More stories

  • in

    The expansion of tree plantations across tropical biomes

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS 
    Article 

    Google Scholar 
    Payn, T. et al. Changes in planted forests and future global implications. Ecol. Manag. 352, 57–67 (2015).Article 

    Google Scholar 
    Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).Article 

    Google Scholar 
    Hurni, K. & Fox, J. The expansion of tree-based boom crops in mainland Southeast Asia: 2001 to 2014. J. Land Use Sci. 13, 198–219 (2018).Article 

    Google Scholar 
    Vijay, V. et al. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS ONE 11, e0159668 (2016).Heilmayr, R., Echeverría, C. & Lambin, E. F. Impacts of Chilean forest subsidies on forest cover, carbon and biodiversity. Nat. Sustain. 3, 701–709 (2020).Article 

    Google Scholar 
    le Maire, G., Dupuy, S., Nouvellon, Y., Loos, R. A. & Hakamada, R. Mapping short-rotation plantations at regional scale using MODIS time series: case of eucalypt plantations in Brazil. Remote Sens. Environ. 152, 136–149 (2014).Article 

    Google Scholar 
    Wang, M. M. H., Carrasco, L. R. & Edwards, D. P. Reconciling rubber expansion with biodiversity conservation. Curr. Biol. 30, 3825–3832 (2020).CAS 
    Article 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Dave, R. et al. Second Bonn Challenge Progress Report: Application of the Barometer in 2018 (IUCN, 2019).Sloan, S., Meyfroidt, P., Rudel, T. K., Bongers, F. & Chazdon, R. The forest transformation: planted tree cover and regional dynamics of tree gains and losses. Glob. Environ. Change 59, 101988 (2019).Article 

    Google Scholar 
    Petersen, R. et al. Mapping Tree Plantations with Multispectral Imagery: Preliminary Results for Seven Tropical Countries (WRI, 2016).Erb, K.-H. et al. Land management: data availability and process understanding for global change studies. Glob. Change Biol. 23, 512–533 (2017).Article 

    Google Scholar 
    Souza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat Archive and Earth Engine. Remote Sens. 12, 2735 (2020).Article 

    Google Scholar 
    Miettinen, J. et al. Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. GCB Bioenergy 4, 908–918 (2012).Article 

    Google Scholar 
    Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).Puyravaud, J.-P., Davidar, P. & Laurance, W. F. Cryptic destruction of India’s native forests. Conserv. Lett. 3, 390–394 (2010).Article 

    Google Scholar 
    Fagan, M. E. et al. Mapping pine plantations in the southeastern U.S. using structural, spectral, and temporal remote sensing data. Remote Sens. Environ. 216, 415–426 (2018).Article 

    Google Scholar 
    Tropek, R. et al. Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).CAS 
    Article 

    Google Scholar 
    Global Forest Resources Assessment 2020 (FAO, 2020).FAOSTAT Agricultural Statistics Database (FAO, 2019); http://faostat.fao.org/site/291/default.aspxCook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS 
    Article 

    Google Scholar 
    Hurni, K., Schneider, A., Heinimann, A., Nong, D. H. & Fox, J. Mapping the expansion of boom crops in mainland Southeast Asia using dense time stacks of Landsat data. Remote Sens. 9, 320 (2017).Article 

    Google Scholar 
    Miettinen, J., Shi, C. & Liew, S. C. 2015 Land cover map of Southeast Asia at 250 m spatial resolution. Remote Sens. Lett. 7, 701–710 (2016).Article 

    Google Scholar 
    Torbick, N., Ledoux, L., Salas, W. & M. Zhao, M. Regional mapping of plantation extent using multisensor imagery. Remote Sens. 8, 236 (2016).Azizan, F. A., Kiloes, A. M., Astuti, I. S. & Abdul Aziz, A. Application of optical remote sensing in rubber plantations: a systematic review. Remote Sens. 13, 429 (2021).Article 

    Google Scholar 
    Bégué, A. et al. Remote sensing and cropping practices: a review. Remote Sens. 10, 99 (2018).Article 

    Google Scholar 
    Bey, A. & Meyfroidt, P. Improved land monitoring to assess large-scale tree plantation expansion and trajectories in Northern Mozambique. Environ. Res. Commun. 3, 115009 (2021).Jucker, T. et al. Topography shapes the structure, composition and function of tropical forest landscapes. Ecol. Lett. 21, 989–1000 (2018).Article 

    Google Scholar 
    Féret, J.-B. & Asner, G. P. Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sens. Environ. 115, 2415–2422 (2011).Article 

    Google Scholar 
    Poortinga, A. et al. Mapping plantations in Myanmar by fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification. Remote Sens. 11, 831 (2019).Article 

    Google Scholar 
    Gutiérrez-Vélez, V. H. et al. High-yield oil palm expansion spares land at the expense of forests in the Peruvian Amazon. Environ. Res. Lett. 6, 044029 (2011).Article 

    Google Scholar 
    Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst. Sci. Data. 13, 1211–1231 (2021).Article 

    Google Scholar 
    Ordway, E. M., Naylor, R. L., Nkongho, R. N. & Lambin, E. F. Oil palm expansion and deforestation in Southwest Cameroon associated with proliferation of informal mills. Nat. Commun. 10, 114 (2019).CAS 
    Article 

    Google Scholar 
    Heilmayr, R., Echeverría, C., Fuentes, R. & Lambin, E. F. A plantation-dominated forest transition in Chile. Appl. Geogr. 75, 71–82 (2016).Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Bond, W. J., Stevens, N., Midgley, G. F. & Lehmann, C. E. R. The trouble with trees: afforestation plans for Africa. Trends Ecol. Evol. 34, 963–965 (2019).Article 

    Google Scholar 
    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. Bioscience 65, 1011–1018 (2015).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Fagan, M. E. A lesson unlearned? Underestimating tree cover in drylands biases global restoration maps. Glob. Change Biol. 26, 4679–4690 (2020).Bastin, J. F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).CAS 
    Article 

    Google Scholar 
    Fagan, M. E., Reid, J. L., Holland, M. B., Drew, J. G. & Zahawi, R. A. How feasible are global forest restoration commitments? Conserv. Lett. 13, e12700 (2020).Article 

    Google Scholar 
    Malkamäki, A. et al. A systematic review of the socio-economic impacts of large-scale tree plantations, worldwide. Glob. Environ. Change 53, 90–103 (2018).Article 

    Google Scholar 
    Schwartz, N. B., Aide, T. M., Graesser, J., Grau, H. R. & Uriarte, M. Reversals of reforestation across Latin America limit climate mitigation potential of tropical forests. Front. For. Glob. Change 3, 85 (2020).Article 

    Google Scholar 
    Noojipady, P. et al. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia. Earth Syst. Dynam. 8, 749–771 (2017).Bullock, E. L., Woodcock, C. E., Souza, C. Jr. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).Article 

    Google Scholar 
    Sloan, S. & Sayer, J. A. Forest Ecology and Management Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Ecol. Manag. 352, 134–145 (2015).Article 

    Google Scholar 
    Heinrich, V. H. A. et al. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).CAS 
    Article 

    Google Scholar 
    Potapov, P. et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 253, 112165 (2021).Article 

    Google Scholar 
    Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 13, 22 (2018).CAS 
    Article 

    Google Scholar 
    Li, W., Goodchild, M. F. & Church, R. An efficient measure of compactness for two-dimensional shapes and its application in regionalization problems. Int. J. Geogr. Inf. Sci. 27, 1227–1250 (2013).Article 

    Google Scholar 
    Asner, G. P. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 22, 3855–3862 (2001).Article 

    Google Scholar 
    Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).Article 
    CAS 

    Google Scholar 
    Gutiérrez-Vélez, V. H. & DeFries, R. Annual multi-resolution detection of land cover conversion to oil palm in the Peruvian Amazon. Remote Sens. Environ. 129, 154–167 (2013).Article 

    Google Scholar 
    Reiche, J. et al. Combining satellite data for better tropical forest monitoring. Nat. Clim. Change 6, 120–122 (2016).Article 

    Google Scholar 
    Erinjery, J. J., Singh, M. & Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 216, 345–354 (2018).Article 

    Google Scholar 
    Shimada, M. et al. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 155, 13–31 (2014).Article 

    Google Scholar 
    Torres, R. et al. GMES Sentinel-1 mission. Remote Sens. Environ. 120, 9–24 (2012).Article 

    Google Scholar 
    Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article 

    Google Scholar 
    World Database on Protected Areas User Manual 1.4 (UNEP-WCMC, 2016).AutoML: Automatic Machine Learning (H2O.ai, 2020); https://h2o-release.s3.amazonaws.com/h2o/rel-yau/5/docs-website/h2o-docs/automl.htmlHealey, S. P. et al. Mapping forest change using stacked generalization: an ensemble approach. Remote Sens. Environ. 204, 717–728 (2018).Article 

    Google Scholar 
    Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 25002 (2019).Article 

    Google Scholar 
    Bunting, P. et al. The global mangrove watch—a new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).Article 

    Google Scholar 
    Pickens, A. H. et al. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 243, 111792 (2020).Article 

    Google Scholar 
    Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).Article 

    Google Scholar 
    Stehman, S. V. Estimating area and map accuracy for stratified random sampling when the strata are different from the map classes. Int. J. Remote Sens. 35, 4923–4939 (2014).Article 

    Google Scholar 
    Olofsson, P. et al. Mitigating the effects of omission errors on area and area change estimates. Remote Sens. Environ. 236, 111492 (2020).Article 

    Google Scholar 
    Database of Global Administrative Areas (GADM) v.3.6 (GADM, 2018); https://gadm.org/download_country_v3.htmlHijmans, R. J., Williams, E., Vennes, C. M. & Hijmans, M. R. J. Package ‘geosphere’ version 1.5-10. Spherical trigonometry (2017).Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017). More

  • in

    The plant rhizosheath–root niche is an edaphic “mini-oasis” in hyperarid deserts with enhanced microbial competition

    Laity JJ. Deserts and desert environments. John Wiley & Sons; UK, 2009.Huang J, Yu H, Guan X, Wang G, Guo R. Accelerated dryland expansion under climate change. Nat Clim Chang. 2015;6:166–71.Article 

    Google Scholar 
    Berdugo M, Delgado-Baquerizo M, Soliveres S, Hernández-Clemente R, Zhao Y, Gaitán JJ, et al. Global ecosystem thresholds driven by aridity. Science. 2020;367:787–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Danin A. Plant adaptations to environmental stresses in desert dunes. In: Cloudsley-Thompson J, Punzo F, editors. Adaptations of desert organisms. Plant of desert dunes. Springer; Verlag Berlin Heidelberg, 1996.Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond J-B, Cowan DA. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev. 2015;39:203–21.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer N, Leff JWJ, Adams BJ, Nielsen UN, Bates ST, Lauber CL, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci USA. 2012;109:21390–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronca S, Ramond J-BB, Jones BE, Seely M, Cowan DA. Namib Desert dune/interdune transects exhibit habitat-specific edaphic bacterial communities. Front Microbiol. 2015;6:1–12.Article 

    Google Scholar 
    Pointing SB, Belnap J. Microbial colonization and controls in dryland systems. Nat Rev Microbiol. 2012;10:551–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    Noy-Meir I. Desert ecosystems: higher trophic levels. Annu Rev Ecol Syst. 1974;5:195–214.Article 

    Google Scholar 
    Danin A. Plants of desert dunes. In: Cloudsley-Thompson J, editor. Adaptations of desert organisms. Springer; Verlag Berlin Heidelberg, 2000.Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, et al. Leaf surface structures enable the endemic Namib Desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface. 2012;9:1965–74.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ebner M, Miranda T, Roth-Nebelsick A. Efficient fog harvesting by Stipagrostis sabulicola (Namib dune bushman grass). J Arid Environ. 2011;75:524–31.Article 

    Google Scholar 
    Cartwright J. Ecological islands: conserving biodiversity hotspots in a changing climate. Front Ecol Environ. 2019;17:fee.2058.Article 

    Google Scholar 
    André HM, Noti MI, Jacobson KM. The soil microarthropods of the Namib Desert: a patchy mosaic. J African Zool. 1997;111:499–517.
    Google Scholar 
    Marasco R, Mosqueira MJ, Fusi M, Ramond J, Merlino G, Booth JM, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brown LK, George TS, Neugebauer K, White PJ. The rhizosheath—a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.CAS 
    Article 

    Google Scholar 
    Pang J, Ryan MH, Siddique KHMM, Simpson RJ. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.CAS 
    Article 

    Google Scholar 
    Marasco R, Fusi M, Mosqueira M, Booth JM, Rossi F, Cardinale M, et al. Rhizosheath–root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. Environ Microbiome. 2022;17:14.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno-Espíndola IP, Rivera-Becerril F, de Jesús Ferrara-Guerrero M, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.Article 
    CAS 

    Google Scholar 
    Wullstein LHH, Pratt SAA. Scanning electron microscopy of rhizosheaths of Oryzopsis hymenoides. Am J Bot. 1981;68:408–19.Article 

    Google Scholar 
    Young IM. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembley). New Phytol. 1995;130:135–9.Article 

    Google Scholar 
    Ashraf M, Hasnain S, Berge O, Campus Q. Effect of exo-polysaccharides producing bacterial inoculation on growth of roots of wheat (Triticum aestivum L.) plants grown in a salt-affected soil. Int J Environ Sci Technol. 2006;3:45–53.Article 

    Google Scholar 
    George TS, Brown LK, Ramsay L, White PJ, Newton AC, Bengough AG, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol. 2014;203:195–205.CAS 
    PubMed 
    Article 

    Google Scholar 
    Ndour PMS, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.CAS 
    Article 

    Google Scholar 
    Othman AA, Amer WM, Fayez M, Monib M, Hegazi NA. Biodiversity of diazotrophs associated to the plant cover of north sinai deserts. Arch Agron Soil Sci. 2003;49:683–705.Article 

    Google Scholar 
    Bergmann D, Zehfus M, Zierer L, Smith B, Gabel M. Grass rhizosheaths: associated bacterial communities and potential for nitrogen fixation. West North Am Nat. 2009;69:105–14.Article 

    Google Scholar 
    Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE. 2012;7:e48479.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marasco R, Mapelli F, Rolli E, Mosqueira MJ, Fusi M, Bariselli P, et al. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front Microbiol. 2016;7:1–11.Article 

    Google Scholar 
    Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.PubMed 
    Article 

    Google Scholar 
    Alsharif W, Saad MM, Hirt H. Desert microbes for boosting sustainable agriculture in extreme environments. Front Microbiol. 2020;11:1666.Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacteria associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soussi A, Ferjani R, Marasco R, Guesmi A, Cherif H, Rolli E, et al. Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. Plant Soil. 2016;405:357–70.CAS 
    Article 

    Google Scholar 
    Livingston G, Matias M, Calcagno V, Barbera C, Combe M, Leibold MA, et al. Competition-colonization dynamics in experimental bacterial metacommunities. Nat Commun. 2012;3:1–8.Article 
    CAS 

    Google Scholar 
    Smith GR, Steidinger BS, Bruns TD, Peay KG. Competition–colonization tradeoffs structure fungal diversity. ISME J. 2018;12:1758–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seely MK. The Namib dune desert: an unusual ecosystem. J Arid Environ. 1978;1:117–28.Article 

    Google Scholar 
    Klaassen E, Craven P. Checklist of grasses in Namibia. SABONET; Pretoria & Windhoek, 2014. (Produced by National Botanical Research Institute Private Bag 13184).Neilson JW, Califf K, Cardona C, Copeland A, van Treuren W, Josephson KL, et al. Significant impacts of increasing aridity on the arid soil microbiome. mSystems. 2017;2:1–15.Article 

    Google Scholar 
    Darwin C. On the origin of species. London: Routledge; 1859.Gunnigle E, Frossard A, Ramond J-B, Guerrero L, Seely M, Cowan DA. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil. Sci Rep. 2017;7:40189.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. Media. Springer; New York, NY 2016.RC-Team. R: A language and environment for statistical computing (Version 3.5. 2, R foundation for statistical computing, Vienna, Austria, 2018). R Foundation for Statistical Computing; 2019.Anderson MMJJ, Gorley RNRN, Clarke KRR. PERMANOVA + for PRIMER: guide to software and statistical methods; PRIMER-E. Plymouth, UK: PRIMER-E Ltd.; 2008.Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, et al. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol Rep. 2015;7:668–78.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee KC, Caruso T, Archer SDJ, Gillman LN, Lau MCY, Craig Cary S, et al. Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo dry valleys of Antarctica. Front Microbiol. 2018;9:1–12.Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Koljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2014;22:5271–7.Article 
    CAS 

    Google Scholar 
    Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62:142–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    Clarke KR, Gorley RN. PRIMER v7: user manual/tutorial. Plymouth, UK: PRIMER-E; 2015.Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara B, et al. The vegan R package: community ecology. 2013:0–291Wang Y, Naumann U, Wright ST, Warton DI. mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol. 2012;3:471–4.Article 

    Google Scholar 
    Legendre P. Interpreting the replacement and richness difference components of beta diversity. Glob Ecol Biogeogr. 2014;23:1324–34.Article 

    Google Scholar 
    Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, et al. Package ‘adespatial’. R package version. 2018.Hammer Ø, Harper DAT, Ryan PD. PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4:1–9.
    Google Scholar 
    Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust K, Raes J. Microbial interactions: from networks to models. Nat Rev Microbiol. 2012;10:538–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. Third International AAAI Conference on Weblogs and Social Media. 2009;8:361–2.Barberán A, Bates ST, Casamayor EO, Fierer N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2012;6:343–51.PubMed 
    Article 
    CAS 

    Google Scholar 
    Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech Theory Exp. 2008;2008:P10008.Article 

    Google Scholar 
    de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9:3033.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge, United Kingdom: Babraham Bioinformatics, Babraham Institute; 2010.Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodriguez-R LM, Gunturu S, Tiedje JM, Cole JR, Konstantinidis KT. Nonpareil 3: fast estimation of metagenomic coverage and sequence diversity. mSystems. 2018;3:1–9.Article 

    Google Scholar 
    Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019;20:257.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32:1088–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010;11:119.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 
    Article 
    CAS 

    Google Scholar 
    Vigani G, Rolli E, Marasco R, Dell’Orto M, Michoud G, Soussi A, et al. Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H+-pumping pyrophosphatase in pepper plants. Environ Microbiol. 2019;21:3212–28.CAS 
    Article 

    Google Scholar 
    Al-Hosni K, Shahzad R, Khan AL, Muhammad Imran Q, Al Harrasi A, Al Rawahi A, et al. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth. J Plant Interact. 2018;13:112–8.CAS 
    Article 

    Google Scholar 
    Sen D, Paul K, Saha C, Mukherjee G, Nag M, Ghosh S, et al. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1—a comparative genomics viewpoint. DNA Res. 2019;26:131–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson JM, Ludwig A, Furch ACU, Mithöfer A, Scholz S, Reichelt M, et al. The beneficial root-colonizing fungus Mortierella hyalina promotes the aerial growth of Arabidopsis and activates calcium-dependent responses that restrict Alternaria brassicae–induced disease development in roots. Mol Plant-Microbe Interact. 2019;32:351–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    van Dam NM, Bouwmeester HJ. Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci. 2016;21:256–65.PubMed 
    Article 
    CAS 

    Google Scholar 
    Zeng Y, Charkowski AO. The role of ATP-binding cassette transporters in bacterial phytopathogenesis. Phytopathology®. 2021;111:600–10.Article 

    Google Scholar 
    Louca S, Polz MF, Mazel F, Albright MBN, Huber JA, O’Connor MI, et al. Function and functional redundancy in microbial systems. Nat Ecol Evol. 2018;2:936–43.PubMed 
    Article 

    Google Scholar 
    Balskus EP, Walsh CT. The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science. 2010;329:1653–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith VH. Effects of resource supplies on the structure and function of microbial communities. Antonie Van Leeuwenhoek. 2002;81:99–106.CAS 
    PubMed 
    Article 

    Google Scholar 
    Albalasmeh AA, Ghezzehei TA. Interplay between soil drying and root exudation in rhizosheath development. Plant Soil. 2014;374:739–51.CAS 
    Article 

    Google Scholar 
    Devitt DA, Smith SD. Root channel macropores enhance downward movement of water in a Mojave Desert ecosystem. J Arid Environ. 2002;50:99–108.Article 

    Google Scholar 
    Othman AA, Amer WM, Fayez M, Hegazi NA. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.PubMed 
    Article 

    Google Scholar 
    Naseem H, Ahsan M, Shahid MA, Khan N. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. J Basic Microbiol. 2018;58:1009–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57.PubMed 
    Article 

    Google Scholar 
    Banerjee S, Schlaeppi K, van der Heijden MGAA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-TT, Weigel D, et al. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016;14:1–31.Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed 
    Article 

    Google Scholar 
    Hassani MA, Durán P, Hacquard S. Microbial interactions within the plant holobiont. Microbiome. 2018;6:58.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lopez BR, Bacilio M. Weathering and soil formation in hot, dry environments mediated by plant–microbe interactions. Biol Fertil Soils. 2020;56:447–59.CAS 
    Article 

    Google Scholar 
    Hernandez DJ, David AS, Menges ES, Searcy CA, Afkhami ME. Environmental stress destabilizes microbial networks. ISME J. 2021;15:1722–34.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yuan MM, Guo X, Wu L, Zhang Y, Xiao N, Ning D, et al. Climate warming enhances microbial network complexity and stability. Nat Clim Chang. 2021;11:343–8.Article 

    Google Scholar 
    Safronova VI, Kuznetsova IG, Sazanova AL, Belimov AA, Andronov EE, Chirak ER, et al. Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. Int J Syst Evol Microbiol. 2017;67:94–100.CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiménez-Gómez A, Saati-Santamaría Z, Igual J, Rivas R, Mateos P, García-Fraile P. Genome insights into the novel species Microvirga brassicacearum, a rapeseed endophyte with biotechnological potential. Microorganisms. 2019;7:354.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu T, Ye N, Wang X, Das D, Tan Y, You X, et al. Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizosheath. J Integr Plant Biol. 2021;63:1753–74.Blouin M. Chemical communication: an evidence for co-evolution between plants and soil organisms. Appl Soil Ecol. 2018;123:409–15.Article 

    Google Scholar 
    Sarrocco S, Diquattro S, Baroncelli R, Cimmino A, Evidente A, Vannacci G, et al. A polyphasic contribution to the knowledge of Auxarthron (Onygenaceae). Mycol Prog. 2015;14:112.Macías-Rubalcava ML, Sánchez-Fernández RE. Secondary metabolites of endophytic Xylaria species with potential applications in medicine and agriculture. World J Microbiol Biotechnol. 2017;33:15.Zhang K, Bonito G, Hsu C, Hameed K, Vilgalys R, Liao H-L. Mortierella elongata increases plant biomass among non-leguminous crop species. Agronomy. 2020;10:754.Article 

    Google Scholar 
    Kobayashi DY, Crouch JA. Bacterial/fungal interactions: from pathogens to mutualistic endosymbionts. Annu Rev Phytopathol. 2009;47:63–82.CAS 
    PubMed 
    Article 

    Google Scholar 
    Asmelash F, Bekele T, Birhane E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol. 2016;7:1–15.Article 

    Google Scholar 
    Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY. Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol. 2005;39:4640–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Warmink JA, Nazir R, Corten B, van Elsas JD. Hitchhikers on the fungal highway: the helper effect for bacterial migration via fungal hyphae. Soil Biol Biochem. 2011;43:760–5.CAS 
    Article 

    Google Scholar 
    Booth JM, Fusi M, Marasco R, Michoud G, Fodelianakis S, Merlino G, et al. The role of fungi in heterogeneous sediment microbial networks. Sci Rep. 2019;9:7537.Article 
    CAS 

    Google Scholar 
    Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42:335–52.CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon A, Hervé V, Al-Dourobi A, Verrecchia E, Junier P. An in situ inventory of fungi and their associated migrating bacteria in forest soils using fungal highway columns. FEMS Microbiol Ecol. 2017;93:fiw217.PubMed 
    Article 
    CAS 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    Zablocki O, Adriaenssens EM, Cowan D. Diversity and ecology of viruses in hyperarid desert soils. Appl Environ Microbiol. 2016;82:770–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287–19.Lambers H, Mougel C, Jaillard B, Hinsinger P. Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil. 2009;321:83–115.CAS 
    Article 

    Google Scholar 
    Ghoul M, Mitri S. The ecology and evolution of microbial competition. Trends Microbiol. 2016;24:833–45.CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlatter DC, Kinkel LL. Antibiotics: conflict and communication in microbial communities. Microbe Mag. 2014;9:282–8.Article 

    Google Scholar  More

  • in

    Chimpanzee (Pan troglodytes) gaze is conspicuous at ecologically-relevant distances

    Santana, S. E., Alfaro, J. L. & Alfaro, M. E. Adaptive evolution of facial colour patterns in Neotropical primates. Proc. R. Soc. B Biol. Sci. 279, 2204–2211 (2012).
    Google Scholar 
    Santana, S. E., Alfaro, J. L., Noonan, A. & Alfaro, M. E. Adaptive response to sociality and ecology drives the diversification of facial colour patterns in catarrhines. Nat. Commun. 4, 25 (2013).
    Google Scholar 
    Kobayashi, H. & Kohshima, S. Unique morphology of the human eye and its adaptive meaning: Comparative studies on external morphology of the primate eye. J. Hum. Evol. 40, 419–435 (2001).CAS 
    PubMed 

    Google Scholar 
    Tomasello, M., Hare, B., Lehmann, H. & Call, J. Reliance on head versus eyes in the gaze following of great apes and human infants: The cooperative eye hypothesis. J. Hum. Evol. 52, 314–320 (2007).PubMed 

    Google Scholar 
    Farroni, T. et al. Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proc. Natl. Acad. Sci. USA 102, 17245–17250 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Farroni, T., Massaccesi, S., Pividori, D. & Johnson, M. H. Gaze following in newborns. Infancy 5, 39–60 (2004).
    Google Scholar 
    Itakura, S. & Tanaka, M. Use of experimenter-given cues during object-choice tasks by chimpanzees (Pan troglodytes), an orangutan (Pongo pygmaeus), and human infants (Homo sapiens). J. Comp. Psychol. 112, 119–126 (1998).CAS 
    PubMed 

    Google Scholar 
    Yorzinski, J. L., Thorstenson, C. A. & Nguyen, T. P. Sclera and iris color interact to influence gaze perception. Front. Psychol. 12, 1–11 (2021).
    Google Scholar 
    Yorzinski, J. L., Harbourne, A. & Thompson, W. Sclera color in humans facilitates gaze perception during daytime and nighttime. PLoS One 16, 1–15 (2021).
    Google Scholar 
    Yorzinski, J. L. & Miller, J. Sclera color enhances gaze perception in humans. PLoS One 15, 1–14 (2020).
    Google Scholar 
    Tomasello, M., Call, J. & Hare, B. Five primate species follow the visual gaze of conspecifics. Anim. Behav. 55, 1063–1069 (1998).CAS 
    PubMed 

    Google Scholar 
    Kano, F. & Call, J. Cross-species variation in gaze following and conspecific preference among great apes, human infants and adults. Anim. Behav. 91, 137–150 (2014).
    Google Scholar 
    Kano, F., Kawaguchi, Y. & Yeow, H. Experimental evidence for the gaze-signaling hypothesis: White sclera enhances the visibility of eye gaze direction in humans and chimpanzees. bioRxiv 2021.09.21.461201 (2021).Perea-García, J. O., Kret, M. E., Monteiro, A. & Hobaiter, C. Scleral pigmentation leads to conspicuous, not cryptic, eye morphology in chimpanzees. Proc. Natl. Acad. Sci. USA 116, 19248–19250 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mearing, A. S. & Koops, K. Quantifying gaze conspicuousness: Are humans distinct from chimpanzees and bonobos ?. J. Hum. Evol. 157, 103043 (2021).PubMed 

    Google Scholar 
    Mearing, A. S., Burkart, J. M., Dunn, J., Street, S. E. & Koops, K. The evolutionary origins of primate scleral coloration. bioRxiv 40, 2021.07.25.453695 (2021).Mayhew, J. A. & Gómez, J. C. Gorillas with white sclera: A naturally occurring variation in a morphological trait linked to social cognitive functions. Am. J. Primatol. 77, 869–877 (2015).PubMed 

    Google Scholar 
    Caspar, K. R., Biggemann, M., Geissmann, T. & Begall, S. Ocular pigmentation in humans, great apes, and gibbons is not suggestive of communicative functions. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    Kano, F. et al. What is unique about the human eye? Comparative image analysis on the external eye morphology of human and nonhuman great apes. Evol. Hum. Behav. https://doi.org/10.1016/j.evolhumbehav.2021.12.004 (2021).
    Google Scholar 
    Caves, E. M. & Johnsen, S. AcuityView: An r package for portraying the effects of visual acuity on scenes observed by an animal. Methods Ecol. Evol. 9, 793–797 (2018).
    Google Scholar 
    Osorio, D. & Vorobyev, M. Photoreceptor spectral sensitivities in terrestrial animals: Adaptations for luminance and colour vision. Proc. R. Soc. B Biol. Sci. 272, 1745–1752 (2005).CAS 

    Google Scholar 
    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox—a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).
    Google Scholar 
    Whitham, W., Schapiro, S. J., Troscianko, J. & Yorzinski, J. L. The gaze of a social monkey is perceptible to conspecifics and predators but not prey. Proc. R. Soc. B Biol. Sci. 20, 10 (2002).
    Google Scholar 
    Bethell, E. J., Vick, S. & Bard, K. A. Measurement of eye-gaze in chimpanzees (Pan troglodytes). Am. J. Primatol. 69, 562–575 (2007).PubMed 

    Google Scholar 
    Sreekar, R. & Quader, S. Influence of gaze and directness of approach on the escape responses of the Indian rock lizard, Psammophilus dorsalis (Gray, 1831). J. Biosci. 38, 829–833 (2013).CAS 
    PubMed 

    Google Scholar 
    Lee, S. et al. Direct look from a predator shortens the risk-assessment time by prey. PLoS One 8, 1–7 (2013).
    Google Scholar 
    Carter, J., Lyons, N. J., Cole, H. L. & Goldsmith, A. R. Subtle cues of predation risk: Starlings respond to a predator’s direction of eye-gaze. Proc. R. Soc. B Biol. Sci. 275, 1709–1715 (2008).
    Google Scholar 
    Newton-Fisher, N. E. Chimpanzee hunting. Behav. Handb. Paleoanthropol. https://doi.org/10.1007/978-3-540-33761-4_42. (2007).
    Google Scholar 
    Caro, T. et al. The evolution of primate coloration revisited. Behav. Ecol. 32, 555–567 (2021).
    Google Scholar 
    Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergman, T. J. & Beehner, J. C. A simple method for measuring colour in wild animals: Validation and use on chest patch colour in geladas (Theropithecus gelada). Biol. J. Linn. Soc. 94, 231–240 (2008).
    Google Scholar 
    Stevens, M., Stoddard, M. C. & Higham, J. P. Studying primate color: Towards visual system-dependent methods. Int. J. Primatol. 30, 893–917 (2009).
    Google Scholar 
    van den Berg, C. P., Troscianko, J., Endler, J. A., Marshall, N. J. & Cheney, K. L. Quantitative Colour Pattern Analysis (QCPA): A comprehensive framework for the analysis of colour patterns in nature. Methods Ecol. Evol. 11, 316–332 (2020).
    Google Scholar 
    Deeb, S. S., Jorgensen, A. L., Battisti, L., Iwasaki, L. & Motulsky, A. G. Sequence divergence of the red and green visual pigments in great apes and humans. Proc. Natl. Acad. Sci. USA 91, 7262–7266 (1994).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matsuzawa, T. Form perception and visual acuity. Folia Primatol. Int. J. Primatol. 55, 24–32 (1990).CAS 

    Google Scholar 
    Jacobs, G. H., Deegan, J. F. & Moran, J. L. ERG measurements of the spectral sensitivity of common chimpanzee (Pan troglodytes). Vis. Res. 36, 2587–2594 (1996).CAS 
    PubMed 

    Google Scholar 
    Jacobs, G. H. & Deegan, J. F. Uniformity of colour vision in Old World monkeys. Proc. R. Soc. B Biol. Sci. 266, 2023–2028 (1999).CAS 

    Google Scholar 
    Kemp, A. D. & Christopher Kirk, E. Eye size and visual acuity influence vestibular anatomy in mammals. Anat. Rec. 297, 781–790 (2014).
    Google Scholar 
    Osorio, D., Smith, A. C., Vorobyev, M. & Buchanan-Smith, H. M. Detection of fruit and the selection of primate visual pigments for color vision. Am. Nat. 164, 696–708 (2004).CAS 
    PubMed 

    Google Scholar 
    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour threshoIds. Proc. R. Soc. B Biol. Sci. 265, 351–358 (1998).CAS 

    Google Scholar 
    Siddiqi, A., Cronin, T. W., Loew, E. R., Vorobyev, M. & Summers, K. Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J. Exp. Biol. 207, 2471–2485 (2004).PubMed 

    Google Scholar  More

  • in

    Removal of organic matter and nutrients from hospital wastewater by electro bioreactor coupled with tubesettler

    Considering the actual and predicted values, the model generated through the different inputted parameters should be diagnosed satisfactorily. It is pretty understanding that agreement between the actual and predicted values given the effectiveness and accuracy of the generated model, as shown in Fig. 2. The following polynomial regression model equations were obtained:$$begin{aligned} COD;removal , % , & = 76.63 – 0.019*A , + , 0.064*B , – 0.511*C , – 0.405*AB , – 0.153*AC , \ &quad – 0.099*BC , + , 0.263*A^{2} + , 0.479*B^{2} – 0.303*C^{2} \ end{aligned}$$
    (1)
    $$begin{aligned} Nitrate;Removal , % , & = 72.04 , – 1.881*A – 0.142* , B , + , 2.384*C , + , 2.623*AB , + , 8.579*AC , \ &quad – 2.626*BC , – 10.783*A^{2} + , 0.223*B^{2} + , 0.963*C^{2 } hfill \ end{aligned}$$
    (2)
    $$begin{aligned} & Phosphate , Removal , % , = \ & 67.179 – 1.215*A , + , 3.539*B , – 1.068*C , + , 1.610*AB , – 2.559*AC , + , 0.392*BC , + , 0.788*A^{2} – 2.943*B^{2} + , 0.564*C^{2} \ end{aligned}$$
    (3)
    where A is initial pH, B is current time (min), C is MLSS concentration (mg L−1) at which the study was carried out.Figure 2Normal probability versus studentized residuals and predicted versus actual plots for (i) COD removal, (ii) nitrate removal, and (iii) phosphate removal.Full size imageIt has been observed that statistics for the model having low values represent well for the system and its predictions.Statistical analysis of COD, nitrate and phosphate removalIt was seen that 3D surface plots could provide a better understanding of the interactive effects of the parameters. The 3D surface plots are illustrated in Figs. 3, 4, and 5, respectively. It was observed that the maximum removal efficiency for COD, nitrate, and phosphate is in the range of 59% to 74%.Figure 3Model generated surface plot of % COD removal (i) pH versus current time (ii) pH vs. MLSS (iii) MLSS vs. current time.Full size imageFigure 4Model generated surface plot of %nitrate removal (i) pH versus current time (ii) pH vs. MLSS (iii) MLSS vs. current time.Full size imageFigure 5Model generated surface plot of %phosphate removal (i) pH versus current time (ii) pH versus MLSS (iii) MLSS versus current time.Full size imageTable 4 (i) shows the statistics for COD removal. Adeq Precision is desirable, which measures the signal-to-noise ratio and a ratio greater than 4. For the COD removal, Adeq Precision was 19.255, indicating an adequate signal. It was also observed that the adjusted R2 is 0.9118 (difference less than 0.2), and the predicted R2 of 0.8601 was significant, implying that the predictions are in good agreement with experimental values.Table 4 Fit statistics for (i) COD removal, (ii) Nitrate removal, (iii) Phosphate removal.Full size tableFigure 3 illustrates the effect of current flow time and pH concerning the percentage removal of COD. The model predicted values observed were seen to lie in the range of 73.1% at MLSS values of 2500 mg L−1, keeping initial COD values as 200 mg L−1. As the COD load increases, it seems to be predicted that the overloading of bacteria occurs, thereby slowing down the consumption of organics. In Fig. 4, the expected removal efficacy shows upward trends with an increase in the values of MLSS, which also coincided with previous studies. As the value of MLSS increases, the contact time of biomass in the system increases, hence producing more effective results than others.Table 4 (ii) shows the statistics for nitrate removal. The predicted R2 of 0.9164 was in reasonable agreement with the adjusted R2 of 0.9730. For the nitrate removal, Adeq Precision was 29.608, indicating an adequate signal. This model can be used to navigate the design space.Table 4 (iii) shows the statistics for phosphate removal. The predicted R2 of 0.9165 was in reasonable agreement with the adjusted R2 of 0.9720. For the phosphate removal, Adeq Precision was 34.945, indicating an adequate signal. This model can be used to navigate the design space.Figure 5 illustrates that as we reduce the cycle time from 24 to 18 h, the system efficacy, i.e., COD removal effectiveness shows a downward trend due to less contact time with biomass. Meanwhile, if we increase the cycle time, we observe higher efficacy in the system. The model generated surface plot in Fig. 5 illustrated that increasing MLSS values by 3000 mg L−1 will enhance the COD removal by 73.1%, keeping the initial pH constant. This may be due to many microbes that can break down organic matter. In aerobic reactors, pH is an essential factor in the growth of the microbial population. To create granules, the pH of the reactor has a direct impact. Studies have shown that granule formation occurs when bacteria grow at the ideal pH level, whereas mass proliferation of fungus occurs in an acidic environment.COD removal in EBR and tubesettlerThe Influence, effluent, and removal of COD in EBR & tubesettler are illustrated in Fig. 6a,b. Results demonstrate that the COD concentration is consistent and better COD removal efficacy rate. The average removal rate values observed in the EBR were between 74 and 79%, with the initial COD concentration kept around 360–396 mg L−1. It was also observed that tubesettler resulted in approximately 25–36% efficacy when the initial concentration was between 75 and 97 mg L−1. The results of EBR are promising and can be attributed to the fact that electrocoagulation takes place along with the oxidation and biodegradation process. It was also observed that the percentage removal of COD shows downward trends due to electrochemical oxidation and adsorption, thereby resulting in physical entrapment and electrostatic attraction30. It has also been reported in many other studies that COD removal of around 85–90% was observed using composite cathode membrane using MRB/MFC system19 for the specialized treatment of landfill leachate. It was seen with the electrooxidation process having COD removal of around 80–84% and 84–96% with submerged membrane bioreactors, using Iron electrode6. For the Coal industry, it was found to be around 85% using membrane electro bioreactors31.Figure 6(a) Influent, effluent and removal of COD in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of COD in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageIn the current study, results seemed to be lower than the values reported in the previous studies. The main reason might be the employment of a modified EBR system and the production of biomass species. When the overall COD removal with tubesettler is considered, up to 83.58% removal efficiency is observed. The overall COD removal efficiency is significant and is at par with other studies3,4,5. This signifies that EBR performed better than tubesettler in COD removal. The tubesettler’s lower removal efficiency can be attributed to lower influent concentration from already reduced wastewater from EBR.Nitrate removal in EBR and tubesettlerIt was observed in many studies that nitrifying is the leading cause of nitrification, i.e., conversion of NH3-N to nitrate NO3-N10. The indirect method of system nitrification process claudication was to be ascertained using measurements concerning ammonia values32,33. In the current study, the nitrification process was considered using the nitrate concentration measurement from the influent and effluent in both systems, i.e., EBR and tubesettler34,35,36. The nitrate concentration of influent and effluent was observed and illustrated in Fig. 7a,b. The system stabilized and produced enhanced results up to 70% of nitrate removal, and it was seen to be in the range of 40–45% for the tubesettler. It has been observed that EBR produced better results than the tubesettler. The results variation in both the systems were reasonably attributed mainly to two primary reasons (1) low influent concentration in the influent compared to the EBR system and (2) inhibition effect due to the applied DC field, which was absent in tubesettlers.Figure 7(a) Influent, effluent, and removal of nitrate in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of nitrate in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageThe removal efficiency of around 70% was achieved, lower than the values in submerged membrane bioreactors, i.e., 82%6. However, including a membrane would have enhanced the removal efficiency and considered a hybrid EBR system. The results of the current study are close enough to many other studies with a similar system and different operating parameters. Hence, a combined approach can be used for better efficacy. During the weekly analysis, the nitrate concentration during the 1st to 3rd week is lower than in the following weeks. As the concentration of nitrifying bacteria decreased, they had less to work with. Thus, the substrate concentration grew, and so did the removal rate. Nitrate concentrations rose by more than twice the previous week during Week 7. They slowed the bacterial activity, resulting in an efficiency decline to 47% from 70% during the last week’s study period and weeks 6 and 8. A similar pattern emerged for the seventh week in a row in tubesettler. On the other hand, microorganisms overcame differences in engagement because the nitrate content was low in other weeks.Phosphate removal in EBR and tubesettlerMany researchers have looked at nitrate content, but none have looked at phosphate concentration. Eutrophication in receiving water bodies, on the other hand, is predominantly caused by phosphate and nitrate. Additionally, there is a lack of information available on hospital wastewater. The influent and effluent phosphate concentrations in the Electro bioreactor and the tubesettler is shown in Fig. 8a,b. A 75% reduction in the effluent phosphate content in EBR was achieved tubesettler had a 67% effectiveness in phosphate removal but a lower efficiency in nitrate reduction. A previous similar study that used a Submerged Membrane Electro bioreactor claimed a clearance rate of 76% to 95%, which is lower than this study’s results6. Phosphate removal was reported at 50–70% using the electrocoagulation process for different Ph and current6.Figure 8(a) Influent, effluent, and removal of phosphate in EBR (IEBR = Influent Electrobioreactor, EEBR = Effluent Electrobioreactor, STD = Standard, REBR = Removal Electrobioreactor), (b) Influent, effluent, and removal of phosphate in tubesettler (IT = Influent tubesettler, ET = Effluent tubesettler, STD = Standard, RT = Removal tubesettler).Full size imageIn week 6 and week 8, the EBR’s phosphate removal efficiency fluctuated dependent on the weekly average concentration in EBR. This volatility can be linked to a shift in the composition of hospital wastewater. tubesettler had a modest variation ranging from 5 to 6%. Although phosphate concentrations rose in week two, tubesettler removal efficiency improved. As demonstrated in Fig. 8a,b, the arriving wastewater ingredient exhibited a strong affinity in terms of phosphate reduction.Excess effluent concentration and standard deviation from EBR and tubesettler are shown in Table 5. EBR performed better than tubesettler in COD reduction when nitrate and phosphate were compared. Because tubesettler solely employs a physical process to remove contaminants, this is to be anticipated. Effluent from the secondary treatment facility is sent to a tubesettler, which acts as a polishing unit. EBR eliminated COD by 91%, nitrate by 85%, and Phosphate reduction by 81% compared to tubesettler’ s total efficiency. At the same time, tubesettler reduced COD by 37%, nitrate by 51%, and phosphate by 53%. Hence, EBR primarily removed pollutants from wastewater while tubesettler acted as a polishing unit. Table 5 illustrates the effluent wastewater characteristics of EBR and tubesettler.Table 5 Effluent wastewater characteristics of EBR and tubesettler.Full size tableKinetic models post optimizationFirst-order modelA first-order linear model was analyzed on the experimental data by plotting (So − Se)/Se against hydraulic retention time (HRT), providing K1 and R2. For COD, R2 values were 0.761 with a constant value of 1.213, as shown in Table 6. Henceforth based on the results, the obtained model did not seem to fit well for either of the cases.Table 6 Analyzed kinetic models.Full size tableGrau second-order modelA Grau second-order model was analyzed on the experimental data by plotting HRT/((So − Se)/So) versus HRT. The COD constant obtained was Ks = 10–5, as shown in Table 6. The R2 value of 0.99 suggests a good correlation coefficient. Therefore, the obtained results fit well for AOX and COD.Modified Stover–Kincannon modelSubstrate utilization rate expressed as organic loading in this model is widely used in biological reactor kinetic modelling of wastewater. The developed model can evaluate the performance of the biological system and estimate its efficiency based on the input parameters. The kinetic constant KB and Umax for COD were 0.35 and 1.73 g L−1 d−1, respectively. The R2 was 0.98 for the substrate removal, as presented in Table 6.Monod modelCOD utilization rate was obtained by plotting VX/Q (So − Se) against 1/Se. The value of 1/K (0.421) was obtained from the intercept, while the Ks/K value (1.235) was the slope of the line. COD removal half-saturation values were 0.045 and 0.056 g L−1. These values infer a high affinity of bacteria for the substrate. The R2 value of 0.95 depicted an excellent correlation coefficient in the case of COD. The Monod model fits well for COD, resulting in R2 = 0.98, as shown in Table 6. More

  • in

    The role of zinc in the adaptive evolution of polar phytoplankton

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237 (1998).CAS 
    PubMed 

    Google Scholar 
    Anbar, A. D. & Knoll, A. H. Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297, 1137–1142 (2002).CAS 
    PubMed 

    Google Scholar 
    Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean–Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).CAS 

    Google Scholar 
    Morel, F. M. M., Lam, P. J. & Saito, M. A. Trace metal substitution in marine phytoplankton. Annu. Rev. Earth Planet Sci. 48, 491–517 (2020).CAS 

    Google Scholar 
    Morel, F. M. & Price, N. M. The biogeochemical cycles of trace metals in the oceans. Science 300, 944–947 (2003).CAS 
    PubMed 

    Google Scholar 
    Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).
    Google Scholar 
    Ho, T.-Y. et al. The elemental composition of some marine phytoplankton. J. Phycol. 39, 1145–1159 (2003).CAS 

    Google Scholar 
    Ellwood, M. J. Wintertime trace metal (Zn, Cu, Ni, Cd, Pb and Co) and nutrient distributions in the subantarctic zone between 40–52°S; 155–160°E. Mar. Chem. 112, 107–117 (2008).CAS 

    Google Scholar 
    Zhao, Y., Vance, D., Abouchami, W. & de Baar, H. J. W. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Cosmochim. Acta 125, 653–667 (2014).CAS 

    Google Scholar 
    John, S. G., Helgoe, J. & Townsend, E. Biogeochemical cycling of Zn and Cd and their stable isotopes in the Eastern Tropical South Pacific. Mar. Chem. 201, 256–262 (2018).CAS 

    Google Scholar 
    Middag, R., de Baar, H. J. W. & Bruland, K. W. The relationships between dissolved zinc and major nutrients phosphate and silicate along the GEOTRACES GA02 transect in the West Atlantic Ocean. Glob. Biogeochem. Cy. 33, 63–84 (2019).CAS 

    Google Scholar 
    Sunda, W. G. & Huntsman, S. A. Feedback interactions between zinc and phytoplankton in seawater. Limnol. Oceanogr. 37, 25–40 (1992).CAS 

    Google Scholar 
    Sunda, W. G. & Huntsman, S. A. Cobalt and zinc interreplacement in marine phytoplankton: biological and geochemical implications. Limnol. Oceanogr. 40, 1404–1417 (1995).CAS 

    Google Scholar 
    Vance, D. et al. Silicon and zinc biogeochemical cycles coupled through the Southern Ocean. Nat. Geosci. 10, 202 (2017).CAS 

    Google Scholar 
    Weber, T., John, S., Tagliabue, A. & DeVries, T. Biological uptake and reversible scavenging of zinc in the global ocean. Science 361, 72 (2018).CAS 
    PubMed 

    Google Scholar 
    Roshan, S., DeVries, T., Wu, J. & Chen, G. The internal cycling of zinc in the ocean. Glob. Biogeochem. Cy. 32, 1833–1849 (2018).CAS 

    Google Scholar 
    Scott, C. et al. Bioavailability of zinc in marine systems through time. Nat. Geosci. 6, 125–128 (2012).
    Google Scholar 
    Mock, T. et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541, 536–540 (2017).CAS 
    PubMed 

    Google Scholar 
    Blaby-Haas, C. E. & Merchant, S. S. Comparative and functional algal genomics. Annu. Rev. Plant Biol. 70, 605–638 (2019).CAS 
    PubMed 

    Google Scholar 
    Zhang, Z. H. et al. Adaptation to extreme Antarctic environments revealed by the genome of a sea ice green alga. Curr. Biol. 30, 3330–3341 (2020).CAS 
    PubMed 

    Google Scholar 
    Clarke, A. et al. The Southern Ocean benthic fauna and climate change: a historical perspective. Philos. Trans. R. Soc. Lond. B 338, 299–309 (1992).
    Google Scholar 
    Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231 (2010).CAS 
    PubMed 

    Google Scholar 
    Krishna, S. S., Majumdar, I. & Grishin, N. V. Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. 31, 532–550 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barlow, P. N. et al. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy: a new structural class of zinc-finger. J. Mol. Biol. 237, 201–211 (1994).CAS 
    PubMed 

    Google Scholar 
    Stephens, T. G. et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol. 18, 56 (2020).Aranda, M. et al. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle. Sci. Rep. 6, 39734 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, H. et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral–dinoflagellate symbiosis. Commun. Biol. 1, 95 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Shoguchi, E. et al. Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol. 23, 1399–1408 (2013).CAS 
    PubMed 

    Google Scholar 
    Shoguchi, E. et al. Two divergent Symbiodinium genomes reveal conservation of a gene cluster for sunscreen biosynthesis and recently lost genes. BMC Genomics 19, 458 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hoppe, C. J. M., Flintrop, C. M. & Rost, B. The Arctic picoeukaryote Micromonas pusilla benefits synergistically from warming and ocean acidification. Biogeosciences 15, 4353–4365 (2018).CAS 

    Google Scholar 
    Ferguson, R. E. et al. Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 5, 566–571 (2005).CAS 
    PubMed 

    Google Scholar 
    Aslam, S. N. et al. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice. ISME J. 12, 1237–1251 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, J. J. et al. Ocean acidification conditions increase resilience of marine diatoms. Nat. Commun. 9, 2328 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Martin, K. et al. The biogeographic differentiation of algal microbiomes in the upper ocean from pole to pole. Nat. Commun. 12, 5483 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mock, Thomas. Sea of Change: Eukaryotic Phytoplankton Communities in the Arctic Ocean. United States. https://doi.org/10.25585/1488054Duncan, A. et al. Metagenome-assembled genomes of phytoplankton communities across the Arctic Circle and Atlantic Oceans. Microbiome 10 https://doi.org/10.1186/s40168-022-01254-7 (2022).Persi, E., Wolf, Y. I. & Koonin, E. V. Positive and strongly relaxed purifying selection drive the evolution of repeats in proteins. Nat. Commun. 7, 13570 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mock, T. & Gradinger, R. Determination of Arctic ice algal production with a new in situ incubation technique. Mar. Ecol. Prog. Ser. 177, 15–26 (1999).CAS 

    Google Scholar 
    Rühle, T., Hemschemeier, A., Melis, A. & Happe, T. A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains. BMC Plant Biol. 8, 107 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Crawford, D. W. et al. Influence of zinc and iron enrichments on phytoplankton growth in the northeastern subarctic Pacific. Limnol. Oceanogr. 48, 1583–1600 (2003).CAS 

    Google Scholar 
    Provasoli, L. Media and prospects for the cultivation of marine algae. In Cultures and Collections of Algae. Proc. US-Japan Conference, Hakone, 12-15 September 1966 (eds Watanabe, A & Hattori, A.) 63–75 (Japanese Society of Plant Physiology, 1968).Ranallo-Benavidez, T. R., Jaron, K. S. & Schatz, M. C. GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. Nat. Commun. 11, 1432 (2020).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ye, C. X. et al. DBG2OLC: efficient assembly of large genomes using long erroneous reads of the third generation sequencing technologies. Sci. Rep. 6, 31900 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chin, C. S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Qin, M. et al. LRScaf: improving draft genomes using long noisy reads. BMC Genomics 20, 955 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    PubMed 

    Google Scholar 
    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Ellinghaus, D., Kurtz, S. & Willhoeft, U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinf. 9, 18 (2008).
    Google Scholar 
    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Ou, S. J. & Jiang, N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 176, 1410–1422 (2018).CAS 
    PubMed 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119 (2010).
    Google Scholar 
    Stanke, M., Schöffmann, O., Morgenstern, B. & Waack, S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinf. 7, 62 (2006).
    Google Scholar 
    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2018).PubMed Central 

    Google Scholar 
    Rice, P., Longden, I. & Bleasby, A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).CAS 
    PubMed 

    Google Scholar 
    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).CAS 
    PubMed 

    Google Scholar 
    Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom. Proteom. Bioinf. 4, 259–263 (2006).CAS 

    Google Scholar 
    Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34, 1812–1819 (2017).CAS 
    PubMed 

    Google Scholar 
    Yang, Z. H. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 

    Google Scholar 
    Wiśniewski, J. R., Hein, M. Y., Cox, J. & Mann, M. A ‘proteomic ruler’ for protein copy number and concentration estimation without spike-in standards. Mol. Cell Proteom. 13, 3497–3506 (2014).
    Google Scholar 
    Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MGAP v.4). Stand. Genomic Sci. 10, 86 (2016).
    Google Scholar 
    Fu, L. et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-aware Aligner (Lawrence Berkeley National Laboratory, 2014).Löytynoja, A. Phylogeny-aware Alignment with PRANK: Multiple Sequence Alignment Methods (Humana Press, 2014).Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 
    PubMed 

    Google Scholar  More

  • in

    A new functional ecological model reveals the nature of early plant management in southwest Asia

    Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).Article 

    Google Scholar 
    Fuller, D. Q., Willcox, G. & Allaby, R. G. Cultivation and domestication had multiple origins: arguments against the core area hypothesis for the origins of agriculture in the Near East. World Archaeol. 43, 628–652 (2011).Article 

    Google Scholar 
    Ibáñez, J. J., Anderson, P. C., González-Urquijo, J. & Gibaja, J. Cereal cultivation and domestication as shown by microtexture analysis of sickle gloss through confocal microscopy. J. Archaeol. Sci. 73, 62–81 (2016).Article 

    Google Scholar 
    Weiss, E., Kislev, M. E. & Hartmann, A. Autonomous cultivation before domestication. Science 312, 1608–1610 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Willcox, G. Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates Valley. J. Archaeol. Sci. 31, 145–150 (2004).Article 

    Google Scholar 
    White, C. E. & Makarewicz, C. A. Harvesting practices and early Neolithic barley cultivation at el-Hemmeh, Jordan. Veg. Hist. Archaeobot. 21, 85–94 (2012).Article 

    Google Scholar 
    Colledge, S., Conolly, J., Finlayson, B. & Kuijt, I. New insights on plant domestication, production intensification, and food storage: the archaeobotanical evidence from PPNA Dhra‘. Levant 50, 14–31 (2018).Article 

    Google Scholar 
    Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. Proc. Natl Acad. Sci. USA 106, 10966–10970 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Willcox, G. & Stordeur, D. Large-scale cereal processing before domestication during the tenth millennium cal bc in northern Syria. Antiquity 86, 99–114 (2012).Article 

    Google Scholar 
    Colledge, S. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 121–131 (ICARDA, 1998).Hillman, G. C., Hedges, R., Moore, A. M. T., Colledge, S. & Pettitt, P. New evidence of Lateglacial cereal cultivation at Abu Hureyra on the Euphrates. Holocene 11, 383–393 (2001).Article 

    Google Scholar 
    Willcox, G. Searching for the origins of arable weeds in the Near East. Veg. Hist. Archaeobot. 21, 163–167 (2012).Article 

    Google Scholar 
    Snir, A. et al. The origin of cultivation and proto-weeds, long before neolithic farming. PLoS ONE 10, e0131422 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Harris, D. R. & Fuller, D. Q. in Encyclopedia of Global Archaeology (ed. Smith, C.) 104–113 (Springer, 2014).Grime, J. P., Hodgson, J. G. & Hunt, R. Comparative Plant Ecology: A Functional Approach to Common British Species (Springer, 2014).Harlan, J. R., de Wet, J. M. J. & Price, E. G. Comparative evolution of cereals. Evolution 27, 311–325 (1973).PubMed 
    Article 

    Google Scholar 
    Fuller, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann. Bot. 100, 903–924 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asouti, E. in Neolithic Corporate Identities. Studies in Early Near Eastern Production, Subsistence and Environment 20 (eds Benz, M. et al.) 21–53 (Ex oriente, 2017).Harris, D. R. in Foraging and Farming: the Evolution of Plant Exploitation (eds Harris, D. R. & Hillman, G.) 11–26 (Unwin Hyman, 1989).Smith, B. D. Low-level food production. J. Archaeol. Res. 9, 1–43 (2001).Article 

    Google Scholar 
    Rindos, D. The Origins of Agriculture: an Evolutionary Perspective (Academic, 1984).Weide, A. Towards a socio-economic model for southwest Asian cereal domestication. Agronomy 11, 2432 (2021).Article 

    Google Scholar 
    Hillman, G. C. & Davies, M. S. Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J. World Prehist. 4, 157–222 (1990).Article 

    Google Scholar 
    Kislev, M. E., Hartmann, A. & Weiss, E. Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc. Natl Acad. Sci. USA 101, 2692–2695 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weide, A. et al. The association of arable weeds with modern wild cereal habitats: implications for reconstructing the origins of plant cultivation in the Levant. Environ. Archaeol. https://doi.org/10.1080/14614103.2021.1882715 (2021).Zohary, M. The segetal plant communities of Palestine. Vegetatio 2, 387–411 (1950).Article 

    Google Scholar 
    Abbo, S., Lev-Yadun, S. & Gopher, A. Plant domestication and crop evolution in the Near East: on events and processes. Crit. Rev. Plant Sci. 31, 241–257 (2012).Article 

    Google Scholar 
    Wood, D. & Lenné, J. M. A natural adaptive syndrome as a model for the origins of cereal agriculture. Proc. R. Soc. Lond. B 285, 20180277 (2018).
    Google Scholar 
    Bogaard, A., Palmer, C., Jones, G., Charles, M. & Hodgson, J. G. A FIBS approach to the use of weed ecology for the archaeobotanical recognition of crop rotation regimes. J. Archaeol. Sci. 26, 1211–1224 (1999).Article 

    Google Scholar 
    Jones, G., Bogaard, A., Charles, M. & Hodgson, J. G. Distinguishing the effects of agricultural practices relating to fertility and disturbance: a functional ecological approach in archaeobotany. J. Archaeol. Sci. 27, 1073–1084 (2000).Article 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties (Oxford Univ. Press, 2016).Bogaard, A. Neolithic Farming in Central Europe (Routledge, 2004).Bogaard, A. et al. From traditional farming in Morocco to early urban agroecology in northern Mesopotamia: combining present-day arable weed surveys and crop isotope analysis to reconstruct past agrosystems in (semi-)arid regions. Environ. Archaeol. 23, 303–322 (2018).Article 

    Google Scholar 
    Hamerow, H. et al. An integrated bioarchaeological approach to the medieval ‘agricultural revolution’: a case study from Stafford, England, c. ad 800–1200. Eur. J. Archaeol. 23, 585–609 (2020).Article 

    Google Scholar 
    Green, L., Charles, M. & Bogaard, A. Exploring the agroecology of Neolithic Çatalhöyük, Central Anatolia: an archaeobotanical approach to agricultural intensity based on functional ecological analysis of arable weed flora. Paléorient 44, 29–44 (2018).
    Google Scholar 
    Green, L. Assessing the Nature of Early Farming in Neolithic Western Asia: A Functional Ecological Approach to Emerging Arable Weeds. Univ. of Oxford (2017).Atran, S. Hamula organisation and masha’a tenure in Palestine. Man 21, 271–295 (1986).Article 

    Google Scholar 
    Palmer, C. ‘Following the plough’: the agricultural environment of northern Jordan. Levant 30, 129–165 (1998).Article 

    Google Scholar 
    Håkansson, S. in Biology and Ecology of Weeds (eds Holzner, W. & Numata, M.) 123–135 (Springer Netherlands, 1982).Charles, M., Bogaard, A., Jones, G., Hodgson, J. & Halstead, P. Towards the archaeobotanical identification of intensive cereal cultivation: present-day ecological investigation in the mountains of Asturias, northwest Spain. Veg. Hist. Archaeobot. 11, 133–142 (2002).Article 

    Google Scholar 
    Hartmann-Shenkman, A., Kislev, M. E., Galili, E., Melamed, Y. & Weiss, E. Invading a new niche: obligatory weeds at Neolithic Atlit-Yam, Israel. Veg. Hist. Archaeobot. 24, 9–18 (2015).Article 

    Google Scholar 
    Kuijt, I. in The Neolithic Demographic Transition and its Consequences (eds Bocquet-Appel, J.-P. & Bar-Yosef, O.) 287–313 (Springer Netherlands, 2008).Bogaard, A. et al. Private pantries and celebrated surplus: storing and sharing food at Neolithic Çatalhöyük, Central Anatolia. Antiquity 83, 649–668 (2009).Article 

    Google Scholar 
    Jones, G. et al. The origins of agriculture: intentions and consequences. J. Archaeol. Sci. 125, 105290 (2021).Article 

    Google Scholar 
    Weiss, E., Kislev, M. E., Simchoni, O., Nadel, D. & Tschauner, H. Plant-food preparation area on an Upper Paleolithic brush hut floor at Ohalo II, Israel. J. Archaeol. Sci. 35, 2400–2414 (2008).Article 

    Google Scholar 
    Kluyver, T. A., Charles, M., Jones, G., Rees, M. & Osborne, C. P. Did greater burial depth increase the seed size of domesticated legumes? J. Exp. Bot. 64, 4101–4108 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Preece, C., Jones, G., Rees, M. & Osborne, C. P. Fertile Crescent crop progenitors gained a competitive advantage from large seedlings. Ecol. Evol. 11, 3300–3312 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Halstead, P. Two Oxen Ahead: Pre-mechanized Farming in the Mediterranean (Wiley, 2014).Anderson, P. C. in The Origins of Agriculture and Crop Domestication (eds Damania, A. B. et al.) 145–159 (ICARDA, 1998).Mercuri, A. M., Fornaciari, R., Gallinaro, M., Vanin, S. & di Lernia, S. Plant behaviour from human imprints and the cultivation of wild cereals in Holocene Sahara. Nat. Plants 4, 71–81 (2018).PubMed 
    Article 

    Google Scholar 
    Spengler, R. N. & Mueller, N. G. Grazing animals drove domestication of grain crops. Nat. Plants 5, 656–662 (2019).PubMed 
    Article 

    Google Scholar 
    Smith, B. D. General patterns of niche construction and the management of ‘wild’ plant and animal resources by small-scale pre-industrial societies. Phil. Trans. R. Soc. Lond. B 366, 836–848 (2011).Article 

    Google Scholar 
    Bogaard, A. et al. Reconsidering domestication from a process archaeology perspective. World Archaeol. https://doi.org/10.1080/00438243.2021.1954990 (2021).Coqueugniot, E. in Espace Naturel, Espace Habité En Syrie Du Nord (10e–2e millénaires av. J.-C.) (eds M. Fortin & O. Aurenche) 109–114 (Maison de l’Orient et de la Méditerranée, 1998).Douché, C. Émergence et développement des sociétés agricoles au Néolithique acéramique (Xe-VIIIe millénaires av. n. ère) étude archéobotanique de Dja’de El-Mughara et Tell Aswad, Syrie. PhD thesis (Archaeological Mission of Dja’de el Mughara, 2018).Noy, T. Gilgal I: a pre-pottery Neolithic site, Israel. The 1985–1987 seasons. Paléorient 15, 11–18 (1989).Article 

    Google Scholar 
    Bar-Yosef, O. & Gopher, A. in An Early Neolithic Village in the Jordan Valley (eds Bar-Yosef, O. & Gopher, A.) 41–69 (Harvard Univ., 1997).Wright, K. I. The social origins of cooking and dining in early villages of western Asia. Proc. Prehist. Soc. 66, 89–121 (2000).Article 

    Google Scholar 
    Finlayson, B. Egalitarian societies and the earliest Neolithic of southwest Asia. Prehist. Archaeol. J. Interdiscip. Stud. 3, 27–43 (2020).Article 

    Google Scholar 
    Bowles, S. & Choi, J.-K. The Neolithic agricultural revolution and the origins of private property. J. Polit. Econ. 127, 2186–2228 (2019).Article 

    Google Scholar 
    Kuijt, I. The Neolithic refrigerator on a Friday night: how many people are coming to dinner and just what should I do with the slimy veggies in the back of the fridge? Environ. Archaeol. 20, 321–336 (2015).Article 

    Google Scholar 
    Danin, A. Flora and vegetation of Israel and adjacent areas. Zoogeogr. Isr. 30, 251–276 (1988).
    Google Scholar 
    Noy-Meir, I., Gutman, M. & Kaplan, Y. Responses of Mediterranean grassland plants to grazing and protection. J. Ecol. 77, 290–310 (1989).Article 

    Google Scholar 
    Noy-Meir, I. The effect of grazing on the abundance of wild wheat, barley and oat in Israel. Biol. Conserv. 51, 299–310 (1990).Article 

    Google Scholar 
    Jones, G., Bogaard, A., Halstead, P., Charles, M. & Smith, H. Identifying the intensity of crop husbandry practices on the basis of weed floras. Annu. Br. Sch. Athens 94, 167–189 (1999).Article 

    Google Scholar 
    Sternberg, M., Gutman, M., Perevolotsky, A., Ungar, E. D. & Kigel, J. Vegetation response to grazing management in a Mediterranean herbaceous community: a functional group approach. J. Appl. Ecol. 37, 224–237 (2000).Article 

    Google Scholar 
    Sternberg, M. et al. Testing the limits of resistance: a 19-year study of Mediterranean grassland response to grazing regimes. Glob. Change Biol. 21, 1939–1950 (2015).Article 

    Google Scholar 
    Calev, A. et al. High-intensity thinning treatments in mature Pinus halepensis plantations experiencing prolonged drought. Eur. J. For. Res. 135, 551–563 (2016).Article 

    Google Scholar 
    Osem, Y., Perevolotsky, A. & Kigel, J. Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity. J. Ecol. 90, 936–946 (2002).Article 

    Google Scholar 
    Temper, L. Creating facts on the ground: agriculture in Israel and Palestine (1882–2000). Hist. Agrar. 48, 75–110 (2009).
    Google Scholar 
    Dan, J., Yaalon, D., Koyumdjisky, H. & Raz, Z. The soil association map of Israel (1:1,000,000). Isr. J. Earth Sci. 21, 29–49 (1970).
    Google Scholar 
    Sans, F. X. & Masalles, R. M. Phenological patterns in an arable land weed community related to disturbance. Weed Res. 35, 321–332 (1995).Article 

    Google Scholar 
    Zohary, M. & Feinbrun-Dothan, N. Flora Palaestina Vol. 1–4 (Israel Academy of Sciences and Humanities, 1966).Davis, P. Flora of Turkey and the East Aegean Islands Vol. 1–10 (Edinburgh Univ. Press, 1965).Mortimer, A. M. in Weed Control Handbook: Principles (eds Hance, R. J. & Holly, K.) 1–42 (Blackwell, 1990).Douché, C. & Willcox, G. New archaeobotanical data from the Early Neolithic sites of Dja’de el-Mughara and Tell Aswad (Syria): a comparison between the northern and the southern Levant. Paléorient 44, 45–58 (2018).
    Google Scholar 
    Jones, G. The application of present-day cereal processing studies to charred archaeobotanical remains. Circaea 6, 91–96 (1990).
    Google Scholar 
    Bogaard, A., Jones, G. & Charles, M. The impact of crop processing on the reconstruction of crop sowing time and cultivation intensity from archaeobotanical weed evidence. Veg. Hist. Archaeobot. 14, 505–509 (2005).Article 

    Google Scholar 
    Bogaard, A. et al. in Humans and Landscapes of Çatalhöyük: Reports from the 2000–2008 Seasons (ed. Hodder, I.) 93–128 (Cotsen Institute of Archaeology/British Institute at Ankara, 2013).Filipović, D. Early Farming in Central Anatolia: an Archaeobotanical Study of Crop Husbandry, Animal Diet and Land Use at Neolithic Çatalhöyük (British Archaeological Reports, 2014).Helmer, D. et al. in New Methods and the First Steps of Mammal Domestication (eds Vigne, J.-D. et al.) 86–95 (Oxbow Books, 2005).Charles, M. Fodder from dung: the recognition and interpretation of dung-derived plant material from archaeological sites. Environ. Archaeol. 1, 111–122 (1998).Article 

    Google Scholar 
    Kislev, M. E. in An Early Neolithic Village in the Jordan Valley (eds Ofer Bar-Yosef & Avi Gopher) 209–236 (Harvard Univ., 1997).Kislev, M. E. et al. in Gilgal: Early Neolithic Occupations in the Lower Jordan Valley. The Excavations of Tamar Noy (eds Bar-Yosef, O. et al.) 251–257 (Oxbow Books, 2010).Snir, A., Nadel, D. & Weiss, E. Plant-food preparation on two consecutive floors at Upper Paleolithic Ohalo II, Israel. J. Archaeol. Sci. 53, 61–71 (2015).Article 

    Google Scholar 
    Jones, G., Charles, M., Bogaard, A. & Hodgson, J. Crops and weeds: the role of weed functional ecology in the identification of crop husbandry methods. J. Archaeol. Sci. 37, 70–77 (2010).Article 

    Google Scholar 
    Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using CANOCO 5 (Cambridge Univ. Press, 2014).Galili, E. et al. Atlit-Yam: a Prehistoric site on the sea floor off the Israeli coast. J. Field Archaeol. 20, 133–157 (1993).
    Google Scholar 
    Brenet, M., Sanchez-Priego, J. & Ibáñez-Estévez, J. J. in Préhistoire et Approche Expérimentale (eds Bourguignon, L. et al.) 121–164 (Monique Mergoil, 2001).Bar-Yosef, O., Gopher, A., Goring-Morris, A. N. & Kozlowski, S. K. in Gilgal: Early Neolithic Occupations in the Lower Jordan Valley. The Excavations of Tamar Noy (eds Bar-Yosef, O. et al.) 11–26 (Oxbow Books, 2010). More

  • in

    Yellow fever surveillance suggests zoonotic and anthroponotic emergent potential

    Lattice data geoprocessing and temporal extentWe latticed the data49 using a worldwide grid composed of 18,874 hexagonal 7774 km2 units, built using Discrete Global for R (https://github.com/r-barnes/dggridR)50. All the information we processed on yellow fever cases, on urban and sylvatic vectors presences, and on zoogeographic, spatial and environmental variables (see details on this information below) was aggregated at this spatial resolution. We used zonal statistics to calculate average variable values using ArcMAP 10.7.The temporal extent for our analysis was divided into three periods: the late 20th century (1970–2000), the early 21st century (2001–2017), and the period 2018–2020. Predictions estimated by the late 20th century models were validated using cases reported in the early 21st century, and predictions from the early 21st century models were validated with records from 2018‒2020. Although the limit between periods at the turn of the century is arbitrary, it reflects: 1) Distributional changes in the ranges of the Ae. aegypti and Ae. albopictus vectors51; 2) after 1999, the yellow fever genotype I has spread outside the endemic regions, and the genotype I modern-lineage has caused all major yellow fever outbreaks detected in non-endemic regions of South America since 200013; 3) the maximum potential of globalization was realised at the beginning of the 21st century with the opening of international borders, the widespread access to the Internet and to cell phones, and the generalization of online travel booking and of low-cost flights34. The end of the second period, 2017, was chosen in order to include three years with occurrence of yellow fever cases in south-western Brazil (and two since its occurrence in Angola and the DRC), while retaining three later years for predictive testing purposes (details on this testing are given below).Yellow fever datasetsWe used georeferenced cases of yellow fever in humans for a period of 51 years (from 1970 to 2020). This study period starts immediately after the suspension of the use of DDT due to to the appearance of resistance of Ae. aegypti in the late 1960s in several countries, after 50 years of eradication efforts10. We took from Shearer et al.6 the distribution of yellow fever cases for the period 1970–2016. We extracted additional cases for the period 1970–2020 from various sources (Supplementary data 1), including ProMED-mail: Program of International society for infectious diseases; World Health Organization (WHO): Yellow fever outbreak weekly situation reports, Rapport de situation fievre jaune en RD Congo and Weekly epidemiological record; Health Ministry of different countries: Epidemiological Bulletins of yellow fever in Brazil, Peru, Colombia, and Paraguay; Pan American Health Organization (PAHO): Epidemiological Update Yellow Fever; European Centre for Disease Prevention and Control (ECDC): Communicable disease threats report and Rapid risk assessment report; Nigeria Centre for Disease Control (NCDC): Situation report, yellow fever outbreak in Nigeria and Global Infectious Disease and Epidemiology Online Network (GIDEON). The reported cases were complemented with publications available since 2016 with geo-referenced information on case location (Supplementary data 1). In addition, information was also sought on cases reported in French and Portuguese from local news reports in Africa.We only represented in the hexagonal lattice the reported cases of yellow fever that had a precise location or that were referred to administrative unit was smaller than or of similar size to the hexagons. This dataset was transformed into a binary variable per study period representing the presence (n = 218 hexagons in the late 20th century; 493 hexagons in the early 21st century, see Supplementary data 2) or absence (n = 18,656 hexagons in the late 20th century; 18,381 hexagons in the early 21st century), hereafter the distribution of reported cases of yellow fever.Vector datasetThe georeferenced presences of vectors involved in the urban cycle of yellow fever (i.e., the mosquitoes Ae. aegypti and Ae. albopictus) were taken from “The global compendium of the Ae. aegypti and Ae. Albopictus occurrence”26 for the period 1970–2014. We complemented these records with georeferenced data scientifically validated for the period 2014–2017, taken from VectorBase (https://www.vectorbase.org/) and Mosquito Alert (http://www.mosquitoalert.com/). We included both species because, although Ae. Aegypti is the main vector of yellow fever, Ae. albopictus can also transmit the yellow fever virus to humans4,52.In addition, we included georeferenced occurrence data of sylvatic vectors (Haemagogus janthinomys, H. leucocelaenus and Sabethes chloropterus in South America; Ae. africanus and Ae. vittatus in Africa), which were obtained from Vectormap (vectormap.si.edu) and Gbif (https://gbif.org).We represented in the hexagonal lattice the reported occurrence of mosquitoes that had a precise location or were located in administrative smaller than or of similar size to the hexagons. With this information, we built binary variables representing the presence or absence of each mosquito species in each hexagon. For species involved in the urban cycle, we built two binary variables per species: one for the late 20th century, and another for the early 21st century. For species involved in the sylvatic cycle, we merged the data of late 20th century and early 21st century in order to build a binary variable per species, due the scarcity of data and under the assumption that their distributions have been stable during the four last decades53,54,55.Zoogeographic, spatial and environmental variablesWe built zoogeographic variables based on chorotypes, or types of distribution ranges, of all non-human primate species, as all are potentially vulnerable to yellow fever56. A chorotype is a distribution pattern shared by a group of species57. For obtaining these zoogeographic variables, we proceeded in 4 steps: (1) Distribution maps of non-human primates were obtained from the IUCN for South-America and Africa; (2) the species ranges were classified hierarchically using the classification algorithm UPGMA according to the Baroni-Urbani & Buser´s similarity index58; (3) we evaluated the statistical significance of all clusters obtained as a result of the classification using RMacoqui 1.0 software (http://rmacoqui.r-forge.r-project.org/)59; (4) in each hexagon, the number of species belonging to each chorotype was quantified. We generated a zoogeographic model based on the non-human primates chorotypes by running a forward-backward stepwise logistic regression using presence/absence of yellow fever cases and the number of species of each chorotype as dependent and predictor variables, respectively. This procedure was made for two periods: late 20th century and early 21st century. Henceforth, only the selected chorotype variables were considered in the baseline disease favourability models explained below.We built a yellow fever spatial variable for each continent (South-America and Africa), which were calculated through the trend surface approach, by performing a backward-stepwise logistic regression of the distribution of yellow fever cases on a ensemble of variables defined for polynomial combinations of longitude (X) and latitude (Y) up to the third degree: X, Y, XY, X2, Y2, X2Y, XY2, X3, and Y3. We transformed probability values derived from logistic regression into spatial favourability values by applying the Favourability Function60,61, using the following equation:$$F=frac{P}{1-P}Big/left(frac{{n}_{1}}{{n}_{0}}+frac{P}{1-P}right)$$
    (1)
    where P is the spatial probability of occurrence of at least a case of yellow fever at each hexagon, and n1 and n0 are the numbers of hexagons with presence and absence of yellow fever cases, respectively. We built a different spatial variable for each continent and time period.We used environmental variables related to the following factors: climate, human activity, topography, hydrography, biome, ecosystem type, and forest loss. For details about the source and description of the environmental variables selected, see Supplementary Table 3.Pathogeographical approach to transmission risk modellingOur objectives were to construct a global yellow fever transmission risk map, and to identify areas where primates contribute to increased risk, using the methodology previously used to analyse the worldwide dynamic biogeography of zoonotic and anthroponotic dengue34 (see flowchart in Fig. 1 and Supplementary Methods). We produced a transmission model focused on the late 20th century and another for the early 21st century.The risk of transmission was assessed by combining a first model describing areas favourable to the presence of yellow fever, i.e., the “baseline disease model”; and another model describing areas favourable to the presence of mosquitoes known to act as vectors, i.e., the “vector model”. For this combination, we used the fuzzy intersection62, i.e., the risk of transmission at each hexagon was valued at the minimum between favourability in the baseline disease model and favourability in the vector model.In this way, we considered that the vectors are a limiting factor, and that the risk of transmission derives from the degree to which the environmental conditions are simultaneously favourable for the presence of vectors and for disease cases to occur63. In order to analyze the spatio-temporal dynamic of yellow fever, we made comparable models for the late 20th century and the early 21st century, using predictor variables that are available for both periods. Later, we made a 21st-century enhanced model that optimized the predictive capacity of availabe information in the search for current risk areas. For this purpose, we included, in the variable set, predictors that are only accessible for the 21st century (e.g., high-resolution population density, livestock, irrigation, infrastructures, intact forest, and GlobCover land cover classes; see Supplementary Table 3).Baseline disease modelsThe baseline disease model in the late 20th century was expressed in terms of favourability values, using the Eq. (1) (see above). This time, P was calculated through a multivariable forward-backward stepwise logistic regression of the 20th-century yellow fever presences/absences on a set of zoogeographic, environmental and spatial variables. This was made in two blocks: 1) a stepwise selection of environmental and spatial variables; 2) a later stepwise addition of chorotypes whose presence contribute to improve significantly the likelihood of the model based only on the first block. Variables for each block were preselected using RAO´s score tests (which estimated the significance of its association to the distribution of yellow fever cases), and Benjamini and Hochberg´s (1995) false discovery rate (FDR) to control for Type I errors, which could pass due to the number of variables analysed. We also avoided excesive multicollinearity by preventing that variables with Spearman correlation values >0.8 were included in the same model. In case this happened, only the variable with the most significant RAO´s score-test value was retained, and the multivariable model was re-run. The parameters in the models were estimated using a gradient ascent machine learning algorithm, and the significance of these paremeters was assessed using the test of Wald. The goodness of fit of the models was established using the test of Hosmer and Lemeshow, which checks the significance of the difference between expected and observed values, so that non significant differences mean that the fit is good. We used IBM-SPSS Statistics 24 software package to perform the models and all the associated tests.We subsequently updated the baseline disease model to explain the distribution of yellow fever cases in the early 21st century. Compared to the procedure described for the 20th-century model, we included a new block before the two ones mentioned above. Thus, the methodological sequence was as follows: (1) forcing the input, as a predictor variable, of the logit of the late 20th century baseline disease model (the logit being the linear combination of variables in the 20th-century model); (2) making a later stepwise selection of spatial and environmental variables; and (3) a stepwise addition of chorotypes that contribute to improving the model’s likelihood. In this way, we took into account that the current spread of yellow fever is influenced by the inertia of previous situations. This is equivalent to assuming that there is temporal autocorrelation (i.e., disease cases in the early 21st century are more probable to occur in areas where they already occurred in the late 20th century). In the 21st-century model, the variables entering in blocks (2) and (3) represent the drivers potentially favouring the spread34. The preselection of variables for blocks (2) and (3) and the control for excessive multicollinearity between environmental variables were made as explained for the late 20th-century model.Vector modelsWe produced a favourabuility model for each vector species for the late 20th century and for the early 21st century separately. We built multivariable favourability models for urban vectors using the distribution of each urban mosquito species in the late 20th century and the spatial and environmental variables for the late 20th century, following the same procedure used for block (1) in the 20th-century baseline disease model. We also updated each urban vector model for the early 21st century as in the baseline disease model, using the procedure described for blocks (1) and (2).A single model, referred to both the late 20th and the early 21st centuries, was made for sylvatic vectors, for the reasons explained above. Finally, we built up the vector models for the late 20th century and for the early 21st century by joining all individual vector models of each period using the fuzzy union64 (i.e., considering for each hexagon the maximum value shown by any of the species models). This criterion was taken into account because, if the pathogen were present, the occurrence of a single vector species would involve potential for yellow fever transmission.Model fit assessment and validation of its predictive capacityFavourability models were assessed according to their classification and discrimination capacities respect to the training data set (i.e., to the observations used for model training). The classification capacity was based on two classification thresholds: F = 0.5, which represents the neutral favourability, and F = 0.2, below which the risk of transmission was considered to be low61. Six classification assessment indices were used65: (1) sensitivity (i.e., proportion of presences correctly classified in favourable hexagons), (2) specificity (i.e., proportion of absences correctly classified in unfavourable hexagons), (3) CCR (i.e., proportion of presences and absences correctly classified in favourable hexagons respectively), (4) TSS (that is sensitivity + specifity – 1), (5) underprediction rate (i.e., proportion of favourable areas that are recorded to have presences), and (6) overprediction rate (i.e., proportion of favourable areas that are not recorded to have presences). The discrimination capacity was assessed using the area under the receiver operating characteristic (ROC) curve (AUC)66.The validation of the predictive capacity of the late 20th century disease and transmission-risk models was done by evaluating, with the same indices used above, classification and discrimination capacities with respect to the cases of the period 2001‒2020. The predictive capacity of the models for the early 21st century was validated with respect to the yellow fever cases reported in the period 2018‒2020.Relative importance of the zoogeographical factorWe estimated the pure contribution of non-human primates to the baseline disease model, i.e., how much of the variation in favourability for yellow fever cases was explained exclusively by the zoogeographical factor, by performing a variation partitioning analysis67. This implied the use of the zoogeographic model and a spatio-environmental model constructed with the environmental and spatial variables that entered the baseline disease model. This approach also allowed us to calculate how much is the variation of the baseline disease model attributable simultaneously to the zoogeographical and other factors. We built maps identifying the zones where the non-human primates could increase yellow fever cases in humans, that is, where the presence of primates could favour the occurrence of yellow fever regardless of correlations with other factors. To map these areas we identified the hexagons that fulfilled these conditions: 1) favourability values for the baseline disease model were ≥ 0.2; and 2) the difference between the favourability values provided by the baseline disease model and the spatio-environmental model was positive and ≥ 0.01.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Coral fluorescence: a prey-lure in deep habitats

    Alieva, N. O. et al. Diversity and evolution of coral fluorescent proteins. PLoS ONE 3, e2680 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dove, S., Hoegh-Guldberg, O. & Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197–204 (2001).Article 

    Google Scholar 
    Shimomura, O., Johnson, F. H. & Saiga, Y. Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J. Cell. Physiol. 59, 223–239 (1962).CAS 
    Article 

    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kawaguti, S. Effect of the green fluorescent pigment on the productivity of the reef corals. Micronesica 5, 121 (1969).
    Google Scholar 
    Gittins, J. R., D’Angelo, C., Oswald, F., Edwards, R. J. & Wiedenmann, J. Fluorescent protein-mediated colour polymorphism in reef corals: multicopy genes extend the adaptation/acclimatization potential to variable light environments. Mol. Ecol. 24, 453–465 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roth, M. S., Latz, M. I., Goericke, R. & Deheyn, D. D. Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. J. Exp. Biol. 213, 3644–3655 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quick, C., D’Angelo, C. & Wiedenmann, J. Trade-offs associated with photoprotective green fluorescent protein expression as potential drivers of balancing selection for color polymorphism in reef corals. Front. Mar. Sci. 5, 11 (2018).Article 

    Google Scholar 
    Schlichter, D., Fricke, H. W. & Weber, W. Light harvesting by wavelength transformation in a symbiotic coral of the Red Sea twilight zone. Mar. Biol. 91, 403–407 (1986).Article 

    Google Scholar 
    Bollati, E., Plimmer, D., D’Angelo, C. & Wiedenmann, J. FRET-mediated long-range wavelength transformation by photoconvertible fluorescent proteins as an efficient mechanism to generate orange-red light in symbiotic deep water corals. Int. J. Mol. Sci. 18, 1174 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Palmer, C. V., Modi, C. K. & Mydlarz, L. D. Coral fluorescent proteins as antioxidants. PLoS ONE 4, e7298 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bou-Abdallah, F., Chasteen, N. D. & Lesser, M. P. Quenching of superoxide radicals by green fluorescent protein. Biochim. Biophys. Biochim. Biophys. Acta Gen. Subj. 1760, 1690–1695 (2006).CAS 
    Article 

    Google Scholar 
    Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful? Photochem. Photobiol. 82, 345–350 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aihara, Y. et al. Green fluorescence from cnidarian hosts attracts symbiotic algae. Proc. Natl Acad. Sci. USA 116, 2118–2123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yamashita, H., Koike, K., Shinzato, C., Jimbo, M. & Suzuki, G. Can Acropora tenuis larvae attract native Symbiodiniaceae cells by green fluorescence at the initial establishment of symbiosis? PLoS ONE 16, e0252514 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Angelo, C. et al. Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser. 364, 97–106 (2008).Article 
    CAS 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Light-dependent fluorescence in the coral Galaxea fascicularis. Hydrobiologia 759, 15–26 (2014).Article 

    Google Scholar 
    Muscatine, L., Porter, J. & Kaplan, I. Resource partitioning by reef corals as determined from stable isotope composition. Mar. Biol. 100, 185–193 (1989).Article 

    Google Scholar 
    Smith, E. G., D’Angelo, C., Sharon, Y., Tchernov, D. & Wiedenmann, J. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 284, 20170320 (2017).Schlichter, D., Meier, U. & Fricke, H. Improvement of photosynthesis in zooxanthellate corals by autofluorescent chromatophores. Oecologia 99, 124–131 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gilmore, A. M. et al. Simultaneous time resolution of the emission spectra of fluorescent proteins and zooxanthellar chlorophyll in reef-building corals. Photochem. Photobiol. 77, 515–523 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mazel, C. H. et al. Green-fluorescent proteins in Caribbean corals. Limnol. Oceanogr. 48, 402–411 (2003).CAS 
    Article 

    Google Scholar 
    Dubinsky, Z. & Falkowski, P. Light as a Source of Information and Energy in Zooxanthellate Corals. In Coral Reefs: An Ecosystem in Transition (eds Dubinsky, Z. & Stambler, N.) 107–118 (Springer Science & Business Media, 2011).Kahng, S. E. et al. Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystemsin. In Mesophotic Coral Ecosystems. Ch. 42 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 801–828 (Springer International publishing, 2019).Loya, Y., Poglise, K. & Bridge, T. C. L. Mesophotic Coral Ecosystems (Springer International Publishing, 2019).Eyal, G. et al. Spectral diversity and regulation of coral fluorescence in a mesophotic reef habitat in the Red Sea. PLoS ONE 10, e0128697 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roth, M. S. et al. Fluorescent proteins in dominant mesophotic reef-building corals. Mar. Ecol. Prog. Ser. 521, 63–79 (2015).CAS 
    Article 

    Google Scholar 
    Ben-Zvi, O., Wangpraseurt, D., Bronstein, O., Eyal, G. & Loya, Y. Photosynthesis and bio-optical properties of fluorescent mesophotic corals. Front. Mar. Sci. 8, 651601 (2021).Article 

    Google Scholar 
    Ben-Zvi, O., Eyal, G. & Loya, Y. Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Sci. Rep. 9, 5245 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Houlbrèque, F. & Ferrier-Pagès, C. Heterotrophy in tropical scleractinian corals. Biol. Rev. Camb. Philos. Soc. 84, 1–17 (2009).PubMed 
    Article 

    Google Scholar 
    Goreau, T. F., Goreau, N. I. & Yonge, C. M. Reef corals: autotrophs or heterotrophs? Biol. Bull. 141, 247–260 (1971).Article 

    Google Scholar 
    Price, J. T., McLachlan, R. H., Jury, C. P., Toonen, R. J. & Grottoli, A. G. Isotopic approaches to estimating the contribution of heterotrophic sources to Hawaiian corals. Limnol. Oceanogr. 66, 2393–2407 (2021).CAS 
    Article 

    Google Scholar 
    Anthony, K. R. N. Coral suspension feeding on fine particulate matter. J. Exp. Mar. Biol. Ecol. 232, 85–106 (1999).Article 

    Google Scholar 
    Ferrier-Pagès, C., Rottier, C., Beraud, E. & Levy, O. Experimental assessment of the feeding effort of three scleractinian coral species during a thermal stress: effect on the rates of photosynthesis. J. Exp. Mar. Biol. Ecol. 390, 118–124 (2010).Article 

    Google Scholar 
    Palardy, E. J., Grottoli, G. A. & Matthews, A. K. Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar. Ecol. Prog. Ser. 300, 79–89 (2005).Article 

    Google Scholar 
    Mies, M. et al. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs 37, 677–689 (2018).Article 

    Google Scholar 
    Jerlov, N. G. Optical Oceanography Vol. 5 (Elsevier, 1968).Crandall, J. B., Teece, M. A., Estes, B. A., Manfrino, C. & Ciesla, J. H. Nutrient acquisition strategies in mesophotic hard corals using compound specific stable isotope analysis of sterols. J. Exp. Mar. Biol. Ecol. 474, 133–141 (2016).CAS 
    Article 

    Google Scholar 
    Martinez, S. et al. Energy sources of the depth-generalist mixotrophic coral Stylophora pistillata. Front. Mar. Sci. 7, 566663 (2020).Article 

    Google Scholar 
    Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).Article 

    Google Scholar 
    Lesser, M. P. et al. Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91, 990–1003 (2010).PubMed 
    Article 

    Google Scholar 
    Mass, T. et al. Photoacclimation of Stylophora pistillata to light extremes: metabolism and calcification. Mar. Ecol. Prog. Ser. 334, 93–102 (2007).CAS 
    Article 

    Google Scholar 
    Sturaro, N., Hsieh, Y. E., Chen, Q., Wang, P. L. & Denis, V. Trophic plasticity of mixotrophic corals under contrasting environments. Funct. Ecol. 35, 2841–2855 (2021).Article 

    Google Scholar 
    Lewis, J. B. & Price, W. S. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176, 527–544 (1975).Article 

    Google Scholar 
    Levy, O., Mizrahi, L., Chadwick-Furman, N. E. & Achituv, Y. Factors controlling the expansion behavior of Favia favus (Cnidaria: Scleractinia): Effects of light, flow, and planktonic prey. Biol. Bull. 200, 118–126 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Levy, O., Dubinsky, Z. & Achituv, Y. Photobehavior of stony corals: responses to light spectra and intensity. J. Exp. Biol. 206, 4041–4049 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Turak, E. & DeVantier, L. Reef-Building Corals of the Upper Mesophotic Zone of the Central Indo-West Pacificin. In Mesophotic Coral Ecosystems. Ch. 34 (eds Loya, Y., Puglise, K. A. & Bridge, T. C. L.) 621–651 (Springer International Publishing, 2019).Haddock, S. H. D. & Dunn, C. W. Fluorescent proteins function as a prey attractant: experimental evidence from the hydromedusa Olindias formosus and other marine organisms. Biol. Open 4, 1094–1104 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eyal, G. et al. Euphyllia paradivisa, a successful mesophotic coral in the northern Gulf of Eilat/Aqaba, Red Sea. Coral Reefs 35, 91–102 (2016).Article 

    Google Scholar 
    Cronin, T. W. Invertebrate Vision in the Water. In Invertebrate Vision (eds Warran, E. & Nilsson, D.-E.) 6, 211–249 (Cambridge University Press, 2006).Bradley, D. J. & Forward, R. B. Jr. Phototaxis of adult brine shrimp Artemia salina. Can. J. Zool. 62, 2357–2359 (1984).Article 

    Google Scholar 
    Audzijonytė, A., Pahlberg, J., Väinölä, R. & Lindström, M. Spectral sensitivity differences in two Mysis sibling species (Crustacea, Mysida): adaptation or phylogenetic constraints? J. Exp. Mar. Biol. Ecol. 325, 228–239 (2005).Article 

    Google Scholar 
    Beeton, A. M. Photoreception in the opossum shrimp, Mysis relicta Loven. Biol. Bull. 116, 204–216 (1959).Article 

    Google Scholar 
    Lindström, M. Eye function of Mysidacea (Crustacea) in the northern Baltic Sea. J. Exp. Mar. Biol. Ecol. 246, 85–101 (2000).PubMed 
    Article 

    Google Scholar 
    Marshall, N. J. & Vorobyev, M. The Design of Color Signals and Color Vision in Fishes. In Sensory Processing in Aquatic Environments. Ch. 10 (eds Collin, S. P. & Marshall, N. J.) 10, 194–222 (Springer, 2003).Denton, E. J. & Warren, F. J. The photosensitive pigments in the retinae of deep-sea fish. J. Mar. Biol. Assoc. UK 36, 651–662 (1957).CAS 
    Article 

    Google Scholar 
    Kelber, A. Invertebrate Colour Vision. In Invertebrate Vision (eds Warran, E. & Nilsson, D.-E.) 250–290 (Cambridge University Press, 2006).Kim, H. J., Araki, T., Suematsu, Y. & Satuito, C. G. Ontogenic phototactic behaviors of larval stages in intertidal barnacles. Hydrobiologia 849, 747–761 (2021).Cohen, J. H. & Forward, R. B. Jr. Spectral sensitivity of vertically migrating marine copepods. Biol. Bull. 203, 307–314 (2002).PubMed 
    Article 

    Google Scholar 
    Su, Z., Huang, L., Yan, Y. & Li, H. The effect of different substrates on pearl oyster Pinctada martensii (Dunker) larvae settlement. Aquaculture 271, 377–383 (2007).Article 

    Google Scholar 
    Marangoni, R., Puntoni, S., Favati, L. & Colombetti, G. Phototaxis in Fabrea salina I. Action spectrum determination. J. Photochem. Photobiol. B: Biol. 23, 149–154 (1994).CAS 
    Article 

    Google Scholar 
    Hollingsworth, L. L., Kinzie, R. A., Lewis, T. D., Krupp, D. A. & Leong, J. A. C. Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24, 523–523 (2005).Article 

    Google Scholar 
    Smith, F. E. & Taylor, E. R. B. Color responses in the Cladocera and their ecological significance. Am. Nat. 87, 49–55 (1953).Article 

    Google Scholar 
    Feller, K. D. & Cronin, T. W. Spectral absorption of visual pigments in stomatopod larval photoreceptors. J. Comp. Physiol. A 202, 215–223 (2016).CAS 
    Article 

    Google Scholar 
    Pietsch, T. W. Bioluminescence and Luring. In Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea (ed. Pietsch, T. W.) 6, 229–252 (Berkeley: University of California Press, 2009).Johnsen, S., Balser, E. J., Fisher, E. C. & Widder, E. A. Bioluminescence in the deep-sea cirrate octopod Stauroteuthis syrtensis Verrill (Mollusca: Cephalopoda). Biol. Bull. 197, 26–39 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robison, B. H., Reisenbichler, K. R., Hunt, J. C. & Haddock, S. H. Light production by the arm tips of the deep-sea cephalopod Vampyroteuthis infernalis. Biol. Bull. 205, 102–109 (2003).PubMed 
    Article 

    Google Scholar 
    Haddock, S. H. D., Dunn, C. W., Pugh, P. R. & Schnitzler, C. E. Bioluminescent and red-fluorescent lures in a deep-sea siphonophore. Science 309, 263 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hastings, J. & Nealson, K. H. Bacterial bioluminescence. Annu. Rev. Microbiol. 31, 549–595 (1977).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zarubin, M., Belkin, S., Ionescu, M. & Genin, A. Bacterial bioluminescence as a lure for marine zooplankton and fish. Proc. Natl Acad. Sci. USA 109, 853–857 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nakaema, S. & Hidaka, M. Fluorescent protein content and stress tolerance of two color morphs of the coral Galaxea fascicularis. Galaxea 17, 1–11 (2015).Article 

    Google Scholar 
    Vermeij, M. J. A., Delvoye, L., Nieuwland, G. & Bak, R. P. M. Patterns in fluorescence over a Caribbean reef slope: the coral genus. Madracis. Photosynthetica 40, 423–429 (2002).CAS 
    Article 

    Google Scholar 
    Kahng, S. & Salih, A. Localization of fluorescent pigments in a nonbioluminescent, azooxanthellate octocoral suggests a photoprotective function. Coral Reefs 24, 435–435 (2005).Article 

    Google Scholar 
    Glynn, P. W. Ecology of a Caribbean coral reef. The Porites reef-flat biotope: Part II. Plankton community with evidence for depletion. Mar. Biol. 22, 1–21 (1973).Article 

    Google Scholar 
    Holzman, R., Reidenbach, M. A., Monismith, S. G., Koseff, J. R. & Genin, A. Near-bottom depletion of zooplankton over a coral reef II: relationships with zooplankton swimming ability. Coral Reefs 24, 87–94 (2005).Article 

    Google Scholar 
    Mazel, C. H. Spectral measurements of fluorescence emission in Caribbean cnidarians. Mar. Ecol. Prog. Ser. 120, 185–191 (1995).Article 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 1 1–48 (2015).Kleiman, E. EMAtools: data management tools for real-time monitoring/ecological momentary assessment data. R package version 0.1.4 (2021). More