More stories

  • in

    Metagenomic, (bio)chemical, and microscopic analyses reveal the potential for the cycling of sulfated EPS in Shark Bay pustular mats

    Hoffman P. Stromatolite morphogenesis in Shark Bay, Western Australia. In: Developments in sedimentology. Elsevier; 1976.261–71.Golubic S, Hofmann HJ. Comparison of Holocene and Mid-Precambrian Entophysalidaceae (Cyanophyta) in stromatolitic algal mats: Cell division and degradation. J Paleontol. 1976;50:1074–82.
    Google Scholar 
    Mlewski EC, Pisapia C, Gomez F, Lecourt L, Rueda ES, Benzerara K, et al. Characterization of pustular mats and related Rivularia-rich laminations in oncoids from the Laguna Negra lake (Argentina). Front Microbiol. 2018;9:1–23.Article 

    Google Scholar 
    St Kendall C, Skipwith A. Recent algal mats of a Persian Gulf lagoon. SEPM J Sediment Res. 1968;38:1040–58.
    Google Scholar 
    Golubic S, Abed R. Entophysalis mats as environmental regulators. In: Microbial mats, modern and ancient microorganisms in stratified systems. Dordrecht: Springer; 2010.237–51.Logan BW, Hoffman P, Gebelien CD. Algal mats, cryptalgal fabrics, and structures, Hamelin Pool, Western Australia. Am Assoc Pet Geol. 1974;22:140–94.
    Google Scholar 
    Jahnert RJ, Collins LB. Controls on microbial activity and tidal flat evolution in Shark Bay, Western Australia. Sedimentology. 2013;60:1071–99.Article 

    Google Scholar 
    Moore KR, Pajusalu M, Gong J, Sojo V, Matreux T, Braun D, et al. Biologically mediated silicification of marine cyanobacteria and implications for the Proterozoic fossil record. Geology. 2020;48:862–6.CAS 
    Article 

    Google Scholar 
    Decho AW, Visscher PT, Reid RP. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Geobiology: objectives, concepts, perspectives. 2005;71–86.Visscher PT, Dupont CL, Braissant O, Gallagher KL, Glunk C, Casillas L, et al. Biogeochemistry of carbon cycling in hypersaline mats: Linking the present to the past through biosignatures. In: Microbial mats, modern and ancient microorganisms in stratified systems. Dordrecht: Springer; 2010.443–68.Ruvindy R, White RA, Neilan BA, Burns BP. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J. 2016;10:183–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Stuart RK, Mayali X, Lee JZ, Craig Everroad R, Hwang M, Bebout BM, et al. Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J. 2016;10:1240–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wong HL, White RA, Visscher PT, Charlesworth JC, Vázquez-Campos X, Burns BP. Disentangling the drivers of functional complexity at the metagenomic level in Shark Bay microbial mat microbiomes. ISME J. 2018;12:2619–39.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell MA, Coolen MJL, Visscher PT, Morris T, Grice K. Structure and function of Shark Bay microbial communities following tropical cyclone Olwyn: a metatranscriptomic and organic geochemical perspective. Geobiology. 2021;19:642–64.CAS 
    PubMed 
    Article 

    Google Scholar 
    Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, et al. Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol. 2009;67:293–307.CAS 
    PubMed 
    Article 

    Google Scholar 
    Cutts EM, Baldes MJ, Skoog EJ, Hall J, Gong J, Moore KR, et al. Using molecular tools to understand microbial carbonates. Geosciences 2022;12:185.Moore KR, Gong J, Pajusalu M, Skoog EJ, Xu M, Soto Feliz T, et al. A new model for silicification of cyanobacteria in Proterozoic tidal flats. Geobiology. 2021;19:438–49.CAS 
    PubMed 
    Article 

    Google Scholar 
    Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Philippis R, Tamagnini P. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev. 2009;33:917–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    Wingender J, Neu TR, Flemming H-C. Microbial extracellular polymeric substances. In: Microbial extracellular polymeric substances. Berlin, Heidelberg: Springer; 1999.1–19.Sheng GP, Yu HQ, Li XY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv. 2010;28:882–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bar-Or Y, Shilo M. Characterization of macromolecular flocculants produced by Phormidium sp. Strain J-1 and by Anabaenopsis circularis PCC 6720. Appl Environ Microbiol. 1987;53:2226–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sudo H, Burgess JG, Takemasa H, Nakamura N, Matsunaga T. Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia. Curr Microbiol. 1995;30:219–22.CAS 
    Article 

    Google Scholar 
    Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol: The Vasc Syst. 1997;29:497–511.CAS 
    Article 

    Google Scholar 
    De Philippis R, Vincenzini M. Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev. 1998;22:151–75.Article 

    Google Scholar 
    Chen L, Li T, Guan L, Zhou Y, Li P. Flocculating activities of polysaccharides released from the marine mat-forming cyanobacteria Microcoleus and Lyngbya. Aquat Biol. 2011;11:243–8.CAS 
    Article 

    Google Scholar 
    Wang L, Wang X, Wu H, Liu R. Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Marine Drugs. 2014;12:4984–5020.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hans N, Malik A, Naik S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour Technol Rep. 2021;13:100623.2020.PubMed 
    Article 

    Google Scholar 
    Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT. Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology. 2007;5:401–11.CAS 
    Article 

    Google Scholar 
    Barbeyron T, Brillet-Guéguen L, Carré W, Carrière C, Caron C, Czjzek M, et al. Matching the diversity of sulfated biomolecules: Creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE. 2016;11:1–33.Article 

    Google Scholar 
    Allen MA, Goh F, Burns BP, Neilan BA. Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology. 2009;7:82–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Goh F, Allen MA, Leuko S, Kawaguchi T, Decho AW, Burns BP, et al. Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J. 2009;3:383–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    Brody SS. New excited state of chlorophyll. Science. 1958;128:838–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    Lamb JJ, Røkke G, Hohmann-Marriott MF. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica. 2018;56:105–24.CAS 
    Article 

    Google Scholar 
    Hahn T, Schulz M, Stadtmüller R, Zayed A, Muffler K, Lang S, et al. Cationic dye for the specific determination of sulfated polysaccharides. Anal Lett. 2016;49:1948–62.CAS 
    Article 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Li D, Luo R, Liu CM, Leung CM, Ting HF, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3(e1165).Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    Huntemann M, Ivanova NN, Mavromatis K, James Tripp H, Paez-Espino D, Palaniappan K, et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Standards in Genomic. Sciences. 2015;10:4–9.
    Google Scholar 
    Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res. 2007;36:534–8.SUPPL.1Article 

    Google Scholar 
    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc National Acad Sci USA 2011;108:12776–81.CAS 
    Article 

    Google Scholar 
    Fukuda M, Hiraoka N, Akama TO, Fukuda MN. Carbohydrate-modifying sulfotransferases: Structure, function, and pathophysiology. J Biol Chem. 2001;276:47747–50.CAS 
    PubMed 
    Article 

    Google Scholar 
    Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, et al. A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci USA 2006;103:81–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    Genicot SM, Groisillier A, Rogniaux H, Meslet-Cladière L, Barbeyron T, Helbert W. Discovery of a novel iota carrageenan sulfatase isolated from the marine bacterium Pseudoalteromonas carrageenovora. Front Chem. 2014;2:1–15.CAS 
    Article 

    Google Scholar 
    Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    Fernando IPS, Sanjeewa KKA, Samarakoon KW, Lee WW, Kim HS, Kim EA, et al. FTIR characterization and antioxidant activity of water soluble crude polysaccharides of Sri Lankan marine algae. Algae. 2017;32:75–86.CAS 
    Article 

    Google Scholar 
    Papineau D, Walker JJ, Mojzsis SJ, Pace NR. Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol. 2005;71:4822–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wong HL, Smith DL, Visscher PT, Burns BP. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci Rep. 2015;5:1–17. 15607
    Google Scholar 
    Pereira SB, Mota R, Vieira CP, Vieira J, Tamagnini P. Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep. 2015;5:1–16.CAS 

    Google Scholar 
    Rossi F, De Philippis R. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life. 2015;5:1218–38.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCandless EL, Craigie JS. Sulfated polysaccharides in red and brown algae. Ann Rev Plant Physiol. 1979;30:41–53.CAS 
    Article 

    Google Scholar 
    Usov AI, Bilan MI. Fucoidans-sulfated polysaccharides of brown algae. Russ Chem Rev. 2009;78:785–99.CAS 
    Article 

    Google Scholar 
    Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs. 2011;9:196–233.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Al Disi ZA, Zouari N, Dittrich M, Jaoua S, Al-Kuwari HAS, Bontognali TRR. Characterization of the extracellular polymeric substances (EPS) of Virgibacillus strains capable of mediating the formation of high Mg-calcite and protodolomite. Mar Chem. 2019;216:103693.CAS 
    Article 

    Google Scholar 
    Diloreto ZA, Garg S, Bontognali TRR, Dittrich M. Modern dolomite formation caused by seasonal cycling of oxygenic phototrophs and anoxygenic phototrophs in a hypersaline sabkha. Sci Rep. 2021;11:1–13.Article 

    Google Scholar 
    Richert L, Golubic S, Le Guédès R, Ratiskol J, Payri C, Guezennec J. Characterization of exopolysaccharides produced by cyanobacteria isolated from Polynesian microbial mats. Curr Microbiol. 2005;51:379–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    Raguénès G, Moppert X, Richert L, Ratiskol J, Payri C, Costa B, et al. A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a “kopara” mat located in Rangiroa, an atoll of French Polynesia. Curr Microbiol. 2004;49:145–51.PubMed 
    Article 

    Google Scholar 
    Moppert X, Le Costaouec T, Raguenes G, Courtois A, Simon-Colin C, Crassous P, et al. Investigations into the uptake of copper, iron and selenium by a highly sulphated bacterial exopolysaccharide isolated from microbial mats. J Ind Microbiol Biotechnol. 2009;36:599–604.CAS 
    PubMed 
    Article 

    Google Scholar 
    González-Hourcade M, del Campo EM, Braga MR, Salgado A, Casano LM. Disentangling the role of extracellular polysaccharides in desiccation tolerance in lichen-forming microalgae. First evidence of sulfated polysaccharides and ancient sulfotransferase genes. Environ Microbiol. 2020;22:3096–111.PubMed 
    Article 

    Google Scholar 
    De Souza MCR, Marques CT, Dore CMG, Da Silva FRF, Rocha HAO, Leite EL. Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. J Appl Phycol. 2007;19:153–60.Article 

    Google Scholar 
    Jayawardena TU, Wang L, Asanka Sanjeewa KK, In Kang S, Lee JS, Jeon YJ. Antioxidant potential of sulfated polysaccharides from Padina boryana; protective effect against oxidative stress in in vitro and in vivo zebrafish model. Mar Drugs. 2020;18:1–14.
    Google Scholar 
    Baba M, Snoeck R, Pauwels R, De Clercq E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988;32:1742–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ghosh T, Chattopadhyay K, Marschall M, Karmakar P, Mandal P, Ray B. Focus on antivirally active sulfated polysaccharides: From structure-activity analysis to clinical evaluation. Glycobiology. 2009;19:2–15.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bakunina IY, Nedashkovskaya OI, Alekseeva SA, Ivanova EP, Romanenko LA, Gorshkova NM, et al. Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Mikrobiologiya. 2002;71:49–55.
    Google Scholar 
    Descamps V, Colin S, Lahaye M, Jam M, Richard C, Potin P, et al. Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol. 2006;8:27–39.CAS 
    Article 

    Google Scholar 
    Mann AJ, Hahnke RL, Huang S, Werner J, Xing P, Barbeyron T, et al. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl Environ Microbiol. 2013;79:6813–22.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hehemann JH, Boraston AB, Czjzek M. A sweet new wave: Structures and mechanisms of enzymes that digest polysaccharides from marine algae. Curr Opin Struct Biol. 2014;28:77–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    Thomas F, Bordron P, Eveillard D, Michel G. Gene expression analysis of Zobellia galactanivorans during the degradation of algal polysaccharides reveals both substrate-specific and shared transcriptome-wide responses. Front Microbiol. 2017;8:1–14.CAS 
    Article 

    Google Scholar 
    Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia. PLoS ONE. 2012;7:1–11.
    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    Bengtsson MM, Øvreås L. Planctomycetes dominate biofilms on surfaces of the kelp Laminaria hyperborea. BMC Microbiol. 2010;10:1–12.Article 

    Google Scholar 
    Kim JW, Brawley SH, Prochnik S, Chovatia M, Grimwood J, Jenkins J, et al. Genome analysis of Planctomycetes inhabiting blades of the red alga Porphyra umbilicalis. PLoS ONE. 2016;11:1–22.
    Google Scholar 
    Glöckner FO, Kube M, Bauer M, Teeling H, Lombardot T, Ludwig W, et al. Complete genome sequence of the marine planctomycete Pirellula sp. strain 1. Proc Natl Acad Sci USA 2003;100:8298–303.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bayer K, Jahn MT, Slaby BM, Moitinho-Silva L, Hentschel U. Marine sponges as Chloroflexi hot spots: Genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems. 2018;3:1–19.Article 

    Google Scholar 
    Robbins SJ, Song W, Engelberts JP, Glasl B, Slaby BM, Boyd J, et al. A genomic view of the microbiome of coral reef demosponges. ISME J. 2021;15:1641–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salyers AA, O’Brien M. Cellular location of enzymes involved in chondroitin sulfate breakdown by Bacteroides thetaiotaomicron. J Bacteriol. 1980;143:772–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Campbell MA, Grice K, Visscher PT, Morris T, Wong HL, White RA, et al. Functional gene expression in Shark Bay hypersaline microbial mats: adaptive responses. Front Microbiol. 2020;11:1–16.Article 

    Google Scholar 
    Van Vliet DM, Ayudthaya SPN, Diop S, Villanueva L, Stams AJM, Sánchez-Andrea I. Anaerobic degradation of sulfated polysaccharides by two novel Kiritimatiellales strains isolated from black sea sediment. Front Microbiol. 2019;10:1–16.Article 

    Google Scholar 
    Bäumgen M, Dutschei T, Bornscheuer UT. Marine polysaccharides: occurrence, enzymatic degradation and utilization. ChemBioChem. 2021;22:2247–56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Helbert W. Marine polysaccharide sulfatases. Front Mar Sci. 2017;4:1–10.Article 

    Google Scholar 
    Ficko-Blean E, Préchoux A, Thomas F, Rochat T, Larocque R, Zhu Y, et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun. 2017;8:1–7.CAS 
    Article 

    Google Scholar 
    McLean MW, Williamson FB. Glycosulphatase from Pseudomonas carrageenovora, purification and some properties. Eur J Biochem. 1979;101:497–505.CAS 
    PubMed 
    Article 

    Google Scholar 
    Mclean MW, Williamson FB Neocarratetraose 4-O-Monosulphate B-Hydrolase from Pseudomonas carrageenovora. 1981;456:447–56.Suarez-Gonzalez P, Reitner J. Ooids forming in situ within microbial mats (Kiritimati atoll, central Pacific). PalZ. 2021;95:809–21.Article 

    Google Scholar 
    Arp G, Helms G, Karlinska K, Schumann G, Reimer A, Reitner J, et al. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, central Pacific. Geomicrobiol J. 2012;29:29–65.CAS 
    Article 

    Google Scholar  More

  • in

    ROV observations reveal infection dynamics of gill parasites in midwater cephalopods

    Parasites have frequently been observed on the gills of coleoid cephalopods during ROV dives in the mesopelagic waters of the Monterey Submarine Canyon. Here, we demonstrate that at least two parasite species can be distinguished from ROV-collected specimens. Based on morphology, the first parasite was identified as the protist Hochbergia cf. moroteuthensis. Although the original description of H. moroteuthensis struggled to assign a taxonomic rank, the authors noted that the presence of trichocysts and an apical pore bear similarities to those of dinoflagellates in an encysted life stage29,30. Using Sanger sequencing and dinoflagellate cyst-specific primers, we confirm this parasite to be a dinoflagellate that forms a sister group to members of the Oodinium genus. The second parasite could not be matched to any documented morphological descriptions, and DNA barcoding was only able to resolve a short sequence that does not provide for a reliable identification.Hochbergia moroteuthensis appears to be a common parasite of midwater cephalopods and has previously been collected off the gills of twenty cephalopod species29,30. These include five taxa investigated here (C. calyx, V. infernalis, Galiteuthis spp., Gonatus spp. and Japetella diaphana), with Taonius sp. new to the list. While H. cf. moroteuthensis found in this study was somewhat smaller than the type series (0.5–1.4 mm versus 1.19–1.99)30, it was within the range of those reported by McLean et al.29 on the squids Stigmatoteuthis dofleini Pfeffer, 1912 and Abralia trigonura Berry, 1913 (i.e. 0.56 to 1.10 mm on average in length)29. The latter authors noticed that parasite size, color (i.e. white to yellow) and thecal plate morphology may differ between host species, which could indicate multiple Hochbergia species. It should, however, be noted that it is unknown whether H. moroteuthensis maximum growth is dependent on host size or whether the investigated parasites were simply in different growth stages given the study’s relatively small samples sizes. Although we did not compare H. cf. moroteuthensis morphology across hosts in great detail, the partial 18S rRNA sequences obtained for parasites on Gonatus berryi and Chiroteuthis calyx were identical. Further research is therefore warranted to investigate species-specific parasite differences and speciation among hosts.The genetic relatedness between H. cf. moroteuthensis and its Oodinium sister group is further supported by several morphological features. First, the lack of distinct dinoflagellate characters, ovoid shape and the presence of trichocysts, have also been noted for Oodinium cysts41,42,43. McLean et al.29 further reported that the nucleus of the single-celled H. moroteuthensis cyst contains diffuse chromatin, a feature unlike most dinoflagellates that possess well-defined rod-like chromosomes42. Remarkably, dinoflagellates within Oodinium are known to alternate between both non-dinokaryotic and dinokaryotic nuclei within their life cycles, which could explain H. moroteuthensis’ diffuse chromatin42,43. Similarities between H. moroteuthensis and Oodinium further extend to the parasitic life style with primarily pelagic hosts. Dinoflagellates in the Oodinium genus are all known to be ectoparasitic, infecting ctenophores, chaetognaths, annelids, larvaceans and a hydromedusa41,43,44,45,46.In spite of these similarities, there are also several noteworthy morphological differences between H. moroteuthensis and members of the Oodinium genus. Young Oodinium cysts generally have a white to yellow coloring, with older cysts taking a yellow–brown or dark brown tint41,43,44. Oodinium cysts also possess relatively simple thecal plates and above all, have a distinct peduncle, or stalk, with which they attach to the host and which is thought to serve as feeding apparatus41,43,47. Maximum lengths for Oodinium cysts have been reported up to 0.39 mm43,46. In contrast, cysts in H. moroteuthensis possess a white to yellow coloring, an intricate pattern of triangular plates, reach sizes up to 1.99 mm long, and have a simple holdfast area with an oval aperture that likely anchors them to the host30. Currently, both Oodinium and Hochbergia form a genetically distinct clade within the Dinophyceae and analysis of further specimens and genetic markers might provide more insight into their relatedness and specialization on primarily pelagic hosts. Additionally, analysis of fast- and slow-evolving genetic markers might resolve the polytomy observed in the phylogenetic trees, which were also present in the phylogenetic reconstruction of the DINOREF reference database by Mordret et al.32.The genetic similarity of H. cf. moroteuthensis to an unidentified eukaryote from the water column and the fact that we encountered the protozoans in an encysted stage, strongly suggests that these dinoflagellates infect their cephalopod hosts through a free-living life stage. Many parasitic dinoflagellates, including Oodinium, alternate between a motile free-living stage—the dinospore—that forms a vegetative feeding stage—the trophont—upon attachment to the host41,47,48. During this vegetative stage, the trophont grows greatly in size but without cellular division. Once mature, the trophont detaches from the host to divide into multiple flagellated dinospores. The dinospores disperse into the water column, free to infect new hosts (Fig. 6)41,47,48.Figure 6Theorized life cycle of Hochbergia moroteuthensis. (a) The vegetative trophont (feeding life stage) grows without cellular division on the cephalopod’s gills. (b) The mature trophont detaches and (c) divides into motile dinospores, (d) free to infect new hosts in the water column. Illustration (b) trophont adapted from Shinn & McLean30.Full size imageSuch a free-living life stage is consistent with H. moroteuthensis’ wide geographic distribution. Free-living dinospores are easily dispersed by ocean currents, and observations in both the North Pacific Ocean and the Gulf of Mexico could indicate large-scale ocean connectivity, potentially beyond the distribution reported here29. This dispersal may also offer H. moroteuthensis a wide range of infection possibilities and explain why trophonts are found in twenty-one different cephalopod taxa. Nevertheless, population genetic structure needs to be investigated, as it is currently unknown if the parasites represent multiple species.Free-living dinospores might also explain H. moroteuthensis’ location on the exterior gill tissue. With dinospores free in the water column, the fastest pathway to a cephalopod’s interior is through ‘inhalation’. In this process, cephalopods actively force water through their gills, making these the first organs Hochbergia would encounter. Respiratory organs give direct access to the cephalopod’s blood stream, and therefore offer a suitable environment (i.e. nutrient and oxygen rich) for development into a trophont. Gills also provide interstices that could simply trap dinospores. Either way, there was only one occasion (i.e. out of 355) where trophonts were seen on other body parts besides the gills (Fig. 4e). In comparison, several Oodinium parasites are also known to attach to specific host-body parts, apparently preferring sites involved in locomotor movement. For instance, Oodinium jordani McLean & Nielsen, 1989 is known to attach to the fin of the chaetognath Sagitta elegans Verrill, 187346, while O. pouchetti is mostly found on the tail of appendicularians41, and Oodinium sp. collected off various ctenophores appears to prefer attachment close to or within the beating comb rows44. Whether these surface areas offer highest encounter rates or provide a physical benefit such as enhanced oxygenation remains unknown.The increased prevalence of H. cf. moroteuthensis observed in the most abundant cephalopod, Chiroteuthis, and in the other adult cephalopods is in line with infection dynamics known from other wildlife parasites, where the probability of a parasitic infection increases with host density and age49,50,51. Following this, dinospores in the Monterey Submarine Canyon have more opportunities to encounter common squids like Chiroteuthis52 and longer-lived cephalopods. Alternatively, it is possible that the increased parasite load in adults is simply the result of larger gill surface areas when compared to juveniles. However, when comparing prevalence between host species, it should be noted that the maximum adult sizes for C. calyx (up to 100 mm in mantle length, ML) are smaller than those of Galiteuthis (500 mm ML), Taonius (660 mm ML) and Japetella (144 mm ML) among specimens found in the Monterey Submarine Canyon53,54.Other factors that might explain the observed prevalence include parasite preferences for host physiology (e.g. respiration rates) or confinement to a certain depth range18. Although Chiroteuthis, Galiteuthis, Taonius and Japetella partially overlap in their depth distributions, Chiroteuthis generally remains above the core of the oxygen minimum zone, located around 700 m in Monterey Bay52,55. Galiteuthis, on the other hand, has a bimodal distribution, with older individuals known to migrate below the oxygen minimum core52,55,56. If dinospore viability is restricted to more shallow depths, the probability of infection for Galiteuthis could decrease when living at deeper depths. This is further supported by Taonius, which showed a comparable bimodal distribution to Galiteuthis52 and shared a similar parasite prevalence. Furthermore, Japetella is the deepest living cephalopod investigated and harbored relatively few Hochbergia trophonts. In spite of this, it is unknown how long it takes for H. moroteuthensis dinospores to develop into mature trophonts and over what time frames they may accumulate on their hosts. Lab-based experiments with Oodinium sp. on the ctenophore Beroe abyssicola Mortensen, 1927 showed that trophonts needed approximately 20 days to grow from 35 µm in length to their mature size of 350 µm at 10 °C44. Given that H. moroteuthensis can grow over five times larger and lives at colder temperatures depending on its host distribution, growth periods may be substantially longer.When looking at the prevalence of H. cf. moroteuthensis over time, only Taonius appeared to be showing an increase in infected individuals over the years. Present results, however, are insufficient to determine whether this increase is the result of environmental change or part of natural variability. We therefore recommend continued monitoring to determine long term trends. Based on the monthly prevalence, it is likely that Chiroteuthis acts as a reservoir for Hochbergia parasites throughout the year. Galiteuthis, Japetella and Taonius show more seasonal dynamics. It may be that the reported seasonality is related to upwelling events or environmental cues promoting dinospore formation (e.g. increasing temperatures)50. Alternatively, cephalopods might be more susceptible to infections in certain months, or have higher resistance in others. Taonius, for example, had a markedly lower parasite load on average than Galiteuthis despite similar prevalence estimates (Tables 1 and 2), potentially indicating some sort of resistance mechanism. More research is warranted to confirm any host resistance and the influence of depth or seasonal effects.The other parasite type found in ROV-collected specimens of Vampyroteuthis infernalis and Gonatus spp. needs further characterization. Although DNA barcoding was able to resolve a short sequence that potentially places it within the phylum Apicomplexa, it appears more likely that this genetic material originated from contamination with a different parasite. Apicomplexa reported in cephalopods generally infect the digestive tract and are morphologically different from the parasites observed here19.In conclusion, our findings highlight the need for further investigation of cephalopods and their gill parasites. Considering that parasites influence biodiversity and that cephalopods form key links in pelagic food webs, future research should be focused at assessing potential effects on cephalopod physiology. For example, if H. moroteuthensis limits longevity or reproduction in common squids like C. calyx, then changes in parasite abundance might result in cascading effects on abundance of Chiroteuthis’ prey, predators and competitors. Additionally, baseline estimates of parasite prevalence are crucial to fully understand whether midwater host-parasite systems are at risk from increasing anthropogenic stressors and how they will change over time. While ROV observations have proven key to estimate prevalence and infection intensity here, trawled specimens continue to be valuable for verification of parasite species and obtaining material for genetic analyses, even if slightly damaged. We therefore recommend combining ROV observations with periodic trawling in future studies, since ROVs may not reveal smaller parasites, early infections or parasites in animals with tissue that is not transparent. More

  • in

    Trees are dying much faster in northern Australia — climate change is probably to blame

    Australia’s tropical rainforests are some of the oldest in the world.Credit: Alexander Schenkin

    The rate of tree dying in the old-growth tropical forests of northern Australia each year has doubled since the 1980s, and researchers say climate change is probably to blame.The findings, published today in Nature1, come from an extraordinary record of tree deaths catalogued at 24 sites in the tropical forests of northern Queensland over the past 49 years.“Trees are such long-living organisms that it really requires huge amounts of data to be able to detect changes in such rare events as the death of a tree,” says lead author David Bauman, a plant ecologist at the University of Oxford, UK. The sites were initially surveyed every two years, then every three to four years, he explains, and the analysis focused on 81 key species.Bauman and his team recorded that 2,305 of these trees have died since 1971. But they calculated that, from the mid-1980s, tree mortality risk increased from an average of 1% a year to 2% a year (See ‘Increasing death rate’).

    Bauman says that trees help to slow global warming because they absorb carbon dioxide, so an increase in tree deaths reduces forests’ carbon-capturing ability. “Tropical forests are critical to climate change, but they’re also very vulnerable to it,” he explains.Climate changeThe study found that the rise in death rate occurred at the same time as a long-term trend of increases in the atmospheric vapour pressure deficit, which is the difference between the amount of water vapour that the atmosphere can hold and the amount of water it does hold at a given time. The higher the deficit, the more water trees lose through their leaves. “If the evaporative demand at the leaf level can’t be matched by water absorption in fine roots, it can lead to leaves wilting, whole branches dying and, if the stress is sustained, to tree death,” Bauman says.The researchers looked at other climate-related trends — including rising temperatures and an estimate of drought stress in soils — but they found that the drying atmosphere had the strongest effect. “What we show is that this increase [in tree mortality risk] also closely followed the increase in atmospheric water stress, or the drying power of air, which is a consequence of the temperature increase due to climate change,” Bauman explains.Of the 81 tree species that the team studied, 70% showed an increase in mortality risk over the study period, including the Moreton Bay chestnut (Castanospermum australe), white aspen (Medicosma fareana) and satin sycamore (Ceratopetalum succirubrum).The authors also saw differences in mortality in the same tree species across plots, depending on how high the atmospheric vapour pressure deficit was in each plot.“This is one data set where the trees have been monitored in reasonably good detail since the early ’70s, and this is a really top-notch analysis of it,” says Belinda Medlyn, an ecosystem scientist at University of Western Sydney, Australia.But she says that more experiments are needed to determine whether the vapour pressure deficit is the biggest climate-related contributor to the increase in tree deaths. More

  • in

    Parasite names, mouse rejuvenation and toxic sunscreen

    Young cerebrospinal fluid probably improves the conductivity of the neurons in ageing mice.Credit: Qilai Shen/Bloomberg/Getty

    Young brain fluid improves memory in old miceCerebrospinal fluid (CSF) from young mice can improve memory function in older mice, researchers report in Nature (T. Iram et al. Nature 605, 509–515; 2022).A direct brain infusion of young CSF probably improves the conductivity of the neurons in ageing mice, which improves the process of making and recalling memories.CSF is a cocktail of essential ions and nutrients that cushions the brain and spinal cord and is essential for normal brain development. But as mammals age, CSF loses some of its punch. Those changes might affect cells related to memory, says co-author Tal Iram, a neuroscientist at Stanford University in California.The researchers found that young CSF helps ageing mice to generate more early-stage oligodendrocytes, cells in the brain that produce the insulating sheath around nerve projections and help to maintain brain function.The team suggest that the improvements are largely due to a specific protein in the fluid.“This is super exciting from the perspective of basic science, but also looking towards therapeutic applications,” says Maria Lehtinen, a neurobiologist at Boston Children’s Hospital in Massachusetts.Gender bias worms its way into parasite namingA study examining the names of nearly 3,000 species of parasitic worm discovered in the past 20 years reveals a markedly higher proportion named after male scientists than after female scientists — and a growing appetite for immortalizing friends and family members in scientific names.Robert Poulin, an ecological parasitologist at the University of Otago in Dunedin, New Zealand, and his colleagues combed through papers published between 2000 and 2020 that describe roughly 2,900 new species of parasitic worm (R. Poulin et al. Proc. R. Soc. B https://doi.org/htqn; 2022). The team found that well over 1,500 species were named after their host organism, where they were found or a prominent feature of their anatomy.

    Source: R. Poulin et al. Proc. R. Soc. B https://doi.org/htqn (2022)

    Many others were named after people, ranging from technical assistants to prominent politicians. But just 19% of the 596 species named after eminent scientists were named after women, a percentage that barely changed over the decades (see ‘Parasite name game’). Poulin and his colleagues also noticed an upward trend in the number of parasites named after friends, family members and even pets of the scientists who formally described them. This practice should be discouraged, Poulin argues.

    Sea anemones turn oxybenzone into a light-activated agent that can bleach and kill corals.Credit: Georgette Douwma/Getty

    Anemones suggest why sunscreen turns toxic in seaA common but controversial sunscreen ingredient that is thought to harm corals might do so because of a chemical reaction that causes it to damage cells in the presence of ultraviolet light.Researchers have discovered that sea anemones, which are similar to corals, make the sun-blocking molecule oxybenzone water-soluble by tacking a sugar onto it. This inadvertently turns oxybenzone into a molecule that — instead of blocking UV light — is activated by sunlight to produce free radicals that can bleach and kill corals. The animals “convert a sunscreen into something that’s essentially the opposite of a sunscreen”, says Djordje Vuckovic, an environmental engineer at Stanford University in California.It’s not clear how closely these laboratory-based studies mimic the reality of reef ecosystems. The concentration of oxybenzone at a coral reef can vary widely, depending on factors such as tourist activity and water conditions. And other factors threaten the health of coral reefs; these include climate change, ocean acidification, coastal pollution and overfishing. The study, published on 5 May (D. Vuckovic et al. Science 376, 644–648; 2022) does not show where oxybenzone ranks in the list. More

  • in

    Distance to public transit predicts spatial distribution of dengue virus incidence in Medellín, Colombia

    DataAll data was processed and analyzed using R (R Core Team, Version 4.0.3).Dengue case data were collected and shared by the Alcaldía de Medellín, Secretaría de Salud. In Medellin, dengue case surveillance is conducted by public health institutions that classify and report all cases that meet the WHO clinical dengue case criteria for a probable case to Medellin’s Secretaría de Salud through SIVIGILA (“el Sistema Nacional de Vigilancia en Salud Publica). All case data were de-identified and aggregated to the SIT Zone level.Human public transit usage and movement data were collected and shared by the Área Metropolitana del Valle de Aburrá for 50–200 respondents per SIT Zone. The “Encuestas Origen Destino” (Origen Destination Surveys) were conducted in 2005, 2011, and 2016 and published in 2006, 2012, and 2017, with survey methods described by the Área Metropolitana del Valle de Aburrá25. Survey respondents include a randomly selected subset of all Medellin residents in each SIT zone regardless of whether they use public transit or not. Survey respondents reported the start and end locations, purpose for travel, and mode of travel for all movement over the last 24 h from the time the survey was administered. Respondents reported all modes of movement, including public transit, private transit, and movement on foot. The results of the survey published in 2017 are published online by the Área Metropolitana del Valle de Aburrá26, and select data are available through the geodata-Medellin open data portal27. The results and data of the survey published in 2012 are not publicly available and were obtained directly from the Área Metropolitana del Valle de Aburrá.The public transit usage survey data were also used to extract socioeconomic data to the SIT zone; surveyors also reported basic demographic data including household Estrato, which was averaged per SIT zone to estimate zone socioeconomic status. “Estrato” measures socioeconomic status on a scale from 1 (lowest) to 6 (highest). This system is used by the government of Colombia to allocate public services and subsidies (Law 142, 1994). Data from the public transit usage survey were used to extract socioeconomic status data because it is the only location available where the spatial scale of the data matched the spatial scale of the SIT zone.Data on the location of Medellín public transit lines was downloaded as shape files from the geodata-Medellín open data portal27 and subset for each year to the set of transit lines that was available in that year. Data on the opening date of each Medellín public transit line was taken from the Medellín metro website28.Because census data at the zone level were not available for this study and only exists for 2005 and 2018, we used population estimates for each year downloaded from the WorldPop project29 and aggregated by SIT zone. The accuracy of WorldPop estimates were checked against available census data for 2005 and 2018 at the comuna level, accessed via the geodata- Medellín open data portal27.Ethical considerationsNo human subjects research was conducted. All data used was de-identified, and the analysis was conducted on a database of cases meeting the clinical criteria for dengue with no intervention or modification of biological, physical, psychological, or social variables. All methods were performed in accordance with the relevant guidelines and regulations.Data analysisQuantifying public transit usage and distance from nearest transit lineTo quantify public transit usage, we determined if each respondent reported using the metro, metroplus, or ruta alimentadora (supplementary bus route system integrated with the metro system) in the last 24 h. We then calculated the percent of respondents using the public transit system at least once for each SIT zone.To quantify the distance to the nearest public transit line, we calculated the distance from the center point of each zone to the closest metro, metroplus, tranvía, metrocable, ruta alimentadora, or escalera eléctrica. This was recalculated for each year, including new transit lines that were added within that year.Spatial autoregressive models of dengue incidenceDengue incidence per year at the level of the SIT zone was modeled using a fixed effects spatial panel model by maximum likelihood (R package splm30) as described in31. Our fixed effects were socioeconomic status, distance from public transit, a two-way interaction between these factors, and year. To weight dengue cases by population per SIT zone, the model contained a log offset of population per zone per year. Dengue case counts were log transformed after adding one to account for zones with zero dengue cases in a given year. Year was analyzed as a categorical variable to avoid smoothing epidemic years. All continuous variables were scaled to enable comparison of effect size. Because these panel models require balanced data across time, data was truncated to SIT zones that had data for all years available (247 remaining of 291). Spatial dependency was evaluated, and the model was selected using the Hausman specification test and locally robust panel Lagrange Multiplier tests for spatial dependence. Based on a significant Hausman specification test result, which indicates a poor specification of the random effect model, a fixed effect model was chosen. This result is supported by the fact that we had a nearly exhaustive sample of SIT zones in the Medellin metro area. Lagrange multiplier tests were used to determine the most appropriate spatial dependency specifications. Based on the results of the Lagrange multiplier tests, a Spatial Autoregressive (SAR) model was the most appropriate to incorporate spatial dependency; a SAR model considers that the number of dengue cases in a SIT zone depends on the number in neighboring zones.Because public transit usage was a measurement taken during just two of the study years, we constructed an additional fixed effects spatial panel model by maximum likelihood model of dengue incidence in just 2011 and 2016 that included ridership as an additional predictor variable. Our fixed effects were year, socioeconomic status, distance from public transit, a two-way interaction between socioeconomic status and distance from public transit, percent utilizing public transit, and a two-way interaction between socioeconomic status and percent utilizing public transit. As in our model of all years, the model contained a log offset of population per zone per year and dengue case counts were log transformed after adding one to account for zones with zero dengue cases in a given year, year was analyzed as a categorical variable, and all continuous variables were scaled to enable comparison of effect size. The data was truncated to SIT zones that had data for all years available (251 remaining of 291). We used the same model selection process, and again a fixed effect model was chosen, and based on the results of the Lagrange multiplier tests, a Spatial Autoregressive (SAR) model was determined the most appropriate to incorporate spatial dependency. More

  • in

    Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids

    Kelly, A. E. & Goulden, M. L. Rapid shifts in plant distribution with recent climate change. Proc. Natl. Acad. Sci. U.S.A. 105, 11823–11826. https://doi.org/10.1073/pnas.0802891105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104. https://doi.org/10.1371/journal.pbio.2001104 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swinnen, J., Burkitbayeva, S., Schierhorn, F., Prishchepov, A. V. & Müller, D. Production potential in the “bread baskets” of Eastern Europe and Central Asia. Global Food Secur. 14, 38–53. https://doi.org/10.1016/j.gfs.2017.03.005 (2017).Article 

    Google Scholar 
    Henry, R. J. Innovations in plant genetics adapting agriculture to climate change. Curr. Opin. Plant Biol. 56, 168–173. https://doi.org/10.1016/j.pbi.2019.11.004 (2020).Article 
    PubMed 

    Google Scholar 
    Stokes, C. & Howden, M. Adapting Agriculture to Climate Change: Preparing Australian Agriculture, Forestry and Fisheries for the Future (Csiro Publishing, 2010).Book 

    Google Scholar 
    Bräutigam, K. et al. Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol. Evol. 3, 399–415. https://doi.org/10.1002/ece3.461 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yaish, M. W., Colasanti, J. & Rothstein, S. J. The role of epigenetic processes in controlling flowering time in plants exposed to stress. J. Exp. Bot. 62, 3727–3735. https://doi.org/10.1093/jxb/err177 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yaish, M. W. DNA methylation-associated epigenetic changes in stress tolerance of plants. In Molecular Stress Physiology of Plants (eds Rout, G. R. & Das, A. B.) 427–440 (Springer India, 2013).Chapter 

    Google Scholar 
    Suji, K. K. & Joel, A. J. An epigenetic change in rice cultivars underwater stress conditions. Electron. J. Plant Breed. 1, 1142–1143 (2010).
    Google Scholar 
    Peng, H. & Zhang, J. Plant genomic DNA methylation in response to stresses: Potential applications and challenges in plant breeding. Prog. Nat. Sci. 19, 1037–1045. https://doi.org/10.1016/j.pnsc.2008.10.014 (2009).CAS 
    Article 

    Google Scholar 
    Baduel, P. & Colot, V. The epiallelic potential of transposable elements and its evolutionary significance in plants. Philos. Trans. R. Soc. B 376, 20200123. https://doi.org/10.1098/rstb.2020.0123 (2021).CAS 
    Article 

    Google Scholar 
    Labra, M. et al. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol. 4, 694–699. https://doi.org/10.1055/s-2002-37398 (2002).CAS 
    Article 

    Google Scholar 
    Wang, W.-S. et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J. Exp. Bot. 62, 1951–1960. https://doi.org/10.1093/jxb/erq391 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Šmarda, P., Bureš, P., Horová, L., Foggi, B. & Rossi, G. Genome size and GC content evolution of Festuca: Ancestral expansion and subsequent reduction. Ann. Bot. 101, 421–433. https://doi.org/10.1093/aob/mcm307 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tomczyk, P. P., Kiedrzyński, M., Jedrzejczyk, I., Rewers, M. & Wasowicz, P. The transferability of microsatellite loci from a homoploid to a polyploid hybrid complex: An example from fine-leaved Festuca species (Poaceae). PeerJ 8, e9227. https://doi.org/10.7717/peerj.9227 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piękoś-Mirkowa, H. & Mirek, Z. Distribution patterns and habitats of endemic vascular plants in the Polish Carpathians. Acta Soc. Bot. Pol. 78, 321–326 (2009).Article 

    Google Scholar 
    Kiedrzyński, M., Zielińska, K. M., Rewicz, A. & Kiedrzyńska, E. Habitat and spatial thinning improve the Maxent models performed with incomplete data. J. Geophys. Res. Biogeosci. 122(6), 1359–1370. https://doi.org/10.1002/2016JG003629 (2017).Article 

    Google Scholar 
    Rewicz, A. et al. Morphometric traits in the fine-leaved fescues depend on ploidy level: The case of Festuca amethystina L. PeerJ 6, e5576. https://doi.org/10.7717/peerj.5576 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiedrzyński, M. et al. Tetraploids expanded beyond the mountain niche of their diploid ancestors in the mixed-ploidy grass Festuca amethystina L. Sci. Rep. 11, 18735 (2021).ADS 
    Article 

    Google Scholar 
    Mounger, J. et al. Epigenetics and the success of invasive plants. Philos. Trans. R. Soc. B 376, 20200117. https://doi.org/10.1098/rstb.2020.0117 (2021).CAS 
    Article 

    Google Scholar 
    Bewick, A. J. & Schmitz, R. J. Epigenetics in the wild. Elife 4, e07808. https://doi.org/10.7554/eLife.07808 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sahu, P. P. et al. Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep. 32(8), 1151–1159. https://doi.org/10.1007/s00299-013-1462-x (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alonso, C. et al. Interspecific variation across angiosperms in global DNA methylation: Phylogeny, ecology and plant features in tropical and Mediterranean communities. New Phytol. 224(2), 949–960. https://doi.org/10.1111/nph.16046 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Angers, B., Castonguay, E. & Massicotte, R. Environmentally induced phenotypes and DNA methylation: How to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19(7), 1283–1295. https://doi.org/10.1111/j.1365-294X.2010.04580.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Batog, J. & Wawro, A. Process of obtaining bioethanol from sorghum biomass using genome shuffling. Cellul. Chem. Technol. 53, 459–467 (2019).CAS 
    Article 

    Google Scholar 
    Richards, C. L., Schrey, A. W. & Pigliucci, M. Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15, 1016–1025. https://doi.org/10.1111/j.1461-0248.2012.01824.x (2012).Article 
    PubMed 

    Google Scholar 
    Li, N. et al. DNA methylation repatterning accompanying hybridization, whole genome doubling and homoeolog exchange in nascent segmental rice allotetraploids. New Phytol. 223(2), 979–992. https://doi.org/10.1111/nph.15820 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Róis, A. S. et al. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal. BMC Plant Biol. 13(1), 205. https://doi.org/10.1186/1471-2229-13-205 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, A. et al. DNA methylation in genomes of several annual herbaceous and woody perennial plants of varying ploidy as detected by MSAP. Plant Mol. Biol. Rep. 29, 784–793. https://doi.org/10.1007/s11105-010-0280-3 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Sokolova, D. A., Vengzhen, G. S. & Kravets, A. P. An Analysis of the correlation between the changes in satellite DNA methylation patterns and plant cell responses to the stress. Cell Bio 2, 163–171. https://doi.org/10.4236/cellbio.2013.23018 (2013).CAS 
    Article 

    Google Scholar 
    Johnson, L. I. & Tricker, P. J. Epigenomic plasticity within populations: Its evolutionary significance and potential. Heredity 105, 113–121. https://doi.org/10.1038/hdy.2010.25 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zheng, X. et al. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One 8(11), e80253. https://doi.org/10.1371/journal.pone.0080253 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karan, R., DeLeon, T., Biradar, H. & Subudhi, P. K. Salt Stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS One 7(6), e40203. https://doi.org/10.1371/journal.pone.0040203 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, C. L. & Pigliucci, M. Epigenetic inheritance. A decade into the extended evolutionary synthesis. Paradigmi 38, 463–494. https://doi.org/10.30460/99624 (2020).Article 

    Google Scholar 
    Chelaifa, H., Monnier, A. & Ainouche, M. Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). New Phytol. 186(1), 161–174. https://doi.org/10.1111/j.1469-8137.2010.03179.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Al-Lawati, A., Al-Bahry, S., Victor, R., Al-Lawati, A. H. & Yaish, M. W. Salt stress alters DNA methylation levels in alfalfa (Medicago spp.). Genet. Mol. Res. 15, 15018299. https://doi.org/10.4238/gmr.15018299 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewandowska-Gnatowska, E. et al. Is DNA methylation modulated by wounding-induced oxidative burst in maize?. Plant Physiol. Biochem. 82, 202–208. https://doi.org/10.1016/j.plaphy.2014.06.003 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marfil, C. et al. Changes in grapevine DNA methylation and polyphenols content induced by solar ultraviolet-B radiation, water deficit and abscisic acid spray treatments. Plant Physiol. Biochem. 135, 287–294. https://doi.org/10.1016/j.plaphy.2018.12.021 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zedek, F. et al. Endopolyploidy is a common response to UV-B stress in natural plant populations, but its magnitude may be affected by chromosome type. Ann. Bot. 126(5), 883–889. https://doi.org/10.1093/aob/mcaa109 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandey, N. & Pandey-Rai, S. Deciphering UV-B-induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression in Artemisia annua L. Planta 242(4), 869–879. https://doi.org/10.1007/s00425-015-2323-3 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Molinier, J. Genome and epigenome surveillance processes underlying UV exposure in plants. Genes 8(11), 316. https://doi.org/10.3390/genes8110316 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194. https://doi.org/10.1186/s13059-016-1059-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lira-Medeiros, C. F. et al. Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5, e10326. https://doi.org/10.1371/journal.pone.0010326 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, C. L., Verhoeven, K. J. F. & Bossdorf, O. Evolutionary significance of epigenetic variation. In Plant Genome Diversity Vol. 1 (eds Wendel, J. F. et al.) 257–274 (Springer Vienna, 2012).Chapter 

    Google Scholar 
    Paun, O. et al. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol. Biol. Evol. 27, 2465–2473. https://doi.org/10.1093/molbev/msq150 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, H. et al. Global DNA methylation patterns can play a role in defining terroir in grapevine (Vitis vinifera cv. Shiraz). Front. Plant Sci. 8, 130398. https://doi.org/10.3389/fpls.2017.01860 (2017).Article 

    Google Scholar 
    Herrera, C. M. & Bazaga, P. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol. 187(3), 867–876. https://doi.org/10.1111/j.1469-8137.2010.03298.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Portis, E., Acquadro, A., Comino, C. & Lanteri, S. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Sci. 166, 169–178. https://doi.org/10.1016/j.plantsci.2003.09.004 (2004).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. http://www.R-project.org (R Foundation for Statistical Computing, 2013).Schloerke, B. et al. GGally: Extension to “ggplot2” R package version 2.1.0. https://CRAN.R-project.org/package=GGally (2021).StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 10. http://www.statsoft.com (2011).Tomczyk, P. Phenotypic measurement of inbreeding depression in grasses—An overview of traits (Fenotypowe miary depresji wsobnej u traw—przegląd cech). Wiad. Bot. https://doi.org/10.5586/wb.2019.005 (2019).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315. https://doi.org/10.1002/joc.5086 (2017).Article 

    Google Scholar 
    Fox, J. & Weisberg, S. An {R} Companion to Applied Regression (Sage Publications, 2019).
    Google Scholar  More

  • in

    Barcoding and species delimitation of Iranian freshwater crabs of the Potamidae family (Decapoda: Brachyura)

    Yeo, D. C. J. et al. Global diversity of crabs (Crustacea: Decapoda: Brachyura). In Freshwater Animal Diversity Assessment (eds Balian, E. V. et al.). Hydrobiologia Vol. 595, 275–286 (2008).Álvarez, F. et al. Revision of the higher taxonomy of Neotropical freshwater crabs of the family Pseudothelphusidae, based on multigene and morphological analyses. Zool. J. Linn. Soc. 193, 973–1001 (2021).Article 

    Google Scholar 
    Ng, D. J. J. & Yeo, D. C. J. Terrestrial scavenging behaviour of the Singapore freshwater crab, Johora singaporensis (Crustacea: Brachyura: Potamidae). Nat. Singap. 6, 207–210 (2013).
    Google Scholar 
    Dobson, M. Freshwater crabs in Africa. Freshw. Forum 21, 3–26 (2004).
    Google Scholar 
    Dobson, M., Magana, A. M., Mathooko, J. M. & Ndegwa, F. K. Distribution and abundance of freshwater crabs (Potamonautes spp.) in rivers draining Mt Kenya, East Africa. Fundam. Appl. Limnol. 168, 271–279 (2007).Article 

    Google Scholar 
    Cumberlidge, N. et al. Freshwater crabs and the biodiversity crisis: Importance, threats, status, and conservation challenges. Biol. Conserv. 142, 1665–1673 (2009).Article 

    Google Scholar 
    Jouladeh-Roudbar, A., Ghanavi, H. R. & Doadrio, I. Ichthyofauna from Iranian freshwater: Annotated checklist, diagnosis, taxonomy, distribution and conservation. Assessment 21, 1–303 (2020).
    Google Scholar 
    Brandis, D., Storch, V. & Türkay, M. Taxonomy and zoogeography of the freshwater crabs of Europe, North Africa, and the Middle East (Crustacea, Decapoda, Potamidae). Senckenberg. Biol. 80, 5–56 (2000).
    Google Scholar 
    Keikhosravi, A. & Schubart, C. D. Description of a new freshwater crab species of the genus Potamon (Decapoda, Brachyura, Potamidae) from Iran, based on morphological and genetic characters. In Advances in Freshwater Decapod Systematics and Biology 115–133 (BRILL, 2014). https://doi.org/10.1163/9789004207615_008.Keikhosravi, A. & Schubart, C. D. Revalidation and redescription of Potamon elbursi Pretzmann, 1976 (Brachyura, Potamidae) from Iran, based on morphology and genetics. Open Life Sci. 9, 114–123 (2014).Article 

    Google Scholar 
    Keikhosravi, A., Naderloo, R. & Schubart, C. D. Morphological and molecular diversity in the freshwater crab Potamon ruttneri-P. gedrosianum species complex (Decapoda, Brachyura) indicate the need for taxonomic revision. Crustaceana 89, 129–139 (2016).Article 

    Google Scholar 
    Parvizi, E., Naderloo, R., Keikhosravi, A., Solhjouy-Fard, S. & Schubart, C. D. Multiple Pleistocene refugia and repeated phylogeographic breaks in the southern Caspian Sea region: Insights from the freshwater crab Potamon ibericum. J. Biogeogr. 45, 1234–1245 (2018).Article 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Aust. J. Zool. https://doi.org/10.1071/ZO9660275 (1994).Article 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 

    Google Scholar 
    Katoh, K. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    Article 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    Article 

    Google Scholar 
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    Article 

    Google Scholar 
    Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783 (1985).Article 

    Google Scholar 
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).CAS 
    Article 

    Google Scholar 
    Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).CAS 
    Article 

    Google Scholar 
    Masters, B. C., Fan, V. & Ross, H. A. Species delimitation—A geneious plugin for the exploration of species boundaries. Mol. Ecol. Resour. 11, 154–157 (2011).Article 

    Google Scholar  More

  • in

    Detection of spatial avoidance between sousliks and moles by combining field observations, remote sensing and deep learning techniques

    Our study combining field data and aerial imagery analysis clearly showed that the spotted souslik avoids close coexistence with another burrowing species, i.e. the European mole, in the period of low population abundance. This is the first study on this subject described in the available literature, as attention has been paid mainly to other parameters of the habitat so far14,18,20. The present results can (1) make a new contribution to the knowledge of the ecology of burrowing mammals and their interspecies relationships, (2) contribute to better designs of conservation and assessment of the quality of habitats of endangered burrowing mammals, and (3) indicate new possibilities of using remote sensing and deep learning methods in ecology and conservation. Below we will try to address each of these issues.The interaction between underground animals is not a new idea in ecology (e.g.22); however, this issue has not been analyzed for the mole and the souslik so far. This was probably related to the fact that the potential negative or positive relationships between these species are not intuitively obvious. The spatial distribution of underground tunnels of these animals is completely different: the mole builds an extensive network of horizontal tunnels close to the ground surface, while the souslik usually builds one deep nest burrow with a vertical entrance and possibly a small number of shallow safety burrows near the nest burrow. Moreover, the food preferences of the souslik and the mole differ, i.e. the former is mainly a herbivore, while the latter is an obligatory predator. There are also clear differences in the annual cycle: the mole is active all year round, and the souslik hibernates in an underground nest for about half a year from October to March. Thus, it seems that the emergence of competitive relationships between these two species is unlikely. Our study shows, however, that these species avoid each other in space, which raises the question of the mechanism of this relationship. Based on the knowledge of the biology of both species, some hypothetical mechanisms can be proposed.Although they are colonial animals, sousliks inhabit burrows alone (except for mother and offspring) and they have a strong behavioural trait of a negative reaction to the presence of other animals in their burrows and their close vicinity14,23. The negative reaction to other sousliks is a reflection of the intraspecific competition in the population and the territoriality of individuals. It is regulated by odour signals and the social structure of the population30,31. Koshev32 described aggressive reactions of free-ranging European sousliks to other vertebrate species that appeared near burrows: towards the reptile Lacerta trilineata, the bird Corvus frugilegus, and the mammal Mustela nivalis. Theoretically, the mole can get into the souslik’s burrow unintentionally when digging new tunnels. For souslik, the presence of moles in their nest burrow means a violation of its strictly defended territory and is probably a highly stressful episode. It can therefore be assumed that sousliks should choose places outside areas of frequent occurrence of other burrowing mammals to set up a nest burrow.It remains an open question whether avoidance of areas where the mole is often present may be important for the souslik during winter hibernation. Theoretically, the presence of moles in souslik burrows during hibernation may disturb this process and cause waking up and energy-consuming increases in metabolism, which may reduce winter survival. It is also unknown whether the mole can be a predator for the souslik during winter hibernation. Remains of rodent species were found in the digestive tracts of moles33; therefore, at least theoretically, the mole may use such a food source. On the other hand, remains of vertebrates, including the remains of moles, were sometimes found in the stomachs of sousliks18. The relationship between the souslik and the mole may therefore be more complex and require further research focused on this issue. It is possible that the moles can avoid the souslik colonies as well. This scenario seems also realistic, since the moles home ranges are likely much more dynamic than that of sousliks, that likely benefit from dwelling within an existing colony of the conspecifics.The spotted souslik protection requires the designation of special areas of conservation16. A number of various conservation activities are also routinely undertaken for this species, including regular monitoring of the population size, habitat monitoring, mowing, reduction of predation risk, and application of more invasive methods such as reintroduction. Similar activities are also performed for a closely related species, i.e. the European souslik Spermophilus citellus, in Europe. Importantly, in the current guidelines of souslik conservation, the issue of the competition with other species and its impact on spatial distribution is not considered. In turn, there is evidence in the literature that interspecies interactions may be important for the souslik population21. In periods of low abundance, when the survival of the population is at risk, the sousliks may have different habitat preferences than in periods of the abundant population20. It seems, therefore, that nowadays, when the souslik most often forms small populations, more attention should be paid to a wider range of factors and threats that may determine longer term population trends or the health condition, survival, and abundance of their colonies.Our study indicates that, in the period of low population abundance, the presence of other burrowing species may be an important factor determining the distribution of sousliks. This observation shows that in addition to the assessment of the area and condition of the habitat the presence of other potentially competitive species should also be taken into account in the analysis of population survival. In such a case, the actual area of habitats suitable for sousliks in a given location may turn out to be much lower than assumed. In our study area, the habitat suitable for the souslik was reduced from 105 ha to approx. 65 ha, i.e. by nearly 38%, but it probably is even smaller (compare Fig. 8). This observation has consequences for improvement of the reintroduction methods of sousliks (or other burrowing mammals), which are constantly of scientific interest20,34,35. Our results indicate that the reintroduction of sousliks should be carried out in places where there is the lowest probability of competition for resources including even shelter or space with other burrowing species and where adequate space for the settlement of the population is ensured.So far, investigations of the distribution of small burrowing mammals have been based on laborious field studies involving site inspections by trained observers (e.g.36,37,38). Our results show that, in certain conditions, high-resolution imagery can be successfully used to support studies of the distribution of such animals. As reported by other authors (e.g.7,10,12), however, such animals must produce clear signs of their presence in the environment. Evidence of the presence of the European mole, i.e. mounds of soil, in short vegetation habitats has shown that remote sensing can detect moles and their area of occupancy successfully. The advantage of these markers of the presence of moles is that the mounds are redundant and quite durable and can be visible in the environment for up to several months.By combining field research and remote sensing, it is also possible to study more sophisticated ecological issues, e.g. interspecies interactions. In this work, the remote estimation of the distribution of moles facilitated estimation of the actual habitat available to the souslik and excluded areas with the lowest probability of its occurrence. As a result, the population may be monitored more economically. Since the conservation guidelines recommend monitoring souslik populations by means of laborious inspections of transects, the indication of areas with no burrows may significantly reduce the amount of fieldwork without negative consequences for the accuracy of results. Some areas of the souslik occurrence are large, e.g. Świdnik (105 ha) or Pastwiska nad Huczwą (150 ha), and every 10 ha to be monitored means one day’s work for one observer (according to the calculations presented in the results). Our study showed that when the area of the occurrence of moles is excluded from the monitoring (Fig. 8), the error in estimating the size of the souslik population will be relatively small (0.9–8.7%). At the same time, the time devoted to the research can be limited by 14% or 38%, respectively. This suggests that our method can contribute to improved monitoring and management of these protected species, especially that souslik monitoring requires considerable research effort and has to be carried out twice a year.However, mole mounds may be underestimated by remote sensing, which can be seen in Fig. 7. Small mole mounds that are easily identified during field research may not be noticed by remote sensing. Such underestimation does not constitute a critical threat to the determination of the mole area according to the scheme shown in Fig. 8, since its marks are highly redundant. However, since there is currently little research on this subject, we recommend combining field research and remote sensing in assessments similar to ours. Finally, it is worth noting that, for a better understanding of the issue of the interactions between souslik and other burrowing species, it is advisable to use another remote sensing technique—telemetry. Telemetry studies are successfully conducted in Bulgarian souslik populations34 and their combination with studies of habitat selectivity dependent on other burrowing species may provide new and valuable insight into this issue. More