More stories

  • in

    A bottom-up view of antimicrobial resistance transmission in developing countries

    Murray, C. J. et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022).CAS 
    Article 

    Google Scholar 
    Nelson, R. E. et al. National estimates of healthcare costs associated with multidrug-resistant bacterial infections among hospitalized patients in the United States. Clin. Infect. Dis. 72, S17–S26 (2021).PubMed 
    Article 

    Google Scholar 
    Ludden, C. et al. One Health genomic surveillance of Escherichia coli demonstrates distinct lineages and mobile genetic elements in isolates from humans versus livestock. mBio 10, e02693-18 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gouliouris, T. et al. Genomic surveillance of Enterococcus faecium reveals limited sharing of strains and resistance genes between livestock and humans in the United Kingdom. mBio 9, e01780-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Labar, A. S. et al. Regional dissemination of a trimethoprim-resistance gene cassette via a successful transposable element. PLoS ONE 7, e38142 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lamikanra, A. et al. Rapid evolution of fluoroquinolone-resistant Escherichia coli in Nigeria is temporally associated with fluoroquinolone use. BMC Infect. Dis. 11, 312 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kunhikannan, S. et al. Environmental hotspots for antibiotic resistance genes. MicrobiologyOpen 10, e1197 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sulis, G., Sayood, S. & Gandra, S. Antimicrobial resistance in low- and middle-income countries: current status and future directions. Expert Rev. Anti Infect. Ther. 20, 147–160 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Okeke, I. N. & Nwoko, E. in Urban Crisis and Management in Africa: A Festschrift (eds Albert, I. O. & Mabogunje, A.) 125–148 (Pan-African Univ. Press, 2019).Doron, A. & Jeffrey, R. Waste of a Nation: Garbage and Growth in India (Harvard Univ. Press, 2018).Nadimpalli, M. L. et al. Urban informal settlements as hotspots of antimicrobial resistance and the need to curb environmental transmission. Nat. Microbiol. 5, 787–795 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Okeke, I. & Lamikanra, A. A study of the effect of the urban/rural divide on the incidence of antibiotic resistance in Escherichia coli. Biomed. Lett. 55, 91–97 (1997).
    Google Scholar 
    Aijuka, M., Charimba, G., Hugo, C. J. & Buys, E. M. Characterization of bacterial pathogens in rural and urban irrigation water. J. Water Health 13, 103–117 (2015).PubMed 
    Article 

    Google Scholar 
    Hendriksen, R. S. et al. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10, 1124 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mahmud, Z. H. et al. Presence of virulence factors and antibiotic resistance among Escherichia coli strains isolated from human pit sludge. J. Infect. Dev. Ctries 13, 195–203 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beukes, L. S., King, T. L. B. & Schmidt, S. Assessment of pit latrines in a peri-urban community in KwaZulu-Natal (South Africa) as a source of antibiotic resistant E. coli strains. Int. J. Hyg. Environ. Health 220, 1279–1284 (2017).PubMed 
    Article 

    Google Scholar 
    Zhang, H., Gao, Y. & Chang, W. Comparison of extended-spectrum β-lactamase-producing Escherichia coli isolates from drinking well water and pit latrine wastewater in a rural area of China. Biomed. Res. Int. 2016, 4343564 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Nji, E. et al. High prevalence of antibiotic resistance in commensal Escherichia coli from healthy human sources in community settings. Sci. Rep. 11, 3372 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ramblière, L., Guillemot, D., Delarocque-Astagneau, E. & Huynh, B. T. Impact of mass and systematic antibiotic administration on antibiotic resistance in low- and middle-income countries? A systematic review. Int. J. Antimicrob. Agents 58, 106396 (2021).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hlashwayo, D. F. et al. A systematic review and meta-analysis reveal that Campylobacter spp. and antibiotic resistance are widespread in humans in sub-Saharan Africa. PLoS ONE 16, e0245951 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Boeckel, T. P. et al. Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science 365, eaaw1944 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Argudín, M. A. et al. Genotypes, exotoxin gene content, and antimicrobial resistance of Staphylococcus aureus strains recovered from foods and food handlers. Appl. Environ. Microbiol. 78, 2930–2935 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sivagami, K., Vignesh, V. J., Srinivasan, R., Divyapriya, G. & Nambi, I. M. Antibiotic usage, residues and resistance genes from food animals to human and environment: an Indian scenario. J. Environ. Chem. Eng. 8, 102221 (2020).CAS 
    Article 

    Google Scholar 
    Wall, B. A. et al. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production (FAO, 2016).Hassani, A. & Khan, G. Human–animal interaction and the emergence of SARS-CoV-2. JMIR Public Health Surveill. 6, e22117 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Madoshi, B. P. et al. Characterisation of commensal Escherichia coli isolated from apparently healthy cattle and their attendants in Tanzania. PLoS ONE 11, e0168160 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Guetiya Wadoum, R. E. et al. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br. Poult. Sci. 57, 483–493 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rousham, E. K., Unicomb, L. & Islam, M. A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: integrating behavioural, epidemiological and One Health approaches. Proc. Biol. Sci. 285, 20180332 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Jibril, A. H., Okeke, I. N., Dalsgaard, A. & Olsen, J. E. Association between antimicrobial usage and resistance in Salmonella from poultry farms in Nigeria. BMC Vet. Res. 17, 234 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tiseo, K., Huber, L., Gilbert, M., Robinson, T. P. & Van Boeckel, T. P. Global trends in antimicrobial use in food animals from 2017 to 2030. Antibiotics 9, 918 (2020).PubMed Central 
    Article 

    Google Scholar 
    Schar, D., Sommanustweechai, A., Laxminarayan, R. & Tangcharoensathien, V. Surveillance of antimicrobial consumption in animal production sectors of low- and middle-income countries: optimizing use and addressing antimicrobial resistance. PLoS Med. 15, e1002521 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Sun, J., Zhang, H., Liu, Y. H. & Feng, Y. Towards understanding MCR-like colistin resistance. Trends Microbiol. 26, 794–808 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, C. et al. Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect. 9, 508–516 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    He, T. et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat. Microbiol. 4, 1450–1456 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sun, C. et al. Plasmid-mediated tigecycline-resistant gene tet(X4) in Escherichia coli from food-producing animals, China, 2008–2018. Emerg. Microbes Infect. 8, 1524–1527 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lowder, B. V. et al. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl Acad. Sci. USA 106, 19545–19550 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bachiri, T. et al. First report of the plasmid-mediated colistin resistance gene mcr-1 in Escherichia coli ST405 isolated from wildlife in Bejaia, Algeria. Microb. Drug Resist. 24, 890–895 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roberts, M. C. et al. The human clone ST22 SCCmec IV methicillin-resistant Staphylococcus aureus isolated from swine herds and wild primates in Nepal: is man the common source? FEMS Microbiol. Ecol. 94, fiy052 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Aliyu, A. B., Saleha, A. A., Jalila, A. & Zunita, Z. Risk factors and spatial distribution of extended spectrum β-lactamase-producing-Escherichia coli at retail poultry meat markets in Malaysia: a cross-sectional study. BMC Public Health 16, 699 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alam, M. U. et al. Human exposure to antimicrobial resistance from poultry production: assessing hygiene and waste-disposal practices in Bangladesh. Int. J. Hyg. Environ. Health 222, 1068–1076 (2019).PubMed 
    Article 

    Google Scholar 
    Donado-Godoy, P. et al. Prevalence, risk factors, and antimicrobial resistance profiles of Salmonella from commercial broiler farms in two important poultry-producing regions of Colombia. J. Food Prot. 75, 874–883 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moser, K. A. et al. The role of mobile genetic elements in the spread of antimicrobial-resistant Escherichia coli from chickens to humans in small-scale production poultry operations in rural Ecuador. Am. J. Epidemiol. 187, 558–567 (2018).PubMed 
    Article 

    Google Scholar 
    Songe, M. M., Hang’ombe, B. M., Knight-Jones, T. J. D. & Grace, D. Antimicrobial resistant enteropathogenic Escherichia coli and Salmonella spp. in houseflies infesting fish in food markets in Zambia. Int. J. Environ. Res. Public Health 14, (2017).Alves, T. S., Lara, G. H. B., Maluta, R. P., Ribeiro, M. G. & Leite, D. S. Carrier flies of multidrug-resistant Escherichia coli as potential dissemination agent in dairy farm environment. Sci. Total Environ. 633, 1345–1351 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hasan, B. et al. Antimicrobial drug–resistant Escherichia coli in wild birds and free-range poultry, Bangladesh. Emerg. Infect. Dis. 18, 2055–2058 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Blanco, G. Supplementary feeding as a source of multiresistant Salmonella in endangered Egyptian vultures. Transbound. Emerg. Dis. 65, 806–816 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Matias, C. A. R. et al. Frequency of zoonotic bacteria among illegally traded wild birds in Rio de Janeiro. Braz. J. Microbiol. 47, 882–888 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brealey, J. C., Leitão, H. G., Hofstede, T., Kalthoff, D. C. & Guschanski, K. The oral microbiota of wild bears in Sweden reflects the history of antibiotic use by humans. Curr. Biol. 31, 4650–4658.e6 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, C. M. et al. Escherichia coli ST131-H22 as a foodborne uropathogen. mBio 9, e00470-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Randad, P. R. et al. Transmission of antimicrobial-resistant Staphylococcus aureus clonal complex 9 between pigs and humans, United States. Emerg. Infect. Dis. 27, 740–748 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jørgensen, S. L. et al. Diversity and population overlap between avian and human Escherichia coli belonging to sequence type 95. mSphere 4, e00333-18 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ludden, C. et al. A One Health study of the genetic relatedness of Klebsiella pneumoniae and their mobile elements in the east of England. Clin. Infect. Dis. 70, 219–226 (2020).PubMed 
    Article 

    Google Scholar 
    Thorpe, H. et al. One Health or Three? Transmission modelling of Klebsiella isolates reveals ecological barriers to transmission between humans, animals and the environment. Preprint at bioRxiv https://doi.org/10.1101/2021.08.05.455249 (2021).Ingham, A. C. et al. Dynamics of the human nasal microbiota and Staphylococcus aureus cc398 carriage in pig truck drivers across one workweek. Appl. Environ. Microbiol. 87, e0122521 (2021).PubMed 
    Article 

    Google Scholar 
    Hickman, R. A. et al. Exploring the antibiotic resistance burden in livestock, livestock handlers and their non-livestock handling contacts: a One Health perspective. Front. Microbiol. 12, 65161 (2021).Article 

    Google Scholar 
    Okeke, I. N. African biomedical scientists and the promises of ‘big science’. Can J. Afr. Stud. https://doi.org/10.1080/00083968.2016.1266677 (2017).Nadimpalli, M. L. & Pickering, A. J. A call for global monitoring of WASH in wet markets. Lancet Planet. Health 4, e439–e440 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Grace, D. & Little, P. Informal trade in livestock and livestock products. Rev. Sci. Tech. 39, 183–192 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caudell, M. A. et al. Towards a bottom-up understanding of antimicrobial use and resistance on the farm: a knowledge, attitudes, and practices survey across livestock systems in five African countries. PLoS ONE 15, e0220274 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adekanye, U. O. et al. Knowledge, attitudes and practices of veterinarians towards antimicrobial resistance and stewardship in Nigeria. Antibiotics 9, 453 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Mangesho, P. E. et al. ‘We are doctors’: drivers of animal health practices among Maasai pastoralists and implications for antimicrobial use and antimicrobial resistance. Prev. Vet. Med. 188, 105266 (2021).PubMed 
    Article 

    Google Scholar 
    Essack, S. Water, sanitation and hygiene in national action plans for antimicrobial resistance. Bull. World Health Organ. 99, 606–608 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aarestrup, F. M. et al. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrob. Agents Chemother. 45, 2054–2059 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Funtowicz, S. & Ravetz, J. in Handbook of Transdisciplinary Research (eds Hadorn, G. H. et al.) 361–368 (Springer, 2008); https://doi.org/10.1007/978-1-4020-6699-3Theuretzbacher, U., Outterson, K., Engel, A. & Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 185, 275–285 (2019).
    Google Scholar 
    Lacotte, Y., Årdal, C. & Ploy, M. C. Infection prevention and control research priorities: what do we need to combat healthcare-associated infections and antimicrobial resistance? Results of a narrative literature review and survey analysis. Antimicrob. Resist. Infect. Control 9, 142 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kennedy, D. A. & Read, A. F. Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance. Proc. Natl Acad. Sci. USA 115, 12878 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vekemans, J. et al. Leveraging vaccines to reduce antibiotic use and prevent antimicrobial resistance: a World Health Organization action framework. Clin. Infect. Dis. 73, E1011–E1017 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Micoli, F., Bagnoli, F., Rappuoli, R. & Serruto, D. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol. 195, 287–302 (2021).Article 
    CAS 

    Google Scholar 
    Massella, E. et al. Antimicrobial resistance profile and ExPEC virulence potential in commensal Escherichia coli of multiple sources. Antibiotics 10, 351 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Huttner, A. et al. Safety, immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic Escherichia coli in women with a history of recurrent urinary tract infection: a randomised, single-blind, placebo-controlled phase 1b trial. Lancet Infect. Dis. 17, 528–537 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frenck, R. W. et al. Safety and immunogenicity of a vaccine for extra-intestinal pathogenic Escherichia coli (ESTELLA): a phase 2 randomised controlled trial. Lancet Infect. Dis. 19, 631–640 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Patel, R. & Fang, F. C. Diagnostic stewardship: opportunity for a laboratory-infectious diseases partnership. Clin. Infect. Dis. 67, 799–801 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Okeke, I. N. Divining Without Seeds: The Case for Strengthening Laboratory Medicine in Africa (Cornell Univ. Press, 2011).Loosli, K., Davis, A., Muwonge, A. & Lembo, T. Addressing antimicrobial resistance by improving access and quality of care—a review of the literature from East Africa. PLoS Negl. Trop. Dis. 15, e0009529 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chokshi, A., Sifri, Z., Cennimo, D. & Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 11, 36–42 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adedapo, A. D. & Akunne, O. O. Patterns of antimicrobials prescribed to patients admitted to a tertiary care hospital: a prescription quality audit. Cureus 13, e15896 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Kumarasamy, K. K. et al. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davenport, M. et al. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 14, 298–310 (2017).Article 

    Google Scholar 
    van Dongen, J. E. et al. Point-of-care CRISPR/Cas nucleic acid detection: recent advances, challenges and opportunities. Biosens. Bioelectron. 166, 112445 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nielsen, T. B. et al. Monoclonal antibody therapy against Acinetobacter baumannii. Infect. Immun. 89, e0016221 (2021).PubMed 
    Article 

    Google Scholar 
    Dwivedi, P., Narvi, S. S. & Tewari, R. P. Application of polymer nanocomposites in the nanomedicine landscape: envisaging strategies to combat implant associated infections. J. Appl. Biomater. Funct. Mater. 11, 129–142 (2013).
    Google Scholar 
    Song, M., Wu, D., Hu, Y., Luo, H. & Li, G. Characterization of an Enterococcus faecalis bacteriophage vB_EfaM_LG1 and its synergistic effect with antibiotic. Front. Cell. Infect. Microbiol. 11, 636 (2021).
    Google Scholar 
    Dhama, K. et al. Growth promoters and novel feed additives improving poultry production and health, bioactive principles and beneficial applications: the trends and advances—a review. Int. J. Pharmacol. 10, 129–159 (2014).CAS 
    Article 

    Google Scholar 
    Vieco-Saiz, N. et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Front. Microbiol. 10, 57 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ng, W. K. & Koh, C. B. The utilization and mode of action of organic acids in the feeds of cultured aquatic animals. Rev. Aquac. 9, 342–368 (2017).Article 

    Google Scholar 
    Mattioli, G. A. et al. Effects of parenteral supplementation with minerals and vitamins on oxidative stress and humoral immune response of weaning calves. Animals 10, 1298 (2020).PubMed Central 
    Article 

    Google Scholar 
    Mwangi, S., Timmons, J., Fitz-Coy, S. & Parveen, S. Characterization of Clostridium perfringens recovered from broiler chicken affected by necrotic enteritis. Poult. Sci. 98, 128–135 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prendergast, A. J. et al. Putting the ‘A’ into WaSH: a call for integrated management of water, animals, sanitation, and hygiene. Lancet Planet. Health 3, e336–e337 (2019).PubMed 
    Article 

    Google Scholar 
    Martinelli, M. et al. Probiotics’ efficacy in paediatric diseases: which is the evidence? A critical review on behalf of the Italian Society of Pediatrics. Ital. J. Pediatr. 46, 104 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rasko, D. A. & Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9, 117–128 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, M., McBride, S. W., Hullahalli, K., Palmer, K. L. & Duerkop, B. A. Conjugative delivery of CRISPR–Cas9 for the selective depletion of antibiotic-resistant enterococci. Antimicrob. Agents Chemother. 63, e01454-19 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Casu, B., Arya, T., Bessette, B. & Baron, C. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101. Sci. Rep. 7, 14907 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Denyer Willis, L. & Chandler, C. Quick fix for care, productivity, hygiene and inequality: reframing the entrenched problem of antibiotic overuse. BMJ Glob. Health 4, e001590 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilkinson, A., Ebata, A. & Macgregor, H. Interventions to reduce antibiotic prescribing in LMICs: a scoping review of evidence from human and animal health systems. Antibiotics 8, 2 (2018).Torres, N. F., Chibi, B., Middleton, L. E., Solomon, V. P. & Mashamba-Thompson, T. P. Evidence of factors influencing self-medication with antibiotics in low and middle-income countries: a systematic scoping review. Public Health 168, 92–101 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Potgieter, N., Banda, N. T., Becker, P. J. & Traore-Hoffman, A. N. WASH infrastructure and practices in primary health care clinics in the rural Vhembe District municipality in South Africa. BMC Fam. Pract. 22, 8 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Humphreys, G. Reinventing the toilet for 2.5 billion in need. Bull. World Health Organ. 92, 470–471 (2014).PubMed 
    Article 

    Google Scholar 
    Yam, P., Fales, D., Jemison, J., Gillum, M. & Bernstein, M. Implementation of an antimicrobial stewardship program in a rural hospital. Am. J. Health Syst. Pharm. 69, 1142–1148 (2012).PubMed 
    Article 

    Google Scholar 
    Sartelli, M. et al. Antibiotic use in low and middle-income countries and the challenges of antimicrobial resistance in surgery. Antibiotics 9, 497 (2020).PubMed Central 
    Article 

    Google Scholar 
    Büdel, T. et al. On the island of Zanzibar people in the community are frequently colonized with the same MDR Enterobacterales found in poultry and retailed chicken meat. J. Antimicrob. Chemother. 75, 2432–2441 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Finch, M. J., Morris, J. G., Kaviti, J., Kagwanja, W. & Levine, M. M. Epidemiology of antimicrobial resistant cholera in Kenya and East Africa. Am. J. Trop. Med. Hyg. 39, 484–490 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weill, F. X. et al. Genomic history of the seventh pandemic of cholera in Africa. Science 358, 785–789 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Opintan, J. A., Newman, M. J., Nsiah-Poodoh, O. A. & Okeke, I. N. Vibrio cholerae O1 from Accra, Ghana carrying a class 2 integron and the SXT element. J. Antimicrob. Chemother. 62, 929–933 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garbern, S. C. et al. Clinical and socio-environmental determinants of multidrug-resistant Vibrio cholerae 01 in older children and adults in Bangladesh. Int. J. Infect. Dis. 105, 436–441 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mintz, E. D. & Guerrant, R. L. A lion in our village—the unconscionable tragedy of cholera in Africa. N. Engl. J. Med. https://doi.org/10.1056/NEJMp0810559 (2009).Gibani, M. M. et al. The impact of vaccination and prior exposure on stool shedding of Salmonella typhi and Salmonella paratyphi in 6 controlled human infection studies. Clin. Infect. Dis. 68, 1265–1273 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    The skilled ecosystem engineers with big teeth and paddle tails

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Changes in plant biodiversity facets of rocky outcrops and their surrounding rangelands across precipitation and soil gradients

    Larson, D. W., Matthes, U. & Kelly, P. E. Cliff Ecology (Cambridge University Press, 2000).Book 

    Google Scholar 
    Cooper, A. Plant species coexistence in cliff habitats. J. Biogeogr. 24, 483–494 (1997).Article 

    Google Scholar 
    Davis, P. H. Cliff vegetation in the eastern Mediterranean. J. Ecol. 39, 63–93 (1951).Article 

    Google Scholar 
    Snogerup, S. Evolutionary and plant geographical aspects of chasmophytic communities. In Plant life of South-West Asia (eds Davis, P. H. et al.) 157–170 (Bot. Soc. Edinb, 1971).
    Google Scholar 
    Baskin, J. M. & Baskin, C. C. Endemism in rock outcrop plant communities of unglaciated eastern United States: An evaluation of the roles of the edaphic, genetic and light factors. J. Biogeogr. 15, 829–840 (1988).Article 

    Google Scholar 
    Medina, B. M. O. & Fernandes, G. W. The potential of natural regeneration of rocky outcrop vegetation on rupestrian field soils in Serra do Cipo, Brazil. Braz. J. Bot. 30, 665–678 (2007).Article 

    Google Scholar 
    Alves, R. J. V., Cardin, L. & Kropf, M. S. Angiosperm disjunction “Campos Rupestres-Restingas”: Are-evaluation. Acta Bot. Bras. 2, 675–685 (2007).Article 

    Google Scholar 
    Harley, R. M. Introduction. In Flora of the Pico das Almas, Chapada Diamantina, Bahia, Brazil (eds Stannard, B. L., Harvey, Y. B. & Harley, R. M) 1–42 (Royal Botanic Gardens, 1995).Hubbell, S. P. Neutral theory in ecology and the evolution of ecological equivalence. Ecology 87, 1387–1398 (2006).PubMed 
    Article 

    Google Scholar 
    Conceição, A. A., Pirani, J. R. & Meirelles, S. T. Floristics, structure and soil of insular vegetation in four quartzite-sandstone outcrops of “Chapada Diamantina”, Northeast Brazil. Rev. Bras. Bot. 30, 641–656 (2007).Article 

    Google Scholar 
    Le Stradic, S., Buisson, E. & Wilson, F. G. Vegetation composition and structure of some Neotropical mountain grasslands in Brazil. J Mt Sci 12:864–77. An. Acad. Bras. Ciênc. 87(4), 2097–2110 (2015).Article 
    CAS 

    Google Scholar 
    Nunes, J. A. et al. Soil–vegetation relationships on a banded ironstone ‘island’, Carajás Plateau, Brazilian Eastern Amazonia. An. Acad. Bras. Cienc. 87(4), 2097–2110 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, W. A. Gradiente vegetacional e pedológico em complexo rupestre de quartzito no Quadrilátero Ferrífero, Minas Gerais, Brasil. MSc Thesis. (Universidade Federal de Viçosa, 2013).Vincent, R. C. & Meguro, M. Influence of soil properties on the abundance of plant species in ferruginous rocky soils vegetation, southeastern Brazil. Braz. J. Bot. 31, 377–388 (2008).Article 

    Google Scholar 
    Porembski, S. Tropical inselbergs: Habitat types, adaptive strategies and diversity patterns. Rev. Bras. de Bot. 30, 579–586 (2007).Article 

    Google Scholar 
    De Paula, L. F. A., Forzza, R. C., Neri, A. V., Bueno, M. L. & Porembski, S. Sugar Loaf Land in south-eastern Brazil: A center of diversity for mat-forming bromeliads on inselbergs. Bot. J. Linn. Soc. 181, 459–476 (2016).Article 

    Google Scholar 
    Rezende, M. G., Elias, R. C. L., Salimena, F. R. G. & Neto, L. M. Flora vascular da Serra da Pedra Branca, Caldas, Minas Gerais e relações florísticas com áreas de altitude da Região Sudeste do Brasil. Biota Neotrop. 13, 201–224 (2013).Article 

    Google Scholar 
    Sarthou, C., Villiers, J. F. & Ponge, J. F. Shrub vegetation on tropical granitic inselbergs in French Guiana. J. Veg. Sci. 14, 645–652 (2003).Article 

    Google Scholar 
    Tinti, B. V. et al. Plant diversity on granite/gneiss rock outcrop at Pedra do Pato, Serra do Brigadeiro State Park, Brazil. Check List 11, 1780 (2015).Article 

    Google Scholar 
    Barbara, T., Martinelli, G., Fay, M. F., Mayo, S. J. & Lexer, C. Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude “inselbergs”, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Mol. Ecol. 16, 1981–1992 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boisselier-Dubayle, M. C., Leblois, R., Samadi, S., Lambourdière, J. & Sarthou, C. Genetic structure of the xerophilous bromeliad Pitcairnia geyskesii on inselbergs in French Guiana—A test of the forest refuge hypothesis. Ecography 33, 175–184 (2010).Article 

    Google Scholar 
    Domingues, R. et al. Genetic variability of an endangered Bromeliaceae species (Pitcairnia albiflos) from the Brazilian Atlantic rainforest. Genet. Mol. Res. 10, 2482–2491 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hmeljevski, K. V. et al. Conservation assessment of an extremely restricted bromeliad highlights the need for population-based conservation on granitic inselbergs of the Brazilian Atlantic Forest. Flora Morpho. Distribut. Funct. Ecolo. Plants. 209, 250–259 (2014).Article 

    Google Scholar 
    Palma-Silva, C. et al. Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Mol. Ecol. 20, 3185–3201 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gomes, P. & Alves, M. Floristic diversity of two crystalline rocky outcrops in the Brazilian northeast semi-arid region. Rev. Bras. Bot. 33(4), 661–676 (2010).Article 

    Google Scholar 
    Nunes, J. A., Villa, P. M., Neri, A. V., Silva, W. A. & Schaefer, C. E. G. R. Seasonality drives herbaceous community beta diversity in lithologically different rocky outcrops in Brazil. Plant. Ecol. Evol. 153(2), 208–218 (2020).Article 

    Google Scholar 
    Speziale, K. L. & Ezcurra, C. The role of outcrops in the diversity of Patagonian vegetation: Relicts of glacial palaeofloras?. Flora Morphol. Distrib. Funct. Ecol. Plant. 207, 141–149 (2012).
    Google Scholar 
    Speziale, K. L., Ruggiero, A. & Ezcurra, C. Plant species richness–environment relationships across the Subantarctic-Patagonian transition zone. J. Biogeogr. 37, 449–464 (2010).Article 

    Google Scholar 
    Yates, C. J. et al. High species diversity and turnover in granite inselberg floras highlight the need for a conservation strategy protecting many outcrops. Ecol. Evol. 9, 7660–7675 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gaston, K. J. Geographic range limits: Achieving synthesis. Proc. R. Soc. B Biol. Sci. 276, 1395–1406 (2009).Article 

    Google Scholar 
    McGann, T. D. How insular are ecological ‘islands’? An example from the granitic outcrops of the New England Batholith of Australia. Proc. R. Soc. Queensland. 110, 1–13 (2002).
    Google Scholar 
    Parmentier, I., Stévart, T. & Hardy, O. J. The inselberg flora of Atlantic Central Africa. I. Determinants of species assemblages. J. Biogeogr. 32, 685–696 (2005).Article 

    Google Scholar 
    Changwe, K. & Balkwill, K. Floristics of the Dunbar Valley serpentinite site, Songimvelo Game Reserve, South Africa. Bot. J. Linn. Soc. 143, 271–285 (2003).Article 

    Google Scholar 
    Clarke, P. J. Habitat islands in fire-prone vegetation: Do landscape features influence community composition?. J. Biogeogr. 29, 677–684 (2002).Article 

    Google Scholar 
    De Bello, F., Leps, J. & Sebastia, M. T. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29(6), 801–810 (2006).Article 

    Google Scholar 
    Porembski, S., Martinelli, G., Ohlemüller, R. & Barthlott, W. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Divers. Distrib. 4, 107–119 (1998).Article 

    Google Scholar 
    Porembski, S., Szarzynski, J., Mund, J. P. & Barthlott, W. Biodiversity and vegetation of small-sized inselbergs in a West African rain forest (Taï, Ivory Coast). J. Biogeogr. 23, 47–55 (1996).Article 

    Google Scholar 
    Rahmanian, S. et al. Effects of livestock grazing on soil, plant functional diversity, and ecological traits vary between regions with different climates in northeastern Iran. Ecol. Evol. 9, 8225–8237 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Speziale, K. L. & Ezcurra, C. Patterns of alien plant invasions in northwestern Patagonia, Argentina. J. Arid Environ. 75, 890–897 (2011).ADS 
    Article 

    Google Scholar 
    Qian, H., Chen, S. H. & Zhang, J. L. Disentangling environmental and spatial effects on phylogenetic structure of angiosperm tree communities in China. Sci. Rep. 7, 5864 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Farzam, M. & Ejtehadi, H. Effects of drought and canopy facilitation on plant diversity and abundance in a semiarid mountainous rangeland. J. Plant. Ecol. 10(4), 626–633 (2016).
    Google Scholar 
    Heino, J. & Tolonen, K. T. Ecological drivers of multiple facets of beta diversity in a lentic macroinvertebrate metacommunity. Limnol. Oceanogr. 62, 2431–2444. https://doi.org/10.1002/lno.10577 (2017).ADS 
    Article 

    Google Scholar 
    Miranda, J. D., Armas, C., Padilla, F. M. & Pugnaire, F. I. Climatic change and rainfall patterns: Effects on semi-arid plant communities of the Iberian Southeast. J. Arid. Environ. 75, 1302–1309 (2011).ADS 
    Article 

    Google Scholar 
    Pashirzad, M., Ejtehadi, H., Vaezi, J. & Shefferson, R. P. Multiple processes at different spatial scales determine beta diversity patterns in a mountainous semi-arid rangeland of Khorassan-Kopet Dagh floristic province, NE Iran. Plant. Ecol. 220(9), 829–844 (2019).Article 

    Google Scholar 
    Victorero, L., Robert, K., Robinson, L. F., Taylor, M. L. & Huvenne, V. A. I. Species replacement dominates megabenthos beta diversity in a remote seamount setting. Sci. Rep. 8, 4152 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Deil, U. Rock communities in tropical Arabia. Flora et Vegetation Mundi 9, 175–187 (1991).
    Google Scholar 
    Dimopoulos, P., Sýkora, K. V., Mucina, L. & Georgiadis, T. The high-rank syntaxa of the rock-cliff and scree vegetation of the mainland Greece and Crete. Folia Geobot. 32, 313–334 (1997).Article 

    Google Scholar 
    Hein, P., Kürschner, H. & Parolly, G. Phytosociological studies on high mountain plant communities of the Taurus Mountains (Turkey) 2. Rock communities. Phytocoenologia 28, 465–563 (1998).Article 

    Google Scholar 
    Nowak, A., Nowak, S., Nobis, M. & Nobis, A. Vegetation of rock clefts and ledges in the Pamir Alai Mts, Tajikistan (Middle Asia). Cent. Eur. J. Biol. 9, 444–460 (2014).
    Google Scholar 
    Urbis, A. & Blazyca, B. Rock vascular plant species of the Kraków-Częstochowa, Uplands. Thaiszia J. Bot. 21, 207–214 (2011).
    Google Scholar 
    Wiser, S. K., Peet, R. K. & White, P. S. High-elevation rock outcrop vegetation of the Southern Appalachian Mountains. J. Veg. Sci. 7, 703–722 (1996).Article 

    Google Scholar 
    Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. PNAS 110(22), 8996–9000 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Swenson, G.N. Functional and Phylogenetic Ecology in R (Use R!) Kindle Edition (2014).Cadotte, M. W. & Davies, P. R. Why phylogenies do not always predict ecological differences. Ecol. Monogr. 87(4), 535–551 (2016).Article 

    Google Scholar 
    De Bello, F., LepŠ, J. A. N. & Sebastià, M. T. Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. J. Appl. Ecol. 42(5), 824–833 (2005).Article 

    Google Scholar 
    Funk, J. et al. Revisiting the Holy Grail: Using plant functional traits to understand ecologica processes. Biol. Rev. 92(2), 1156–1173 (2017).PubMed 
    Article 

    Google Scholar 
    Lavorel, S. & Garnier, É. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16(5), 545–556 (2002).Article 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    Zheng, S., Li, W., Lan, Z., Ren, H. & Wang, K. Functional trait responses to grazing are mediated by soil moisture and plant functional group identity. Sci. Rep. 5, 18163 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gillison, A. N. Plant functional types and traits at the community, ecosystem and world level. In Vegetation Ecology (eds van der Maarel, E. & Franklin, J.) 347–386 (Wiley, 2013).Chapter 

    Google Scholar 
    Loreau, M. Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 91, 3–17 (2000).Article 

    Google Scholar 
    Akhani, H., Djamali, M., Ghorbanalizadeh, A. & Ramezani, E. Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, paleoecology and conservation. Pak. J. Bot. 42, 231–258 (2010).
    Google Scholar 
    Hamzehee, B. et al. Phytosociological survey of remnant Alnus glutinosa ssp. barbata communities in the lowland Caspian forests of northern Iran. Pytocoenologia. 38, 117–132 (2008).Article 

    Google Scholar 
    Moradi, H. et al. Elevational gradient and vegetation-environmental relationships in the central Hyrcanian forests of northern Iran. Nord. J. Bot. 34, 1–14 (2016).Article 

    Google Scholar 
    Naqinezhad, A., Esmailpoor, A. & Jafari, N. A new record of Pyrola minor (Pyrolaceae) for the flora of Iran as well as a description of its surrounding habitats. Taxon. Biosyst. 22, 71–80 (2015).
    Google Scholar 
    Naqinezhad, A., Zare-Maivan, H. & Gholizadeh, H. A floristic survey of the Hyrcanian forests in Northern Iran, using two lowland-mountain transects. J. For. Res. 26, 187–199 (2015).CAS 
    Article 

    Google Scholar 
    Sagheb-Talebi, K., Sajedi, T. & Pourhashemi, M. Forests of Iran (Springer Sci, 2014).Book 

    Google Scholar 
    Siadati, S. et al. Botanical diversity of Hyrcanian forests; a case study of a transect in the Kheyrud protected lowland mountain forests in northern Iran. Phytotaxa 7, 1–18 (2010).Article 

    Google Scholar 
    Akhani, H. & Ziegler, H. Photosynthetic pathways and habitats of grasses in Golestan National Park (NE Iran), with an emphasis on the C 4-grass dominated rock communities. Phytocoenologia 32, 455–501 (2002).Article 

    Google Scholar 
    Akhani, H., Mahdavi, P., Noroozi, J. & Zarrinpour, V. Vegetation patterns of the Irano-Turanian steppe along a 3,000 m altitudinal gradient in the Alborz Mountains of Northern Iran. Folia Geobot. 48, 229–255 (2013).Article 

    Google Scholar 
    Klein, J. C. The altitudinal vegetation Alborez The Central (Iran) between the Iranian-Turanian and Euro-Siberian regions (French) (Institut Français de Recherche en Iran, 2001).
    Google Scholar 
    Noroozi, J. Case study: High Mountain Regions in Iran 255–260. of Chapter 7 (Endemism in mainland regions-case studies). In Endemism in Vascular plants. Plant. Veg. (ed Hobohm, C.) 9. (Springer, 2014).Noroozi, J., Akhani, H. & Willner, W. Phytosociological and ecological study of the high alpine vegetation of Tuchal Mountains (Central Alborz, Iran). Phytocoenologia 40, 293–321 (2010).Article 

    Google Scholar 
    Do Carmo, F. F. & Jacobi, C. M. Diversity and plant trait-soil relationships among rock outcrops in the Brazilian Atlantic rainforest. Plant Soil. 403, 7–20 (2015).Article 
    CAS 

    Google Scholar 
    Cavender-Bares, J., Kozak, K. H., Fine, P. V. A. & Kembel, S. The merging of community ecology and phylogenetic biology. Ecol Lett. 12, 693–715 (2009).PubMed 
    Article 

    Google Scholar 
    Heydari, M., Poorbabaei, H., Esmailzadeh, O., Salehi, A. & EshaghiRad, J. Indicator plant species in monitoring forest soil conditions using logistic regression model in Zagros Oak (Quercus brantii var. persica) forest ecosystems. Ilam city. J. Plant Res. 27(5), 811–828 (2014).
    Google Scholar 
    Speziale, K. L. & Ezcurra, C. Rock outcrops as potential biodiversity refugia under climate change in North Patagonia. Plant Ecol. Diver. 8, 353–361 (2014).Article 

    Google Scholar 
    Rahmanian, S. et al. Effects of livestock grazing on plant species diversity vary along a climatic gradient in northeastern Iran. Appl. Veg. Sci. 23, 551–561 (2020).Article 

    Google Scholar 
    Huston, M. A. Biological Diversity: The Coexistence of Species in Changing Landscape (Cambridge University, 1994).
    Google Scholar 
    Mason, N. W., Mouillot, D. & Lee, W. G. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos 111, 112–118 (2005).Article 

    Google Scholar 
    Stubbs, W. J. & Wilson, J. B. Evidence for limiting similarity in a sand dune community. J. Ecol. 92, 557567 (2004).Article 

    Google Scholar 
    Stanisci, A. et al. Functional composition and diversity of leaf traits in subalpine versus alpine vegetation in the Apennines. Ann. Bot. Comp. plants. 12, plaa004 (2020).CAS 

    Google Scholar 
    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rosbakh, S. et al. Contrasting effects of extreme drought and snowmelt patterns on mountain plants along an elevation gradient. Front. Plant Sci. 8, 1478 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Korner, C. Alpine Treelines: Functional Ecology of the Global High Elevation tree Limits (Springer Sci. & Business Media, 2012).Book 

    Google Scholar 
    Reich, P. B. et al. Generality of leaf trait relationships: A test across six biomes. Ecology 80, 1955–1969 (1999).Article 

    Google Scholar 
    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Ann. Rev. Ecol. Syst. 33, 125–159 (2002).Article 

    Google Scholar 
    Hautier, Y., Niklaus, P. A. & Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 324, 636–638 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    De Bello, F. D. et al. Hierarchical effects of environmental filters on the functional structure of plant communities: A case study in the French Alps. Ecography 36, 393–402 (2013).Article 

    Google Scholar 
    Korner, C., Neumayer, M., Menendez-Riedl, S. P. & Smeets-Scheel, A. Functional morphology of mountain plants. Flora 182, 353–383 (1989).Article 

    Google Scholar 
    Rosbakh, S., Römermann, C. & Poschlod, P. Specific leaf area correlates with temperature new evidence of trait variation at the population, species and community levels. Alp. Bot. 125, 79–86 (2015).Article 

    Google Scholar 
    Ordonez, J. C. et al. Global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).Article 

    Google Scholar 
    Li, W. et al. Community-weighted mean traits but not functional diversity determine the changes in soil properties during wetland drying on the Tibetan Plateau. Solid Earth. 8, 137–147 (2017).ADS 
    Article 

    Google Scholar 
    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).PubMed 
    Article 

    Google Scholar 
    Lane, D. R., Coffin, D. P. & Lauenroth, W. K. Effects of soil texture and precipitation on above-ground net primary productivity and vegetation structure across the Central Grassland region of the United States. J. Veg. Sci. 9, 239–250 (1998).Article 

    Google Scholar 
    Noy-Meir, I. Multivariate analysis of the semi-arid vegetation of southern Australia. II. Vegetation catenae an environmental gradients. Aust. J. Bot. 22, 40–115 (1973).
    Google Scholar 
    Moura, M. R., Villalobos, F., Costa, G. C. & Garcia, P. C. A. Disentangling the role of climate, topography and vegetation in species richness gradients. PLoS ONE 11(3), 0152468 (2016).Article 
    CAS 

    Google Scholar 
    Neri, A. V. et al. Soil and altitude drives diversity and functioning of Brazilian Páramos (Campo de Altitude). J. plant. Ecol. 10(5), 771–779 (2016).
    Google Scholar 
    Benites, V. M., Schaefer, C. E. G. R., Simas, F. N. B., Santos, H. G. & Mendonca, B. A. F. Soils associated to rock outcrops in the Brazilian mountain ranges Mantiqueira and Espinhaço. Rev. Bras. Bot. 30, 569–577 (2007).Article 

    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 
    Article 

    Google Scholar 
    Zuo, X. A. et al. Testing associations of plant functional diversity with along a restoration gradient of sandy grassland. Front. Plant. Sci. 7, 1–11 (2016).ADS 
    Article 

    Google Scholar 
    Myers-Smith, I. H. et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).ADS 
    Article 

    Google Scholar 
    Vankoughnett, M. R. & Grogan, P. Nitrogen isotope tracer acquisition in low and tall birch tundra plant communities: A 2-year test of the snow–shrub hypothesis. Biogeochemistry 118, 291–306 (2014).CAS 
    Article 

    Google Scholar 
    Pescador, D. S., de Bello, F., Valladares, F. & Escudero, A. Plant trait variation along an altitudinal gradient in Mediterranean high mountain grasslands: Controlling the species turnover effect. PLoS ONE 10, e0118876 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pescador, D. S., Sierra-Almeida, A., Torres, P. J. & Escudero, A. Summer freezing resistance: A critical filter for plant community assemblies in Mediterranean high mountains. Front. Plant. Sci. 7, 194 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heydarnejad, S. & Ranjbar, A. Investigation of the effect of salinity stress on growth characteristic and ion accumulation in plants. J. Desert Ecos. Eng. 3(4), 1–10 (2013).
    Google Scholar 
    Perez-Harguindeguy, N. et al. New handbook for standardized measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography (Oxford University Press, 1934).
    Google Scholar 
    Gee, G. W. & Bauder, J. W. Particle size analysis. In Methods of Soil Analysis. Part 1, 2nd ed. (ed Klute, A.) Agronomy Monographs, Vol. 9, 383–409 (Am. Soc. Agr., 1986).Bremner, J. M. In Nitrogen-Total Methods of Soil Analysis. (eds Sparks, D. L.) Soil Sci Soc Am J. 1085–1122 (Am Soc Agr. Inc, 1996).Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38 (1934).ADS 
    CAS 
    Article 

    Google Scholar 
    Nelson, D. W. & Sommers, L. Total carbon, organic carbon, and organic matter 1. Methods of soil analysis. Part 2. Chemical and microbi‐ological properties, (methodsofsoilan2), 539–579 (1982).Miller, R. H. & Keeney, D. R. Methods of soil analysis, 2nd ed. In Part 2. Chemical and Microbiological Properties (eds Page, A. L. et al.) 1–129 (ASA, SSSA, 1982).
    Google Scholar 
    Food and Agriculture Organization-FAO. Management of gypsiferous soils. Soil Bulletin, 62, (FAO, 1990).Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).Article 

    Google Scholar 
    Shipley, B., Vile, D. & Garnier, É. from plant traits to plant communities: A statistica mechanistic approach to biodiversity. Science 314(5800), 812–814 (2006).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Zhu, J., Jiang, L. & Zhang, Y. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci. Rep. 6, 34105 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).PubMed 
    Article 

    Google Scholar 
    Wheeler, D. & Tiefelsdorf, M. Multicollinearity and correlation among local regression coefficients in geographically weighted regression. J. Geogr. Syst. 7, 161–187 (2005).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. A review of: an R companion to applied regression, second edition. J. Biopharm. Stat. 22, 418–419 (2011).
    Google Scholar 
    Brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).Article 

    Google Scholar 
    Dray, S., Legendre, P. & Blanchet, F. G. packfor: forward selection with permutation (Canoco p. 46). (2011) http://R-Forge.R-project.org/projects/sedar (Accessed 7 Nov 2016).Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2017).Wickham, H. et al. Ggplot2: Elegant Graphics for Data Analysis 2nd edn. (Springer International Publishing, 2016).MATH 
    Book 

    Google Scholar  More

  • in

    Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).Article 

    Google Scholar 
    van Diepen, C. A., Wolf, J., van Keulen, H. & Rappoldt, C. WOFOST: a simulation model of crop production. Soil Use Manag. 5, 16–24 (1989).Article 

    Google Scholar 
    Cao, J. et al. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agric. For. Meteorol. 297, 108275 (2021).ADS 
    Article 

    Google Scholar 
    Khanal, S., Kushal, K. C., Fulton, J. P., Shearer, S. & Ozkan, E. Remote sensing in agriculture—accomplishments, limitations, and opportunities. Remote Sens. 12, 3783 (2020).ADS 
    Article 

    Google Scholar 
    Maas, S. J. Parameterised model of gramineous crop growth: II. within-season simulation calibration. Agron. J. 85, 354–358 (1993).Article 

    Google Scholar 
    Nguyen, V., Jeong, S., Ko, J., Ng, C. & Yeom, J. Mathematical integration of remotely-sensed information into a crop modelling process for mapping crop productivity. Remote Sens. 11, 2131 (2019).Article 

    Google Scholar 
    Huang, J. et al. Assimilation of remote sensing into crop growth models: current status and perspectives. Agric. For. Meteorol. 276–277, 107609 (2019).ADS 
    Article 

    Google Scholar 
    Jin, X. et al. A review of data assimilation of remote sensing and crop models. Eur. J. Agron. 92, 141–152 (2018).Article 

    Google Scholar 
    Shawon, A. R. et al. Assessment of a proximal sensing-integrated crop model for simulation of soybean growth and yield. Remote Sens. 12, 410 (2020).ADS 
    Article 

    Google Scholar 
    Shawon, A. R. et al. Two-dimensional simulation of barley growth and yield using a model integrated with remote-controlled aerial imagery. Remote Sens. 12, 3766 (2020).ADS 
    Article 

    Google Scholar 
    Shin, T. et al. Simulation of wheat productivity using a model integrated with proximal and remotely controlled aerial sensing information. Front. Plant Sci. https://doi.org/10.3389/fpls.2021.649660 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, J. et al. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 216, 188–202 (2016).ADS 
    Article 

    Google Scholar 
    Khaki, S., Wang, L. & Archontoulis, S. V. A CNN-RNN framework for crop yield prediction. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01750 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, N. et al. An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data. Appl. Sci. 10, 3785 (2020).CAS 
    Article 

    Google Scholar 
    Kumar, P. et al. Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data. Geocarto Int. 34, 1022–1041 (2019).Article 

    Google Scholar 
    Everingham, Y., Sexton, J., Skocaj, D. & Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 36, 27 (2016).Article 

    Google Scholar 
    Feng, P., Wang, B., Li Liu, D., Waters, C. & Yu, Q. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia. Agric. For. Meteorol. 275, 100–113 (2019).ADS 
    Article 

    Google Scholar 
    Shahhosseini, M., Hu, G., Huber, I. & Archontoulis, S. V. Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt. Sci. Rep. 11, 1606 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cai, Y. et al. Detecting in-season crop nitrogen stress of corn for field trials using UAV- and CubeSat-based multispectral sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 12, 5153–5166 (2019).ADS 
    Article 

    Google Scholar 
    van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020).Article 

    Google Scholar 
    Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018).Article 

    Google Scholar 
    Bui, D. T., Tsangaratos, P., Nguyen, V.-T., Liem, N. V. & Trinh, P. T. Comparing the prediction performance of a deep learning neural network model with conventional machine learning models in landslide susceptibility assessment. CATENA 188, 104426 (2020).Article 

    Google Scholar 
    Sahoo, A. K., Pradhan, C. & Das, H. Performance evaluation of different machine learning methods and deep-learning based convolutional neural network for health decision making. In Nature Inspired Computing for Data Science (eds Rout, M. et al.) (Springer International Publishing, 2020).
    Google Scholar 
    Jeong, S. et al. Development of Variable Threshold Models for detection of irrigated paddy rice fields and irrigation timing in heterogeneous land cover. Agric. Water Manag. 115, 83–91 (2012).Article 

    Google Scholar 
    Peng, D., Huete, A. R., Huang, J., Wang, F. & Sun, H. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. Int. J. Appl. Earth Obs. Geoinf. 13, 13–23 (2011).ADS 

    Google Scholar 
    Jeong, S., Ko, J. & Yeom, J.-M. Nationwide projection of rice yield using a crop model integrated with geostationary satellite imagery: a case study in South Korea. Remote Sens. 10, 1665 (2018).ADS 
    Article 

    Google Scholar 
    Xiao, X. et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens. Environ. 100, 95–113 (2006).ADS 
    Article 

    Google Scholar 
    Ozdogan, M. & Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US. Remote Sens. Environ. 112, 3520–3537 (2008).ADS 
    Article 

    Google Scholar 
    Yeom, J.-M., Jeong, S., Deo, R. C. & Ko, J. Mapping rice area and yield in northeastern Asia by incorporating a crop model with dense vegetation index profiles from a geostationary satellite. GISci. Remote Sens. 58, 1–27 (2021).Article 

    Google Scholar 
    Yeom, J.-M. et al. Monitoring paddy productivity in North Korea employing geostationary satellite images integrated with GRAMI-rice model. Sci. Rep. 8, 16121 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jeong, S., Ko, J., Choi, J., Xue, W. & Yeom, J.-M. Application of an unmanned aerial system for monitoring paddy productivity using the GRAMI-rice model. Int. J. Remote Sens. 39, 2441–2462 (2018).Article 

    Google Scholar 
    Jeong, S. et al. Geographical variations in gross primary production and evapotranspiration of paddy rice in the Korean Peninsula. Sci. Total Environ. 714, 136632 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Roger, P., Vermote, E. & Ray, J. MODIS Surface Reflectance User’s Guide. Collection 6 (2015).Scharlemann, J. P. W. et al. Global data for ecology and epidemiology: a novel algorithm for temporal Fourier processing MODIS data. PLoS ONE 3, e1408 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pede, T. & Mountrakis, G. An empirical comparison of interpolation methods for MODIS 8-day land surface temperature composites across the conterminous Unites States. ISPRS J. Photogramm. Remote Sens. 142, 137–150 (2018).ADS 
    Article 

    Google Scholar 
    Kilibarda, M. et al. Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. J. Geophys. Res. Atmos. 119, 2294–2313 (2014).ADS 
    Article 

    Google Scholar 
    Nunez, M. The development of a satellite-based insolation model for the tropical western Pacific Ocean. Int. J. Climatol. 13, 607–627 (1993).Article 

    Google Scholar 
    Otkin, J. A., Anderson, M. C., Mecikalski, J. R. & Diak, G. R. Validation of GOES-based insolation estimates using data from the U.S. Climate reference network. J. Hydrometeorol. 6, 460–475 (2005).ADS 
    Article 

    Google Scholar 
    Pinker, R. & Laszlo, I. Modeling surface solar irradiance for satellite applications on a global scale. J. Appl. Meteorol. 31, 194–211 (1992).ADS 
    Article 

    Google Scholar 
    Kawamura, H., Tanahashi, S. & Takahashi, T. Estimation of insolation over the Pacific Ocean off the Sanriku coast. J. Oceanogr. 54, 457–464 (1998).Article 

    Google Scholar 
    Yeom, J.-M., Seo, Y.-K., Kim, D.-S. & Han, K.-S. Solar radiation received by slopes using COMS imagery, a physically based radiation model, and GLOBE. J. Sens. 2016, 1–15 (2016).Article 

    Google Scholar 
    Yeom, J.-M., Han, K.-S. & Kim, J.-J. Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data. Asia-Pac. J. Atmos. Sci. 48, 115–123 (2012).ADS 
    Article 

    Google Scholar 
    Kawai, Y. & Kawamura, H. Validation and improvement of satellite-derived surface solar radiation over the Northwestern Pacific Ocean. J. Oceanogr. 61, 79–89 (2005).Article 

    Google Scholar 
    Tanahashi, S., Kawamura, H., Matsuura, T., Takahashi, T. & Yusa, H. A system to distribute satellite incident solar radiation in real-time. Remote Sens. Environ. 75, 412–422 (2001).ADS 
    Article 

    Google Scholar 
    Elbern, H., Schmidt, H., Talagrand, O. & Ebel, A. 4D-variational data assimilation with an adjoint air quality model for emission analysis. Environ. Model. Softw. 15, 539–548 (2000).Article 

    Google Scholar 
    Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical Recipes: The Art of Scientific Computing (Cambridge University Press, 1992).MATH 

    Google Scholar 
    Ko, J. et al. Simulation and mapping of rice growth and yield based on remote sensing. J. Appl. Remote Sens. 9, 096067 (2015).Article 

    Google Scholar 
    Emami Javanmard, M., Ghaderi, S. F. & Hoseinzadeh, M. Data mining with 12 machine learning algorithms for predict costs and carbon dioxide emission in integrated energy-water optimization model in buildings. Energy Convers. Manag. 238, 114153 (2021).CAS 
    Article 

    Google Scholar 
    Diebold, F. X. & Shin, M. Machine learning for regularized survey forecast combination: partially-egalitarian LASSO and its derivatives. Int. J. Forecast. 35, 1679–1691 (2019).Article 

    Google Scholar 
    Khosla, E., Dharavath, R. & Priya, R. Crop yield prediction using aggregated rainfall-based modular artificial neural networks and support vector regression. Environ. Dev. Sustain. 22, 5687–5708 (2020).Article 

    Google Scholar 
    Wang, S., Azzari, G. & Lobell, D. B. Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 222, 303–317 (2019).ADS 
    Article 

    Google Scholar 
    Ustuner, M. & Balik, S. F. Polarimetric target decompositions and light gradient boosting machine for crop classification: a comparative evaluation. ISPRS Int. J. Geo Inf. 8, 97 (2019).Article 

    Google Scholar 
    Jeong, S., Ko, J. & Yeom, J.-M. Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea. Sci. Total Environ. 802, 149726 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I: a discussion of principles. J. Hydrol. 10, 282–290 (1970).ADS 
    Article 

    Google Scholar  More

  • in

    Municipal biowaste treatment plants contribute to the contamination of the environment with residues of biodegradable plastics with putative higher persistence potential

    Choice of biowaste treatment plants and sample identifiersCompost samples were collected from four central municipal biowaste treatment plants (denominated as #1 to #4) in Baden-Wurttemberg, Germany (Table 1). All plants used a state-of-the-art two-stage biowaste treatment process comprising of (a) anaerobic digestion/biogas production and (b) subsequent composting of the solid digestate to produce a high-quality mature compost sold for direct use as fertilizer in agriculture. The composts were regularly analyzed by an independent laboratory for quality and residual contamination and consistently fulfilled the quality requirements of the label RAL-GZ 251 Gütezeichen Kompost of the German Bundesgütegemeinschaft Kompost e.V. (www.gz-kompost.de). Plants #1 and #3 produce in addition a liquid fertilizer, which is separated from the solid digestate at the end of stage a) by press filtration and which is also intended for direct use on agricultural soil (replacement of liquid manure). In case of plants #1, #3, and #4 up to 25 wt% of shrub/tree cuttings were added to the solid digestate for composting. All plants used sieving (typically with a 12 or a 20 mm mesh) at the end of the process to assure the necessary purity of their finished composts. Whenever technically possible, we as well took samples of the pre-compost immediately before this final sieving step to evaluate its contribution to the removal of residual BPD fragments. For analysis, composts were passed consecutively through two sieves with mesh sizes of 5 mm and 1 mm, yielding two fragment preparations for IR-analysis namely a > 5 mm fraction corresponding to the contamination by residual “macroplastic” (5 mm is a commonly used upper size limit for “microplastic”, anything larger is macroplastic) and a 1–5 mm fraction corresponding to the regulatory relevant residual contamination by microplastic. The lower limit of 1 mm rather than 2 mm was chosen in anticipation of the expected changes in regulation, where the replacement of the 2 mm limit by a 1 mm limit is imminent.Table 1 Technical data of the investigated plants and incidence of BDP fragments in the sampled composts.Full size tableOccurrence of plastic fragments  > 1 mm in the sampled compostsComposting times of 5–9 weeks were used in the investigated plants (Table 1), which is shorter than the 12 weeks indicated in EN 13432 for the 90% disintegration of a compostable plastic material, but a realistic time span for state-of-the-art technical waste treatment. Since we were not in a position to estimate the quantity of BDP entering the plants, since for technical reasons we were unable to obtain a representative sample, we cannot say, whether any residual BDP detected by us in the finished composts was due to a yet incomplete disintegration process or whether it corresponds to the 10% material still permissible by EN 13432 even after the full composting step. However, in 7 out of the 12 sampled composts and pre-composts fragments with chemical signatures corresponding to the BDPs poly (lactic acid) (PLA) and poly (butylene-adipate-co-terephthalate) (PBAT) were identified in the > 5 mm and/or the 1–5 mm sieving fractions using FTIR analysis3 (Fig. 1; Table 1). All recovered fragments appeared to stem from foils, bags or packaging, since they were thin compared to their length and width (see Suppl Figure S1 for typical examples). Fragments with overlapping signatures, most likely PBAT/PLA mixtures or blends, were also found (see Suppl Figure S2 for the interpretation of the spectra). In addition, the recorded BDP fragment spectra (Fig. 1A) showed high similarity to the FTIR spectra of commercial compostable bags sold in the vicinity of the biowaste treatment plants (Fig. 1B), which together with the geometry of the recovered fragments led us to assuming that the majority of the BDP entered the biowaste in the form of such bags.Figure 1FTIR spectra of BDP fragments from composts and commercial bags. (A) BDP fragments recovered from the composts and (B) the commercial compostable bags. Fragments were coded as follows: p or f for pre-compost or finished compost, followed by the plant number (#1 to #4), an indication of the size fraction ( > 5 mm or 1–5 mm) in which the fragment was found, and finally, the fragment number. Fragment F#1_5mm_4 therefore represents the 4th fragment collected in the  > 5 mm size fraction from the finished compost of plant number 1. Bags were arbitrarily numbered 1–10, see Suppl Table S1 for supplier information. The spectra (in grey) of the reference materials for PLA and PBAT are given as basis for the interpretation. Spectra in red refer to test samples consisting only of PBAT, while those in blue indicate samples composed of PBAT/PLA mixtures.Full size imageThe BDP fragments were found alongside fragments of commodity plastics (mostly PE) in all cases. Finished composts tended to contain fewer and smaller fragments than the corresponding pre-composts. The final sieving of the pre-composts to prepare the finished composts hence appears to be quite effective in removing such fragments, in particular those from the > 5 mm size fraction (Table 1) and for that reason has become state-of-the-art in preparing quality composts (contamination by plastic fragments > 2 mm of less than 0.1 wt%). Given that the size of the fragments is a crucial factor regarding ecological risk, we analyzed the sizes (length Î width) of the BDP fragments in comparison to that of the plastic fragments with signatures of commodity plastics such as PE (Fig. 2). BDP fragments found in a given compost sample tended to be smaller than the fragments stemming from non-BDP materials, which may indicate that BDPs degrade faster or tend to disintegrate into tinier particles than commodity plastics. This may also explain why in the compost from plant #2, no BDP fragments were found in the particle fraction retained by the 5 mm sieve ( > 5 mm fraction), while 19 such particles were found in the fraction then retained by the 1 mm sieve (1–5 mm fraction). Interestingly, plant #2 is the only one included in our study that uses no mechanical breakdown of the incoming biowaste. This reduces the mechanical stress on the incoming material. Mechanical stress can alter the properties of plastic foils such as the crystallinity whereby crystallinity has been shown to influence the biological degradation of BDP such as PLA7.Figure 2Size distribution of plastic fragments  > 1 mm. (A) Fragments found in the finished compost from plant #1, (B) in the finished compost from plant #2, and (C) in the pre-compost from plant #3. For reasons of statistical relevance, only samples containing more than 20 BDP fragments per kg of compost were included in the analysis.Full size imageMaterial characteristics of BDP fragments in comparison to those of commercial biodegradable bagsIn order to verify whether the BDP fragments recovered from the composts differed from the compostable bags in any parameter with possible relevance for biodegradation and environmental impact16, the physico-chemical properties of bags and fragments were studied in detail. Since we wanted to have a maximum of information of the BDP fragments, size/weight was a limiting factor in selecting fragments for analysis. Fragments of at least 1 mg were required for the FT-IR analysis. 5 mg-fragments could be analyzed in addition by 1H-NMR, while the full set of analytics (FT-IR, 1H-NMR, and DSC) required at least 10 mg of sample.For insight into the chemical composition, 1H-NMR spectra of the commercial bags and all suitable BDP fragments were compared (Fig. 3). In case of material mixtures and blends, the 1H-NMR analysis allows quantification of the PBAT/PLA weight ratio in the materials and also of the ratio of the butylene terephthalate (BT) and butylene adipate (BA) units in the involved PBAT polyesters.Figure 31H NMR spectra of BDP fragments from composts and commercial bags. (A) BDP fragments recovered from the composts and (B) the commercial compostable bags. Fragments were coded as follows: p or f for pre-compost or finished compost, followed by the plant number (#1 to #4), an indication of the size fraction ( > 5 mm or 1–5 mm) in which the fragment was found, and finally, the fragment number. Bags were arbitrarily numbered 1–10, see Suppl Table S1 for supplier information. The spectra (in grey) of the reference materials for PLA and PBAT are given as basis for the interpretation. Spectra in red refer to test samples consisting only of PBAT, while those in blue indicate samples composed of PBAT/PLA mixtures. (C) Chemical structures of PLA and PBAT, chemical shifts of the protons are assigned as indicated in the reference spectra in (B).Full size imageThe 1H-NMR spectra corroborate the FTIR measurements in that all investigated commercial bags were made from PBAT/PLA mixtures of varied composition (Table 2). By comparison, some of the fragments, for instance, f#1_5mm_4, appeared to consist of only PBAT. Other fragments, e.g., f#1_1mm_9, were mixtures of PLA and PBAT (Table 2). However, even in the case of PBAT/PLA mixtures, the average PBAT content tended to be higher in the fragments than in the bags, while the BT/BA monomer ratio in the respective PBATs, was also significantly higher in the fragments than in the bags. If we assume the fragments to stem from similar compostable bags as the ones included in our comparison, this would mean that during composting of such a bag, the PLA degrades more quickly than the PBAT, whereas within a given PBAT polyester, the BA unit is more easily degraded than the BT unit. Evidence can indeed be found in the pertinent literature that PLA has faster biodegradation kinetics than PBAT, while BT is more resistant to mineralization than BA17,18.Table 2 Composition of commercial compostable bags and BDP fragments recovered from the composts as analyzed by 1H-NMR.Full size tableNext, differential scanning calorimetry (DSC) was used to analyze fragments compared to commercial bags in regard to the presence of amorphous vs. crystalline domains, a parameter expected to affect biodegradation kinetics and therefore the putative environmental impact of the produced microplastic16 upon release into the environment with the composts. Whereas amorphous domains show glass transition, crystalline domains show melting, both of which can be discerned by the respective phase transition enthalpy in the DSC curves (Fig. 4).Figure 4DSC curves of BDP fragments and compostable bags #1 and #7. Curves for the reference materials (in grey) for PLA and PBAT are given for comparison. Curves were recorded during the first heating run (temperature range: − 50 °C to 200 °C, heating rate: 10 °C min−1). (A) and (B) curves in red refer to test samples consisting only of PBAT, while those in blue indicate samples composed of PBAT/PLA mixtures. Fragments were coded as follows: p or f for pre-compost or finished compost, followed by the plant number (#1 to #4), an indication of the size fraction ( > 5 mm or 1–5 mm) in which the fragment was found, and finally, the fragment number.Full size imageThe curve for the reference PBAT shows a glass transition temperature (Tg) of − 29 °C and a broad melting range between 100 and 140 °C for the crystalline domains, while that of the PLA reference shows a glass transition temperature of 58 °C and a narrower melting peak between 144 °C and 162 °C. The curve for commercial bag #1, which had a comparatively high PLA content, shows a pronounced melting peak in the expected range; the same is the case for fragment p#3_5mm_1 and to a lesser extent for fragment p#3_5mm_9, two fragments, which also have high PLA contents. The DSC curves of the other fragments and bag #1 are undefined in comparison, which is due to their high PBAT content. According to the DSC curves, most of the investigated materials are semicrystalline, i.e., contain both amorphous (glass transition) and crystalline (melting) domains. However, the DCS data alone allow only a qualitative discussion of the differences between fragments and bags.To obtain quantitative data on the crystallinity differences, wide angle X-ray scattering (WAXS) spectra were recorded. WAXS requires fragments at least 3 cm long, which restricted the number of fragment samples to three, all of which were found in pre-compost samples. The corresponding curves are shown in Fig. 5A–C. The spectra of the commercial biodegradable bags are shown in Suppl Figure S3. Foils were in addition prepared by heat pressing from the reference materials for PLA and PBAT in order to include them into the WAXS measurements (Fig. 5D). While the foils produced from the PBAT reference material produced crystallinity peaks at 16.2°, 17.3°, 20.4°, 23.2°, and 24.8°, the foil prepared from the PLA reference material showed only an amorphous halo at 15.5° and 31.5°, which is in accordance with values published in the literature19. A more pronounced crystallinity peak was obtained in the case of an additionally annealed PLA foil.Figure 5WAXS curves with Lorenz fitting for (A) fragment p#3_5mm_1, (B) fragment p#3_5mm_9, and (C) fragment p#4_5mm_2. (D) WAXS curves for foils produced from the PBAT and PLA reference materials; the percent values indicate the crystallinity. The dash lines are the fitting peak curves for the XRD spectrum. Crystallinity can be obtained by dividing the integration area of the fitted peaks by the integration area of the entire spectrum. Fragments were coded as follows: p or f for pre-compost or finished compost, followed by the plant number (#1 to #4), an indication of the size fraction ( > 5 mm or 1–5 mm) in which the fragment was found, and finally, the fragment number.Full size imageIn case of the fragments and bags, the peaks of PLA and PBAT overlapped to some extent in the WAXS spectra, but by conducting Lorenz fitting using Origin software, the overall crystallinity could be calculated as follows:$$chi = { 1}00% , *{text{ Aa}}/left( {{text{Aa }} + {text{ Ac}}} right)$$where χ is the crystallinity and Aa and Ac represent the areas of the amorphous and crystalline peaks.Using this equation, crystallinities of 55% (fragments p#3_5mm_1), 34% (p#3_5mm_9), and 34% (p#4_5mm_2) were calculated for the fragments. The foils prepared in house for the reference materials had similar crystallinities (43% in case of the annealed PLA foil and 26% of the PBAT foil), while the simple PLA foil was amorphous. By comparison, for eight of the commercial bags, crystallinities in the range from 1% to 7% were calculated, whereas these values were 14% and 15% for the remaining two bag types (Suppl Figure S3).The high crystallinity of the larger fragments recovered from the pre-compost samples suggests that crystalline domains of BDP materials may indeed disintegrate more slowly than the amorphous ones, as prior studies on microbial biodegradation have suggested7,8. Admittedly, such large fragments per se would not enter the environment, since the final sieving step used to prepare the finished composts is quite efficient at removing them. However, it is tempting to extrapolate that residual BDP in general are remnants of the more crystal domains of the original material, even though experimental proof of this assumption is at present not possible. 10 wt% of a BDP bag is allowed to remain after standard composting. It is usually assumed that any such residues continue to degrade with comparable speed. However, should these residues correspond to the more crystalline domains, rather than degrading with similar speed as the bulk material, the more crystalline fragments can be expected to persist for a much longer and at present unpredictable length of time in the environment, e.g. when applied to the soil with the composts; in particular, when they are also enriched in PBAT and BT units as suggested by our analysis of the chemical composition. Data from the use of biodegradable foils in agriculture show that the degradation in the environment may take years20. Altogether this may have unforeseen economic and environmental consequences, especially when considering the high fraction of BDP fragments < 5 mm. Putative consequences include changes in soil properties, the soil microbiome and therefore in plant performance21, a factor indispensable for worldwide nutrition.Residues of BDP fragments  1 mm were found in the collected LF samples. This is hardly surprising, given that the LF is produced by press filtration of the digestate after the anaerobic stage. Such a filtration step can be expected to retain fragments > 1 mm in the produced filter cake, which goes into the composting step, leaving the filtrate, i.e. the LF, essentially free of such particles. Anaerobic digestion is currently not assumed to contribute significantly to the degradation of BDP17,22, but the process conditions (mixing, pumping) may promote breakdown of larger fragments, particularly when additives such as plasticizers23 leach out of the material.Since the residual solids content of the LF is low (plant #1: 8.6 wt%, plant #3: 5.8 wt%), a combination of enzymatic-oxidative treatment and µFTIR imaging originally developed for environmental samples from aqueous systems24,25 could be adapted for the analysis (size and chemical signature) of particles in the LF down to a size of 10 µm. The corresponding data are compiled in Table 3. In all cases, residual fragments from PBAT-based polymers represented the dominant plastic fraction in the investigated samples; i.e. approximately 53% of all plastic particles in the LF from plant #1 (11,520 BDP particles per liter) and 65% in the case of plant #3 (12,480 BDP particles per liter). Liquid manure is applied several times a year to fields at a concentration of 2–3 L m−2. According to our analysis > 20,000 BDP microparticles of a size ranging from 10 µm to 500 µm enter each m2 of agricultural soil whenever LF is applied on agricultural surfaces.Table 3 Microplastic fragments (BDP/all) found per liter of liquid fertilizer.Full size tableDue to the complexity of the matrix, a similar analysis of individual plastic fragments  1 mm. Six compost samples representing the more contaminated ones based on the content of fragments > 1 mm, namely, f#1, f#2, p#3, f#3, p#4 and f#4 (nomenclature: f or p for finished or pre-compost, followed by plant number), were extracted with a 90/10 vol% chloroform/methanol mixture. The amounts of PBAT and PLA in the obtained extracts were then quantified via 1H-NMR (Table 4). Briefly, the intensity of characteristic signals in the extract spectra of the compost samples (see Suppl Figure S4) were compared to peak intensities produced by calibration standards of the pure polymer dissolved at a known concentration in the chloroform/methanol. All samples and standards were normalized using the 1,2-dichloroethan signal at 3.73 ppm as internal standard. See also Suppl Figure S5 for an exemplification of the quantification of the PBAT/PLA ratios. Based on the amounts of PBAT and PLA extracted from a known amount of compost, the total mass concentration (wt% dry weight) of these polymers in the composts was calculated.Table 4 Evidence of PBAT and PLA residues caused by fragments  2 mm. Moreover, residues of PBAT and PLA were found in all investigated compost samples, including the finished compost from plant #4, which had shown no contamination by larger BPD fragments (Table 1). The pre-compost from that plant had shown a few contaminating BDP fragments in the > 5 mm fraction. However, in regard to the fragments More

  • in

    Whales from space dataset, an annotated satellite image dataset of whales for training machine learning models

    Very high-resolution (VHR) satellite imagery allows us to survey regularly remote and large areas of the ocean, difficult to access by boats or planes. The interest in using VHR satellite imagery for the study of great whales (including sperm whales and baleen whales) has grown in the past years1,2,3,4,5 since Abileah6 and Fretwell et al.7 showed its potential. This growing interest may be linked to the improvement in the spatial resolution of satellite imagery, which increased in 2014 from 46 cm to 31 cm. This upgrade enhanced the confidence in the detection of whales in satellite imagery, as more details could be seen, such as whale-defining features (e.g. flukes).Detecting whales in the imagery is either conducted manually1,4,5,7, or automatically2,3. A downside of the manual approach is that it is time-demanding, with manual counter often having to view hundred and sometimes thousands of square kilometres of open ocean. The development of automated approaches to detect whales by satellite would not only speed up this application, but also reduce the possibility of missing whales due to observer fatigue and standardize the procedure. Various automated approaches exist from pixel-based to artificial intelligence. Machine learning, an application of artificial intelligence, seems to be the most appropriate automated method to detect whales efficiently in satellite imagery2,3,8,9.In machine learning an algorithm learns how to identify features by repeatedly testing different search parameters against a training dataset10,11. Concerning whales, the algorithm needs to be trained to detect the wide variety of shapes and colour characterising whales. Shapes and colour will be influenced by the type of species, the environment (e.g. various degree of turbidity), the light conditions, and the behaviours (e.g. foraging, travelling, breaching), as different behaviours will result in different postures. The larger a training dataset is, the more accurate and transferable to other satellite images the algorithm will be. At the time of writing, such a dataset does not exist or is not publicly available.Creating a large enough dataset necessary to train algorithms to detect whales in VHR satellite imagery will require the various research groups analysing VHR satellite imagery to openly share examples of whales and non-whale objects in VHR satellite imagery, which could be facilitated by uploading such data on a central open source repository, similar to the GenBank12 for DNA code or OBIS-Seamap13 for marine wildlife observations. Ideally clipped out image chips of the whale objects would be shared as tiff files, which retains most of the characteristics of the original image. However, all VHR satellites are commercially owned, except for the Cartosat-3 owned by the government of India14, which means it is not possible to publicly share image chips as tiff file. Instead, image chips could be shared in a png or jepg format, which involve loosing some spectral information. If tiff files are required, georeferenced and labelled boxes encompassing the whale objects could also be shared, including information on the satellite imagery to allow anyone to ask the commercial providers for the exact imagery.Here we present a database of whale objects found in VHR satellite imagery. It represents four different species of whales (i.e. southern right whale, Eubalaena australis; grey whale, Eschrichtius robustus; humpback whale, Megaptera novaeangliae; fin whale, Balaenoptera physalus; Fig. 1), which were manually detected in images captured by different satellites (i.e., GeoEye-1, Quickbird-2, WorldView-2, WorldView-3). We created the database by (i) first detecting whale objects manually in satellite imagery, (ii) then we classified whale objects as either “definite”, “probable” or “possible” as in Cubaynes et al.1; and (iii) finally we created georeferenced and labelled points and boxes centered around each whale object, as well as providing image chips in a png format. With this database made publicly available, we aim to initiate the creation of a central database that can be built upon.Fig. 1Database of annotated whales detected in satellite imagery covering different species and areas. Humpback whales were detected in Maui Nui, US (a); grey whales in Laguna San Ignacio, Mexico (b); fin whales in the Pelagos Sanctuary, France, Monaco and Italy (c); southern right whales were observed in three areas, off the Peninsula Valdes, Argentina (d); off Witsand, South Africa (e); and off the Auckland Islands, New Zealand (f). The dot size represents the number of annotated whales per location. Whale silhouettes were sourced from philopic.com (the grey and humpback whales silhouettes are from Chris Luh).Full size image More

  • in

    Shoaling guppies evade predation but have deadlier parasites

    Everard, M., Johnston, P., Santillo, D. & Staddon, C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ. Sci. Policy 111, 7–17 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade‐off hypothesis: history, current state of affairs and the future. J. Evolut. Biol. 22, 245–259 (2009).CAS 
    Article 

    Google Scholar 
    Cressler, C. E., McLeod, D. V., Rozins, C., Van Den Hoogen, J. & Day, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143, 915–930 (2016).PubMed 
    Article 

    Google Scholar 
    Acevedo, M. A., Dillemuth, F. P., Flick, A. J., Faldyn, M. J. & Elderd, B. D. Virulence‐driven trade‐offs in disease transmission: a meta‐analysis. Evolution 73, 636–647 (2019).PubMed 
    Article 

    Google Scholar 
    Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).PubMed 
    Article 

    Google Scholar 
    McKay, B., Ebell, M., Dale, A. P., Shen, Y. & Handel, A. Virulence-mediated infectiousness and activity trade-offs and their impact on transmission potential of influenza patients. Proc. R. Soc. B 287, 20200496 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonneaud, C. et al. Experimental evidence for stabilizing selection on virulence in a bacterial pathogen. Evol. Lett. 4, 491–501 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Roode, J. C., Yates, A. J. & Altizer, S. Virulence–transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl Acad. Sci. USA 105, 7489–7494 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fraser, C., Hollingsworth, T. D., Chapman, R., de Wolf, F. & Hanage, W. P. Variation in HIV-1 set-point viral load: epidemiological analysis and an evolutionary hypothesis. Proc. Natl Acad. Sci. USA 104, 17441–17446 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Choo, K., Williams, P. D. & Day, T. Host mortality, predation and the evolution of parasite virulence. Ecol. Lett. 6, 310–315 (2003).Article 

    Google Scholar 
    Williams, P. D. & Day, T. Interactions between sources of mortality and the evolution of parasite virulence. Proc. R. Soc. B 268, 2331–2337 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gandon, S., Jansen, V. A. & Van Baalen, M. Host life history and the evolution of parasite virulence. Evolution 55, 1056–1062 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prado, F., Sheih, A., West, J. D. & Kerr, B. Coevolutionary cycling of host sociality and pathogen virulence in contact networks. J. Theor. Biol. 261, 561–569 (2009).PubMed 
    Article 

    Google Scholar 
    Herre, E. A. Population structure and the evolution of virulence in nematode parasites of fig wasps. Science 259, 1442–1445 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boots, M. & Mealor, M. Local interactions select for lower pathogen infectivity. Science 315, 1284–1286 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).PubMed 
    Article 

    Google Scholar 
    Bull, J. J. & Lauring, A. S. Theory and empiricism in virulence evolution. PLoS Pathog. 10, e1004387 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brown, S. P., Hochberg, M. E. & Grenfell, B. T. Does multiple infection select for raised virulence? Trends Microbiol. 10, 401–405 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Peacor, S. D. & Werner, E. E. The contribution of trait-mediated indirect effects to the net effects of a predator. Proc. Natl Acad. Sci. USA 98, 3904–3908 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seppälä, O., Karvonen, A. & Valtonen, E. T. Shoaling behaviour of fish under parasitism and predation risk. Anim. Behav. 75, 145–150 (2008).Article 

    Google Scholar 
    Lopez, L. K. & Duffy, M. A. Mechanisms by which predators mediate host–parasite interactions in aquatic systems. Trends Parasitol. 37, 890–906 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rigby, M. C. & Jokela, J. Predator avoidance and immune defence: costs and trade-offs in snails. Proc. R. Soc. B 267, 171–176 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krause, J., Ruxton, G. D., Ruxton, G. & Ruxton, I. G. Living in Groups (Oxford Univ. Press, 2002).Godin, J.-G. J. Antipredator function of shoaling in teleost fishes: a selective review. Nat. Can. 113, 241–250 (1986).
    Google Scholar 
    Gandon, S., van Baalen, M. & Jansen, V. A. The evolution of parasite virulence, superinfection, and host resistance. Am. Nat. 159, 658–669 (2002).PubMed 
    Article 

    Google Scholar 
    Magurran, A. E. Evolutionary Ecology: The Trinidadian Guppy (Oxford Univ. Press, 2005).Magurran, A. E. & Seghers, B. H. Variation in schooling and aggression amongst guppy (Poecilia reticulata) populations in Trinidad. Behaviour 118, 214–234 (1991).Article 

    Google Scholar 
    Seghers, B. H. & Magurran, A. E. Predator inspection behaviour covaries with schooling tendency amongst wild guppy, Poecilia reticulata, populations in Trinidad. Behaviour 128, 121–134 (1994).Article 

    Google Scholar 
    Huizinga, M., Ghalambor, C. & Reznick, D. The genetic and environmental basis of adaptive differences in shoaling behaviour among populations of Trinidadian guppies, Poecilia reticulata. J. Evolut. Biol. 22, 1860–1866 (2009).CAS 
    Article 

    Google Scholar 
    Stephenson, J. F., Van Oosterhout, C., Mohammed, R. S. & Cable, J. Parasites of Trinidadian guppies: evidence for sex‐ and age‐specific trait‐mediated indirect effects of predators. Ecology 96, 489–498 (2015).PubMed 
    Article 

    Google Scholar 
    Richards, E. L., Van Oosterhout, C. & Cable, J. Sex-specific differences in shoaling affect parasite transmission in guppies. PLoS ONE 5, e13285 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Johnson, M. B., Lafferty, K. D., Van Oosterhout, C. & Cable, J. Parasite transmission in social interacting hosts: monogenean epidemics in guppies. PLoS ONE https://doi.org/10.1371/journal.pone.0022634 (2011).Gotanda, K. M. et al. Adding parasites to the guppy-predation story: insights from field surveys. Oecologia 172, 155–166 (2013).PubMed 
    Article 

    Google Scholar 
    Fraser, B. A., Ramnarine, I. W. & Neff, B. D. Temporal variation at the MHC class IIB in wild populations of the guppy (Poecilia reticulata). Evolution 64, 2086–2096 (2010).PubMed 

    Google Scholar 
    Stephenson, J. F. et al. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts. Philos. Trans. R. Soc. B 372, 20160093 (2017).Article 

    Google Scholar 
    Cable, J. & Van Oosterhout, C. The impact of parasites on the life history evolution of guppies (Poecilia reticulata): the effects of host size on parasite virulence. Int. J. Parasitol. 37, 1449–1458 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reznick, D. N., Butler, M. J. IV, Rodd, F. H. & Ross, P. Life‐history evolution in guppies (Poecilia reticulata) 6. Differential mortality as a mechanism for natural selection. Evolution 50, 1651–1660 (1996).PubMed 

    Google Scholar 
    Bonds, M. H., Keenan, D. C., Leidner, A. J. & Rohani, P. Higher disease prevalence can induce greater sociality: a game theoretic coevolutionary model. Evolution 59, 1859–1866 (2005).PubMed 
    Article 

    Google Scholar 
    Kerr, B., Neuhauser, C., Bohannan, B. J. & Dean, A. M. Local migration promotes competitive restraint in a host–pathogen ‘tragedy of the commons’. Nature 442, 75–78 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boots, M. & Sasaki, A. ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. B 266, 1933–1938 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of parasite virulence in a connected world. Nature 459, 983–986 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dargent, F., Rolshausen, G., Hendry, A., Scott, M. & Fussmann, G. Parting ways: parasite release in nature leads to sex‐specific evolution of defence. J. Evolut. Biol. 29, 23–34 (2016).CAS 
    Article 

    Google Scholar 
    Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990).Article 

    Google Scholar 
    Stephenson, J. F., van Oosterhout, C. & Cable, J. Pace of life, predators and parasites: predator-induced life-history evolution in Trinidadian guppies predicts decrease in parasite tolerance. Biol. Lett. 11, 20150806 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stephenson, J. F., Stevens, M., Troscianko, J. & Jokela, J. The size, symmetry, and color saturation of a male guppy’s ornaments forecast his resistance to parasites. Am. Naturalist 196, 597–608 (2020).Article 

    Google Scholar 
    Godin, J.-G. J. & McDonough, H. E. Predator preference for brightly colored males in the guppy: a viability cost for a sexually selected trait. Behav. Ecol. 14, 194–200 (2003).Article 

    Google Scholar 
    Van Oosterhout, C., Harris, P. & Cable, J. Marked variation in parasite resistance between two wild populations of the Trinidadian guppy, Poecilia reticulata (Pisces: Poeciliidae). Biol. J. Linn. Soc. 79, 645–651 (2003).Article 

    Google Scholar 
    Hawley, D. M., Gibson, A. K., Townsend, A. K., Craft, M. E. & Stephenson, J. F. Bidirectional interactions between host social behaviour and parasites arise through ecological and evolutionary processes. Parasitology 148, 274–288 (2020).PubMed 
    Article 

    Google Scholar 
    Janecka, M. J., Rovenolt, F. & Stephenson, J. F. How does host social behavior drive parasite non-selective evolution from the within-host to the landscape-scale? Behav. Ecol. Sociobiol. 75, 1–20 (2021).Article 

    Google Scholar 
    Tao, H., Li, L., White, M. C., Steel, J. & Lowen, A. C. Influenza A virus coinfection through transmission can support high levels of reassortment. J. Virol. 89, 8453–8461 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eshel, I. Evolutionary and continuous stability. J. Theor. Biol. 103, 99–111 (1983).Article 

    Google Scholar 
    Hurford, A., Cownden, D. & Day, T. Next-generation tools for evolutionary invasion analyses. J. R. Soc. Interface 7, 561–571 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leimar, O. Multidimensional convergence stability. Evolut. Ecol. Res. 11, 191–208 (2009).
    Google Scholar 
    Reznick, D., Bryant, M. & Holmes, D. The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata). PLoS Biol. 4, e7 (2005).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Stephenson, J. F. Parasite-induced plasticity in host social behaviour depends on sex and susceptibility. Biol. Lett. https://doi.org/10.1098/rsbl.2019.0557 (2019).Lopez, S. Acquired resistance affects male sexual display and female choice in guppies. Proc. R. Soc. B 265, 717–723 (1998).Article 

    Google Scholar 
    van Oosterhout, C. et al. Selection by parasites in spate conditions in wild Trinidadian guppies (Poecilia reticulata). Int. J. Parasitol. 37, 805–812 (2007).PubMed 
    Article 

    Google Scholar 
    Pérez-Jvostov, F., Hendry, A. P., Fussmann, G. F. & Scott, M. E. Are host–parasite interactions influenced by adaptation to predators? A test with guppies and Gyrodactylus in experimental stream channels. Oecologia 170, 77–88 (2012).PubMed 
    Article 

    Google Scholar 
    Eiben, A. E. & Smith, J. E. Introduction to Evolutionary Computing (Springer, 2003).Carnell, R. lhs: Latin hypercube samples v.1.1.1 (R-Project, 2020).Iooss, B., Da Veiga, S., Janon, A. & Pujol, G. Sensitivity: Global sensitivity analysis of model outputs v.1.25.0 (R-Project, 2021).Wright, D. & Krause, J. Repeated measures of shoaling tendency in zebrafish (Danio rerio) and other small teleost fishes. Nat. Protoc. 1, 1828–1831 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330 (2016).Article 

    Google Scholar 
    Griffiths, S. W. & Magurran, A. E. Sex and schooling behaviour in the Trinidadian guppy. Anim. Behav. 56, 689–693 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Magurran, A., Seghers, B., Carvalho, G. & Shaw, P. Behavioural consequences of an artificial introduction of guppies (Poecilia reticulata) in N. Trinidad: evidence for the evolution of anti-predator behaviour in the wild. Proc. R. Soc. B 248, 117–122 (1992).Article 

    Google Scholar 
    Sievers, C. et al. Reasons for the invasive success of a guppy (Poecilia reticulata) population in Trinidad. PLoS ONE 7, e38404 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mohammed, R. S. et al. Parasite diversity and ecology in a model species, the guppy (Poecilia reticulata) in Trinidad. R. Soc. Open Sci. 7, 191112 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lyles, A. M. Genetic Variation and Susceptibility to Parasites: Poeclia reticulata Infected with Gyrodactylus turnbulli. PhD dissertation, Princeton Univ. (1990).Fraser, B. A. & Neff, B. D. Parasite mediated homogenizing selection at the MHC in guppies. Genetica 138, 273 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Reznick, D. & Endler, J. A. The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36, 160–177 (1982).PubMed 

    Google Scholar 
    El‐Sabaawi, R. W. et al. Assessing the effects of guppy life history evolution on nutrient recycling: from experiments to the field. Freshw. Biol. 60, 590–601 (2015).Article 

    Google Scholar 
    Liley, N. & Luyten, P. Geographic variation in the sexual behaviour of the guppy, Poecilia reticulata (Peters). Behaviour 95, 164–179 (1985).Article 

    Google Scholar 
    Reznick, D. N. et al. Eco-evolutionary feedbacks predict the time course of rapid life-history evolution. Am. Nat. 194, 671–692 (2019).PubMed 
    Article 

    Google Scholar  More

  • in

    A trait database and updated checklist for European subterranean spiders

    Zanne, A. E. et al. Fungal functional ecology: bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).PubMed 
    Article 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Fraser, L. H. TRY—A plant trait database of databases. Glob. Chang. Biol. 26, 189–190 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Oliveira, B. F., São-Pedro, V. A., Santos-Barrera, G., Penone, C. & Costa, G. C. AmphiBIO, a global database for amphibian ecological traits. Sci. Data 4, 170123 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lecocq, T. et al. TOFF, a database of traits of fish to promote advances in fish aquaculture. Sci. Data 6, 301 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).Article 

    Google Scholar 
    Parr, C. L. et al. GlobalAnts: a new database on the geography of ant traits (Hymenoptera: Formicidae). Insect Conserv. Divers. 10, 5–20 (2017).Article 

    Google Scholar 
    Homburg, K., Homburg, N., Schäfer, F., Schuldt, A. & Assmann, T. Carabids.org – a dynamic online database of ground beetle species traits (Coleoptera, Carabidae). Insect Conserv. Divers. 7, 195–205 (2014).Article 

    Google Scholar 
    Lowe, E. C. et al. Towards establishment of a centralized spider traits database. J. Arachnol. 48 (2020).Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).PubMed 
    Article 

    Google Scholar 
    Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 

    Google Scholar 
    de Bello, F. et al. Handbook of trait-based ecology: from theory to R tools. (Cambridge University Press, 2021).Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).PubMed 
    Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl. Acad. Sci. 111, 13690–13696 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kosman, E., Burgio, K. R., Presley, S. J., Willig, M. R. & Scheiner, S. M. Conservation prioritization based on trait‐based metrics illustrated with global parrot distributions. Divers. Distrib. 25, 1156–1165 (2019).Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    de Bello, F. et al. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers. Conserv. 19, 2873–2893 (2010).Article 

    Google Scholar 
    Ficetola, G. F., Canedoli, C. & Stoch, F. The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conserv. Biol. 33, 214–216 (2019).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol. Evol. 11, 5911–5926 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mammola, S. et al. Fundamental research questions in subterranean biology. Biol. Rev. 95, 1855–1872 (2020).PubMed 
    Article 

    Google Scholar 
    Cardoso, P. Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int. J. Speleol. 41, 83–94 (2012).Article 

    Google Scholar 
    Fernandes, C. S., Batalha, M. A. & Bichuette, M. E. Does the cave environment reduce functional diversity? PLoS One 11, e0151958 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Saccò, M. et al. New light in the dark – a proposed multidisciplinary framework for studying functional ecology of groundwater fauna. Sci. Total Environ. 662, 963–977 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Mammola, S. & Isaia, M. Spiders in caves. Proceedings of the Royal Society B: Biological Sciences 284, 20170193 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parimuchová, A. et al. The food web in a subterranean ecosystem is driven by intraguild predation. Sci. Rep. 11, 4994 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bloom, T. et al. Discovery of two new species of eyeless spiders within a single Hispaniola cave. J. Arachnol. 42, 148–154 (2014).Article 

    Google Scholar 
    Mammola, S., Cardoso, P., Ribera, C., Pavlek, M. & Isaia, M. A synthesis on cave-dwelling spiders in Europe. J. Zool. Syst. Evol. Res. 56, 301–316 (2018).Article 

    Google Scholar 
    Mammola, S. et al. Continental data on cave-dwelling spider communities across Europe (Arachnida: Araneae). Biodivers. Data J. 7, e38492 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milano, F. et al. Spider conservation in Europe: a review. Biol. Conserv. 256, 109020 (2021).Article 

    Google Scholar 
    Pekár, S. et al. The World Spider Trait database (WST): a centralised global open repository for curated data on spider traits. Database 2021, baab064 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ledesma, E., Jiménez-Valverde, A., de Castro, A., Aguado-Aranda, P. & Ortuño, V. M. The study of hidden habitats sheds light on poorly known taxa: spiders of the Mesovoid Shallow Substratum. Zookeys 841, 39–59 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    World Spider Catalog. World Spider Catalog. Version 23.0. Natural History Museum Bern 10.24436/2 (2022).Nentwig, W. et al. Araneae – Spider of Europe. 10.24436/1 (2021).Malumbres-Olarte, J. et al. Habitat filtering and inferred dispersal ability condition across-scale species turnover and rarity in Macaronesian island spider assemblages. J. Biogeogr. 48, 3131–3144 (2021).Article 

    Google Scholar 
    Nentwig, W., Gloor, D. & Kropf, C. Spider taxonomists catch data on web. Nature 528, 479 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Environmental filtering and convergent evolution determine the ecological specialization of subterranean spiders. Funct. Ecol. 34, 1064–1077 (2020).Article 

    Google Scholar 
    Mammola, S. et al. Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean spiders (Araneae: Linyphiidae: Troglohyphantes). Invertebr. Syst. 32, 1069–1082 (2018).Article 

    Google Scholar 
    Huber, B. A. Cave-dwelling pholcid spiders (Araneae, Pholcidae): A review. Subterr. Biol. 26, 1–18 (2018).ADS 
    Article 

    Google Scholar 
    Arnedo, M. A., Oromí, P., Múrria, C., Macías-Hernández, N. & Ribera, C. The dark side of an island radiation: systematics and evolution of troglobitic spiders of the genus Dysdera Latreille (Araneae:Dysderidae) in the Canary Islands. Invertebr. Syst. 21, 623–660 (2007).Article 

    Google Scholar 
    Ubick, D., Paquin, P., Cushing, P. E. & Duperre, N. Spiders of North America: An Identification Manual. (Amer Arachnological Society, 2007).Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J. A. Global patterns of guild composition and functional diversity of spiders. PLoS One 6, e21710 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smithers, P. The early life history and dispersal of the cave spider Meta menardi (Latreille, 1804) (Araneae: Tetragnathidae). Bull. Br. arachnol. Soc 13, 213–216 (2005).
    Google Scholar 
    Mammola, S., Hormiga, G., Arnedo, M. A. & Isaia, M. Unexpected diversity in the relictual European spiders of the genus Pimoa (Araneae:Pimoidae). Invertebr. Syst. 30, 566–587 (2016).Article 

    Google Scholar 
    Sket, B. Can we agree on an ecological classification of subterranean animals? J. Nat. Hist. 42, 1549–1563 (2008).Article 

    Google Scholar 
    Trajano, E. & de Carvalho, M. R. Towards a biologically meaningful classification of subterranean organisms: A critical analysis of the schiner-racovitza system from a historical perspective, difficulties of its application and implications for conservation. Subterr. Biol. 22, 1–26 (2017).Article 

    Google Scholar 
    Martínez, A. & Mammola, S. Specialized terminology reduces the number of citations to scientific papers. Proc. R. Soc. B Biol. Sci. 288, 20202581 (2021).Article 

    Google Scholar 
    Mammola, S. Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42, 1331–1351 (2019).Article 

    Google Scholar 
    Mammola, S. et al. Quantifying troglomorphism in hyperspace. Arpha Conf. Abstr. 5, e82941 (2022).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag, 2016).Palacio, F. X. et al. A protocol for reproducible functional diversity analyses. EcoEvoRxiv https://doi.org/10.32942/osf.io/yt9sb (2022).Article 

    Google Scholar 
    Gower, J. C. A General Coefficient of Similarity and Some of Its Properties. Biometrics 27, 857–871 (1971).Article 

    Google Scholar 
    de Bello, F., Botta-Dukát, Z., Lepš, J. & Fibich, P. Towards a more balanced combination of multiple traits when computing functional differences between species. Methods Ecol. Evol. 12, 443–448 (2021).Article 

    Google Scholar 
    Paradis, E. & Schliep, K. Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Oksanen, J. et al. R Package vegan: community ecology package. R package version 2.5-3 (2018).R Core Team. R: A language and environment for statistical computing. (2021).Mammola, S. A trait database for European subterranean spiders, Figshare, https://doi.org/10.6084/m9.figshare.16574255 (2022).Cardoso, P. & Pekar, S. arakno – An R package for effective spider nomenclature, distribution, and trait data retrieval from online resources. J. Arachnol. 50, 30–32 (2022).Article 

    Google Scholar 
    Johnson, T. F., Isaac, N. J. B., Paviolo, A. & González-Suárez, M. Handling missing values in trait data. Glob. Ecol. Biogeogr. 30, 51–62 (2021).Article 

    Google Scholar 
    Podani, J., Kalapos, T., Barta, B. & Schmera, D. Principal component analysis of incomplete data – A simple solution to an old problem. Ecol. Inform. 61, 101235 (2021).Article 

    Google Scholar 
    Cardoso, P., Mammola, S., Rigal, F. & Carvalho, J. C. BAT: Biodiversity Assessment Tools. R package version 2.6.0 (2021).Cardoso, P., Rigal, F. & Carvalho, J. C. BAT – Biodiversity Assessment Tools, an R package for the measurement and estimation of alpha and beta taxon, phylogenetic and functional diversity. Methods Ecol. Evol. 6, 232–236 (2015).Article 

    Google Scholar 
    De Bello, F. et al. Quantifying the relevance of intraspecific trait variability for functional diversity. Methods Ecol. Evol. 2, 163–174 (2011).Article 

    Google Scholar 
    Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).PubMed 
    Article 

    Google Scholar 
    Gentile, G., Bonelli, S. & Riva, F. Evaluating intraspecific variation in insect trait analysis. Ecol. Entomol. 46, 11–18 (2020).Article 

    Google Scholar 
    Wong, M. K. L. & Carmona, C. P. Including intraspecific trait variability to avoid distortion of functional diversity and ecological inference: Lessons from natural assemblages. Methods Ecol. Evol. 12, 946–957 (2021).Article 

    Google Scholar 
    Mammola, S., Piano, E., Malard, F., Vernon, P. & Isaia, M. Extending Janzen’s hypothesis to temperate regions: a test using subterranean ecosystems. Funct. Ecol. 33, 1638–1650 (2019).Article 

    Google Scholar 
    Kratochvíl, J. Araignées cavernicoles des îles Dalmates. Přírodovědné práce ústavů Československé Akad. Věd v Brně 12, 1–59 (1978).
    Google Scholar 
    Denny, M. The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen’s inequality. J. Exp. Biol. 220, 139–146 (2017).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Cave_dwelling_spiders_Europe. Figshare https://doi.org/10.6084/m9.figshare.8224025.v1 (2019).Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle of life. (John Murray, 1859).Wong, M. K. L., Guénard, B. & Lewis, O. T. Trait-based ecology of terrestrial arthropods. Biol. Rev. 94, 999–1022 (2019).PubMed 
    Article 

    Google Scholar 
    Lučić, I. Interview with Boris Sket: nothing has a sense in speleobiology, without a comparison of cave animals with the ‘normal’ epigean ones. Acta Carsologica 50, 5–9 (2021).Article 

    Google Scholar 
    McGill, B. J. The what, how and why of doing macroecology. Glob. Ecol. Biogeogr. 28, 6–17 (2019).Article 

    Google Scholar 
    Muscarella, R. & Uriarte, M. Do community-weighted mean functional traits reflect optimal strategies? Proc. R. Soc. B Biol. Sci. 283, 20152434 (2016).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Mammola, S. & Cardoso, P. Functional diversity metrics using kernel density n-dimensional hypervolumes. Methods Ecol. Evol. 11, 986–995 (2020).Article 

    Google Scholar 
    Mammola, S. et al. Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe. Proc. R. Soc. B Biol. Sci. 286, 20191579 (2019).Article 

    Google Scholar 
    Graco-Roza, C. et al. Distance decay 2.0 – a global synthesis of taxonomic and functional turnover in ecological communities. Glob. Ecol. Biogeogr, in press (available at https://doi.org/10.1101/2021.03.17.435827) (2022).Gallagher, R. V. et al. A guide to using species trait data in conservation. One Earth 4, 927–936 (2021).ADS 
    Article 

    Google Scholar 
    Chichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Chichorro, F. et al. Species traits predict extinction risk across the Tree of Life. bioRxiv 2020.07.01.183053 (2020).Violle, C. et al. Functional rarity: the ecology of outliers. Trends Ecol. Evol. 32, 356–367 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carmona, C. P. et al. Erosion of global functional diversity across the tree of life. Sci. Adv. 7, eabf2675 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96, 2333–2354 (2021).PubMed 
    Article 

    Google Scholar 
    Sánchez-Fernández, D., Galassi, D. M. P., Wynne, J. J., Cardoso, P. & Mammola, S. Don’t forget subterranean ecosystems in climate change agendas. Nat. Clim. Chang. 11, 458–459 (2021).ADS 
    Article 

    Google Scholar 
    Borges, P. A. V. et al. Volcanic caves: Priorities for conserving the Azorean endemic troglobiont species. Int. J. Speleol. 41, 101–112 (2012).Article 

    Google Scholar 
    Rabelo, L. M., Souza-Silva, M. & Ferreira, R. L. Priority caves for biodiversity conservation in a key karst area of Brazil: comparing the applicability of cave conservation indices. Biodivers. Conserv. 27, 2097–2129 (2018).Article 

    Google Scholar 
    Nitzu, E. et al. Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int. J. Speleol. 47, 43–52 (2018).Article 

    Google Scholar 
    Pipan, T., Deharveng, L. & Culver, D. C. Hotspots of subterranean biodiversity. Diversity 12, 209 (2020).Article 

    Google Scholar 
    Fattorini, S., Fiasca, B., Di Lorenzo, T., Di Cicco, M. & Galassi, D. M. P. A new protocol for assessing the conservation priority of groundwater-dependent ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1483–1504 (2020).Article 

    Google Scholar 
    Iannella, M. et al. Getting the ‘most out of the hotspot’ for practical conservation of groundwater biodiversity. Glob. Ecol. Conserv. e01844 (2021).Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pollock, L. J. et al. Protecting biodiversity (in all its complexity): new models and methods. Trends Ecol. Evol. 35, 1119–1128 (2020).PubMed 
    Article 

    Google Scholar 
    Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. Bioscience 69, 641–650 (2019).Article 

    Google Scholar 
    Wynne, J. J. et al. A conservation roadmap for the subterranean biome. Conserv. Lett. 14, e12834 (2021).Article 

    Google Scholar 
    Mammola, S. et al. Towards evidence-based conservation of subterranean ecosystems. Biol. Rev., early view at https://doi.org/10.1111/brv.12851 (2022).Culver, D. C. & Pipan, T. The biology of caves and other subterranean habitats. (Oxford University Press, USA, 2014).Culver, D. C. & Pipan, T. Shallow Subterranean Habitats: Ecology, Evolution, and Convervation. (Oxford University Press, USA, 2014).Sobral, M. All traits are functional: an evolutionary viewpoint. Trends Plant Sci. 26, 674–676 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pipan, T. & Culver, D. C. The unity and diversity of the subterranean realm with respect to invertebrate body size. J. Cave Karst Stud. 79, 1–9 (2017).Article 

    Google Scholar 
    Elgar, M. A., Ghaffar, N. & Read, A. F. Sexual dimorphism in leg length among orb-weaving spiders: a possible role for sexual cannibalism. J. Zool. 222, 455–470 (1990).Article 

    Google Scholar 
    Deeleman-Reinhold, C. L. Revision of the cave-dwelling and related spiders of the genus Troglohyphantes Joseph (Linyphiidae), with special reference to the Yugoslav species. Opera Acad. Sci. Artium Slov. 23 (1978).Isaia, M. & Pantini, P. New data on the spider genus Troglohyphantes (Araneae, Linyphiidae) in the Italian Alps, with the description of a new species and a new synonymy. Zootaxa 2690, 1–18 (2010).Article 

    Google Scholar 
    Hagstrum, D. W. Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann. Entomol. Soc. Am. 64, 757–760 (1971).Article 

    Google Scholar 
    Pavlek, M. & Mammola, S. Niche-based processes explaining the distributions of closely related subterranean spiders. J. Biogeogr. 48, 118–133 (2020).Article 

    Google Scholar 
    Mammola, S. Modelling the future spread of native and alien congeneric species in subterranean habitats – The case of meta cave-dwelling spiders in Great Britain. Int. J. Speleol. 46, 427–437 (2017).Article 

    Google Scholar 
    Novak, T. et al. Niche partitioning in orbweaving spiders Meta menardi and Metellina merianae (Tetragnathidae). Acta Oecologica 36, 522–529 (2010).ADS 
    Article 

    Google Scholar 
    Lunghi, E. Occurrence of the Black lace-weaver spider, Amaurobius ferox, in caves. Acta Carsologica 49, 119–124 (2020).Article 

    Google Scholar 
    Isaia, M. & Chiarle, A. Taxonomic notes on Cybaeus vignai Brignoli, 1977 (Araneae, Cybaeidae) and Dysdera cribrata Simon, 1882 (Araneae, Dysderidae) from the Italian Maritime Alps. Zoosystema 37, 45–56 (2015).Article 

    Google Scholar 
    Ledford, J. et al. Phylogenomics and biogeography of leptonetid spiders (Araneae: Leptonetidae). Invertebr. Syst. 35, 332–349 (2021).
    Google Scholar 
    Isaia, M., Mammola, S., Mazzuca, P., Arnedo, M. A. & Pantini, P. Advances in the systematics of the spider genus Troglohyphantes (Araneae, Linyphiidae). Syst. Biodivers. 15, 307–326 (2017).Article 

    Google Scholar 
    Hajer, J. & Řeháková, D. Spinning activity of the spider Trogloneta granulum (Araneae, Mysmenidae): web, cocoon, cocoon handling behaviour, draglines and attachment discs. Zoology 106, 223–231 (2003).PubMed 
    Article 

    Google Scholar 
    Huber, B. A., Pavlek, M. & Komnenov, M. Revision of the spider genus Stygopholcus (Araneae, Pholcidae), endemic to the Balkan Peninsula. Eur. J. Taxon. 752, 1–60 (2021).
    Google Scholar 
    Huber, B. A. Revision of the spider genus Hoplopholcus Kulczyński (Araneae, Pholcidae). Zootaxa 4726, 1–94 (2020).Article 

    Google Scholar 
    Cardoso, P. & Scharff, N. First record of the spider family symphytognathidae in Europe and description of Anapistula ataecina sp. n. (araneae). Zootaxa 2246, 45–57 (2009).Article 

    Google Scholar 
    Wang, C., Ribera, C. & Li, S. On the identity of the type species of the genus Telema (Araneae, Telemidae). Zookeys 251, 11–19 (2012).Article 

    Google Scholar 
    Hesselberg, T., Simonsen, D. & Juan, C. Do cave orb spiders show unique behavioural adaptations to subterranean life? A review of the evidence. Behaviour 1–28 (2019). More