More stories

  • in

    New integrated hydrologic approach for the assessment of rivers environmental flows into the Urmia Lake

    Specifications of the study areaUrmia Lake, as the largest inland lake of Iran, is a national park and one of the largest Ramsar sites of Iran (Ramsar, 1971). The lake is formed in a natural depression within the catchment area in the northwest of Iran. The basin of the lake covers an area of 52,000 km2 and its area is about 5,700 km249. In addition, its maximum length and width are 140 and 50 km, respectively. Further, the lake catchment is a closed inland basin in which all rainwater runoff flows to the central saline lake, and evaporation from the surface of the lake is the only way out. More importantly, it is the largest saltwater lake in Iran and the second largest saltwater lake in the world.The current surface flow system to Urmia Lake consists of 10 main rivers with permanent flow potential, including Zola, Nazlu, Rozeh, Shahrchai, Baranduz, Gadar, Mahabad, Simineh, Zarrineh, and Aji. In terms of the water supply potential of Urmia Lake, Zarrineh, Simineh, Aji, and Nazlu rivers with a flow allocation of 41, 11, 10, and 6% have a key role, respectively.The rivers of this basin are originated from mountains and pass through the heights and enter the agricultural plains. The main usage in plains are for agriculture which cause the changes in natural rivers flow regime. On the other hand, the natural flow regime of the rivers should be considered as the basis for e-flow calculation. So, in the current study the obtained data from the stations situated in the upstream of the rivers and the stations before the agricultural plains are utilized to alleviate the effects of agricultural use on natural flow regime of the rivers. Also, to eliminate the effects of dam rule curve on river flow regime, stations situated in the upstream of the dams are considered as the main scale in the upstream of the dammed rivers like Zarrineh, Mahabad and Zola. Despite all the efforts made to select stations with the least human impact, the two stations related to Aji and Shahar Rivers have been affected by the structures built above them. Therefore, in order to eliminate the effects of the constructed structures at the upstream of the stations, flow naturalization methods were used only for the two stations of Venyar of Aji River and the Band Urmia station of Shahar River. There are several ways to naturalize hydrometric station data. Terrier et al.51 by studying flow naturalization methods in various researches were able to provide a comprehensive study of naturalization methods and selection criteria for each of these methods. According to their studies, the first and the most important prerequisite for stream naturalization is to identify the factors affecting the river and the quality of data in the region, which play a major role in choosing the flow naturalization method. Two factors play a major role in affecting river hydrology. The first factor is the construction of hydraulic structures along the path of rivers and the second factor is the change of land use that has occurred in the rivers basin. In the current study, the purpose of flow naturalization is to eliminate the effects of large dams built on the inlet rivers of the lake, which can affect the hydrology of the river flow. It should be noted that it is not possible to eliminate the effects of land use change due to the gradual nature of the changes, the inability to determine the exact amount and time of the changes and the lack of required data as well. Therefore, in this study, the effects of land use change at the upstream of the stations have been neglected. The most important reason that the Aji River needs to naturalize is the existence of several small dams upstream of Venyar station. To eliminate the effects of dams and flow naturalization at the upstream of this station, the spatial interpolation method introduced by Hughes and Smakhtin52 was used. In this method, Sahzab hydrometric station located at the upstream of the river was used as a base station to naturalize the flow. The next station which needs to be naturalized the flow is the Band Urmia station Shahar River. The main problem for this river has been the construction of a dam upstream of Band Urmia river station since 2004. The drainage area ratio method introduced by Hirsch53 was used to eliminate the effect of this dam on the station data. This method has been used by various researchers to naturalize river flow54,55,56 which is based on the upstream drainage area of the stations. In this method the ratio of the drainage area of the two stations is used to naturalize the flow in the affected station. For this purpose, the data of Bardehsoor station located upstream of the dam was used to naturalize the data of the Band Urmia station. So, anthropogenic effects are at the minimum level in calculations. The utilized stations to calculate the e-flow as upstream stations are illustrated in Fig. 1.Figure 1An overview of the Urmia Lake basin, the rivers, and selected gauging stations. Figure 1 was generated by ArcGIS v10.2 software50 (Environmental Systems Research Institute, Inc., USA, URL http://www.esri.com/).Full size imageAppropriate criteria for allocating the EWR of the Urmia LakeDue to the high salinity of Urmia Lake, only a small number of invertebrates make up the living organisms of this huge water body. Saltwater shrimp or Artemia is a type of aquatic crustacean which can be found in saltwater lakes or coastal lagoons worldwide. Artemia can tolerate salinity less than 10 gl−1 up to 340 gl−1 and adapt to environmental conditions. Artemia Urmiana, the most well-known species of the Urmia Lake, is considered as the main food of migratory birds that spend part of their wintering period on the lake and surrounding wetlands. The presence of this species in the Urmia Lake was first reported by Gunter (1899), and many researchers have confirmed the existence of this bisexual creature in this lake57,58,59,60,61.One of the key factors in estimating the EWR of Urmia Lake is to create an appropriate environmental condition for its dominant species. Abbaspour and Nazari Doost39 identified the EWR of the Urmia Lake by considering the living conditions of Artemia as its dominant species. In this study, Artemia Urmaina was selected as a biological indicator, along with NaCl and elevation above mean sea level (AMSL) as the indicators of water quality and quantity, respectively. The combination of these three indicators forms the ecological basis of Urmia Lake. Therefore, salinity is considered to be equal to 240 gl−1 as the tolerable limit of the biological index. Using long-term statistics in the Urmia Lake and the relationship between quantitative and qualitative water indicators, the water level of 1274.1 m (AMSL) was chosen as the ecological level of the lake so that the balance of these three indicators remained within the allowable range. The study indicated that the calculated environmental water demand of Urmia Lake was equal to 3084 Mm3 per year provided by main rivers entering the lake. Therefore, the proposed new methods should be able to deliver this volume of water to the lake and simultaneously feed the EFR of the river. To supply this water volume, government has programs in order to mitigate the water consumption especially in agriculture. The most important program is 40 percent reduction in agricultural water consumption which is accompanied with the increase of efficiency. Also the government pursues urban wastewater treatment to retrieve some of domestic water to the lake. The mentioned programs are time consuming, however, the new methods presented in this study can be useful for managers in determining the allocation patterns and consumption management. Ordinary method of flow duration curve shifting (FDCS) in estimating e-flowSince the early 1990s, various methods have been developed based on the hydrological indices62 in order to determine the e-flow by taking into account the flow variability and adaptation to the ecological conditions of rivers. One of the intended diagrams in the study of the hydrological characteristics is the flow duration curve (FDC), which is used to assess the fluctuations and variability of water flow from an environmental point of view. Given the importance of the presence of flood currents in the restoration of the river and wetland ecosystems63,64, the FDC is one of the most practical methods to show the full range of river discharge characteristics from water shortage to flood events. This diagram also demonstrates the relationship between the amount and frequency of the flow which can be prepared for daily, annual, and monthly time intervals65. The FDCS is a method in which FDC is employed to estimate the river flow. This method was introduced by Smakhtin and Anputhas66 to evaluate the e-flow in the river system. The method, which is called FDCS, provides a hydrological regime to protect the river in the desired ecological conditions.In the previous research, most of the rivers in the Urmia Lake basin have been compatible with FDCS, and due to the lack of biological data regarding these rivers, it is always one of the top priorities among the methods of estimating the e-flow in rivers leading to the Urmia Lake67,68. It is noteworthy that the characteristics of calculation steps of the ordinary method are provided as follows.This method consists of four main steps:

    1.

    Assessing the existing hydrological conditions (preparing the FDC for a natural river flow regime),

    2.

    Selecting the appropriate environmental management class;

    3.

    Acquiring the environmental FDC;

    4.

    Generating e-flow time series.

    The first step is to prepare the FDC in the desired river range using monthly flow data. In this method, FDC for the natural river flow regime is prepared by 17 fixed percentage points of occurrence probabilities (0.01, 0.1, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99, 99.9, 99.99) where P1 = 99.99% and P17 = 0.01% represent the highest and lowest probability of occurrence, respectively. These points ensure that the entire flow range is adequately covered, as well as facilitating the continuation of the next steps.This method, which uses mean monthly flow (MMF) data, considers six environmental management classes (EMC) from A to F. The FDC of EFR (FDC-EFR) for each class in terms of EMC is determined based on the obtained natural river FDC by the MMF. The higher EMC needs more water to maintain the ecosystem. These classes are determined based on empirical relationships between the flow and ecological status of rivers, which currently have no specific criteria for identifying these limits. The selection of the appropriate class individually relies on the expert’s judgment of the river ecosystem condition.After obtaining the natural FDC, the next step is to calculate the FDC-EFR for each EMC using the lateral shifts of FDC to the left along the probabilistic axis. For EMC-A rivers, one lateral shift to the left is applied while two, three, and four lateral shifts are employed for EMC-B, EMC-C, and EMC-D rivers, respectively. It should be noted that the overall hydrological pattern of the flow will be maintained although the flow variation is lost for each shift.In the current study, global e-flow calculation (GEFC) v2.0 software69,70 has been utilized to compute the e-flow by the FDCS method. The long-term data (at least 20 years) of MMF are the required input data for this software.According to the research conducted on the rivers of the Urmia Lake basin, EMC-C is the minimum considered EMC for 10 main rivers of the lake, thus the EMC-C has been considered in this study, and all calculations for classes A, B, C have been performed accordingly.The description of new methods based on ordinary methodThe main purpose of presenting new methods is to combine the EWR of wetlands or lakes and the hydrological method of FDCS, which can be used to calculate the e-flow of rivers and meet the needs of lakes or wetlands in downstream. These methods relies on the FDCS while with the difference that the proposed method includes three fundamental changes compared to the original one.

    1.

    Applying monthly FDC (FDC for each month separately) instead of annual FDC,

    2.

    Employing daily flow data instead of MMF,

    3.

    Considering the downstream EWR in the amount of the lateral shift in the FDCS method.

    The use of the structure of new methods lead to a dynamic process that is based on the selected EMC of the river, the amount of the natural flow, and the date of occurrence and can compute the amount of the e-flow of the river on each day of the year.River hydrology greatly varies depending on the type of the basin, the climate of the area, and the relationship between the basin and the river each exhibiting different behaviors during the months of the year. Accordingly, the proposed methods should provide sufficient comprehensiveness in estimating the e-flow by considering different flow characteristics. Due to the type and timing of precipitation in the Urmia Lake basin, the rivers are full of water from March to June and spend extremely less flows during the other times of the year. For example, Fig. 2 shows the distribution of the Nazlu River flows in the west of Urmia Lake throughout the year. According to the data, 74% of the AF crosses the river from March to June, and the highest and lowest river discharges are related to May with 29% and September and August with 2% of the AF, respectively.Figure 2Historical hydrograph at the Tapik Station, Nazlu River: (a) Daily and mean monthly distribution of flows and (b) Magnified hydrograph for a typical year (1993).Full size imageAccording to the flow distribution throughout the year, the annual FDC is an average FDC of each month of the year. However, the flow of a river during the months of the year represents significant changes. Therefore, the monthly FDC is higher than the annual FDC in the high-water months (e.g., May). Additionally, this curve is lower compared to the annual FDC in the low-water months (e.g., September). Accordingly, the use of monthly FDCs provides more details of changes in the hydrological parameters of the flow and can be a better indicator of the hydrological index of river flows.In the conventional FDCS method, the FDC is obtained using the MMF data of each station. The obtained curve represents the monthly average of river flow and does not illustrates the minimum, maximum and the effect of flow fluctuations in the estimation of e-flows (Fig. 2).In the new methods, all FDC diagrams were obtained by daily data. Both annual (EFR-Ann) and monthly (EFR-Mon) methods are separately utilized to compare the calculation of the e-flow and to choose the best method. The annual FDC is a probabilistic chart for the whole year and the monthly FDC includes 12 probability curves for each year. Due to the use of FDC in e-flow estimations, it has been attempted to perform all calculations from this diagram. Therefore, concepts related to the flow volume can be integrated with the FDCS method. Some of the applied concepts for this purpose are as follows.In the FDCS method, the FDC is defined based on 17 probabilistic percentage points. To calculate the mean AF (MAF) volume, the theorem of the mean value for a definite integral is employed in the FDC diagram. Accordingly, considering that FDC is continuous between the first and seventeenth probability points, the mean flow (Fm) is obtained from Eq. (1) as.
    $$F_{m} = frac{1}{{P_{1} – P_{17} }}mathop smallint limits_{{P_{17} }}^{{p_{1} }} Fleft( p right)dp$$
    (1)
    Fm = Mean flow. P1, P17 = Points of FDC probability that P1 = 99.99 and P17 = 0.01.Given that the FDC consists of 17 probability points and the probability function ‘F(P)’ is unavailable for this curve as a mathematical equation, obtaining this equation for each flow curve increases the computational cost. Therefore, numerical integration methods can be used in this regard. The trapezoidal numerical solution method has been utilized for this purpose. By applying the trapezoidal method in solving Eq. (1), Eq. (2) is obtained, which is used to compute the mean flow of the FDC.$$F_{m} = frac{1}{{P_{1} – P_{17} }}mathop sum limits_{i = 1}^{17} frac{{left( {F_{i} + F_{i + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} } right]$$
    (2)
    Pi = 17 points of FDC probability that P1 = 99.99% and P17 = 0.01%. Fi = The amount of the river flow with the probability of the occurrence of Pi.To calculate the AF volume by monthly and annual FDCs, Eq. (3) can be applied for the AF volume in the EFR-Ann method, as well as employing Eqs. (4) and (5) for the monthly and AF volume in the EFR-Mon method, respectively.$${text{V}}_{{AF_{Ann} }} = frac{365*24*3600}{{P_{1} – P_{17} }}mathop sum limits_{i = 1}^{17} frac{{left( {F_{i} + F_{i + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} } right]$$
    (3)
    $${text{V}}_{Monthly } = frac{{D_{k} *24*3600}}{{P_{1} – P_{17} }}mathop sum limits_{i = 1}^{17} frac{{left( {F_{i} + F_{i + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} } right]$$
    (4)
    $${text{V}}_{{AF_{Mon} }} = mathop sum limits_{k = 1}^{12} left[ {{text{V}}_{Monthly } } right]_{k}$$
    (5)

    VAFAnn = AF volume using annual FDC. VMonthly = Monthly flow volume. VAFMon = AF volume using monthly FDC. Dk = Number of the days of the kth month. k = Number of each month.The required e-flow by wetlands and lakes must have two basic characteristics. The volume of EWR for maintaining their ecological level must be determined and provided by the studies of their ecosystems. In addition, fluctuations must be maintained in water levels in the lake due to hydrological conditions under the basins of the lake supplying rivers given the fact that maintaining the hydrological conditions of the river is one of the major goals of the FDCS method in estimating the e-flow of the river. On the other hand, the rehabilitation of the wetland or lake downstream of rivers requires a certain amount of water, and the new methods must be applied to combine these two goals. In this regard, the AF volume, which can be transferred to the lake (VL Mon or Ann) by these rivers, is calculated by taking into account the natural flow conditions of the rivers in the basin and without considering the consumptions,.$${text{V}}_{{L_{Ann} }} { } = mathop sum limits_{j = 1}^{{text{n}}} left[ {{text{V}}_{{AF_{Ann} }} } right]_{j}$$
    (6)
    $${text{V}}_{{L _{Mon} }} = mathop sum limits_{j = 1}^{{text{n}}} left[ {{text{V}}_{{AF_{Mon} }} } right]_{j}$$
    (7)

    n = Number of input rivers to the lake. VLAnn = AF volume, which can be transferred to the lake using annual FDC. VLMon = AF volume, which can be transferred to the lake using monthly FDC.The ratio of the EWR of the lake or wetland to the average annual volume of the basin should be determined at this stage.$$b = frac{{{text{V}}_{EWR} }}{{{text{V}}_{{L_{Ann} }} or {text{V}}_{{L _{Mon} }} }}$$
    (8)
    b = The ratio of the EWR of the lake or wetland to the average annual volume of the basin. VEWR = Volume of environmental water requirement of the lake or wetland.In the conventional FDCS method, which is determined using GEFC v2.0 software70 (It is then called the GEFC method), depending on the type of the river EMC, the allocation curve is obtained with one or more shifts of the FDC. Each EMC includes a certain ratio of the MAF volume of the river, and changing the flow EMC facilitates changing the flow volume. It is impossible to supply a specific and predetermined downstream water volume of the river. Therefore, in the new methods, a new process must be used to calculate the amount of the FDC shift in order to provide a certain volume of water in the shifting of the FDC. First, a new definition of the EMC was developed for the new methods. In this definition, instead of using a specific shift of the FDC, the range between the two classes was characterized as an EMC. For example, the region between the curve of EMC-A and the natural flow and the region between the EMC-A and EMC-B curves are defined as EMC-A and EMC-B areas, respectively. These regions can be defined for all EMCs (Fig. 3).Figure 3Comparison of the EFR allocated to each of the environmental management classes from this new approach (on the left) with the conventional FDCS methods (on the right).Full size imageBased on the new definition of the range of EMC, the FDC can be shifted as much as needed according to the volume of downstream EWR. The EWR can be defined as the annual percentage river flow respecting the shift of EMCs or a percentage between two specific classes. If the required flow volume is between two specific classes, Eq. (9) can be used to shift the FDC. In fact, with the new definition, any required probable shift can be applied to the FDC ِdiagram to reach a certain volume. In this case, new probable points are determined using Eq. (9), followed by performing the FDC shift similar to the FDCS method in the next step.$$P_{{i_{new} }} = P_{i} + a{*}left( {P_{i – 1} – P_{i} } right)quad i = t, ldots ,16$$
    (9)
    Pinew = New shifted probability point. Pi = 17 points of FDC probability that P1 = 99.99% and P17 = 0.01%. a = Coefficient of shift which defined between 0 and 1. t = Number of shifts performed on the FDC diagram numbered 1–6 for the areas of EMC A, B, C, D, E, F, respectively.The concept of numerical integration and Eqs. (9) and (3) were utilized to calculate the annual volume of different EMCs for each river, and Eqs. (10) and (12) were obtained for the new annual and monthly methods, respectively.$$begin{aligned} & {text{V}}_{{AF class_{t} Ann }} = frac{1}{{P_{1} – left[ {P_{17} + a*left( {P_{16} – P_{17} } right)} right]}} \ & quad quad quad quad quad *left[ {F_{1} *left[ {P_{1} – left[ {P_{t + 1} + a*left( {P_{t} – P_{t + 1} } right)} right]} right] + mathop sum limits_{{i = {text{t}} + 1}}^{16} frac{{left( {F_{i – t} + F_{i – t + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} + a{*}left( {P_{i – 1} – 2P_{i} + P_{i + 1} } right)} right]} right]*365*24*3600 \ end{aligned}$$
    (10)
    $$begin{aligned}&{text{V}}_{{ class_{t} Mon }} = frac{{D_{k} *24*3600}}{{P_{1} – left[ {P_{17} + a*left( {P_{16} – P_{17} } right)} right]}} \ & quad quad quad quad quad *left[ {F_{1} *left[ {P_{1} – left[ {P_{t + 1} + a*left( {P_{t} – P_{t + 1} } right)} right]} right] + mathop sum limits_{{i = {text{t}} + 1}}^{16} frac{{left( {F_{i – t} + F_{i – t + 1} } right)}}{2}{*}left[ {P_{i} – P_{i + 1} + a{*}left( {P_{i – 1} – 2P_{i} + P_{i + 1} } right)} right]} right] end{aligned}$$
    (11)
    $${text{V}}_{{AF class_{t} Mon}} = mathop sum limits_{K = 1}^{12} left[ {{text{V}}_{{ class_{t} Mon}} } right]_{k}$$
    (12)

    VAF classt Ann = AF volume for the related class of selected t for annual method. Vclasst Mon = Monthly flow volume for the related class of selected t for monthly method. VAF classt Mon = AF volume for the related class of selected t for monthly method.where t is the number of shifts performed on the FDC diagram numbered 1–6 for the areas of EMC A, B, C, D, E, F, respectively. To find the exact value of a in these equations, the scope of the EMC must be determined based on the required volume by downstream. Therefore, assuming a = 0 in these equations, the AF volume at the boundary of each class is obtained for both EFR-Mon (Eq. (10)) and EFR-Ann (Eq. (12)) methods. The nearest calculated annual volume is selected as the appropriate EMC which is smaller than the volume of downstream. Further, the corresponding t-class is used to solve the equations, representing the range of the selected EMC.At this stage, the value of the obtained ‘a’ from the FDC shift diagram equals the required volume of downstream. For this purpose, Eqs. (13) and (14) for the EFR-Ann and EFR-Mon methods are obtained from Eqs. (10) and (12), respectively.$$b{text{*V}}_{{AF_{Ann} }} = V_{{AF class_{t } Ann }}$$
    (13)
    $$b{text{*V}}_{{AF_{Mon} }} = V_{{AF class_{t} Mon }}$$
    (14)

    By solving Eqs. (13) and (14), the obtained value of a represents the annual and monthly methods, and the obtained shifted FDC stands for the required annual volume downstream.After determining the appropriate FDC, it is used to calculate the daily e-flow needs of the river using the spatial interpolation algorithm52, which is also employed in the FDCS method. To this end, the probability of the river flow occurrence from the annual or monthly FDCs (according to the selected method) is determined and then the required river flow in the specified probability of occurrence is obtained using the e-flow curve.The range of variability approach (RVA)71,72 is a complex method based on the use of e-flow for achieving the goals of river ecosystem management. This method is applied to compare the methods and select the best one based on the least hydrological change compared to the natural flow of the river. Furthermore, it is based on the importance of the hydrological feature impact of the river on the life, biodiversity of native aquatic species, and the natural ecosystem of the river and aims to provide complete statistical characteristics of the flow regime.In the RVA method, the indicators of hydrologic alteration (IHA) parameters related to the natural river flow are considered as a basis, and changes in the IHA parameters of different EMCs are evaluated accordingly. Richter et al.72 suggested that the distribution of the annual values of IHA parameters for maintaining river environmental conditions must be kept as close as possible to natural flow condition parameters. In several studies, this method was used to investigate changes in the hydrological parameters of a river over time37.Moreover, the total data related to the natural flow of the river for each IHA parameter are classified into three categories in the RVA method. In this study, this classification is based on Default software, and the 17% distance from the median is introduced as the boundary of the classes. By this definition, three classes of the same size are created, in which the middle category is between 34 and 67, and the lower and higher ranges are called the lowest and highest categories, respectively.Using the current change factor obtained from Eq. (15), the RVA method can quantify the change amount in the values of the 33 IHA parameters compared to the natural flow conditions.$$HA = left( {O_{f} – E_{f} } right)/E_{f}$$
    (15)
    HA = Hydrological alteration index. Of = Number of flows occurring within a certain category of the IHA parameter under changed flow conditions. Ef = Number of flows occurring in the same category specified by the parameter under natural flow conditions.In this case, for each IHA parameter, three HA factors are obtained, which can be separately examined for river flows in these three categories. In the analysis of parameters, the positive HA means that the number of occurrences of the phenomenon has increased in a certain IHA category compared to the natural conditions of the river flow. Negative values imply a decrease in the number of occurrences of the same phenomenon. To compare the number of changes in IHA parameters, the HA factor of the RVA method and IHA software (Version 7.1)73 was employed to allocate e-flows in different methods. The obtained results using RVA method calculates and represents HA of each 33 parameters. However, making decision to choose the best method, all parameters need to be assessed and presented as a total index. Due to calculate total HA index based on studies of Xue et al.74 Eq. (16) can be used.$$HA_{o} = sqrt {frac{{mathop sum nolimits_{i = 1}^{33} HA_{i}^{2} }}{33}} *100$$
    (16)
    HAo = Total hydrological alteration index. HAi = Hydrological alteration of each of 33 parameters.Determination of EFR for different EMCs for all methodsInitially, the MMF for each available statistical month was obtained by daily data from stations located in the upstream of the basin rivers of Urmia Lake (Fig. 1). The FDC for the natural flow and various EMCs were obtained using MMF values and GEFC software. Next, to perform the calculations in the EFR-Ann method, the FDC of a natural flow and different EMCs during the year were plotted by daily data. Finally, for the EFR-Mon method, the daily data of each month of the year were examined and the FDC of the natural flow and EMCs were separately plotted for each month.Based on the presented method in this research, Fig. 4 illustrates a step-by-step diagram for determining the e-flows of rivers in the Urmia Lake basin.Figure 4Step-by-step flowchart for determining the environmental flows of rivers in the Urmia Lake basin.Full size image More

  • in

    Defoliation-induced changes in foliage quality may trigger broad-scale insect outbreaks

    Swank, W. T., Waide, J. B., Crossley, D. A. & Todd, R. L. Insect defoliation enhances nitrate export from forest ecosystems. Oecologia 51, 297–299 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hunter, M. D. Insect population dynamics meets ecosystem ecology: effects of herbivory on soil nutrient dynamics. Agric. For. Entomol. 3, 77–84 (2001).Article 

    Google Scholar 
    Metcalfe, D. B. et al. Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol. Lett. 17, 324–332 (2014).PubMed 
    Article 

    Google Scholar 
    Metcalfe, D. B., Crutsinger, G. M., Kumordzi, B. B. & Wardle, D. A. Nutrient fluxes from insect herbivory increase during ecosystem retrogression in boreal forest. Ecology 97, 124–132 (2016).PubMed 
    Article 

    Google Scholar 
    Lovett, G. M. et al. Insect defoliation and nitrogen cycling in forests. Bioscience 52, 335 (2002).Article 

    Google Scholar 
    Frost, C. J. & Hunter, M. D. Recycling of nitrogen in herbivore feces: Plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia 151, 42–53 (2007).PubMed 
    Article 

    Google Scholar 
    Le Mellec, A. & Michalzik, B. Impact of a pine lappet (Dendrolimus pini) mass outbreak on C and N fluxes to the forest floor and soil microbial properties in a Scots pine forest in Germany. Can. J. Res. 38, 1829–1841 (2008).Article 
    CAS 

    Google Scholar 
    Grüning, M. M., Simon, J., Rennenberg, H. & L-M-Arnold, A. Defoliating insect mass outbreak affects soil N fluxes and tree N nutrition in scots pine forests. Front. Plant Sci. 8, 954 (2017).Mikola, J., Yeates, G. W., Barker, G. M., Wardle, D. A. & Bonner, K. I. Effects of defoliation intensity on soil food-web properties in an experimental grassland community. Oikos 92, 333–343 (2001).Article 

    Google Scholar 
    Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G. & Koch, G. W. Insect herbivory increases litter quality and decomposition: an extension of the acceleration hypothesis. Ecology 84, 2867–2876 (2003).Article 

    Google Scholar 
    Pitman, R. M., Vanguelova, E. I. & Benham, S. E. The effects of phytophagous insects on water and soil nutrient concentrations and fluxes through forest stands of the Level II monitoring network in the UK. Sci. Total Environ. 409, 169–181 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kaukonen, M. et al. Moth herbivory enhances resource turnover in subarctic mountain birch forests? Ecology 94, 267–272 (2013).PubMed 
    Article 

    Google Scholar 
    Weintraub, M. Biological phosphorus cycling in arctic and alpine soils. In Phosphorus in Action (eds. Bünemann E., Oberson, A. & Frossard, E.) Vol. 26, p. 295–316 (Springer, 2011).Högberg, P., Näsholm, T., Franklin, O. & Högberg, M. N. Tamm review: on the nature of the nitrogen limitation to plant growth in fennoscandian boreal forests. Ecol. Manag. 403, 161–185 (2017).Article 

    Google Scholar 
    Maynard, D. G. et al. How do natural disturbances and human activities affect soils and tree nutrition and growth in the Canadian boreal forest? Environ. Rev. 22, 161–178 (2014).CAS 
    Article 

    Google Scholar 
    Wan, S., Hui, D. & Luo, Y. Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a Meta-Analysis. Ecol. Appl. 11, 1349–1365 (2001).Article 

    Google Scholar 
    Hart, S. A. & Chen, H. Y. H. Understory vegetation dynamics of North American boreal forests. CRC Crit. Rev. Plant Sci. 25, 381–397 (2006).Article 

    Google Scholar 
    Martineau, C., Beguin, J., Séguin, A. & Paré, D. Cumulative effects of disturbances on soil nutrients: predominance of antagonistic short-term responses to the salvage logging of insect-killed stands. Ecosystems 23, 812–827 (2020).CAS 
    Article 

    Google Scholar 
    Coulombe, D., Sirois, L. & Paré, D. Effect of harvest gap formation and thinning on soil nitrogen cycling at the boreal–temperate interface. Can. J. Res. 47, 308–318 (2017).CAS 
    Article 

    Google Scholar 
    Grenon, F., Bradley, R. L. & Titus, B. D. Temperature sensitivity of mineral N transformation rates, and heterotrophic nitrification: Possible factors controlling the post-disturbance mineral N flush in forest floors. Soil Biol. Biochem. 36, 1465–1474 (2004).CAS 
    Article 

    Google Scholar 
    Guntiñas, M. E., Leirós, M. C., Trasar-Cepeda, C. & Gil-Sotres, F. Effects of moisture and temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 48, 73–80 (2012).Article 
    CAS 

    Google Scholar 
    Houle, D., Duchesne, L. & Boutin, R. Effects of a spruce budworm outbreak on element export below the rooting zone: a case study for a balsam fir forest. Ann. Sci. 66, 707–707 (2009).Article 
    CAS 

    Google Scholar 
    Griffin, J. M. & Turner, M. G. Changes to the N cycle following bark beetle outbreaks in two contrasting conifer forest types. Oecologia 170, 551–565 (2012).PubMed 
    Article 

    Google Scholar 
    Orwig, D. A., Cobb, R. C., D’Amato, A. W., Kizlinski, M. L. & Foster, D. R. Multi-year ecosystem response to hemlock woolly adelgid infestation in southern New England forests. Can. J. Res. 38, 834–843 (2008).Article 

    Google Scholar 
    McMillin, J. D. & Wagner, M. R. Chronic defoliation impacts pine sawfly (Hymenoptera: Diprionidae) performance and host plant quality. Oikos 79, 357 (1997).Article 

    Google Scholar 
    Pureswaran, D. S., Johns, R., Heard, S. B. & Quiring, D. Paradigms in eastern spruce budworm (Lepidoptera: Tortricidae) population ecology: a century of debate. Environ. Entomol. 45, 1333–1342 (2016).PubMed 
    Article 

    Google Scholar 
    Vidal, M. C. & Murphy, S. M. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21, 138–150 (2018).PubMed 
    Article 

    Google Scholar 
    White, T. C. R. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63, 90–105 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    White, T. C. R. An alternative hypothesis explains outbreaks of conifer-feeding budworms of the genus Choristoneura (Lepidoptera: Tortricidae) in Canada. J. Appl. Entomol. 142, 725–730 (2018).Article 

    Google Scholar 
    Bouchard, M., Régnière, J. & Therrien, P. Bottom-up factors contribute to large-scale synchrony in spruce budworm populations1. Can. J. Res. 48, 277–284 (2018).CAS 
    Article 

    Google Scholar 
    I-M-Arnold, A. et al. Forest defoliator pests alter carbon and nitrogen cycles. R. Soc. Open Sci. 3, 1–7 (2016).
    Google Scholar 
    Pureswaran, D. S. et al. Climate-induced changes in host tree–insect phenology may drive ecological state-shift in boreal forests. Ecology 96, 1480–1491 (2015).Article 

    Google Scholar 
    MFFP (Ministère des Forêts de la Faune et des Parcs). Aires infestées par la tordeuse des bourgeons de l’épinette au Québec en 2019 – Version 1.1. (2019).Forkner, R. E. & Hunter, M. D. What goes up must come down? Nutrient addition and predation pressure on oak herbivores. Ecology 81, 1588–1600 (2000).Article 

    Google Scholar 
    Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).Article 

    Google Scholar 
    Kristensen, J. A., Metcalfe, D. B. & Rousk, J. The biogeochemical consequences of litter transformation by insect herbivory in the Subarctic: a microcosm simulation experiment. Biogeochemistry 138, 323–336 (2018).CAS 
    Article 

    Google Scholar 
    Kagata, H. & Ohgushi, T. Ecosystem consequences of selective feeding of an insect herbivore: Palatability-decomposability relationship revisited. Ecol. Entomol. 36, 768–775 (2011).Article 

    Google Scholar 
    Kagata, H. & Ohgushi, T. Positive and negative impacts of insect frass quality on soil nitrogen availability and plant growth. Popul. Ecol. 54, 75–82 (2012).Article 

    Google Scholar 
    Weihrauch, D. & O’Donnell, M. J. Mechanisms of nitrogen excretion in insects. Curr. Opin. Insect Sci. 47, 25–30 (2021).PubMed 
    Article 

    Google Scholar 
    Choudhury, D. Herbivore induced changes in leaf-litter resource quality: a neglected aspect of herbivory in ecosystem nutrient dynamics. Oikos 51, 389–393 (1988).Article 

    Google Scholar 
    Régnière, J. & You, M. A simulation model of spruce budworm (Lepidoptera: Tortricidae) feeding on balsam fir and white spruce. Ecol. Modell. 54, 277–297 (1991).Article 

    Google Scholar 
    Balducci, L. et al. The paradox of defoliation: declining tree water status with increasing soil water content. Agric. Meteorol. 290, 108025 (2020).Article 

    Google Scholar 
    Conant, R. T. et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glob. Change Biol. 17, 3392–3404 (2011).Article 

    Google Scholar 
    Doran, O., MacLean, D. A. & Kershaw, J. A. Needle longevity of balsam fir is increased by defoliation by spruce budworm. Trees – Struct. Funct. 31, 1933–1944 (2017).Article 

    Google Scholar 
    Wu, Y., Maclean, D. A., Hennigar, C. & Taylor, A. R. Interactions among defoliation level, species, and soil richness determine foliage production during and after simulated spruce budworm attack. Can. J. Res. 50, 565–580 (2020).Article 

    Google Scholar 
    Fierravanti, A., Rossi, S., Kneeshaw, D., De Grandpré, L. & Deslauriers, A. Low non-structural carbon accumulation in spring reduces growth and increases mortality in conifers defoliated by spruce budworm. Front. Glob. Change 2, 1–13 (2019).Article 

    Google Scholar 
    Hennigar, C. R., MacLean, D. A., Quiring, D. T. & Kershaw, J. A. Differences in spruce budworm defoliation among balsam fir and white, red, and black spruce. For. Sci. 54, 158–166 (2008).
    Google Scholar 
    Bognounou, F., De Grandpré, L., Pureswaran, D. S. & Kneeshaw, D. Temporal variation in plant neighborhood effects on the defoliation of primary and secondary hosts by an insect pest. Ecosphere 8, e01759 (2017).Article 

    Google Scholar 
    Li, F. et al. Responses of tree and insect herbivores to elevated nitrogen inputs: a meta-analysis. Acta Oecologica 77, 160–167 (2016).Article 

    Google Scholar 
    Shaw, G. G., Little, C. H. A. & Durzan, D. J. Effect of fertilization of balsam fir trees on spruce budworm nutrition and development. Can. J. Res. 8, 364–374 (1978).CAS 
    Article 

    Google Scholar 
    Mattson, W. J., Haack, R. A., Lawrence, R. K. & Slocum, S. S. Considering the nutritional ecology of the spruce budworm in its management. Ecol. Manag. 39, 183–210 (1991).Article 

    Google Scholar 
    Metcalfe, D. B. et al. Ecological stoichiometry and nutrient partitioning in two insect herbivores responsible for large-scale forest disturbance in the Fennoscandian subarctic. Ecol. Entomol. 44, 118–128 (2019).Article 

    Google Scholar 
    Kaitaniemi, P., Ruohomäki, K., Ossipov, V., Haukioja, E. & Pihlaja, K. Delayed induced changes in the biochemical composition of host plant leaves during an insect outbreak. Oecologia 116, 182–190 (1998).PubMed 
    Article 

    Google Scholar 
    Fuentealba, A. & Bauce, É. Interspecific variation in resistance of two host tree species to spruce budworm. Acta Oecol. 70, 10–20 (2016).Article 

    Google Scholar 
    Nealis, V. G. & Régnière, J. Insect – host relationships influencing disturbance by the spruce budworm in a boreal mixedwood forest. Can. J. Res. 1882, 1870–1882 (2004).Article 

    Google Scholar 
    Greenbank, D. O. Staminate flowers and the spruce budworm. Mem. Entomol. Soc. Can. 95, 202–218 (1963).Article 

    Google Scholar 
    Sturtevant, B. R., Cooke, B. J., Kneeshaw, D. D. & MacLean, D. A. Modeling insect disturbance across forested landscapes: insights from the spruce budworm. in Simulation Modeling Of Forest Landscape Disturbances. 93–134 (Springer, 2015).Zalucki, M. P., Clarke, A. R. & Malcolm, S. B. Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47, 361–393 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Despland, E. Effects of phenological synchronization on caterpillar early-instar survival under a changing climate1. Can. J. Res. 48, 247–254 (2018).Article 

    Google Scholar 
    Mattson, W. J. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11, 119–161 (1980).Article 

    Google Scholar 
    Greenbank, D. O. The role of climate and dispersal in the initiation of the spruce budworm outbreak in New Brunswick: II. The role of dispersal. Can. J. Zool. 35, 385–403 (1957).Article 

    Google Scholar 
    Boulanger, Y. et al. The use of weather surveillance radar and high-resolution three dimensional weather data to monitor a spruce budworm mass exodus flight. Agric. Meteorol. 234–235, 127–135 (2017).Article 

    Google Scholar 
    Landry, J. S. & Parrott, L. Could the lateral transfer of nutrients by outbreaking insects lead to consequential landscape-scale effects? Ecosphere 7, e01265 (2016).Article 

    Google Scholar 
    Andersen, T., Elser, J. J. & Hessen, D. O. Stoichiometry and population dynamics. Ecol. Lett. 7, 884–900 (2004).Article 

    Google Scholar 
    Environment Canada. Canadian climate normals: 1981-2010 Climate normals and averages. (2015). Available at: http://climate.weather.gc.ca/climate_normals/index_e.html. (Accessed: 5 April 2016).De Grandpré, L., Morissette, J. & Gauthier, S. Long-term post-fire changes in the northeastern boreal forest of Quebec. J. Veg. Sci. 11, 791–800 (2000).Gauthier, S., Boucher, D., Morissette, J. & De Grandpré, L. Fifty-seven years of composition change in the eastern boreal forest of Canada. J. Veg. Sci. 21, 772–785 (2010).
    Google Scholar 
    Bouchard, M. & Pothier, D. Spatiotemporal variability in tree and stand mortality caused by spruce budworm outbreaks in eastern Quebec. Can. J. Res. 40, 86–94 (2010).Article 

    Google Scholar 
    Fettes, J. J. Investigations of sampling techniques for population studies of the spruce budworm on balsam fir in Ontario (Forest Insect Laboratory, 1950).Miller, R. O. High-Temperature oxidation: dry ashing. In Handbook of Reference Methods for Plant Analysis (ed. Karla, Y. P.) 53–56 (CRC Press, Taylor & Francis Group, 1998).Trottier-Picard, A. et al. Amounts of logging residues affect planting microsites: a manipulative study across northern forest ecosystems. Ecol. Manag. 312, 203–215 (2014).Article 

    Google Scholar 
    RCoreTeam. R.: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & RCoreTeam. _nlme: Linear and Nonlinear Mixed Effects Models_. (2020).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lenth, R. V. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.0. (2021). More

  • in

    Suitability of spider mites and green peach aphids as prey for Eriopis connexa (Germar) (Coleoptera: Coccinellidae)

    Sun, M. et al. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biol. 18, 1–14 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Migeon, A. & Dorkeld, F. Spider Mites Web: A comprehensive database for the Tetranychidae. Available at http://www.montpellier.inra.fr/CBGP/spmweb (2021)Sato, M. E. et al. Spiromesifen resistance in Tetranychus urticae (Acari: Tetranychidae): Selection, stability, and monitoring. Crop Prot. 89, 278–283 (2016).CAS 
    Article 

    Google Scholar 
    Melville, C. C., Andrade, S. C., Oliveira, N. T. & Andrade, D. J. Impact of Tetranychus ogmophallos (Acari: Tetranychidae) on different phenological stages of peanuts. Bragantia 77, 116–123 (2018).Article 

    Google Scholar 
    Savi, P. J., de Moraes, G. J., Melville, C. C. & Andrade, D. J. Population performance of Tetranychus evansi (Acari: Tetranychidae) on African tomato varieties and wild tomato genotypes. Exp. Appl. Acarol. 77, 555–570 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bass, C. et al. The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochem. Mol. Biol. 51, 41–51 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tabet, V. G., Vieira, M. R., Martins, G. L. M. & Sousa, C. G. N. M. Plant extracts with potential to control of two-spotted spider mite. Arq. Inst. Biol. 85, 1–8 (2018).Article 

    Google Scholar 
    Özkara, A., Akyil, D. & Konuk, M. Pesticides, environmental pollution, and health. In Environmental Health Risk—Hazardous Factors to Living Species (eds Larramendy, M. & Soloneski, S.) (InTech, 2016).
    Google Scholar 
    Faraone, N., Evans, R., LeBlanc, J. & Hillier, N. K. Soil and foliar application of rock dust as natural control agent for two-spotted spider mites on tomato plants. Sci. Rep. 10, 12108 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Taghizadeh, M., Iraninejad, K. H., Iranipour, S. & Vahed, M. M. Comparative study on the efficiency and consumption rate of Stethorus gilvifrons (Coleoptera, Coccinellidae) and Orius albidipennis (Hemiptera, Anthocoridae), the predators of Tetranychus urticae Koch (Acari, Tetranychidae). North-West. J. Zool. 16, 125–133 (2020).
    Google Scholar 
    Orr, D. & Lahiri, S. Biological control of insect pests in crops. In Integrated Pest Management: Current Concepts and Ecological Perspective (ed. Abrol, D. P.) 531–548 (Academic Press, 2014).Chapter 

    Google Scholar 
    Oliveira, N. C., Wilcken, C. F. & Matos, C. A. O. Biological cycle and predation of three coccinellid species (Coleoptera, Coccinellidae) on giant conifer aphid Cinara atlantica (Wilson) (Hemiptera, Aphididae). Rev. Bras. Entomol. 48, 529–533 (2004).Article 

    Google Scholar 
    Moghaddam, M. G. et al. Demographic traits of Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae) fed on Sitobion avenae Fabricius (Hemiptera: Aphididae). J. Crop Prot. 5, 431–445 (2016).Article 

    Google Scholar 
    Gómez, W. D. & Polanía, I. Z. Life table of the predatory beetle Eriopis connexa (Germar) (Coleoptera: Coccinellidae). Rev. UDCA Act. Divulg. Cient. 12, 147–155 (2009).
    Google Scholar 
    Silva, R. B. et al. Biological aspects of Eriopis connexa (Germar) (Coleoptera: Coccinellidae) fed on different insect pests of maize (Zea mays L.) and sorghum [Sorghum bicolor L. (Moench)]. Braz. J. Biol. 73, 419–424 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nascimento, D. V., Lira, R., Ferreira, E. K. S. & Torres, J. B. Performance of the aphidophagous coccinellid Eriopis connexa fed on single species and mixed-species prey. Biocontrol. Sci. Technol. 31, 951–963 (2021).Article 

    Google Scholar 
    Miller, J. C. A comparison of techniques for laboratory propagation of a South American ladybeetle, Eriopis connexa (Coleoptera: Coccinellidae). Biol. Control 5, 462–465 (1995).MathSciNet 
    Article 

    Google Scholar 
    Miller, J. C. & Paustian, J. W. Temperature-dependent development of Eriopis connexa (Coleoptera: Coccinellidae). Environ. Entomol. 21, 1139–1142 (1992).Article 

    Google Scholar 
    Sarmento, R. A. et al. Fat body morphology of Eriopis connexa (Coleoptera, Coccinellidae) in function of two alimentary sources. Braz. Arch. Biol. Technol. 47, 407–411 (2004).Article 

    Google Scholar 
    Van Driesche, R. et al. Catalog of Species Introduced into Canada, Mexico, the USA, or the USA Overseas Territories for Classical Biological Control of Arthropods 1985–2018 (USDA Forest Service, 2018).
    Google Scholar 
    Fidelis, E. G. et al. Coccinellidae, Syrphidae and Aphidoletes are key mortality factors for Myzus persicae in tropical regions: A case study on cabbage crops. Crop Prot. 112, 288–294 (2018).Article 

    Google Scholar 
    Francesena, N. et al. Potential of predatory Neotropical ladybirds and minute pirate bug on strawberry aphid. Nat. Acad. Bras. Ciênc. 91, e20181001 (2019).Article 

    Google Scholar 
    Reed, D. K. & Pike, K. S. Summary of an exploration trip to South America. IOBC Nearctic Reg. Newsl. 36, 16–17 (1991).
    Google Scholar 
    Li, Y., Zhou, X., Duan, W. & Pang, B. Food consumption and utilization of Hippodamia variegata (Coleoptera: Coccinellidae) is related to host plant species of its prey, Aphis gossypii (Hemiptera: Aphididae). Acta Entomol. Sin. 58, 1091–1097 (2015).
    Google Scholar 
    Tian, M., Wei, Y., Zhang, S. & Liu, T. Suitability of Bemisia tabaci (Hemiptera: Aleyrodidae) biotype-B and Myzus persicae (Hemiptera: Aphididae) as prey for the ladybird beetle, Serangium japonicum (Coleoptera: Coccinellidae). Eur. J. Entomol. 114, 603–608 (2017).Article 

    Google Scholar 
    Chi, H. Life table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 17, 26–34 (1988).Article 

    Google Scholar 
    Midthassel, A., Leather, S. R. & Baxter, I. H. Life table parameters and capture success ratio studies of Typhlodromips swirskii (Acari: Phytoseiidae) to the factitious prey Suidasia medanensis (Acari: Suidasidae). Exp. Appl. Acarol. 61, 69–78 (2013).PubMed 
    Article 

    Google Scholar 
    Hosseini, A. et al. Life history responses of Hippodamia variegata (Coleoptera: Coccinellidae) to changes in the nutritional content of its prey, Aphis gossypii (Hemiptera: Aphididae), mediated by nitrogen fertilization. Biol. Control 130, 27–33 (2019).CAS 
    Article 

    Google Scholar 
    Almeida, D. P., Berber, G. C. M., Aguiar-Menezes, E. L. & Resende, A. L. S. Evaluation of biological parameters of Eriopis connexa (Germar, 1824) and Coleomegilla maculata (DeGeer, 1775) (Coleoptera: Coccinellidae) fed with alternative prey developed at the integrated center for pest management – UFRRJ. Sci. Electron. Arch. 14, 8–16 (2021).Article 

    Google Scholar 
    Duarte, W., Arévalo, H. & Polanía, I. Z. Influence of three aphid species used as prey on some biological aspects of the predator Eriopis connexa. J. Anim. Sci. 3, 193–199 (2013).
    Google Scholar 
    Zazycki, L. C. F. et al. Biology and fertility life table of Eriopis connexa, Harmonia axyridis and Olla v-nigrum (Coleoptera: Coccinellidae). Braz. J. Biol. 75, 969–973 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chi, H. & Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 24, 225–240 (1985).
    Google Scholar 
    Santos, N. R. et al. Biological aspects of Harmonia axyridis fed on two prey species and intraguild predation with Eriopis connexa. Pesq. Agropec. Bras. 44, 554–560 (2009).Article 

    Google Scholar 
    Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. National Chung Hsing University, Taichung, Taiwan. http://140.120.197.173/Ecology/prod02.htm (2021)Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Springer, 1993). https://doi.org/10.1007/978-1-4899-4541-9.Book 
    MATH 

    Google Scholar 
    Hesterberg, T. It’s time to retire the ‘n > = 30’ rule. In Proceedings of the American Statistical Association, Statistical Computing Section (CD-ROM). http://home.comcast.net/~timhesterberg/articles/JSM08-n30.pdf (2008)Huang, Y. B. & Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 19, 263–273 (2012).Article 

    Google Scholar 
    Akkopru, E. P., Atlıhan, R., Okut, H. & Chi, H. Demographic assessment of plant cultivar resistance to insect pests: A case study of the dusky-veined walnut aphid (Hemiptera: Callaphididae) on five walnut cultivars. J. Econ. Entomol. 108, 378–387 (2015).PubMed 
    Article 

    Google Scholar 
    Smucker, M. D., Allan, J. & Carterette, B. A comparison of statistical significance tests for information retrieval evaluation. In Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management—CIKM ’07 623 (ACM Press, 2007).Wei, M. et al. Demography of Cacopsylla chinensis (Hemiptera: Psyllidae) reared on four cultivars of Pyrus bretschneideri (Rosales: Rosaceae) and P. communis pears with estimations of confidence intervals of specific life table statistics. J. Econ. Entomol. 113, 2343–2353 (2020).PubMed 
    Article 

    Google Scholar 
    Wu, X., Zhou, X. & Pang, B. Influence of five host plants of Aphis gossypii Glover on some population parameters of Hippodamia variegata (Goeze). J Pest Sci 83, 77–83 (2010).Article 

    Google Scholar 
    Kalushkov, P. & Hodek, I. New essential aphid prey for Anatis ocellata and Calvia quatuordecimguttata (Coleoptera: Coccinellidae). Biocontrol Sci. Technol. 11, 35–39 (2001).Article 

    Google Scholar 
    Hodek, I. & Honěk, A. Ecology of Coccinellidae (Springer, 1996).Book 

    Google Scholar 
    Hodek, I. & Evans, E. Food relationships. In Ecology and Behaviour of the Ladybird Beetles (Coccinellidae) (eds Hodek, I. et al.) (Wiley, 2012).Chapter 

    Google Scholar 
    Pervez, A. & Kumar, R. Preference of the aphidophagous ladybird Propylea dissecta for two species of aphids reared on toxic host plants. Eur. J. Environ. Sci 7, 130–134 (2017).
    Google Scholar 
    Omkar, & Bind, R. B. Prey quality dependent growth, development and reproduction of a biocontrol agent, Cheilomenes sexmaculata (Fabricius) (Coleoptera: Coccinellidae). Biocontrol Sci. Technol. 14, 665–673 (2004).Article 

    Google Scholar 
    Omkar, & James, B. E. Influence of prey species on immature survival, development, predation and reproduction of Coccinella transversalis Fabricius (Col., Coccinellidae). J. Appl. Entomol. 128, 150–157 (2004).Article 

    Google Scholar 
    Farooq, M., Shakeel, M., Iftikhar, A., Shahid, M. R. & Zhu, X. Age-stage, two-sex life tables of the lady beetle (Coleoptera: Coccinellidae) feeding on different aphid species. J. Econ. Entomol. 111, 575–585 (2018).PubMed 
    Article 

    Google Scholar 
    Giles, K. L. et al. Host plants affect predator fitness via the nutritional value of herbivore prey: Investigation of a plant-aphid-ladybeetle system. Biocontrol 47, 1–21 (2002).Article 

    Google Scholar 
    Savi, P. J., de Moraes, G. J. & Andrade, D. J. Effect of tomato genotypes with varying levels of susceptibility to Tetranychus evansi on performance and predation capacity of Phytoseiulus longipes. Biocontrol 66, 687–700 (2021).CAS 
    Article 

    Google Scholar 
    Hodek, I. & Honěk, A. Scale insects, mealybugs, whiteflies and psyllids (Hemiptera, Sternorrhyncha) as prey of ladybirds. Biol. Control 51, 232–243 (2009).Article 

    Google Scholar 
    Qureshi, J. A. & Stansly, P. A. Three Homopteran pests of citrus as prey for the convergent lady beetle: Suitability and preference. Environ. Entomol. 40, 1503–1510 (2011).PubMed 
    Article 

    Google Scholar 
    Sarmento, R. A. et al. Functional response of the predator Eriopis connexa (Coleoptera: Coccinellidae) to different prey types. Braz. Arch. Biol. Technol. 50, 121–126 (2007).Article 

    Google Scholar 
    Oliveira, E. E. et al. Biological aspects of the predator Cycloneda sanguinea (Linnaeus, 1763) (Coleoptera: Coccinellidae) fed with Tetranychus evansi (Baker and Pritchard, 1960) (Acari: Tetranychidae) and Macrosiphum euphorbiae (Thomas, 1878) (Homoptera: Aphididae). Biosci. J. 21, 33–39 (2005).
    Google Scholar 
    de Moraes, G. J., McMurtry, J. A. & Baker, E. W. Redescription and distribution of the spider mites Tetranychus evansi and T. marianae. Acarologia 28, 333–343 (1987).
    Google Scholar 
    Iperti, G. Biodiversity of predaceous coccinellidae in relation to bioindication and economic importance. Agric. Ecosyst. Environ. 74, 323–342 (1999).Article 

    Google Scholar 
    Cruz-Rivera, E. & Hay, M. E. Prey nutritional quality interacts with chemical defenses to affect consumer feeding and fitness. Ecol. Monogr. 73, 483–506 (2003).Article 

    Google Scholar 
    Munyaneza, J. & Obrycki, J. J. Development of three populations of Coleomegilla maculata (Coleoptera: Coccinellidae) feeding on eggs of colorado potato beetle (Coleoptera: Chrysomelidae). Environ. Entomol. 27, 117–122 (1998).Article 

    Google Scholar 
    Adams, T. S. Effect of diet and mating status on ovarian development in a predaceous stink bug Perillus bioculatus (Hemiptera: Pentatomidae). Ann. Entomol. Soc. Am. 93, 529–535 (2000).Article 

    Google Scholar 
    Lima, M. S., Pontes, W. J. T. & Nóbrega, R. L. Pollen did not provide suitable nutrients for ovary development in a ladybird Brumoides foudrasii (Coleoptera: Coccinellidae). Diversitas J. 5, 1486–1494 (2020).Article 

    Google Scholar 
    Melville, C. C. et al. Peanut cultivars display susceptibility by triggering outbreaks of Tetranychus ogmophallos (Acari: Tetranychidae). Exp. Appl. Acarol. 78, 295–314 (2019).PubMed 
    Article 

    Google Scholar  More

  • in

    Ethical microbiome research with Indigenous communities

    Lewis, C., Obregon-Tito, A., Tito, R., Foster, M. & Spicer, P. The Human Microbiome Project: lessons from human genomics. Trends Microbiol. 20, 1–4 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claw, K. et al. A framework for enhancing ethical genomic research with Indigenous communities. Nat. Commun. 9, 2957 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Reardon, J. Race to the Finish (Princeton University Press, 2009).Tsosie, K., Yracheta, J., Kolopenuk, J. & Smith, R. Indigenous data sovereignties and data sharing in biological anthropology. Am. J. Phys. Anthropol. 174, 183–186 (2021).PubMed 
    Article 

    Google Scholar 
    Tsosie, K., Yracheta, J., Kolopenuk, J. & Geary, J. We have ‘gifted’ enough: Indigenous genomic data sovereignty in precision medicine. Am. J. Bioeth. 21, 72–75 (2021).PubMed 
    Article 

    Google Scholar 
    Haring, R. C. et al. Empowering equitable data use partnerships and Indigenous data sovereignties mid pandemic genomics. Front. Public Health 9, 742467 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Asad, T. in The Politics of Anthropology: from Colonialism and Sexism Toward a View from Below (eds Huizer, G. & Mannheim, B.) 85–96 (Ithica Press, 1973).Deloria, V. Custer Died for Your Sins: an Indian Manifesto (University of Oklahoma Press, 1969).Hymes, D. Reinventing Anthropology (Pantheon, 1974).Trouillot, M. R. Global Transformations (Palgrave Macmillan, 2003).Broesch, T. et al. Navigating cross-cultural research: methodological and ethical considerations. Proc. R. Soc. B https://doi.org/10.1098/rspb.2020.1245 (2020).Urassa, M., Lawson, D., Wamoyi, J., Gurmu, E. & Gibson, M. Cross-cultural research must prioritize equitable collaboration. Nat. Hum. Behav. 5, 668–671 (2021).PubMed 
    Article 

    Google Scholar 
    Blanchard, J. et al. Power sharing, capacity building, and evolving roles in ELSI: The Center for the Ethics of Indigenous Genomic Research. Collaborations 3, 18 (2020).PubMed 

    Google Scholar 
    Hudson, M. et al. in Ethics in Indigenous Research, Past Experiences—Future Challenges (Vaartoe Centre for Sami Research, 2016).Schroeder, D., Chatfield, K., Singh, M., Chennells, R. & Herissone-Kelly, P. Equitable Research Partnerships: a Global Code of Conduct to Counter Ethics Dumping (Springer Nature, 2019); https://doi.org/10.1007/978-3-030-15745-6Jobson, R. The case for letting anthropology burn: sociocultural anthropology in 2019. Am. Anthropologist 122, 259–271 (2020).Article 

    Google Scholar 
    Kowal, E. Orphan DNA: Indigenous samples, ethical biovalue and postcolonial science. Soc. Stud. Sci. 43, 577–597 (2013).Article 

    Google Scholar 
    Smith, L. T. Decolonizing Methodologies: Research and Indigenous Peoples (Bloomsbury Publishing, 2021).Viswanathan, M. et al. Community‐Based Participatory Research: Assessing the Evidence: Summary (AHRQ, 2004).Caniglia, G. et al. A pluralistic and integrated approach to action-oriented knowledge for sustainability. Nat. Sustain. 4, 93–100 (2021).Article 

    Google Scholar 
    Coombes, B., Johnson, J. & Howitt, R. Indigenous geographies III: methodological innovation and the unsettling of participatory research. Prog. Hum. Geogr. 38, 845–854 (2014).Article 

    Google Scholar 
    Sharp, R. & Foster, M. Community involvement in the ethical review of genetic research: lessons from American Indian and Alaska Native populations. Environ. Health Perspect. 110, 145–148 (2002).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wallerstein, N. & Duran, B. in Community-Based Participatory Research for Health: Advancing Social and Health Equity (eds Wallerstein, N., Duran, B., Oetzel, J. G. & Minkler, M.) 17–29 (John Wiley and Sons, 2017).Obregon-Tito, A. et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat. Commun. 6, 6505 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mandava, A., Pace, C., Campbell, B., Emanuel, E. & Grady, C. The quality of informed consent: mapping the landscape. A review of empirical data from developing and developed countries. J. Med. Ethics 38, 356–365 (2012).PubMed 
    Article 

    Google Scholar 
    Afolabi, M. O. et al. Informed consent comprehension in African research settings. Tropical Med. Int. Health 19, 625–642 (2014).Article 

    Google Scholar 
    Edwards, T., Cadigan, R., Evans, J. & Henderson, G. Biobanks containing clinical specimens: defining characteristics, policies, and practices. Clin. Biochem. 47, 245–251 (2014).PubMed 
    Article 

    Google Scholar 
    Grady, C. et al. Broad consent for research with biological samples: workshop conclusions. Am. J. Bioeth. 15, 34–42 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lewis, C., McCall, L.-I., Sharp, R. & Spicer, P. Ethical priority of the most actionable system of biomolecules: the metabolome. Am. J. Phys. Anthropol. 171, 177–181 (2020).PubMed 
    Article 

    Google Scholar 
    McCarty, C., Chapman-Stone, D., Derfus, T., Giampietro, P. & Fost, N. Community consultation and communication for a population-based DNA biobank: the Marshfield clinic personalized medicine research project. Am. J. Med. Genet. A 146A, 3026–3033 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tsosie, K. S., Yracheta, J. M. & Dickenson, D. Overvaluing individual consent ignores risks to tribal participants. Nat. Rev. Genet. 20, 497–498 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chavis, D. M., Stucky, P. E. & Wandersman, A. Returning basic research to the community: a relationship between scientist and citizen. Am. Psychologist 38, 424 (1983).Article 

    Google Scholar 
    Godoy, R., Reyes-García, V., Byron, E., Leonard, W. & Vadez, V. The effect of market economies on the well-being of indigenous peoples and on their use of renewable natural resources. Annu. Rev. Anthropol. 34, 121–138 (2005).Article 

    Google Scholar 
    Reardon, J. & TallBear, K. ‘Your DNA is our history’ genomics, anthropology, and the construction of whiteness as property. Curr. Anthropol. 53, 233–245 (2012).Article 

    Google Scholar 
    Schnorr, S. et al. Gut microbiome of the Hadza hunter-gatherers. Nat. Commun. 5, 3654 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    O’Doherty, K. C. et al. Opinion: conservation and stewardship of the human microbiome. Proc. Natl Acad. Sci. USA 111, 14312–14313 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dubois, G., Girard, C., Lapointe, F.-J. & Shapiro, J. The Inuit gut microbiome is dynamic over time and shaped by traditional foods. Microbiome 5, 151 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sprockett, D. et al. Microbiota assembly, structure, and dynamics among Tsimane horticulturalists of the Bolivian Amazon. Nat. Commun. 11, 3772 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stagaman, K. et al. Market integration predicts human gut microbiome attributes across a gradient of economic development. MSystems 3, 00122-17 (2018).Article 

    Google Scholar 
    Conteville, L. C., Oliveira-Ferreira, J. & Vicente, A. C. P. Gut microbiome biomarkers and functional diversity within an Amazonian semi-nomadic hunter-gatherer group. Front. Microbiol. 30, 1743 (2019).Article 

    Google Scholar 
    Fischer, M. In the science zone: the Yanomami and the fight for representation. Anthropol. Today 17, 9–14 (2001).Article 

    Google Scholar 
    Goncalves Martin, J. Opening a path with papers: Yanomami health agents and their use of medical documents. J. Lat. Am. Caribb. Anthropol. 21, 434–456 (2016).Article 

    Google Scholar 
    Redford, K. & Maclean Stearman, A. Forest-dwelling native Amazonians and the conservation of biodiversity: interests in common or in collision? Conserv. Biol. 7, 248–255 (1993).Article 

    Google Scholar 
    Vega, C., Orellana, J., Oliveira, M., Hacon, S. & Basta, P. Human mercury exposure in Yanomami indigenous villages from the Brazilian Amazon. Int. J. Environ. Res. Public Health 15, 1051 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Clemente, J. et al. The microbiome of uncontacted Amerindians. Sci. Adv. 1, 1500183 (2015).Article 
    CAS 

    Google Scholar 
    Gibbons, A. Hadza on the brink. Science 360, 700–704 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pollom, T. R., Herlosky, K. N., Mabulla, I. A. & Crittenden, A. N. Changes in juvenile foraging behavior among the Hadza of Tanzania during early transition to a mixed-subsistence economy. Hum. Nat. 31, 123–140 (2020).PubMed 
    Article 

    Google Scholar 
    Crittenden, A. N. et al. Harm avoidance and mobility during middle childhood and adolescence among Hadza foragers. Hum. Nat. 32, 150–176 (2021).PubMed 
    Article 

    Google Scholar 
    Wynberg, R. & Chennells, R. in Indigenous Peoples, Consent and Benefit Sharing (eds Wynberg, R., Schroeder, D. & Chennells, R.) 89–124 (Springer, 2009); https://doi.org/10.1007/978-90-481-3123-5_6Rubel, M. et al. Lifestyle and the presence of helminths is associated with gut microbiome composition in Cameroonians. Genome Biol. 21, 122 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sankaranarayanan, K. et al. Gut microbiome diversity among Cheyenne and Arapaho individuals from Western Oklahoma. Curr. Biol. 25, 3161–3169 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rogers, G. B., Ward, J., Brown, A. & Wesselingh, S. L. Inclusivity and equity in human microbiome research. Lancet 39, 728–729 (2019).Article 

    Google Scholar 
    Ambler, J. et al. Including digital sequence data in the Nagoya Protocol can promote data sharing. Trends Biotechnol. 39, 116–125 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Morgera, E. The need for an international legal concept of fair and equitable benefit sharing. Eur. J. Int. Law 27, 353–383 (2016).Article 

    Google Scholar 
    Bissell, W. Engaging colonial nostalgia. Cultural Anthropol. 20, 215–248 (2005).Article 

    Google Scholar 
    Crittenden, A. in The Secret Lives of Anthropologists (ed. Hewlett, B. L.) 299–321 (Routledge, 2019).Redford, K. H. The ecologically noble savage. Cultural Survival Q 15, 46–48 (1991).
    Google Scholar 
    Carmody, R. N., Sarkar, A. & Reese, A. T. Gut microbiota through an evolutionary lens. Science 372, 462–463 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Belmont Report: Ethical Principles and Guidelines for the Protection of Human Subjects of Research (National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, 1979).McClain, V. W. Patents on life: a brief view of human milk component patenting. World Nutr. 9, 57–69 (2018).Article 

    Google Scholar 
    Hill, J. H. ‘Expert rhetorics’ in advocacy for endangered languages: who is listening, and what do they hear? J. Linguistic Anthropol. 12, 119–133 (2002).Article 

    Google Scholar  More

  • in

    Functional susceptibility of tropical forests to climate change

    Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535, 144–147 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beech, E., Rivers, M., Oldfield, S. & Smith, P. P. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. 36, 454–489 (2017).Article 

    Google Scholar 
    ter Steege, H. et al. The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci. Rep. 6, 29549 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maia, V. A. et al. The carbon sink of tropical seasonal forests in southeastern Brazil can be under threat. Sci. Adv. 6, eabd4548 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malhi, Y. et al. The regional variation of aboveground live biomass in old‐growth Amazonian forests. Glob. Change Biol. 12, 1107–1138 (2006).Article 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Malhi, Y. et al. Climate change, deforestation, and the fate of the Amazon. Science 319, 169–172 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gatti, L. V. et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hisano, M., Searle, E. B. & Chen, H. Y. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).PubMed 
    Article 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Malhi, Y. et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl Acad. Sci. USA 106, 20610–20615 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seager, R. et al. Climatology, variability, and trends in the US vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).Article 

    Google Scholar 
    Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costa, F. R. C., Schietti, J., Stark, S. C. & Smith, M. N. The other side of tropical forest drought: do shallow water table regions of Amazonia act as large‐scale hydrological refugia from drought?. New Phytol. https://doi.org/10.1111/nph.17914 (2022).Brodribb, T. J., Powers, J., Cochard, H. & Choat, B. Hanging by a thread? Forests and drought. Science 368, 261–266 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, K. et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res. Lett. 12, 023001 (2017).Article 

    Google Scholar 
    Esquivel‐Muelbert, A. et al. Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).Article 

    Google Scholar 
    Aguirre‐Gutiérrez, J. et al. Drier tropical forests are susceptible to functional changes in response to a long‐term drought. Ecol. Lett. 22, 855–865 (2019).PubMed 
    Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48.5, 1079–1087 (2011).Article 

    Google Scholar 
    Aguirre‐Gutiérrez, J. et al. Butterflies show different functional and species diversity in relationship to vegetation structure and land use. Glob. Ecol. Biogeogr. 26, 1126–1137 (2017).Article 

    Google Scholar 
    Arruda Almeida, B. et al. Comparing species richness, functional diversity and functional composition of waterbird communities along environmental gradients in the neotropics. PLoS ONE 13, e0200959 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl Acad. Sci. USA 96, 1463–1468 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Correia, D. L. P., Raulier, F., Bouchard, M. & Filotas, É. Response diversity, functional redundancy, and post‐logging productivity in northern temperate and boreal forests. Ecol. Appl. 28, 1282–1291 (2018).PubMed 
    Article 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Loreau, M. & de Mazancourt, C. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).PubMed 
    Article 

    Google Scholar 
    Petchey, O. L., Evans, K. L., Fishburn, I. S. & Gaston, K. J. Low functional diversity and no redundancy in British avian assemblages. J. Anim. Ecol. 76, 977–985 (2007).PubMed 
    Article 

    Google Scholar 
    Jucker, T. et al. Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett. 17, 1560–1569 (2014).PubMed 
    Article 

    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).Article 

    Google Scholar 
    Aguirre-Gutiérrez, J. et al. Long-term droughts may drive drier tropical forests towards increased functional, taxonomic and phylogenetic homogeneity. Nat. Commun. 11, 3346 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fauset, S. et al. Drought‐induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol. Lett. 15, 1120–1129 (2012).PubMed 
    Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance‐based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 

    Google Scholar 
    Bauman, D. et al. Tropical tree growth sensitivity to climate is driven by species intrinsic growth rate and leaf traits. Glob. Change Biol. 28, 1414–1432 (2022).Article 

    Google Scholar 
    Quesada, C. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).Article 

    Google Scholar 
    Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P.R. et al.) (IPCC, 2019).Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).PubMed 
    Article 

    Google Scholar 
    Petchey, O. L. On the statistical significance of functional diversity effects. Funct. Ecol. 18, 297–303 (2004).Article 

    Google Scholar 
    Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article 

    Google Scholar 
    ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Raes, N. et al. Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography 32, 180–192 (2009).Article 

    Google Scholar 
    Shenkin, A. et al. The influence of ecosystem and phylogeny on tropical tree crown size and shape. Front. For. Glob. Change 3, 501757 (2020).Article 

    Google Scholar 
    Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grossman, J. J., Cavender‐Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early‐successional tree diversity experiment. Ecology 98, 2601–2614 (2017).PubMed 
    Article 

    Google Scholar 
    Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).PubMed 
    Article 

    Google Scholar 
    Hutchison, C., Gravel, D., Guichard, F. & Potvin, C. Effect of diversity on growth, mortality, and loss of resilience to extreme climate events in a tropical planted forest experiment. Sci. Rep. 8, 15443 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    González-M, R. et al. Diverging functional strategies but high sensitivity to an extreme drought in tropical dry forests. Ecol. Lett. 24, 451–463 (2021).PubMed 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O. et al. in IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (WMO, 2018).de la Riva, E. G. et al. The importance of functional diversity in the stability of Mediterranean shrubland communities after the impact of extreme climatic events. J. Plant Ecol. 10, 281–293 (2017).
    Google Scholar 
    Reich, P. B. The world-wide “fast-slow” plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).Article 

    Google Scholar 
    Oliveira, R. S. et al. Linking plant hydraulics and the fast–slow continuum to understand resilience to drought in tropical ecosystems. New Phytol. 230, 904–923 (2021).PubMed 
    Article 

    Google Scholar 
    Anderegg, W. R. L. & Meinzer, F. C. in Functional and Ecological Xylem Anatomy (ed Hacke, U.) Ch. 9 (Springer, 2015).Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    Pratt, R., Jacobsen, A., Ewers, F. & Davis, S. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174, 787–798 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010).PubMed 
    Article 

    Google Scholar 
    Bucci, S. J. et al. The stem xylem of Patagonian shrubs operates far from the point of catastrophic dysfunction and is additionally protected from drought‐induced embolism by leaves and roots. Plant Cell Environ. 36, 2163–2174 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Meinzer, F. C. et al. Coordination of leaf and stem water transport properties in tropical forest trees. Oecologia 156, 31–41 (2008).PubMed 
    Article 

    Google Scholar 
    Scholz F. G., Phillips N. G., Bucci S. J., Meinzer F. C. & Goldstein G. in Size- and Age-Related Changes in Tree Structure and Function (eds Meinzer F. C. C. et al.) 341–361 (Springer, 2011).Mitchell, P. J. et al. Using multiple trait associations to define hydraulic functional types in plant communities of south-western Australia. Oecologia 158, 385–397 (2008).PubMed 
    Article 

    Google Scholar 
    Villagra, Mariana et al. Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species. Tree Physiol. 33, 1308–1318 (2013).PubMed 
    Article 

    Google Scholar 
    Ishida, Atsushi et al. Coordination between leaf and stem traits related to leaf carbon gain and hydraulics across 32 drought-tolerant angiosperms. Oecologia 156, 193–202 (2008).PubMed 
    Article 

    Google Scholar 
    Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).Article 

    Google Scholar 
    Martin, R. E. et al. Covariance of sun and shade leaf traits along a tropical forest elevation gradient. Front. Plant Sci. 10, 1810 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Enquist, B. J. et al. Assessing trait‐based scaling theory in tropical forests spanning a broad temperature gradient. Glob. Ecol. Biogeogr. 26, 1357–1373 (2017).Article 

    Google Scholar 
    Both, S. et al. Logging and soil nutrients independently explain plant trait expression in tropical forests. New Phytol. 221, 1853–1865 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oliveras, I. et al. The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2020.00018 (2020).Gvozdevaite, A. et al. Leaf-level photosynthetic capacity dynamics in relation to soil and foliar nutrients along forest–savanna boundaries in Ghana and Brazil. Tree Physiol. 38, 1912–1925 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aguirre-Gutiérrez, J. et al. Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sens. Environ. 252, 112122 (2021).Article 

    Google Scholar 
    Pavoine, S. adiv: an R package to analyse biodiversity in ecology. Methods Ecol. Evol. 11, 1106–1112 (2020).Article 

    Google Scholar 
    Pavoine, S. & Ricotta, C. A simple translation from indices of species diversity to indices of phylogenetic diversity. Ecol. Ind. 101, 552–561 (2019).Article 

    Google Scholar 
    Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    van der Plas, F., Van Klink, R., Manning, P., Olff, H. & Fischer, M. Sensitivity of functional diversity metrics to sampling intensity. Methods Ecol. Evol. 8, 1072–1080 (2017).Article 

    Google Scholar 
    Rao, C. R. Diversity and dissimilarity coefficients: a unified approach. Theor. Popul. Biol. 21, 24–43 (1982).Article 

    Google Scholar 
    Simpson, E. H. Measurement of diversity. Nature https://doi.org/10.1038/163688a0 (1949).R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fan, Y. Groundwater in the earth’s critical zone: relevance to large-scale patterns and processes. Water Resour. Res. 51, 3052–3069 (2015).Article 

    Google Scholar 
    Moulatlet, G. M. et al. Using digital soil maps to infer edaphic affinities of plant species in Amazonia: problems and prospects. Ecol. Evol. 7, 8463–8477 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).Article 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 

    Google Scholar 
    Makowski, D., Ben-Shachar, M. S. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 

    Google Scholar 
    Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan (Academic Press, 2014). More

  • in

    Ecological modelling approaches for predicting emergent properties in microbial communities

    Cho, I. & Blaser, M. J. The human microbiome: at the interface of health and disease. Nat. Rev. Genet. 13, 260–270 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shi, Z. Gut microbiota: an important link between Western diet and chronic diseases. Nutrients 11, 2287 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Lynch, S. V. & Pedersen, O. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375, 2369–2379 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Glowacki, R. W. P. & Martens, E. C. In sickness and health: effects of gut microbial metabolites on human physiology. PLoS Pathog. 16, e1008370 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nazaries, L. et al. Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Appl. Environ. Microbiol. 79, 4031–4040 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Konopka, A. What is microbial community ecology? ISME J. 3, 1223–1230 (2009).PubMed 
    Article 

    Google Scholar 
    Flemming, H.-C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bauer, E., Zimmermann, J., Baldini, F., Thiele, I. & Kaleta, C. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol. 13, e1005544 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    van Hoek, M. J. A. & Merks, R. M. H. Emergence of microbial diversity due to cross-feeding interactions in a spatial model of gut microbial metabolism. BMC Syst. Biol. 11, 56 (2017).Article 
    CAS 

    Google Scholar 
    Gorter, F. A., Manhart, M. & Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190256 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, J., Yoshinaga, M. & Rosen, B. P. The antibiotic action of methylarsenite is an emergent property of microbial communities. Mol. Microbiol. 111, 487–494 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Konstantinidis, D. et al. Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Mol. Syst. Biol. 17, e10189 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Park, H. et al. Artificial consortium demonstrates emergent properties of enhanced cellulosic-sugar degradation and biofuel synthesis. NPJ Biofilms Microbiomes 6, 59 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schwartzman, J. A. et al. Bacterial growth in multicellular aggregates leads to the emergence of complex lifecycles. Preprint at bioRxiv https://doi.org/10.1101/2021.11.01.466752 (2021).Levins, R. & Lewontin, R. The Dialectical Biologist (Harvard Univ. Press, 1985).Diaz, P. I. & Valm, A. M. Microbial interactions in oral communities mediate emergent biofilm properties. J. Dent. Res. 99, 18–25 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Buerger, A. N. et al. Gastrointestinal dysbiosis following diethylhexyl phthalate exposure in zebrafish (Danio rerio): altered microbial diversity, functionality, and network connectivity. Environ. Pollut. 265, 114496 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, M. K., Ingremeau, F., Zhao, A., Bassler, B. L. & Stone, H. A. Local and global consequences of flow on bacterial quorum sensing. Nat. Microbiol. 1, 15005 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ebrahimi, A. & Or, D. Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resour. Res. 51, 9804–9827 (2015).Article 

    Google Scholar 
    Falconer, R. E. et al. Microscale heterogeneity explains experimental variability and non-linearity in soil organic matter mineralisation. PLoS ONE 10, e0123774 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fredrickson, J. K. Ecological communities by design. Science 348, 1425–1427 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Singer, E. et al. Next generation sequencing data of a defined microbial mock community. Sci. Data 3, 160081 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marino, S., Baxter, N. T., Huffnagle, G. B., Petrosino, J. F. & Schloss, P. D. Mathematical modeling of primary succession of murine intestinal microbiota. Proc. Natl Acad. Sci. USA 111, 439–444 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cariboni, J., Gatelli, D., Liska, R. & Saltelli, A. The role of sensitivity analysis in ecological modelling. Ecol. Modell. 203, 167–182 (2007).Article 

    Google Scholar 
    Oreskes, N., Shrader-Frechette, K. & Belitz, K. Verification, validation, and confirmation of numerical models in the Earth sciences. Science 263, 641–646 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Machado, D., Andrejev, S., Tramontano, M. & Patil, K. R. Fast automated reconstruction of genome-scale metabolic models for microbial species and communities. Nucleic Acids Res. 46, 7542–7553 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hammarlund, S. P., Chacón, J. M. & Harcombe, W. R. A shared limiting resource leads to competitive exclusion in a cross-feeding system. Environ. Microbiol. 21, 759–771 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications of genome-scale metabolic models. Genome Biol. 20, 121 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Brien, E. J., Monk, J. M. & Palsson, B. O. Using genome-scale models to predict biological capabilities. Cell 161, 971–987 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fang, X., Lloyd, C. J. & Palsson, B. O. Reconstructing organisms in silico: genome-scale models and their emerging applications. Nat. Rev. Microbiol. 18, 731–743 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colarusso, A. V., Goodchild-Michelman, I., Rayle, M. & Zomorrodi, A. R. Computational modeling of metabolism in microbial communities on a genome-scale. Curr. Opin. Syst. Biol. 26, 46–57 (2021).Article 

    Google Scholar 
    García-Jiménez, B., Torres-Bacete, J. & Nogales, J. Metabolic modelling approaches for describing and engineering microbial communities. Comput. Struct. Biotechnol. J. 19, 226–246 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Frioux, C., Singh, D., Korcsmaros, T. & Hildebrand, F. From bag-of-genes to bag-of-genomes: metabolic modelling of communities in the era of metagenome-assembled genomes. Comput. Struct. Biotechnol. J. 18, 1722–1734 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaffron, S., Rehrauer, H., Pernthaler, J. & von Mering, C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, J. et al. Distinct mechanisms shape soil bacterial and fungal co-occurrence networks in a mountain ecosystem. FEMS Microbiol. Ecol. 96, fiaa030 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berry, D. & Widder, S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 219 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic assembly patterns in complex ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Madeo, D., Comolli, L. R. & Mocenni, C. Emergence of microbial networks as response to hostile environments. Front. Microbiol. 5, 407 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16, e2004248 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wang, B. & Allison, S. D. Emergent properties of organic matter decomposition by soil enzymes. Soil Biol. Biochem. 136, 107522 (2019).CAS 
    Article 

    Google Scholar 
    Walsh, A. M. et al. Microbial succession and flavor production in the fermented dairy beverage kefir. mSystems 1, e00052-16 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl Acad. Sci. USA 111, 17941–17946 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leigh, E. R. in Some Mathematical Problems in Biology (ed. Gerstenhaber, M.) 1–61 (American Mathematical Society, 1968).Nedorezov, L. The dynamics of the lynx–hare system: an application of the Lotka–Volterra model. Biophys. 61, 149–154 (2016).CAS 
    Article 

    Google Scholar 
    Mühlbauer, L. K., Schulze, M., Harpole, W. S. & Clark, A. T. gauseR: simple methods for fitting Lotka–Volterra models describing Gause’s “struggle for existence”. Ecol. Evol. 10, 13275–13283 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Belovsky, G. E. Moose and snowshoe hare competition and a mechanistic explanation from foraging theory. Oecologia 61, 150–159 (1984).CAS 
    PubMed 
    Article 

    Google Scholar 
    May, R. M. Limit cycles in predator–prey communities. Science 177, 900–902 (1972).CAS 
    PubMed 
    Article 

    Google Scholar 
    Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 109 (2017).PubMed 
    Article 

    Google Scholar 
    Voit, E. O., Davis, J. D. & Olivença, D. V. Inference and validation of the structure of Lotka–Volterra models. Preprint at bioXriv https://doi.org/10.1101/2021.08.14.456346 (2021).Bucci, V. & Xavier, J. B. Towards predictive models of the human gut microbiome. J. Mol. Biol. 426, 3907–3916 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PLoS ONE 9, e102451 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bucci, V. et al. MDSINE: Microbial Dynamical Systems INference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gao, X., Huynh, B.-T., Guillemot, D., Glaser, P. & Opatowski, L. Inference of significant microbial interactions from longitudinal metagenomics data. Front. Microbiol. 9, 2319 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, C. et al. An expectation-maximization algorithm enables accurate ecological modeling using longitudinal microbiome sequencing data. Microbiome 7, 118 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Joseph, T. A., Shenhav, L., Xavier, J. B., Halperin, E. & Pe’er, I. Compositional Lotka–Volterra describes microbial dynamics in the simplex. PLoS Comput. Biol. 16, e1007917 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hosoda, S., Fukunaga, T. & Hamada, M. Umibato: estimation of time-varying microbial interaction using continuous-time regression hidden Markov model. Bioinformatics 37, i16–i24 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Remien, C. H., Eckwright, M. J. & Ridenhour, B. J. Structural identifiability of the generalized Lotka–Volterra model for microbiome studies. R. Soc. Open Sci. 8, 201378 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    White, J. R. Novel Methods for Metagenomic Analysis. PhD thesis, Univ. of Maryland (2010).Sousa, A., Frazão, N., Ramiro, R. S. & Gordo, I. Evolution of commensal bacteria in the intestinal tract of mice. Curr. Opin. Microbiol. 38, 114–121 (2017).PubMed 
    Article 

    Google Scholar 
    Mounier, J. et al. Microbial interactions within a cheese microbial community. Appl. Environ. Microbiol. 74, 172–181 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Momeni, B., Xie, L. & Shou, W. Lotka–Volterra pairwise modeling fails to capture diverse pairwise microbial interactions. eLife 6, e25051 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl Acad. Sci. USA 116, 15979–15984 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mai, T. S. N. Impact of Metabolic Plasticity on Microbial Community Diversity and Stability. MSc thesis, Univ. of Groningen (2021).Sanchez-Gorostiaga, A., Bajić, D., Osborne, M. L., Poyatos, J. F. & Sanchez, A. High-order interactions distort the functional landscape of microbial consortia. PLoS Biol. 17, e3000550 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mickalide, H. & Kuehn, S. Higher-order interaction between species inhibits bacterial invasion of a phototroph-predator microbial community. Cell Syst. 9, 521–533.e10 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, X. & Boedicker, J. Q. The contribution of high-order metabolic interactions to the global activity of a four-species microbial community. PLoS Comput. Biol. 12, e1005079 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Meroz, N., Tovi, N., Sorokin, Y. & Friedman, J. Community composition of microbial microcosms follows simple assembly rules at evolutionary timescales. Nat. Commun. 12, 2891 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zomorrodi, A. R. & Segrè, D. Synthetic ecology of microbes: mathematical models and applications. J. Mol. Biol. 428, 837–861 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Song, H. S., Cannon, W. R., Beliaev, A. S. & Konopka, A. Mathematical modeling of microbial community dynamics: a methodological review. Processes 2, 711–752 (2014).Article 

    Google Scholar 
    Descheemaeker, L., Grilli, J. & de Buyl, S. Heavy-tailed abundance distributions from stochastic Lotka–Volterra models. Phys. Rev. E 104, 034404 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bairey, E., Kelsic, E. D. & Kishony, R. High-order species interactions shape ecosystem diversity. Nat. Commun. 7, 12285 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ji, B., Herrgård, M. J. & Nielsen, J. Microbial community dynamics revisited. Nat. Comput. Sci. 1, 640–641 (2021).Article 

    Google Scholar 
    Abreu, C. I., Anderen Woltz, V. L., Friedman, J. & Gore, J. Microbial communities display alternative stable states in a fluctuating environment. PLoS Comput. Biol. 16, e1007934 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xu, L., Xu, X., Kong, D., Gu, H. & Kenney T. Stochastic generalized Lotka–Volterra model with an application to learning microbial community structures. Preprint at arXiv https://doi.org/10.48550/arXiv.2009.10922 (2020).Brunner, J. D. & Chia, N. Metabolite-mediated modelling of microbial community dynamics captures emergent behaviour more effectively than species–species modelling. J. R. Soc. Interface 16, 20190423 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tilman, D. Resource competition and community structure. Monogr. Popul. Biol. 17, 1–296 (1982).CAS 
    PubMed 

    Google Scholar 
    Chesson, P. MacArthur’s consumer-resource model. Theor. Popul. Biol. 37, 26–38 (1990).Article 

    Google Scholar 
    Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marsland, R.3rd et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marsland, R.3rd, Cui, W. & Mehta, P. A minimal model for microbial biodiversity can reproduce experimentally observed ecological patterns. Sci. Rep. 10, 3308 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Estrela, S., Sanchez-Gorostiaga, A., Vila, J. C. & Sanchez, A. Nutrient dominance governs the assembly of microbial communities in mixed nutrient environments. eLife 10, e65948 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cui, W., Marsland, R. & Mehta, P. Diverse communities behave like typical random ecosystems. Phys. Rev. E 104, 034416 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haygood, R. Coexistence in MacArthur-style consumer–resource models. Theor. Popul. Biol. 61, 215–223 (2002).PubMed 
    Article 

    Google Scholar 
    Dubinkina, V., Fridman, Y., Pandey, P. P. & Maslov, S. Multistability and regime shifts in microbial communities explained by competition for essential nutrients. eLife 8, e49720 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pacheco, A. R., Osborne, M. L. & Segrè, D. Non-additive microbial community responses to environmental complexity. Nat. Commun. 12, 2365 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Crowther, T. W. et al. Untangling the fungal niche: the trait-based approach. Front. Microbiol. 5, 579 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pacciani-Mori, L., Suweis, S., Maritan, A. & Giometto, A. Constrained proteome allocation affects coexistence in models of competitive microbial communities. ISME J. 15, 1458–1477 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Marsland, R. et al. The Community Simulator: a Python package for microbial ecology. PLoS ONE 15, e0230430 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Obadia, B. et al. Probabilistic invasion underlies natural gut microbiome stability. Curr. Biol. 27, 1999–2006.e8 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    D’Andrea, R., Gibbs, T. & O’Dwyer, J. P. Emergent neutrality in consumer-resource dynamics. PLoS Comput. Biol. 16, e1008102 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mancuso, C. P., Lee, H., Abreu, C. I., Gore, J. & Khalil, A. S. Environmental fluctuations reshape an unexpected diversity-disturbance relationship in a microbial community. eLife 10, e67175 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lajoie, G. & Kembel, S. W. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 27, 814–823 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zakharova, L., Meyer, K. M. & Seifan, M. Trait-based modelling in ecology: a review of two decades of research. Ecol. Modell. 407, 108703 (2019).Article 

    Google Scholar 
    Merico, A., Brandt, G., Lan Smith, S. L. & Oliver, M. Sustaining diversity in trait-based models of phytoplankton communities. Front. Ecol. Evol. 2, 59 (2014).Grigoratou, M. et al. A trait-based modelling approach to planktonic foraminifera ecology. Biogeosciences 16, 1469–1492 (2019).Article 

    Google Scholar 
    Muscarella, M. E., Howey, X. M. & Lennon, J. T. Trait-based approach to bacterial growth efficiency. Environ. Microbiol. 22, 3494–3504 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shao, P., Lynch, L., Xie, H., Bao, X. & Liang, C. Tradeoffs among microbial life history strategies influence the fate of microbial residues in subtropical forest soils. Soil Biol. Biochem. 153, 108112 (2021).CAS 
    Article 

    Google Scholar 
    Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Le Roux, X. et al. Predicting the responses of soil nitrite-oxidizers to multi-factorial global change: a trait-based approach. Front. Microbiol. 7, 628 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bouskill, N. J., Tang, J., Riley, W. J. & Brodie, E. L. Trait-based representation of biological nitrification: model development, testing, and predicted community composition. Front. Microbiol. 3, 364 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kyker-Snowman, E., Wieder, W. R., Frey, S. D. & Grandy, A. S. Stoichiometrically coupled carbon and nitrogen cycling in the MIcrobial-MIneral Carbon Stabilization model version 1.0 (MIMICS-CN v1.0). Geosci. Model Dev. 13, 4413–4434 (2020).CAS 
    Article 

    Google Scholar 
    Kruk, C. et al. A trait-based approach predicting community assembly and dominance of microbial invasive species. Oikos 130, 571–586 (2021).Article 

    Google Scholar 
    Litchman, E., Ohman, M. D. & Kiørboe, T. Trait-based approaches to zooplankton communities. J. Plankton Res. 35, 473–484 (2013).Article 

    Google Scholar 
    Garcia, C. A. et al. Linking regional shifts in microbial genome adaptation with surface ocean biogeochemistry. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190254 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Moreno, A. R., Hagstrom, G. I., Primeau, F. W., Levin, S. A. & Martiny, A. C. Marine phytoplankton stoichiometry mediates nonlinear interactions between nutrient supply, temperature, and atmospheric CO2. Biogeosciences 15, 2761–2779 (2018).CAS 
    Article 

    Google Scholar 
    Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Coles, V. J. et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science 358, 1149–1154 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 
    Article 

    Google Scholar 
    Bradford, M. A. et al. Quantifying microbial control of soil organic matter dynamics at macrosystem scales. Biogeochemistry 156, 19–40 (2021).Article 

    Google Scholar 
    Ward, B. A., Dutkiewicz, S., Moore, C. M. & Follows, M. J. Iron, phosphorus, and nitrogen supply ratios define the biogeography of nitrogen fixation. Limnol. Oceanogr. 58, 2059–2075 (2013).CAS 
    Article 

    Google Scholar 
    Zwart, J. A., Solomon, C. T. & Jones, S. E. Phytoplankton traits predict ecosystem function in a global set of lakes. Ecology 96, 2257–2264 (2015).PubMed 
    Article 

    Google Scholar 
    Nemergut, D. R., Shade, A. & Violle, C. When, where and how does microbial community composition matter. Front. Microbiol. 5, 497 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Severin, I., Östman, Ö. & Lindström, E. S. Variable effects of dispersal on productivity of bacterial communities due to changes in functional trait composition. PLoS ONE 8, e80825 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Staley, C. et al. Core functional traits of bacterial communities in the Upper Mississippi River show limited variation in response to land cover. Front. Microbiol. 5, 414 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Worden, L. Conservation of community functional structure across changes in composition in consumer-resource models. J. Theor. Biol. 493, 110239 (2020).PubMed 
    Article 

    Google Scholar 
    van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 
    Article 

    Google Scholar 
    Song, H.-S. et al. Regulation-structured dynamic metabolic model provides a potential mechanism for delayed enzyme response in denitrification process. Front. Microbiol. 8, 1866 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hemelrijk, C. K. & Hildenbrandt, H. Schools of fish and flocks of birds: their shape and internal structure by self-organization. Interface Focus 2, 726–737 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M. & Kreft, J.-U. Advancing microbial sciences by individual-based modelling. Nat. Rev. Microbiol. 14, 461–471 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Griesemer, M. & Sindi, S. S. Rules of engagement: a guide to developing agent-based models. Methods Mol. Biol. 2349, 367–380 (2022).PubMed 
    Article 

    Google Scholar 
    Jayathilake, P. G. et al. A mechanistic individual-based model of microbial communities. PLoS ONE 12, e0181965 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Clark, J. R., Daines, S. J., Lenton, T. M., Watson, A. J. & Williams, H. T. P. Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters. Ecol. Modell. 222, 3823–3837 (2011).Article 

    Google Scholar 
    Nadell, C. D. et al. Cutting through the complexity of cell collectives. Proc. Biol. Sci. 280, 20122770 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Allen, B., Gore, J. & Nowak, M. A. Spatial dilemmas of diffusible public goods. eLife 2, e01169 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abs, E., Leman, H. & Ferrière, R. A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition. Commun. Biol. 3, 520 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kreft, J.-U. et al. Mighty small: observing and modeling individual microbes becomes big science. Proc. Natl Acad. Sci. USA 110, 18027–18028 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parise, F., Lygeros, J. & Ruess, J. Bayesian inference for stochastic individual-based models of ecological systems: a pest control simulation study. Front. Environ. Sci. 3, https://doi.org/10.3389/fenvs.2015.00042 (2015).Allison, S. D. & Goulden, M. L. Consequences of drought tolerance traits for microbial decomposition in the DEMENT model. Soil Biol. Biochem. 107, 104–113 (2017).CAS 
    Article 

    Google Scholar 
    Allison, S. D. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058–1070 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Doloman, A., Varghese, H., Miller, C. D. & Flann, N. S. Modeling de novo granulation of anaerobic sludge. BMC Syst. Biol. 11, 69 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gogulancea, V. et al. Individual based model links thermodynamics, chemical speciation and environmental conditions to microbial growth. Front. Microbiol. 10, 1871 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutierrez, M. & Rodriguez-Paton, A. Simulating multicell populations with an accelerated gro simulator. In Proc. ECAL 2017, Fourteenth European Conf. on Artificial Life, 186–188 (2017).Gutiérrez, M. et al. A new improved and extended version of the multicell bacterial simulator gro. ACS Synth. Biol. 6, 1496–1508 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Momeni, B., Waite, A. J. & Shou, W. Spatial self-organization favors heterotypic cooperation over cheating. eLife 2, e00960 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kreft, J.-U., Booth, G. & Wimpenny, J. W. T. BacSim, a simulator for individual-based modelling of bacterial colony growth. Microbiology 144, 3275–3287 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Picioreanu, C., Van Loosdrecht, M. C. & Heijnen, J. J. Effect of diffusive and convective substrate transport on biofilm structure formation: a two-dimensional modeling study. Biotechnol. Bioeng. 69, 504–515 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lardon, L. A. et al. iDynoMiCS: next-generation individual-based modelling of biofilms. Environ. Microbiol. 13, 2416–2434 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chacón, J. M., Möbius, W. & Harcombe, W. R. The spatial and metabolic basis of colony size variation. ISME J. 12, 669–680 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Oyebamiji, O. K. et al. Gaussian process emulation of an individual-based model simulation of microbial communities. J. Comput. Sci. 22, 69–84 (2017).Article 

    Google Scholar 
    Menon, R. & Korolev, K. S. Public good diffusion limits microbial mutualism. Phys. Rev. Lett. 114, 168102 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dobay, A., Bagheri, H. C., Messina, A., Kümmerli, R. & Rankin, D. J. Interaction effects of cell diffusion, cell density and public goods properties on the evolution of cooperation in digital microbes. J. Evol. Biol. 27, 1869–1877 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canzian, L., Zhao, K., Wong, G. C. L. & van der Schaar, M. A dynamic network formation model for understanding bacterial self-organization into micro-colonies. IEEE Trans. Mol. Biol. Multiscale Commun. 1, 76–89 (2015).Article 

    Google Scholar 
    Nadell, C. D., Foster, K. R. & Xavier, J. B. Emergence of spatial structure in cell groups and the evolution of cooperation. PLoS Comput. Biol. 6, e1000716 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mendoza, S. N., Olivier, B. G., Molenaar, D. & Teusink, B. A systematic assessment of current genome-scale metabolic reconstruction tools. Genome Biol. 20, 158 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Orth, J. D., Thiele, I. & Palsson, B. Ø. What is flux balance analysis? Nat. Biotechnol. 28, 245–248 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feist, A. M. & Palsson, B. O. The biomass objective function. Curr. Opin. Microbiol. 13, 344–349 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blasche, S. et al. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nat. Microbiol. 6, 196–208 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dukovski, I. et al. A metabolic modeling platform for the computation of microbial ecosystems in time and space (COMETS). Nat. Protoc. 16, 5030–5082 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Varahan, S., Sinha, V., Walvekar, A., Krishna, S. & Laxman, S. Resource plasticity-driven carbon-nitrogen budgeting enables specialization and division of labor in a clonal community. eLife 9, e57609 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Angeles-Martinez, L. & Hatzimanikatis, V. Spatio-temporal modeling of the crowding conditions and metabolic variability in microbial communities. PLoS Comput. Biol. 17, e1009140 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zimmermann, J., Kaleta, C. & Waschina, S. gapseq: informed prediction of bacterial metabolic pathways and reconstruction of accurate metabolic models. Genome Biol. 22, 81 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zorrilla, F., Buric, F., Patil, K. R. & Zelezniak, A. metaGEM: reconstruction of genome scale metabolic models directly from metagenomes. Nucleic Acids Res. 49, e126 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ponomarova, O. et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 5, 345–357.e6 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Foster, K. R. & Bell, T. Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Borer, B., Ataman, M., Hatzimanikatis, V. & Or, D. Modeling metabolic networks of individual bacterial agents in heterogeneous and dynamic soil habitats (IndiMeSH). PLoS Comput. Biol. 15, e1007127 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labhsetwar, P., Cole, J. A., Roberts, E., Price, N. D. & Luthey-Schulten, Z. A. Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population. Proc. Natl Acad. Sci. USA 110, 14006–14011 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, eabi7159 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Korem, T. et al. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science 349, 1101–1106 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hamilton, J. J. et al. Metabolic network analysis and metatranscriptomics reveal auxotrophies and nutrient sources of the cosmopolitan freshwater microbial lineage acI. mSystems 2, e00091-17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (IPCC, 2020).Pacciani-Mori, L., Giometto, A., Suweis, S. & Maritan, A. Dynamic metabolic adaptation can promote species coexistence in competitive microbial communities. PLoS Comput. Biol. 16, e1007896 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    A global inventory of animal diversity measured in different grazing treatments

    Synthesis and data extractionData were collected using a literature search of Web of Science for peer-reviewed journal articles published between 1970 and November 2019. We conducted two sets of searches to capture grazing with discrete comparisons (e.g., grazed/ungrazed, moderate vs. heavy intensity grazing) and a range of grazing intensities. The search terms used for each were as follows 1) (graz* OR livestock) AND (exclosure* OR exclusion OR exclude* OR ungrazed OR retire* OR fallow* OR fence* OR paddock*), 2) (“grazing intensity” OR “grazing gradient” OR “stocking rate” OR “rotation*grazing”). Our synthesis includes domesticated and wild grazer species, with the latter defined as an undomesticated species naturally occurring in the study area during the study. Wild grazers are typically native species to the region (e.g., the American bison in Western North America) but can include non-native species that are naturalized in the area (e.g., feral horses on Sable Island).We excluded any study that did not test the effect of grazing animals. A grazer was defined using the definition provided by the authors of the respective study to account for the proportion of forage types in a herbivore’s diet that varies between seasons and habitats. For example, we included animals where their diet is assumed to come from all (e.g., cattle, sheep), most (e.g., wapiti, kangaroos), or some (e.g., deer species) grass species. However, within the included studies, these animals were classified as grazers as most of their diet was grass for the duration of the study. For added clarity about the herbivore composition in each study, we extracted a list of any herbivores listed in the paper regardless of foraging type or if any data was provided.We only included studies that measured animal diversity or abundance as a response variable and included data we could extract or contact the author to obtain9. We included any study with a grazing treatment and included observations within these studies of any grazed and ungrazed sites. All studies with grazing included a comparison to either ungrazed sites, different grazing practices (e.g., cattle vs. sheep), and/or differences in intensities (e.g., heavy/light, extensive/intensive). Studies that only measured plants or soil biota were excluded because syntheses of grazing effects on these groups have already been conducted7,11,12, and our goal was to provide a robust inventory of animal diversity. However, if a study included plants, lichens, or fungi in addition to animals, we included this data. Studies discussing marine grazing or aquatic systems were also excluded. From these preliminary filters, we identified 3,489 published manuscripts. We reviewed these 3,489 published articles and found 245 studies that surveyed animals in grazed sites. In total, we extracted 16,105 observations for over 1,200 species.We extracted 28 variables that focus on management systems, assemblages of grazer species, ecosystem characteristics, and survey type (Table 1). The latitudes, longitudes, and elevations of each study were included when provided for use with geospatial data. In addition, we included variables about the study site’s disturbance history, including last time grazed, if a flood event or fire had occurred, if fertilization was used, if the area was open or fenced off, and if the area was publicly or privately owned. Furthermore, the timeline for the study (i.e., the years the authors initiated and completed the study) was also provided. Study initiation was described by the authors and could include when the grazing treatment started, another treatment was applied, and/or animal surveys began. These timeline columns can be useful in identifying long-term studies and differentiating single grazing events or multi-year experiments. Finally, we generalized the characteristics of the ecosystem of the sites used in each study based on the climate and dominant vegetation.Table 1 The attributes and description of the metadata.csv file that lists the general characteristics of each study.Full size tableWithin the grazing data, we included information about the grazer when provided, including any measurement of the intensity of grazing (e.g., animals per hectare, the height of residual vegetation). We also provided two columns that detailed whether the study tested grazing effects using a discrete comparison or gradient of intensities (Table 2). The value for the target specimens extracted may represent either a single observation or a summarized statistic (e.g., mean animals per site). We identify unique observations as “count” and summarized statistics by the metric used, such as mean, median, standard deviation (column stat in grazingData.csv). When possible, we also included any record of other grazers that co-occurred with the observed grazer species. The data for these variables were extracted from the papers by a single researcher who read through each paper and filled in available data on the mentioned variables.Table 2 The attributes and description of the grazingData.csv file that has the extracted data from each study.Full size tableWe extracted information about the target specimen, site, year, experimental replicate, and response estimate (Table 2). We included multiple categorizations of the target species to assist future users in synthesizing similar taxa (Table 2). When a species name or genus was provided, we conducted a search query (see detailedTaxa.r) through the global biodiversity information facility (GBIF.org) to determine the taxonomic classification of the species, including kingdom, phylum, order, class, and family. When a species name was not included, we provided the lowest taxonomic resolution available. We also included a broader classification of ‘higherTaxon’ to distinguish plants, fungi, vertebrates, and invertebrates. These columns may help group similar species together for community-level analyses. Lastly, we included the characteristic of the plant community (i.e., planted or self-assembled, tilled, and its vegetation class) when plant data was reported.Patterns among studiesMost of the studies took place in the United States (26%), Australia (9%), and the United Kingdom (7%) (Fig. 1). As expected, most studies were conducted in grasslands (n = 206), followed by forests (n = 92) and shrublands (n = 82) (Fig. 2). We included publications from the entire range of years (i.e., 1970–2019), but most were published after 2000 (76%). The number of sites in a study and the study duration showed a bimodal distribution with a long tail (Fig. 3). Most studies included one to eight different sites, and few were conducted longer than five years (Fig. 3). A few studies were highly replicated, while many were limited in their replication (Fig. 3).Fig. 1The locations of studies that measured the response of animals to domestic or wild grazing.Full size imageFig. 2The number of grazing studies conducted in ecosystems around the world. We generalized the characteristics of the ecosystem of the sites used in each study based on the climate and dominant vegetation community. We separated grassland communities into those that were (a) semi-natural without recent cultivation or seeding (self-assembled), (b) recently cultivated or had supplemental seeding (planted/cultivated), and (c) a combination of both. In most grasslands, the cultivation history was unclear.Full size imageFig. 3The number of independent sites surveyed and the duration of each study. Most studies were conducted at either a single site or with some replication (e.g., 6–8 sites). Similarly, most studies were either conducted in one year ( >30%) or over a few years (e.g., 3–6 years). Very few studies (32) or lasted longer than 15 years.Full size imageSite and management data were not reported in all studies, as found in other reviews of grazing impacts on ecological processes10. Of the studies that mentioned the ownership status of the land used, 46% were on private land, 42% were on public land, and 12% had a history of both public and private ownership. Most studies included binary comparisons (56%) of grazed vs. ungrazed plots or sites, though some also included a discrete (22%) or a continuous estimate of grazing intensities (18%).Of the studies that reported plant community origin, 76% were self-assembled, 17% were planted communities, and the remaining included sites were a combination of the two. Domesticated grazers as the focal herbivore made up 67% of the studies, with 12% of the studies having wild grazers as the focal herbivore, and 21% having both present. Domesticated livestock were the most frequently surveyed grazers including cattle (n = 164), sheep (n = 83), and horses (n = 21), but studies are included that examined wild grazers, such as kangaroos (n = 6), elephants (n = 5), and pronghorn (n = 5) (Fig. 4).Fig. 4The frequency in which a study reported herbivores. We included any mention of herbivores regardless of being a grazer, browser, granivore, or other class. This list was obtained by the text within the manuscript and is different than the representation of species in the database (i.e., the measured species).Full size image More

  • in

    Exceptional longevity in northern peripheral populations of Wels catfish (Siluris glanis)

    Roff, D. A. The Evolution of Life Histories (Chapman & Hall, 1992).
    Google Scholar 
    Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).
    Google Scholar 
    Tibblin, P. et al. Evolutionary divergence of adult body size and juvenile growth in sympatric subpopulations of a top predator in aquatic ecosystems. Am. Nat. 186, 98–110 (2015).PubMed 

    Google Scholar 
    Voituron, Y., de Fraipont, M., Issartel, J., Guillaume, O. & Clobert, J. Extreme lifespan of the human fish (Proteus anguinus): A challenge for ageing mechanisms. Biol. Lett. 7, 105–107 (2011).PubMed 

    Google Scholar 
    Longhurst, A. Murphy’s law revisited: Longevity as a factor in recruitment to fish populations. Fish. Res. 56, 125–131 (2002).
    Google Scholar 
    Schaffer, W. M. Optimal reproductive effort in fluctuating environments. Am. Nat. 108, 783–790 (1974).
    Google Scholar 
    Beamish, R. J., McFarlane, G. A. & Benson, A. Longevity overfishing. Prog. Oceanogr. 68, 289–302 (2006).ADS 

    Google Scholar 
    Conti, B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 65, 1626–1630 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Inness, C. L. W. & Metcalfe, N. B. The impact of dietary restriction, intermittent feeding and compensatory growth on reproductive investment and lifespan in a short-lived fish. Proc. R. Soc. Lond. B Biol. Sci. 275, 1703–1708 (2008).
    Google Scholar 
    Liu, R. K. & Walford, R. L. Increased growth and life-span with lowered ambient temperature in the annual fish, Cynolebias adloffi. Nature 212, 1277–1278 (1966).ADS 

    Google Scholar 
    Trip, E. D., Clements, K. D., Raubenheimer, D. & Choat, J. H. Temperature-related variation in growth rate, size, maturation and life span in a marine herbivorous fish over a latitudinal gradient. J. Anim. Ecol. 83, 866–875 (2014).PubMed 

    Google Scholar 
    Munch, S. B. & Salinas, S. Latitudinal variation in lifespan within species is explained by the metabolic theory of ecology. Proc. Natl. Acad. Sci. U.S.A. 106, 13860–13864 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Britton, J. R., Pegg, J., Sedgwick, R. & Page, R. Investigating the catch returns and growth rate of wels catfish, Silurus glanis, using mark-recapture. Fish. Man. Ecol. 14, 263–268 (2007).
    Google Scholar 
    Hamel, M. J. et al. Range-wide age and growth characteristics of shovelnose sturgeon from mark–recapture data: Implications for conservation and management. Can. J. Fish. Aquat. Sci. 72, 71–82 (2015).
    Google Scholar 
    Hamel, M. J. et al. Using mark–recapture information to validate and assess age and growth of long-lived fish species. Can. J. Fish. Aquat. Sci. 71, 559–566 (2014).
    Google Scholar 
    Casale, P., Mazaris, A. D., Freggi, D., Vallini, C. & Argano, R. Growth rates and age at adult size of loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea, estimated through capture-mark-recapture records. Sci. Mar. 73, 589–595 (2009).
    Google Scholar 
    IUCN (International Union for Conservation of Nature) 2008. Siluris glanis. The IUCN Red List of Threatened Species. Version 2021-3 (2010). https://www.iucnredlist.org. (Accessed 25 February 2021).Copp, G. H. et al. Voracious invader or benign feline? A review of the environmental biology of European catfish Silurus glanis in its native and introduced ranges. Fish. Fish. 10, 252–282 (2009).
    Google Scholar 
    Palm, S., Vinterstare, J., Nathanson, J. E., Triantafyllidis, A. & Petersson, E. Reduced genetic diversity and low effective size in peripheral northern European catfish Silurus glanis populations. J. Fish. Biol. 95, 1407–1421 (2019).PubMed 

    Google Scholar 
    Jensen, A., Lillie, M., Bergstrom, K., Larsson, P. & Hoglund, J. Whole genome sequencing reveals high differentiation, low levels of genetic diversity and short runs of homozygosity among Swedish wels catfish. Heredity 127, 79–91 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cucherousset, J. et al. Ecology, behaviour and management of the European catfish. Rev. Fish. Biol. Fish. 28, 177–190 (2017).
    Google Scholar 
    Kuzishchin, K. V., Gruzdeva, M. A. & Pavlov, D. S. Traits of biology of European Wels Catfish Silurus glanis from the Volga-Ahtuba water system, the Lower Volga. J. Ichthyol. 58, 833–844 (2019).
    Google Scholar 
    Alp, A., Kara, C., Üçkardeş, F., Carol, J. & García-Berthou, E. Age and growth of the European catfish (Silurus glanis) in a Turkish Reservoir and comparison with introduced populations. Rev. Fish. Biol. Fish. 21, 283–294 (2010).
    Google Scholar 
    Carol, J., Benejam, L. B. & García-Berthou, E. Growth and diet of European catfish (Silurus glanis) in early and late invasion stages. Fund. Appl. Limnol. 174, 317–328 (2009).
    Google Scholar 
    Severov, Y. A. Size–age structure, growth rate, and fishery of European Catfish Silurus glanis in the lower Kama Reservoir. J. Ichthyol. 60, 118–121 (2020).
    Google Scholar 
    Lessmark, O. Malprovfiske i Möckeln 2006. Länsstyrelsens rapportserie (2006).Lessmark, O. Malprovfiske i Möckeln 2007. Länsstyrelsens rapportserie (2007).Harka, A. Studies on the growth of the sheatfish (Silurus glanis L.) in River Tisza. Aquac. Hung. (Szarvas) 4, 135–144 (1984).
    Google Scholar 
    Edwards, J. E. et al. Advancing research for the management of long-lived species: A case study on the Greenland shark. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00087 (2019).Article 

    Google Scholar 
    Pikitch, E. K., Doukakis, P., Lauck, L., Chakrabarty, P. & Erickson, D. L. Status, trends and management of sturgeon and paddlefish fisheries. Fish. Fish. 6, 233–265 (2005).
    Google Scholar 
    Pironon, S. et al. Geographic variation in genetic and demographic performance: New insights from an old biogeographical paradigm. Biol. Rev. 92, 1877–1909 (2017).PubMed 

    Google Scholar 
    Antonovics, J., McKane, A. J. & Newman, T. J. Spatiotemporal dynamics in marginal populations. Am. Nat. 167, 16–27 (2006).CAS 
    PubMed 

    Google Scholar 
    Alp, A., Kara, C. & Büyükcapar, H. M. Reproductive biology in a Native European Catfish, Siluris glanis L., 1758, population in Menzelet Resevoir. Turk. J. Vet. Ani. Sci. 28, 613 (2004).
    Google Scholar 
    Boulêtreau, S. & Santoul, F. The end of the mythical giant catfish. Ecosphere 7(11), e01606. https://doi.org/10.1002/ecs2.1606 (2016).Article 

    Google Scholar 
    Bergmann, C. Ober die verhaltnisse der warmeokonomie der thiere zu ihrer grosse. Gottinger Studien 3, 595–708 (1847).
    Google Scholar 
    Blanck, A. & Lamouroux, N. Large-scale intraspecific variation in life-history traits of European freshwater fish. J. Biogeogr. 34, 862–875 (2007).
    Google Scholar 
    Charnov, E. L., Turner, T. F. & Winemiller, K. O. Reproductive constraints and the evolution of life histories with indeterminate growth. Proc. Natl. Acad. Sci. U.S.A. 98, 9460–9464 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ricklefs, R. E. Embryo development and ageing in birds and mammals. Proc. R. Soc. B 273, 2077–2082 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Lee, W. S., Monaghan, P. & Metcalfe, N. B. Experimental demonstration of the growth rate-lifespan trade-off. Proc. R. Soc. B 280, 20122370 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Rennie, M. D., Kraft, C., Sprules, W. G. & Johnson, T. B. Factors affecting the growth and condition of lake whitefish (Coregonus clupeaformis). Can. J. Fish. Aquat. Sci. 66, 2096–2108 (2009).
    Google Scholar 
    Prats, J., Val, R., Armengol, J. & Dolz, J. Temporal variability in the thermal regime of the lower Ebro River (Spain) and alteration due to anthropogenic factors. J. Hydrol. 387, 105–118 (2010).ADS 

    Google Scholar 
    Kale, S. & Sönmez, A. Y. Climate change effects on annual streamflow of Filyos River (Turkey). J. Water Clim. Change 11, 420–433 (2020).
    Google Scholar 
    Britton, J. R., Cucherousset, J., Davies, G. D., Godard, M. J. & Copp, G. H. Non-native fishes and climate change: Predicting species responses to warming temperatures in a temperate region. Freshw. Biol. 55, 1130–1141 (2010).
    Google Scholar 
    Garcia, V. B., Lucifora, L. O. & Myers, R. A. The importance of habitat and life history to extinction risk in sharks, skates, rays and chimaeras. Proc. R. Soc. B 275, 83–89 (2008).PubMed 

    Google Scholar 
    Jackson, J. B. C. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 

    Google Scholar 
    Kuparinen, A. & Merilä, J. Detecting and managing fisheries-induced evolution. TREE 22, 652–659 (2007).PubMed 

    Google Scholar 
    Swedish University of Agricultural Sciences (SLU). National Data Host Lakes and Watercourses, and National Data Host Agricultural Land (Swedish University of Agricultural Sciences, 2021).
    Google Scholar 
    Emåförbundet. Vattenflöden och Nivåer (n.d.). http://www.eman.se/sv/vattenhushallning/vattenfloden-och-nivaer/historik/. (Accessed 12 May 2021)Fabens, A. J. Properties and fitting of the Von Bertalanffy growth curve. Growth 29, 265–289 (1965).CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/. (Accessed 13 April 2021)Bokor, Z. et al. Survival and growth rates of wels catfish (Siluris glanis Linnaeus, 1758) larvae originating from fertilization with cryopreserved or fresh sperm. J. Appl. Ichthyol. 31, 164–168 (2015).
    Google Scholar 
    du Sert, N. P. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020).
    Google Scholar 
    Horoszewicz, L. & Backiel, T. Growth of Wels (Silurus glanis L.) in the Vistula river and the Zegrzyñski reservoir. Arch. Polish Fish. 11, 115–121 (2003).
    Google Scholar  More