More stories

  • in

    Synthesis of palaeoecological data from the Polish Lowlands suggests heterogeneous patterns of old-growth forest loss after the Migration Period

    Giesecke, T. et al. Towards mapping the late Quaternary vegetation change of Europe. Veg. Hist. Archaeobot. 23, 75–86. https://doi.org/10.1007/s00334-012-0390-y (2013).Article 

    Google Scholar 
    Fyfe, R. M., Woodbridge, J. & Roberts, N. From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. Glob. Chang. Biol. 21, 1197–1212. https://doi.org/10.1111/gcb.12776 (2015).Article 
    PubMed 

    Google Scholar 
    Gilliam, F. S. Forest ecosystems of temperate climatic regions: From ancient use to climate change. New Phytol. 212, 871–887. https://doi.org/10.1111/nph.14255 (2016).Article 
    PubMed 

    Google Scholar 
    Jamrichová, E. et al. Human impact on open temperate woodlands during the middle Holocene in Central Europe. Rev. Palaeobot. Palynol. 245, 55–68. https://doi.org/10.1016/j.revpalbo.2017.06.002 (2017).Article 

    Google Scholar 
    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quatern. Sci. Rev. 28, 3016–3034. https://doi.org/10.1016/j.quascirev.2009.09.028 (2009).Article 

    Google Scholar 
    Kalis, A. J., Merkt, J. & Wunderlich, J. Environmental changes during the Holocene climatic optimum in central Europe—human impact and natural causes. Quatern. Sci. Rev. 22, 33–79. https://doi.org/10.1016/S0277-3791(02)00181-6 (2003).Article 

    Google Scholar 
    Molinari, C. et al. Exploring potential drivers of European biomass burning over the Holocene: A data-model analysis. Glob. Ecol. Biogeogr. 22, 1248–1260. https://doi.org/10.1111/geb.12090 (2013).Article 

    Google Scholar 
    Roberts, N. et al. Europe’s lost forests: A pollen-based synthesis for the last 11,000 years. Sci. Rep. 8, 716. https://doi.org/10.1038/s41598-017-18646-7 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. USA 118. https://doi.org/10.1073/pnas.2023483118 (2021).Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1010–1035. https://doi.org/10.1098/rsta.2010.0331 (2011).Article 
    PubMed 

    Google Scholar 
    Drake, B. L. Changes in North Atlantic Oscillation drove Population Migrations and the Collapse of the Western Roman Empire. Sci. Rep. 7, 1227. https://doi.org/10.1038/s41598-017-01289-z (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enters, D., Dörfler, W. & Zolitschka, B. Historical soil erosion and land-use change during the last two millennia recorded in lake sediments of Frickenhauser See, northern Bavaria, central Germany. The Holocene 18, 243–254. https://doi.org/10.1177/0959683607086762 (2008).Article 

    Google Scholar 
    Haldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc. Natl. Acad. Sci. USA 115, 3210–3218. https://doi.org/10.1073/pnas.1716912115 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yeloff, D. & van Geel, B. Abandonment of farmland and vegetation succession following the Eurasian plague pandemic of ad 1347?52. J. Biogeogr. 34, 575–582. https://doi.org/10.1111/j.1365-2699.2006.01674.x (2007).Article 

    Google Scholar 
    Alt, K. W. et al. Lombards on the Move—An Integrative Study of the Migration Period Cemetery at Szólád Hungary. PLoS ONE 9, e110793. https://doi.org/10.1371/journal.pone.0110793 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pohl, W. in Ethnicity as a Political Resource Conceptualizations across Disciplines, Regions, and Periods (ed Resource« University of Cologne Forum »Ethnicity as a Political) 201–208 (Transcript Verlag, 2015).Dreibrodt, S. & Wiethold, J. Lake Belau and its catchment (northern Germany): A key archive of environmental history in northern central Europe since the onset of agriculture. The Holocene 25, 296–322. https://doi.org/10.1177/0959683614558648 (2014).Article 

    Google Scholar 
    Dreßler, M. et al. Environmental changes and the Migration Period in northern Germany as reflected in the sediments of Lake Dudinghausen. Quatern. Res. 66, 25–37. https://doi.org/10.1016/j.yqres.2006.02.007 (2017).CAS 
    Article 

    Google Scholar 
    Leuschner, C. & Ellenberg, H. in Ecology of Central European Forests: Vegetation Ecology of Central Europe, Volume I (eds Christoph Leuschner & Heinz Ellenberg) 31–116 (Springer International Publishing, 2017).Pędziszewska, A. et al. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 137–198 (Brill, 2020).Mączyńska, M. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 201–224 (Brill, 2020).Lamentowicz, M. et al. Reconstructing climate change and ombrotrophic bog development during the last 4000years in northern Poland using biotic proxies, stable isotopes and trait-based approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 418, 261–277. https://doi.org/10.1016/j.palaeo.2014.11.015 (2015).Article 

    Google Scholar 
    Makohonienko, M. in Late Glacial and Holocene history of vegetation in Poland based on isopollen maps (eds M. Ralska-Jasiewiczowa et al.) 411–416 (W. Szafer Institute of Botany, Polish Academy of Sciences, 2004).Ralska-Jasiewiczowa, M., Nalepka, D. & Goslar, T. Some problems of forest transformation at the transition to the oligocratic/ Homo sapiens phase of the Holocene interglacial in northern lowlands of central Europe. Veg. Hist. Archaeobot. 12, 233–247. https://doi.org/10.1007/s00334-003-0021-8 (2003).Article 

    Google Scholar 
    Moździoch, M. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 123–167 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Wołoszyn, M. in The Migration Period between the Oder and the Vistula (2 vols) (eds A. Bursche, H. John, & A. Zapolska) 84–136 (Brill, 2020).Karczewski, M. Archeologia środowiska zachodniobałtyjskiego kręgu kulturowego na pojezierzach. (Bogucki Wydawnictwo Naukowe, 2011).Nowakiewicz, T. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages (eds P. Urbańczyk & M. Trzeciecki) 170–217 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Okulicz-Kozaryn, Ł. Dzieje Prusów (Wydawnictwo Monografie FNP, 1997).Okulicz, J. Osadnictwo ziem pruskich od czasów najdawniejszych do XIII wieku. Dzieje Warmii i Mazur w zarysie (Polskie Wydawnictwo Naukowe, 1981).Ralska-Jasiewiczowa, M. Correlation between the Holocene history of the Carpinus betulus and prehistoric settlement in North Poland. Acta Soc. Bot. Pol. 33, 461–468 (1964).Article 

    Google Scholar 
    Noryśkiewicz, A. M. Historia roślinności i osadnictwa ziemi chełmińskiej w późnym holocenie. Studium palinologiczne. (Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, 2013).Ralska-Jasiewiczowa, M. L., M. et al. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps. (W. Szafer Institute of Botany, Polish Academy of Sciences, 2004).Brown, A., Poska, A. & Pluskowski, A. The environmental impact of cultural change: Palynological and quantitative land cover reconstructions for the last two millennia in northern Poland. Quatern. Int. 522, 38–54. https://doi.org/10.1016/j.quaint.2019.05.014 (2019).Article 

    Google Scholar 
    Wacnik, A., Goslar, T. & Czernik, J. Vegetation changes caused by agricultural societies in the Great Mazurian Lake District. Acta Palaeobotanica 52, 59–104 (2012).
    Google Scholar 
    Pędziszewska, A. et al. Holocene environmental changes reflected by pollen, diatoms, and geochemistry of annually laminated sediments of Lake Suminko in the Kashubian Lake District (N Poland). Rev. Palaeobot. Palynol. 216, 55–75. https://doi.org/10.1016/j.revpalbo.2015.01.008 (2015).Article 

    Google Scholar 
    Słowiński, M. et al. The role of Medieval road operation on cultural landscape transformation. Sci. Rep. 11, 20876. https://doi.org/10.1038/s41598-021-00090-3 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gałka, M., Tobolski, K., Zawisza, E. & Goslar, T. Postglacial history of vegetation, human activity and lake-level changes at Jezioro Linówek in northeast Poland, based on multi-proxy data. Veg. Hist. Archaeobotany 23, 123–152. https://doi.org/10.1007/s00334-013-0401-7 (2013).Article 

    Google Scholar 
    Marks, L. Timing of the Late Vistulian (Weichselian) glacial phases in Poland. Quatern. Sci. Rev. 44, 81–88. https://doi.org/10.1016/j.quascirev.2010.08.008 (2012).Article 

    Google Scholar 
    Woś, A. Klimat Polski. (Wydawnictwo Naukowe PWN, 1999).Matuszkiewicz, W. et al. Potential natural vegetation of Poland. General map 1:300 000. (IGiPZ PAN, 1995).Zając, A. & Zając, M. Atlas rozmieszczenia roślin naczyniowych w Polsce. Distribution Atlas of Vascular Plants in Poland. (Nakładem Pracowni Chorologii Komputerowej Instytutu Botaniki UJ, 2001).Matuszkiewicz, J. M. & Solon, J. Przestrzenne zróżnicowanie i cechy charakterystyczne krajobrazów Polski w ujęciu geobotanicznym. Problemy Ekologii Krajobrazu XL, 85–101 (2015).Broda, J. Historia leśnictwa w Polsce. (Wydaw. Akademii Rolniczej im. Augusta Cieszkowskiego, 2000).Rozkrut, D. et al. Statistical Yearbook of Forestry. (Główny Urząd Statystyczny, 2020).Lamentowicz, M. et al. Climate and human induced hydrological change since AD 800 in an ombrotrophic mire in Pomerania (N Poland) tracked by testate amoebae, macro-fossils, pollen and tree rings of pine. Boreas 38, 214–229. https://doi.org/10.1111/j.1502-3885.2008.00047.x (2009).Article 

    Google Scholar 
    Lamentowicz, M. et al. How Joannites’ economy eradicated primeval forest and created anthroecosystems in medieval Central Europe. Sci. Rep. 10, 18775. https://doi.org/10.1038/s41598-020-75692-4 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Czerwiński, S. et al. Environmental implications of past socioeconomic events in Greater Poland during the last 1200 years. Synthesis of paleoecological and historical data. Quatern. Sci. Rev. 259. https://doi.org/10.1016/j.quascirev.2021.106902 (2021).Ralska-Jasiewiczowa, M., van Geel, B. & Demsk, D. in Lake Gościąż, central Poland: a monographic study. Part 1 (eds M. Ralska-Jasiewiczowa, T. Goslar, T. Madeyska, & L. Starkel) (W. Szafer Institute of Botany, Polish Academy of Sciences, 1998).Lamentowicz, M. et al. Multiproxy study of anthropogenic and climatic changes in the last two millennia from a small mire in central Poland. Hydrobiologia 631, 213–230. https://doi.org/10.1007/s10750-009-9812-y (2009).Article 

    Google Scholar 
    Pędziszewska, A. & Latałowa, M. Stand-scale reconstruction of late Holocene forest succession on the Gdańsk Upland (N. Poland) based on integrated palynological and macrofossil data from paired sites. Veget. History Archaeobot. 25, 239–254. https://doi.org/10.1007/s00334-015-0546-7 (2016).Lamentowicz, M., Gałka, M., Pawlyta, J., Lamentowicz, Ł. G., Tomasz & Miotk-Szpiganowicz, G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Studia Quaternaria 28, 3–16 (2011).Cywa, K. Trees and shrubs used in medieval Poland for making everyday objects. Veg. Hist. Archaeobotany 27, 111–136. https://doi.org/10.1007/s00334-017-0644-9 (2018).Article 

    Google Scholar 
    Dzieduszycki, W. Wykorzystywanie surowca drzewnego we wczesnośredniowiecznej i średniowiecznej Kruszwicy. Kwartalnik Historii Kultury Materialnej, 35–54 (1976).Kara, M. & Przybył, M. Wczesnośredniowieczne grodzisko wklęsłe w Bninie koło Poznania w świetle dotychczasowych ustaleń dendrochronologicznych. Folia Prahistorica Posnaniensia 10, 255–268 (2003).Article 

    Google Scholar 
    Gałka, M. et al. Unveiling exceptional Baltic bog ecohydrology, autogenic succession and climate change during the last 2000 years in CE Europe using replicate cores, multi-proxy data and functional traits of testate amoebae. Quatern. Sci. Rev. 156, 90–106. https://doi.org/10.1016/j.quascirev.2016.11.034 (2017).Article 

    Google Scholar 
    Kinder, M. et al. Holocene history of human impacts inferred from annually laminated sediments in Lake Szurpiły, northeast Poland. J. Paleolimnol. 61, 419–435. https://doi.org/10.1007/s10933-019-00068-2 (2019).Article 

    Google Scholar 
    Marcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C. & Lamentowicz, M. Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene. Quatern. Sci. Rev. 231, 106180. https://doi.org/10.1016/j.quascirev.2020.106180 (2020).Article 

    Google Scholar 
    Wacnik, A. et al. Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: Combined pollen, geochemical and historical data. Veg. Hist. Archaeobotany 25, 479–498. https://doi.org/10.1007/s00334-016-0565-z (2016).Article 

    Google Scholar 
    Szal, M., Kupryjanowicz, M., Tylmann, W. & Piotrowska, N. Was it ‘terra desolata’? Conquering and colonizing the medieval Prussian wilderness in the context of climate change. The Holocene 27, 465–480. https://doi.org/10.1177/0959683616660167 (2016).Article 

    Google Scholar 
    Szal, M., Kupryjanowicz, M., Wyczółkowski, M. & Tylmann, W. The Iron Age in the Mrągowo Lake District, Masuria, NE Poland: the Salęt settlement microregion as an example of long-lasting human impact on vegetation. Veg. Hist. Archaeobotany 23, 419–437. https://doi.org/10.1007/s00334-014-0465-z (2014).Article 

    Google Scholar 
    Brown, A. et al. The ecological impact of conquest and colonization on a medieval frontier landscape: Combined Palynological and geochemical analysis of lake sediments from Radzyń Chełminski Northern Poland. Geoarchaeology 30, 511–527. https://doi.org/10.1002/gea.21525 (2015).Article 

    Google Scholar 
    Williams, J. W. et al. The Neotoma Paleoecology Database, a multiproxy, international, community-curated data resource. Quatern. Res. 89, 156–177. https://doi.org/10.1017/qua.2017.105 (2018).Article 

    Google Scholar 
    Marcisz, K. et al. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quatern. Sci. Rev. 112, 138–152. https://doi.org/10.1016/j.quascirev.2015.01.019 (2015).Article 

    Google Scholar 
    Milecka, K., Gałka, M. & Lamentowicz, M. Regionalna i lokalna sukcesja roślinności w Dolinie Stążki na podstawie analizy pyłkowej. Stud. Limnol. Telmatol. 6, 61–69 (2012).
    Google Scholar 
    Lamentowicz, M. et al. A 1300-year multi-proxy, high-resolution record from a rich fen in northern Poland: reconstructing hydrology, land use and climate change. J. Quat. Sci. 28, 582–594. https://doi.org/10.1002/jqs.2650 (2013).Article 

    Google Scholar 
    Lamentowicz, M. et al. Always on the tipping point—A search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quat. Sci. Rev. 225. https://doi.org/10.1016/j.quascirev.2019.105954 (2019).Wacnik, A., Kupryjanowicz, M., Mueller-Bieniek, A., Karczewski, M. & Cywa, K. The environmental and cultural contexts of the late Iron Age and medieval settlement in the Mazurian Lake District, NE Poland: combined palaeobotanical and archaeological data. Veg. Hist. Archaeobotany 23, 439–459. https://doi.org/10.1007/s00334-014-0458-y (2014).Article 

    Google Scholar 
    Gałka, M. et al. Palaeoenvironmental changes in Central Europe (NE Poland) during the last 6200 years reconstructed from a high-resolution multi-proxy peat archive. The Holocene 25, 421–434. https://doi.org/10.1177/0959683614561887 (2014).Article 

    Google Scholar 
    Latałowa, M., Zimny, M., Jędrzejewska, B. & Samojlik, T. in Europe’s Changing Woods and Forests: From Wildwood to Managed Landscapes (eds K.J. Kirby & C. Watkins) Ch. 17, 243–263 (CAB International, 2015).Słowiński, M. et al. Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manage. 236, 755–768. https://doi.org/10.1016/j.jenvman.2019.02.002 (2019).Article 
    PubMed 

    Google Scholar 
    Żarczyński, M., Wacnik, A. & Tylmann, W. Tracing lake mixing and oxygenation regime using the Fe/Mn ratio in varved sediments: 2000 year-long record of human-induced changes from Lake Żabińskie (NE Poland). Sci. Total Environ. 657, 585–596. https://doi.org/10.1016/j.scitotenv.2018.12.078 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wirth, C., Messier, C., Bergeron, Y., Frank, D. & Fankhänel, A. Old-Growth Forest Definitions: a Pragmatic View. 11–33 (Springer Berlin Heidelberg, 2009).Kołaczek, P. M., K. et al. in 20th Congress of the International Union for Quaternary Research (INQUA) (Dublin, Ireland, 2019).Szmoniewski, B. S. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages. Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 21–74 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Moździoch, M., Chudziak, W. & Poleski, J. Atlas grodzisk wczesnośredniowiecznych z obszaru Polski, 2015).Trzeciecki, M. in The Past Societies. Polish lands from the first evidence of human presence to the Early Middle Ages. Vol. 5: 500–1000 AD (eds P. Urbańczyk & M. Trzeciecki) 277–341 (The Institute of Archaeology and Ethnology, Polish Academy of Sciences, 2016).Faliński, J. B. & Pawlaczyk, P. in Grab zwyczajny – Carpinus betulus L. Nasze drzewa leśne, monografie popularnonaukowe Vol. 9 (ed W. Bugała) 157–264 (Polska Akademia Nauk, Instytut Dendrologii, „Sorus”,, 1993).Sikkema, R., Caudullo, G. & de Rigo, D. in European Atlas of Forest Tree Species (eds J. San-Miguel-Ayanz et al.) (Publ. Off. EU, 2016).Hensel, W. Słowiańszczyzna Wczesnośredniowieczna. Zarys kultury materialnej. (Państwowe Wydawnictwo Naukowe, 1987).Jørgensen, D. Pigs and Pollards: Medieval insights for UK wood pasture restoration. Sustainability 5, 387–399. https://doi.org/10.3390/su5020387 (2013).Article 

    Google Scholar 
    Plieninger, T. et al. Wood-pastures of Europe: Geographic coverage, social–ecological values, conservation management, and policy implications. Biol. Cons. 190, 70–79. https://doi.org/10.1016/j.biocon.2015.05.014 (2015).Article 

    Google Scholar 
    Watkins, A. Cattle grazing in the forest of arden in the later middle ages. Agric. Hist. Rev. 37, 12–25 (1989).
    Google Scholar 
    Ładowski, S. Dykcyonarz służący do poznania historyi naturalney y rożnych osobliwszych starożytności, ktore ciekawi w gabinetach znayduią Vol. 2 (1783).Tobolski, K. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Litt, T. & Tobolski, K. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (1991).Makohonienko, M. Przyrodnicza historia Gniezna. (Homini, 2000).Makohonienko, M. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Filbrandt, A. in Wstęp do paleoekologii Lednickiego Parku Krajobrazowego (ed K. Tobolski) (Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, 1991).Pidek, I. A. Carpinus betulus pollen accumulation rates in Roztocze (SE Poland) in relation to presence of Carpinus in Ferdynandovian pollen diagrams. Ecol. Quest. 26, 95–101 (2017).
    Google Scholar 
    Wiśniewski, J. in Studia I Materiały Do Dziejów Suwalszczyzny (ed J. Antoniewicz) 51–138 (Prace Białostockiego Towarzystwa Naukowego Nr 4, Białostockie Towarzystwo Naukowe,, 1965).Biskup, M. et al. Państwo zakonu krzyżackiego w Prusach. Władza i społeczeństwo. (Państwowe Wydawnictwo Naukowe PWN, 2008).Pluskowski, A. The archaeology of the Prussian Crusade: Holy War and colonisation. (2012).Marcisz, K. et al. Seasonal changes in Sphagnum peatland testate amoeba communities along a hydrological gradient. Eur. J. Protistol. 50, 445–455. https://doi.org/10.1016/j.ejop.2014.07.001 (2014).Article 
    PubMed 

    Google Scholar 
    Marcisz, K. et al. Fire activity and hydrological dynamics in the past 5700 years reconstructed from Sphagnum peatlands along the oceanic–continental climatic gradient in northern Poland. Quatern. Sci. Rev. 177, 145–157. https://doi.org/10.1016/j.quascirev.2017.10.018 (2017).Article 

    Google Scholar 
    Boratyńska, K. in Biology and Ecology of Norway Spruce (eds Mark G. Tjoelker, Adam Boratyński, & Władysław Bugała) 23–36 (Springer Netherlands, 2007).Jaroszewicz, B. et al. Białowieża forest—a relic of the high naturalness of European forests. Forests 10, 849. https://doi.org/10.3390/f10100849 (2019).Article 

    Google Scholar 
    Zimny, M., Latałowa, M. & Pędziszewska, A. The Late-Holocene history of forests in the Strict Reserve of Białowieża National Park. 29–59 (Białowieski Park Narodowy, 2017).Blaauw, M., Christen, J. A., Bennett, K. D. & Reimer, P. J. Double the dates and go for Bayes—Impacts of model choice, dating density and quality on chronologies. Quatern. Sci. Rev. 188, 58–66. https://doi.org/10.1016/j.quascirev.2018.03.032 (2018).Article 

    Google Scholar 
    Lisitsyna, O. V., Giesecke, T. & Hicks, S. Exploring pollen percentage threshold values as an indication for the regional presence of major European trees. Rev. Palaeobot. Palynol. 166, 311–324. https://doi.org/10.1016/j.revpalbo.2011.06.004 (2011).Article 

    Google Scholar 
    Huntley, B. & Birks, H. J. B. An Atlas of past and present pollen maps for Europe: 0–13000 years ago. (Cambridge University Press, 1983). More

  • in

    The influence of sea ice on the detection of bowhead whale calls

    Stirling, I., Calvert, W. & Cleator, H. Underwater vocalizations as a tool for studying the distribution and relative abundance of wintering pinnipeds in the High Arctic. Arctic https://doi.org/10.14430/arctic2275 (1983).Article 

    Google Scholar 
    Sirovic, A. et al. Seasonality of blue and fin whale calls and the influence of sea ice in the Western Antarctic Peninsula. Deep Sea Res. II 51, 2327–2344 (2004).Article 
    ADS 

    Google Scholar 
    Jones, J. M. et al. Ringed, bearded, and ribbon seal vocalizations north of barrow, Alaska: Seasonal presence and relationship with sea ice. Arctic 67, 203–222 (2014).Article 

    Google Scholar 
    Clark, C. W. et al. A year in the acoustic world of bowhead whales in the Bering, Chukchi and Beaufort seas. Prog. Oceanogr. 136, 223–240 (2015).Article 
    ADS 

    Google Scholar 
    Marques, T. A., Munger, L., Thomas, L., Wiggins, S. & Hildebrand, J. A. Estimating North Pacific right whale Eubalaena japonica density using passive acoustic cue counting. Endangered Species Res. 13, 163–172 (2011).Article 

    Google Scholar 
    Hildebrand, J. A. et al. Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico. Sci. Rep. 5, 16343 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    von Benda-Beckmann, A. M., Thomas, L., Tyack, P. L. & Ainslie, M. A. Modelling the broadband propagation of marine mammal echolocation clicks for click-based population density estimates. J. Acoust. Soc. Am. 143, 954–967 (2018).Article 
    ADS 

    Google Scholar 
    Hildebrand, J. A. et al. Assessing seasonality and density from passive acoustic monitoring of signals presumed to be from pygmy and dwarf sperm whales in the Gulf of Mexico. Front. Mar. Sci. 6, 66 (2019).Article 

    Google Scholar 
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).PubMed 
    Article 

    Google Scholar 
    Helble, T. A., D’Spain, G. L., Campbell, G. S. & Hildebrand, J. A. Calibrating passive acoustic monitoring: Correcting humpback call detections for site-specific and time-dependent environmental characterisitcs. J. Acoust. Soc. Amer. 134, EL400–EL406 (2013).Article 
    ADS 

    Google Scholar 
    Frasier, K. E. et al. Delphinid echolocation click detection probability on near-seafloor sensors. J. Acoust. Soc. Am. 140, 1918–1930 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Helble, T. A. et al. Site specific probability of passive acoustic detection of humpback whale calls from single fixed hydrophones. J. Acoust. Soc. Am. 134, 2556–2570 (2013).PubMed 
    Article 
    ADS 

    Google Scholar 
    Larsen Tempel, J. T., Wise, S., Osborne, T. Q., Sparks, K. & Atkinson, S. “Life without ice: Perceptions of environmental impacts on marine resources and subsistence users of St. Lawrence Island. Ocean Coast. Manag. 212, 105819 (2021).Article 

    Google Scholar 
    Clark, C. W. & Johnson, J. H. The sounds of the bowhead whale, Balaena mysticetus, during the spring migrations of 1979 and 1980. Can. J. Zool. 62, 1436–1441 (1984).Article 

    Google Scholar 
    Ashjian, C. J., Braund, S. R., Campbell, R. G., George, J. C., Kruse, J., Maslowski, W., Moore, S. E., Nicolson, C. R., Okkonen, S. R., & Sherr, B. F. Climate variability, oceanography, bowhead whale distribution, and Iñupiat subsistence whaling near Barrow, Alaska, Arctic 179–194 (2010).Moore, S. E. & Clarke, J. T. Bowhead whale fall distribution and relative abundance in relation to oil and gas lease areas in the northeastern Chukchi Sea. Polar Rec. 29, 209–214 (1993).Article 

    Google Scholar 
    Reeves, R., Rosa, C., George, J. C., Sheffield, G. & Moore, M. “Implications of Arctic industrial growth and strategies to mitigate future vessel and fishing gear impacts on bowhead whales. Mar. Policy 36, 454–462 (2012).Article 

    Google Scholar 
    Blackwell, S. B., Richardson, W., Greene Jr, C., & Streever, B. Bowhead whale (Balaena mysticetus) migration and calling behaviour in the Alaskan Beaufort Sea, Autumn 2001–04: An acoustic localization study, Arctic 255–270 (2007).Mathias, D., Thode, A., Blackwell, S. B., & Greene, C. Computer-aided classification of bowhead whale call categories for mitigation monitoring. In New Trends for Environmental Monitoring Using Passive Systems, Hyeres, French Riviera 1–6 (2008).Delarue, J., Laurinolli, M. & Martin, B. Bowhead whale (Balaena mysticetus) songs in the Chukchi Sea between October 2007 and May 2008. J. Acoust. Soc. Am. 126, 3319–3328 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Moore, S. E., Stafford, K. M. & Munger, L. M. Acoustic and visual surveys for bowhead whales in the western Beaufort and far northeastern Chukchi seas. Deep Sea Res. Part II 57, 153–157 (2010).Article 
    ADS 

    Google Scholar 
    Ballard, M. S. et al. Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf. J. Acoust. Soc. Am. 148, 1663–1680 (2020).PubMed 
    Article 
    ADS 

    Google Scholar 
    Duda, T. F., Zhang, W. G. & Lin, Y.-T. Effects of Pacific Summer Water layer variations and ice cover on Beaufort Sea underwater sound ducting. J. Acoust. Soc. Am. 149, 2117–2136 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    Diachok, O. I. & Winokur, R. S. Spatial variability of underwater ambient noise at the Arctic ice-water boundary. J. Acoust. Soc. Am. 55, 750–753 (1974).Article 
    ADS 

    Google Scholar 
    Diachok, O. I. Effects of sea-ice ridges on sound propagation in the Arctic Ocean. J. Acoust. Soc. Am. 59, 1110–1120 (1976).Article 
    ADS 

    Google Scholar 
    Yang, T. & Votaw, C. W. Under ice reflectivities at frequencies below 1 kHz. J. Acoust. Soc. Am. 70, 841–851 (1981).Article 
    ADS 

    Google Scholar 
    Milne, A. R. & Ganton, J. H. Ambient Noise under Arctic-Sea Ice. J. Acoust. Soc. Am. 36, 855–865 (1964).Article 
    ADS 

    Google Scholar 
    Brown, J. R. & Milne, A. R. Reverberation under Arctic Sea-Ice. J. Acoust. Soc. Am. 42, 78–82 (1967).Article 
    ADS 

    Google Scholar 
    Duckworth, G., LePage, K. & Farrell, T. Low-frequency long-range propagation and reverberation in the central Arctic: Analysis of experimental results. J. Acoust. Soc. Am. 110, 747–760 (2001).Article 
    ADS 

    Google Scholar 
    Jensen, F. B. & Kuperman, W. A. Optimum frequency of propagation in shallow water environments. J. Acoust. Soc. Am. 73, 813–819 (1983).Article 
    ADS 

    Google Scholar 
    Keen, K. A., Thayre, B. J., Hildebrand, J. A. & Wiggins, S. M. Seismic airgun sound propagation in Arctic Ocean waveguides. Deep Sea Res. I 141, 24–32 (2018).Article 

    Google Scholar 
    Greene, C. R. & Buck, B. M. Arctic ocean ambient noise. J. Acoust. Soc. Am. 36, 1218–1220 (1964).Article 
    ADS 

    Google Scholar 
    Roth, E. H., Hildebrand, J. A., Wiggins, S. M. & Ross, D. Underwater ambient noise on the Chukchi Sea continental slope from 2006–2009. J. Acoust. Soc. Am. 131, 104–110 (2012).PubMed 
    Article 
    ADS 

    Google Scholar 
    Kinda, G. B., Simard, Y., Gervaise, C., Mars, J. I. & Fortier, L. Arctic underwater noise transients from sea ice deformation: Characteristics, annual time series, and forcing in Beaufort Sea. J. Acoust. Soc. Am. 138, 2034–2045 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Hildebrand, J. A., Frasier, K. E., Baumann-Pickering, S. & Wiggins, S. M. An empirical model for wind-generated ocean noise. J. Acoust. Soc. Am. 149, 4516–4533 (2021).PubMed 
    Article 
    ADS 

    Google Scholar 
    Farmer, D. M. & Xie, Y. The sound of cracking sea ice. J. Acoust. Soc. Am. 84, S123–S123 (1988).Article 
    ADS 

    Google Scholar 
    Bassett, C., Thomson, J., Dahl, P. H. & Polagye, B. Flow-noise and turbulence in two tidal channels. J. Acoust. Soc. Am. 135(4), 1764–1774 (2014).PubMed 
    Article 
    ADS 

    Google Scholar 
    Chapman, R. P. & Harris, J. Surface backscattering strengths measured with explosive sound sources. J. Acoust. Soc. Am. 34, 1592–1597 (1962).Article 
    ADS 

    Google Scholar 
    Gauss, R. C., Fialkowski, J. M., & Wurmser, D. A low- and mid-frequency bistatic scattering model for the ocean surface. In Proceedings of OCEANS 2005 MTS/IEEE, Vol. 2 1738–1744 (2005)Jin, G., Lynch, J. F., Pawlowicz, R. & Worcester, P. Acoustic scattering losses in the Greenland Sea marginal ice zone during the 1988–89 tomography experiment. J. Acoust. Soc. Am. 96, 3045–3053 (1994).Article 
    ADS 

    Google Scholar 
    Citta, J. J. et al. Ecological characteristics of core-use areas used by Bering-Chukchi-Beaufort (BCB) bowhead whales, 2006–2012. Prog. Oceanogr. 136, 201–222 (2015).Article 
    ADS 

    Google Scholar 
    Thode, A. M., Blackwell, S. B., Conrad, A. S., Kim, K. H. & Macrander, A. M. Decadal-scale frequency shift of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 142, 1482–1502 (2017).PubMed 
    Article 
    ADS 

    Google Scholar 
    Wiggins, S. M., & Hildebrand, J. A. High-frequency acoustic recording package (HARP) for broad-band, long-term marine mammal monitoring. In International Symposium on Underwater Technology 2007 and International Workshop on Scientific use of Submarine Cables & Related Technologies 2007. Institute of Electrical and Electronics Engineers, Tokyo, Japan 551–557 (2007).Marques, T. A., Thomas, L., Ward, J., DiMarzio, N. & Tyack, P. L. Estimating cetacean population density using fixed passive acoustic sensors: An example with Blainville’s beaked whales. J. Acoust. Soc. Am. 125, 1982–1994 (2009).PubMed 
    Article 
    ADS 

    Google Scholar 
    Küsel, E. T. et al. Cetacean population density estimation from single fixed sensors using passive acoustics. J. Acoust. Soc. Am. 129, 3610–3622 (2011).PubMed 
    Article 
    ADS 

    Google Scholar 
    Cummings, W. C. & Holliday, D. V. Sounds and source levels from bowhead whales off Pt. Barrow, Alaska. J. Acoust. Soc. Am. 82, 814–821 (1987).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Thode, A. M. et al. Source level and calling depth distributions of migrating bowhead whale calls in the shallow Beaufort Sea. J. Acoust. Soc. Am. 140, 4288 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    Blackwell, S. B. et al. Directionality of bowhead whale calls measured with multiple sensors. Mar. Mammal Sci. 28, 200–212 (2012).Article 

    Google Scholar 
    Markus, T., Stroeve, J. C. & Miller, J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J. Geophys. Res. Oceans https://doi.org/10.1029/2009JC005436 (2009).Article 

    Google Scholar 
    Kwok, R. & Cunningham, G. Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 373, 20140157 (2015).Article 
    ADS 

    Google Scholar 
    Krishfield, R., Toole, J., Proshutinsky, A. & Timmermans, M.-L. Automated ice-tethered profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Tech. 25, 2091–2105 (2008).Article 
    ADS 

    Google Scholar 
    Gong, D. & Pickart, R. S. Summertime circulation in the eastern Chukchi Sea. Deep Sea Res. Part II 118, 18–31 (2015).Article 

    Google Scholar 
    Meng, X., Li, G., Han, G. & Kan, G. Sound velocity and related properties of seafloor sediments in the Bering Sea and Chukchi Sea. Acta Oceanol. Sin. 34, 75–80 (2015).CAS 
    Article 

    Google Scholar 
    Toole, J. M., Krishfield, R. A., Timmermans, M.-L. & Proshutinsky, A. The ice-tethered profiler: Argo of the Arctic. Oceanography 24, 126–135 (2011).Article 

    Google Scholar 
    Millero, F. J., Feistel, R., Wright, D. G. & McDougall, T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I 55, 50–72 (2008).Article 

    Google Scholar 
    Kutschale, H. Long-range sound transmission in the Arctic Ocean. J. Geophys. Res. 66, 2189–2198 (1961).Article 
    ADS 

    Google Scholar 
    Jakobsson, M. et al. The international bathymetric chart of the Arctic Ocean (IBCAO) version 3.0. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052219 (2012).Article 

    Google Scholar 
    Warner, G. A., Dosso, S. E., Dettmer, J. & Hannay, D. E. Bayesian environmental inversion of airgun modal dispersion using a single hydrophone in the Chukchi Sea. J. Acoust. Soc. Am. 137, 3009–3023 (2015).PubMed 
    Article 
    ADS 

    Google Scholar 
    Pang, X. et al. Comparison between AMSR2 sea ice concentration products and pseudo-ship observations of the Arctic and Antarctic sea ice edge on cloud-free days. Remote Sens. 10, 317 (2018).Article 
    ADS 

    Google Scholar 
    Kahru, M. Windows image manager: Image display and analysis program for Microsoft Windows with special features for satellite images (2001).Duncan, A. J. & Maggi, A. L. A consistent, user friendly interface for running a variety of underwater acoustic propagation codes. Proc. Acoust. 2006, 471–477 (2006).
    Google Scholar 
    Collins, M. D. A split-step Padé solution for the parabolic equation method. J. Acoust. Soc. Am. 93, 1736–1742 (1993).Article 
    ADS 

    Google Scholar 
    Alexander, P., Duncan, A., Bose, N., & Smith, D. Modelling acoustic transmission loss due to sea ice cover. Acoust. Aust. 41 (2013).Goff, J. A. Quantitative analysis of sea ice draft: 1. Methods for stochastic modeling. J. Geophys. Res. Oceans 100, 6993–7004 (1995).Article 
    ADS 

    Google Scholar 
    Gavrilov, A. N. & Mikhalevsky, P. N. Low-frequency acoustic propagation loss in the Arctic Ocean: Results of the Arctic climate observations using underwater sound experiment. J. Acoust. Soc. Am. 119, 3694–3706 (2006).Article 
    ADS 

    Google Scholar  More

  • in

    Gene flow in a pioneer plant metapopulation (Myricaria germanica) at the catchment scale in a fragmented alpine river system

    Sabo, J. et al. Riparian zones increase regional species richness by harbouring different, not more, species. Ecology 86, 56–62 (2005).Article 

    Google Scholar 
    Lind, L., Hasselquist, E. & Laudon, H. Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. J. Environ. Manage. 249, 109391–109391 (2019).PubMed 
    Article 

    Google Scholar 
    Merritt, D., Nilsson, C. & Jansson, R. Consequences of propagule dispersal and river fragmentation for riparian plant community diversity and turnover. Ecol. Monogr. 80, 609–626 (2010).Article 

    Google Scholar 
    Jansson, R., Nilsson, C. & Renöfält, B. Fragmentation of riparian floras in rivers with multiple dams. Ecology 81, 899–903 (2000).Article 

    Google Scholar 
    Mari, L. et al. Metapopulation persistence and species spread in river networks. Ecol. Lett. 17, 426–434 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111. https://doi.org/10.1038/s41586-019-1495-6 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768. https://doi.org/10.1038/s41598-020-70816-2 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wobus, C. et al. Climate change impacts on flood risk and asset damages within mapped 100-year floodplains of the contiguous United States. Nat. Hazards Earth Syst. Sci. 17, 2199–2211 (2017).ADS 
    Article 

    Google Scholar 
    Meyer, J. L. et al. The contribution of headwater streams to biodiversity in river networks1. J. Am. Water Resour. Assoc. 43, 86–103. https://doi.org/10.1111/j.1752-1688.2007.00008.x (2007).ADS 
    Article 

    Google Scholar 
    Van Looy, K. & Piffady, J. Metapopulation modelling of riparian tree species persistence in river networks under climate change. J. Environ. Manage. 202, 437–446 (2017).PubMed 
    Article 

    Google Scholar 
    Sochor, M. et al. Can gene flow among populations counteract the habitat loss of extremely fragile biotopes? An example from the population genetic structure in Salix daphnoides. Tree Genet. Genomes 9, 1193–1205 (2013).Article 

    Google Scholar 
    Garssen, A. G. et al. Effects of increased flooding on riparian vegetation: Field experiments simulating climate change along five European lowland streams. Glob. Change Biol. 23, 3052–3063. https://doi.org/10.1111/gcb.13687 (2017).ADS 
    Article 

    Google Scholar 
    Ellenberg, H. Vegetation Mitteleuropas mit den Alpen in Ökologischer, Dynamischer und historischer Sicht. 6., vollst. neu bearb. und stark erw. Aufl edn, (Ulmer, 2010).Hanski, I. Metapopulation Biology: Ecology, Genetics, and Evolution (Academic Press, New York, 1997).MATH 

    Google Scholar 
    Wubs, E. R. J. et al. Going against the flow: A case for upstream dispersal and detection of uncommon dispersal events. Freshw. Biol. 61, 580–595 (2016).CAS 
    Article 

    Google Scholar 
    Chen, F.-Q. & Xie, Z.-Q. Reproductive allocation, seed dispersal and germination of Myricaria laxiflora, an endangered species in the Three Gorges Reservoir area. Plant Ecol. 191, 67–75 (2007).Article 

    Google Scholar 
    Bonn, S. Ausbreitungsbiologie der Pflanzen Mitteleuropas: Grundlagen und kulturhistorische Aspekte. (Quelle und Meyer Verlag, 1998).Müller-Schneider, P. Verbreitungsbiologie der Blütenpflanzen Graubündens: Diasporology of the Spermatophytes of the Grisons. Vol. 85. (Switzerland) (1986).Aradottir, A., Svavarsdottir, K. & Bau, A. Clonal variability of native willows (Salix pylicifofia and Salix lanata) in Iceland and implications for use in restoration. Icel. Agric. Sci. 20, 61–72 (2007).
    Google Scholar 
    Egelund, B., Pertoldi, C. & Barfod, A. S. Isolation and reduced gene flow among Faroese populations of tea-leaved willow (Salix phylicifolia, Salicaceae). N. J. Bot. J. Bot. Soc. B. Isles 2, 9–15 (2012).
    Google Scholar 
    Van Puyvelde, K. & Triest, L. ISSRs indicate isolation by distance and spatial structuring in Salix alba populations along Alpine upstream rivers (Alto Adige and Upper Rhine). Belg. J. Bot. 140, 100–108 (2007).
    Google Scholar 
    Ngeve, M. N., Van der Stocken, T., Sierens, T., Koedam, N. & Triest, L. Bidirectional gene flow on a mangrove river landscape and between-catchment dispersal of Rhizophora racemosa (Rhizophoraceae). Hydrobiologia 790, 93–108. https://doi.org/10.1007/s10750-016-3021-2 (2017).Article 

    Google Scholar 
    Werth, S., Schoedl, M. & Scheidegger, C. Dams and canyons disrupt gene flow among populations of a threatened riparian plant. Freshw. Biol. 59, 2502–2515 (2014).Article 

    Google Scholar 
    Pollux, B. J. A., Luteijn, A., Van-Groenendael, J. M., Ouborg, N. J. & Ouborg, N. J. Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshw. Biol. 54, 64–76 (2009).Article 

    Google Scholar 
    Davis, C., Epps, C., Flitcroft, R. & Banks, M. Refining and defining riverscape genetics: How rivers influence population genetic structure. Wiley Interdiscip. Rev. Water 5, e1269 (2018).Article 

    Google Scholar 
    Vega-Retter, C. et al. Dammed river: Short- and long-term consequences for fish species inhabiting a river in a Mediterranean climate in central Chile. Aquat. Conserv.Mar. Freshw. Ecosyst. 30, 2254–2268. https://doi.org/10.1002/aqc.3425 (2020).Article 

    Google Scholar 
    Rannala, B. & Mountain, J. L. Detecting immigration by using multilocus genotypes. Proc. Natl. Acad. Sci. U.S.A. 94, 9197–9201 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Altermatt, F., Alther, R. & Mächler, E. Spatial patterns of genetic diversity, community composition and occurrence of native and non-native amphipods in naturally replicated tributary streams. BMC Ecol. 16, 23. https://doi.org/10.1186/s12898-016-0079-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. Lond. B: Biol. Sci. 285, 20172746. https://doi.org/10.1098/rspb.2017.2746 (2018).Article 

    Google Scholar 
    Sitzia, T., Kudrnovsky, H., Müller, N. & Michielon, B. Biological flora of Central Europe Myricaria germanica (L.) Desv. Perspect. Plant Ecol. Evol. Syst. 52, 125629. https://doi.org/10.1016/j.ppees.2021.125629 (2021).Article 

    Google Scholar 
    Egger, G., Steineder, R. & Angermann, K. Verbreitung und Erhaltungszustand des FFH-Lebensraumtyps 3230 “Alpine Flüsse mit Ufergehölzen von Myricaria germanica” an der Isel und deren Zubringern (Osttirol, Österreich). Carinthia II 204, 391–432 (2014).
    Google Scholar 
    Schletterer, M., Gewolf, S., Egger, G. & Fink, S. Forschungsprojekt Tamariske: Genetische Untersuchung von Populationen an der Isel – Dokumentation der Beprobungen 2018. 32 (Innbruck, 2019).Scheidegger, C. & Wiedmer, A. Genetische Untersuchung zur Deutschen Tamariske in Tirol. (Eidg. Forschungsanstalt WSL, Birmensdorf, 2014).Hedrick, P., Lacy, R., Allendorf, F. & Soule, M. Directions in conservation biology: Comments on caughley. Conserv. Biol. 10, 1312–1320 (1996).Article 

    Google Scholar 
    Sampson, J., Byrne, M., Gibson, N. & Yates, C. Limiting inbreeding in disjunct and isolated populations of a woody shrub. Ecol. Evol. 6, 5867–5880 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kudrnovsky, H. & Stöhr, O. Myricaria germanica (L.) Desv. historisch und aktuell in Österreich: Ein dramatischer Rückgang einer Indikatorart von europäischem Interesse. STAPFIA Rep. 99, 13–34 (2013).
    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 global biodiversity framework must be improved. Biol. Conserv. 248, 108654. https://doi.org/10.1016/j.biocon.2020.108654 (2020).Article 

    Google Scholar 
    Auffret, A. G., Plue, J. & Cousins, S. A. O. The spatial and temporal components of functional connectivity in fragmented landscapes. Ambio 44, 51–59. https://doi.org/10.1007/s13280-014-0588-6 (2015).Article 
    PubMed Central 

    Google Scholar 
    Herrmann, J. et al. Connectivity from a different perspective: Comparing seed dispersal kernels in connected vs. unfragmented landscapes. Ecology 97, 1274–1282 (2016).PubMed 
    Article 

    Google Scholar 
    Mortelliti, A., Amori, G. & Boitani, L. The role of habitat quality in fragmented landscapes: A conceptual overview and prospectus for future research. Oecologia 163, 535–547 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Mosner, E., Liepelt, S., Ziegenhagen, B. & Leyer, I. Floodplain willows in fragmented river landscapes: Understanding spatio-temporal genetic patterns as a basis for restoration plantings. Biol. Conserv. 153, 211–218 (2012).Article 

    Google Scholar 
    Chambers, J., MacMahon, J. & Brown, R. Alpine seedling establishment: The influence of disturbance type. Ecology 71, 1323–1341 (1990).Article 

    Google Scholar 
    Bill, H.-C. Besiedlungsdynamik und Populationsbiologie charakteristischer Pionierpflanzenarten nordalpiner Wildflüsse PhD thesis, Philipps-Universität Marburg, (2000).Lite, S. J., Bagstad, K. J. & Stromberg, J. C. Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. J. Arid Environ. 63, 785–813. https://doi.org/10.1016/j.jaridenv.2005.03.026 (2005).ADS 
    Article 

    Google Scholar 
    Andersson, E., Nilsson, C. & Johansson, M. E. Plant dispersal in boreal rivers and its relation to the diversity of riparian flora. J. Biogeogr. 27, 1095–1106 (2000).Article 

    Google Scholar 
    Aguiar, F. et al. The abundance and distribution of guilds of riparian woody plants change in response to land use and flow regulation. J. Appl. Ecol. 55, 2227–2240 (2018).Article 

    Google Scholar 
    Leyer, I. Dispersal, diversity and distribution patterns in pioneer vegetation: The role of river-floodplain connectivity. J. Veg. Sci. 17, 407–416 (2006).Article 

    Google Scholar 
    Crookes, S. & Shaw, P. W. Isolation by distance and non-identical patterns of gene flow within two river populations of the freshwater fish Rutilus rutilus (L. 1758). Conserv. Genet. 17, 861–874. https://doi.org/10.1007/s10592-016-0828-3 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Werth, S. & Scheidegger, C. Gene flow within and between catchments in the threatened riparian plant Myricaria germanica. PLoS ONE 9, e99400 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jacquemyn, H., Honnay, O., Van Looy, K. & Breyne, P. Spatiotemporal structure of genetic variation of a spreading plant metapopulation on dynamic riverbanks along the Meuse River. Heredity 96, 471–478. https://doi.org/10.1038/sj.hdy.6800825 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mayer, C., Schiegg, K. & Pasinelli, G. Patchy population structure in a short-distance migrant: evidence from genetic and demographic data. Mol. Ecol. 18, 2353–2364 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Benda, L. E. E. et al. The network dynamics hypothesis: How Channel networks structure riverine habitats. Bioscience 54, 413–427 (2004).Article 

    Google Scholar 
    Miettinen, A. et al. A large wild salmon stock shows genetic and life history differentiation within, but not between, rivers. Conserv. Genet. 22, 35–51. https://doi.org/10.1007/s10592-020-01317-y (2021).CAS 
    Article 

    Google Scholar 
    Fink, S., Lanz, T., Stecher, R. & Scheidegger, C. Colonization potential of an endangered riparian shrub species. Biodivers. Conserv. 26, 2099–2114. https://doi.org/10.1007/s10531-017-1347-3 (2017).Article 

    Google Scholar 
    Merritt, D. & Wohl, E. Plant dispersal along rivers fragmented by dams. River Res. Appl. 22, 1–26 (2006).Article 

    Google Scholar 
    Sitzia, T., Michielon, B., Iacopino, S. & Kotze, D. J. Population dynamics of the endangered shrub Myricaria germanica in a regulated Alpine river is influenced by active channel width and distance to check dams. Ecol. Eng. 95, 828–838 (2016).Article 

    Google Scholar 
    Wöllner, R., Scheidegger, C. & Fink, S. Gene flow in a highly dynamic habitat and a single founder event: Proof from a plant population on a relocated river site. Glob. Ecol. Conserv. 28, e01686. https://doi.org/10.1016/j.gecco.2021.e01686 (2021).McLaughlin, B. et al. Hydrologic refugia, plants, and climate change. Glob. Change Biol. 23, 2941–2961 (2017).ADS 
    Article 

    Google Scholar 
    Chiu, M. C. et al. Branching networks can have opposing influences on genetic variation in riverine metapopulations. bioRxiv https://doi.org/10.1101/550194 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catford, J. & Jansson, R. Drowned, buried and carried away: Effects of plant traits on the distribution of native and alien species in riparian ecosystems. New Phytol. 204, 19–36 (2014).PubMed 
    Article 

    Google Scholar 
    Schletterer, M. & Scheiber, T. Wiederansiedlung der deutschen tamariske (Myricaria germanica (L.) DESV.) an der Leutascher Ache (Nordtirol, Österreich). B. Naturwiss. Med. Ver. Innsbr. 95, 53–65 (2008).
    Google Scholar 
    Riehl, S. & Zehm, A. in ANLiegen Natur Vol. 40, 17–20 (ANL Bayern, Laufen, 2017).Egger, G., Angermann, K. & Gruber, A. Wiederansiedlung der Deutschen Tamariske (Myricaria germanica (L.) Desv.) in Kärnten. Carinthia II 393–418 (2010).Kudrnovsky, H. Alpine rivers and their ligneous vegetation with Myricaria germanica and riverine landscape diversity in the Eastern Alps: Proposing the Isel river system for the Natura 2000 network. Eco. Mont 5, 5–18 (2013).
    Google Scholar 
    Lener, F. P. Etablierung und Entwicklung der Deutschen Tamariske (Myricaria germanica) an der oberen Drau in Kärnten Master thesis (University of Vienna, Vienna, 2011).
    Google Scholar 
    Schiechtl, H. M. in Alpenländ. Bienenzeitung Vol. 4 125–131 (1957).Bill, H.-C., Poschlod, P., Reich, M. & Plachter, H. Experiments and observations on seed dispersal by running water in an Alpine floodplain. Bull. Geobot. Inst. ETH 65, 13–28 (1999).
    Google Scholar 
    Nilsson, C., Brown, R., Jansson, R. & Merritt, D. The role of hydrochory in structuring riparian and wetland vegetation. Biol. Rev. 85, 837–858 (2010).PubMed 

    Google Scholar 
    Lener, F. P., Egger, G. & Karrer, G. Sprossaufbau und entwicklung der deutschen tamariske (Myricaria germanica) an der Oberen Drau (Kärnten, Österreich). Carinthia II(203), 515–552 (2013).
    Google Scholar 
    Werth, S. & Scheidegger, C. Isolation and characterization of 22 nuclear and 5 chloroplast microsatellite loci in the threatened riparian plant Myricaria germanica (Tamaricaceae, Caryophyllales). Conserv. Genet. Resour. 3, 445–448 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comp., (2016).Excoffier, L., Laval, G. & Schneider, S. Arlequin ver 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).CAS 
    Article 

    Google Scholar 
    Cornuet, J. M. & Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luikart, G., Allendorf, F. W., Cornuet, J. M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89, 238–247. https://doi.org/10.1093/jhered/89.3.238 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4, 359–361 (2012).Article 

    Google Scholar 
    Smouse, P. E., Peakall, R., GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piry, S. et al. GENECLASS2: A software for genetic assignment and first-generation migrant detection. J. Hered. 95, 536–539. https://doi.org/10.1093/jhered/esh074 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paetkau, D., Slade, R., Burden, M. & Estoup, A. Genetic assignment methods for the direct, real-time estimation of migration rate: A simulation-based exploration of accuracy and power. Mol. Ecol. 13, 55–65. https://doi.org/10.1046/j.1365-294X.2004.02008.x (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rannala, B. (ed University of California Davis) 1–12 (2007).Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meirmans, P. G. Nonconvergence in Bayesian estimation of migration rates. Mol. Ecol. Resour. 14, 726–733. https://doi.org/10.1111/1755-0998.12216 (2014).Article 
    PubMed 

    Google Scholar 
    Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: A guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350. https://doi.org/10.1007/s10654-016-0149-3 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Asynchronous recovery of predators and prey conditions resilience to drought in a neotropical ecosystem

    Dai, A. Drought under global warming: A review. Vo Lu Me 21, 2 (2011).
    Google Scholar 
    Sirdaş, S. & Sen, Z. Spatio-temporal drought analysis in the Trakya region Turkey. Hydrol. Sci. J. 48, 809–820 (2003).Article 

    Google Scholar 
    Marengo, J. A. et al. The drought of Amazonia in 2005. J. Clim. 21, 495–516 (2008).ADS 
    Article 

    Google Scholar 
    Zhang, L., Jiao, W., Zhang, H., Huang, C. & Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 190, 96–106 (2017).ADS 
    Article 

    Google Scholar 
    Humphries, P. & Baldwin, D. S. Drought and aquatic ecosystems: An introduction: Drought and aquatic ecosystems. Freshw. Biol. 48, 1141–1146 (2003).Article 

    Google Scholar 
    Lake, P. S. Ecological effects of perturbation by drought in flowing waters: Effects of drought in streams. Freshw. Biol. 48, 1161–1172 (2003).Article 

    Google Scholar 
    Wang, W., Peng, C., Kneeshaw, D. D., Larocque, G. R. & Luo, Z. Drought-induced tree mortality: Ecological consequences, causes, and modeling. Environ. Rev. 20, 109–121 (2012).Article 

    Google Scholar 
    Rolls, R. J., Leigh, C. & Sheldon, F. Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshw. Sci. 31, 1163–1186 (2012).Article 

    Google Scholar 
    Trzcinski, M. K., Srivastava, D. S., Corbara, B. & De, O. The effects of food web structure on ecosystem function exceeds those of precipitation. J. Anim. Ecol. 14, 2 (2016).
    Google Scholar 
    Díaz-Paniagua, C. & Aragonés, D. Permanent and temporary ponds in Doñana National Park (SW Spain) are threatened by desiccation. Limnetica 34, 407–424 (2015).
    Google Scholar 
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS 
    Article 

    Google Scholar 
    Bartout, P. & Touchart, L. A New Approach to Inventorying Bodies of Water, from Local to Global Scale (Gesellschaft für Erdkunde zu, 2015).
    Google Scholar 
    Williams, P. et al. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biol. Conserv. 115, 329–341 (2004).Article 

    Google Scholar 
    Biggs, J., von Fumetti, S. & Kelly-Quinn, M. The importance of small waterbodies for biodiversity and ecosystem services: Implications for policy makers. Hydrobiologia 793, 3–39 (2017).Article 

    Google Scholar 
    Bonhomme, C. et al. In situ resistance, not immigration, supports invertebrate community resilience to drought intensification in a Neotropical ecosystem. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13392 (2020).Article 
    PubMed 

    Google Scholar 
    Dewson, Z. S., James, A. B. W. & Death, R. G. Invertebrate responses to short-term water abstraction in small New Zealand streams. Freshw. Biol. 52, 357–369 (2007).CAS 
    Article 

    Google Scholar 
    Dézerald, O., Céréghino, R., Corbara, B., Dejean, A. & Leroy, C. Functional trait responses of aquatic macroinvertebrates to simulated drought in a Neotropical bromeliad ecosystem. Freshw. Biol. 60, 1917–1929 (2015).Article 

    Google Scholar 
    Wang, Y., Yu, S. & Wang, J. Biomass-dependent susceptibility to drought in experimental grassland communities. Ecol. Lett. 10, 401–410 (2007).PubMed 
    Article 

    Google Scholar 
    Pallarés, S., Velasco, J., Millán, A., Bilton, D. T. & Arribas, P. Aquatic insects dealing with dehydration: Do desiccation resistance traits differ in species with contrasting habitat preferences?. PeerJ 4, e2382 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Céréghino, R. et al. Desiccation resistance traits predict freshwater invertebrate survival and community response to drought scenarios in a Neotropical ecosystem. Ecol. Indic. 119, 106839 (2020).Article 

    Google Scholar 
    Atkinson, C. L., Julian, J. P. & Vaughn, C. C. Species and function lost: Role of drought in structuring stream communities. Biol. Conserv. 176, 30–38 (2014).Article 

    Google Scholar 
    Bogan, M. T., Boersma, K. S. & Lytle, D. A. Resistance and resilience of invertebrate communities to seasonal and supraseasonal drought in arid-land headwater streams. Freshw. Biol. 60, 2547–2558 (2015).Article 

    Google Scholar 
    Srivastava, D. S. et al. Ecological response to altered rainfall differs across the Neotropics. Ecology 101, 15 (2020).Article 

    Google Scholar 
    Amundrud, S. L. & Srivastava, D. S. Trophic interactions determine the effects of drought on an aquatic ecosystem. Ecology 97, 1475–1483 (2016).PubMed 
    Article 

    Google Scholar 
    Luo, Y., Keenan, T. F. & Smith, M. Predictability of the terrestrial carbon cycle. Glob. Change Biol. 21, 1737–1751 (2014).ADS 
    Article 

    Google Scholar 
    Givnish, T. J. et al. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol. Phylogenet. Evol. 71, 55–78 (2014).PubMed 
    Article 

    Google Scholar 
    Brouard, O. et al. Understorey environments influence functional diversity in tank-bromeliad ecosystems: Functional diversity in bromeliad ecosystems. Freshw. Biol. 57, 815–823 (2012).Article 

    Google Scholar 
    Petermann, J. S. et al. Dominant predators mediate the impact of habitat size on trophic structure in bromeliad invertebrate communities. Ecology 96, 428–439 (2015).PubMed 
    Article 

    Google Scholar 
    Romero, G. Q., Piccoli, G. C. O., de Omena, P. M. & Gonçalves-Souza, T. Food web structure shaped by habitat size and climate across a latitudinal gradient. Ecology 97, 2705–2715 (2016).PubMed 
    Article 

    Google Scholar 
    Srivastava, D. S. & Bell, T. Reducing horizontal and vertical diversity in a foodweb triggers extinctions and impacts functions. Ecol. Lett. 12, 1016–1028 (2009).PubMed 
    Article 

    Google Scholar 
    Carrias, J.-F. et al. Resource availability drives bacterial succession during leaf-litter decomposition in a bromeliad ecosystem. FEMS Microbiol. Ecol. 96, 45 (2020).Article 
    CAS 

    Google Scholar 
    Romero, G. Q. et al. Extreme rainfall events alter the trophic structure in bromeliad tanks across the Neotropics. Nat. Commun. 11, 3215 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hairston, N. G. & Hairston, N. G. Cause-effect relationships in energy flow, trophic structure, and interspecific interactions. Am. Nat. 142, 379–411 (1993).Article 

    Google Scholar 
    Dézerald, O. et al. Environmental drivers of invertebrate population dynamics in neotropical tank bromeliads. Freshw. Biol. 62, 229–242 (2017).Article 

    Google Scholar 
    Dézerald, O. et al. Tank bromeliads sustain high secondary production in neotropical forests. Aquat. Sci. 80, 14 (2018).Article 

    Google Scholar 
    Holt, R. D. & Hoopes, M. F. Food web dynamics in a metacommunity context: modules and beyond. In Metacommunities: Spatial Dynamics and Ecological Communities 68–83 (University of Chicago Press, 2005).
    Google Scholar 
    Srivastava, D. S., Trzcinski, M. K., Richardson, B. A. & Gilbert, B. Why are predators more sensitive to habitat size than their prey? Insights from bromeliad insect food webs. Am. Nat. 172, 761–771 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Amundrud, S. L. et al. Drought alters the trophic role of an opportunistic generalist in an aquatic ecosystem. Oecologia 189, 733–744 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    Adler, P. B. & Drake, J. M. Environmental variation, stochastic extinction, and competitive coexistence. Am. Nat. 172, E186–E195 (2008).Article 

    Google Scholar 
    Anisiu, M.-C. Lotka Volterra and their model. Didact. Math. 32, 9–17 (2014).
    Google Scholar 
    Harris, R. M. B. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).ADS 
    Article 

    Google Scholar 
    Bengtsson, J. Disturbance and resilience in soil animal communities. Eur. J. Soil Biol. 38, 119–125 (2002).Article 

    Google Scholar 
    Parkyn, S. M. & Collier, K. J. Interaction of press and pulse disturbance on crayfish populations: Flood impacts in pasture and forest streams. Hydrobiologia 527, 113–124 (2004).Article 

    Google Scholar 
    Rowe, L. & Richardson, J. S. Community responses to experimental food depletion: Resource tracking by stream invertebrates. Oecologia 129, 473–480 (2001).ADS 
    PubMed 
    Article 

    Google Scholar 
    McPeek, M. A. The growth/predation risk trade-off: So what is the mechanism?. Am. Nat. 163, E88–E111 (2004).PubMed 
    Article 

    Google Scholar 
    Benbow, M. E. et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 89, 2 (2019).Article 

    Google Scholar 
    Powers, J. S. et al. Decomposition in tropical forests: A pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 97, 801–811 (2009).CAS 
    Article 

    Google Scholar 
    Pires, A. P. F. et al. Interactive effects of climate change and biodiversity loss on ecosystem functioning. Ecology 99, 1203–1213 (2018).PubMed 
    Article 

    Google Scholar 
    Rodríguez Pérez, H. et al. Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition. Oecologia 187, 267–279 (2018).ADS 
    PubMed 
    Article 

    Google Scholar 
    Brennan, K. E. C., Christie, F. J. & York, A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change Biol. 15, 2958–2971 (2009).ADS 
    Article 

    Google Scholar 
    Marino, N. A. C. et al. Rainfall and hydrological stability alter the impact of top predators on food web structure and function. Glob. Change Biol. 23, 673–685 (2017).ADS 
    Article 

    Google Scholar 
    Hättenschwiler, S., Coq, S., Barantal, S. & Handa, I. T. Leaf traits and decomposition in tropical rainforests: Revisiting some commonly held views and towards a new hypothesis. New Phytol. 189, 950–965 (2011).PubMed 
    Article 

    Google Scholar 
    Céréghino, R. et al. Constraints on the functional trait space of aquatic invertebrates in bromeliads. Funct. Ecol. 32, 2435–2447 (2018).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar  More

  • in

    Optimal strategies and cost-benefit analysis of the $${varvec{n}}$$ n -player weightlifting game

    PreliminariesTo unify all the five classes of two-by-two games, Yamamoto et al.35 introduced the weightlifting game. In this game, each player either cooperates or defects in carrying a weight. Players who carry the weight pay a cost, (cge 0). The weight is successfully lifted with probability ({p}_{i}), where (i=mathrm{0,1},2) is the total number of cooperators and ({p}_{i}) increases with the number of cooperators (i). If the cooperators succeed, both players receive a benefit (b >0). However, in case of failure, both players gain nothing. The pay-off of the cooperators is (b{p}_{i}-c), and the pay-off of the defectors is (b{p}_{i}) (Table 2). In terms of the parameters (Delta {p}_{1}={p}_{1}-{p}_{0}) and (Delta {p}_{2}={p}_{2}-{p}_{1}), which represents the increase in the probability of success due to an additional cooperator, the following inequalities are obtained for the pay-offs (R, T, S), and (P) (Table 1):

    (i)

    (Delta {p}_{1} >c/b) for (S >P),

    (ii)

    (Delta {p}_{2} >c/b) for (R >T), and

    (iii)

    (Delta {p}_{1}+Delta {p}_{2} >c/b) for (R >P).

    Table 2 Pay-off table of two-person weightlifting game.Full size tablePD satisfies only (iii), CH satisfies (i) and (iii), SH satisfies (ii) and (iii), DT satisfies none of the three conditions, and CT satisfies all three. In 2021, Chiba et al.1 studied the evolution of cooperation in society by incorporating environmental value in the weightlifting game. They found that the evolution of cooperation seems to follow a DT to DT trajectory, which can explain the rise and fall of human societies.The ({varvec{n}})-player weightlifting gameIn this study, we generalize the weightlifting game to (n)-players. Suppose (n) self-interested and rational individuals selected from a population of infinite size. The (n) players are asked to lift a weight. Each individual (or player) can decide to either carry the weight (cooperate, (C)) or not carry/pretend to carry the weight (defect, (D)). Players who decide to carry the weight can either succeed or fail. The probability of successful weightlifting is denoted by ({p}_{i}), (i=mathrm{0,1},dots ,n), where (i) indicates the number of cooperators (henceforth, (i) always represents the number of cooperators). The probability of success increases with the number of individuals cooperating, and it may remain less than unity even if all (n) individuals cooperate. Players who decide to carry the weight pay a cost, (cge 0), regardless of the outcome, while those who defect need not pay anything. If the cooperators succeed, all (n) individuals receive a benefit (bge 0). There is no penalty for failure. We use the expected gains/losses of the players as the pay-off. If there are (i-1) cooperative players, then the pay-off of (j) is ({B}_{C}left(iright)=b{p}_{i}-c) when (j) cooperates and ({B}_{D}left(i-1right)=b{p}_{i-1}) when (j) defects. The number of cooperators differs by one, since in ({B}_{C}left(iright)), there is an additional cooperator, which is (j) him- or herself. To decide whether to cooperate or defect, all players weigh their expected gain and rationally choose the option with the highest expected gain. The graphical outline of this game is illustrated in Fig. 1 (see also Supplementary Figure S1 for the flow of the game). The pay-off table for a four-player game is shown as an example in Table 3. Here, player (1) is the innermost row (strategies are listed in the second column of the table), player (2) is the innermost column (strategies are listed in the second row of the table), and the succeeding players take the succeeding rows or columns (we enter the first player as a row player and the following player as a column player and continue in this order). Each cell represents players’ pay-offs, with the first component being the pay-off for the first player, the second for the second player, and so on. For instance, consider the entry in the first row and third column, where players (1, 2) and (3) cooperate but player (4) defects. The pay-offs of players (1) to (3) are ({B}_{C}(3)), while the pay-off of player (4) is ({B}_{D}left(3right)). In the above example, there are as many row players as column players because the number of players is even. However, we can have one more player in the rows than in the columns if there is an odd number of players.Figure 1A schematic diagram of the n-player weightlifting game. In this game, players decide whether to cooperate or defect in carrying the weight. Cooperators need to pay a cost. The weightlifting can either succeed or fail. In case of success, all players receive a benefit. In case of failure, all players receive nothing. The player’s pay-off depends on the benefit, cost and probability of success. Each player decides whether to cooperate or defect so as to maximize the expected gain.Full size imageTable 3 Pay-off table of four-player weightlifting game.Full size tableNash equilibrium and pareto optimal strategiesHere we present the Nash equilibrium and Pareto optimal strategies of the (n)-player weightlifting game in terms of the cost-to-benefit ratio (c/b) and probability of success ({p}_{i}). The Nash equilibrium consists of the best responses of each player. Players have no incentive to deviate from this strategy profile since deviation will not increase an individual’s pay-off if the other players maintain the same strategy. If ({B}_{C}(i)ge {B}_{D}(i-1)), the best response of player (j) is to cooperate, but if ({B}_{C}(i)le {B}_{D}(i-1)), the best response is to defect.We have (Delta {p}_{i}={p}_{i}-{p}_{i-1}ge 0) for the increase in the probability of success because the probability ({p}_{i}) increases with the number of cooperators (i). It is convenient to divide cases depending on whether (Delta {p}_{i} >c/b) or (Delta {p}_{i} More

  • in

    Climate mediates color morph turnover in a species exhibiting alternative reproductive strategies

    Gray, S. M. & McKinnon, J. S. Linking color polymorphism maintenance and speciation. Trends Ecol. Evol. 22, 71–79 (2007).PubMed 

    Google Scholar 
    Forsman, A., Ahnesjö, J., Caesar, S. & Karlsson, M. A model of ecological and evolutionary consequences of color polymorphism. Ecology 89, 34–40 (2008).PubMed 

    Google Scholar 
    O’Neill, K. M. & Evans, H. E. Alternative male mating tactics in Bembecinus quinquespinosus (Hymenoptera: Sphecidae): correlations with size and color variation. Behav. Ecol. Sociobiol. 14, 39–46 (1983).
    Google Scholar 
    Roulin, A. The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol. Rev. 79, 815–848 (2004).PubMed 

    Google Scholar 
    Dijkstra, P. D., Hemelrijk, C., Seehausen, O. & Groothuis, T. G. Color polymorphism and intrasexual competition in assemblages of cichlid fish. Behav. Ecol. 20, 138–144 (2009).
    Google Scholar 
    Brown, D. M. & Lattanzio, M. S. Resource variability and the collapse of a dominance hierarchy in a colour polymorphic species. Behaviour 155, 443–463 (2018).
    Google Scholar 
    Sacchi, R. et al. Morph-specific assortative mating in common wall lizard females. Curr. Zool. 64, 449–453 (2018).PubMed 

    Google Scholar 
    Alonzo, S. H. & Sinervo, B. Mate choice games, context-dependent good genes, and genetic cycles in the side-blotched lizard, Uta stansburiana. Behav. Ecol. Sociobiol. 49, 176–186 (2001).
    Google Scholar 
    Lancaster, L. T., Hipsley, C. A. & Sinervo, B. Female choice for optimal combinations of multiple male display traits increases offspring survival. Behav. Ecol. 20, 993–999 (2009).
    Google Scholar 
    Colborne, S. F., Garner, S. R., Longstaffe, F. J. & Neff, B. D. Assortative mating but no evidence of genetic divergence in a species characterized by a trophic polymorphism. J. Evol. Biol. 29, 633–644 (2016).CAS 
    PubMed 

    Google Scholar 
    Huyghe, K. et al. Relationships between hormones, physiological performance and immunocompetence in a color-polymorphic lizard species, Podarcis melisellensis. Horm. Behav. 55, 488–494 (2009).CAS 
    PubMed 

    Google Scholar 
    Sinervo, B., Miles, D. B., Frankino, W. A., Klukowski, M. & DeNardo, D. F. Testosterone, endurance, and Darwinian fitness: natural and sexual selection on the physiological bases of alternative male behaviors in side-blotched lizards. Horm. Behav. 38, 222–233 (2000).CAS 
    PubMed 

    Google Scholar 
    Mills, S. C. et al. Gonadotropin hormone modulation of testosterone, immune function, performance, and behavioral trade-offs among male morphs of the lizard Uta stansburiana. Am. Nat. 171, 339–357 (2008).PubMed 

    Google Scholar 
    Kusche, H., Elmer, K. R. & Meyer, A. Sympatric ecological divergence associated with a color polymorphism. BMC Biol. 13, 1–11 (2015).
    Google Scholar 
    Lattanzio, M. S. & Miles, D. B. Trophic niche divergence among colour morphs that exhibit alternative mating tactics. R. Soc. Open Sci. 3, 150531 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Scali, S. et al. Does a polymorphic species have a ‘polymorphic’diet? A case study from a lacertid lizard. Biol. J. Linn. Soc. 117, 492–502 (2016).
    Google Scholar 
    Pérez i de Lanuza, G. & Carretero, M. Á. Partial divergence in microhabitat use suggests environmental-dependent selection on a colour polymorphic lizard. Behav. Ecol. Sociobiol. 72, 1–7 (2018).
    Google Scholar 
    Pryke, S. R., Astheimer, L. B., Griffith, S. C. & Buttemer, W. A. Covariation in life-history traits: differential effects of diet on condition, hormones, behavior, and reproduction in genetic finch morphs. Am. Nat. 179, 375–390 (2012).PubMed 

    Google Scholar 
    Jaworski, K. E. & Lattanzio, M. S. Physiological consequences of food limitation for a color polymorphic lizard: are coping responses morph-specific?. Copeia 2017, 689–695 (2017).
    Google Scholar 
    Lattanzio, M. S. & Miles, D. B. Ecological divergence among colour morphs mediated by changes in spatial network structure associated with disturbance. J. Anim. Ecol. 83, 1490–1500 (2014).PubMed 

    Google Scholar 
    Paterson, J. E. & Blouin-Demers, G. Male throat colour polymorphism is related to differences in space use and in habitat selection in tree lizards. J. Zool. 306, 101–109 (2018).
    Google Scholar 
    McLean, C. A., Stuart-Fox, D. & Moussalli, A. Environment, but not genetic divergence, influences geographic variation in colour morph frequencies in a lizard. BMC Evol. Biol. 15, 1–10 (2015).
    Google Scholar 
    Friedman, D., Magnani, J., Paranjpe, D. & Sinervo, B. Evolutionary games, climate and the generation of diversity. PLoS ONE 12, e0184052 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez i de Lanuza, G., Sillero, N. & Carretero, M. Á. Climate suggests environment-dependent selection on lizard colour morphs. J. Biogeogr. 45, 2791–2802 (2018).
    Google Scholar 
    Miñano, M. R. et al. Climate shapes the geographic distribution and introgressive spread of color ornamentation in common wall lizards. Am. Nat. 198, 379–393 (2021).PubMed 

    Google Scholar 
    Sinervo, B. & Lively, C. M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).CAS 

    Google Scholar 
    Amar, A., Koeslag, A., Malan, G., Brown, M. & Wrefordm, E. Clinal variation in the morph ratio of Black Sparrowhawks Accipiter melanoleucus in South Africa and its correlation with environmental variables. Ibis 156, 627–638 (2014).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Li, W. et al. Identifying climate refugia and its potential impact on small population of Asian elephant (Elephas maximus) in China. Global Ecol. Conserv. 19, e00664 (2019).
    Google Scholar 
    Hillman, S. S. & Gorman, G. C. Water loss, desiccation tolerance, and survival under desiccating conditions in 11 species of Caribbean Anolis. Oecologia 29, 105–116 (1977).CAS 
    PubMed 

    Google Scholar 
    Le Galliard, J. F. et al. A worldwide and annotated database of evaporative water loss rates in squamate reptiles. Global Ecol. Biogeogr. 30, 1938–1950 (2021).
    Google Scholar 
    Winters, A. & Gifford, M. E. Geographic variation in the water economy of a lungless salamander. Herpetol. Conserv. Biol. 8, 741–747 (2013).
    Google Scholar 
    Gilbert, A. L. & Lattanzio, M. S. Ontogenetic variation in the thermal biology of yarrow’s spiny lizard, Sceloporus jarrovii. Plos One 11, e0146904 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Cox, R. M. & John-Alder, H. B. Growing apart together: The development of contrasting sexual size dimorphisms in sympatric Sceloporus lizards. Herpetologica 63, 245–257 (2007).
    Google Scholar 
    Takahashi, Y., Morita, S., Yoshimura, J. & Watanabe, M. A geographic cline induced by negative frequency-dependent selection. BMC Evol. Biol. 11, 1–11 (2011).
    Google Scholar 
    Bogert, C. M. Thermoregulation in reptiles, a factor in evolution. Evolution 3, 195–211 (1949).CAS 
    PubMed 

    Google Scholar 
    Huey, R. B. Physiological consequences of habitat selection. Am. Nat. 137, S91–S115 (1991).
    Google Scholar 
    Kopáček, J. et al. Changes in microclimate and hydrology in an unmanaged mountain forest catchment after insect-induced tree dieback. Sci. Total Environ. 720, 137518 (2020).PubMed 

    Google Scholar 
    Haworth, K. & McPherson, G. R. Effects of Quercus emoryi trees on precipitation distribution and microclimate in a semi-arid savanna. J. Arid Environ. 31, 153–170 (1995).
    Google Scholar 
    Moore, M. C., Hews, D. K. & Knapp, R. Hormonal control and evolution of alternative male phenotypes: generalizations of models for sexual differentiation. Am. Zool. 38, 133–151 (1998).CAS 

    Google Scholar 
    Tinkle, D. W. & Dunham, A. E. Demography of the tree lizard, Urosaurus ornatus, in central Arizona. Copeia 1983, 585–598 (1983).
    Google Scholar 
    Seager, R. et al. Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316, 1181–1184 (2007).CAS 
    PubMed 

    Google Scholar 
    Zucker, N. A dual status-signalling system: a matter of redundancy or differing roles?. Anim. Behav. 47, 15–22 (1994).
    Google Scholar 
    Haenel, G. J. Phylogeography of the tree lizard, Urosaurus ornatus: responses of populations to past climate change. Mol. Ecol. 16, 4321–4334 (2007).CAS 
    PubMed 

    Google Scholar 
    Hammerson, G. A., Frost, D. R. & Santos-Barrera, G. Urosaurus ornatus. The IUCN Red List of Threatened Species 2007, e.T64174A12750887 (2007).Hover, E. L. Differences in aggressive behavior between two throat color morphs in a lizard, Urosaurus ornatus. Copeia 1985, 933–940 (1985).
    Google Scholar 
    Thompson, C. W., Moore, I. T. & Moore, C. W. Social, environmental and genetic factors in the ontogeny of phenotypic differentiation in a lizard with alternative male reproductive strategies. Behav. Ecol. Sociobiol. 33, 137–146 (1993).
    Google Scholar 
    Corl, A., Davis, A. R., Kuchta, S. R. & Sinervo, B. Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation. Proc. Natl. Acad. Sci. 107, 4254–4259 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hews, D. K., Thompson, C. W., Moore, I. T. & Moore, M. C. Population frequencies of alternative male phenotypes in tree lizards: geographic variation and common-garden rearing studies. Behav. Ecol. Sociobiol. 41, 371–380 (1997).
    Google Scholar 
    Feldman, C. R., Flores-Villela, O. & Papenfuss, T. J. Phylogeny, biogeography, and display evolution in the tree and brush lizard genus Urosaurus (Squamata: Phrynosomatidae). Mol. Phylogenet. Evol. 61, 714–725 (2011).PubMed 

    Google Scholar 
    Haisten, D. C., Paranjpe, D., Loveridge, S. & Sinervo, B. The cellular basis of polymorphic coloration in common side-blotched lizards, Uta stansburiana. Herpetologica 71, 125–135 (2015).
    Google Scholar 
    Morrison, R. L., Rand, M. S. & Frost-Mason, S. K. Cellular basis of color differences in three morphs of the lizard Sceloporus undulatus erythrocheilus. Copeia 1995, 397–408 (1995).
    Google Scholar 
    Reclamation. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with preceding Information, and Summary of User Needs. Prepared by the U.S. Department of the Interior, Bureau of Reclamation, Technical Services Center, Denver, Colorado (2013).Keefer, T. O., Moran, M. S. & Paige, G. B. Long-term meteorological and soil hydrology database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resour. Res. 44, W05S07 (2008).
    Google Scholar 
    Rankin, K. & Stuart-Fox, D. Testosterone-induced expression of male colour morphs in females of the polymorphic tawny dragon lizard, Ctenophorus decresii. Plos One 10, e0140458 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Meyers, J. J., Irschick, D. J., Vanhooydonck, B. & Herrel, A. Divergent roles for multiple sexual signals in a polygynous lizard. Funct. Ecol. 20, 709–716 (2006).
    Google Scholar 
    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall, 2017).MATH 

    Google Scholar 
    Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Bartón, K. MuMIn: Multi-Model Inference. R package version 1.42.1. https://CRAN.R-project.org/package=MuMIn (2018).Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Google Scholar 
    Nagelkerke, N. A note on a general definition of the coefficient of determination. Biometrika 78, 691–692 (1991).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Searching the web builds fuller picture of arachnid trade

    Our online sampling methods largely follow protocols detailed in3,4, though we limited our online searches to online shops and did not extend to social media. Large portions of code are directly re-used from those papers, although we provide modified code with this paper additionally. For keyword searches and data review we used R v.4.1.149 via RStudio v.1.4.110350, and made wide use of functions supplied by the anytime v.0.3.951, assertthat v.0.2.152, dplyr v.1.0.753, glue v.1.4.254, lazyeval v.0.2.255, lubridate v.1.7.1056, magrittr v.2.0.157, 17urr v.0.3.458, reshape2 v.1.4.459, stringr v.1.4.060, and tidyr v.1.1.361 other specific package uses are listed during the methods description. We used the grateful v.0.0.362 package to generate citations for all R packages. Code and data used to produce figures and summary data are also available at: 10.5281/zenodo.5758541.Website sampling and searchWe searched for contemporary arachnid selling websites using the Google search engine and targeted nine languages (English, French, Spanish, German, Portuguese, Japanese, Czech, Polish, Russian). Terms were created to be inclusive, so only spiders and scorpions were on the initial search string as specialist groups may exist for either, but are unlikely for smaller arachnid groups, which were often listed under “other” in online shops. Terms were selected to be encompassing so that any sites listing variants of “spider” or mentioning arachnid in the chosen language were selected. Whilst some groups such as tarantulas are more popular as pets such sites will not omit translations of spider and should also be captured in the search, hence Terraristika (as was shown in previous analysis of amphibians and reptiles) listed the greatest number of species, despite not being a specialist site. We used the localised versions of each of these languages with the following Boolean search strings:

    English: (Spider OR scorpion OR arachnid) AND for sale

    French: (Araignée OR scorpion OR arachnide) AND à vendre

    Spanish: (Araña OR escorpión OR arácnido) AND en venta

    German: (Arachnoid OR Spinne OR Skorpion OR Spinnentier) AND zum Verkauf

    Portuguese: (Aranha OR escorpião OR aracnídeo) AND à venda

    Japanese: (クモ OR サソリ OR クモ型類) AND (中村彰宏 OR 販売)

    Czech: (Pavouk OR Štír OR pavoukovec) AND prodej

    Polish: (Pająk OR Skorpion OR pajęczak) AND sprzedaż

    Russian: Продажа пауков OR скорпионов

    We undertook these searches in a private window in the Firefox v.92.0.1 browser63 to limit the impacts of search history. These keywords were used to identify sites which may be selling arachnids, which could then be checked before a comprehensive scrape.For each language, we downloaded the first 15 pages of results between 2021-06-06 and 2021-07-07 (or fewer in the result that the search returned fewer than 15 pages: German 8 pages and Spanish 14 pages). This resulted in ~1270 sites that could potentially be selling arachnids. After removing duplicates and simplifying the URLs (so all ended in.com,.org,. co.uk etc.; Code S1), we reviewed each site for the following criteria (2021-07-31 to 2021-08-02): whether they sell arachnids, the type of site (trade or classified ads), the order arachnids were listed in (e.g., date or alphabetical), the best search method for gather species appearances (see below for hierarchical search methods), a refined target URL listing species inventory, the number of pages within the website potentially required to cycle through, and if the search method required a crawl, whether the site explicitly forbade crawling data collection and whether we could limit the crawl’s scope with a filter on downstream URLs. Finally, we assigned all suitable sites with a unique ID. We have made a censored version of the website review results available in Data S1. In addition to the systematic search for arachnid trade, we added 43 websites discovered ad hoc from links on previously discovered sites (many listed online shops), those listed in other journal articles on invertebrate trade (i.e.,6) or from discussion with informed colleagues (between 2021-08-07 and 2021-09-15). After reviewing these ad hoc sites (2021-08-07 to 2021-09-15), we had a combined total of 111 sites to attempt to search for the appearance of arachnid species.Our searches of websites took one of five forms (Code S2), designed to minimise server load and limit the number of irrelevant pages searched, while ensuring we captured the pages listing species. We prioritised using the lowest/simplest search method possible for each site.Single page or PDFFor websites that listed their entire arachnid stock on a single page, we retrieved that single page using the downloader v.0.4 package64. In cases where the inventory was listed in a PDF, we manually downloaded the PDF and used pdftools v.3.0.165 to assess the text.CycleSome websites had large stocklists split across multiple pages that could be accessed sequentially. In these cases, we used the downloader v.0.4 package64 to retrieve each page, as we cycled from page 1 to the terminal page identified during the website review stage. Two sites required a slight modification to the page cycling process: as the sequential pages were not defined by pages, but by the number of adverts displayed. In these instances, we cycled through all adverts 20 adverts at a time (i.e., matching the default number displayed at a time by the site). For all cycling we implemented a 10 s cooldown between requests to limit server load.Level 1 crawlFor websites that split their stock between multiple pages, but with no sequential ordering, we used a level 1 crawl, via the Rcrawler v.0.1.9.1 package66 to access them all. For example, where a site had an “arachnid for sale” page, but full species names existed only in linked pages (e.g., “tarantulas”, “scorpions”).Cycle and level 1 crawlSome websites required a combined approach, where stock was split sequentially across pages, and the species identities (i.e., scientific names) required accessing the pages linked to from the sequential pages. In these cases, we ran the initial sequential sampling followed by a level 1 crawl.Level 2 crawlWhere level 1 crawls were insufficient to cover all species sold on a site, we used a level 2 crawl to reach all pages listing species. This tended to be the case on websites with multiple categories to classify and split their stock (e.g., “arachnid”—“spider”—“tarantula”).For all crawls, we used a cooldown of 20 s between requests to limit server load, and where possible we limited the scope of the crawl (i.e., linked pages to be retrieved) using a key phrase common to all stock listing pages (e.g., “/category=arachnid/”).In addition to the sampling of contemporary sites, we explored the archived pages available for https://www.terraristik.com via the Internet Archive (2002–201967). Terraristika had been previously shown as a major contributor to traded species lists4, and the website’s age and accessibility via the internet archive meant it was one of the few websites where temporal sampling was feasible. We used pages retrieved via the Internet Archive’s Wayback machine API68, via code created for3,4. The code used was based on the wayback v.0.4.0 package69, but additionally made httr v.1.4.270, jsonlite v.1.7.271, downloader v.0.464, lubridate v.1.7.1056, and tibble v.3.1.3 packages72 (Code S3).Keyword generationWe relied on multiple sources to build a list of arachnid species (spiders, scorpions and uropygi). For spiders we used the WSC (ref. 18; https://wsc.nmbe.ch/dataresources; accessed 2021-09-18). We filtered the WSC dataset to remove subspecies, then used a combination of rvest v.1.0.173, dplyr v.1.0.753, and stringr v.1.4.0 packages60 (see Code S4) to query the online version of the WSC database to retrieve all synonyms for each species. Where the synonyms were listed with an abbreviated genus, we replace the abbreviation with the first instance of a genus that matched the first letter of the abbreviation.We combined the WSC data with a list manually retrieved from the Scorpion Files74 (https://www.ntnu.no/ub/scorpion-files/index.php; accessed 2021-09-19). For the uropygi species, we combined species listings from Integrated Taxonomic Information System (ITIS75; https://www.itis.gov/servlet/SingleRpt/RefRpt?search_type=source&search_id=source_id&search_id_value=1209 and https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&anchorLocation=SubordinateTaxa&credibilitySort=TWG%20standards%20met&rankName=ALL&search_value=82710&print_version=SCR&source=from_print#SubordinateTaxa; accessed 2021-09-19) and the Western Australian Museum76 (http://www.museum.wa.gov.au/catalogues-beta/browse/uropygi; accessed 2021-09-19). We were unable to source reliable data on all scorpion and uropygi synonyms; therefore, we used all names listed from all sources, but made note of those names considered nomen dubium. Our final keyword list contained 52,111 species, 94,184 different species names, with mean of 1.81 SE ± 0.01 terms per species (range 1–61). For summaries of total species, we relied on the species classed as accepted by the species databases (WSC, Scorpion Files, ITIS and the Western Australian Museum).Keyword searchWe successfully retrieved 3020 pages from 103 websites (mean = 28.78 SE ± 11.42, range: 1–1077), and used a further 4668 previously archived pages. To prepare each of the retrieved web pages for keyword searching, we removed all double spaces, html elements, and non-alpha-numeric characters, replacing them with single spaces (Code S5). For this process we used rvest v.1.0.173, XML v.3.99.0.877, and xml2 v.1.3.278 packages. This process increased the chances that genus and species epithets would appear in a compatible format when compared to our keyword list. The process was not able to repair abbreviated genera, or aid detection where genus and species epithet were not reported side-by-side.Due to the large number of species we were forced to adapt previous searching methods, instead implementing a hierarchical genus-species search (Code S6). We searched each retrieved page for any mention of genera, then only searched for species that were contained within that genus. We did not differentiate whether the genus was currently accepted or old, so if a species had ever belonged to a genus it was included in the second stage of the search. The specifics of the keyword search used case-insensitive fixed string matching (via the stringr v.1.4.0 package60). While collation string matching would have helped detect species with differently coded ligatures or diacritic marks, the occurrence of ligature and diacritic marks are infrequent in scientific names and did not warrant the considerably increased computational costs.Via the keyword search we recorded all instances of genus matches, species matches, the website ID, and the page number. We also collected the words surrounding a genus match (3 prior and four after) as a means of exploring common terms that may be used to describe the genera.We provide the compiled outputs from searching contemporary and historic pages in Data S2–S4. Prior to combining these two datasets into a final list of traded species, and summarising the overall patterns, we cleaned out instances of spurious genera and species detections. Predominantly this included short genera names that could appear at the start of longer words (e.g., terms such as: “rufus”, “Dia”, “Diana”, “Mala”, “Inca”, “Pero”, “May”, “Janus”, “Yukon”, “Lucia”, “Zora”, “Beata”, “Neon”, “Prima”, “Meta”, “Patri”, “Enna”, “Maso”, “Mica”, “Perro”; we already implemented a filter that required genera to be preceded by a space and thus these were not part of the species name). We are confident these genera should be excluded, as none had species detected within them.Trade database and third-party dataWe downloaded United States Fish and Wildlife Service’s LEMIS data compiled by79,80 from https://doi.org/10.5281/zenodo.3565869 (Data S5). We filtered the LEMIS data to records where the class was listed as Arachnida (Code S6).We downloaded the Gross imports data from the CITES trade database from the website and filtered to Class Arachnid, years 1975–202181 (accessed 2021-09-15; Data S6), and downloaded the CITES appendices filtered to arachnids82 (Data S7).We downloaded the IUCN Redlist assessments for arachnids from https://www.iucnredlist.org83 (accessed 2021-09-15; Data S8).Species summary and visualisationWe compiled all sources of trade data (online, LEMIS, CITES) into a single dataset detailing which genera/species had been detected in each source (Data S9 and Code S7). We used two criteria to determine detection, whether there was an exact match with an accepted genus/species or whether there was a match to any historically used genera/species name. Because of splits in genera, the “ANY genera” matching is likely overly generous. For broad summaries we rely on the “ANY species” name matching.We used cowplot v.1.1.184, ggplot2 v.3.3.585, ggpubr v.0.4.086, ggtext v.0.1.187, scales v.1.1.188, scico v.1.2.089, and UpSetR v.1.4.090 to generate summary visuals (Code S8; Code S9). We added additional details to the upset plot and modified the position of plot labels using Affinity Designer v.1.10.391. We also used Affinity Designer to create the Uropygid silhouette for Fig. 1. We obtained public domain licensed spider and scorpion silhouettes from http://phylopic.org/ (https://phylopic.org/image/d7a80fdc0-311f-4bc5-b4fc-1a45f4206d27/; http://phylopic.org/image/4133ae32-753e-49eb-bd31-50c67634aca1/).Descriptions and coloursWe explored the lag time between species descriptions, and their detection in LEMIS or online trade (Code S10). We relied on the description dates provided alongside the lists of species names. Unlike the broader summaries, we restricted explorations of lag times to species detected only via exact matches (operating under the assumption that newly described species traded swiftly after description would be using the modern accepted name). We distinguished between those species detected only in the complementary data, as the earliest trade date was not known; therefore, our summaries of lag time are based on those species detected in a particular year either via LEMIS or temporal online trade.Following a visual inspection of sites where we often noticed listings with either colour or localities (e.g., “Chilobrachys spp. “Electric Blue” 0.1.3. Chilobrachys sp. “Kaeng Krachan” 0.1.0. Chilobrachys spp. “Prachuap Khiri Khan”: Data S9). We explored the words that surrounded detected genera. After using the forcats v.0.5.192, stringr v.1.4.060, and tidytext v.0.3.193 package to compile common terms and remove English stop words, we determine colour was frequently mentioned (Code S11). To filter out non-colour words, we used wikipedia’s list of colours (https://en.wikipedia.org/wiki/List_of_colors:_N%E2%80%93Z). Once cleaned, we further removed terms that are ambiguously colour related (e.g., “space”, “racing”, “photo”, “boy”, “bean”, “blaze”, “jungle”, “mountain”, “dune”, “web”, “colour”, “rainforest”, “tree”, “sea”). We then summarised this data as the counts of instances where a genus appeared alongside a given colour term (n.b., counts are therefore impacted by any underlying imbalances in how many times a site mentioned a genus). We plotted all colours using the same hex codes listed on the wikipedia page, with the exception of “cobalt”, “grey”, “metallic”, “slate”, “electric”, “dark”, “sheen”, and “chocolate” that required manual linking to a hex code.Summary of trade numbersWe summarised LEMIS data using a number of filters (Code S12). Following3,4,94, we limited our summaries to items that feasibly can be considered to represent whole individuals (LEMIS code = Dead animal BOD, live eggs (EGL), dead specimen (DEA), live specimen (LIV), specimen (SPE), whole skin (SKI), entire animal trophy (TRO)). We describe the portion of trade that is prevented (i.e., seized, where disposition == “S”). We classed non-commercial trade as anything listed as for Biomedical research (M), Scientific (S), or Reintroduction/introduction into the wild (Y). For captive vs. wild summaries, we treated all Animals bred in captivity (C and F), Commercially bred (D), and Specimens originating from a ranching operation (R) as originating from captivity. We only included animals listed as Specimens taken from the wild (W) in wild counts. The few instances that fell outside of our defined captive vs. wild categorisation are treated as other. For summaries of wild capture per genus, we relied entirely on LEMIS’s listings of genera, making no effort to determine synonymisations. We did filter out those listed only as “Non-CITES entry” or NA. We used the countrycode v.1.3.095 package to help plot the LEMIS countries of origin. Taxonomy represents an ongoing challenge, we were limited to recognising the species listed in the aforementioned databases, generating synonym lists from these sources, and attempting to reconcile these lists. Rapid rates of species description means that compiling comprehensive lists can be challenging, and species may be traded under junior synonyms or old names, and newer descriptions may not have been added to sites96. We were also limited to platforms that advertised using text not images, as images can be challenging to identify accurately.MappingMapping species is challenging due to the lack of standardised data on species distributions. Spider distributions were mapped based on the data in the World Spider Catalogue (Data S12). Firstly, the localities associated with each species were collated into four spreadsheets based on the data provided in the WSC (WSC18; https://wsc.nmbe.ch/dataresources; accessed 2021-09-18), these listed (1) country, (2) region, (3) “to” (where the range was given as one country to another) and (4) Island.Before processing any “introduced” localities were removed, the four sheets were then checked for any simple spelling errors (in islands file) or mislistings (i.e., regions in the islands file). Country data were cross-referenced with the names of country provided by Thematic Mapper to standardise them (https://thematicmapping.org/; Data S11). This was done by uploading data into Arcmap and using joins and connects to connect it to the standard country name file, and any which could not be paired were corrected to ensure all could be successfully digitised.Regions were digitised based on accepted names of different regions and included 33 different regions (see supplements) for each of these the standard accepted area within each of these regions was searched online to determine the accepted boundaries. These were then selected from the Thematic mapper, exported and labelled with the corresponding region. Once this was completed for all 33 regions they were merged and exported to a geodatabase. The spreadsheet listing regional preferences of each species was also uploaded to Arcmap 10.3, then exported into the geodatabase, then connected to a regional map using joins and relates to connect the regional preferences from the spreadsheet to the shapefiles. The new dbf was then exported to provide a listing of each species and each country in the region it was connected to, and then copied into the same csv as the corrected country listings.For preferences listed as “to” we first separated each country listed in the “to” listings into a separate column, then developed a list of species and each of the countries listed in the “to” list (which was frequently between 5–6). These were then corrected to the standard names from thematic mapper for both countries and the regions used in the previous section. We then merged the countries and regions file and added fields of geometry in ArcMap to provide a centroid for each designated area. This table was then exported and joined and connected to the species in the “to” file. This data was then converted to point form and turned to a point file, then a minimum convex polygon (convex hulls) developed for each species to connect the regions between all those listed. These species specific minimum convex polygons were then intersected with the countries from Thematic mapper, and then dissolve was used to form a shapefile that just listed species and all the countries between those ranges. This was then exported and merged with the listings from countries and regions.The islands file included both independent islands (which needed names corrected, or archipelago names given) and those that fall within a national designation. For those islands we replaced the island name with that of the country, as listings of species may be particularly poor, and tiny non-independent islands are not visible in the global-scale analysis.This forth database table was then merged with the former three, and remove duplicates used to remove any duplicate entries, as species often had individual countries listed in additions to regions or “to”. This was then uploaded into Arcmap and exported to a geodatabase file then connected to the original Thematic mapper file and exported to the geodatabase to yield 134,187 connections between species and countries. This was then connected to our main analysis to include the trade status, and CITES and IUCN Redlist status for each species for further analysis.Scorpion data was considerably messier than that on the world spider catalogue. Firstly, we downloaded all scorpion data from iNaturalist and GBIF97,98 (search; scorpions), removed duplicates, then cross-referenced these with the thematic mapper file within Quantum GIS. Species listed in regions where they were clearly not native (i.e., a species listed in the UK when the rest of that species or genus were in Australia) were removed, and all extinct species were excluded.In addition, all the “update files” were downloaded from the “Scorpion files”, the PDFs collated then using smallpdf tools the tables were extracted into excel form and cleaned to include just species and country listing. This was added to the countries listed for species within99 and100 though this was restricted to a subset of species. The data were all collated into an excel file with the species name, and country listing. This was then added to all the data from https://scorpiones.pl/maps/. These maps have a good coverage of species countries, but are apparently no longer being updated (Jan Ove Rein pers comm 2021) hence the need for further data to provide complete and updated and comprehensive coverage for all species. Country names were then standardised based on the Thematic Mapper standards (Data S13 and Data S11). Species names were then cross-referenced to those listed in the Scorpion files, any not matching were checked as synonyms and converted to the accepted name (though the only collated data for Scorpion synonyms was on French-language Wikipedia, i.e., see https://fr.wikipedia.org/wiki/Bothriurus). Once all country and species names were corrected this provided a listing of 4059 species-country associations. These were then associated with country files in the same way as spiders. We plotted spider and scorpion species/genera, as well as LEMIS origins, using ggplot285, combining Thematic world border data (https://thematicmapping.org/) with summaries of species/genera/and trade levels. Species listed in a single-country (and thus more likely to be country endemic) were also counted using summary statistics, so that species most vulnerable to trade could be noted separately.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Integrated strategic planning and multi-criteria decision-making framework with its application to agricultural water management

    Abbasi, N., Bahramloo, R. & Movahedan, M. Strategic planning for remediation and optimization of irrigation and drainage networks: a case study of Iran. J. Agric. Agric. Sci. Proc. 4, 211–221 (2015).
    Google Scholar 
    Abdelhaleem, F., Basiouny, M. & Mahmoud, A. Application of remote sensing and geographic information systems in irrigation water management under water scarcity conditions in Fayoum, Egypt. J. Environ. Manag. 299, 113683 (2021).Article 

    Google Scholar 
    Akbari-Alashti, H., Bozorg-Haddad, O., Fallah-Mehdipour, E. & Mariño, M. A. Multi-reservoir real-time operation rules: a new genetic programming approach. Proc. Instit. Civil Eng. Water Manag. 167(10), 561–576 (2014).Article 

    Google Scholar 
    Akhmouch, A. & Correia, F. N. The 12 OECD principles on water governance: when science meets policy. J. Utilities Policy. 43, 14–20 (2016).Article 

    Google Scholar 
    Amblard, L. & Mann, C. Understanding collective action for the achievement of EU water policy objectives in agricultural landscapes: insights from the institutional design principles and integrated landscape management approaches. J. Environ. Sci. Policy. 125, 76–86 (2021).Article 

    Google Scholar 
    Babaeian, F., Delavar, M., Morid, S. & Srinivasan, R. Robust climate change adaptation pathways in agricultural water management. J. Agric. Water Manag. 252, 106904 (2021).Article 

    Google Scholar 
    Barbosa, M. C., Alam, K. & Mushtaq, S. Water policy implementation in the state of São Paulo, Brazil: key challenges and opportunities. J. Environ. Sci. Policy. 60, 11–18 (2016).Article 

    Google Scholar 
    Barrett, S. M. Implementation studies: time for a revival? Personal reflections on 20 years of implementation studies. J. Public Admin. 82(2), 249–269 (2004).MathSciNet 
    Article 

    Google Scholar 
    Baumgartner, R. J. & Korhonen, J. Strategic thinking for sustainable development. J. Sustain. Dev. 18(2), 71–75 (2010).Article 

    Google Scholar 
    Biswas, S. Measuring performance of healthcare supply chains in India: a comparative analysis of multi-criteria decision making methods. J. Decis. Making Appl. Manag. Eng. 3(2), 162–189 (2020).Article 

    Google Scholar 
    Biswas, S., Majumder, S., Pamucar, D. & Suman, D. An extended LBWA framework in picture fuzzy environment using actual score measures application in social enterprise systems. J. Enterp. Inform. Syst. (IJEIS) 17(4), 37–68 (2021).Article 

    Google Scholar 
    Biswas, S., Pamucar, D., Chowdhury, P. & Kar, S. A new decision support framework with picture fuzzy information: comparison of video conferencing platforms for higher education in India. J. Disc. Dyn. Nat. Soc. (2021).Bozorg-Haddad, O., Moradi-Jalal, M., Mirmomeni, M., Kholghi, M. K. H. & Mariño, M. A. Optimal cultivation rules in multi-crop irrigation areas. J. Irrig. Drain. 58(1), 38–49 (2009).Article 

    Google Scholar 
    Bozorg-Haddad, O., Loáiciga, H. A. & Zolghadr-Asli, B. A handbook on multi-attribute decision-making methods chapter (Wiley, 2021).MATH 
    Book 

    Google Scholar 
    Buckley, J. J. Fuzzy hierarchical analysis. J. Fuzzy Sets Syst. 17(3), 233–247 (1985).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Chang, H. H. & Huang, W. C. Application of a quantification SWOT analytical method. J. Math. Comput. Model. 43, 158–169 (2006).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Chen, C. T. Extension of the TOPSIS for group decision-making under fuzzy environment. J. Fuzzy Sets Syst. 114(1), 1–9 (2000).MATH 
    Article 

    Google Scholar 
    Conrad, C., Usman, M., Morper-Bush, L. & Schönbrodt-Stitt, S. Remote sensing-based assessments of land use, soil and vegetation status, crop production and water use in irrigation systems of the Aral Sea Basin. J. Water Sec. 11, 100078 (2020).Article 

    Google Scholar 
    David, F. R. Strategic management: concepts and cases (Prentice Hall, 2011).
    Google Scholar 
    Fallah-Mehdipour, E., Bozorg-Haddad, O., Beygi, S. & Mariño, M. A. Effect of utility function curvature of Young’s bargaining method on the design of WDNs. J. Water Resour. Manag. 25(9), 2197–2218 (2011).Article 

    Google Scholar 
    Fanghua, H. & Guanchun, C. Fuzzy multi-criteria group decision-making model based on weighted borda scoring method for watershed ecological risk management: a case study of three Gorges reservoir area of China. J. Water Resour. Manag. 24(10), 2139–2165 (2010).Article 

    Google Scholar 
    Gallego-Ayala, J. & Juızo, D. Strategic implementation of integrated water resources management in Mozambique: an A’WOT analysis. J. PhysChem. Earth. 36(14–15), 1103–1111 (2011).ADS 
    Article 

    Google Scholar 
    Gao, C. Y. & Peng, D. H. Consolidating SWOT analysis with nonhomogeneous uncertain preference information. J. Knowl. Based Syst. 24, 796–808 (2011).Article 

    Google Scholar 
    Gosling, S. N. & Arnell, N. W. A global assessment of the impact of climate change on water scarcity. J. Clim. Change. 134, 371–385 (2016).ADS 
    Article 

    Google Scholar 
    Gurel, M. & Tat, M. SWOT analysis: a theoretical review. J. Int. Soc. Res. 10(51), 994–1006 (2017).Article 

    Google Scholar 
    Hamdy, A., & Trisorio-Liuzzi, G. Water management strategies to combat drought in the semiarid regions. Water management for drought mitigation in the Mediterranean at the regional conference on arab water, Cairo, Egypt (2004).Hartmann, T. & Spit, T. Frontiers of land and water governance in urban regions. J. Water Int. 39(6), 791–797 (2014).Article 

    Google Scholar 
    He, L., Bao, J., Daccache, A., Wang, S. & Guo, P. Optimize the spatial distribution of crop water consumption based on a cellular automata model: a case study of the middle Heihe River basin, China. J. Sci. Total Environ. 720, 137569 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Hwang, C.L. & Yoon, K. Methods for multiple attribute decision making. In: Multiple attribute decision making: lecture notes in economics and mathematical systems, Springer, Heidelberg, Germany, vol 186 (1981).Hwang, F. P., Chen, S. J. & Hwang, C. L. Fuzzy multiple attribute decision making: methods and applications (Springer, 1992).MATH 

    Google Scholar 
    Islam, M. S., Sadiq, R. & Rodriguez, M. J. Evaluating water quality failure potential in water distribution systems: a fuzzy-TOPSIS-OWA-based methodology. J. Water Resour. Manag. 27(7), 2195–2216 (2013).Article 

    Google Scholar 
    Karabasevic, D., Zavadskas, E. K., Turskis, Z. & Stanujkic, D. The framework for the selection of personnel based on the SWARA and ARAS methods under uncertainties. J. Inform. 27(1), 49–65 (2016).Article 

    Google Scholar 
    Keršuliene, V., Zavadskas, E. K. & Turskis, Z. Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (Swara). J. Bus. Econ. Manag. 11(2), 243–258 (2010).Article 

    Google Scholar 
    Kim, S. et al. Developing spatial agricultural drought risk index with controllable geo-spatial indicators: a case study for South Korea and Kazakhstan. J. Disast. Risk Reduct. 54, 102056 (2021).Article 

    Google Scholar 
    Kousar, S., Zafar, A., Kausar, N., Pamucar, D. & Kattel, P. Fruit production planning in semiarid zones: a novel triangular intuitionistic fuzzy linear programming approach. J. Math. Prob. Eng. (2022).Lautze, J., de Silva, S., Giordano, M. & Sanford, L. Putting the cart before the horse: Water governance and IWRM. J. Nat. Resour. Forum Unit. Nat. Develop. 35(1), 1–8 (2011).Lee, K. L. & Lin, S. C. A fuzzy quantified SWOT procedure for environmental evaluation of an international distribution center. J. Inform. Sci. 178, 531–549 (2008).Article 

    Google Scholar 
    Loucks, D. P. Sustainable water resources management. Water International. Taylor & Francis, Milton Park (2000).Malczeweski, J. GIS and multicriteria decision analysis (Wiley, 1999).
    Google Scholar 
    Meza, I. et al. Drought risk for agricultural systems in South Africa: drivers, spatial patterns, and implications for drought risk management. J. Sci. Total Environ. 799, 149505 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    OECD. OECD principles on water governance. OECD Publishing (2015).Pahl-Wostl, C., Holtz, G., Kastens, B. & Knieper, C. Analyzing complex water governance regimes: the management and transition framework. J. Environ. Sci. Policy. 13(7), 571–581 (2010).Article 

    Google Scholar 
    Pahl-Wostl, C. et al. Environmental flows and water governance: managing sustainable water uses. J. Curr. Opin. Environm. Sustain. 5(3), 341–351 (2013).Article 

    Google Scholar 
    Pamucar, D., Torkayesh, A.E. & Biswas, S. Supplier selection in healthcare supply chain management during the COVID-19 pandemic: a novel fuzzy rough decision-making approach. J. Ann. Oper. Res. doi:https://doi.org/10.1007/s10479-022-04529-2(2022).Panchal, D., Chatterjee, P., Pamucar, D. & Yazdani, M. A novel fuzzy-based structured framework for sustainable operation and environmental friendly production in coal-fired power industry. J. Intell. Syst. doi: https://doi.org/10.1002/int.22507(2021).Peldschus, F., Zavadskas, E. K., Turskis, Z. & Tamosaitiene, J. Sustainable assessment of construction site by applying game theory. J. Eng. Econ. 21(3), 223–237 (2010).
    Google Scholar 
    Pérez-Blanco, C. & Gómez, C. Drought management plans and water availability in agriculture: a risk assessment model for a Southern European basin. J. Weather Clim. Extrem. 4, 11–18 (2014).Article 

    Google Scholar 
    Portoghese, I., Giannoccaro, G., Giordano, R. & Pagano, A. Modeling the impact of volumetric water pricing in irrigation districts with conjunctive use of water of surface and groundwater resources. J. Agric. Water Manag. 244, 106561 (2020).Article 

    Google Scholar 
    Rani, P., Mishra, A. R., Saha, A., Hezam, I. M. & Pamucar, D. Fermatean fuzzy Heronian mean operators and MEREC-based additive ratio assessment method: an application to food waste treatment technology selection. J. Intell. Syst. 37(3), 2612–2647 (2021).Article 

    Google Scholar 
    Rogers, P., & Hall, A.W. Effective water governance. J. Tech. Comm. Background Papers.7, Global Water Partnership (GWP) (2003).Rouillard, J. & Rinaudo, J. From State to user-based water allocations: an empirical analysis of institutions developed by agricultural user associations in France. J. Agric. Water Manag. 239, 106269 (2020).Article 

    Google Scholar 
    Ruzgys, A., Volvačiovas, R., Ignatavičius, Č & Turskis, Z. Integrated evaluation of external wall insulation in residential buildings using SWARA-TODIM MCDM method. J. Civil Eng. Manag. 20(1), 103–110 (2014).Article 

    Google Scholar 
    Saaty, T. L. A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15, 234–281 (1977).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Saaty, T. L. The analytic hierarchy process (McGraw-Hill, 1980).MATH 

    Google Scholar 
    Saaty, T. L. The analytic hierarchy process: planning, priority setting, resource allocation (RWS Publication, 1996).MATH 

    Google Scholar 
    Saaty, T. L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008).
    Google Scholar 
    Soltanjalili, M., Bozorg-Haddad, O. & Mariño, M. A. Effect of breakage level one in design of water distribution networks. J. Water Resour. Manag. 25(1), 311–337 (2011).Article 

    Google Scholar 
    Srdjevic, Z., Bajcetic, R. & Srdjevic, B. Identifying the criteria set for multi criteria decision making based on SWOT/PESTLE analysis: a case study of reconstructing a water intake structure. J. Water Resour. Manag. 26(12), 3379–3393 (2012).Article 

    Google Scholar 
    Stewart, R. A., Mohamed, S. & Daet, R. Strategic implementation of IT/IS projects in construction: a case study. J. Autom. Const. 11, 681–694 (2002).Article 

    Google Scholar 
    Thaler, T., Nordbeck, R. & Seher, W. Cooperation in flood risk management: understanding the role of strategic planning in two Austrian policy instruments. J. Environ. Sci. Policy. 114, 170–177 (2020).Article 

    Google Scholar 
    Thomson, J. et al. Spatial conservation action planning in heterogeneous landscapes. J. Biol. Conser. 250, 108735 (2020).Article 

    Google Scholar 
    Tortajada, C. Water governance: some critical issues. J. Water Resour. Develop. 26(2), 297–307 (2010).Article 

    Google Scholar 
    Tropp, H. Water governance: trends and needs for new capacity development. J. Water Policy. 9(2), 19–30 (2007).Article 

    Google Scholar 
    Van Laarhoven, P. J. & Pedrycz, W. A fuzzy extension of Saaty’s priority theory. J. Fuzzy Sets Syst. 11(1–3), 229–241 (1983).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Venot, J., Reddy, V. R. & Umapathy, D. Coping with drought in irrigated South India: Farmers’ adjustments in Nagarjuna Sagar. J. Agric. Water Manag. 97(10), 1434–1442 (2010).Article 

    Google Scholar 
    Vermillion, D.L. Irrigation sector reform in Asia: from patronage under participation to empowerment with partnership. In Asian Irrigation in Transition. New Delhi: Sage publications. https://www.cabdirect.org/cabdirect/abstract/20073076323(2003).Yazdani, M., Wen, Z., Liao, H., Banaitis, A. & Turskis, Z. A grey combined compromise solution (CoCoSo-G) method for supplier selection in construction management. J. Civil Eng. Manag. 25(8), 858–874 (2019).Article 

    Google Scholar 
    Yuksel, I. & Dagdeviren, M. Using the analytic network process (ANP) in a SWOT analysis: a case study for a textile firm. J. Inform. Sci. 177, 3364–3382 (2007).MATH 
    Article 

    Google Scholar 
    Zadeh, L. A. Fuzzy sets. J. Inform. Control. 8(3), 338–353 (1965).MATH 
    Article 

    Google Scholar 
    Zavadskas, E. K., Mardani, A., Turskis, Z., Jusoh, A. & Nor, K. M. Development of TOPSIS method to solve complicated decision-making problems: an overview on developments from 2000 to 2015. J. Inform. Technol. Dec. Making. 15(03), 645–682 (2016).Article 

    Google Scholar 
    Zuo, Q., Wu, Q., Yu, L., Li, Y. & Fan, Y. Optimization of uncertain agricultural management considering the framework of water, energy and food. J. Agric. Water Manag. 253, 106907 (2021).Article 

    Google Scholar  More