Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359â366 (2013).PubMedÂ
ArticleÂ
Google ScholarÂ
Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440â454 (2020).ADSÂ
ArticleÂ
Google ScholarÂ
Halpern, B. S. et al. Recent pace of change in human impact on the worldâs ocean. Sci. Rep. 9, 1â8 (2019).CASÂ
ArticleÂ
Google ScholarÂ
Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a tropical western atlantic reef ecosystem. Ecosystems https://doi.org/10.1007/s10021-021-00691-z (2021).ArticleÂ
Google ScholarÂ
Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1â12 (2021).ArticleÂ
CASÂ
Google ScholarÂ
Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8â23 (2014).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?. Mar. Policy 88, 295â302 (2018).ArticleÂ
Google ScholarÂ
Martins, I. M. & Gasalla, M. A. Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim. Change 147, 441â456 (2018).ADSÂ
ArticleÂ
Google ScholarÂ
Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109â117 (2013).ADSÂ
ArticleÂ
Google ScholarÂ
Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1â8 (2009).ArticleÂ
Google ScholarÂ
Bryan, D. R., Kilfoyle, K., Gilmore, R. G. Jr. & Spieler, R. E. Characterization of the mesophotic reef fish community in south Florida, USA. J. Appl. Ichthyol. 29, 108â117 (2013).ArticleÂ
Google ScholarÂ
Fukunaga, A., Kosaki, R. K., Wagner, D. & Kane, C. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands. PLoSÂ One 11, e0157861 (2016).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Kahng, S., Copus, J. M. & Wagner, D. Mesophotic coral ecosystems. In Marine Animal Forests (eds Rossi, S. et al.) 1â22 (Springer International Publishing, Paris, 2016). https://doi.org/10.1007/978-3-319-17001-5_4-1.ChapterÂ
Google ScholarÂ
Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281â284 (2018).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADSÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Rosa, M. R. et al. Mesophotic reef fish assemblages of the remote St. Peter and St. Paulâs Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs 35, 113â123 (2016).ADSÂ
ArticleÂ
Google ScholarÂ
Medeiros, A. P. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413â4427 (2021).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Reid, D. G. SEFOSâShelf edge fisheries and oceanography studies: An overview. Fish. Res. 50, 1â15 (2001).ArticleÂ
Google ScholarÂ
Heyman, W. D. & Kjerfve, B. Characterization of transient multi-species reef fish spawning aggregations at Gladden Spit, Belize. Bull. Mar. Sci. 83, 531â551 (2008).
Google ScholarÂ
Paxton, A. B. et al. Four decades of reef observations illuminate deep-water grouper hotspots. Fish Fish. 22, 749â761. https://doi.org/10.1111/faf.12548 (2021).ArticleÂ
Google ScholarÂ
FrĂ©dou, T. & Ferreira, B. P. Bathymetric trends of northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48, 787â800 (2005).ArticleÂ
Google ScholarÂ
Longhurst, A. R. & Pauly, D. Ecologia dos oceanos tropicais (Edusp, 2007).
Google ScholarÂ
Olavo, G., Costa, P. A., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 199â209 (2011).ArticleÂ
Google ScholarÂ
Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108â118 (2018).ADSÂ
ArticleÂ
Google ScholarÂ
Silva, M. B., Rosa, R. S., Menezes, R. & Francini-Filho, R. B. Changes in reef fish assemblages in a cross-shelf euphotic-mesophotic gradient in tropical SW Atlantic. Estuar. Coast. Shelf Sci. 259, 107465 (2021).ArticleÂ
Google ScholarÂ
Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33â37 (1956).ArticleÂ
Google ScholarÂ
Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 1â8 (2016).ArticleÂ
CASÂ
Google ScholarÂ
Letessier, T. B. et al. Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific. PLoS Biol. 17, e3000366 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Heywood, K. J., Barton, E. D. & Simpson, J. H. The effects of flow disturbance by an oceanic island. J. Mar. Res. 48, 55â73 (1990).ArticleÂ
Google ScholarÂ
Signorini, S. R., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121â3124 (1999).ADSÂ
ArticleÂ
Google ScholarÂ
Henry, G. W. & Lyle, J. M. National recreational and indigenous fishing survey (2003).Coutis, P. F. & Middleton, J. H. Flow-topography interaction in the vicinity of an isolated, deep ocean island. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 1633â1652 (1999).ADSÂ
ArticleÂ
Google ScholarÂ
Cardoso, C., Caldeira, R. M. A., Relvas, P. & Stegner, A. Islands as eddy transformation and generation hotspots: Cabo Verde case study. Prog. Oceanogr. 184, 102271 (2020).ArticleÂ
Google ScholarÂ
Tchamabi, C. C., Araujo, M., Silva, M. & BourlĂšs, B. A study of the Brazilian Fernando de Noronha island and Rocas atoll wakes in the tropical Atlantic. Ocean Model 111, 9â18 (2017).ADSÂ
ArticleÂ
Google ScholarÂ
Motta, F. S. et al. Effects of marine protected areas under different management regimes in a hot spot of biodiversity and cumulative impacts from SW Atlantic. Reg. Stud. Mar. Sci. 47, 101951 (2021).ArticleÂ
Google ScholarÂ
Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226â232 (2011).ArticleÂ
Google ScholarÂ
Shucksmith, R. J. & Kelly, C. Data collection and mappingâPrinciples, processes and application in marine spatial planning. Mar. Policy 50, 27â33 (2014).ArticleÂ
Google ScholarÂ
Queffelec, B. et al. Marine spatial planning and the risk of ocean grabbing in the tropical Atlantic. ICES J. Mar. Sci. 78, 1196â1208 (2021).ArticleÂ
Google ScholarÂ
Rubio-Cisneros, N. T. et al. Poor fisheries data, many fishers, and increasing tourism development: Interdisciplinary views on past and current small-scale fisheries exploitation on Holbox Island. Mar. Policy 100, 8â20 (2019).ArticleÂ
Google ScholarÂ
Samhouri, J. F., Haupt, A. J., Levin, P. S., Link, J. S. & Shuford, R. Lessons learned from developing integrated ecosystem assessments to inform marine ecosystem-based management in the USA. ICES J. Mar. Sci. 71, 1205â1215 (2014).ArticleÂ
Google ScholarÂ
Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53â60 (2015).ArticleÂ
Google ScholarÂ
Hewitt, J. E., Anderson, M. J. & Thrush, S. F. Assessing and monitoring ecological community health in marine systems. Ecol. Appl. 15, 942â953 (2005).ArticleÂ
Google ScholarÂ
Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 1â14 (2015).ArticleÂ
CASÂ
Google ScholarÂ
DĂaz-PĂ©rez, L. et al. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea. PLoS One 11, e0161812 (2016).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).ArticleÂ
Google ScholarÂ
Pennino, M. G. et al. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73, 2302â2310 (2016).ArticleÂ
Google ScholarÂ
Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer Science and Business Media, 2013).
Google ScholarÂ
Bohnsack, J. A. & Bannerot, S. P. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes (1986).Jones, R. S. & Thompson, M. J. Comparison of Florida reef fish assemblages using a rapid visual technique. Bull. Mar. Sci. 28, 159â172 (1978).
Google ScholarÂ
Kimmel, J. J. A new species-time method for visual assessment of fishes and its comparison with established methods. Environ. Biol. Fishes 12, 23â32 (1985).ArticleÂ
Google ScholarÂ
Michalopoulos, C., Auster, P. J. & Malatesta, R. J. A comparison of transect and species-time counts for assessing faunal abundance from video surveys. Mar. Technol. Soc. J. 26, 27â31 (1992).
Google ScholarÂ
Gray, J. S., Ugland, K. I. & Lambshead, J. Species accumulation and species area curves: A comment on Scheiner (2003). Glob. Ecol. Biogeogr. 13, 473â476 (2004).ArticleÂ
Google ScholarÂ
Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952â2012). Fish. Res. 154, 44â62 (2014).ArticleÂ
Google ScholarÂ
Langlois, T. J. et al. Cost-efficient sampling of fish assemblages: Comparison of baited video stations and diver video transects. Aquat. Biol. 9, 155â168 (2010).ArticleÂ
Google ScholarÂ
Logan, J. M., Young, M. A., Harvey, E. S., Schimel, A. C. G. & Ierodiaconou, D. Combining underwater video methods improves effectiveness of demersal fish assemblage surveys across habitats. Mar. Ecol. Prog. Ser. 582, 181â200 (2017).ADSÂ
ArticleÂ
Google ScholarÂ
Koslow, J. A. The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. 66, 966â973 (2009).ArticleÂ
Google ScholarÂ
Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 1â9 (2014).ADSÂ
ArticleÂ
CASÂ
Google ScholarÂ
Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463â490 (2016).ADSÂ
ArticleÂ
Google ScholarÂ
Sutton, T. T. Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. J. Fish Biol. 83, 1508â1527 (2013).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
McClatchie, S., Thorne, R. E., Grimes, P. & Hanchet, S. Ground truth and target identification for fisheries acoustics. Fish. Res. 47, 173â191 (2000).ArticleÂ
Google ScholarÂ
Cappo, M., Speare, P. & Deâath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123â152 (2004).ArticleÂ
Google ScholarÂ
Harvey, E. S., Cappo, M., Butler, J. J., Hall, N. & Kendrick, G. A. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar. Ecol. Prog. Ser. 350, 245â254 (2007).ADSÂ
ArticleÂ
Google ScholarÂ
Fitzpatrick, B. M., Harvey, E. S., Heyward, A. J., Twiggs, E. J. & Colquhoun, J. Habitat specialization in tropical continental shelf demersal fish assemblages. PLoSÂ One 7, e39634 (2012).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Rooper, C. N., Hoff, G. R. & De Robertis, A. Assessing habitat utilization and rockfish (Sebastes spp.) biomass on an isolated rocky ridge using acoustics and stereo image analysis. Can. J. Fish. Aquat. Sci. 67, 1658â1670 (2010).ArticleÂ
Google ScholarÂ
Jones, D. et al. Evaluation of rockfish abundance in untrawlable habitat: Combining acoustic and complementary sampling tools (2012).OâDriscoll, R. L. et al. Species identification in seamount fish aggregations using moored underwater video. ICES J. Mar. Sci. 69, 648â659 (2012).ArticleÂ
Google ScholarÂ
Fernandes, P. G., Copland, P., Garcia, R., Nicosevici, T. & Scoulding, B. Additional evidence for fisheries acoustics: Small cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys. ICES J. Mar. Sci. 73, 2009â2019 (2016).ArticleÂ
Google ScholarÂ
Gastauer, S., Scoulding, B. & Parsons, M. An unsupervised acoustic description of fish schools and the seabed in three fishing regions within the Northern Demersal Scalefish Fishery (NDSF, Western Australia). Acoust. Aust. 45, 363â380 (2017).ArticleÂ
Google ScholarÂ
Blanluet, A. et al. Characterization of sound scattering layers in the Bay of Biscay using broadband acoustics, nets and video. PLoSÂ One 14, e0223618 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
Campanella, F. & Taylor, J. C. Investigating acoustic diversity of fish aggregations in coral reef ecosystems from multifrequency fishery sonar surveys. Fish. Res. 181, 63â76 (2016).ArticleÂ
Google ScholarÂ
Domokos, R. On the development of acoustic descriptors for semi-demersal fish identification to support monitoring stocks. ICES J. Mar. Sci. 78, 1117â1130 (2021).ArticleÂ
Google ScholarÂ
Villalobos, H. et al. A practical approach to monitoring marine protected areas: An application to El Bajo EspĂritu Santo Seamount near La Paz, Mexico. Oceanography 34, 32â43 (2021).ArticleÂ
Google ScholarÂ
Hazin, F. H., Zagaglia, J. R., Broadhurst, M. K., Travassos, P. E. P. & Bezerra, T. R. Q. Review of a small-scale pelagic longline fishery off northeastern Brazil. Mar. Fish. Rev. 60, 1â8 (1998).
Google ScholarÂ
Lessa, R. P. et al. Distribution and abundance of ichthyoneuston at seamounts and islands off north-eastern Brazil. Arch. Fish. Mar. Res. 47, 239â252 (1999).
Google ScholarÂ
Dominguez, P. S., Zeineddine, G. C., Rotundo, M. M., Barrella, W. & Ramires, M. A pesca artesanal no arquipĂ©lago de Fernando de Noronha (PE). Bol. Inst. Pesca 42, 241â251 (2014).ArticleÂ
Google ScholarÂ
Lopes, P. F. M., Mendes, L., Fonseca, V. & Villasante, S. Tourism as a driver of conflicts and changes in fisheries value chains in Marine Protected Areas. J. Environ. Manag. 200, 123â134 (2017).CASÂ
ArticleÂ
Google ScholarÂ
Outeiro, L., Rodrigues, J. G., DamĂĄsio, L. M. A. & Lopes, P. F. M. Is it just about the money? A spatial-economic approach to assess ecosystem service tradeoffs in a marine protected area in Brazil. Ecosyst. Serv. 38, 100959 (2019).ArticleÂ
Google ScholarÂ
Garla, R. C., Chapman, D. D., Wetherbee, B. M. & Shivji, M. Movement patterns of young Caribbean reef sharks, Carcharhinus perezi, at Fernando de Noronha Archipelago, Brazil: The potential of marine protected areas for conservation of a nursery ground. Mar. Biol. 149, 189â199 (2006).ArticleÂ
Google ScholarÂ
Bertrand, A. FAROFA 1 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001399 (2017).ArticleÂ
Google ScholarÂ
Bertrand, A. FAROFA 2 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001411 (2018).ArticleÂ
Google ScholarÂ
Bertrand, A. FAROFA 3 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001381 (2019).ArticleÂ
Google ScholarÂ
Bertrand, A. et al. Acoustic data from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/71024 (2020).Salvetat, J. et al. Underwater video observations from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/76019 (2020).Pawlowicz, R. M_Map: A mapping package for MATLAB, version 1.4 m (computer software) (2020).PĂ©ter, A. Solomon Coder: The Concept of Behavioral Elements, Categories and the Representation of Data in Solomon Coder (2019).Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: Observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. U. K. 74, 481â498 (1994).ArticleÂ
Google ScholarÂ
McQuinn, I. H. et al. Description of the ICES HAC standard data exchange format, version 1.60 (Conseil international pour lâexploration de la mer, 2005).
Google ScholarÂ
Trenkel, V. M. et al. Overview of recent progress in fisheries acoustics made by Ifremer with examples from the Bay of Biscay. Aquat. Living Resour. 22, 433â445 (2009).ArticleÂ
Google ScholarÂ
Perrot, Y. et al. Matecho: An open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241â248 (2018).ArticleÂ
Google ScholarÂ
Salvetat, J. et al. In situ target strength measurement of the black triggerfish Melichthys niger and the ocean triggerfish Canthidermis sufflamen. Mar. Freshw. Res. 71, 1118â1127 (2020).ArticleÂ
Google ScholarÂ
Lavery, A. C. et al. Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Am. 122, 3304â3326 (2007).ADSÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365â369 (2002).ArticleÂ
Google ScholarÂ
Barros, M. J. G. Analises da Ictiofauna marinha e habitats associados atraves de videos subaquatica. (Universidade Federal de Pernambuco, 2020).
Google ScholarÂ
Sazima, C., Bonaldo, R. M., Krajewski, J. P. & Sazima, I. The Noronha wrasse: A jack-of-all-trades follower. Aqua J. Ichthyol. Aquat. Biol. 9, 97â108 (2005).
Google ScholarÂ
Soto, J. M. R. Peixes do arquipĂ©lago Fernando de Noronha. Mare Magnum 1, 147â169 (2001).
Google ScholarÂ
Krajewski, J. P. & Floeter, S. R. Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): The influence of exposure and benthic composition. Environ. Biol. Fishes 92, 25 (2011).ArticleÂ
Google ScholarÂ
Sazima, I., Sazima, C. & da Silva-Jr, J. M. Fishes associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic: An update and overview. Neotropical Ichthyol. 4, 451â455 (2006).ArticleÂ
Google ScholarÂ
Petitgas, P. Use of a disjunctive kriging to model areas of high pelagic fish density in acoustic fisheries surveys. Aquat. Living Resour. 6, 201â209 (1993).ArticleÂ
Google ScholarÂ
Chiles, J.-P. & Delfiner, P. Geostatistics: Modeling Spatial Uncertainty Vol. 497 (Wiley, 2009).MATHÂ
Google ScholarÂ
Bez, N. & Braham, C.-B. Indicator variables for a robust estimation of an acoustic index of abundance. Can. J. Fish. Aquat. Sci. 71, 709â718 (2014).ArticleÂ
Google ScholarÂ
Switzer, P. Min/max autocorrelation factors for multivariate spatial imagery. Comput. Sci. Stat. (1985).Bez, N. Global estimation based on indicators factorization (2021).Assunção, R. V., Silva, A. C., Martins, J. & Montes, M. F. Spatial-temporal variability of the thermohaline properties in the coastal region of Fernando de Noronha Archipelago, Brazil. J. Coast. Res. 75, 512â517 (2016).ArticleÂ
Google ScholarÂ
da Silva, A. C. et al. Surface circulation and vertical structure of upper ocean variability around Fernando de Noronha archipelago and Rocas atoll during spring 2015 and fall 2017. Front. Mar. Sci. 8, 598101 (2021).ArticleÂ
Google ScholarÂ
Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and regression trees. Wadsworth Int. Group 37, 237â251 (1984).MATHÂ
Google ScholarÂ
Therneau, T., Atkinson, B., Ripley, B. & Ripley, M. B. Package ârpartâ. Available Online Cran Ma Ic Ac Ukwebpackagesrpartrpart Pdf Accessed 20 April 2016 (2015).Kuhnert, P. M., Duffy, L. M., Young, J. W. & Olson, R. J. Predicting fish diet composition using a bagged classification tree approach: A case study using yellowfin tuna (Thunnus albacares). Mar. Biol. 159, 87â100 (2012).CASÂ
ArticleÂ
Google ScholarÂ
Breiman, L. Bagging predictors. Mach. Learn. 24, 123â140 (1996).MATHÂ
Google ScholarÂ
Kuhnert, P. M., Henderson, A.-K., Bartley, R. & Herr, A. Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21, 493â509 (2010).MathSciNetÂ
Google ScholarÂ
Kuhnert, P. M. & Mengersen, K. Reliability measures for local nodes assessment in classification trees. J. Comput. Graph. Stat. 12, 398â416 (2003).ArticleÂ
Google ScholarÂ
R Core Team. R: A language and environment for statistical computing (2020).ParisTech, M. ARMINES: RGeostats: The Geostatistical R Package (2020).Kahle, D. J. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J 5, 144 (2013).ArticleÂ
Google ScholarÂ
Pimentel, C. R. et al. Mesophotic ecosystems at Fernando de Noronha Archipelago, Brazil (South-western Atlantic), reveal unique ichthyofauna and need for conservation. Neotropical Ichthyol. 18 (2020).Ilarri, M. I., Souza, A. T. & Rosa, R. S. Community structure of reef fishes in shallow waters of the Fernando de Noronha archipelago: Effects of different levels of environmental protection. Mar. Freshw. Res. 68, 1303â1316 (2017).ArticleÂ
Google ScholarÂ
Schmid, K. et al. First fish fauna assessment in the Fernando de Noronha Archipelago with BRUVS: Species catalog with underwater imagery. Biota Neotropica 20 (2020).de AraĂșjo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038 (2020).PubMedÂ
ArticleÂ
CASÂ
Google ScholarÂ
Krajewski, J. P., Floeter, S. R., Jones, G. P. & Leite, F. P. Patterns of variation in behaviour within and among reef fish species on an isolated tropical island: Influence of exposure and substratum. J. Mar. Biol. Assoc. U. K. 91, 1359â1368 (2011).ArticleÂ
Google ScholarÂ
Mendes, T. C., Quimbayo, J. P., Bouth, H. F., Silva, L. P. & Ferreira, C. E. The omnivorous triggerfish Melichthys niger is a functional herbivore on an isolated Atlantic oceanic island. J. Fish Biol. 95, 812â819 (2019).PubMedÂ
Google ScholarÂ
Petitgas, P. & Levenez, J. J. Spatial organization of pelagic fish: Echogram structure, spatio-temporal condition, and biomass in Senegalese waters. ICES J. Mar. Sci. 53, 147â153 (1996).ArticleÂ
Google ScholarÂ
Burgos, J. M. & Horne, J. K. Characterization and classification of acoustically detected fish spatial distributions. ICES J. Mar. Sci. 65, 1235â1247 (2008).ArticleÂ
Google ScholarÂ
Russ, G. R. Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22, 63â67 (2003).ArticleÂ
Google ScholarÂ
Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1â30 (1998).ArticleÂ
Google ScholarÂ
Munday, P. L. Does habitat availability determine geographical-scale abundances of coral-dwelling fishes?. Coral Reefs 21, 105â116 (2002).ADSÂ
ArticleÂ
Google ScholarÂ
Martins, K. et al. Assessing trophic interactions between pelagic predatory fish by gut content and stable isotopes analysis around Fernando de Noronha Archipelago (Brazil), Equatorial West Atlantic. J. Fish Biol. 99, 1576â1590 (2021).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Costa, B., Taylor, J. C., Kracker, L., Battista, T. & Pittman, S. Mapping reef fish and the seascape: Using acoustics and spatial modeling to guide coastal management. PLoSÂ One 9, e85555 (2014).ADSÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
Kavanagh, K. D. & Olney, J. E. Ecological correlates of population density and behavior in the circumtropical black triggerfish Melichthys niger (Balistidae). Environ. Biol. Fishes 76, 387â398 (2006).ArticleÂ
Google ScholarÂ
Lubbock, R. The shore fishes of Ascension Island. J. Fish Biol. 17, 283â303 (1980).ArticleÂ
Google ScholarÂ
Price, J. H. & John, D. M. Ascension Island, South Atlantic: A survey of inshore benthic macroorganisms, communities and interactions. Aquat. Bot. 9, 251â278 (1980).ArticleÂ
Google ScholarÂ
Robertson, D. R. & Allen, G. R. Zoogeography of the shorefish fauna of Clipperton Atoll. Coral Reefs 15, 121â131 (1996).ADSÂ
ArticleÂ
Google ScholarÂ
Gasparini, J. L. & Floeter, S. R. The shore fishes of Trindade Island, western south Atlantic. J. Nat. Hist. 35, 1639â1656 (2001).ArticleÂ
Google ScholarÂ
Lubbock, R. & Edwards, A. The fishes of Saint Paulâs rocks. J. Fish Biol. 18, 135â157 (1981).ArticleÂ
Google ScholarÂ
Feitoza, B. M., Rocha, L. A., Luiz-JĂșnior, O. J., Floeter, S. R. & Gasparini, J. L. Reef fishes of St. Paulâs Rocks: New records and notes on biology and zoogeography. Aqua 7, 61â82 (2003).
Google ScholarÂ
Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093â1106 (2004).ArticleÂ
Google ScholarÂ
Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22â47 (2008).
Google ScholarÂ
Morais, R. A., Ferreira, C. E. L. & Floeter, S. R. Spatial patterns of fish standing biomass across Brazilian reefs. J. Fish Biol. 91, 1642â1667 (2017).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fishes 18, 257â276 (1987).ArticleÂ
Google ScholarÂ
Walsh, W. J. Aspects of Nocturnal Shelter, Habitat Space, and Juvenile Recruitment in Hawaiian Coral Reef Fishes (University of Hawaii, 1984).
Google ScholarÂ
Caldeira, R. M. A., Groom, S., Miller, P., Pilgrim, D. & Nezlin, N. P. Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens. Environ. 80, 336â360 (2002).ADSÂ
ArticleÂ
Google ScholarÂ
Martinez, E. & Maamaatuaiahutapu, K. Island mass effect in the Marquesas Islands: Time variation. Geophys. Res. Lett. 31, 18 (2004).ArticleÂ
Google ScholarÂ
MessiĂ©, M. et al. The delayed island mass effect: How islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).ADSÂ
ArticleÂ
Google ScholarÂ
de Souza, C. S., da Luz, J. A. G., Macedo, S., de Montes, M. J. F. & Mafalda, P. Chlorophyll a and nutrient distribution around seamounts and islands of the tropical south-western Atlantic. Mar. Freshw. Res. 64, 168â184 (2013).ArticleÂ
CASÂ
Google ScholarÂ
Travassos, P., Hazin, F. H., Zagaglia, J. R., AdvĂncula, R. & Schober, J. Thermohaline structure around seamounts and islands off North-Eastern Brazil. Arch. Fish. Mar. Res. 47, 211â222 (1999).
Google ScholarÂ
Bakun, A. Ocean triads and radical interdecadal variation: Bane and boon to scientific fisheries management. in Reinventing fisheries management 331â358 (Springer, 1998).Agostini, V. N. & Bakun, A. âOcean triadsâ in the Mediterranean Sea: Physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129â142 (2002).ArticleÂ
Google ScholarÂ
Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459â479 (1988).
Google ScholarÂ
Valenzuela, J., Bellwood, D. & Morais, R. Ontogenetic habitat shifts in fusiliers (Lutjanidae): Evidence from Caesio cuning at Lizard Island, Great Barrier Reef. Coral Reefs 40, 1687â1696 (2021).ArticleÂ
Google ScholarÂ
Curley, B. G., Kingsford, M. J. & Gillanders, B. M. Spatial and habitat-related patterns of temperate reef fish assemblages: Implications for the design of Marine Protected Areas. Mar. Freshw. Res. 53, 1197â1210 (2002).ArticleÂ
Google ScholarÂ
Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077â1091 (2018).ArticleÂ
Google ScholarÂ
Maida, M. & Ferreira, B. P. Coral reefs of Brazil: An overview. in Proceedings of the 8th International Coral Reef Symposium Vol. 1 74 (Smithsonian Tropical Research Institute PanamĂĄ, 1997).Pittman, S. J., Costa, B. M. & Battista, T. A. Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J. Coast. Res. 2009, 27â38 (2009).ArticleÂ
Google ScholarÂ
Costa, T. Anålise comportamental e distribuição da atividade pesqueira no Arquipelågo de Fernando de Noronha (Nordeste, BR) baseada em dados de GPS. (Universidade Federal Rural de Pernambuco, 2019).
Google ScholarÂ
Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573â583 (2007).ArticleÂ
Google ScholarÂ
Claudet, J., Pelletier, D., Jouvenel, J.-Y., Bachet, F. & Galzin, R. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130, 349â369 (2006).ArticleÂ
Google ScholarÂ
Caveen, A. J., Gray, T. S., Stead, S. M. & Polunin, N. V. C. MPA policy: What lies behind the science?. Mar. Policy 37, 3â10 (2013).ArticleÂ
Google ScholarÂ
HernĂĄndez, C. M. et al. Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area. Sci. Rep. 9, 1â11 (2019).
Google Scholar More