More stories

  • in

    Coral fluorescence: a prey-lure in deep habitats

    Alieva, N. O. et al. Diversity and evolution of coral fluorescent proteins. PLoS ONE 3, e2680 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dove, S., Hoegh-Guldberg, O. & Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197–204 (2001).Article 

    Google Scholar 
    Shimomura, O., Johnson, F. H. & Saiga, Y. Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Physiol. 59, 223–239 (1962).CAS 
    Article 

    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kawaguti, S. Effect of the green fluorescent pigment on the productivity of the reef corals. Micronesica 5, 121 (1969).
    Google Scholar 
    Gittins, J. R., D’Angelo, C., Oswald, F., Edwards, R. J. & Wiedenmann, J. Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol. Ecol. 24, 453–465 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roth, M. S., Latz, M. I., Goericke, R. & Deheyn, D. D. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J. Exp. Biol. 213, 3644–3655 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quick, C., D’Angelo, C. & Wiedenmann, J. Trade-offs associated with photoprotective green fluorescent protein expression as potential drivers of balancing selection for color polymorphism in reef corals. Front. Mar. Sci. 5, 11 (2018).Article 

    Google Scholar 
    Schlichter, D., Fricke, H. W. & Weber, W. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar. Biol. 91, 403–407 (1986).Article 

    Google Scholar 
    Bollati, E., Plimmer, D., D’Angelo, C. & Wiedenmann, J. FRET-mediated long-range wavelength transformation by photoconvertible fluorescent proteins as an efficient mechanism to generate orange-red light in symbiotic deep water corals. Int. J. Mol. Sci. 18, 1174 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Palmer, C. V., Modi, C. K. & Mydlarz, L. D. Coral fluorescent proteins as antioxidants. PLoS ONE 4, e7298 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bou-Abdallah, F., Chasteen, N. D. & Lesser, M. P. Quenching of superoxide radicals by green fluorescent protein. Biochim. Biophys. Biochim. Biophys. Acta Gen. Subj. 1760, 1690–1695 (2006).CAS 
    Article 

    Google Scholar 
    Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful? Photochem. Photobiol. 82, 345–350 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aihara, Y. et al. Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc. Natl Acad. Sci. USA 116, 2118–2123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yamashita, H., Koike, K., Shinzato, C., Jimbo, M. & Suzuki, G. Can Acropora tenuis larvae attract native Symbiodiniaceae cells by green fluorescence at the initial establishment of symbiosis? PLoS ONE 16, e0252514 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).Article 
    CAS 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759, 15–26 (2014).Article 

    Google Scholar 
    Muscatine, L., Porter, J. & Kaplan, I. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100, 185–193 (1989).Article 

    Google Scholar 
    Smith, E. G., D’Angelo, C., Sharon, Y., Tchernov, D. & Wiedenmann, J. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 284, 20170320 (2017).Schlichter, D., Meier, U. & Fricke, H. Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99, 124–131 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilmore, A. M. et al. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem. Photobiol. 77, 515–523 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mazel, C. H. et al. Green-fluorescent proteins in Caribbean corals. Limnol. Oceanogr. 48, 402–411 (2003).CAS 
    Article 

    Google Scholar 
    Dubinsky, Z. & Falkowski, P. Light as a Source of Information and Energy in Zooxanthellate Corals. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 107–118 (Springer Science & Business Media, 2011).Kahng, S. E. et al. Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystemsin. In Mesophotic Coral Ecosystems. Ch. 42 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 801–828 (Springer International publishing, 2019).Loya, Y., Poglise, K. & Bridge, T. C. L. Mesophotic Coral Ecosystems (Springer International Publishing, 2019).Eyal, G. et al. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10, e0128697 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roth, M. S. et al. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521, 63–79 (2015).CAS 
    Article 

    Google Scholar 
    Ben-Zvi, O., Wangpraseurt, D., Bronstein, O., Eyal, G. & Loya, Y. Photosynthesis and bio-optical properties of fluorescent mesophotic corals. Front. Mar. Sci. 8, 651601 (2021).Article 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 5245 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84, 1–17 (2009).PubMed 
    Article 

    Google Scholar 
    Goreau, T. F., Goreau, N. I. & Yonge, C. M. Reef corals: autotrophs or heterotrophs? Biol. Bull. 141, 247–260 (1971).Article 

    Google Scholar 
    Price, J. T., McLachlan, R. H., Jury, C. P., Toonen, R. J. & Grottoli, A. G. Isotopic approaches to estimating the contribution of heterotrophic sources to Hawaiian corals. Limnol. Oceanogr. 66, 2393–2407 (2021).CAS 
    Article 

    Google Scholar 
    Anthony, K. R. N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Biol. Ecol. 232, 85–106 (1999).Article 

    Google Scholar 
    Ferrier-Pagès, C., Rottier, C., Beraud, E. & Levy, O. Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J. Exp. Mar. Biol. Ecol. 390, 118–124 (2010).Article 

    Google Scholar 
    Palardy, E. J., Grottoli, G. A. & Matthews, A. K. Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar. Ecol. Prog. Ser. 300, 79–89 (2005).Article 

    Google Scholar 
    Mies, M. et al. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs 37, 677–689 (2018).Article 

    Google Scholar 
    Jerlov, N. G. Optical Oceanography Vol. 5 (Elsevier, 1968).Crandall, J. B., Teece, M. A., Estes, B. A., Manfrino, C. & Ciesla, J. H. Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J. Exp. Mar. Biol. Ecol. 474, 133–141 (2016).CAS 
    Article 

    Google Scholar 
    Martinez, S. et al. Energy sources of the depth-generalist mixotrophic coral Stylophora pistillata. Front. Mar. Sci. 7, 566663 (2020).Article 

    Google Scholar 
    Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).Article 

    Google Scholar 
    Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91, 990–1003 (2010).PubMed 
    Article 

    Google Scholar 
    Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).CAS 
    Article 

    Google Scholar 
    Sturaro, N., Hsieh, Y. E., Chen, Q., Wang, P. L. & Denis, V. Trophic plasticity of mixotrophic corals under contrasting environments. Funct. Ecol. 35, 2841–2855 (2021).Article 

    Google Scholar 
    Lewis, J. B. & Price, W. S. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176, 527–544 (1975).Article 

    Google Scholar 
    Levy, O., Mizrahi, L., Chadwick-Furman, N. E. & Achituv, Y. Factors controlling the expansion behavior of Favia favus (Cnidaria: Scleractinia): Effects of light, flow, and planktonic prey. Biol. Bull. 200, 118–126 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy, O., Dubinsky, Z. & Achituv, Y. Photobehavior of stony corals: responses to light spectra and intensity. J. Exp. Biol. 206, 4041–4049 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turak, E. & DeVantier, L. Reef-Building Corals of the Upper Mesophotic Zone of the Central Indo-West Pacificin. In Mesophotic Coral Ecosystems. Ch. 34 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 621–651 (Springer International Publishing, 2019).Haddock, S. H. D. & Dunn, C. W. Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).Article 

    Google Scholar 
    Cronin, T. W. Invertebrate Vision in the Water. In Invertebrate Vision (eds Warran, E. & Nilsson, D.-E.) 6, 211–249 (Cambridge University Press, 2006).Bradley, D. J. & Forward, R. B. Jr. Phototaxis of adult brine shrimp Artemia salina. Can. J. Zool. 62, 2357–2359 (1984).Article 

    Google Scholar 
    Audzijonytė, A., Pahlberg, J., Väinölä, R. & Lindström, M. Spectral sensitivity differences in two Mysis sibling species (Crustacea, Mysida): adaptation or phylogenetic constraints? J. Exp. Mar. Biol. Ecol. 325, 228–239 (2005).Article 

    Google Scholar 
    Beeton, A. M. Photoreception in the opossum shrimp, Mysis relicta Loven. Biol. Bull. 116, 204–216 (1959).Article 

    Google Scholar 
    Lindström, M. Eye function of Mysidacea (Crustacea) in the northern Baltic Sea. J. Exp. Mar. Biol. Ecol. 246, 85–101 (2000).PubMed 
    Article 

    Google Scholar 
    Marshall, N. J. & Vorobyev, M. The Design of Color Signals and Color Vision in Fishes. In Sensory Processing in Aquatic Environments. Ch. 10 (eds Collin, S. P. & Marshall, N. J.) 10, 194–222 (Springer, 2003).Denton, E. J. & Warren, F. J. The photosensitive pigments in the retinae of deep-sea fish. J. Mar. Biol. Assoc. UK 36, 651–662 (1957).CAS 
    Article 

    Google Scholar 
    Kelber, A. Invertebrate Colour Vision. In Invertebrate Vision (eds Warran, E. & Nilsson, D.-E.) 250–290 (Cambridge University Press, 2006).Kim, H. J., Araki, T., Suematsu, Y. & Satuito, C. G. Ontogenic phototactic behaviors of larval stages in intertidal barnacles. Hydrobiologia 849, 747–761 (2021).Cohen, J. H. & Forward, R. B. Jr. Spectral sensitivity of vertically migrating marine copepods. Biol. Bull. 203, 307–314 (2002).PubMed 
    Article 

    Google Scholar 
    Su, Z., Huang, L., Yan, Y. & Li, H. The effect of different substrates on pearl oyster Pinctada martensii (Dunker) larvae settlement. Aquaculture 271, 377–383 (2007).Article 

    Google Scholar 
    Marangoni, R., Puntoni, S., Favati, L. & Colombetti, G. Phototaxis in Fabrea salina I. Action spectrum determination. J. Photochem. Photobiol. B: Biol. 23, 149–154 (1994).CAS 
    Article 

    Google Scholar 
    Hollingsworth, L. L., Kinzie, R. A., Lewis, T. D., Krupp, D. A. & Leong, J. A. C. Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24, 523–523 (2005).Article 

    Google Scholar 
    Smith, F. E. & Taylor, E. R. B. Color responses in the Cladocera and their ecological significance. Am. Nat. 87, 49–55 (1953).Article 

    Google Scholar 
    Feller, K. D. & Cronin, T. W. Spectral absorption of visual pigments in stomatopod larval photoreceptors. J. Comp. Physiol. A 202, 215–223 (2016).CAS 
    Article 

    Google Scholar 
    Pietsch, T. W. Bioluminescence and Luring. In Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea (ed. Pietsch, T. W.) 6, 229–252 (Berkeley: University of California Press, 2009).Johnsen, S., Balser, E. J., Fisher, E. C. & Widder, E. A. Bioluminescence in the deep-sea cirrate octopod Stauroteuthis syrtensis Verrill (Mollusca: Cephalopoda). Biol. Bull. 197, 26–39 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robison, B. H., Reisenbichler, K. R., Hunt, J. C. & Haddock, S. H. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis. Biol. Bull. 205, 102–109 (2003).PubMed 
    Article 

    Google Scholar 
    Haddock, S. H. D., Dunn, C. W., Pugh, P. R. & Schnitzler, C. E. Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science 309, 263 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hastings, J. & Nealson, K. H. Bacterial bioluminescence. Annu. Rev. Microbiol. 31, 549–595 (1977).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zarubin, M., Belkin, S., Ionescu, M. & Genin, A. Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc. Natl Acad. Sci. USA 109, 853–857 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakaema, S. & Hidaka, M. Fluorescent protein content and stress tolerance of two color morphs of the coral Galaxea fascicularis. Galaxea 17, 1–11 (2015).Article 

    Google Scholar 
    Vermeij, M. J. A., Delvoye, L., Nieuwland, G. & Bak, R. P. M. Patterns in fluorescence over a Caribbean reef slope: the coral genus. Madracis. Photosynthetica 40, 423–429 (2002).CAS 
    Article 

    Google Scholar 
    Kahng, S. & Salih, A. Localization of fluorescent pigments in a nonbioluminescent, azooxanthellate octocoral suggests a photoprotective function. Coral Reefs 24, 435–435 (2005).Article 

    Google Scholar 
    Glynn, P. W. Ecology of a Caribbean coral reef. The Porites reef-flat biotope: Part II. Plankton community with evidence for depletion. Mar. Biol. 22, 1–21 (1973).Article 

    Google Scholar 
    Holzman, R., Reidenbach, M. A., Monismith, S. G., Koseff, J. R. & Genin, A. Near-bottom depletion of zooplankton over a coral reef II: relationships with zooplankton swimming ability. Coral Reefs 24, 87–94 (2005).Article 

    Google Scholar 
    Mazel, C. H. Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar. Ecol. Prog. Ser. 120, 185–191 (1995).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 1 1–48 (2015).Kleiman, E. EMAtools: data management tools for real-time monitoring/ecological momentary assessment data. R package version 0.1.4 (2021). More

  • in

    Enhanced habitat loss of the Himalayan endemic flora driven by warming-forced upslope tree expansion

    Von Humboldt, A. Cosmos: A Sketch of a Physical Description of the Universe Vol. 5 (H.G. Bohn Press, 1895).Körner, C. Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits (Springer, 2012).Peñuelas, J., Ogaya, R., Boada, M. & Jump, A. S. Migration, invasion and decline: changes in recruitment and forest structure in a warming‐linked shift of European beech forest in Catalonia (NE Spain). Ecography 30, 829–837 (2007).Article 

    Google Scholar 
    Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2021).Körner, C. A re-assessment of high elevation treeline positions and their explanation. Oecologia 115, 445–459 (1998).PubMed 
    Article 

    Google Scholar 
    Körner, C. The cold range limit of trees. Trends Ecol. Evol. 36, 979–989 (2021).PubMed 
    Article 

    Google Scholar 
    Körner, C. & Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 31, 713–732 (2004).Article 

    Google Scholar 
    Paulsen, J. & Körner, C. A climate-based model to predict potential treeline position around the globe. Alp. Bot. 124, 1–12 (2014).Article 

    Google Scholar 
    Feeley, K. J. & Rehm, E. M. Downward shift of montane grasslands exemplifies the dual threat of human disturbances to cloud forest biodiversity. Proc. Natl Acad. Sci. USA 112, E6084–E6084 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lenoir, J. et al. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Macias Fauria, M. & Johnson, E. A. Warming-induced upslope advance of subalpine forest is severely limited by geomorphic processes. Proc. Natl Acad. Sci. USA 110, 8117–8122 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morueta Holme, N. et al. Strong upslope shifts in Chimborazo’s vegetation over two centuries since Humboldt. Proc. Natl Acad. Sci. USA 112, 12741–12745 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Greenwood, S. & Jump, A. S. Consequences of treeline shifts for the diversity and function of high altitude ecosystems. Arct. Antarct. Alp. Res. 46, 829–840 (2014).Article 

    Google Scholar 
    Körner, C. & Hiltbrunner, E. Why is the alpine flora comparatively robust against climatic warming? Diversity 13, 383 (2021).Article 

    Google Scholar 
    Miehe, G. et al. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 27, 169–173 (2007).Article 

    Google Scholar 
    Myers, N. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, F. et al. Add Himalayas’ Grand Canyon to China’s first national parks. Nature 592, 353–353 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhu, L. et al. Regional scalable priorities for national biodiversity and carbon conservation planning in Asia. Sci. Adv. 7, eabe4261 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).Article 

    Google Scholar 
    Dirnböeck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).Article 

    Google Scholar 
    Schickhoff, U. et al. Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth Syst. Dynam. 6, 245–265 (2015).Article 

    Google Scholar 
    Singh, S., Sharma, S. & Dhyani, P. Himalayan arc and treeline: distribution, climate change responses and ecosystem properties. Biodivers. Conserv. 28, 1997–2016 (2019).Article 

    Google Scholar 
    Schickhoff, U. The Upper Timberline in the Himalayas, Hindu Kush and Karakorum: A Review of Geographical and Ecological Aspects (Springer, 2005).Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, X. et al. Mountain treelines climb slowly despite rapid climate warming. Glob. Ecol. Biogeogr. 30, 305–315 (2021).Article 

    Google Scholar 
    Harsch, M. A., Hulme, P. E., McGlone, M. S. & Duncan, R. P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 12, 1040–1049 (2009).PubMed 
    Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wan, Z. & Li, Z. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 35, 980–996 (1997).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sigdel, S. R. et al. Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Change Biol. 24, 5549–5559 (2018).Article 

    Google Scholar 
    Dolezal, J. et al. Sink limitation of plant growth determines tree line in the arid Himalayas. Funct. Ecol. 33, 553–565 (2019).Article 

    Google Scholar 
    Dolezal, J. et al. Annual and intra-annual growth dynamics of Myricaria elegans shrubs in arid Himalaya. Trees 30, 761–773 (2016).Article 

    Google Scholar 
    Malcolm, J. R. et al. Global warming and extinctions of endemic species from biodiversity hotspots. Conserv. Biol. 20, 538–548 (2006).PubMed 
    Article 

    Google Scholar 
    Ding, W., Ree, R. H., Spicer, R. A. & Xing, Y. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science 369, 578–581 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pirnat, J. Conservation and management of forest patches and corridors in suburban landscapes. Landsc. Urban Plan. 52, 135–143 (2000).Article 

    Google Scholar 
    Potapov, P. V. et al. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM plus data. Remote Sens. Environ. 122, 106–116 (2012).Article 

    Google Scholar 
    Paulsen, J. & Körner, C. GIS-analysis of tree-line elevation in the Swiss Alps suggests no exposure effect. J. Veg. Sci. 12, 817–824 (2001).Article 

    Google Scholar 
    FAO. FRA 2000: On Definitions of Forest and Forest Change. Forest Resource Assessment Programme Working Paper, Rome (Food and Agriculture Organization, 2000).Luedeling, E., Siebert, S. & Buerkert, A. Filling the voids in the SRTM elevation model—a TIN-based delta surface approach. ISPRS-J. Photogramm. Remote Sens. 62, 283–294 (2007).Article 

    Google Scholar 
    Canny, J. Collision detection for moving polyhedra. IEEE Trans. Pattern Anal. Mach. Intell. 8, 200–209 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    More, J. J. & Sorensen, D. C. Computing a trust region step. SIAM J. Sci. Comput. 4, 553–572 (1983).Article 

    Google Scholar 
    Theobald, D. M., Harrison-Atlas, D., Monahan, W. B. & Albano, C. M. Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PLoS ONE 10, e0143619 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).Article 

    Google Scholar 
    Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).Article 

    Google Scholar 
    Liang, E., Wang, Y., Eckstein, D. & Luo, T. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol. 190, 760–769 (2011).PubMed 
    Article 

    Google Scholar 
    Anderegg, W. R. L. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).CAS 
    Article 

    Google Scholar 
    Abatzoglou, J. T. et al. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Case, B. S. & Buckley, H. L. Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand’s southern beech treelines. PeerJ 3, e1334 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bush, M. B. et al. Fire and climate: contrasting pressures on tropical Andean timberline species. J. Biogeogr. 42, 938–950 (2015).Article 

    Google Scholar 
    Herrero, A., Zamora, R., Castro, J. & Hodar, J. A. Limits of pine forest distribution at the treeline: herbivory matters. Plant Ecol. 213, 459–469 (2012).Article 

    Google Scholar 
    Wang, Y. et al. The stability of spruce treelines on the eastern Tibetan Plateau over the last century is explained by pastoral disturbance. For. Ecol. Manag. 442, 34–45 (2019).Article 

    Google Scholar 
    Wei, Y. et al. Chinese caterpillar fungus (Ophiocordyceps sinensis) in China: current distribution, trading, and futures under climate change and overexploitation. Sci. Total Environ. 755, 142548 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miehe, G. et al. How old is the human footprint in the world’s largest alpine ecosystem? A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quat. Sci. Rev. 86, 190–209 (2014).Article 

    Google Scholar 
    Willemann, R. J. & Storchak, D. A. Data collection at the international seismological centre. Seismol. Res. Lett. 72, 440–453 (2001).Article 

    Google Scholar 
    Chen, A., Huang, L., Liu, Q. & Piao, S. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob. Change Biol. 27, 1942–1951 (2021).Article 

    Google Scholar 
    Lehmkuhl, F. & Owen, L. A. Late Quaternary glaciation of Tibet and the bordering mountains: a review. Boreas 34, 87–100 (2005).Article 

    Google Scholar 
    Owen, L. A. & Dortch, J. M. Nature and timing of Quaternary glaciation in the Himalayan–Tibetan orogen. Quat. Sci. Rev. 88, 14–54 (2014).Article 

    Google Scholar 
    Strobl, C. et al. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).Article 
    CAS 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Vassallo, D., Krishnamurthy, R. & Fernando, H. J. S. Decreasing wind speed extrapolation error via domain-specific feature extraction and selection. Wind Energy Sci. 5, 959–975 (2020).Article 

    Google Scholar 
    Ramirez-Villegas, J. & Jarvis, A. Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis Working Paper No. 1 (CIAT, 2010).Wu, Z. & Raven, P. Flora of China (Science Press and Missouri Botanical Garden Press, 1994–2006).Wu, Z. Flora of Tibet (Science Press, 1987).Maclean, I. M. D. et al. Microclimates buffer the responses of plant communities to climate change. Glob. Ecol. Biogeogr. 24, 1340–1350 (2015).Article 

    Google Scholar 
    Randin, C. F. et al. Climate change and plant distribution: local models predict high-elevation persistence. Glob. Change Biol. 15, 1557–1569 (2009).Article 

    Google Scholar 
    Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).Article 

    Google Scholar  More

  • in

    Protogynous functional hermaphroditism in the North American annual killifish, Millerichthys robustus

    Munday, L. P., White, W. J. & Warner, R. R. A social basis for the development of primary males in a sex-changing fish. Proc. R. Soc. B Biol. Sci. 273(1603), 2845–2851. https://doi.org/10.1098/rspb.2006.3666 (2006).Article 

    Google Scholar 
    Kuwamura, T., Sunobe, T., Sakai, Y., Kadota, T. & Sawada, S. Hermaphroditism in fishes: An annotated list of species, phylogeny, and mating system. Ichthyol. Res. 67, 341–360. https://doi.org/10.1007/s10228-020-00754-6 (2020).Article 

    Google Scholar 
    Sadovy, Y. & Shapiro, D. Y. Criteria for the diagnosis of hermaphroditism in fishes. Copeia 1987, 136–156 (1987).Article 

    Google Scholar 
    Andersson, M. Sexual Selection (Princeton University Press, 1994).Book 

    Google Scholar 
    Wootton, R. J. & Smith, C. Reproductive Biology of Teleost Fishes (Wiley, 2014).Book 

    Google Scholar 
    Pla, S., Benvenuto, C., Capellini, I. & Piferrer, F. A phylogenetic comparative analysis on the evolution of sequential hermaphroditism in seabreams (Teleostei: Sparidae). Sci. Rep. UK 10, 3606 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Nikolsky, G. V. The Ecology of Fishes (Academic Press Inc., 1963).
    Google Scholar 
    Moe, M. A. Biology of the Red Grouper Epinephelus morio (Valenciennes) from the Eastern Gulf of Mexico. (Florida Det. Natur. Resources Lab. Professional Papers no. 10, 1969).Avise, C. J. & Mank, E. J. Evolutionary perspectives on hermaphroditism in fishes. Sex. Dev. 3, 152–163 (2008).Article 

    Google Scholar 
    Smith, C. L. Contribution to a theory of hermaphroditism. J. Theor. Biol. 17(1), 76–90. https://doi.org/10.1016/0022-5193(67)90021-5 (1967).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Leonard, L. J. Sexual selection: Lessons from hermaphrodite mating systems. Integr. Comp. Biol. 46(4), 349–367. https://doi.org/10.1093/icb/icj041 (2006).Article 
    PubMed 

    Google Scholar 
    Goikoetxea, A., Todd, V. E. & Gemmell, J. N. Stress and sex: Does cortisol mediate sex change in fish?. Reproduction 154(6), REP-17-0408 (2017).Article 

    Google Scholar 
    Goikoetxea, A. et al. A new experimental model for the investigation of sequential hermaphroditism. Sci. Rep. UK 11(1), 22881 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Lodi, E. Sex inversion in domesticated strains of the swordtail, Xiphophorus helleri Heckel (Pisces, Osteichthyes). B. Zool. 47, 1–8 (1980).Article 

    Google Scholar 
    Huber, J. H. Procatopus websteri: A new species of Lampeye Killifish from Akaka camp, western Gabon (Teleostei: Poeciliidae: Aplocheilichthyinae), exhibiting Similarities of Pattern and Morphology with another sympatric Lampeye species, Aplocheilichthys spilauchen. Trop. Fish Hobbyist 55(1), 110–114 (2007).
    Google Scholar 
    Cauvet, C. Pseudepiplatys annulatus. Killi Revue 45(2), 2–20 (2019).
    Google Scholar 
    Domínguez-Castanedo, O., Mosqueda-Cabrera, M. A. & Valdesalici, S. First observations of annualism in Millerichthys robustus (Cyprinodontiformes: Rivulidae). Ichthyol. Explor. Freshw. 24, 15–20 (2013).
    Google Scholar 
    Furness, A. I., Lee, K. & Reznick, D. N. Adaptation in a variable environment: Phenotypic plasticity and bet-hedging during egg diapause and hatching in an annual killifish. Evolution 69(6), 1461–1475 (2015).Article 

    Google Scholar 
    Furness, A. I. The evolution of an annual life cycle in killifish: Adaptation to ephemeral aquatic environments through embryonic diapause. Biol. Rev. 91(3), 796–812. https://doi.org/10.1111/brv.12194 (2015).Article 
    PubMed 

    Google Scholar 
    Wourms, J. P. Developmental biology of annual fishes. I. Stages in the normal development of Austrofundulus myersi. Dahl. J. Exp. Zool. 182, 143–168 (1972).CAS 
    Article 

    Google Scholar 
    Murphy, W. J. & Collier, E. G. A molecular phylogeny for aplocheiloid fishes (Atherinomorpha: Cyprinodontiformes): The role of vicariance and the origins of annualism. Mol. Biol. Evol. 14(8), 790–799 (1994).Article 

    Google Scholar 
    Berois, N., Arezo, J. M., Papa, G. N. & Clivo, A. G. Annual fish: Developmental adaptations for an extreme environment. Wires. Dev. Biol. 1(4), 595–602. https://doi.org/10.1002/wdev.39 (2012).Article 

    Google Scholar 
    Podrabsky, E. J. & Wilson, E. N. Hypoxia and anoxia tolerance in the annual killifish Austrofundulus limnaeus. Integr. Comp. Biol. 56(4), 500–509. https://doi.org/10.1093/icb/icw092 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Reichard, M., Polačik, M. & Sedláček, O. Distribution, colour polymorphism and habitat use of the African killifish, Nothobranchius furzeri, the vertebrate with the shortest lifespan. J. Fish. Biol. 74, 198–212 (2009).CAS 
    Article 

    Google Scholar 
    Lanés, K. E. J., Wolfgang, K. F. & Maltchik, L. Abundance variations and life history traits of two sympatric species of Neotropical annual fish (Cyprinodontiformes: Rivulidae) in temporary ponds of southern Brazil. J. Nat. Hist. 48, 31–32. https://doi.org/10.1080/00222933.2013.862577 (2014).Article 

    Google Scholar 
    Hass, R. Sexual selection in Nothobranchius guentheri (Pisces: Cyprinodontidae). Evolution 30, 614–622 (1976).Article 

    Google Scholar 
    Reichard, M. Male-male strategies. In Encyclopedia of Evolutionary Psychological Science (eds. Shackelford, T. K. & Weekes-Shackelford, V. A.) (Springer, 2016).Reichard, M. et al. Lifespan and telomere length variation across populations of wild-derived African killifish. Mol. Ecol. https://doi.org/10.1111/MEC.16287 (2022).Article 

    Google Scholar 
    Vrtílek, M., Žák, J., Polačik, M., Blažek, R. & Reichard, M. Longitudinal demographic study of wild populations of African annual killifish. Sci. Rep. UK 8, 4774 (2018).ADS 
    Article 

    Google Scholar 
    Passos, C., Tassino, B., Loureiro, M. & Rosenthal, G. G. Intra-and intersexual selection on male body size in the annual killifish Austrolebias charrua. Behav. Process. 96, 20–26 (2013).Article 

    Google Scholar 
    Parenti, L. R. The phylogeny of atherinomorphs: Evolution of a novel fish reproductive system. In 1. Viviparous Fishes: International Symposia on Livebearing Fishes (eds. Uribe, M. C. & Grier, J. H.) (New Life Publications, 2005).Loureiro, M. et al. Review of the family Rivulidae (Cyprinodontiformes, Aplocheiloidei) and a molecular and morphological phylogeny of the annual fish genus Austrolebias Costa 1998. Neotrop. Ichthyol. 16(3), e180007 (2018).MathSciNet 
    Article 

    Google Scholar 
    Miller, R. R. & Hubbs, L. C. Rivulus robustus, a new cyprinodontid fish from southeastern México. Copeia 1974(4), 865–868. https://doi.org/10.2307/1442584 (1974).Article 

    Google Scholar 
    Miller, R. R. Peces dulceacuícolas de México. (CONABIO, Sociedad Ictiológica Mexicana, El Colegio de la Frontera Sur, Consejo de Peces del Desierto, 2009).Domínguez-Castanedo, O., Uribe, M. C. & Rosales-Torres, A. M. Life history strategies of annual killifish Millerichthys robustus (Cyprinodontiformes: Cynolebiidae) in a seasonal ephemeral water body in Veracruz, México. Environ. Biol. Fishes. 100(8), 995–1006. https://doi.org/10.1007/s10641-017-0617-y (2017).Article 

    Google Scholar 
    Domínguez-Castanedo, O., Muñoz-Campos, T. M., Valdesalici, S., Valdez-Carbajal, S. & Passos, C. First description of color variations in the annual killifish Millerichthys robustus, and preliminary observations about its geographical distribution. Environ. Biol. Fishes. 104(3), 293–307. https://doi.org/10.1007/s10641-021-01076-w (2021).Article 

    Google Scholar 
    Muñoz-Campos, M. T., Valdez-Carbajal, S. & Domínguez-Castanedo, O. Feeding ecology and coexistence dynamics in a community of fishes in a temperate temporary water body. Ecol. Freshw. Fish. 31(1), 1–16 (2021).
    Google Scholar 
    Jobling, S., Nolan, M., Tyler, C. R., Brighty, G. & Sumpter, J. P. Widespread sexual disruption in wild fish. Environ. Sci. Technol. 32(17), 2498–2506 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Wong, B. B. M. & Candolin, U. How is female mate choice affected by male competition?. Biol. Rev. Cam. Philos. 80, 559–571. https://doi.org/10.1017/S1464793105006809 (2005).Article 

    Google Scholar 
    Domínguez-Castanedo, O. Agonistic interactions with asymmetric body size in two adult-age groups of the annual killifish Millerichthys robustus (Miller & Hubbs, 1974). J. Fish. Biol. 99, 1631. https://doi.org/10.1111/jfb.14757 (2021).Article 

    Google Scholar 
    Polačik, M. & Reichard, M. Asymmetric reproductive isolation between two sympatric annual killifish with extremely short lifespans. PLoS One 6, e22684 (2011).ADS 
    Article 

    Google Scholar 
    Passos, C., Tassino, B., Reyes, F. & Rosenthal, G. G. Seasonal variation in female mate choice and operational sex ratio in wild populations of an annual fish, Austrolebias reicherti. PLoS ONE 9(7), e101649 (2014).ADS 
    Article 

    Google Scholar 
    Warner, R. R. The adaptive significance of sequential hermaphroditism in animals. Am. Nat. 109, 61–82 (1975).Article 

    Google Scholar 
    Ghiselin, M. T. The evolution of hermaphroditism among animals. Quat. Rev. Biol. 44, 189–208 (1969).CAS 
    Article 

    Google Scholar 
    Forsgren, E., Amundsen, T., Borg, Å. A. & Bjelvenmark, J. Unusually dynamic sex roles in a fish. Nature 429(6991), 551–554 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Reichard, M., Polačik, M., Blažek, R. & Vrtílek, M. Female bias in the adult sex ratio of African annual fishes: Interspecific differences, seasonal trends and environmental predictors. Evol. Ecol. 28, 1105–1120 (2014).Article 

    Google Scholar 
    Lindström, K. Effects of resource distribution on sexual selection and the cost of reproduction in sand gobies. Am. Nat. 158(1), 64–74 (2001).Article 

    Google Scholar 
    Bartáková, V. et al. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evol. Biol. 13, 196 (2013).Article 

    Google Scholar 
    Domínguez-Castanedo, O. Perceived mate competition risk influences the female mate choice and increases the reproductive effort in the annual killifish Millerichthys robustus. Ethol. Ecol. Evol. https://doi.org/10.1080/03949370.2021.1893827 (2021).Article 

    Google Scholar 
    Harrington, R. W. Oviparous hermaphroditic fish with internal self-fertilization. Science 134(3492), 1749–1750 (1961).ADS 
    Article 

    Google Scholar 
    Tatarenkov, A. et al. Genetic subdivision and variation in selfing rates among Central American populations of the mangrove Rivulus, Kryptolebias marmoratus. J. Hered. 106(3), 276–284 (2015).CAS 
    Article 

    Google Scholar 
    Black, P. M., Balthazart, J., Baillen, M. & Grober, S. M. Socially induced and rapid increases in aggression are inversely related to brain aromatase activity in a sex-changing fish, Lythrypnus dalli. Proc. R. Soc. B Biol. Sci. 275(1579), 2435–2440. https://doi.org/10.1098/rspb.2005.3210 (2005).Article 

    Google Scholar 
    Escobar, M. L. et al. Involvement of pro-apoptotic and pro-autophagic proteins in granulosa cell death. J. Cell. Biol. 1, 9–17 (2013).Article 

    Google Scholar 
    Matsuda-Minehata, F., Inoue, N., Goto, Y. & Manabe, N. The regulation of ovarian granulosa cell death by pro and anti-apoptotic molecules. J. Reprod. Dev. 52(6), 695–705 (2006).CAS 
    Article 

    Google Scholar 
    Evans, A. G. et al. Identification of genes involved in apoptosis and dominant follicle development during follicular waves in cattle. Biol. Reprod. 70, 1475–1484 (2004).CAS 
    Article 

    Google Scholar 
    Cardwell, R. J. & Liley, R. N. Hormonal control of sex and color change in the stoplight parrotfish, Sparisoma viride. Gen. Comp. Endocr. 81, 7–20 (1991).CAS 
    Article 

    Google Scholar 
    Domínguez-Castanedo, O., Uribe, M. C. & Muñóz-Campos, T. M. Morphological patterns of cell death in ovarian follicles of primary and secondary growth and post-ovulatory follicle complex of the annual killifish Millerichthys robustus (Cyprinodontiformes: Cynolebiidae). J. Morp. 280(11), 1668–1681. https://doi.org/10.1002/jmor.21056 (2019).Article 

    Google Scholar 
    De Mitcheson, S. Y. & Liu, M. Functional hermaphroditism in teleosts. Fish Fish. 9, 1–43 (2008).Article 

    Google Scholar 
    Valdesalici, S., Domínguez-Castanedo, O. & Mosqueda-Cabrera, M. A. Patterns of reproductive behaviour in Millerichthys robustus (Cyprinodontiformes: Cynolebiidae). Int. J. Ichthyol. 22(4), 177–180 (2016).
    Google Scholar 
    Aguilar-Morales, M., Coutiño, B. B. & Rosales, S. P. Manual general de técnicas histológicas y citoquímicas. México, D. F. (Facultad de Ciencias, UNAM, 1996).Grier, H. J., Uribe, MC. & Patiño, R. The ovary, folliculogenesis, and oogenesis in teleosts. In 2. Reproductive Biology and Physiology of Fishes (Agnathans and Bony Fishes) (ed. Jamieson, B. G. M.). (Science Publishers, 2009).Domínguez-Castanedo, O. & Uribe, M. C. Ovarian structure, folliculogenesis and oogenesis of the annual killifish Millerichthys robustus (Cyprinodontiformes: Cynolebiidae). J. Morp. 280(3), 316–328. https://doi.org/10.1002/jmor.20945 (2019).Article 

    Google Scholar 
    Domínguez-Castanedo, O. & Uribe, M. C. Reproductive biology in males of the annual killifish Millerichthys robustus (Cyprinodontiformes: Cynolebiidae). Environ. Biol. Fish. 102(11), 1365–1375 (2019).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019). http://www.R-project.org.Brooks, E. M. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9(2), 378–400 (2017).Article 

    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. In Theoretical Ecology, Germany. (University of Regensburg, 2021). More

  • in

    Influence of spatial characteristics of green spaces on microclimate in Suzhou Industrial Park of China

    In this study, the five main characteristics of green spaces that were measured were area, perimeter, perimeter-area ratio, leaf area index, and canopy density. The structure of parameter between them is shown in Table 3.Table 3 Parameter structure of the cooling and humidification effect based on the spatial characteristics of green spaces.Full size tableCorrelation between various spatial characteristics and cooling and humidifying intensity in green spacesSmall-size green spacesFigures 4 and 6 shows the results of linear regressions between spatial characteristics and the cooling effect in small-size green spaces. There were relatively weak correlations between area, perimeter, perimeter-area ratio, leaf area index and cooling intensity, and a strong correlation between canopy density and cooling intensity. Small-size green space has the weakest positive correlation between perimeter-area ratio and cooling intensity (R2 = 0.11), and its canopy density and cooling intensity have the strongest positive correlation (R2 = 0.64). Meanwhile, small-size green space has weakest negative correlation between perimeter and humidifying intensity (R2 = 0.17), and its leaf area index and humidifying intensity have significant positive correlation (R2 = 0.42). Figures 4a and 5a show that for every 1 ha increase in area of small-size green spaces, the cooling intensity increased by 1.026 °C, and the humidifying intensity decreased by 1.56%. Figures 4b and 5b show that for every 100 m increase in perimeter, the cooling intensity decreases by 1.06 °C, and the humidifying intensity decreased by 1.19%. Figures 4c and 5c show that for every 0.01 increase in the perimeter-area ratio, the cooling intensity increases by 1.12 °C, and the humidifying intensity increased by 1.46%. Figures 4d and 5d show that for every 0.1 increase in the leaf area index, the cooling intensity increases by 1.11 °C, and the humidifying intensity increased by 1.12%. Figures 4e and 5e show that each 0.01 increase in the canopy density, the cooling intensity increases by 1.60 °C, and each 0.1 increase in canopy density, the humidifying intensity increased by 1.15% (Fig. 6).
    Figure 4Linear regressions between spatial characteristics and cooling intensity of small-size green spaces.Full size imageFigure 5Linear regressions of spatial characteristics and humidifying intensity of small-size green spaces.Full size imageFigure 6The correlation between the spatial characteristics of small-size green spaces and the intensity of cooling and humidifying (GA means green area; GP means green perimeter; GPAR means green perimeter-area ratio; LAI means leaf area index; CD means canopy density).Full size imageMedium-size green spacesFigures 7 and 9 shows the linear regressions between spatial characteristics and cooling intensity in medium-size green spaces. There was an extremely significant positive correlation between area and cooling intensity, an insignificant positive correlation between the leaf area index and cooling intensity, and a relatively weak negative correlation between the other three characteristics and cooling intensity. Medium-size green space has the weakest negative correlation between canopy density and cooling intensity (R2 = 0.12), and its green area and cooling intensity have the strongest positive correlation (R2 = 0.83). Meanwhile, medium-size green space has weakest negative correlation between perimeter-area ratio and humidifying intensity (R2 = 0.41), and its area and humidifying intensity have most significant positive correlation (R2 = 0.81). Figures 7a and 8a show that for every 1 ha increase in area of medium-size green spaces, the cooling intensity increased by 1.19 °C, and the humidifying intensity increased by 1.24%. Figures 7b and 8b show that for every 100 m increase in perimeter, the cooling intensity decreases by 1.02 °C, and the humidifying intensity increased by 1.17%. Figures 7c and 8c show that for every 0.01 increase in the perimeter-area ratio, the cooling intensity decreases by 1.29 °C, and the humidifying intensity decreased by 2.40%. Figures 7d and 8d show that for every 0.1 increase in the leaf area index, the cooling intensity increases by 1.37 °C, and the humidifying intensity decreased by 1.92%. Figures 7e and 8e show that each 0.01 increase in the canopy density, increases the cooling intensity decreases by 1.23 °C, and the humidifying intensity decreased by 6.48% (Fig. 9).Figure 7Linear regressions between spatial characteristics and cooling intensity of medium-size green spaces.Full size imageFigure 8Linear regressions of spatial characteristics and humidifying intensity of medium-size green spaces.Full size imageFigure 9The correlation between the spatial characteristics of medium-size green spaces and the intensity of cooling and humidifying (GA means green area; GP means green perimeter; GPAR means green perimeter-area ratio; LAI means leaf area index; CD means canopy density).Full size imageLarge-size green spacesFigures 10 and 12 shows the linear regressions between spatial characteristics and cooling intensity in large-size green spaces. There was an insignificant correlation between area and cooling intensity, a weak correlation between canopy density and cooling intensity, and a significant correlation between perimeter, perimeter-area ratio and the leaf area index and cooling intensity. Medium-size green space has the weakest negative correlation between green area and cooling intensity (R2 = 0.35), and its leaf area index and cooling intensity have the strongest positive correlation (R2 = 0.92). Meanwhile, medium-size green space has weakest negative correlation between perimeter-area ratio and humidifying intensity (R2 = 0.11), and its leaf area index and humidifying intensity have most significant positive correlation (R2 = 0.39). Figures 10a and 11a show that for every 1 ha increase in area of large-size green spaces, the cooling intensity decreased by 1.02 °C, and the humidifying intensity decreased by 1.22%. Figures 10b and 11b show that for every 100 m increase in perimeter, the cooling intensity decreases by 1.05 °C, and the humidifying intensity decreased by 1.34%. Figures 10c and 11c show that for every 0.005 increase in the perimeter-area ratio, the cooling intensity decreases by 1.43 °C, and each 0.01 increase in perimeter-area ratio, the humidifying intensity decreased by 1.27%. Figures 10d and 11d show that for every 0.1 increase in the leaf area index, the cooling intensity increases by 2.41 °C, and the humidifying intensity increased by 1.37%. Figures 10e and 11e show that each 0.1 increase in the canopy density, the cooling intensity increased by 3.69 °C, and the humidifying intensity decreased by 2.84% (Fig. 12).Figure 10Linear regressions of spatial characteristics and cooling intensity of large-size green spaces.Full size imageFigure 11Linear regressions of spatial characteristics and humidifying intensity of large-size green spaces.Full size imageFigure 12The correlation between the spatial characteristics of large-size green spaces and the intensity of cooling and humidifying (GA means green area; GP means green perimeter; GPAR means green perimeter-area ratio; LAI means leaf area index; CD means canopy density).Full size imageQuantitative analysis of the microclimatic effects of different types of green spacesQuantitative analysis of the effects of different types of green space on cooling intensityFigure 13 shows the linear regressions between the different types of green spaces and cooling intensity. There were negative correlations between green spaces a short, medium, and long distance from a water body and cooling intensity in small-size green spaces, medium-size green spaces and large-size green spaces. The negative correlation between the distance to a water body and cooling intensity in medium-size green spaces was most significant (R2 = 0.985). The greater the distance to a water body, the lower the cooling intensity. For medium-size green spaces, for every 1/4 increase in the distance ratio, the cooling intensity decreased by 0.81 °C. For small-size green spaces, for every 1/4 increase in the distance ratio, the cooling intensity decreased by 1.04 °C. For large-size green spaces, for every 1/4 increase in the distance ratio, the cooling intensity decreased by 1.36 °C. For small-, medium-, and large-size green spaces, there was a positive correlation between canopy density and cooling intensity. There was a most significant positive correlation between canopy density and cooling intensity in large-size green spaces (R2 = 0.941). The greater the canopy density, the greater the cooling intensity. For large green spaces, for every 0.5 increase in canopy density, the cooling intensity increased by 0.16 °C. For small-size green spaces, for every 0.5 increase in canopy density, the cooling effect increased by 0.15 °C. For medium-size green spaces, for every 0.5 increase in canopy density, the cooling intensity increased by 0.16 °C.Figure 13Linear regressions between the distance from different types of green spaces to water areas, canopy density and cooling intensity.Full size imageQuantitative analysis of the effects of different types of green space on humidifying intensityFigure 14 shows the linear regression between the distance of a green space from a water body, canopy density and humidifying intensity. There was a negative correlation between the distance to a water body and humidifying intensity in small, medium, and large green spaces. The negative correlation between the distance to a water body and humidifying intensity in small green spaces was most significant (R2 = 0.996). The longer the distance, the lower the humidifying intensity. For small green spaces, for every 1/4 in-crease in the distance ratio, the humidifying intensity decreased by 4.23%. For medium-size green spaces, for every 1/4 increase in the distance ratio, the humidifying intensity decreased by 3.02%. For large-size green spaces, for every 1/4 increase in the distance ratio, the humidifying intensity de-creased by 6.14%. For small, medium, and large green spaces, there was a positive correlation between canopy density and humidifying intensity. The positive correlation between canopy density and humidifying intensity in medium-size green spaces was extremely significant (R2 = 0.925). The greater the canopy density, the greater the humidifying intensity. For medium-size green spaces, for every 0.5 increase in canopy density, the humidifying intensity increased by 3.29%. For small-size green spaces, for every 0.5 increase in canopy density, the humidifying intensity increased by 3.17%. For large-size green spaces, for every 0.5 increase in canopy density, the humidifying intensity increased by 4.06% (Fig. 15).
    Figure 14Linear regressions between the distance from different types of green space to water area, canopy density and humidifying intensity.Full size imageFigure 15Correlation of different green space types with water distance, canopy density and cooling and humidifying intensity.Full size imageEffect of shape and area of water bodies on microclimatic effects based on numerical simulationBanded waterWe constructed a numerical simulation model to explore the effects of a simulated increase in water body area on cooling and humidification. Figure 16 shows the simulated distribution characteristics of temperature and relative humidity after a 5% and 10% increase in water area at 14:00 when temperatures were high. The results suggest that between 7:00 and 10:00, with a 5% and 10% increase in water area, the air temperature was basically the same and the cooling effect was insignificant. However, between 12:00 and 19:00 and particularly in the hours between 13:00 and 16:00 when temperatures were highest, a 5% increase in water area produced a significant cooling effect, with a daily average value of 0.05 °C and a maximum value of 0.09 °C. A 10% increase in water area produced an extremely significant cooling effect, with a daily average value of 0.07 °C and a maximum value of 0.14 °C. From 11:00 to 19:00, a 5% increase in water area produced a significant humidifying effect, with a daily average value of 0.08% and a maximum value of 0.17%. A 10% increase produced an extremely significant humidifying effect, with a daily average value of 0.13% and a maximum value of 0.26% (See supplementary file).Figure 16Distribution characteristics of cooling and humidifying effects of simulated increase of banded water area at 14:00. (a) original cooling effect of banded water in the sample area; (b) cooling effect of 5% increase in water area; (c) cooling effect of 10% increase in water area; (d) original humidifying effect of banded water in the sample area; (e) humidifying effect of 5% increase in water area; (f) humidifying effect of 10% increase of water area.Full size imageMassive waterFigure 17 shows the simulated distribution characteristics of the cooling and humidifying effects after a 5% and 10% increase in the water area at 14:00 when temperatures were high. Between 8:00 and 19:00, a 5% and 10% increase in water area produced a significant cooling effect. At 19:00, the numerical simulation result was abnormal when the water area increased by 5% and 10%; at 13:00, the numerical simulation result was also ab-normal when the water area increased by 10%. After excluding the abnormal simulated data, a 5% increase in water area produced a cooling effect, with a daily average value of 0.06 °C and a maximum value of 0.10 °C. A 10% increase in water area produced an extremely significant cooling effect, with a daily average value of 0.10 °C and a maximum value of 0.18 °C. Between 11:00 and 19:00, a 5% increase in water area produced a significant humidifying effect, with a daily average value of 0.05% and a maximum value of 0.13%. A 10% increase in water area produced an extremely significant humidifying effect, with a daily average value of 0.13% and a maximum value of 0.27% (See supplementary file).Figure 17Distribution characteristics of cooling and humidifying effects of simulated increase of massive water area at 14:00. (a) original cooling effect of massive water in the sample area; (b) cooling effect of 5% increase in water area; (c) cooling effect of 10% increase in water area; (d) original humidifying effect of massive water in the sample area; (e) humidifying effect of 5% increase in water area; (f) humidifying effect of 10% increase of water area.Full size imageAnnular waterFigure 18 shows the simulated distribution characteristics of the cooling and humidifying effects after a 5% and 10% increase in the area of the annular water body at 14:00 when temperatures were high. Between 7:00 and 19:00, a 5% and 10% increase in water area produced a significant cooling effect. Between 11:00 and 16:00 when temperatures were high, a 5% increase in water area produced a cooling effect, with a daily average value of 0.06 °C and a maximum value of 0.14 °C°C and a 10% increase in water area produced an extremely significant cooling effect, with a daily average value of 0.13 °C and a maximum value of 0.28 °C. Between 7:00 and 19:00, a 5% and 10% increase in water area produced significant humidifying effects. Between 11:00 and 16:00 when temperatures were high, a 5% increase in water area produced an extremely significant humidifying effect, with a daily average value of 0.17% and a maximum value of 0.39% and a 10% increase in water area produced an extremely significant humidifying effect with a daily average value of 0.38% and a maximum value of 0.81% (See supplementary file).Figure 18Distribution characteristics of cooling and humidifying effects of simulated increase of annular water area at 14:00. (a) original cooling effect of annular water in the sample area; (b) cooling effect of 5% increase in water area; (c) cooling effect of 10% increase in water area; (d) original humidifying effect of annular water in the sample area; (e) humidifying effect of 5% increase in water area; (f) humidifying effect of 10% increase of water area.Full size image More

  • in

    Success of post-fire plant recovery strategies varies with shifting fire seasonality

    Canadell, J. G. et al. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 12, 6921 (2021).CAS 
    Article 

    Google Scholar 
    Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 7537 (2015).CAS 
    Article 

    Google Scholar 
    Jain, P., Wang, X. & Flannigan, M. D. Trend analysis of fire season length and extreme fire weather in North America between 1979 and 2015. Int. J. Wildland Fire 26, 1009–1020 (2017).Article 

    Google Scholar 
    Wotton, B. M. & Flannigan, M. D. Length of the fire season in a changing climate. For. Chronicle 69, 187–192 (1993).
    Google Scholar 
    Collins, L. et al. The 2019/2020 mega-fires exposed Australian ecosystems to an unprecedented extent of high-severity fire. Environ. Res. Lett. 16, 044029 (2021).Article 

    Google Scholar 
    Higuera, P. E. & Abatzoglou, J. T. Record‐setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 27, 1–2 (2021).Article 

    Google Scholar 
    Nolan, R. H. et al. Limits to post-fire vegetation recovery under climate change. Plant Cell Environ. 44, 3471–3489 (2021).CAS 
    Article 

    Google Scholar 
    Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).Article 

    Google Scholar 
    Dickman, C. R. Ecological consequences of Australia’s “Black Summer” bushfires: managing for recovery. Int. Environ. Assess. Manag. 17, 1162–1167 (2021).Article 

    Google Scholar 
    Swain, D. L. A shorter, sharper rainy season amplifies California wildfire risk. Geophys. Res. Lett. 48, e2021GL092843 (2021).
    Google Scholar 
    Keeley, J. E. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int. J. Wildland Fire 18, 116–126 (2009).Article 

    Google Scholar 
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).Article 

    Google Scholar 
    Bradstock, R. A. A biogeographic model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeogr. 19, 145–158 (2010).Article 

    Google Scholar 
    Bowman, D. M., Murphy, B. P., Neyland, D. L., Williamson, G. J. & Prior, L. D. Abrupt fire regime change may cause landscape-wide loss of mature obligate seeder forests. Glob. Change Biol. 20, 1008–1015 (2014).Article 

    Google Scholar 
    Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J. & Bradstock, R. A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 16, 406–411 (2011).CAS 
    Article 

    Google Scholar 
    Barrett, K. et al. Postfire recruitment failure in Scots pine forests of southern Siberia. Remote Sens. Environ. 237, 111539 (2020).Article 

    Google Scholar 
    Miller, R. G., Fontaine, J. B., Merritt, D. J., Miller, B. P. & Enright, N. J. Experimental seed sowing reveals seedling recruitment vulnerability to unseasonal fire. Ecol. Appl. 31, e02411 (2021).
    Google Scholar 
    Prior, L. D., Williamson, G. J. & Bowman, D. M. Impact of high-severity fire in a Tasmanian dry eucalypt forest. Austral. J. Bot. 64, 193–205 (2016).Article 

    Google Scholar 
    Brewer, J. S. Long-term population changes of a fire-adapted plant subjected to different fire seasons. Nat. Areas J. 26, 267–273 (2006).Article 

    Google Scholar 
    Keith, D. A., Holman, L., Rodoreda, S., Lemmon, J. & Bedward, M. Plant functional types can predict decade‐scale changes in fire‐prone vegetation. J. Ecol. 95, 1324–1337 (2007).Article 

    Google Scholar 
    Savage, M., Mast, J. N. & Feddema, J. J. Double whammy: high-severity fire and drought in ponderosa pine forests of the Southwest. Can. J. For. Res. 43, 570–583 (2013).Article 

    Google Scholar 
    Miller, R. G. et al. Mechanisms of fire seasonality effects on plant populations. Trends Ecol. Evol. 34, 1104–1117 (2019).Article 

    Google Scholar 
    Tangney, R., Merritt, D. J., Fontaine, J. B. & Miller, B. P. Seed moisture content as a primary trait regulating the lethal temperature thresholds of seeds. J. Ecol. 107, 1093–1105 (2019).Article 

    Google Scholar 
    Tangney, R. et al. Seed dormancy interacts with fire seasonality mechanisms. Trends Ecol. Evol. 35, 1057–1059 (2020).Article 

    Google Scholar 
    Bowman, D. M. et al. The human dimension of fire regimes on Earth. J. Biogeogr. 38, 2223–2236 (2011).Article 

    Google Scholar 
    Knapp, E. E., Estes, B. L. & Skinner, C. N. Ecological effects of prescribed fire season: a literature review and synthesis for managers. Gen. Tech. Rep. https://doi.org/10.2737/PSW-GTR-224 (2009).Miller, R. G. et al. Fire seasonality mechanisms are fundamental for understanding broader fire regime effects. Trends Ecol. Evol. 35, 869–871 (2020).Article 

    Google Scholar 
    Keeley, J. E. & Syphard, A. D. Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecol. 15, 24 (2019).Article 

    Google Scholar 
    Lamont, B. B., Enright, N. J. & He, T. Fitness and evolution of resprouters in relation to fire. Plant Ecol. 212, 1945–1957 (2011).Article 

    Google Scholar 
    Pausas, J. G. & Bradstock, R. A. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south‐east Australia. Glob. Ecol. Biogeogr. 16, 330–340 (2007).Article 

    Google Scholar 
    Pausas, J. G. & Keeley, J. E. Evolutionary ecology of resprouting and seeding in fire-prone ecosystems. New Phytol. 204, 55–65 (2014).Article 

    Google Scholar 
    Fairman, T. A., Bennett, L. T. & Nitschke, C. R. Short-interval wildfires increase likelihood of resprouting failure in fire-tolerant trees. J. Environ. Manag. 231, 59–65 (2019).Article 

    Google Scholar 
    Pyke, G. H. Fire-stimulated flowering: a review and look to the future. Critic. Rev. Plant Sci. 36, 179–189 (2017).Article 

    Google Scholar 
    Zirondi, H. L., Ooi, M. K. J. & Fidelis, A. Fire-triggered flowering is the dominant post-fire strategy in a tropical savanna. J. Veg. Sci. 32, e12995 (2021).Article 

    Google Scholar 
    Howe, H. F. Response of Zizia aurea to seasonal mowing and fire in a restored Prairie. Am. Midl. Nat. 141, 373–380 (1999).Article 

    Google Scholar 
    Thompson, K. Seeds and seed banks. New Phytol. 106, 23–34 (1987).Article 

    Google Scholar 
    Baskin, C. C. & Baskin, J. M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination 2nd edn (Academic Press, 2001).Alvarado, V. & Bradford, K. J. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25, 1061–1069 (2002).Article 

    Google Scholar 
    Mackenzie, B. D. E., Auld, T. D., Keith, D. A., Hui, F. K. C. & Ooi, M. K. J. The effect of seasonal ambient temperatures on fire-stimulated germination of species with physiological dormancy: a case study using boronia (Rutaceae). PLoS One 11, e0156142 (2016).Article 
    CAS 

    Google Scholar 
    Ooi, M. K. J. Delayed emergence and post-fire recruitment success: effects of seasonal germination, fire season and dormancy type. Austral. J. Bot. 58, 248–256 (2010).Article 

    Google Scholar 
    Bond, W. Fire survival of Cape Proteaceae-influence of fire season and seed predators. Vegetatio 56, 65–74 (1984).Article 

    Google Scholar 
    Keith, D. A., Dunker, B. & Driscoll, D. A. Dispersal: the eighth fire seasonality effect on plants. Trends Ecol. Evol. 35, 305–307 (2020).Article 

    Google Scholar 
    Paroissien, R. & Ooi, M. K. J. Effects of fire season on the reproductive success of the post-fire flowerer Doryanthes excelsa. Environ. Exp. Bot. 192, 104634 (2021).Article 

    Google Scholar 
    Furlaud, J. M., Prior, L. D., Williamson, G. J. & Bowman, D. M. J. S. Bioclimatic drivers of fire severity across the Australian geographical range of giant Eucalyptus forests. J. Ecol. 109, 2514–2536 (2021).Article 

    Google Scholar 
    Thomsen, A. M. & Ooi, M. K. J. Shifting season of fire and its interaction with fire severity: Impacts on reproductive effort in resprouting plants. Ecol. Evol. 12, e8717 (2022).Article 

    Google Scholar 
    Fill, J. M. & Crandall, R. M. Stronger evidence needed for global fire season effects. Trends Ecol. Evol. 35, 867–868 (2020).Article 

    Google Scholar 
    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).Article 

    Google Scholar 
    Inouye, D. W. Climate change and phenology. Wiley Interdiscip. Rev. Clim. Change n/a, e764 (2022).
    Google Scholar 
    Enright, N. J., Marsula, R., Lamont, B. B. & Wissel, C. The ecological significance of canopy seed storage in fire-prone environments: a model for non-sprouting shrubs. J. Ecol. 86, 946–959 (1998).Article 

    Google Scholar 
    Setterfield, S. A. The impact of experimental fire regimes on seed production in two tropical eucalypt species in northern Australia. Austral. J. Ecol. 22, 279–287 (1997).Article 

    Google Scholar 
    Collette, J. C. & Ooi, M. K. J. Evidence for physiological seed dormancy cycling in the woody shrub Asterolasia buxifolia and its ecological significance in fire-prone systems. Plant Biol. 22, 745–749 (2020).CAS 
    Article 

    Google Scholar 
    Setterfield, S. A. Seedling establishment in an Australian tropical savanna: effects of seed supply, soil disturbance and fire. J. Appl. Ecol. 39, 949–959 (2002).Article 

    Google Scholar 
    Russell-Smith, J. & Edwards, A. C. Seasonality and fire severity in savanna landscapes of monsoonal northern Australia. Int. J. Wildland Fire 15, 541–550 (2006).Article 

    Google Scholar 
    Whitehead, P. J., Purdon, P., Russell-Smith, J., Cooke, P. M. & Sutton, S. The management of climate change through prescribed Savanna burning: Emerging contributions of indigenous people in Northern Australia. Public Adm. Dev. 28, 374–385 (2008).Article 

    Google Scholar 
    Prior, L. D., Williams, R. J. & Bowman, D. M. Experimental evidence that fire causes a tree recruitment bottleneck in an Australian tropical savanna. J. Tropical Ecol. 26, 595–603 (2010).Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).Article 

    Google Scholar 
    Ferreira, L. N., Vega-Oliveros, D. A., Zhao, L., Cardoso, M. F. & Macau, E. E. N. Global fire season severity analysis and forecasting. Comput. Geosci. 134, 104339 (2020).Article 

    Google Scholar 
    Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).Article 

    Google Scholar 
    Ansley, R. J. & Castellano, M. J. Prickly pear cactus responses to summer and winter fires. Rangel. Ecol. Manag. 60, 244–252 (2007).Article 

    Google Scholar 
    Ansley, R. J., Kramp, B. A. & Jones, D. L. Honey mesquite (Prosopis glandulosa) seedling responses to seasonal timing of fire and fireline intensity. Rangel. Ecol. Manag. 68, 194–203 (2015).Article 

    Google Scholar 
    Armstrong, G. & Legge, S. The post-fire response of an obligate seeding Triodia species (Poaceae) in the fire-prone Kimberley, north-west Australia. Int. J. Wildland Fire 20, 974–981 (2012).Article 

    Google Scholar 
    Bellows, R. S., Thomson, A. C., Helmstedt, K. J., York, R. A. & Potts, M. D. Damage and mortality patterns in young mixed conifer plantations following prescribed fires in the Sierra Nevada, California. For. Ecol. Manag. 376, 193–204 (2016).Article 

    Google Scholar 
    Beyers, J. L. & Wakeman, C. D. Season of burn effects in southern California chaparral. In Second interface between ecology and land development in California 45–55 (Occidental College, CA, 2000).Bowen, B. J. & Pate, J. S. Effect of season of burn on shoot recovery and post‐fire flowering performance in the resprouter Stirlingia latifolia R. Br.(Proteaceae). Austral Ecol. 29, 145–155 (2004).Article 

    Google Scholar 
    Casals, P., Valor, T., Rios, A. & Shipley, B. Leaf and bark functional traits predict resprouting strategies of understory woody species after prescribed fires. For. Ecol. Manag. 429, 158–174 (2018).Article 

    Google Scholar 
    Céspedes, B., Torres, I., Luna, B., Pérez, B. & Moreno, J. M. Soil seed bank, fire season, and temporal patterns of germination in a seeder-dominated Mediterranean shrubland. Plant Ecol. 213, 383–393 (2012).Article 

    Google Scholar 
    Clabo, D. C. & Clatterbuck, W. K. Shortleaf pine (Pinus echinata, Pinaceae) seedling sprouting responses: Clipping and burning effects at various seedling ages and seasons. J. Torrey Bot. Soc. 146, 96–110 (2019).Article 

    Google Scholar 
    Drewa, P. B. Effects of fire season and intensity on Prosopis glandulosa Torr. var. glandulosa. Int. J. Wildland Fire 12, 147–157 (2003).Article 

    Google Scholar 
    Drewa, P. B., Platt, W. J. & Moser, E. B. Fire effects on resprouting of shrubs in headwaters of southeastern longleaf pine savannas. Ecology 83, 755–767 (2002).Article 

    Google Scholar 
    Drewa, P. B., Thaxton, J. M. & Platt, W. J. Responses of root‐crown bearing shrubs to differences in fire regimes in Pinus palustris (longleaf pine) savannas: exploring old‐growth questions in second‐growth systems. Appl. Veg. Sci. 9, 27–36 (2006).
    Google Scholar 
    Ellsworth, L. M. & Kauffman, J. B. Seedbank responses to spring and fall prescribed fire in mountain big sagebrush ecosystems of differing ecological condition at Lava Beds National Monument, California. J. Arid Environ. 96, 1–8 (2013).Article 

    Google Scholar 
    Fairfax, R. et al. Effects of multiple fires on tree invasion in montane grasslands. Landsc. Ecol. 24, 1363–1373 (2009).Article 

    Google Scholar 
    Fill, J. M., Welch, S. M., Waldron, J. L. & Mousseau, T. A. The reproductive response of an endemic bunchgrass indicates historical timing of a keystone process. Ecosphere 3, 1–12 (2012).Article 

    Google Scholar 
    Grant, C. Post-burn vegetation development of rehabilitated bauxite mines in Western Australia. For. Ecol. Manag. 186, 147–157 (2003).Article 

    Google Scholar 
    Hajny, K. M., Hartnett, D. C. & Wilson, G. W. Rhus glabra response to season and intensity of fire in tallgrass prairie. Int. J. Wildland Fire 20, 709–720 (2011).Article 

    Google Scholar 
    Holmes, P. A comparison of the impacts of winter versus summer burning of slash fuel in alien-invaded fynbos areas in the Western Cape. Southern African For. J. 192, 41–50 (2001).Article 

    Google Scholar 
    Jasinge, N., Huynh, T. & Lawrie, A. Consequences of season of prescribed burning on two spring-flowering terrestrial orchids and their endophytic fungi. Austr. J. Bot. 66, 298–312 (2018).Article 

    Google Scholar 
    Jasinge, N., Huynh, T. & Lawrie, A. Changes in orchid populations and endophytic fungi with rainfall and prescribed burning in Pterostylis revoluta in Victoria, Australia. Ann. Bot. 121, 321–334 (2018).CAS 
    Article 

    Google Scholar 
    Kauffman, J. & Martin, R. Sprouting shrub response to different seasons and fuel consumption levels of prescribed fire in Sierra Nevada mixed conifer ecosystems. For. Sci. 36, 748–764 (1990).
    Google Scholar 
    Keyser, T. L., Greenberg, C. H. & McNab, W. H. Season of burn effects on vegetation structure and composition in oak-dominated Appalachian hardwood forests. For. Ecol. Manag. 433, 441–452 (2019).Article 

    Google Scholar 
    Knox, K. & Clarke, P. J. Fire season and intensity affect shrub recruitment in temperate sclerophyllous woodlands. Oecologia 149, 730–739 (2006).CAS 
    Article 

    Google Scholar 
    Lamont, B. B. & Downes, K. S. Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecol. 212, 2111–2125 (2011).Article 

    Google Scholar 
    Lesica, P. & Martin, B. Effects of prescribed fire and season of burn on recruitment of the invasive exotic plant, Potentilla recta, in a semiarid grassland. Restoration Ecol. 11, 516–523 (2003).Article 

    Google Scholar 
    Moreno, J. M. et al. Rainfall patterns after fire differentially affect the recruitment of three Mediterranean shrubs. Biogeosciences 8, 3721–3732 (2011).Article 

    Google Scholar 
    Mulligan, M. K. & Kirkman, L. K. Burning influences on wiregrass (Aristida beyrichiana) restoration plantings: natural seedling recruitment and survival. Restor. Ecol. 10, 334–339 (2002).Article 

    Google Scholar 
    Nield, A. P., Enright, N. J. & Ladd, P. G. Fire-stimulated reproduction in the resprouting, non-serotinous conifer Podocarpus drouynianus (Podocarpaceae): the impact of a changing fire regime. Popul. Ecol. 58, 179–187 (2016).Article 

    Google Scholar 
    Norden, A. H. & Kirkman, L. K. Persistence and prolonged winter dormancy of the federally endangered Schwalbea Americana L.(Scrophulariaceae) following experimental management techniques. Nat. Areas J. 24, 129–134 (2004).
    Google Scholar 
    Olson, M. S. & Platt, W. J. Effects of habitat and growing season fires on resprouting of shrubs in longleaf pine savannas. Vegetatio 119, 101–118 (1995).Article 

    Google Scholar 
    Ooi, M. K. The importance of fire season when managing threatened plant species: a long-term case-study of a rare Leucopogon species (Ericaceae). J. Environ. Manag. 236, 17–24 (2019).Article 

    Google Scholar 
    Pavlovic, N. B., Leicht-Young, S. A. & Grundel, R. Short-term effects of burn season on flowering phenology of savanna plants. Plant Ecology 212, 611–625 (2011).Article 

    Google Scholar 
    Payton, I. J. & Pearce, H. G. Fire-Induced Changes to the Vegetation of Tall-Tussock (Chionochloa rigida) Grassland Ecosystems. (Department of Conservation Wellington, New Zealand, 2009).Peguero, G. & Espelta, J. M. Disturbance intensity and seasonality affect the resprouting ability of the neotropical dry-forest tree Acacia pennatula: do resources stored below-ground matter? J. Tropical Ecol. 28, 539–546 (2011).Risberg, L. & Granström, A. Exploiting a window in time. Fate of recruiting populations of two rare fire-dependent Geranium species after forest fire. Plant Ecol. 215, 613–624 (2014).Article 

    Google Scholar 
    Rodríguez-Trejo, D. A., Castro-Solis, U. B., Zepeda-Bautista, M. & Carr, R. J. First year survival of Pinus hartwegii following prescribed burns at different intensities and different seasons in central Mexico. Int. J. Wildland Fire 16, 54–62 (2007).Article 

    Google Scholar 
    Russell, M., Vermeire, L., Ganguli, A. & Hendrickson, J. Fire return interval and season of fire alter bud banks. Rangel. Ecol. Manag.72, 542–550 (2019).Article 

    Google Scholar 
    Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of Eucalyptus‐dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).Article 

    Google Scholar 
    Schmidt, I. B., Sampaio, A. B. & Borghetti, F. Effects of the season on sexual reproduction and population structure of Heteropterys pteropetala (Adr. Juss.), Malpiguiaceae, in areas of Cerrado sensu stricto submitted to biennial fires. Acta Bot. Brasilica 19, 927–934 (2005).Article 

    Google Scholar 
    Shepherd, B. J., Miller, D. L. & Thetford, M. Fire season effects on flowering characteristics and germination of longleaf pine (Pinus palustris) savanna grasses. Restor. Ecol. 20, 268–276 (2012).Article 

    Google Scholar 
    Spier, L. P. & Snyder, J. R. Effects of wet-and dry-season fires on Jacquemontia curtisii, a south Florida pine forest endemic. Nat. Areas J. 18, 350–357 (1998).
    Google Scholar 
    Tsafrir, A. et al. Fire season modifies the perennial plant community composition through a differential effect on obligate seeders in eastern Mediterranean woodlands. Appl. Veg. Sci. 22, 115–126 (2019).Article 

    Google Scholar 
    Vander Yacht, A. L. et al. Vegetation response to canopy disturbance and season of burn during oak woodland and savanna restoration in Tennessee. For. Ecol. Manag. 390, 187–202 (2017).Article 

    Google Scholar 
    Vidaller, C., Dutoit, T., Ramone, H. & Bischoff, A. Fire increases the reproduction of the dominant grass Brachypodium retusum and Mediterranean steppe diversity in a combined burning and grazing experiment. Appl. Veg. Sci. 22, 127–137 (2019).Article 

    Google Scholar 
    Williams, P. R., Congdon, R. A., Grice, A. C. & Clarke, P. J. Soil temperature and depth of legume germination during early and late dry season fires in a tropical eucalypt savanna of north‐eastern Australia. Austral Ecol. 29, 258–263 (2004).Article 

    Google Scholar 
    Williams, P. R., Congdon, R. A., Grice, A. C. & Clarke, P. J. Germinable soil seed banks in a tropical savanna: seasonal dynamics and effects of fire. Austral Ecol. 30, 79–90 (2005).Article 

    Google Scholar 
    Zhao, H. et al. Ecophysiological influences of prescribed burning on wetland plants: a case study in Sanjiang Plain wetlands, northeast China. Fresenius Environ. Bull 20, 2932–2938 (2011).CAS 

    Google Scholar 
    Pick, J. L., Nakagawa, S. & Noble, D. W. Reproducible, flexible and high‐throughput data extraction from primary literature: The metaDigitise r package. Methods in Ecol. Evol. 10, 426–431 (2019).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2020).Higgins, J. P. et al. Cochrane Handbook for Systematic Reviews of Interventions. (John Wiley & Sons, 2019).Lüdecke, D., Lüdecke, M. D. & David, B. W. Package ‘esc’. https://strengejacke.github.io/esc (2017).Schwarzer, G. meta: An R package for meta-analysis. R news 7, 40–45 (2007).
    Google Scholar 
    Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. A basic introduction to fixed‐effect and random‐effects models for meta‐analysis. Res. Synth. Methods 1, 97–111 (2010).Article 

    Google Scholar 
    Harrer, M., Cuijpers, P., Furukawa, T. A. & Ebert, D. D. Doing Meta-Analysis with R: a Hands-on Guide. (Chapman and Hall, 2019).Wilke, C. O., Wickham, H. & Wilke, M. C. O. Package ‘cowplot’. Streamlined Plot Theme and Plot Annotations for ‘ggplot2 (Cowplot, 2019).Fill, J. M., Davis, C. N. & Crandall, R. M. Climate change lengthens southeastern USA lightning‐ignited fire seasons. Glob. Change Biol. 25, 3562–3569 (2019).Article 

    Google Scholar 
    Halofsky, J. E., Peterson, D. L. & Harvey, B. J. Changing wildfire, changing forests: the effects of climate change on fire regimes and vegetation in the Pacific Northwest, USA. Fire Ecol. 16, 4 (2020).Article 

    Google Scholar 
    Kraaij, T., Cowling, R. M., van Wilgen, B. W., Rikhotso, D. R. & Difford, M. Vegetation responses to season of fire in an aseasonal, fire-prone fynbos shrubland. PeerJ 5, e3591 (2017).Article 

    Google Scholar 
    Peel, M. C., Finlayson, B. L. & McMahon, T. A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644 (2007).Article 

    Google Scholar 
    Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).Article 

    Google Scholar 
    McColl-Gausden, S. C., Bennett, L. T., Duff, T. J., Cawson, J. G. & Penman, T. D. Climatic and edaphic gradients predict variation in wildland fuel hazard in south-eastern Australia. Ecography 43, 443–455 (2020).Article 

    Google Scholar 
    Pausas, J. G. & Keeley, J. E. Evolutionary ecology of resprouting and seeding in fire‐prone ecosystems. New Phytol. 204, 55–65 (2014).Article 

    Google Scholar 
    Lamont, B. B., Maitre, D. C. L., Cowling, R. M. & Enright, N. J. Canopy seed storage in woody plants. Bot. Rev. 57, 277–317 (1991).Article 

    Google Scholar 
    Tangney, R. et al. Data supporting: Success of post-fire plant recovery strategies varies with shifting fire seasonality. Zenodo https://doi.org/10.5061/dryad.7sqv9s4t5 (2022).Rothstein, H. R., Sutton, A. J. & Borenstein, M. Publication Bias in Meta-Analysis: Prevention, Assessment and Adjustments (John Wiley & Sons, 2006).Head, M. L., Holman, L., Lanfear, R., Kahn, A. T. & Jennions, M. D. The extent and consequences of P-hacking in science. PLoS Biol. 13, e1002106 (2015).Article 
    CAS 

    Google Scholar 
    Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).CAS 
    Article 

    Google Scholar 
    Simonsohn, U., Nelson, L. D. & Simmons, J. P. P-curve: a key to the file-drawer. J. Exp. Psychol.Gen. 143, 534 (2014).Article 

    Google Scholar  More

  • in

    Modeling the impact of genetically modified male mosquitoes in the spatial population dynamics of Aedes aegypti

    In the present work, we extend the base model for the spatial mosquito population dynamics24 to include wild male mosquitoes and genetically modified male mosquitoes. Thus, five populations will be considered: the aquatic mosquito population, including larvae and pupae, the egg mosquito population, the reproductive female mosquito population, the wild male mosquito population, and the genetically modified male population. Similar approaches can be found in the literature25,26.In the following system, we represent mosquito population densities (mosquitoes per m(^2)) by: E – in the egg phase, A – in the aquatic phase, F – female in the reproductive phase, M – wild males, and G – genetically modified male mosquitoes. Due to the very high resistance of the egg phase (up to 450 days27) and as we are interested in an urban spatial macro-scale modeling, we do not consider the mortality in the egg phase. The model is described by the following system of partial differential equations:$$begin{aligned} {left{ begin{array}{ll} partial _t E &{} = alpha beta F M -e E, \ partial _t A &{} = e left( 1 – dfrac{A}{k} right) E -(eta _a+{mu _a})A, \ partial _t F &{} = nabla cdot (D_m nabla F) -mu _f F + reta _{a} A, \ partial _t M &{} = nabla cdot (D_m nabla M) -mu _m M + (1-r)eta _{a} A, \ partial _t G &{} = nabla cdot (D_g nabla G) -mu _{g}G + l, end{array}right. } end{aligned}$$
    (1)
    where ( alpha ) represents the proportion of wild male mosquitoes to the total number of male mosquitoes (wild males + genetically modified males); (beta ) represents the expected quantity of eggs from the successful encounter between wild females and males; e is the egg hatching rate; k is the carrying capacity of the aquatic phase; ( eta _a ) is the emergence rate for mosquitoes from the aquatic phase to the female or male phases; ( mu _a), (mu _f), (mu _m), and (mu _{g}) are the mortality rates of mosquitoes in the aquatic phase, females, males, and genetically modified males, respectively; r is the proportion of females to males (typically (r=0.5)); (l=l(x,y,t)) is the function representing the number of genetically modified mosquitoes released in a unit of time at any point of the domain; (D_m) is the diffusion coefficient of wild mobiles females and males; (D_g) is the diffusion coefficient of genetically modified males. The proposed model (1) can naturally deal with heterogeneous parameters, such as mortality, diffusion, and carrying capacity coefficients. Thus it is possible to model the influence of rain, wind, and human action. In the context of this work, we are considering that the city neighborhood is divided into two environments: houses and streets. Due to lack of data, we restrict the investigated heterogeneity only to the carrying capacity coefficient.The proposed model can be regarded as an extension of other “economic” models20,24 in the effort to qualitatively reproduce the complex phenomena by using as few parameters as possible. Following this idea, the carrying capacity was neglected in the egg phase because of the skip oviposition phenomenon28 i.e., the female lays the number of eggs that the place holds, without more space, she migrates to other environments to finish laying the eggs. We also do not consider this coefficient in the winged phase as limitations in the winged phase were not reported in any study. On the other hand, we consider it in the aquatic phases (larvae and pupae), where it is effective29.The term ( alpha ), which multiplies the probability of encounters between male and female, represents the impact of the insertion of genetically modified males in the mosquito population to the immobile phase and is defined as$$begin{aligned} alpha = left{ begin{array}{cc} 1, &{} text{ if } M=G= 0, \ dfrac{M}{M + G}, &{} text{ otherwise }. end{array} right. end{aligned}$$
    (2)
    Similar modeling approach can be found in the literature16. As the release rate of genetically modified males increases, the alpha value decreases, and, consequently, the probability of encounter between females and wild males also decreases. Thus, there is a greater probability of encounter between genetically modified males and females. This approach presents an advantage, when compared to the models found in the literature25, as System  (1) does not present singularities at the equilibrium states, allowing mathematical analysis and numerical simulations. From the biological point of view, the increment of male wild mosquitoes over some critical value does not affect the egg deposition. At first glance, the term FM can lead to a misunderstanding that such property is not satisfied in the presented model. However, in Section “Equilibrium points considering the application of genetically modified male mosquitoes,” we argue that both male and female populations possess mathematical attractor equilibria, blocking the wild male population from growing beyond this value.Finally, any acceptable population model should be invariant in the definition domain, meaning its solution does not present senseless values. Setting the variable domain as$$begin{aligned} 0 le E(x,y,t)< infty ,;; 0 le A(x,y,t) le k, ;; 0 le F(x,y,t)< infty ,;; 0 le M(x,y,t)< infty ,;; 0 le G(x,y,t) < infty , end{aligned}$$ (3) we can verify that it is invariant under the time evolution by the System (1). To prove this statement, it is sufficient to verify that the vector field defined by the right side of (1) points into the domain when (E, A, F, M, G) approaches the domain boundary. When E approaches zero, the right side of the first equation in (1) is not negative. When A approaches zero, the right side of the second equation in (1) is not negative. When A approaches k (bottom), the first term on the right side of the second equation in (1) tends to zero, while the second term remains negative. Since the term ( nabla cdot (D_m nabla F) ) cannot change the F sign, when F approaches zero, the right side of the third equation in (1) is not negative Since the term ( nabla cdot (D_m nabla M) ) cannot change the M sign, when M approaches zero, the right side of the fourth equation in (1) is not negative. Since the term ( nabla cdot (D_g nabla G) ) cannot change the G sign, when G approaches zero, the right side of the fifth equation in (1) is not negative. In the rest of this section, let us explain how to estimate one-by-one all the parameters used in this model from experimental data available in the literature. It is a challenging task as, typically, the development of the Ae. aegypti mosquito depends on food variation30, temperature variations14,15 and rainfall31. This data is not available in the literature in the organized and systematic form. Because of that, we assume the environment is under optimal conditions of temperature, availability of food, and humidity.How to estimate emergence rate ((eta _a)) The emergence rate describes the rate at which the aquatic phase of the mosquito emerges into the adult phases. In the present model, for simplicity, it was considered that no mosquito from the crossing between genetically modified males and females reaches adulthood. Thus, the emergence rate is calculated on the crossing between females and wild males. Under optimal conditions and feeding distribution, based on the literature30, the emergence rate is 0.5596 (text{ day}^{-1}).How to estimate diffusion coefficients ((D_m,D_g)) The diffusion coefficient is one of the most important parameters describing the mosquitoes’ movement. We use the methodology proposed in the previous work24 to obtain the diffusion coefficient of adult mosquitoes (females and males) and genetically modified males.The estimate is done by assuming that all mosquitoes are released at (0, 0), and their movement is described by the corresponding equation in (1) neglecting other terms than diffusion. The population starts spreading in all directions. We define the spreading distance R(t) as the radius of the region centered in (0, 0) where (90%) of the initial mosquitoes population density is present. In Silva et al.24 it is shown that$$begin{aligned} R(t) = sqrt{4Dt} ;text {erf}^{-1}(0.9). end{aligned}$$ (4) Now corresponding diffusion coefficient is estimated by using the average flight distance of the mosquitoes and the characteristic time related to their life expectancy. Under favorable weather conditions, the average lifetime flight distance of females and males is approximately32,33 65 m, while the same for GM males is34 67.3 m. Based on the literature, we consider that the characteristic time for wild females and males32 is 7 days, and the same for genetically modified males is34 2.17 days. Using (4) we estimate the values for (D_m) and (D_g) summarized in Table 1. It would be natural to consider that the mosquitoes’ movement changes in different environments. Unfortunately, we were unable to find the corresponding experimental data, and because of that, we considered that (D_m) and (D_g) are the same in streets and house blocks.How to estimate mortality rates ((mu _a), (mu _f), (mu _m), (mu _{g}))The mortality coefficient represents an average quantity of mosquitoes in the corresponding phase dying each day. As mentioned before, we disregard the mortality rate in the egg phase, as it is negligible due to its great durability27, it does not affect the numerical results, and it complicates analytical estimates. Thus, the aquatic phase mortality rate coefficient is equal to the same for larvae’s coefficient, which is approximately29 (mu _a = 0.025) (1/day).There is no solid agreement on the mortality rate of male and female wild mosquitoes in the literature. Although some results29,30 suggest they are similar, we follow these authors and consider them equal. Considering both natural death and accidental ones, approximately (10%) of females and male mosquitoes in the adult phase die at each day35. Under optimal conditions, the mortality coefficient can be estimated from this data by using the proposed model (1) by neglecting diffusion and emergence terms in the corresponding equation; details can be found in the previous work24. The resulting parameter values are summarized in Table 1.It would be natural to consider that the mosquitoes mortality rate depends on the environment. Unfortunately, we were unable to find the corresponding experimental data, and because of that, we considered that (mu _a), (mu _f), (mu _m), and (mu _{g}) are the same in streets and house blocks.How to estimate the expected egg number ((beta ))This coefficient represents the average quantity of eggs a wild female lays per day, assuming a successful meeting with a wild male. Considering the number of times a female lays eggs in its lifetime36, the average quantity of eggs per lay and the mosquito’s life expectancy, under favorable conditions, this coefficient is estimated as (beta = 34).How to estimate the hatching rate (e)This coefficient determines the average number of eggs hatching in one day. Experimental data37 suggest that, under optimal humidity conditions, the mean value of the hatch rate coefficient is 0.24 given a temperature of 28 ((^{circ })C), which is considered ideal for mosquito development. This is the value used in the present work.How to estimate carrying capacity coefficient (k)The carrying capacity k represents the space limitation of one phase due to situations present in the environment37,38, such as competition for food among the larvae39. In general, it depends on external factors such as food availability, climate, terrain properties, making direct estimation almost impossible. In the Analytical results section, we show how to estimate this coefficient for each grid block. When considering spatial population dynamics in a heterogeneous environment, carrying capacity is one of the most influential parameters as it varies significantly. For example, house block offer more food and a shelter against natural predators resulting to a larger carrying capacity when compared with street environment. Following the literature32 we assume that the 80% of the mosquito’s breeding places are in houses resulting in the relation (k_h=5k_s), where (k_h) and (k_s) are the carrying capacities of the house blocks and in the streets.Genetically modified mosquitoes release rate (l)Function l(x, y, t) determines how many genetically modified mosquitoes are released in the location (x, y) at time t.In a normal situation, the sex ratio between males and females is 1 : 1. The increment of this proportion favoring GM males increases the probability of females to mate with these mosquitoes. As reported in the literature12,30 the initial launch size is 11 times larger than the adult female population, and it is done in some spots in the city. In this work, we analyze different release strategies maintaining the (11times 1) proportion in some scenarios.Table 1 All parameter values are directly taken or estimated from the literature as explained in section Modeling.Full size table More

  • in

    Faunal communities mediate the effects of plant richness, drought, and invasion on ecosystem multifunctional stability

    DesignPlant richness. Sixteen locally frequent native plant species in the barren mountain areas (around Taizhou University, Zhejiang, China) invaded by the exotic plant Symphyotrichum subulatum60 were selected as the native species pool. These species were chosen because they spanned the dicotyledon plant taxonomy (including 7 Orders, 10 Families, and 14 Genus, in the Class Magnoliopsida), differed widely in their functional traits (related to height, life form, dominance in local communities, and leaf habit) (Supplementary Table 3), and were occasionally found to be associated with the invasive species Symphyotrichum subulatum60 in the local secondary-succession communities. With this species pool, we were able to imitate the locally natural, spatially stochastic, compositionally ruderal, and functionally varied plant community61, which is a typical attribute of the secondary-succession communities in the local barren mountains invaded by the exotic plant Symphyotrichum subulatum. Based on this native species pool, monocultures of each species (16 total), and random mixtures of 2, 4 or 8 species (with 10, 10, or 9 distinct assemblages, respectively) were designed, creating a complete set (Fig. 1d) of 45 different plant assemblages (pots) in total. Each plant assemblage was replicated 6 times, for a total of 270 pots. To eliminate the non-random effects during the 1-year development of the 270 pots, their distributions were randomized, such that not all replicates of an assemblage were next to each other (Fig. 1d–f).DroughtAfter 1-year development of the native plant assemblages, three drought treatments (non-, moderate-, and intensive-drought) were manipulated by adjusting irrigation using automatic drip irrigation systems, with 100%, 50%, and 25% of the equivalent to the amount received in the areas where native species were collected, respectively. Two random complete sets were selected for each drought treatment, each complete set being composed of 45 different plant assemblages (Fig. 1d–f).Exotic plant invasionNine months after drought treatment, the two complete sets (Fig. 1d) of each drought treatment were randomly exposed (invasion) or not exposed to (non-invasion) the invasive species Symphyotrichum subulatum (Michx.) G. L. Nesom (Fig. 1e, f). S. subulatum, an annual herbaceous plant native to North America, is a common invasive species in the subtropical and tropical regions of China18,60, and tends to interact with the native species via, for example, competing for space and resources62,63, enriching for pathogens or herbivores, and changing soil faunal, bacterial or fungal microbiomes18,64,65.ExperimentThe experiment based on the design mentioned above was conducted at Taizhou University, Zhejiang province, China (28.66°N, 121.39°E). The seeds of the 16 native plant species (Supplementary Table 3) and the soil were collected from nearby mountain areas (Wugui, 28.65°N, 121.38°E; Baiyun, 28.67°N, 121.42°E; Beigu, 28.86°N, 121.11°E). The seed-mixtures were obtained by mixing seeds of the 16 species pro rata, in proportion to germination rates. The soil (fine-loamy, mixed, semiative, mosic, Humic Hapludults) was sieved to pass a 2-mm mesh, and thoroughly mixed. 270 plastic pots (72 cm length × 64 cm width × 42 cm depth) were prepared, and each was filled with a 27-cm soil layer, followed by a 10-cm mixture of soil and vermiculite-compost to provide water-, air- and fertility-support for germination, seedling establishment, and plant growth (Supplementary Table 4).Native plant assemblagesAll the 270 pots were placed inside a plastic shelter, which allowed for both air ventilation and protection from rain. Each pot was sown with a seed-mixture of ca. 800 seeds. One month after germination, for each pot, the undesired seedlings were removed manually according to the plant richness design (Fig. 1d–f), and thus 32 vigorous seedlings (with the same number of seedlings per species, e.g., 4 seedlings for each species of the 8-species mixtures) were spatial-evenly retained. In this manner, the plant richness was manipulated for each plant assemblage. During the development of the 270 plant assemblages, the soil volumetric water content was controlled at ca. 20%, which was similar to that of the nearby mountainous soil, using the automatic drip irrigation systems. Weeds and undesired species were removed monthly (Fig. 1f).Drought treatmentAfter 1-year development of native plant assemblages, the drought treatments (non-, moderate-, and intensive-drought) were manipulated according to the experimental design mentioned above (Fig. 1d, e). Two complete sets (Fig. 1d) of different plant assemblages (2 × 45 pots) were selected for each drought treatment. Every other week, 40 pots each drought treatment were randomly selected for measuring soil water content and soil temperature at the depth of 0–20 cm, using the ProCheck analyzer (Decagon, Pullman, Washington, USA), and irrigation was adjusted accordingly using automatic drip irrigation systems. The irrigation for non-, moderate-, or intensive-drought was adjusted to accomplish an irrigation level amounts to 100%, 50%, or 25% that of the mountain areas where seeds were collected. Because of the distinct seasonal temperature and evaporation conditions, the irrigation frequencies were approximately daily in May-September, every other day in March–April and October–December, and weekly in January–February. With this manipulation, the volumetric soil water contents of non-, moderate-, and intensive-drought were controlled within ranges of 13.8–23.4%, 6.8–13.7%, and 1.4–7.4%, respectively, throughout the manipulation of drought treatment (Fig. 1e, f). Eight months after drought introduction, fresh litter was collected form the two replicate pots of each drought treatment, and then oven-dried at 40 °C, cut into ca. 2-cm pieces, and filled into litterbags (2-g litter in each litterbag).Invasion treatmentNine months after drought introduction, one complete set (45 pots) of the plant assemblages (Fig. 1d) from each drought treatment, was chosen and exposed to invasion disturbance by sowing 50 seeds of S. subulatum in each pot, and the other was specified as the non-invasion treatment (Fig. 1e, f). The prepared litterbags were embedded under the litter-layer of each pot (5 litterbags in each pot), correspondingly.SamplingSix months after invasion introduction, one litterbag was collected for litter-fauna extraction. Nine months after invasion, five soil cores (20-cm depth) were collected with augers (6.4 cm in diameter) and mixed for extraction of soil-fauna, and measurement of soil property and enzyme activity (Fig. 1f). The aboveground biomass of both native and invasive plants in each pot was harvested, sorted to species, oven-dried to a constant mass at 80 °C, and weighed. The belowground plant biomass was also sampled, sorted to native and invasive groups, oven-dried, and weighed (Fig. 1f).Plant, litter-, and soil-faunal communitiesPlant communitySince exotic plant invasion was treated as a disturbance factor, the biomass of the invasive species S. subulatum was not included for analyses concerning plant community and ecosystem (multi)functionality. The aboveground biomasses of native plant species in each of the 270 pots were collected for plant community analysis.Litter- and soil-faunal communitiesOne litterbag or fifty grams of mixed-soil samples were used for litter- or soil-fauna extraction using a Tullgren funnel apparatus (dry funnel method)66. The obtained microarthropods were stored in 70% alcohol, identified with double-tube anatomical lens, and classified to Family level. For both litter and soil samples, the numbers (abundances) of all faunal taxa were counted for litter/soil-faunal community analysis.Phylogenetic information of plant, litter-, and soil-faunal communitiesSimilar procedures were used to construct the plant and faunal phylogenetic trees. First, protein sequences of 12 faunal mitochondrial coding genes and 16 plant plastid coding genes (Supplementary Data 1) were obtained by searching plant or faunal taxonomies from NCBI protein database (https://www.ncbi.nlm.nih.gov/protein/) with Edirect software (https://www.ncbi.nlm.nih.gov/books/NBK179288/). All available sequences at plant species level or faunal Family level were fetched. If unavailable, the missing sequences were sampled from plant genus or faunal Order level. Sequoiadendron giganteum and Echinococcus were specified as out-group references for plant and faunal trees, respectively. Then, the sequences of each plant or faunal taxon were clustered at 97% or 90% identity independently, and the centroids were used as representative markers. The markers were aligned with MUSCLE67, followed by concatenation. Finally, using MEGA X68, the maximum likelihood trees were constructed based on BioNJ initial trees69 and 500 bootstrap checking nodal support. The parameters for plant tree construction were specified as follow: 70% partial deletion (with 4824 positions retained) and the best-fit substitution model JTT + G + I + F70,71; parameters for faunal tree: 90% partial deletion (2778 positions) and LG + G + I + F model71,72. The Linux codes for processing the protein sequences were submitted to GitHub (https://github.com/YuanGe-Lab/JZW_2022/tree/main/linux)The plant and faunal taxonomies, representative markers, and marker accessions are provided as Supplementary Data 1.Ecosystem function-related variablesA total of 14 individual function-related variables were collected. These variables belonged to three functional groups: (1) biomass production, including aboveground and belowground biomass of native plants, light interception efficiency, litter-fauna abundance, and soil-fauna abundance; (2) soil properties, including contents of soil organic carbon, soil nitrogen, soil phosphorus, and GRSP (relating to soil physical properties and stocks of carbon and nutrient73); and (3) processes, including rate of litter decomposition, and activities of β-glucosidase, protease, nitrate reductase and dehydrogenase.Light interception efficiency, the fraction of incident photosynthetically active radiation (PAR) intercepted by each plant community canopy, was determined between 12:00 and 14:00 on clear days using LI-191R line PAR sensors (LI-COR Inc., NE, USA), and the mean of 4 measurements (monthly from May to August the third year; Fig. 1f) was used. Total soil organic carbon and nitrogen were measured with an elemental analyzer (vario Max; Elementar, Germany). Total soil phosphorus was determined using the molybdenum blue method with a UV–visible spectrophotometer (Shimadzu, Kyoto, Japan). GRSP was determined using the method described by Shen et al.18. Litter decomposition rate was assessed by embedding litterbags and fitting litter mass loss against decomposition time (Fig. 1f). Enzyme activities were analyzed by the spectrophotometric method using the substrates, p-Nitrophenyl-β-d-glucopyranoside (pNPG; for β-glucosidase), caseinate (protease), nitrate (nitrate reductase) and triphenyltetrazolium chloride (TTC; dehydrogenase)18.Quantifying community stability and multifunctional stabilityCommunity data was comprised of native plant biomasses or faunal abundances, and the associated phylogenetic information. Multifunctionality data was comprised of 14 function-related variables, each variable (V) being transformed (V’) using the formula ({V}^{{prime} }=frac{V-{{{{{rm{min }}}}}}left(Vright)}{{{{{{rm{sd}}}}}}left(Vright)}) to guarantee even contribution to global variance. We calculated community similarity (1 minus Weighted-UniFrac distance) and multifunctional similarity (1 minus Bray–Curtis distance), based on the community data and the multifunctionality data, respectively. The specific subsets of each symmetric similarity matrix were used to assess three different aspects of stability: (1) Invariability (against stochastic fluctuations), reflected as the pairwise similarities (1476 pairs) within treatment groups, at same plant richness*drought*invasion condition; (2) Drought resistance, the similarities (2148 pairs) between drought (moderate- and intensive-drought) and non-drought treatments, at same plant richness*invasion condition; and (3) Invasion resistance, the similarities (n = 1611 pairs) between invasion and non-invasion treatments, at same plant richness*drought condition (Supplementary Fig. 1).We also assessed the three aspects of stability of each individual function in a similar way, but by calculating the similarity using the formula ({{{{{{{mathrm{SIM}}}}}}}}_{{ij}}=1-frac{|{V}_{i}-{V}_{j}|}{{V}_{i}+{V}_{j}}) (Vi and Vj are ith and jth elements in a function vector; SIMij is the similarity between Vi and Vj).Statistics and reproducibilityPERMANOVA (10,000 randomizations) was conducted to test the influences of the manipulated factors on ecosystem multifunctionality or communities of plant, litter- and soil-fauna, using “vegan::adonis” in R74. Mantel test (10,000 randomizations; Spearman’s R) was conducted to test the community-community or the community-multifunctionality relationships, using “vegan::mantel” in R74.As each similarity-pair of each aspect of community or multifunctional stability mentioned above was in strict correspondence to single level of each manipulated factor (plant richness, drought, and invasion) (Supplementary Fig.  1), the direct/indirect effects of treatments on the community or multifunctional stability can be assessed using SEM. To test direct and indirect effects (by modulating community stability) of the manipulated factors on multifunctional stability, we built three SEMs (Fig. 1a–c) based on three different aspects of stability (i.e., invariability, drought resistance, and invasion resistance) under the conditions of corresponding parings of manipulated factors (Supplementary Fig. 1), with the LAVAAN package75. The standardized paths (direct effects) in SEMs can be conceived as the partial correlations after teasing all side effects away. Bootstrapping with 10,000 randomizations was conducted to generate the unbiased mean effect. The significance of effect was tested using a Mantel-like permutation (10,000 randomizations) test76, where the null hypotheses (H0) were that the independent factors plant richness, drought, and invasion, had no direct/indirect effects (effect = 0) on multifunctional stability. Based on H0, permutation procedure was conducted by permuting the index of dependent factors (both columns and rows of a symmetric matrix; Supplementary Fig. 1) simultaneously to gain null models and null effects. p-values (probability of H0 acceptance) were calculated as the percentage of observed positive (or negative) effect that was greater (or less) than the null effects. We also assessed the direct and indirect effects of factors on the stability of each individual function based on the same SEMs, to consolidate our findings on multifunctional stability. The R codes and examples solving the permutation test for the significance of effects derived from SEMs that based on multidimensional similarity (or distance) were submitted to GitHub (https://github.com/YuanGe-Lab/JZW_2022/tree/main/R). All the analyses were conducted using R (https://www.r-project.org).Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    John Macfarlane was the first to recognize Eukaryota as a group

    Woese, C. R., Kandler, O. & Wheelis, M. L. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).CAS 
    Article 

    Google Scholar 
    Sapp, J. Microbiol. Mol. Biol. Rev. 69, 292–305 (2005).CAS 
    Article 

    Google Scholar 
    Chatton, É. Ann. Sci. Nat. Zool. 8, 1–84 (1925).
    Google Scholar 
    Soyer-Gobillard, M.-O. & Schrevel, J. The Discoveries and Artistic Talents of Édouard Chatton and André Lwoff, Famous Biologists (Cambridge Scholars Publishing, 2020).Macfarlane, J. M. The Causes and Course of Organic Evolution: A Study in Bioenergics (Macmillan, 1918).Haeckel, E. Systematische Phylogenie. Erster Theil (Verlag von Georg Reimer, 1894).Stanier, R. Y., Douderoff, M. & Adelberg, E. The Microbial World 2nd edn (Prentice Hall, 1963).Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Nat. Ecol. Evol. 4, 138–147 (2020).Article 

    Google Scholar 
    Steckbeck, W. Science 98, 487–488 (1943).CAS 
    Article 

    Google Scholar 
    Creese, M. R. S. & Creese, T. M. Ladies in the Laboratory III (Scarecrow Press, 2010). More