More stories

  • in

    Cash and action are needed to avert a biodiversity crisis

    Ambitious new targets are needed to conserve nature by protecting parks and species.Credit: Tang Dehong/VCG/Getty

    It will take ample time and money to slow the world’s catastrophic loss of plant and animal species — and right now, both are running dangerously low. This year, nations are due to agree to an action plan to protect global biodiversity at the 15th Conference of the Parties (COP15) to the United Nations Convention on Biological Diversity. But the meeting is already two years late because of the pandemic, and China, which will host the conference in Kunming, has yet to set a new date.Now, conflicts over financing are adding to the tension. Conservation groups and advocates suggest that rich nations must donate at least US$60 billion annually to help less-affluent ones to fund projects such as protecting areas where wildlife can thrive and tackling the illegal wildlife trade that is driving hundreds of species to extinction. This is much more than the $4 billion to $10 billion that they are estimated to be spending today, and well below the amount they are giving low- and middle-income countries (LMICs) to fight climate change, which reached around $50 billion in 2019 according to one estimate. Yet limited overseas development funds are spread ever thinner as donors deal with the pandemic and now the fallout from Russia’s invasion of Ukraine. This is where COP15 is meant to deliver: as well as agreeing to the action plan, called the Global Biodiversity Framework, nations will be encouraged to pledge more money.A mix of public and private money has started to trickle in. Currently, biodiversity funding on the table ahead of COP15 amounts to roughly $5.2 billion per year, according to estimates by a group of five leading conservation organizations. Most comes from six governments, including France, the United Kingdom and Japan, and the European Union. In April, the Global Environment Facility (GEF) — a multilateral fund to support international environmental agreements — announced that, over the next four years, around $1.9 billion will go to projects dedicated to biodiversity. However, it’s unclear how much of this will come from the coffers that donor countries have already pledged.Some cash for conservation is coming from private philanthropic donors — such as $2 billion committed by entrepreneur Jeff Bezos last year. And starting in 2020, a group of financial institutions (now 89 of them) promised to annually report their financing activities and investments that affect biodiversity, and to move away from those that do harm — a form of ecological accounting that could help to shrink the budget needed to protect biodiversity. Donors will need to reach much deeper into their pockets to meet the demands of LMICs, the custodians of much of the world’s biodiversity. In March, a group of LMICs, led by Gabon, asked for $100 billion per year in new funding when officials met in Geneva, Switzerland, to discuss progress on the Global Biodiversity Framework. The LMICs want the money placed in a new multilateral fund for biodiversity, separate from, but complementary to, the GEF.Aside from cash, the fund will need to find a new home and structure — and there are a few options. A proposal from Brazil, circulated at the Geneva meeting, suggests the fund be governed by a board of 24 members, with an equal number from rich and lower-income nations. The board would be responsible for funding decisions and would prioritize projects that help to achieve the biodiversity convention’s goals. The pitch generated interest among some countries, but also concerns that it’s an attempt by Brazil to divert attention from its failure over the past few years to protect the Amazon rainforest and prevent other environmental harm.Another option is the Kunming Biodiversity Fund, which China announced in October last year to help LMICs to safeguard their ecosystems. It allocated 1.5 billion yuan (US$223 million) to seed the fund and invited other countries to contribute, but so far none has. Sources knowledgeable about the fund say that donor countries are reluctant to pitch in because China is holding on too tightly to the reins and is not involving others in its deliberations. Details of how the fund will operate are scarce, but Nature has learnt that China is floating the idea of housing it at the Asian Infrastructure Investment Bank (AIIB), based in Beijing. Set up in 2016, the AIIB has $100 billion in total capital and 105 members, including Germany, France and the United Kingdom. The AIIB has big green plans. By 2025, it wants half of all infrastructure projects it finances to focus on climate issues. With rigorous oversight and transparency, the AIIB would make a good home for the Kunming fund.As countries prepare to meet in Nairobi on 20–26 June in a last-ditch attempt to push the biodiversity framework forwards before COP15, China, as the host, must urgently provide stronger leadership on financing, including more transparency and engagement. Progress will require quick, generous contributions from donor nations — which should prioritize grants, not loans, for biodiversity projects.Holding the COP15 meeting must be a priority, too. As China tightens restrictions in the face of a COVID-19 surge, some researchers fear that delays will stretch on, stalling conservation work and leaving less time to meet biodiversity targets. China must either commit to holding the meeting this year or let it proceed elsewhere. One option being quietly discussed is moving the meeting to Canada — home of the United Nations biodiversity convention’s secretariat — and this deserves consideration. The world needs an ambitious biodiversity plan now — nature cannot wait. More

  • in

    Mulching impact of Jatropha curcas L. leaves on soil fertility and yield of wheat under water stress

    Khamraev, Sh. R. & Bezborodov, Yu. G. Results of research on the reduction of physical evaporation of moisture from the cotton fields. Sci. World 2(33), 86–93 (2016).
    Google Scholar 
    Khan, A. U. et al. Production of organic fertilizers from rocket seed (Eruca sativa L.), chicken peat and Moringa oleifera leaves for growing linseed under water deficit stress. Sustainability 13(1), 1–19 (2021).CAS 

    Google Scholar 
    Patil Shirish, S., Kelkar Tushar, S. & Bhalerao Satish, A. Mulching: A soil and water conservation practice. Res. J. Agric For. Sci. 1(3), 26–29 (2013).
    Google Scholar 
    Matkovic, A. et al. Mulching as a physical weed control method applicable in medicinal plants cultivations. J. Lekovite Sirovine 35, 37–51 (2015).Article 

    Google Scholar 
    Nawaz, A., Lal, R., Shrestha, R. K. & Farooq, M. Mulching affects soil properties and greenhouse gas emissions under long-term no-till and plough-till systems in alfisol of Central Ohio. Land Degrad. Dev. 28(2), 673–681 (2016).Article 

    Google Scholar 
    Brant, V. et al. Splash erosion in maize crops under conservation management in combination with Shallow Strip-tillage before Sowing. Soil Water Res. 12(2), 106–116 (2017).CAS 
    Article 

    Google Scholar 
    Kumar, R. et al. Effect of plant spacing and organic mulch on growth, yield and quality of natural sweetener plant Stevia and soil fertility in western Himalayas. Int. J. Plant Prod. 8(3), 311–334 (2014).ADS 

    Google Scholar 
    Seleiman, M. F. & Kheir, A. M. S. Maize productivity, heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments. Chemosphere 204, 514–522 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Seleiman, M. F. & Kheir, A. M. S. Saline soil properties, quality and productivity of wheat grown with bagasse ash and thiourea in different climatic zones. Chemosphere 193, 538–546 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Chakraborty, D. et al. Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment. Agric. Water Manag. 95(12), 1323–1334 (2008).Article 

    Google Scholar 
    Ahmad, Z. I., Ansar, M., Iqbal, M. & Minhas, N. M. Effect of planting geometry and mulching on moisture conservation, weed control and wheat growth under rainfed conditions. Pak. J. Bot. 39(4), 1189–1195 (2007).
    Google Scholar 
    Teame, G. Effect of organic mulches and land preparation methods on soil moisture and sesame productivity. Afr. J. Agric. Res. 12(38), 2836–2843 (2017).Article 

    Google Scholar 
    Lehar, L., Wardiyati, T., Moch Dawam, M. & Suryanto, A. Influence of mulch and plant spacing on yield of Solanum tuberosum L. cv. Nadiya at medium altitude. Int. Food Res. J. 24(3), 1338–1344 (2017).CAS 

    Google Scholar 
    Arash, K. The evaluation of water use efficiency in common bean (Phaseolus vulgaris L.) in irrigation condition and mulch. Sci. Agric. 2(3), 60–64 (2013).
    Google Scholar 
    Artyszak, A., Gozdowski, D. & Kucińska, K. The yield and technological quality of sugar beet roots cultivated in mulches. Plant Soil Environ. 60(10), 464–469 (2014).Article 

    Google Scholar 
    Brittaine, R. & Lutaladio, N. Jatropha: A Smallholder Bioenergy Crop. The Potential for Pro-poor Development Integrated Crop Management, Vol. 8 (IFAD/FAO, 2010). http://www.fao.orgElbehri, A., Segerstedt, A. & Liu, P. Biofuels and the sustainability challenge: A global assessment of sustainability issues, trends and policies for biofuels and related feedstocks. Food and Agric. Organ. United Nations (FAO) xvi-174 (2013).King, A. J. et al. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 60(10), 2897–2905 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raheman, H. 14 Jatropha. Handbook of Bioenergy Crop Plants, 315–345 (2012).Ullah, F., Bano, A. & Nosheen, A. Sustainable measures for biodiesel. Effects 36(23), 2621–2628 (2014).CAS 

    Google Scholar 
    Irshad, M. et al. Evaluation of Jatropha curcas L. leaves mulching on wheat growth and biochemical attributes under water stress. BMC Plant Biol. 21(1), 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Dieye, T. et al. The effect of Jatropha curcas L. leaf litter decomposition on soil carbon and nitrogen status and bacterial community structure (Senegal). J. Soil Sci. Environ Manag. 7(3), 32–44 (2016).CAS 
    Article 

    Google Scholar 
    Kafi, M. & Salehi, M. Kochia scoparia as a model plant to explore the impact of water deficit on halophytic communities. Pak. J. Bot. 44, 257–262 (2012).
    Google Scholar 
    Yang, Y. M., Liu, X. J., Li, W. Q. & Li, C. Z. Effect of different mulch materials on winter wheat production in desalinized soil in Heilonggang region of North China. J. Zhejiang Univ. Sci. B 7(11), 858–867 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Xie, Z. K., Wang, Y. J. & Li, F. M. Effect of plastic mulching on soil water use and spring wheat yield in arid region of northwest China. Agric. Water Manag. 75(1), 71–83 (2005).Article 

    Google Scholar 
    Khan, R. H., Anwar-ul-Haq, K. & Sajjad, M. R. Effect of different types of mulches on grain yield and yield components of wheat (Triticum aestivum) under rainfed condition. J. Biol. Agric. Healthc. 4(12), 85–91 (2014).
    Google Scholar 
    Weidhuner, A., Afshar, R. K., Luo, Y., Battaglia, M. & Sadeghpour, A. Particle size affects nitrogen and carbon estimate of a wheat cover crop. Agron. J. 111(6), 3398–3402 (2019).CAS 
    Article 

    Google Scholar 
    Ding, Z. et al. The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Sci. Rep. 10(1), 1–13 (2020).Article 
    CAS 

    Google Scholar 
    Rummana, S., Amin, A. K. M. R., Islam, M. S. & Faruk, G. M. Effect of irrigation and mulch materials on growth and yield of wheat. Bang. Agron. J. 21(1), 71–76 (2018).Article 

    Google Scholar 
    Richard, L. A. Diagnosis and improvement of saline and alkaline soils. Handbook No. 60 (US Depart. Agric., 1954).McLean, E. O. Soil pH and lime requirement. Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, Vol. 9, 199–224 (1983).Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 63, 251–264 (1947).ADS 
    CAS 
    Article 

    Google Scholar 
    Singleton, V. L., Orthofer, R. & Lamuela-Raventos, R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999).CAS 
    Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (eds Page, A. L. et al.) 595–624 (Soil Sci. Society America, 1982).
    Google Scholar 
    Steel, R. G. D., Torrie, J. H. & Dickey, D. A. Principles and Procedures of Statistics: A Biometrical Approach 3rd edn, 246 (McGraw-Hill, 1997).
    Google Scholar 
    Brady, N. C. & Weil, R. R. Soil colloids: Seat of soil chemical and physical acidity. Nat. Prop. Soils 5(13), 311–358 (2008).
    Google Scholar 
    Scharenbroch, B. C. & Lloyd, J. E. Particulate organic matter and soil nitrogen availability in urban landscapes. Arboricul. Urb. For. 32(4), 180–191 (2006).Article 

    Google Scholar 
    Bhadha, J. H., Capasso, J. M., Khatiwada, R., Swanson, S. & LaBorde, C. Raising soil organic matter content to improve water holding capacity. UF/IFAS 1–5 (2017).Chalker-Scott, L. Impact of mulches on landscape plants and the environment—A review. J. Environ. Hortic. 25(4), 239–249 (2007).Article 

    Google Scholar 
    Liu, Z., Fu, B., Zheng, X. & Liu, G. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biol. Biochem. 42(3), 445–450 (2010).CAS 
    Article 

    Google Scholar 
    Bai, S. H., Blumfield, T. J. & Reverchon, F. The impact of mulch type on soil organic carbon and nitrogen pools in a sloping site. Biol. Fertil. Soils 50(1), 37–44 (2014).Article 

    Google Scholar 
    Yang, H. et al. The combined effects of maize straw mulch and no-tillage on grain yield and water and nitrogen use efficiency of dry-land winter wheat (Triticum aestivum L.). Soil Tillage Res. 197, 104485 (2020).Article 

    Google Scholar 
    Li, X. J. et al. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta (BBA) Proteins Proteomics 1804(4), 929–940 (2010).CAS 
    Article 

    Google Scholar 
    Fang, S., Xie, B., Liu, D. & Liu, J. Effects of mulching materials on nitrogen mineralization, nitrogen availability and poplar growth on degraded agricultural soil. New For. 41(2), 147–162 (2011).Article 

    Google Scholar 
    Houghton, J. T. Climate Change 2001: The Scientific Basis 419–470 (2001).Johnson, D. et al. Plant community composition affects the biomass, activity and diversity of microorganisms in limestone grassland soil. Eur. J. Soil Sci. 54(4), 671–678 (2003).Article 

    Google Scholar 
    Johnson, M. J., Lee, K. Y. & Scow, K. M. DNA finger printing reveals links among agricultural crops, soil properties, and the composition of soil microbial communities. Geoderma 114, 279–303 (2003).ADS 
    Article 

    Google Scholar 
    Nielsen, N. M., Winding, A. & Binnerup, S. Microorganisms as Indicators of Soil Health 15–16 (Ministry of the Environment, National Environ. Res. Inst., 2002).
    Google Scholar 
    Wilkinson, S. C. et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress. Soil Biol. Biochem. 34(2), 189–200 (2002).CAS 
    Article 

    Google Scholar 
    Drenovsky, R. E., Vo, D., Graham, K. J. & Scow, K. M. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microb. Ecol. 48(3), 424–430 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, Y. Y., Yao, H. Y. & Huang, C. Y. Influence of soil moisture regime on microbial community diversity and activity in a paddy soil. Acta Pedol. Sin. 43, 828–834 (2006).
    Google Scholar 
    Jensen, K. D., Beier, C., Michelsen, A. & Emmett, B. A. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl. Soil Ecol. 24(2), 165–176 (2003).Article 

    Google Scholar 
    Stoklosa, A., Hura, T., Stupnicka-Rodzynkiewicz, E., Dabkowska, T. & Lepiarczyk, A. The influence of plant mulches on the content of phenolic compounds in soil and primary weed infestation of maize. Acta. Agron. Bot. 61(2), 205–219 (2008).
    Google Scholar 
    Ohno, T. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity. J. Environ. Qual. 30(5), 1631–1635 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Farooq, S., Shahid, M., Khan, M. B., Hussain, M. & Farooq, M. Improving the productivity of bread wheat by good management practices under terminal drought. J. Agric. Crop Sci. 201(3), 173–188 (2015).Article 

    Google Scholar 
    Madani, A., Rad, A. S., Pazoki, A., Nourmohammadi, G. & Zarghami, R. Wheat (Triticum aestivum L.) grain filling and dry matter partitioning responses to source: Sink modifications under postanthesis water and nitrogen deficiency. Acta Sci. Agron. 32, 145–151 (2010).CAS 
    Article 

    Google Scholar 
    Deng, X. P., Shan, L., Zhang, H. & Turner, N. C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric. Water Manag. 80(1–3), 23–40 (2006).Article 

    Google Scholar 
    Athar, H. R., Khan, A. & Ashraf, M. Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J. Plant Nutr. 32, 1799–1817 (2009).CAS 
    Article 

    Google Scholar 
    Luo, et al. Dual plastic film and straw mulching boosts wheat productivity and soil quality under the El Nino in semiarid Kenya. Sci. Total Environ. 738, 139808 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duan, et al. Improvement of wheat productivity and soil quality by arbuscular mycorrhizal fungi is density-and moisture-dependent. Agron. Sustain. Dev. 41(1), 1–12 (2021).Article 
    CAS 

    Google Scholar  More

  • in

    Enhanced silica export in a future ocean triggers global diatom decline

    Mesocosm experimentsSi:Nexport measurementsBetween 2010 and 2014, we conducted five in situ mesocosm experiments to assess impacts of OA on natural plankton communities. Study sites covered a large latitudinal gradient (28 °N–79 °N) and diverse oceanic environments/ecosystems (Extended Data Fig. 1 and Extended Data Table 1). Sample collection and processing was conducted every 1 or 2 days throughout the experiments. Sinking particulate matter was obtained from sediment traps attached to the bottom of each mesocosm, thereby collecting the entire material sinking down in the enclosed water column36. Processing of sediment trap samples followed a previous protocol37. Samples for particulate matter suspended in the water column were collected with depth-integrating water samplers (HYDRO-BIOS) and filtered following standard procedures. Biogenic silica was leached from the sediment trap samples and filters by alkaline pulping (0.1 M NaOH at 85 °C). After 135 min the leaching process was terminated with 0.05 M H2SO4 and dissolved silica was measured spectrophotometrically38. Carbon and nitrogen content were determined using an elemental CN analyser (EuroEA)39.Analysis of OA impactsTo test for a systemic influence of OA on Si:Nexport, we synthesized the datasets from the different experiments and (i) conducted a meta-analysis to quantify effect sizes, and (ii) computed probability density estimates. Because the experimental design, the range of CO2 treatments, and the time periods for our analysis of Si:Nexport varied to some extent among experiments (Extended Data Table 1), we pooled mesocosms for ambient conditions and in the ({{p}}_{{{rm{CO}}}_{2}}) range of ~700–1,000 μatm (‘OA treatment’), corresponding to end-of-century values according to RCP 6.0 and 8.5 emission scenarios15. Effect sizes were calculated as log-transformed response ratios lnRR, an approach commonly used in meta-analysis40:$${rm{l}}{rm{n}}{rm{R}}{rm{R}}={rm{l}}{rm{n}}{X}_{{rm{O}}{rm{A}}}-{rm{l}}{rm{n}}{X}_{{rm{c}}{rm{o}}{rm{n}}{rm{t}}{rm{r}}{rm{o}}{rm{l}}},$$where X is the arithmetic mean of Si:Nexport ratios under OA and ambient conditions (Extended Data Table 1). Effect sizes 0 indicate that the effect was positive. Effects are considered statistically significant when 95% confidence intervals (calculated from pooled standard deviations) do not overlap with zero. The overall effect size across all studies was computed by weighing individual effect sizes according to their variance, following the common methodology for meta-analyses40. In addition, we computed probability densities of Si:Nexport based on kernel density estimation, which better accounts for data with skewed or multimodal distributions41. Another advantage of this approach is that it does not require the calculation of temporal means. Instead, the entire data timeseries can be incorporated into the analysis, thus retaining information about temporal variability. Confidence intervals of the density estimates were calculated with a bootstrapping approach using data resampling (1,000 permutations)41. The resulting probability density plots can be interpreted analogously to histograms. Differences among ambient and OA conditions are considered statistically significant when confidence intervals of the probability density distributions do not overlap. Numbers for suspended and sinking Si, C and N (and their respective ratios) for the analysis period are given in Extended Data Table 2.Analysis of pH effects on Si:N in global sediment trap dataWe analysed a recent compilation of global sediment trap data (674 locations collected between 1976 and 2012)35. The aim of this analysis was to assess the influence of pH on opal dissolution in the world ocean. In contrast to the mesocosm experiments, where export fluxes were measured only at one depth, the global dataset provides depth-resolved information, enabling us to examine the vertical change in the Si:N ratio of sinking particulate matter and how this correlates with pH. It has long been known that the silica content of sinking particles increases with depth, as opal dissolution is less efficient than organic matter remineralization25,42. The resulting accumulation of Si relative to N can be quantified as the change in Si:N with increasing depth, that is, the slope of the relationship of depth versus Si:N (ΔSi:N, in units of m−1). Our approach is analogous to previous studies, which used vertical profiles of Si:C as a proxy for differential dissolution/remineralization of opal and organic matter, and its regional variability in the ocean24,42. We extracted all data that (I) included simultaneous measurements of Si and N, and (II) contained vertical profiles with at least three depth levels (so that ΔSi:N [m−1] can be calculated). We then calculated linear regressions for individual Si:N profiles and subsequently extracted those for which Si:N displayed a statistically significant relationship with depth (p  More

  • in

    Sustainability for Chile’s mountains — a united approach

    In this International Year of Sustainable Mountain Development, we call for transdisciplinary research by Chilean scientists and for concerted action among all stakeholders to address the complex factors responsible for the degradation of Chile’s mountains. Mountains cover 64% of Chile’s surface and are a crucial source of water, food, energy, minerals and biodiversity.
    Competing Interests
    The authors declare no competing interests. More

  • in

    Mariculture boosts supply under climate change

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Comprehensive spatial distribution of tropical fish assemblages from multifrequency acoustics and video fulfils the island mass effect framework

    Bowen, B. W., Rocha, L. A., Toonen, R. J. & Karl, S. A. The origins of tropical marine biodiversity. Trends Ecol. Evol. 28, 359–366 (2013).PubMed 
    Article 

    Google Scholar 
    Lam, V. W. et al. Climate change, tropical fisheries and prospects for sustainable development. Nat. Rev. Earth Environ. 1, 440–454 (2020).ADS 
    Article 

    Google Scholar 
    Halpern, B. S. et al. Recent pace of change in human impact on the world’s ocean. Sci. Rep. 9, 1–8 (2019).CAS 
    Article 

    Google Scholar 
    Capitani, L., de Araujo, J. N., Vieira, E. A., Angelini, R. & Longo, G. O. Ocean warming will reduce standing biomass in a tropical western atlantic reef ecosystem. Ecosystems https://doi.org/10.1007/s10021-021-00691-z (2021).Article 

    Google Scholar 
    Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1–12 (2021).Article 
    CAS 

    Google Scholar 
    Sale, P. F. et al. Transforming management of tropical coastal seas to cope with challenges of the 21st century. Mar. Pollut. Bull. 85, 8–23 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dunstan, P. K. et al. How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States?. Mar. Policy 88, 295–302 (2018).Article 

    Google Scholar 
    Martins, I. M. & Gasalla, M. A. Perceptions of climate and ocean change impacting the resources and livelihood of small-scale fishers in the South Brazil Bight. Clim. Change 147, 441–456 (2018).ADS 
    Article 

    Google Scholar 
    Moura, R. L. et al. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70, 109–117 (2013).ADS 
    Article 

    Google Scholar 
    Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).Article 

    Google Scholar 
    Bryan, D. R., Kilfoyle, K., Gilmore, R. G. Jr. & Spieler, R. E. Characterization of the mesophotic reef fish community in south Florida, USA. J. Appl. Ichthyol. 29, 108–117 (2013).Article 

    Google Scholar 
    Fukunaga, A., Kosaki, R. K., Wagner, D. & Kane, C. Structure of Mesophotic Reef Fish Assemblages in the Northwestern Hawaiian Islands. PLoS One 11, e0157861 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kahng, S., Copus, J. M. & Wagner, D. Mesophotic coral ecosystems. In Marine Animal Forests (eds Rossi, S. et al.) 1–22 (Springer International Publishing, Paris, 2016). https://doi.org/10.1007/978-3-319-17001-5_4-1.Chapter 

    Google Scholar 
    Rocha, L. A. et al. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361, 281–284 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bongaerts, P. et al. Deep reefs are not universal refuges: Reseeding potential varies among coral species. Sci. Adv. 3, e1602373 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosa, M. R. et al. Mesophotic reef fish assemblages of the remote St. Peter and St. Paul’s Archipelago, Mid-Atlantic Ridge, Brazil. Coral Reefs 35, 113–123 (2016).ADS 
    Article 

    Google Scholar 
    Medeiros, A. P. et al. Deep reefs are not refugium for shallow-water fish communities in the southwestern Atlantic. Ecol. Evol. 11, 4413–4427 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reid, D. G. SEFOS—Shelf edge fisheries and oceanography studies: An overview. Fish. Res. 50, 1–15 (2001).Article 

    Google Scholar 
    Heyman, W. D. & Kjerfve, B. Characterization of transient multi-species reef fish spawning aggregations at Gladden Spit, Belize. Bull. Mar. Sci. 83, 531–551 (2008).
    Google Scholar 
    Paxton, A. B. et al. Four decades of reef observations illuminate deep-water grouper hotspots. Fish Fish. 22, 749–761. https://doi.org/10.1111/faf.12548 (2021).Article 

    Google Scholar 
    Frédou, T. & Ferreira, B. P. Bathymetric trends of northeastern Brazilian snappers (Pisces, Lutjanidae): Implications for the reef fishery dynamic. Braz. Arch. Biol. Technol. 48, 787–800 (2005).Article 

    Google Scholar 
    Longhurst, A. R. & Pauly, D. Ecologia dos oceanos tropicais (Edusp, 2007).
    Google Scholar 
    Olavo, G., Costa, P. A., Martins, A. S. & Ferreira, B. P. Shelf-edge reefs as priority areas for conservation of reef fish diversity in the tropical Atlantic. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 199–209 (2011).Article 

    Google Scholar 
    Eduardo, L. N. et al. Identifying key habitat and spatial patterns of fish biodiversity in the tropical Brazilian continental shelf. Cont. Shelf Res. 166, 108–118 (2018).ADS 
    Article 

    Google Scholar 
    Silva, M. B., Rosa, R. S., Menezes, R. & Francini-Filho, R. B. Changes in reef fish assemblages in a cross-shelf euphotic-mesophotic gradient in tropical SW Atlantic. Estuar. Coast. Shelf Sci. 259, 107465 (2021).Article 

    Google Scholar 
    Doty, M. S. & Oguri, M. The island mass effect. ICES J. Mar. Sci. 22, 33–37 (1956).Article 

    Google Scholar 
    Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Letessier, T. B. et al. Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific. PLoS Biol. 17, e3000366 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Heywood, K. J., Barton, E. D. & Simpson, J. H. The effects of flow disturbance by an oceanic island. J. Mar. Res. 48, 55–73 (1990).Article 

    Google Scholar 
    Signorini, S. R., McClain, C. R. & Dandonneau, Y. Mixing and phytoplankton bloom in the wake of the Marquesas Islands. Geophys. Res. Lett. 26, 3121–3124 (1999).ADS 
    Article 

    Google Scholar 
    Henry, G. W. & Lyle, J. M. National recreational and indigenous fishing survey (2003).Coutis, P. F. & Middleton, J. H. Flow-topography interaction in the vicinity of an isolated, deep ocean island. Deep Sea Res. Part Oceanogr. Res. Pap. 46, 1633–1652 (1999).ADS 
    Article 

    Google Scholar 
    Cardoso, C., Caldeira, R. M. A., Relvas, P. & Stegner, A. Islands as eddy transformation and generation hotspots: Cabo Verde case study. Prog. Oceanogr. 184, 102271 (2020).Article 

    Google Scholar 
    Tchamabi, C. C., Araujo, M., Silva, M. & Bourlès, B. A study of the Brazilian Fernando de Noronha island and Rocas atoll wakes in the tropical Atlantic. Ocean Model 111, 9–18 (2017).ADS 
    Article 

    Google Scholar 
    Motta, F. S. et al. Effects of marine protected areas under different management regimes in a hot spot of biodiversity and cumulative impacts from SW Atlantic. Reg. Stud. Mar. Sci. 47, 101951 (2021).Article 

    Google Scholar 
    Agardy, T., di Sciara, G. N. & Christie, P. Mind the gap: Addressing the shortcomings of marine protected areas through large scale marine spatial planning. Mar. Policy 35, 226–232 (2011).Article 

    Google Scholar 
    Shucksmith, R. J. & Kelly, C. Data collection and mapping—Principles, processes and application in marine spatial planning. Mar. Policy 50, 27–33 (2014).Article 

    Google Scholar 
    Queffelec, B. et al. Marine spatial planning and the risk of ocean grabbing in the tropical Atlantic. ICES J. Mar. Sci. 78, 1196–1208 (2021).Article 

    Google Scholar 
    Rubio-Cisneros, N. T. et al. Poor fisheries data, many fishers, and increasing tourism development: Interdisciplinary views on past and current small-scale fisheries exploitation on Holbox Island. Mar. Policy 100, 8–20 (2019).Article 

    Google Scholar 
    Samhouri, J. F., Haupt, A. J., Levin, P. S., Link, J. S. & Shuford, R. Lessons learned from developing integrated ecosystem assessments to inform marine ecosystem-based management in the USA. ICES J. Mar. Sci. 71, 1205–1215 (2014).Article 

    Google Scholar 
    Long, R. D., Charles, A. & Stephenson, R. L. Key principles of marine ecosystem-based management. Mar. Policy 57, 53–60 (2015).Article 

    Google Scholar 
    Hewitt, J. E., Anderson, M. J. & Thrush, S. F. Assessing and monitoring ecological community health in marine systems. Ecol. Appl. 15, 942–953 (2005).Article 

    Google Scholar 
    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 1–14 (2015).Article 
    CAS 

    Google Scholar 
    Díaz-Pérez, L. et al. Coral Reef Health Indices versus the Biological, Ecological and Functional Diversity of Fish and Coral Assemblages in the Caribbean Sea. PLoS One 11, e0161812 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Topor, Z. M., Rasher, D. B., Duffy, J. E. & Brandl, S. J. Marine protected areas enhance coral reef functioning by promoting fish biodiversity. Conserv. Lett. 12, e12638 (2019).Article 

    Google Scholar 
    Pennino, M. G. et al. Fishery-dependent and -independent data lead to consistent estimations of essential habitats. ICES J. Mar. Sci. 73, 2302–2310 (2016).Article 

    Google Scholar 
    Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty (Springer Science and Business Media, 2013).
    Google Scholar 
    Bohnsack, J. A. & Bannerot, S. P. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes (1986).Jones, R. S. & Thompson, M. J. Comparison of Florida reef fish assemblages using a rapid visual technique. Bull. Mar. Sci. 28, 159–172 (1978).
    Google Scholar 
    Kimmel, J. J. A new species-time method for visual assessment of fishes and its comparison with established methods. Environ. Biol. Fishes 12, 23–32 (1985).Article 

    Google Scholar 
    Michalopoulos, C., Auster, P. J. & Malatesta, R. J. A comparison of transect and species-time counts for assessing faunal abundance from video surveys. Mar. Technol. Soc. J. 26, 27–31 (1992).
    Google Scholar 
    Gray, J. S., Ugland, K. I. & Lambshead, J. Species accumulation and species area curves: A comment on Scheiner (2003). Glob. Ecol. Biogeogr. 13, 473–476 (2004).Article 

    Google Scholar 
    Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62 (2014).Article 

    Google Scholar 
    Langlois, T. J. et al. Cost-efficient sampling of fish assemblages: Comparison of baited video stations and diver video transects. Aquat. Biol. 9, 155–168 (2010).Article 

    Google Scholar 
    Logan, J. M., Young, M. A., Harvey, E. S., Schimel, A. C. G. & Ierodiaconou, D. Combining underwater video methods improves effectiveness of demersal fish assemblage surveys across habitats. Mar. Ecol. Prog. Ser. 582, 181–200 (2017).ADS 
    Article 

    Google Scholar 
    Koslow, J. A. The role of acoustics in ecosystem-based fishery management. ICES J. Mar. Sci. 66, 966–973 (2009).Article 

    Google Scholar 
    Bertrand, A. et al. Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat. Commun. 5, 1–9 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    Benoit-Bird, K. J. & Lawson, G. L. Ecological insights from pelagic habitats acquired using active acoustic techniques. Annu. Rev. Mar. Sci. 8, 463–490 (2016).ADS 
    Article 

    Google Scholar 
    Sutton, T. T. Vertical ecology of the pelagic ocean: Classical patterns and new perspectives. J. Fish Biol. 83, 1508–1527 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McClatchie, S., Thorne, R. E., Grimes, P. & Hanchet, S. Ground truth and target identification for fisheries acoustics. Fish. Res. 47, 173–191 (2000).Article 

    Google Scholar 
    Cappo, M., Speare, P. & De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn (shrimp) trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 302, 123–152 (2004).Article 

    Google Scholar 
    Harvey, E. S., Cappo, M., Butler, J. J., Hall, N. & Kendrick, G. A. Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Mar. Ecol. Prog. Ser. 350, 245–254 (2007).ADS 
    Article 

    Google Scholar 
    Fitzpatrick, B. M., Harvey, E. S., Heyward, A. J., Twiggs, E. J. & Colquhoun, J. Habitat specialization in tropical continental shelf demersal fish assemblages. PLoS One 7, e39634 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rooper, C. N., Hoff, G. R. & De Robertis, A. Assessing habitat utilization and rockfish (Sebastes spp.) biomass on an isolated rocky ridge using acoustics and stereo image analysis. Can. J. Fish. Aquat. Sci. 67, 1658–1670 (2010).Article 

    Google Scholar 
    Jones, D. et al. Evaluation of rockfish abundance in untrawlable habitat: Combining acoustic and complementary sampling tools (2012).O’Driscoll, R. L. et al. Species identification in seamount fish aggregations using moored underwater video. ICES J. Mar. Sci. 69, 648–659 (2012).Article 

    Google Scholar 
    Fernandes, P. G., Copland, P., Garcia, R., Nicosevici, T. & Scoulding, B. Additional evidence for fisheries acoustics: Small cameras and angling gear provide tilt angle distributions and other relevant data for mackerel surveys. ICES J. Mar. Sci. 73, 2009–2019 (2016).Article 

    Google Scholar 
    Gastauer, S., Scoulding, B. & Parsons, M. An unsupervised acoustic description of fish schools and the seabed in three fishing regions within the Northern Demersal Scalefish Fishery (NDSF, Western Australia). Acoust. Aust. 45, 363–380 (2017).Article 

    Google Scholar 
    Blanluet, A. et al. Characterization of sound scattering layers in the Bay of Biscay using broadband acoustics, nets and video. PLoS One 14, e0223618 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campanella, F. & Taylor, J. C. Investigating acoustic diversity of fish aggregations in coral reef ecosystems from multifrequency fishery sonar surveys. Fish. Res. 181, 63–76 (2016).Article 

    Google Scholar 
    Domokos, R. On the development of acoustic descriptors for semi-demersal fish identification to support monitoring stocks. ICES J. Mar. Sci. 78, 1117–1130 (2021).Article 

    Google Scholar 
    Villalobos, H. et al. A practical approach to monitoring marine protected areas: An application to El Bajo Espíritu Santo Seamount near La Paz, Mexico. Oceanography 34, 32–43 (2021).Article 

    Google Scholar 
    Hazin, F. H., Zagaglia, J. R., Broadhurst, M. K., Travassos, P. E. P. & Bezerra, T. R. Q. Review of a small-scale pelagic longline fishery off northeastern Brazil. Mar. Fish. Rev. 60, 1–8 (1998).
    Google Scholar 
    Lessa, R. P. et al. Distribution and abundance of ichthyoneuston at seamounts and islands off north-eastern Brazil. Arch. Fish. Mar. Res. 47, 239–252 (1999).
    Google Scholar 
    Dominguez, P. S., Zeineddine, G. C., Rotundo, M. M., Barrella, W. & Ramires, M. A pesca artesanal no arquipélago de Fernando de Noronha (PE). Bol. Inst. Pesca 42, 241–251 (2014).Article 

    Google Scholar 
    Lopes, P. F. M., Mendes, L., Fonseca, V. & Villasante, S. Tourism as a driver of conflicts and changes in fisheries value chains in Marine Protected Areas. J. Environ. Manag. 200, 123–134 (2017).CAS 
    Article 

    Google Scholar 
    Outeiro, L., Rodrigues, J. G., Damásio, L. M. A. & Lopes, P. F. M. Is it just about the money? A spatial-economic approach to assess ecosystem service tradeoffs in a marine protected area in Brazil. Ecosyst. Serv. 38, 100959 (2019).Article 

    Google Scholar 
    Garla, R. C., Chapman, D. D., Wetherbee, B. M. & Shivji, M. Movement patterns of young Caribbean reef sharks, Carcharhinus perezi, at Fernando de Noronha Archipelago, Brazil: The potential of marine protected areas for conservation of a nursery ground. Mar. Biol. 149, 189–199 (2006).Article 

    Google Scholar 
    Bertrand, A. FAROFA 1 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001399 (2017).Article 

    Google Scholar 
    Bertrand, A. FAROFA 2 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001411 (2018).Article 

    Google Scholar 
    Bertrand, A. FAROFA 3 cruise. RV TUBARAO Tigre. https://doi.org/10.17600/18001381 (2019).Article 

    Google Scholar 
    Bertrand, A. et al. Acoustic data from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/71024 (2020).Salvetat, J. et al. Underwater video observations from FAROFA surveys, 2017-09-15 to 2019-04-22. https://doi.org/10.17882/76019 (2020).Pawlowicz, R. M_Map: A mapping package for MATLAB, version 1.4 m (computer software) (2020).Péter, A. Solomon Coder: The Concept of Behavioral Elements, Categories and the Representation of Data in Solomon Coder (2019).Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: Observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. U. K. 74, 481–498 (1994).Article 

    Google Scholar 
    McQuinn, I. H. et al. Description of the ICES HAC standard data exchange format, version 1.60 (Conseil international pour l’exploration de la mer, 2005).
    Google Scholar 
    Trenkel, V. M. et al. Overview of recent progress in fisheries acoustics made by Ifremer with examples from the Bay of Biscay. Aquat. Living Resour. 22, 433–445 (2009).Article 

    Google Scholar 
    Perrot, Y. et al. Matecho: An open-source tool for processing fisheries acoustics data. Acoust. Aust. 46, 241–248 (2018).Article 

    Google Scholar 
    Salvetat, J. et al. In situ target strength measurement of the black triggerfish Melichthys niger and the ocean triggerfish Canthidermis sufflamen. Mar. Freshw. Res. 71, 1118–1127 (2020).Article 

    Google Scholar 
    Lavery, A. C. et al. Determining dominant scatterers of sound in mixed zooplankton populations. J. Acoust. Soc. Am. 122, 3304–3326 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).Article 

    Google Scholar 
    Barros, M. J. G. Analises da Ictiofauna marinha e habitats associados atraves de videos subaquatica. (Universidade Federal de Pernambuco, 2020).
    Google Scholar 
    Sazima, C., Bonaldo, R. M., Krajewski, J. P. & Sazima, I. The Noronha wrasse: A jack-of-all-trades follower. Aqua J. Ichthyol. Aquat. Biol. 9, 97–108 (2005).
    Google Scholar 
    Soto, J. M. R. Peixes do arquipélago Fernando de Noronha. Mare Magnum 1, 147–169 (2001).
    Google Scholar 
    Krajewski, J. P. & Floeter, S. R. Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): The influence of exposure and benthic composition. Environ. Biol. Fishes 92, 25 (2011).Article 

    Google Scholar 
    Sazima, I., Sazima, C. & da Silva-Jr, J. M. Fishes associated with spinner dolphins at Fernando de Noronha Archipelago, tropical Western Atlantic: An update and overview. Neotropical Ichthyol. 4, 451–455 (2006).Article 

    Google Scholar 
    Petitgas, P. Use of a disjunctive kriging to model areas of high pelagic fish density in acoustic fisheries surveys. Aquat. Living Resour. 6, 201–209 (1993).Article 

    Google Scholar 
    Chiles, J.-P. & Delfiner, P. Geostatistics: Modeling Spatial Uncertainty Vol. 497 (Wiley, 2009).MATH 

    Google Scholar 
    Bez, N. & Braham, C.-B. Indicator variables for a robust estimation of an acoustic index of abundance. Can. J. Fish. Aquat. Sci. 71, 709–718 (2014).Article 

    Google Scholar 
    Switzer, P. Min/max autocorrelation factors for multivariate spatial imagery. Comput. Sci. Stat. (1985).Bez, N. Global estimation based on indicators factorization (2021).Assunção, R. V., Silva, A. C., Martins, J. & Montes, M. F. Spatial-temporal variability of the thermohaline properties in the coastal region of Fernando de Noronha Archipelago, Brazil. J. Coast. Res. 75, 512–517 (2016).Article 

    Google Scholar 
    da Silva, A. C. et al. Surface circulation and vertical structure of upper ocean variability around Fernando de Noronha archipelago and Rocas atoll during spring 2015 and fall 2017. Front. Mar. Sci. 8, 598101 (2021).Article 

    Google Scholar 
    Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and regression trees. Wadsworth Int. Group 37, 237–251 (1984).MATH 

    Google Scholar 
    Therneau, T., Atkinson, B., Ripley, B. & Ripley, M. B. Package ‘rpart’. Available Online Cran Ma Ic Ac Ukwebpackagesrpartrpart Pdf Accessed 20 April 2016 (2015).Kuhnert, P. M., Duffy, L. M., Young, J. W. & Olson, R. J. Predicting fish diet composition using a bagged classification tree approach: A case study using yellowfin tuna (Thunnus albacares). Mar. Biol. 159, 87–100 (2012).CAS 
    Article 

    Google Scholar 
    Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH 

    Google Scholar 
    Kuhnert, P. M., Henderson, A.-K., Bartley, R. & Herr, A. Incorporating uncertainty in gully erosion calculations using the random forests modelling approach. Environmetrics 21, 493–509 (2010).MathSciNet 

    Google Scholar 
    Kuhnert, P. M. & Mengersen, K. Reliability measures for local nodes assessment in classification trees. J. Comput. Graph. Stat. 12, 398–416 (2003).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (2020).ParisTech, M. ARMINES: RGeostats: The Geostatistical R Package (2020).Kahle, D. J. & Wickham, H. ggmap: Spatial visualization with ggplot2. R J 5, 144 (2013).Article 

    Google Scholar 
    Pimentel, C. R. et al. Mesophotic ecosystems at Fernando de Noronha Archipelago, Brazil (South-western Atlantic), reveal unique ichthyofauna and need for conservation. Neotropical Ichthyol. 18 (2020).Ilarri, M. I., Souza, A. T. & Rosa, R. S. Community structure of reef fishes in shallow waters of the Fernando de Noronha archipelago: Effects of different levels of environmental protection. Mar. Freshw. Res. 68, 1303–1316 (2017).Article 

    Google Scholar 
    Schmid, K. et al. First fish fauna assessment in the Fernando de Noronha Archipelago with BRUVS: Species catalog with underwater imagery. Biota Neotropica 20 (2020).de Araújo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Krajewski, J. P., Floeter, S. R., Jones, G. P. & Leite, F. P. Patterns of variation in behaviour within and among reef fish species on an isolated tropical island: Influence of exposure and substratum. J. Mar. Biol. Assoc. U. K. 91, 1359–1368 (2011).Article 

    Google Scholar 
    Mendes, T. C., Quimbayo, J. P., Bouth, H. F., Silva, L. P. & Ferreira, C. E. The omnivorous triggerfish Melichthys niger is a functional herbivore on an isolated Atlantic oceanic island. J. Fish Biol. 95, 812–819 (2019).PubMed 

    Google Scholar 
    Petitgas, P. & Levenez, J. J. Spatial organization of pelagic fish: Echogram structure, spatio-temporal condition, and biomass in Senegalese waters. ICES J. Mar. Sci. 53, 147–153 (1996).Article 

    Google Scholar 
    Burgos, J. M. & Horne, J. K. Characterization and classification of acoustically detected fish spatial distributions. ICES J. Mar. Sci. 65, 1235–1247 (2008).Article 

    Google Scholar 
    Russ, G. R. Grazer biomass correlates more strongly with production than with biomass of algal turfs on a coral reef. Coral Reefs 22, 63–67 (2003).Article 

    Google Scholar 
    Friedlander, A. M. & Parrish, J. D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J. Exp. Mar. Biol. Ecol. 224, 1–30 (1998).Article 

    Google Scholar 
    Munday, P. L. Does habitat availability determine geographical-scale abundances of coral-dwelling fishes?. Coral Reefs 21, 105–116 (2002).ADS 
    Article 

    Google Scholar 
    Martins, K. et al. Assessing trophic interactions between pelagic predatory fish by gut content and stable isotopes analysis around Fernando de Noronha Archipelago (Brazil), Equatorial West Atlantic. J. Fish Biol. 99, 1576–1590 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Costa, B., Taylor, J. C., Kracker, L., Battista, T. & Pittman, S. Mapping reef fish and the seascape: Using acoustics and spatial modeling to guide coastal management. PLoS One 9, e85555 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Kavanagh, K. D. & Olney, J. E. Ecological correlates of population density and behavior in the circumtropical black triggerfish Melichthys niger (Balistidae). Environ. Biol. Fishes 76, 387–398 (2006).Article 

    Google Scholar 
    Lubbock, R. The shore fishes of Ascension Island. J. Fish Biol. 17, 283–303 (1980).Article 

    Google Scholar 
    Price, J. H. & John, D. M. Ascension Island, South Atlantic: A survey of inshore benthic macroorganisms, communities and interactions. Aquat. Bot. 9, 251–278 (1980).Article 

    Google Scholar 
    Robertson, D. R. & Allen, G. R. Zoogeography of the shorefish fauna of Clipperton Atoll. Coral Reefs 15, 121–131 (1996).ADS 
    Article 

    Google Scholar 
    Gasparini, J. L. & Floeter, S. R. The shore fishes of Trindade Island, western south Atlantic. J. Nat. Hist. 35, 1639–1656 (2001).Article 

    Google Scholar 
    Lubbock, R. & Edwards, A. The fishes of Saint Paul’s rocks. J. Fish Biol. 18, 135–157 (1981).Article 

    Google Scholar 
    Feitoza, B. M., Rocha, L. A., Luiz-Júnior, O. J., Floeter, S. R. & Gasparini, J. L. Reef fishes of St. Paul’s Rocks: New records and notes on biology and zoogeography. Aqua 7, 61–82 (2003).
    Google Scholar 
    Ferreira, C. E. L., Floeter, S. R., Gasparini, J. L., Ferreira, B. P. & Joyeux, J. C. Trophic structure patterns of Brazilian reef fishes: A latitudinal comparison. J. Biogeogr. 31, 1093–1106 (2004).Article 

    Google Scholar 
    Floeter, S. R. et al. Atlantic reef fish biogeography and evolution. J. Biogeogr. 35, 22–47 (2008).
    Google Scholar 
    Morais, R. A., Ferreira, C. E. L. & Floeter, S. R. Spatial patterns of fish standing biomass across Brazilian reefs. J. Fish Biol. 91, 1642–1667 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Walsh, W. J. Patterns of recruitment and spawning in Hawaiian reef fishes. Environ. Biol. Fishes 18, 257–276 (1987).Article 

    Google Scholar 
    Walsh, W. J. Aspects of Nocturnal Shelter, Habitat Space, and Juvenile Recruitment in Hawaiian Coral Reef Fishes (University of Hawaii, 1984).
    Google Scholar 
    Caldeira, R. M. A., Groom, S., Miller, P., Pilgrim, D. & Nezlin, N. P. Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens. Environ. 80, 336–360 (2002).ADS 
    Article 

    Google Scholar 
    Martinez, E. & Maamaatuaiahutapu, K. Island mass effect in the Marquesas Islands: Time variation. Geophys. Res. Lett. 31, 18 (2004).Article 

    Google Scholar 
    Messié, M. et al. The delayed island mass effect: How islands can remotely trigger blooms in the oligotrophic ocean. Geophys. Res. Lett. 47, e2019GL085282 (2020).ADS 
    Article 

    Google Scholar 
    de Souza, C. S., da Luz, J. A. G., Macedo, S., de Montes, M. J. F. & Mafalda, P. Chlorophyll a and nutrient distribution around seamounts and islands of the tropical south-western Atlantic. Mar. Freshw. Res. 64, 168–184 (2013).Article 
    CAS 

    Google Scholar 
    Travassos, P., Hazin, F. H., Zagaglia, J. R., Advíncula, R. & Schober, J. Thermohaline structure around seamounts and islands off North-Eastern Brazil. Arch. Fish. Mar. Res. 47, 211–222 (1999).
    Google Scholar 
    Bakun, A. Ocean triads and radical interdecadal variation: Bane and boon to scientific fisheries management. in Reinventing fisheries management 331–358 (Springer, 1998).Agostini, V. N. & Bakun, A. ‘Ocean triads’ in the Mediterranean Sea: Physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129–142 (2002).Article 

    Google Scholar 
    Hamner, W. M., Jones, M. S., Carleton, J. H., Hauri, I. R. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
    Google Scholar 
    Valenzuela, J., Bellwood, D. & Morais, R. Ontogenetic habitat shifts in fusiliers (Lutjanidae): Evidence from Caesio cuning at Lizard Island, Great Barrier Reef. Coral Reefs 40, 1687–1696 (2021).Article 

    Google Scholar 
    Curley, B. G., Kingsford, M. J. & Gillanders, B. M. Spatial and habitat-related patterns of temperate reef fish assemblages: Implications for the design of Marine Protected Areas. Mar. Freshw. Res. 53, 1197–1210 (2002).Article 

    Google Scholar 
    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41, 1077–1091 (2018).Article 

    Google Scholar 
    Maida, M. & Ferreira, B. P. Coral reefs of Brazil: An overview. in Proceedings of the 8th International Coral Reef Symposium Vol. 1 74 (Smithsonian Tropical Research Institute Panamá, 1997).Pittman, S. J., Costa, B. M. & Battista, T. A. Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J. Coast. Res. 2009, 27–38 (2009).Article 

    Google Scholar 
    Costa, T. Análise comportamental e distribuição da atividade pesqueira no Arquipelágo de Fernando de Noronha (Nordeste, BR) baseada em dados de GPS. (Universidade Federal Rural de Pernambuco, 2019).
    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Claudet, J., Pelletier, D., Jouvenel, J.-Y., Bachet, F. & Galzin, R. Assessing the effects of marine protected area (MPA) on a reef fish assemblage in a northwestern Mediterranean marine reserve: Identifying community-based indicators. Biol. Conserv. 130, 349–369 (2006).Article 

    Google Scholar 
    Caveen, A. J., Gray, T. S., Stead, S. M. & Polunin, N. V. C. MPA policy: What lies behind the science?. Mar. Policy 37, 3–10 (2013).Article 

    Google Scholar 
    Hernández, C. M. et al. Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area. Sci. Rep. 9, 1–11 (2019).
    Google Scholar  More

  • in

    A population genetic analysis of the Critically Endangered Madagascar big-headed turtle, Erymnochelys madagascariensis across captive and wild populations

    Storey, M. et al. Timing of hot spot—Related volcanism and the breakup of Madagascar and India. Science (80-) 267, 852–855 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    Wilmé, L., Goodman, S. M. & Ganzhorn, J. U. Biogeographic evolution of Madagascar’s microendemic biota. Science (80-) 312, 1063–1065 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Vences, M., Wollenberg, K. C., Vieites, D. R. & Lees, D. C. Madagascar as a model region of species diversification. Trends Ecol. Evol. 24, 456–465 (2009).PubMed 
    Article 

    Google Scholar 
    Rakotomanana, H., Jenkins, R. K. B. & Ratsimbazafy, J. Conservation challenges for Madagascar in the next decade. In Conservation Biology: Voices from the Tropics (eds Raven, P. H., Sodhi, N. S. & Gibson, L.) 33–39 (Wiley-Blackwell, 2013). https://doi.org/10.1002/9781118679838.ch5.Jenkins, R. K. B. et al. Extinction risks and the conservation of Madagascar’s reptiles. PLoS ONE 9, 1 – 14 (2014). https://doi.org/10.1371/journal.pone.0100173Velosoa, J. et al. An integrated research, management, and community conservation program for the Rere (Madagascar Big-headed turtle), Erymnochelys madagascariensis. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 171–177 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a27p171.Leuteritz, T., Kuchling, G., Garcia, G. & Velosoa, J. Erymnochelys madagascariensis. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 56–58 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a11p56.Rafeliarisoa, T., Shore, G., Engberg, S., Louis, E. & Brenneman, R. Characterization of 11 microsatellite marker loci in the Malagasy big-headed turtle (Erymnochelys madagascariensis). Mol. Ecol. Notes 6, 1228–1230 (2006).CAS 
    Article 

    Google Scholar 
    Roca, V., García, G. & Montesinos, A. Gastrointestinal helminths found in the three freshwater turtles (Erymnochelys madagascariensis, Pelomedusa subrufa and Pelusios castanoides) from Ankarafantsika National Park, Madagascar. Helminthologia 44, 177–182 (2007).Article 

    Google Scholar 
    Kuchling, G. & Garcia, G. Pelomedusidae, freshwater turtles. In The Natural History of Madagascar (eds Goodman, S. M. & Benstead, J. P.) 956–960 (University of Chicago Press, 2003).
    Google Scholar 
    Pedrono, M. & Smith, L. Overview of the natural history of Madagascar’s endemic tortoises and freshwater turtles: Essential components for effective conservation. In Chelonian Research Monographs, Contributions in Turtle and Tortoise Research (eds Rhodin, A. G. J.) 59–66 (Chelonian Research Foundation, 2014). https://doi.org/10.3854/crm.6.a12p59.Kuchling, G. Population structure, reproductive potential and increasing exploitation of the freshwater turtle Erymnochelys madagascariensis. Biol. Conserv. 43, 107–113 (1988).Article 

    Google Scholar 
    Allnutt, T. F. et al. A method for quantifying biodiversity loss and its application to a 50-year record of deforestation across Madagascar. Conserv. Lett. 1, 173–181 (2008).Article 

    Google Scholar 
    Leuteritz, T., Kuchling, G., Garcia, G. & Velosoa, J. Erymnochelys madagascariensis (errata version published in 2016). The IUCN Red List of Threatened Species. 2008, 1–3 (2008).Kuchling, G. Concept and design of the Madagascar side-necked turtle Erymnochelys madagascariensis breeding facility at Ampijoroa, Madagascar. Dodo 36, 62–74 (2000).
    Google Scholar 
    Witzenberger, K. A. & Hochkirch, A. Ex situ conservation genetics: A review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers. Conserv. 20, 1843–1861 (2011).Article 

    Google Scholar 
    Stanton, D. W. G. et al. Genetic structure of captive and free-ranging okapi (Okapia johnstoni) with implications for management. Conserv. Genet. 16, 1115–1126 (2015).Article 

    Google Scholar 
    Boumans, L., Vieites, D. R., Glaw, F. & Vences, M. Geographical patterns of deep mitochondrial differentiation in widespread Malagasy reptiles. Mol. Phylogenet. Evol. 45, 822–839 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Orozco-Terwengel, P., Andreone, F., Louis, E. & Vences, M. Mitochondrial introgressive hybridization following a demographic expansion in the tomato frogs of Madagascar, genus Dyscophus. Mol. Ecol. 22, 6074–6090 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearson, R. G. & Raxworthy, C. J. The evolution of local endemism in Madagascar: Watershed versus climatic gradient hypotheses evaluated by null biogeographic models. Evolution (New York) 63, 959–967 (2009).
    Google Scholar 
    Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hulce, D., Li, X., Snyder-Leiby, T. & Liu, J. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. J. Biomol. Tech. https://doi.org/10.1002/wps.20394 (2011).Article 
    PubMed Central 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    Carlsson, J. Effects of microsatellite null alleles on assignment testing. J. Hered. 99, 616–623 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bossuyt, F. & Milinkovitch, M. C. Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proc. Natl. Acad. Sci. U. S. A. 97, 6585–6590 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    Beaumont, M. A. Detecting population expansion and decline using microsatellites. Genetics 153, 2013–2029 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bulut, Z. et al. Microsatellite mutation rates in the eastern tiger salamander (Ambystoma tigrinum tigrinum) differ 10-fold across loci. Genetica 136, 501–504 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Plummer, M. & Murrell, P. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News. 6, 7–11 (2006).R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2008). https://doi.org/10.1017/CBO9781107415324.004.Book 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 155, 945–959 (2000). https://doi.org/10.1111/j.1471-8286.2007.01758.x.Puechmaille, S. J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).PubMed 
    Article 

    Google Scholar 
    Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Francis, R. M. Pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Res. 17, 27–32 (2017).Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).CAS 
    Article 

    Google Scholar 
    Narum, S. R. Beyond Bonferroni: Less conservative analyses for conservation genetics. Conserv. Genet. 7, 783–787 (2006).CAS 
    Article 

    Google Scholar 
    Goudet, J. FSTAT (version 1.2): A computer program to calculate F-statistics. J. Hered. 86, 485–486 (1995).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Prost, S. & Anderson, C. N. K. TempNet: A method to display statistical parsimony networks for heterochronous DNA sequence data. Methods Ecol. Evol. 2, 663–667 (2011).Article 

    Google Scholar 
    Paquette, S. R. et al. Riverbeds demarcate distinct conservation units of the radiated tortoise (Geochelone radiata) in southern Madagascar. Conserv. Genet. 8, 797–807 (2007).CAS 
    Article 

    Google Scholar 
    Bouchard, C., Tessier, N. & Lapointe, F. J. Watersheds influence the wood turtle’s (Glyptemys insculpta) genetic structure. Conserv. Genet. 20, 653–664 (2019).Article 

    Google Scholar 
    Perlman, S. J., Hodson, C. N., Hamilton, P. T., Opit, G. P. & Gowen, B. E. Maternal transmission, sex ratio distortion, and mitochondria. Proc. Natl. Acad. Sci. U. S. A. 112, 10162–10168 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Pearse, D. E. et al. Estimating population structure under nonequilibrium conditions in a conservation context: Continent-wide population genetics of the giant Amazon river turtle, Podocnemis expansa (Chelonia; Podocnemididae). Mol. Ecol. 15, 985–1006 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pearse, D. E. & Avise, J. C. Turtle mating systems: Behavior, sperm storage, and genetic paternity. J. Hered. 92, 206–211 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Claussen, M. et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene. Geophys. Res. Lett. 26, 2037–2040 (1999).Article 
    ADS 

    Google Scholar 
    Virah-Sawmy, M., Willis, K. J. & Gillson, L. Threshold response of Madagascar’s littoral forest to sea-level rise. Glob. Ecol. Biogeogr. 18, 98–110 (2009).Article 

    Google Scholar 
    Wahlund, S. Zusammensetzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 11, 65–106 (1928).Article 

    Google Scholar 
    Hurst, G. D. D. & Jiggins, F. M. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inherited symbionts. Proc. R. Soc. B Biol. Sci. 272, 1525–1534 (2005).CAS 
    Article 

    Google Scholar 
    Hill, W. G. & Robertson, A. The effect of linkage on limits to artificial selection. Genet. Res. (Camb.) 89, 311–336 (2008).Article 

    Google Scholar 
    Valenzuela, N. Multiple paternity in side-neck turtles Podocnemis expansa: Evidence from microsatellite DNA data. Mol. Ecol. 9, 99–105 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    Volkmann, L., Martyn, I., Moulton, V., Spillner, A. & Mooers, A. O. Prioritizing populations for conservation using phylogenetic networks. PLoS ONE 9, 1–10 (2014). https://doi.org/10.1371/journal.pone.0088945Article 
    CAS 

    Google Scholar 
    García-Dorado, A. & Caballero, A. Neutral genetic diversity as a useful tool for conservation biology. Conserv. Genet. 22, 541–545 (2021).Article 

    Google Scholar 
    Frankham, R. Genetic rescue of small inbred populations: Meta-analysis reveals large and consistent benefits of gene flow. Mol. Ecol. 24, 2610–2618 (2015).PubMed 
    Article 

    Google Scholar 
    Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, 1–10 (2021). https://doi.org/10.1073/pnas.2015096118Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science (80-) 318, 100–103 (2007).CAS 
    Article 
    ADS 

    Google Scholar  More

  • in

    Multi-storm analysis reveals distinct zooplankton communities following freshening of the Gulf of Mexico shelf by Hurricane Harvey

    In this study, we aimed to determine if tropical cyclones in the northwestern GOM differentially affected mesozooplankton community structure. We found that multivariate community structure varied between storm and non-storm years. However, among the three hurricanes, only the post-Harvey mesozooplankton communities were distinct from years where no storms occurred. Multivariate dispersion, a measure of variance within community structure, did not differ between storm and non-storm years. This result refutes our hypothesis that variability in zooplankton community structure would be higher during storm years opposed to non-storm years. Our prediction that post-storm mesozooplankton communities would differ from non-storm communities was supported, as was our expectation that mesozooplankton community structure varied among storms. We hypothesized that due to the major flooding and rainfall of Harvey, reduced salinity would likely be the main driver of mesozooplankton community differences relative to non-storm years. This expectation was partially met; differences in mesozooplankton community structure between Harvey and years with no storms were driven by salinity, stratification, and ‘distance-from-shore’ rather than solely salinity. This indicates that NWGOM zooplankton community structure varies holistically with biophysical conditions rather than being primarily driven by one or two dominating factors24. Moreover, we found that the presence of Hurricane Harvey, rather than temperature, explained the second greatest amount of variance in zooplankton community structure reflecting the importance of considering how complex disturbance mechanisms might compound and result in a unique ecological responses following a tropical cyclone. The overall PSEM showed that high salinity was directly associated with reduced fluorescence and depressed zooplankton abundance. Higher abundances were found to result in higher community dominance (i.e., lower evenness). Conversely, high salinities indirectly reduced zooplankton evenness via greater water column stratification. Lower fluorescence at higher salinities supports the spatial patterns in NWGOM phytoplankton identified by Kurtay et al.20 following Hurricane Harvey. Those authors observed declines in overall phytoplankton abundance and communities increasingly dominated by cells  More