
Herre, E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 1442–1445 (1993).CAS
PubMed
Article
Google Scholar
Boots, M. & Mealor, M. Local interactions select for lower pathogen infectivity. Science 315, 1284–1286 (2007).CAS
PubMed
Article
Google Scholar
Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).PubMed
Article
Google Scholar
Bull, J. J. & Lauring, A. S. Theory and empiricism in virulence evolution. PLoS Pathog. 10, e1004387 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
Brown, S. P., Hochberg, M. E. & Grenfell, B. T. Does multiple infection select for raised virulence? Trends Microbiol. 10, 401–405 (2002).CAS
PubMed
Article
Google Scholar
Peacor, S. D. & Werner, E. E. The contribution of trait-mediated indirect effects to the net effects of a predator. Proc. Natl Acad. Sci. USA 98, 3904–3908 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
Seppälä, O., Karvonen, A. & Valtonen, E. T. Shoaling behaviour of fish under parasitism and predation risk. Anim. Behav. 75, 145–150 (2008).Article
Google Scholar
Lopez, L. K. & Duffy, M. A. Mechanisms by which predators mediate host–parasite interactions in aquatic systems. Trends Parasitol. 37, 890–906 (2021).CAS
PubMed
Article
Google Scholar
Rigby, M. C. & Jokela, J. Predator avoidance and immune defence: costs and trade-offs in snails. Proc. R. Soc. B 267, 171–176 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
Krause, J., Ruxton, G. D., Ruxton, G. & Ruxton, I. G. Living in Groups (Oxford Univ. Press, 2002).Godin, J.-G. J. Antipredator function of shoaling in teleost fishes: a selective review. Nat. Can. 113, 241–250 (1986).
Google Scholar
Gandon, S., van Baalen, M. & Jansen, V. A. The evolution of parasite virulence, superinfection, and host resistance. Am. Nat. 159, 658–669 (2002).PubMed
Article
Google Scholar
Magurran, A. E. Evolutionary Ecology: The Trinidadian Guppy (Oxford Univ. Press, 2005).Magurran, A. E. & Seghers, B. H. Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour 118, 214–234 (1991).Article
Google Scholar
Seghers, B. H. & Magurran, A. E. Predator inspection behaviour covaries with schooling tendency amongst wild guppy, Poecilia reticulata, populations in Trinidad. Behaviour 128, 121–134 (1994).Article
Google Scholar
Huizinga, M., Ghalambor, C. & Reznick, D. The genetic and environmental basis of adaptive differences in shoaling behaviour among populations of Trinidadian guppies, Poecilia reticulata. J. Evolut. Biol. 22, 1860–1866 (2009).CAS
Article
Google Scholar
Stephenson, J. F., Van Oosterhout, C., Mohammed, R. S. & Cable, J. Parasites of Trinidadian guppies: evidence for sex‐ and age‐specific trait‐mediated indirect effects of predators. Ecology 96, 489–498 (2015).PubMed
Article
Google Scholar
Richards, E. L., Van Oosterhout, C. & Cable, J. Sex-specific differences in shoaling affect parasite transmission in guppies. PLoS ONE 5, e13285 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
Johnson, M. B., Lafferty, K. D., Van Oosterhout, C. & Cable, J. Parasite transmission in social interacting hosts: monogenean epidemics in guppies. PLoS ONE https://doi.org/10.1371/journal.pone.0022634 (2011).Gotanda, K. M. et al. Adding parasites to the guppy-predation story: insights from field surveys. Oecologia 172, 155–166 (2013).PubMed
Article
Google Scholar
Fraser, B. A., Ramnarine, I. W. & Neff, B. D. Temporal variation at the MHC class IIB in wild populations of the guppy (Poecilia reticulata). Evolution 64, 2086–2096 (2010).PubMed
Google Scholar
Stephenson, J. F. et al. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts. Philos. Trans. R. Soc. B 372, 20160093 (2017).Article
Google Scholar
Cable, J. & Van Oosterhout, C. The impact of parasites on the life history evolution of guppies (Poecilia reticulata): the effects of host size on parasite virulence. Int. J. Parasitol. 37, 1449–1458 (2007).CAS
PubMed
Article
Google Scholar
Reznick, D. N., Butler, M. J. IV, Rodd, F. H. & Ross, P. Life‐history evolution in guppies (Poecilia reticulata) 6. Differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996).PubMed
Google Scholar
Bonds, M. H., Keenan, D. C., Leidner, A. J. & Rohani, P. Higher disease prevalence can induce greater sociality: a game theoretic coevolutionary model. Evolution 59, 1859–1866 (2005).PubMed
Article
Google Scholar
Kerr, B., Neuhauser, C., Bohannan, B. J. & Dean, A. M. Local migration promotes competitive restraint in a host–pathogen ‘tragedy of the commons’. Nature 442, 75–78 (2006).CAS
PubMed
Article
Google Scholar
Boots, M. & Sasaki, A. ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. B 266, 1933–1938 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of parasite virulence in a connected world. Nature 459, 983–986 (2009).CAS
PubMed
Article
Google Scholar
Dargent, F., Rolshausen, G., Hendry, A., Scott, M. & Fussmann, G. Parting ways: parasite release in nature leads to sex‐specific evolution of defence. J. Evolut. Biol. 29, 23–34 (2016).CAS
Article
Google Scholar
Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990).Article
Google Scholar
Stephenson, J. F., van Oosterhout, C. & Cable, J. Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance. Biol. Lett. 11, 20150806 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
Stephenson, J. F., Stevens, M., Troscianko, J. & Jokela, J. The size, symmetry, and color saturation of a male guppy’s ornaments forecast his resistance to parasites. Am. Naturalist 196, 597–608 (2020).Article
Google Scholar
Godin, J.-G. J. & McDonough, H. E. Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait. Behav. Ecol. 14, 194–200 (2003).Article
Google Scholar
Van Oosterhout, C., Harris, P. & Cable, J. Marked variation in parasite resistance between two wild populations of the Trinidadian guppy, Poecilia reticulata (Pisces: Poeciliidae). Biol. J. Linn. Soc. 79, 645–651 (2003).Article
Google Scholar
Hawley, D. M., Gibson, A. K., Townsend, A. K., Craft, M. E. & Stephenson, J. F. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 148, 274–288 (2020).PubMed
Article
Google Scholar
Janecka, M. J., Rovenolt, F. & Stephenson, J. F. How does host social behavior drive parasite non-selective evolution from the within-host to the landscape-scale? Behav. Ecol. Sociobiol. 75, 1–20 (2021).Article
Google Scholar
Tao, H., Li, L., White, M. C., Steel, J. & Lowen, A. C. Influenza A virus coinfection through transmission can support high levels of reassortment. J. Virol. 89, 8453–8461 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
Eshel, I. Evolutionary and continuous stability. J. Theor. Biol. 103, 99–111 (1983).Article
Google Scholar
Hurford, A., Cownden, D. & Day, T. Next-generation tools for evolutionary invasion analyses. J. R. Soc. Interface 7, 561–571 (2009).PubMed
PubMed Central
Article
Google Scholar
Leimar, O. Multidimensional convergence stability. Evolut. Ecol. Res. 11, 191–208 (2009).
Google Scholar
Reznick, D., Bryant, M. & Holmes, D. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata). PLoS Biol. 4, e7 (2005).PubMed Central
Article
CAS
Google Scholar
Stephenson, J. F. Parasite-induced plasticity in host social behaviour depends on sex and susceptibility. Biol. Lett. https://doi.org/10.1098/rsbl.2019.0557 (2019).Lopez, S. Acquired resistance affects male sexual display and female choice in guppies. Proc. R. Soc. B 265, 717–723 (1998).Article
Google Scholar
van Oosterhout, C. et al. Selection by parasites in spate conditions in wild Trinidadian guppies (Poecilia reticulata). Int. J. Parasitol. 37, 805–812 (2007).PubMed
Article
Google Scholar
Pérez-Jvostov, F., Hendry, A. P., Fussmann, G. F. & Scott, M. E. Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia 170, 77–88 (2012).PubMed
Article
Google Scholar
Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing (Springer, 2003).Carnell, R. lhs: Latin hypercube samples v.1.1.1 (R-Project, 2020).Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. Sensitivity: Global sensitivity analysis of model outputs v.1.25.0 (R-Project, 2021).Wright, D. & Krause, J. Repeated measures of shoaling tendency in zebrafish (Danio rerio) and other small teleost fishes. Nat. Protoc. 1, 1828–1831 (2006).CAS
PubMed
Article
Google Scholar
Friard, O. & Gamba, M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article
Google Scholar
Griffiths, S. W. & Magurran, A. E. Sex and schooling behaviour in the Trinidadian guppy. Anim. Behav. 56, 689–693 (1998).CAS
PubMed
Article
Google Scholar
Magurran, A., Seghers, B., Carvalho, G. & Shaw, P. Behavioural consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad: evidence for the evolution of anti-predator behaviour in the wild. Proc. R. Soc. B 248, 117–122 (1992).Article
Google Scholar
Sievers, C. et al. Reasons for the invasive success of a guppy (Poecilia reticulata) population in Trinidad. PLoS ONE 7, e38404 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
Mohammed, R. S. et al. Parasite diversity and ecology in a model species, the guppy (Poecilia reticulata) in Trinidad. R. Soc. Open Sci. 7, 191112 (2020).PubMed
PubMed Central
Article
Google Scholar
Lyles, A. M. Genetic Variation and Susceptibility to Parasites: Poeclia reticulata Infected with Gyrodactylus turnbulli. PhD dissertation, Princeton Univ. (1990).Fraser, B. A. & Neff, B. D. Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273 (2010).CAS
PubMed
Article
Google Scholar
Reznick, D. & Endler, J. A. The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36, 160–177 (1982).PubMed
Google Scholar
El‐Sabaawi, R. W. et al. Assessing the effects of guppy life history evolution on nutrient recycling: from experiments to the field. Freshw. Biol. 60, 590–601 (2015).Article
Google Scholar
Liley, N. & Luyten, P. Geographic variation in the sexual behaviour of the guppy, Poecilia reticulata (Peters). Behaviour 95, 164–179 (1985).Article
Google Scholar
Reznick, D. N. et al. Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. Am. Nat. 194, 671–692 (2019).PubMed
Article
Google Scholar More