More stories

  • in

    International food trade benefits biodiversity and food security in low-income countries

    Sustainable Development Goals (United Nations, 2015); https://sustainabledevelopment.un.orgNilsson, M., Griggs, D. & Visbeck, M. Policy: map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).ADS 
    PubMed 

    Google Scholar 
    Lu, Y., Nakicenovic, N., Visbeck, M. & Stevance, A.-S. Policy: five priorities for the UN Sustainable Development Goals. Nature 520, 432–433 (2015).ADS 
    PubMed 

    Google Scholar 
    Xu, Z. et al. Impacts of international trade on global sustainable development. Nat. Sustain. https://doi.org/10.1038/s41893-020-0572-z (2020).Xu, Z. et al. Assessing progress towards sustainable development over space and time. Nature 577, 74–78 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liu, J. An integrated framework for achieving Sustainable Development Goals around the world. Ecol. Econ. Soc. 1, 11–17 (2018).
    Google Scholar 
    Zhao, Z. et al. Synergies and tradeoffs among Sustainable Development Goals across boundaries in a metacoupled world. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141749 (2020).Liu, J. in The International Encyclopedia of Geography: People, the Earth, Environment, and Technology (eds Richardson, D. et al.) 1–8 (John Wiley & Sons, 2020).Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Carole, D. & Ignacio, R.-I. Environmental impacts of food trade via resource use and greenhouse gas emissions. Environ. Res. Lett. 11, 035012 (2016).
    Google Scholar 
    Crist, E., Mora, C. & Engelman, R. The interaction of human population, food production, and biodiversity protection. Science 356, 260–264 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).ADS 
    CAS 

    Google Scholar 
    Delzeit, R., Zabel, F., Meyer, C. & Václavík, T. Addressing future trade-offs between biodiversity and cropland expansion to improve food security. Reg. Environ. Change 17, 1429–1441 (2017).
    Google Scholar 
    Marques, A. et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3, 628–637 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Porkka, M., Kummu, M., Siebert, S. & Varis, O. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLoS ONE 8, e82714 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. A., Smith, M. R., Fanzo, J., Remans, R. & DeFries, R. S. Trade and the equitability of global food nutrient distribution. Nat. Sustain. 1, 34–37 (2018).
    Google Scholar 
    MacDonald, G. K. et al. Rethinking agricultural trade relationships in an era of globalization. Bioscience 65, 275–289 (2015).
    Google Scholar 
    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).ADS 
    CAS 

    Google Scholar 
    Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
    Google Scholar 
    Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhary, A. & Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Change 38, 195–204 (2016).
    Google Scholar 
    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Green, J. M. H. et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1905618116 (2019).Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    PubMed 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).World Development Indicators (World Bank, 2020); https://data.worldbank.orgLiu, J. et al. Framing sustainability in a telecoupled world. Ecol. Soc. 18, 26 (2013).CAS 

    Google Scholar 
    Hull, V. & Liu, J. Telecoupling: a new frontier for global sustainability. Ecol. Soc. https://doi.org/10.5751/ES-10494-230441 (2018).Kapsar, K. E. et al. Telecoupling research: the first five years. Sustainability 11, 1033 (2019).
    Google Scholar 
    Richards, D. R. & Friess, D. A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl Acad. Sci. USA 113, 344–349 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chung, M. G., Kapsar, K., Frank, K. A. & Liu, J. The spatial and temporal dynamics of global meat trade networks. Sci. Rep. 10, 16657 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bardgett, R. D. et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2, 720–735 (2021).ADS 

    Google Scholar 
    Dengler, J., Janišová, M., Török, P. & Wellstein, C. Biodiversity of Palaearctic grasslands: a synthesis. Agric. Ecosyst. Environ. 182, 1–14 (2014).
    Google Scholar 
    Wimberly, M. C., Narem, D. M., Bauman, P. J., Carlson, B. T. & Ahlering, M. A. Grassland connectivity in fragmented agricultural landscapes of the north-central United States. Biol. Conserv. 217, 121–130 (2018).
    Google Scholar 
    Wu, W. et al. Global cropping intensity gaps: increasing food production without cropland expansion. Land Use Policy 76, 515–525 (2018).
    Google Scholar 
    Dou, Y., da Silva, R. F. B., Yang, H. & Liu, J. Spillover effect offsets the conservation effort in the Amazon. J. Geogr. Sci. 28, 1715–1732 (2018).
    Google Scholar 
    Sun, J. et al. Importing food damages domestic environment: evidence from global soybean trade. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1718153115 (2018).Liu, J. et al. Spillover systems in a telecoupled Anthropocene: typology, methods, and governance for global sustainability. Curr. Opin. Environ. Sustain. 33, 58–69 (2018).
    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 

    Google Scholar 
    Post-2020 Global Biodiversity Framework: Discussion Paper Adopted by the Conference of the Parties CBD/POST2020/PREP/1/1 (UNEP, 2019); https://www.cbd.int/doc/c/d0f3/aca0/d42fa469029f5a4d69f4da8e/post2020-prep-01-01-en.pdfEhrlich, P. R. & Harte, J. Food security requires a new revolution. Int. J. Environ. Stud. 72, 908–920 (2015).
    Google Scholar 
    Redford, K. H. et al. Mainstreaming biodiversity: conservation for the twenty-first century. Front. Ecol. Evol. 3, 137 (2015).
    Google Scholar 
    Pe’er, G. et al. EU agricultural reform fails on biodiversity. Science 344, 1090–1092 (2014).ADS 
    PubMed 

    Google Scholar 
    Liu, J. Consumption Patterns and Biodiversity (Biodiversity Programme of the Royal Society, 2020); https://royalsociety.org/topics-policy/projects/biodiversity/consumption-patterns-and-biodiversityLiu, J., Daily, G. C., Ehrlich, P. R. & Luck, G. W. Effects of household dynamics on resource consumption and biodiversity. Nature 421, 530–533 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    World Population Prospects (United Nations Department of Economic and Social Affairs Population Division, 2019); https://population.un.org/wpp/Download/Standard/Population/FAOSTAT Statistics Database (UN FAO, 2020); https://www.fao.org/faostatR Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021); https://www.r-project.orgKastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70, 1032–1040 (2011).
    Google Scholar 
    Liu, J. Forest sustainability in China and implications for a telecoupled world. Asia Pac. Policy Stud. 1, 230–250 (2014).
    Google Scholar 
    Torres-Reyna, O. Getting Started in Fixed/Random Effects Models Using R (Data & Statistical Services, Princeton Univ., 2010).Chung, M. G., Dietz, T. & Liu, J. Global relationships between biodiversity and nature-based tourism in protected areas. Ecosyst. Serv. 34, 11–23 (2018).
    Google Scholar 
    O’Brien, R. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41, 673–690 (2007).
    Google Scholar  More

  • in

    Habitat Protection Indexes – new monitoring measures for the conservation of coastal and marine habitats

    There are 23 international conventions related to protecting the marine environment and biodiversity, with five of these requiring the implementation of marine protected areas27. Targets for the effective protection of marine habitats that conserve nature and secure nature’s contributions to people are increasingly seen as critical in ensuring progress toward meeting treaty commitments. Aichi Target 11 and the Sustainable Development Goals Target 14.5 aim to conserve at least 10% of marine and coastal areas by 2020, reflecting a shift to a more target-driven conservation policy at the international level, although this is hotly debated. Warm-water corals, mangroves, and saltmarshes all have more than 30% of their extent within PCAs, with seagrasses and cold-water corals approaching 30%, which reveals a dedicated effort to their conservation of these critical habitats. However, the protection of the total global ocean area is still at 7.92%, with only 1.18% of ABNJ covered by PCAs, falling short of the 10% of Aichi Target 11 previously set for 202016.Standardized and open source tools and platforms are needed to allow robust monitoring of progress towards international targets. While tools are available to measure advancement in some targets24,25,26, fully replicable workflows that guide the user from data preparation to index calculations have been lacking. The workflow presented here provides one of the first steps to fill this gap. The indexes also give a global context for the conservation of the habitats, highlighting ecological representation and individual jurisdictions’ potential to contribute to future conservation efforts. Combining our indexes with other tools, such as spatial conservation planning, allows policymakers to balance tradeoffs with different priorities, such as climate mitigation and resource extraction (e.g.13).While our indexes do not measure the “equitably managed” component of the Aichi target 11, it is critical that a holistic, human rights-based approach is taken in meeting any targets set and efforts to improve biodiversity outcomes. The consideration of human rights of local communities and indigenous people and inclusion of their voices is absolutely necessary in the decision-making process28.Interpretation and Usefulness of the Workflow and IndexesThe LPHPI and GPHPI are consistent ways of measuring progress in establishing protected areas that have the potential to conserve habitats and biodiversity. Additionally, the completely open access workflow described in Fig. 5 is highly adaptable and can include a wide range of habitats as data become available, or it can be applied to different conservation features like species distributions. The workflow could also be adapted to calculate the amount of key biodiversity areas within PCAs per jurisdiction and globally, or human threats (e.g., pollution or heatwaves) when geospatial data is available. Notably, the workflow can also measure progress towards targets in the draft post-2020 global biodiversity framework (as of August 2020).Fig. 5A flow chart describing the key steps of the indexes calculations. We also connect each step to the R script available at: https://github.com/jkumagai96/Marine_Habitat_protection where a more detailed explanation on how to replicate the workflow is available.Full size imageSpecifically, the workflow and resulting LPHPI dataset can directly monitor the marine components T2.1 and T2.3 of Target 2 of the draft monitoring framework (reproduced in Table 1 for convenience). The workflow can also be easily adapted to calculate the freshwater and terrestrial aspects of Target 2 – component T2.1 and component T2.2. The Protected Area Representativeness Index and Species Protection Index currently proposed for T2.3 do not account for marine regions or species. We provide more data directly on the other indicator mentioned (Proportion of terrestrial, freshwater, and marine ecological areas within PCAs) for marine areas in a FAIR workflow. Our workflow and indexes are useful resources that monitor Target 2 of the draft monitoring framework for the post-2020 global biodiversity framework. Additionally, the inclusion of ABNJ in the indexes is extremely important given current discussions on a new implementing agreement for the United Nations Convention on the Law of the Sea to protect marine biodiversity in areas beyond national jurisdiction and thus the whole ocean29.Table 1 Subset of the draft monitoring framework for the post-2020 global biodiversity framework available online (https://www.cbd.int/sbstta/sbstta-24/post2020-monitoring-en.pdf).Full size tableThe GPHPI is a valuable index that reveals the protection status of habitats distributed globally. The index highlights that not all countries have the same amount of habitat, and international effort is needed to conserve biodiversity worldwide, aspects that the LPHPI does not readily show. It is valuable to understand where habitats are covered by protected areas and where further efforts need to be placed. For example, Norway has a relatively low LPHPI (0.168) and simultaneously a relatively high GPHPI (top 11%) because of the total area of mapped habitats within their jurisdiction and their efforts to conserve them. If they can improve their LPHPI to 0.3 (30%), their GPHPI would also increase since they have a large area of habitats. But even with less than 30% of these habitats in PCAs, the protection Norway has established, or other countries have in a similar situation, substantially contributes to the global effort.Jurisdictions have direct control over their LPHPI. Increasing the protected area coverage of their marine and coastal habitats will directly increase the index score. Small countries and territories with a limited area may see large improvements in their LPHPI through a few additional protected areas, while their GPHPI score will not increase much from this effort. For these jurisdictions, international strategies need to be implemented to promote the conservation of marine and coastal habitats. The GPHPI also reveals that each jurisdiction may physically contribute only a small percentage. However, when combined, these could provide the overall coverage of PCAs distributed around the world that is ecologically advisable to promote overall biodiversity.Within the targeted analysis of the global proportion of habitats protected, any jurisdiction that protects more than 30% of its habitat extent can move from a negative to a positive score; thus, it is relative to each jurisdiction. However, the targeted analysis also reflects the absolute contribution of each jurisdiction. In particular, the targeted analysis can be interpreted to reveal jurisdictions that have the highest opportunity to conserve the most habitat, if they can reach the 30% target. Thus, this informs part of goal D of the post-2020 biodiversity framework, which requires understanding where to prioritize effort. The jurisdictions that rank the lowest in the analysis, currently ABNJ, Norway, Papua New Guinea, Nigeria, and Iraq (Fig. 4), represent a great opportunity to further expand PCAs to 30% coverage of marine habitats within their territorial waters and coast, as these would contribute the most added area. The jurisdictions that score highest have the opportunity to monitor and improve the effectiveness of their PCAs to adequately protect these marine habitats and reduce surrounding pressures, especially since they contribute significantly to the total global extent of these habitats.LimitationsOne limitation of our indexes is that they do not distinguish between areas that are readily protected (e.g., due to remoteness) and those that most urgently need protection (e.g., highly threatened biodiverse locations)30,31. Additionally, the analysis presented here is sensitive to the choice of coastal and marine habitats included in the indexes. We selected these six habitats based on the availability of high-quality spatially explicit global data recognized by the scientific community. Each habitat dataset is published in a peer-reviewed journal and available online (https://data.unep-wcmc.org/datasets) within the UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) website and follows their data standards. The data represent the known and mapped distribution of habitats; thus, there are inherent knowledge gaps between the actual extent and available data. For example, it is likely that significant portions of cold-water corals, particularly in the ABNJ, are still unknown. Over time, the workflow will be updated and improved yearly to strengthen data coverage, and if additional high-quality data on habitats emerge, these will be included ensuring the indexes stay up to date and relevant. The original analysis with the same habitats will also be repeated to ensure a consistent time series of the indexes is provided.An important consideration when using these indexes is that habitat extent that spatially aligns with a PCA does not necessarily mean that a particular habitat is protected. For example, some PCAs enforce regulations on the water area (e.g., fishing exclusion), but do not prevent mangrove deforestation. Additionally, because of the buffering of points within the workflow, some of the habitats that are counted as protected may fall near a PCA but not within it. Nevertheless, our analysis assumes that habitats that fall within a PCA will be better conserved than habitats not within a PCA, as the primary purpose of protected areas is conservation. Similarly, we assume that other effective area-based conservation measures provide some conservation benefit and are often sustainably managed by local communities and indigenous peoples who live on them32,33.The LPHPI and GPHPI indexes report detailed information for policymakers, the scientific community, and stakeholders to understand the state of protection for marine and coastal habitats at both global and local levels. Simple metrics like these indexes that the public and politicians understand help communicate the plight of ocean health and efforts to improve it. The workflow, based on open-source programming and datasets, is reproducible and scalable and was developed to allow other scientists and data providers to calculate the indexes for any areas or habitats of interest and repeat and adapt our analysis for any target. The indexes will be updated annually to ensure continued relevance and the provision of a time series to track how the world is advancing towards the goals defined by global policy, such as aspects of the Sustainable Development Goal 14, therefore bringing to the forefront the importance and status of conserving critical marine and coastal habitats. Ultimately, transparency in protection efforts, effectiveness, and representation must be improved so policymakers can grasp the current conditions, possible scenarios, and make informed decisions to meet international policy commitments34. More

  • in

    Urban conservation gardening in the decade of restoration

    Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27, 19–26 (2012).Article 

    Google Scholar 
    Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).Williams, B. A. et al. A robust goal is needed for species in the Post-2020 Global Biodiversity Framework. Conserv. Lett. 14, e12778 (2021).Article 

    Google Scholar 
    Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004).CAS 
    Article 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).CAS 
    Article 

    Google Scholar 
    McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).CAS 
    Article 

    Google Scholar 
    Pe’er, G. et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2, 305–316 (2020).Article 

    Google Scholar 
    McDonald, R. I. et al. Research gaps in knowledge of the impact of urban growth on biodiversity. Nat. Sustain. 3, 16–24 (2020).Article 

    Google Scholar 
    Rosenzweig, M. L. Reconciliation ecology and the future of species diversity. Oryx 37, 194–205 (2003).Article 

    Google Scholar 
    Dunn, R. R., Gavin, M. C., Sanchez, M. C. & Solomon, J. N. The pigeon paradox: dependence of global conservation on urban nature. Conserv. Biol. 20, 1814–1816 (2006).Article 

    Google Scholar 
    Callaghan, C. T. et al. How to build a biodiverse city: environmental determinants of bird diversity within and among 1581 cities. Biodivers. Conserv. 30, 217–234 (2021).Article 

    Google Scholar 
    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. Biogeogr. 25, 117–126 (2016).Article 

    Google Scholar 
    Soanes, K. & Lentini, P. E. When cities are the last chance for saving species. Front. Ecol. Environ. 17, 225–231 (2019).Article 

    Google Scholar 
    Luck, G. W., Davidson, P., Boxall, D. & Smallbone, L. Relations between urban bird and plant communities and human well-being and connection to nature. Conserv. Biol. 25, 816–826 (2011).Article 

    Google Scholar 
    Maller, C., Mumaw, L. & Cooke, B. in Rewilding (eds Pettorelli, N. et al.) Ch. 9 (Cambridge, Univ. Press, 2019).Jiang, L. & O’Neill, B. C. Global urbanization projections for the Shared Socioeconomic Pathways. Glob. Environ. Change 42, 193–199 (2017).Article 

    Google Scholar 
    Prévot, A.-C., Cheval, H., Raymond, R. & Cosquer, A. Routine experiences of nature in cities can increase personal commitment toward biodiversity conservation. Biol. Conserv. 226, 1–8 (2018).Article 

    Google Scholar 
    Berthon, K., Thomas, F. & Bekessy, S. The role of ‘nativeness’ in urban greening to support animal biodiversity. Landsc. Urban Plan. 205, 103959 (2021).Article 

    Google Scholar 
    van Heezik, Y., Freeman, C., Davidson, K. & Lewis, B. Uptake and engagement of activities to promote native species in private gardens. Environ. Manag. 66, 42–55 (2020).Article 

    Google Scholar 
    Jorgensen, A. & Keenan, R. Urban Wildscapes (Routledge, 2012).Majewska, A. A. & Altizer, S. Planting gardens to support insect pollinators. Conserv. Biol. 34, 15–25 (2020).Article 

    Google Scholar 
    Tallamy, D. W. Bringing Nature Home: How You Can Sustain Wildlife with Native Plants (Timber Press, 2007).Burghardt, K. T., Tallamy, D. W. & Gregory Shriver, W. Impact of native plants on bird and butterfly biodiversity in suburban landscapes. Conserv. Biol. 23, 219–224 (2009).Article 

    Google Scholar 
    Kraljevic, A. & Mitlacher, G. Barometer on CBD’s Target for International Resource Mobilization (WWF, 2020).Eichenberg, D. et al. Widespread decline in Central European plant diversity across six decades. Glob. Change Biol. 27, 1097–1110 (2020).Article 

    Google Scholar 
    Lughadha, E. N. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).Article 

    Google Scholar 
    Metzing, D., Hofbauer, N., Ludwig, G. & Matzke-Hajek, G. Rote Liste Gefährdeter Tiere, Pflanzen und Pilze Deutschlands: Pflanzen/Redaktion: Detlev Metzing, Natalie Hofbauer, Gerhard Ludwig und Günter Matzke-Hajek (Bundesamt für Naturschutz, 2018).Kalusová, V. et al. Naturalization of European plants on other continents: the role of donor habitats. Proc. Natl Acad. Sci. USA 114, 13756–13761 (2017).Article 
    CAS 

    Google Scholar 
    Staude, I. R. et al. Directional turnover towards larger-ranged plants over time and across habitats. Ecol. Lett. 25, 466–482 (2021).Article 

    Google Scholar 
    Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341–356 (2003).Article 

    Google Scholar 
    Lundholm, J. T. & Richardson, P. J. Mini-Review: Habitat analogues for reconciliation ecology in urban and industrial environments. J. Appl. Ecol. 47, 966–975 (2010).Article 

    Google Scholar 
    Ellenberg, H. Gefahrdung wildlebender Pflanzenarten in der Bundesrepublik Deutschland, Versuch einer okologischen Betrachtung. Forstarchiv 57, 127–133 (1983).
    Google Scholar 
    Deeb, M. et al. Using constructed soils for green infrastructure—challenges and limitations. Soil 6, 413–434 (2020).CAS 
    Article 

    Google Scholar 
    BuGG-Marktreport Gebäudegrün 2020 Dach-, Fassaden-und Innenraumbegrünung Deutschland Neu begrünte Flächen Bestand und Potenziale Kommunale Förderung (BuGG, 2020).Reichard, S. H. & White, P. Horticulture as a pathway of invasive plant introductions in the United States: most invasive plants have been introduced for horticultural use by nurseries, botanical gardens, and individuals. Bioscience 51, 103–113 (2001).Article 

    Google Scholar 
    der Lippe, M. & Kowarik, I. Do cities export biodiversity? Traffic as dispersal vector across urban—rural gradients. Divers. Distrib. 14, 18–25 (2008).Article 

    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS 
    Article 

    Google Scholar 
    Goddard, M. A., Dougill, A. J. & Benton, T. G. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol. Evol. 25, 90–98 (2010).Article 

    Google Scholar 
    Sharrock, S. Plant Conservation Report 2020: A Review of Progress Towards the Global Strategy for Plant Conservation 2011–2020 CBD Technical Series No. 95 (Convention on Biological Diversity, 2020).Ismail, S. A., Pouteau, R., van Kleunen, M., Maurel, N. & Kueffer, C. Horticultural plant use as a so-far neglected pillar of ex situ conservation. Conserv. Lett. 14, e12825 (2021).Article 

    Google Scholar 
    Wüstemann, H., Kalisch, D. & Kolbe, J. Access to urban green space and environmental inequalities in Germany. Landsc. Urban Plan. 164, 124–131 (2017).Article 

    Google Scholar 
    Kleingärten im Wandel—Innovationen für verdichtete Räume (BBSR, 2018).Rudd, H., Vala, J. & Schaefer, V. Importance of backyard habitat in a comprehensive biodiversity conservation strategy: a connectivity analysis of urban green spaces. Restor. Ecol. 10, 368–375 (2002).Article 

    Google Scholar 
    Kowarik, I. & von der Lippe, M. Plant population success across urban ecosystems: a framework to inform biodiversity conservation in cities. J. Appl. Ecol. 55, 2354–2361 (2018).Article 

    Google Scholar 
    du Toit, M. J., Shackleton, C. M., Cilliers, S. S. & Davoren, E. in Urban Ecology in the Global South (eds Shackleton, C. M. et al.) 433–461 (Springer, 2021).Sawyer, J. Saving threatened native plant species in cities—from traffic islands to real islands. In Greening the City: Bringing Biodiversity Back Into the Urban Environment: Proc. (ed Dawson, M. I.) 111–117 (Royal New Zealand Institute of Horticulture, 2005).Webb, E. L. A Guide to the Native Ornamental Trees of American Samoa (National Univ. Singapore, 2011).Pan, K. et al. Urban green spaces as potential habitats for introducing a native endangered plant, Calycanthus chinensis. Urban For. Urban Green. 46, 126444 (2019).Article 

    Google Scholar 
    Gardening sales value worldwide from 2015 to 2020, with a forecast up to 2024. Statista statista.com/statistics/1220222/global-gardening-sales-value/ (2021).Warenstromanalyse 2018: Blumen, Zierpflanzen & Gehölze (AMI, 2020).Nature Awareness Study (Bundesamt für Naturschutz (BfN), 2019).Abbandonato, H., Pedrini, S., Pritchard, H. W., De Vitis, M. & Bonomi, C. Native seed trade of herbaceous species for restoration: a European policy perspective with global implications. Restor. Ecol. 26, 820–826 (2018).Article 

    Google Scholar 
    Hancock, N., Gibson-Roy, P., Driver, M. & Broadhurst, L. The Australian Native Seed Survey Report (Australian Network for Plant Conservation, 2020).Wilkinson, D. M. Is local provenance important in habitat creation? J. Appl. Ecol. 38, 1371–1373 (2001).Article 

    Google Scholar 
    Pedrini, S. & Dixon, K. W. International principles and standards for native seeds in ecological restoration. Restor. Ecol. 28, S286–S303 (2020).
    Google Scholar 
    De Vitis, M. et al. The European native seed industry: characterization and perspectives in grassland restoration. Sustainability 9, 1682 (2017).Article 

    Google Scholar 
    Westwood, M., Cavender, N., Meyer, A. & Smith, P. Botanic garden solutions to the plant extinction crisis. Plants People Planet 3, 22–32 (2021).Article 

    Google Scholar 
    Mounce, R., Smith, P. & Brockington, S. Ex situ conservation of plant diversity in the world’s botanic gardens. Nat. Plants 3, 795–802 (2017).Article 

    Google Scholar 
    Pedrini, S. et al. Collection and production of native seeds for ecological restoration. Restor. Ecol. 28, S228–S238 (2020).
    Google Scholar 
    Groves, R. H. Can Australian native plants be weeds. Plant Prot. Q. 16, 114–117 (2001).
    Google Scholar 
    Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographic Scheme for Recording Plant Distributions 2nd edn (Hunt Institute for Botanical Documentation, 2001).Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154 (2011).CAS 
    Article 

    Google Scholar 
    Mumaw, L. & Bekessy, S. Wildlife gardening for collaborative public—private biodiversity conservation. Australas. J. Environ. Manag. 24, 242–260 (2017).Article 

    Google Scholar 
    Mumaw, L. Transforming urban gardeners into land stewards. J. Environ. Psychol. 52, 92–103 (2017).Article 

    Google Scholar 
    Abeli, T. et al. Ex situ collections and their potential for the restoration of extinct plants. Conserv. Biol. 34, 303–313 (2020).Article 

    Google Scholar 
    Ladouceur, E. et al. Native seed supply and the restoration species pool. Conserv. Lett. 11, e12381 (2018).Article 

    Google Scholar 
    Hyvärinen, M.-T. Rubus humulifolius rescued by narrowest possible margin, conserved ex situ, and reintroduced in the wild. J. Nat. Conserv. 55, 125819 (2020).Article 

    Google Scholar 
    Holz, H., Segar, J., Valdez, J. & Staude, I. R. Assessing extinction risk across the geographic ranges of plant species in Europe. Plants People Planet https://doi.org/10.1002/ppp3.10251 (2022).Brodie, J. F. et al. Global policy for assisted colonization of species. Science 372, 456–458 (2021).CAS 
    Article 

    Google Scholar 
    Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Restor. Ecol. 27, S1–S46 (2019).Article 

    Google Scholar 
    Bower, A. D., Clair, J. B. S. & Erickson, V. Generalized provisional seed zones for native plants. Ecol. Appl. 24, 913–919 (2014).Article 

    Google Scholar 
    Goddard, M. A., Dougill, A. J. & Benton, T. G. Why garden for wildlife? Social and ecological drivers, motivations and barriers for biodiversity management in residential landscapes. Ecol. Econ. 86, 258–273 (2013).Article 

    Google Scholar 
    Ignatieva, M. & Ahrné, K. Biodiverse green infrastructure for the 21st century: from “green desert” of lawns to biophilic cities. J. Archit. Urban. 37, 1–9 (2013).Article 

    Google Scholar 
    van Heezik, Y. M., Dickinson, K. J. M. & Freeman, C. Closing the gap: communicating to change gardening practices in support of native biodiversity in urban private gardens. Ecol. Soc. 17, 34 (2012).
    Google Scholar 
    Shaw, A. E. & Miller, K. K. Preaching to the converted? Designing wildlife gardening programs to engage the unengaged. Appl. Environ. Educ. Commun. 15, 214–224 (2016).Article 

    Google Scholar 
    Mumaw, L. M. & Raymond, C. M. A framework for catalysing the rapid scaling of urban biodiversity stewardship programs. J. Environ. Manag. 292, 112745 (2021).Article 

    Google Scholar 
    Niemiec, R., Jones, M. S., Lischka, S. & Champine, V. Efficacy-based and normative interventions for facilitating the diffusion of conservation behavior through social networks. Conserv. Biol. 35, 1073–1085 (2021).Article 

    Google Scholar 
    Haywood, B. K., Parrish, J. K. & Dolliver, J. Place-based and data-rich citizen science as a precursor for conservation action. Conserv. Biol. 30, 476–486 (2016).Article 

    Google Scholar 
    Lerman, S. B., Turner, V. K. & Bang, C. Homeowner associations as a vehicle for promoting native urban biodiversity. Ecol. Soc. 17, 45 (2012).Article 

    Google Scholar 
    Nassauer, J. I. Messy ecosystems, orderly frames. Landsc. J. 14, 161–170 (1995).Article 

    Google Scholar 
    Cavender, N., Smith, P. & Marfleet, K. BGCI Technical Review: The Role of Botanic Gardens in Urban Greening and Conserving Urban Biodiversity (BGCI, 2019). More

  • in

    Male-biased sex ratio in the crawling individuals of an invasive naticid snail during summer: implications for population management

    Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).Article 

    Google Scholar 
    Kopf, R. K. et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 1, 0172 (2017).Article 

    Google Scholar 
    Luque, G. M. et al. The 100th of the world’s worst invasive alien species. Biol. Invasions 16, 981–985 (2014).Article 

    Google Scholar 
    Genovesi, P. Eradications of invasive alien species in Europe: A review. Biol. Invasions 7, 127–133 (2005).Article 

    Google Scholar 
    Simberloff, D. How much information on population biology is needed to manage introduced species?. Conserv. Biol. 17, 83–92 (2003).Article 

    Google Scholar 
    Takeshita, F. & Maekawa, T. Paratectonatica tigrina (Gastropoda: Naticidae) adjusts its predation tactics depending on the chosen prey and their shell weight relative to its own. J. Mar. Biol. Assoc. U. K. 100, 921–926 (2020).Article 

    Google Scholar 
    Wiltse, W. I. Effects of Polinices duplicatus (Gastropoda: Naticidae) on infaunal community structure at Barnstable Harbor, Massachusetts, USA. Mar. Biol. 56, 301–310 (1980).Article 

    Google Scholar 
    Commito, J. A. Effects of Lunatia heros predation on the population dynamics of Mya arenaria and Macoma balthica in Maine, USA. Mar. Biol. 69, 187–193 (1982).Article 

    Google Scholar 
    Ansell, A. D. Experimental studies of a benthic predator–prey relationship. I. Feeding, growth, and egg-collar production in long-term cultures of the gastropod drill Polinices alderi (Forbes) feeding on the bivalve Tellina tenuis (da Costa). J. Exp. Mar. Biol. Ecol. 56, 235–255 (1982).Article 

    Google Scholar 
    Savazzi, E. & Reyment, R. A. Subaerial hunting behaviour in Natica gualteriana (naticid gastropod). Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 355–364 (1989).Article 

    Google Scholar 
    Gonor, J. J. Predator–prey reactions between two marine prosobranch gastropods. The Veliger 7, 228–232 (1969).
    Google Scholar 
    Hughes, R. N. Predatory behaviour of Natica unifasciata feeding intertidally on gastropods. J. Molluscan Stud. 51, 331–335 (1985).Article 

    Google Scholar 
    Pahari, A. et al. Subaerial naticid gastropod drilling predation by Natica tigrina on the intertidal molluscan community of Chandipur, Eastern Coast of India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 451, 110–123 (2016).Article 

    Google Scholar 
    Sakai, K. Predation of the moon snail Neverita didyma, on the Manila clam Ruditapes philippinarum, at the culture ground in Mangoku-ura Inlet. Bull. Miyagi Prefect. Fish. Res. Dev. Cent. 16, 109–111 (2000) (in Japanese).
    Google Scholar 
    Tomiyama, T. et al. Unintentional introduction and the distribution of the nonindigenous moonsnail Euspira fortunei in Matsukawaura Lagoon, Japan. Nippon Suisan Gakkaishi 77, 1020–1026 (2011) (in Japanese with English abstract).Article 

    Google Scholar 
    Okoshi, K. Alien species introduced with imported clams: The clam-eating moon snail Euspira fortunei and other unintentionally introduced species. Japanese J. Benthol. 59, 74–82 (2004) (in Japanese with English abstract).
    Google Scholar 
    Okoshi, K. & Sato-Okoshi, W. Euspira fortunei: Biology and fisheries science of an invasive species (Kouseishakouseikaku Press, 2011).
    Google Scholar 
    Tomiyama, T. Lethal and non-lethal effects of an invasive naticid gastropod on the production of a native clam. Biol. Invasions 20, 2005–2014 (2018).Article 

    Google Scholar 
    Sato, S., Chiba, T. & Hasegawa, H. Long-term fluctuations in mollusk populations before and after the appearance of the alien predator Euspira fortunei on the Tona coast, Miyagi Prefecture, northern Japan. Fish. Sci. 78, 589–595 (2012).CAS 
    Article 

    Google Scholar 
    Kinoshita, K., Sasaki, N., Seki, A., Matsumasa, M. & Takehara, A. Distribution of the invasive snail Laguncula pulchella and the effect of its predation on the mollusk populations in the Orikasa River Estuary after the 2011 off the Pacific Coast of Tohoku Earthquake. Japanese J. Benthol. 72, 61–70 (2018) (in Japanese with English abstract).
    Google Scholar 
    Sato, T., Iwasaki, T., Narita, K. & Matsumoto, I. Occurrence of the moonsnail Euspira fortunei after the earthquake in Matsukawaura Lagoon Japan. Bull. Fukushima Prefect. Fish. Exp. Stn. 79–82 (2016). (in Japanese).Chiba, T. & Sato, S. Size-selective predation and drillhole-site selectivity in Euspira fortunei (Gastropoda: Naticidae): Implications for ecological and palaeoecological studies. J. Molluscan Stud. 78, 205–212 (2012).Article 

    Google Scholar 
    Tanabe, T. Relationship between the shell height of the predatory moon snail Euspira fortunei and drilled hole diameter on the prey shell of manila clam Ruditapes philippinarum. Nippon Suisan Gakkaishi 78, 37–42 (2012) (in Japanese with English abstract).Article 

    Google Scholar 
    Hasegawa, H. & Sato, S. Predatory behaviour of the naticid Euspira fortunei: Why does it drill the left shell valve of Ruditapes philippinarum?. J. Molluscan Stud. 75, 147–151 (2009).Article 

    Google Scholar 
    Kingsley-Smith, P. R., Richardson, C. A. & Seed, R. Size-related and seasonal patterns of egg collar production in Polinices pulchellus (Gastropoda: Naticidae) Risso 1826. J. Exp. Mar. Biol. Ecol. 295, 191–206 (2003).Article 

    Google Scholar 
    Tomiyama, T. Timing and frequency of egg-collar production of the moonsnail Euspira fortunei. Fish. Sci. 79, 905–910 (2013).CAS 
    Article 

    Google Scholar 
    Sakai, K. & Suto, A. Early development and behavior of the moon snail Neverita didyma. Miyagi Prefect. Rep. Fish. Sci. 5, 55–58 (2005) (in Japanese).
    Google Scholar 
    Cook, N. & Bendell-Young, L. Determining the ecological role of Euspira lewisii: Part I: Feeding ecology. J. Shellfish Res. 29, 223–232 (2010).Article 

    Google Scholar 
    Peitso, E., Hui, E., Hartwick, B. & Bourne, N. Predation by the naticid gastropod Polinices lewisii (Gould) on littleneck clams Protothaca staminea (Conrad) in British Columbia. Can. J. Zool. 72, 319–325 (1994).Article 

    Google Scholar 
    Johannesson, K., Saltin, S. H., Duranovic, I., Havenhand, J. N. & Jonsson, P. R. Indiscriminate males: Mating behaviour of a marine snail compromised by a sexual conflict?. PLoS ONE 5, e12005 (2010).ADS 
    Article 

    Google Scholar 
    Vaughn, D., Turnross, O. R. & Carrington, E. Sex-specific temperature dependence of foraging and growth of intertidal snails. Mar. Biol. 161, 75–87 (2014).Article 

    Google Scholar 
    Watson, P. J., Arnqvist, G. & Stallmann, R. R. Sexual conflict and the energetic costs of mating and mate choice in water striders. Am. Nat. 151, 46–58 (1998).CAS 
    Article 

    Google Scholar 
    Schlacher, T. A. & Wooldridge, T. H. Patterns of selective predation by juvenile, benthivorous fish on estuarine macrofauna. Mar. Biol. 125, 241–247 (1996).Article 

    Google Scholar 
    Sudo, H. & Azeta, M. Selective predation on mature male Byblis japonicus (Amphipoda: Gammaridea) by the barface cardinalfish, Apogon semilineatus. Mar. Biol. 114, 211–217 (1992).Article 

    Google Scholar 
    Vadas, R. L., Burrows, M. T. & Hughes, R. N. Foraging strategies of dogwhelks, Nucella lapillus (L.): Interacting effects of age, diet and chemical cues to the threat of predation. Oecologia 100, 439–450 (1994).ADS 
    Article 

    Google Scholar 
    Donelan, S. C. & Trussell, G. C. Sex-specific differences in the response of prey to predation risk. Funct. Ecol. 34, 1235–1243 (2020).Article 

    Google Scholar 
    Yoshida, K., Sato, T., Narita, K. & Tomiyama, T. Abundance and body size of the moonsnail Laguncula pulchella in the Misuji River estuary, Seto Inland Sea, Japan: Comparison with a population in northern Japan. Plankt. Benthos Res. 12, 53–60 (2017).Article 

    Google Scholar 
    Sato, T., Ogata, Y., Nemoto, Y. & Shimamura, S. Status review and current concerns of the fishery for the short-neck clam, Ruditapes philippinarum, in Matsukawaura Lagoon, Fukushima Prefecture. Bull. Fukushima Prefect. Fish. Exp. Stn. 14, 57–67 (2007) (in Japanese).
    Google Scholar 
    Tomiyama, T. & Sato, T. Effects of translocation on the asari clam Ruditapes philippinarum at small spatial scales in Matsukawaura, Japan. Bull. Mar. Sci. 97, 647–664 (2021).Article 

    Google Scholar 
    Chiba, T. & Sato, S. Invasion of Laguncula pulchella (Gastropoda: Naticidae) and predator–prey interactions with bivalves on the Tona coast, Miyagi prefecture, northern Japan. Biol. Invasions 15, 587–598 (2013).Article 

    Google Scholar  More

  • in

    Phylogeography of the veined squid, Loligo forbesii, in European waters

    Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jereb, P. et al. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No vol. 325 (2015).ICES. ICES WGCEPH REPORT 2015 Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH). 8–11 (2019).Quetglas, A. et al. Long-term spatiotemporal dynamics of cephalopod assemblages in the Mediterranean sea. Sci. Mar. 83, 33–42 (2019).Article 

    Google Scholar 
    Martins, H. R. Biological studies of the exploited stock of Loligo forbesi (Mollusca: Cephalopoda) in the Azores. J. Mar. Biol. Assoc. United Kingdom 62, 799–808 (1982).Article 

    Google Scholar 
    Guerra, A. & Rocha, F. The life history of Loligo vulgaris and Loligo forbesi (Cephalopoda: Loliginidae) in Galician waters (NW Spain). Fish. Res. 21, 43–69 (1994).Article 

    Google Scholar 
    Pierce, G. J. & Boyle, P. R. Empirical modelling of interannual trends in abundance of squid (Loligo forbesi) in Scottish waters. Fish. Res. 59, 305–326 (2003).Article 

    Google Scholar 
    Lishchenko, F. et al. A review of recent studies on the life history and ecology of European cephalopods with emphasis on species with the greatest commercial fishery and culture potential. Fish. Res. 236, 105847 (2021).Article 

    Google Scholar 
    Laptikhovsky, V. et al. Identification of benthic egg masses and spawning grounds in commercial squid in the English Channel and Celtic Sea: Loligo vulgaris vs L. forbesii. Fish. Res. 241, 106004 (2021).Article 

    Google Scholar 
    Souza, H. V. et al. Analysis of the mitochondrial COI gene and its informative potential for evolutionary inferences in the families Coreidae and Pentatomidae (Heteroptera). Genet. Mol. Res. 15, 1–14 (2016).CAS 

    Google Scholar 
    Brierley, A. S. et al. Genetic variation in the neritic squid Loligo forbesi (Myopsida: Loliginidae) in the northeast Atlantic Ocean. Mar. Biol. 122, 79–86 (1995).Article 

    Google Scholar 
    Shaw, P. W. et al. Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol. Ecol. 8, 407–417 (1999).CAS 
    Article 

    Google Scholar 
    Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Begg, G. A. & Waldman, J. R. An holistic approach to fish stock identification. Fish. Res. 43, 35–44 (1999).Article 

    Google Scholar 
    Shaw, P. W. Polymorphic microsatellite markers in a cephalopod: The veined squid Loligo forbesi. Mol. Ecol. 6, 297–298 (1997).CAS 
    Article 

    Google Scholar 
    Emery, A. M. et al. New microsatellite markers for assessment of paternity in the squid Loligo forbesi (Mollusca: Cephalopoda). Mol. Ecol. 9, 110–112 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Butler, J. M. Advanced Topics in Forensic DNA Typing: Interpretation (Elsevier Academic Press, 2015).
    Google Scholar 
    Park, S. D. E. Trypanotolerance in West African Cattle and the Population Genetics Effects of Selection. Trinity Coll. (2001).Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).
    Google Scholar 
    Hedrick, P. W. Genetics of Populations (Science Books International, 1983).
    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F statistics for Population Structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    Kalinowski, S. T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS 
    Article 

    Google Scholar 
    Excoffier, L. et al. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinforma. 1, 117693430500100 (2005).Article 

    Google Scholar 
    Pritchard, J. K. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, K. J. et al. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program structure. Mol. Ecol. 21, 4925–4930 (2012).PubMed 
    Article 

    Google Scholar 
    Porras-Hurtado, L. et al. An overview of STRUCTURE: Applications, parameter settings, and supporting software. Front. Genet. 4, 1–13 (2013).CAS 
    Article 

    Google Scholar 
    Evanno, G. et al. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopelman, N. M. et al. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Folmer, O. et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Anderson, F. E. Phylogeny and historical biogeography of the loliginid squids (Mollusca: Cephalopoda) based on mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 15, 191–214 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gebhardt, K. & Knebelsberger, T. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences. Helgol. Mar. Res. 69, 259–271 (2015).ADS 
    Article 

    Google Scholar 
    Lobo, J. et al. Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol. 13, 1–8 (2013).Article 
    CAS 

    Google Scholar 
    de Luna Sales, J. B. et al. New molecular phylogeny of the squids of the family Loliginidae with emphasis on the genus Doryteuthis Naef ,1912: Mitochondrial and nuclear sequences indicate the presence of cryptic species in the southern Atlantic Ocean. Mol. Phylogenet. Evol. 68, 293–299 (2013).Article 

    Google Scholar 
    Tatulli, G. et al. A rapid colorimetric assay for on-site authentication of cephalopod species. Biosensors 10, 3–10 (2020).Article 
    CAS 

    Google Scholar 
    Velasco, A. et al. A new rapid method for the authentication of common octopus (Octopus vulgaris) in seafood products using recombinase polymerase amplification (rpa) and lateral flow assay (lfa). Foods 10, 1825 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luz, A. & Keskin, E. Building Reference Library for Marine Fish Species of Azores Archipelago and Bio-monitoring via DNA Metabarcoding. https://www.ncbi.nlm.nih.gov/nuccore/MT491734 (2020).BoldSystems. https://boldsystems.org/index.php/Public_RecordView?processid=AZB030-20 (2018). (Accessed 2 May 2022).Tamura, K. et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rambaut, A. et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bandelt, H.-J. et al. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (2009).Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlitzer, R. Ocean Data View. (2013).Shaw, P. W. & Boyle, P. R. Multiple paternity within the brood of single females of Loligo forbesi (Cephalopoda: Loliginidae), demonstrated with microsatellite DNA markers. Mar. Ecol. Prog. Ser. 160, 279–282 (1997).ADS 
    Article 

    Google Scholar 
    Emery, A. M. et al. Assignment of paternity groups without access to parental genotypes: Multiple mating and developmental plasticity in squid. Mol. Ecol. 10, 1265–1278 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Catarino, D. et al. The role of the Strait of Gibraltar in shaping the genetic structure of the Mediterranean Grenadier, Coryphaenoides mediterraneus, between the Atlantic and Mediterranean Sea. PLoS ONE 12, 1–24 (2017).
    Google Scholar 
    Gonzalez, E. G. & Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 7, 1–12 (2007).Article 
    CAS 

    Google Scholar 
    Reichow, D. & Smith, M. J. Microsatellites reveal high levels of gene flow among populations of the California squid Loligo opalescens. Mol. Ecol. 10, 1101–1109 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, P. W. et al. DNA markers indicate that distinct spawning cohorts and aggregations of Patagonian squid, Loligo gahi, do not represent genetically discrete subpopulations. Mar. Biol. 144, 961–970 (2004).CAS 
    Article 

    Google Scholar 
    Göpel, A. Populationsgenetik und Phylogeographie des Nordischen Kalmars Loligo forbesii Steenstrup, 1856 in Europäischen Gewässern. Masterthesis, Univ. Rostock in German, 76pp (2020).Oesterwind, D. et al. Biology and meso-scale distribution patterns of North Sea cephalopods. Fish. Res. 106, 141–150 (2010).Article 

    Google Scholar 
    Sauer, W. H. H. et al. Tag recapture studies of the chokka squid Loligo vulgaris reynaudii d’Orbigny, 1845 on inshore spawning grounds on the south-east coast of South Africa. Fish. Res. 45, 283–289 (2000).ADS 
    Article 

    Google Scholar 
    Knowlton, N. & Weigt, L. A. New dates and new rates for divergence across the Isthmus of Panama. Proc. R. Soc. B Biol. Sci. 265, 2257–2263 (1998).Article 

    Google Scholar 
    Pérez-Losada, M. et al. Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol. Ecol. 16, 2667–2679 (2007).PubMed 
    Article 

    Google Scholar 
    O’Dor, R. K. Can understanding squid life-history strategies and recruitment improve management?. South African J. Mar. Sci. 7615, 193–206 (1998).Article 

    Google Scholar 
    Izquierdo, A. et al. Modelling in the Strait of Gibraltar: From operational oceanography to scale interactions. Fundam. i Prikl. Gidrofiz. 9, 15–24 (2016).
    Google Scholar 
    Clarke, M. & Hart, M. Treatise Online no. 102: Part M, Chapter 11: Statoliths and coleoid evolution. Treatise Online (2018).Hsü, K. J. et al. Late Miocene desiccation of the mediterranean. Nature 242, 240–244 (1973).ADS 
    Article 

    Google Scholar 
    Garcia-Castellanos, D. et al. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778–781 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thunell, R. C. et al. Atlantic-mediterranean water exchange during the late neocene. Paleoceanography 2(6), 661 (1987).ADS 
    Article 

    Google Scholar 
    Green, C. P. et al. Combining statolith element composition and fourier shape data allows discrimination of spatial and temporal stock structure of arrow squid (Nototodarus gouldi). Can. J. Fish. Aquat. Sci. 72, 1609–1618 (2015).Article 

    Google Scholar  More

  • in

    Effects of planted pollinator habitat on pathogen prevalence and interspecific detection between bee species

    Paull, S. H. et al. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).PubMed 
    Article 

    Google Scholar 
    Sorensen, A., Van Beest, F. M. & Brook, R. K. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: A synthesis of knowledge. Prev. Vet. Med. 113, 356–363 (2014).PubMed 
    Article 

    Google Scholar 
    Gortázar, C., Acevedo, P., Ruíz-Fons, F. & Vicente, J. Disease risks and overabundance of game species. Eur. J. Wildl. Res. 52, 81–87 (2006).Article 

    Google Scholar 
    Brittingham, M. C. & Temple, S. A. Avian disease and winter bird feeding. Passeng. Pigeon 50, (1998).Franz, M., Kramer-Schadt, S., Greenwood, A. D. & Courtiol, A. Sickness-induced lethargy can increase host contact rates and pathogen spread in water-limited landscapes. Funct. Ecol. 32, 2194–2204 (2018).Article 

    Google Scholar 
    Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).Article 

    Google Scholar 
    Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B Biol. Sci. 373(1745), 20170090 (2018).Article 
    CAS 

    Google Scholar 
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mathiasson, M. E. & Rehan, S. M. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens. Insect Conserv. Divers. 12, 278–288 (2019).
    Google Scholar 
    Vanbergen, A. J. & Initiative, I. P. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Env. 11, 251–259 (2013).Article 

    Google Scholar 
    Buhk, C. et al. Flower strip networks offer promising long term effects on pollinator species richness in intensively cultivated agricultural areas. BMC Ecol. 18(1), 1–13 (2018).Article 

    Google Scholar 
    Morandin, L. A. & Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23, 829–839 (2013).PubMed 
    Article 

    Google Scholar 
    Williams, N. M. et al. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol. Appl. 25, 2119–2131 (2015).PubMed 
    Article 

    Google Scholar 
    Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adler, L. S. et al. Disease where you dine: Plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).PubMed 
    Article 

    Google Scholar 
    Alger, S. A., Burnham, P. A. & Brody, A. K. Flowers as viral hot spots: Honey bees (Apis mellifera) unevenly deposit viruses across plant species. PLoS ONE 14(9), e0221800 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McNeil, D. J. et al. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Daughenbaugh, K. F. et al. Metatranscriptome analysis of sympatric bee species identifies bee virus variants and a new virus, andrena-associated bee virus-1. Viruses 13, 291 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alger, S. A., Alexander Burnham, P., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 14, e0217822 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58 (2014).PubMed 
    Article 

    Google Scholar 
    Hayes, S. E., Tuiwawa, M., Stevens, M. I. & Schwarz, M. P. A recipe for weed disaster in islands: A super-generalist native pollinator aided by a ‘Parlourmaid’ plant welcome new arrivals in Fiji. Biol. Invasions 21, 1643–1655 (2019).Article 

    Google Scholar 
    Levenson, H. & Tarpy, D. R. Pollinator community response to planted pollinator habitat in agroecosystems over time. Authorea https://doi.org/10.22541/au.164191433.37143936/v1 (2022).Article 

    Google Scholar 
    Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).PubMed 
    Article 

    Google Scholar 
    Genersch, E., Yue, C., Fries, I. & De Miranda, J. R. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J. Invertebr. Pathol. 91, 61–63 (2006).PubMed 
    Article 

    Google Scholar 
    Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. For. Entomol. 21, 363–371 (2019).Article 

    Google Scholar 
    Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613 (2019).PubMed 
    Article 

    Google Scholar 
    Gisder, S. et al. Rapid gastrointestinal passage may protect Bombus terrestris from becoming a true host for Nosema ceranae. Appl. Environ. Microbiol. 86(12), e00629-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tehel, A., Streicher, T., Tragust, S. & Paxton, R. J. Experimental infection of bumblebees with honeybee-associated viruses: No direct fitness costs but potential future threats to novel wild bee hosts. R. Soc. Open Sci. 7(7), 200480 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reynaldi, F. J., Sguazza, G. H., Albicoro, F. J., Pecoraro, M. R. & Galosi, C. M. First molecular detection of co-infection of honey bee viruses in asymptomatic Bombus atratus in South America. Braz. J. Biol. 73, 797–800 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schoonvaere, K. et al. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLoS ONE 11(12), e0168456 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Melathopoulos, A. et al. Viruses of managed alfalfa leafcutting bees (Megachille rotundata Fabricus) and honey bees (Apis mellifera L.) in Western Canada: Incidence, impacts, and prospects of cross-species viral transmission. J. Invertebr. Pathol. 146, 24–30 (2017).PubMed 
    Article 

    Google Scholar 
    Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, A. N., Shepherd, T. F. & Rangel, J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci. Rep. 10(1), 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Dalmon, A. et al. Possible spillover of pathogens between bee communities foraging on the same floral resource. Insects 12(2), 122 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kojima, Y. et al. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey Bees in Japan. Microb. Ecol. 62, 895–906 (2011).PubMed 
    Article 

    Google Scholar 
    Graystock, P. et al. The Trojan hives: Pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50, 1207–1215 (2013).Article 

    Google Scholar 
    Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).PubMed 
    Article 

    Google Scholar 
    Evison, S. E. et al. Pervasiveness of parasites in pollinators. PLoS ONE 7(1), e30641 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graystock, P., Goulson, D. & Hughes, W. O. H. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282(1813), 20151371 (2015).Article 

    Google Scholar 
    Tripodi, A. D., Szalanski, A. L. & Strange, J. P. Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). J. Invertebr. Pathol. 153, 147–155 (2018).PubMed 
    Article 

    Google Scholar 
    Singh, R. et al. RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5(12), e14357 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng, W. et al. Host range expansion of honey bee Black Queen Cell Virus in the bumble bee, Bombus huntii. Apidologie 42, 650–658 (2011).Article 

    Google Scholar 
    Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gamboa, V. et al. Bee pathogens found in Bombus atratus from Colombia: A case study. J. Invertebr. Pathol. 129, 36–39 (2015).PubMed 
    Article 

    Google Scholar 
    Radzevičiūtė, R. et al. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. J. Invertebr. Pathol. 146, 14–23 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Murray, E. A. et al. Viral transmission in honey bees and native bees, supported by a global black queen cell virus phylogeny. Environ. Microbiol. 21, 972–983 (2019).PubMed 
    Article 

    Google Scholar 
    Dobelmann, J., Felden, A. & Lester, P. J. Genetic strain diversity of multi-host RNA viruses that infect a wide range of pollinators and associates is shaped by geographic origins. Viruses 12, 13–15 (2020).Article 
    CAS 

    Google Scholar 
    Olgun, T., Everhart, S. E., Anderson, T. & Wu-Smart, J. Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes. PLoS ONE 15(6), e0234431 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fearon, M. L. & Tibbetts, E. A. Pollinator community species richness dilutes prevalence of multiple viruses within multiple host species. Ecology 102(5), e03305 (2021).PubMed 
    Article 

    Google Scholar 
    Sokół, R., Michalczyk, M. & Michołap, P. Preliminary studies on the occurrence of honeybee pathogens in the national bumblebee population. Ann. Parasitol. 64, 385–390 (2018).PubMed 

    Google Scholar 
    Bravi, M. E. et al. Wild bumble bees (Hymenoptera: Apidae: Bombini) as a potential reservoir for bee pathogens in northeastern Argentina. J. Apic. Res. 58, 710–713 (2019).Article 

    Google Scholar 
    Mazzei, M. et al. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Li, J. et al. Cross-species infection of deformed wing virus poses a new threat to pollinator conservation. J. Econ. Entomol. 104, 732–739 (2011).PubMed 
    Article 

    Google Scholar 
    Sachman-Ruiz, B., Narváez-Padilla, V. & Reynaud, E. Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol. Invasions 17, 2043–2053 (2015).Article 

    Google Scholar 
    Jones, L. J., Ford, R. P., Schilder, R. J. & López-Uribe, M. M. Honey bee viruses are highly prevalent but at low intensities in wild pollinators of cucurbit agroecosystems. J. Invertebr. Pathol. 185, 107667 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dolezal, A. G. et al. Honey bee viruses in wild bees: Viral prevalence, loads, and experimental inoculation. PLoS ONE 11(11), e0166190 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mazzei, M. et al. First detection of replicative deformed wing virus (DWV) in Vespa velutina nigrithorax. Bull. Insectology 71, 211–216 (2018).
    Google Scholar 
    Plischuk, S. et al. Parasites and pathogens associated with native bumble bees (Hymenoptera: Apidae: Bombus spp.) from highlands in Bolivia and Peru. Stud. Neotrop. Fauna Environ. Stud. https://doi.org/10.1080/01650521.2020.1743551 (2020).Article 

    Google Scholar 
    McMahon, D. P. et al. A sting in the spit: Widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailes, E. J. et al. First detection of bee viruses in hoverfly (syrphid) pollinators. Biol. Lett. 14(2), 20180001 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pritchard, Z. A. et al. Do viruses from managed honey bees (Hymenoptera: Apidae) endanger wild bees in native prairies?. Environ. Entomol. 50, 455–466 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danforth, B. N., Mitchell, P. L. & Packer, L. Mitochondrial DNA differentiation between two cryptic Halictus (Hymenoptera: Halictidae) species. Ann. Entomol. Soc. Am. 91, 387–391 (1998).CAS 
    Article 

    Google Scholar 
    Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Antúnez, K. et al. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11, 2284–2290 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108, 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leite, G. M., Magan, N. & Medina, A. Comparison of different bead-beating RNA extraction strategies: An optimized method for filamentous fungi. J. Microbiol. Methods 88, 413–418 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simms, D., Cizdziel, P. & Chomczynski, P. TRIzol: A new reagent for optimal single-step isolation of RNA. Focus (Madison) 15, 99–102 (1993).
    Google Scholar 
    Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), 1–12 (2002).Article 

    Google Scholar 
    Mwalili, S. M., Lesaffre, E. & Declerck, D. The zero-inflated negative binomial regression model with correction for misclassification: An example in caries research. Stat. Methods Med. Res. 17, 123–139 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    R Core Team. R: Language and Environment for Statistical Computing. R Foundation for Statistical Computer (2018). Available at: https://www.r-project.org/.Jackman, S. et al. Package ‘pscl’. (2020).Canty, A. & Ripley, B. Package ‘boot’. (2021).Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. 23, 1212–1222 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    National Heritage Program. Species/Community Search. National Heritage Program: Natural and Cultural Resources (2021). Available at: https://ncnhp.org/data/speciescommunity-search.Hatfield, R. et al. IUCN Assessments for North American Bombus spp. (2014).Sersic, A. N., Masco, M. & Noy-Meir, I. Natural hybridization between species of Calceolaria with different pollination syndromes in southern Patagonia, Argentina. Plant Syst. Evol. 230, 111–124 (2001).Article 

    Google Scholar 
    Otti, O. & Schmid-Hempel, P. Nosema bombi: A pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124 (2007).PubMed 
    Article 

    Google Scholar 
    Crabbe, J. C., Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior: Interactions with laboratory environment. Science 284(5420), 1670–1672 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wahlsten, D. et al. Different data from different labs: Lessons from studies of gene-environment interaction. J. Nuerobiol. 54, 283–311 (2003).Article 

    Google Scholar 
    Brownie, J. et al. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 25(16), 3235–3241 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boncristiani, H. F. et al. In vitro infection of pupae with israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS ONE 8(9), e73429 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Different time patterns of the presence of red-eared slider influence the ontogeny dynamics of common frog tadpoles

    Gerber, B. D., Karpanty, S. M. & Randrianantenaina, J. Activity patterns of carnivores in the rain forests of Madagascar: Implications for species coexistence. J. Mammal. 93, 667–676 (2012).Article 

    Google Scholar 
    Azevedo, F., Lemos, F., Freitas-Junior, M., Rocha, D. & Azevedo, F. Puma activity patterns and temporal overlap with prey in a human-modified landscape at Southeastern Brazil. J. Zool. 305, 246–255 (2018).Article 

    Google Scholar 
    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across a freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27, 337–363 (1996).Article 

    Google Scholar 
    Sitvarin, M. I., Rypstra, A. L. & Harwood, J. D. Linking the green and brown worlds through nonconsumptive predator effects. Oikos 125, 1057–1068 (2016).Article 

    Google Scholar 
    Damien, M. & Tougeron, K. Prey–predator phenological mismatch under climate change. Curr. Opin. Insect Sci. 35, 60–68 (2019).PubMed 
    Article 

    Google Scholar 
    Relyea, R. A. & Werner, E. E. Quantifying the relation between predator-induced behavior and growth performance in larval anurans. Ecology 80, 2117–2124 (1999).Article 

    Google Scholar 
    Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).Article 

    Google Scholar 
    Osman, R. W. & Whitlatch, R. B. The control of the development of a marine benthic community by predation on recruits. J. Exp. Mar. Biol. Ecol. 311, 117–145 (2004).Article 

    Google Scholar 
    Schmidt, B. R., Băncilă, R. I., Hartel, T., Grossenbacher, K. & Schaub, M. Shifts in amphibian population dynamics in response to a change in the predator community. Ecosphere 12, e03528 (2021).Article 

    Google Scholar 
    Falaschi, M., Melotto, A., Manenti, R. & Ficetola, G. F. Invasive species and amphibian conservation. Herpetologica 76, 216–227 (2020).Article 

    Google Scholar 
    Gamradt, S. C. & Kats, L. B. Effect of introduced crayfish and mosquito fish on California newts. Conserv. Biol. 10, 1155–1162 (1996).Article 

    Google Scholar 
    Matthews, K. R., Knapp, R. A. & Pope, K. L. Garter snake distributions in high-elevation aquatic ecosystems: Is there a link with declining amphibian populations and nonnative trout introductions?. J. Herpetol. 36, 16–22 (2002).Article 

    Google Scholar 
    Dodds, W. K. & Whiles, M. R. Freshwater Ecology: Concepts and Environmental Applications 3rd edn. (Elsevier, 2002).
    Google Scholar 
    Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86, 501–509 (2005).Article 

    Google Scholar 
    Le Roux, E., Kerley, G. I. & Cromsigt, J. P. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28, 2493–2499 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Daversa, D. et al. Broadening the ecology of fear: Non-lethal effects arise from diverse responses to predation and parasitism. Proc. R. Soc. B 288, 20202966 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Benard, M. F. Predator-induced phenotypic plasticity in organisms with complex life histories. Annu. Rev. Ecol. Evol. Syst. 35, 651–673 (2004).Article 

    Google Scholar 
    Van Buskirk, J. & Schmidt, B. R. Predator-induced phenotypic plasticity in larval newts: Trade-offs, selection, and variation in nature. Ecology 81, 3009–3028 (2000).Article 

    Google Scholar 
    McCollum, S. A. & Van Buskirk, J. Costs and benefits of a predator-induced polyphenism in the gray treefrog Hyla chrysoscelis. Evolution 50, 583–593 (1996).PubMed 

    Google Scholar 
    Skelly, D. K. Tadpole communities: pond permanence and predation are powerful forces shaping the structure of tadpole communities. Am. Sci. 85, 36–45 (1997).ADS 

    Google Scholar 
    Sih, A. & Moore, R. D. Delayed hatching of salamander eggs in response to enhanced larval predation risk. Am. Nat. 142, 947–960 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Warkentin, K. M. Adaptive plasticity in hatching age: A response to predation risk trade-offs. Proc. Natl. Acad. Sci. 92, 3507–3510 (1995).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Johnson, J. B., Saenz, D., Adams, C. K. & Conner, R. N. The influence of predator threat on the timing of a life-history switch point: Predator-induced hatching in the southern leopard frog (Rana sphenocephala). Can. J. Zool. 81, 1608–1613 (2003).Article 

    Google Scholar 
    Wilbur, H. M. & Fauth, J. E. Experimental aquatic food webs: Interactions between two predators and two prey. Am. Nat. 135, 176–204 (1990).Article 

    Google Scholar 
    Laurila, A. Behavioural responses to predator chemical cues and local variation in antipredator performance in Rana temporaria tadpoles. Oikos 88, 159–168 (2000).CAS 
    Article 

    Google Scholar 
    Gomez-Mestre, I. et al. The shape of things to come: Linking developmental plasticity to post-metamorphic morphology in anurans. J. Evol. Biol. 23, 1364–1373 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, E. A., Duarte, L. F. L. & Dias, G. M. How the timing of predation affects composition and diversity of species in a marine sessile community?. J. Exp. Mar. Biol. Ecol. 412, 126–133 (2012).Article 

    Google Scholar 
    Andrade, M. R., Albeny-Simões, D., Breaux, J. A., Juliano, S. A. & Lima, E. Are behavioural responses to predation cues linked across life cycle stages?. Ecol. Entomol. 42, 77–85 (2017).Article 

    Google Scholar 
    Knapp, R. A. Effects of nonnative fish and habitat characteristics on lentic herpetofauna in Yosemite National Park, USA. Biol. Conserv. 121, 265–279 (2005).Article 

    Google Scholar 
    Kiesecker, J. M. & Blaustein, A. R. Population differences in responses of red-legged frogs (Rana aurora) to introduced bullfrogs. Ecology 78, 1752–1760 (1997).Article 

    Google Scholar 
    Nunes, A. L., Orizaola, G., Laurila, A. & Rebelo, R. Rapid evolution of constitutive and inducible defenses against an invasive predator. Ecology 95, 1520–1530 (2014).PubMed 
    Article 

    Google Scholar 
    Polo-Cavia, N., Gonzalo, A., López, P. & Martín, J. Predator recognition of native but not invasive turtle predators by naïve anuran tadpoles. Anim. Behav. 80, 461–466 (2010).Article 

    Google Scholar 
    Zhang, F., Zhao, J., Zhang, Y., Messenger, K. & Wang, Y. Antipredator behavioral responses of native and exotic tadpoles to novel predator. Asian Herpetol. Res. 6, 51–58 (2015).
    Google Scholar 
    Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database (Invasive Species Specialist Group, 2000).
    Google Scholar 
    TTWG. Conservation biology of freshwater turtles and tortoises: A compilation project of the IUCN/SSC tortoise and freshwater turtle specialist group. in Chelonian Research Monographs 7 Turtle of the World: Annotated Checklist and Atlas of Taxonomy, Synonymy, Distribution, and Conversation Status. 8th edn. (eds. Rhodin, A.G.J., Iverson, J.B., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Pritchard, P.C.H., Mittermeier, R.A.). 1–292. (Chelonian Research Foundation and Turtle Conservancy, 2017).GISD. Global Invasive Species Database. http://www.issg.org/database (2021).Berec, M., Klapka, V. & Zemek, R. Effect of an alien turtle predator on movement activity of European brown frog tadpoles. Ital. J. Zool. 83, 68–76 (2016).Article 

    Google Scholar 
    Vodrážková, M., Šetlíková, I. & Berec, M. Chemical cues of an invasive turtle reduce development time and size at metamorphosis in the common frog. Sci. Rep. 10, 1–6 (2020).Article 
    CAS 

    Google Scholar 
    Gibbons, J., Greene, J. & Congdon, J. Life history and ecology of the slider turtle. in Temporal and Spatial Movement Patterns of Sliders and Other Turtles (ed. Gibbons, J.). 201–215. (Smithsonian Institution Press, 1990).Formanowicz, D. R. Anuran tadpole/aquatic insect predator-prey interactions: tadpole size and predator capture success. Herpetologica 42, 367–373 (1986).
    Google Scholar 
    Semlitsch, R. D. & Gibbons, J. W. Fish predation in size-structured populations of treefrog tadpoles. Oecologia 75, 321–326 (1988).ADS 
    PubMed 
    Article 

    Google Scholar 
    Teplitsky, C., Piha, H., Laurila, A. & Merilä, J. Common pesticide increases costs of antipredator defenses in Rana temporaria tadpoles. Environ. Sci. Technol. 39, 6079–6085 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Travis, J. Anuran size at metamorphosis: experimental test of a model based on intraspecific competition. Ecology 65, 1155–1160 (1984).Article 

    Google Scholar 
    Wilbur, H. M. & Collins, J. P. Ecological aspects of amphibian metamorphosis: Nonnormal distributions of competitive ability reflect selection for facultative metamorphosis. Science 182, 1305–1314 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Woodward, G. & Hildrew, A. G. Body-size determinants of niche overlap and intraguild predation within a complex food web. J. Anim. Ecol. 71, 1063–1074 (2002).Article 

    Google Scholar 
    Relyea, R. A. Getting out alive: How predators affect the decision to metamorphose. Oecologia 152, 389–400 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Pujol-Buxó, E., San Sebastián, O., Garriga, N. & Llorente, G. A. How does the invasive/native nature of species influence tadpoles’ plastic responses to predators?. Oikos 122, 19–29 (2013).Article 

    Google Scholar 
    Phuge, S., Shetye, K. & Pandit, R. Effect of water level on insect-tadpole predator-prey interactions. Acta Oecol. 108, 103649 (2020).Article 

    Google Scholar 
    Loman, J. Early metamorphosis in common frog Rana temporaria tadpoles at risk of drying: An experimental demonstration. Amphibia-Reptilia 20, 421–430 (1999).Article 

    Google Scholar 
    Stav, G., Kotler, B. P. & Blaustein, L. Direct and indirect effects of dragonfly (Anax imperator) nymphs on green toad (Bufo viridis) tadpoles. Hydrobiologia 579, 85–93 (2007).Article 

    Google Scholar 
    Goldberg, T., Nevo, E. & Degani, G. Phenotypic plasticity in larval development of six amphibian species in stressful natural environments. Zool. Stud. 51, 345–361 (2012).
    Google Scholar 
    Kishida, O., Costa, Z., Tezuka, A. & Michimae, H. Inducible offences affect predator–prey interactions and life-history plasticity in both predators and prey. J. Anim. Ecol. 83, 899–906 (2014).PubMed 
    Article 

    Google Scholar 
    Leips, J. & Travis, J. Metamorphic responses to changing food levels in two species of hylid frogs. Ecology 75, 1345–1356 (1994).Article 

    Google Scholar 
    Alford, R. A. & Harris, R. N. Effects of larval growth history on anuran metamorphosis. Am. Nat. 131, 91–106 (1988).Article 

    Google Scholar 
    Loman, J. Temperature, genetic and hydroperiod effects on metamorphosis of brown frogs Rana arvalis and R. temporaria in the field. J. Zool. 258, 115–129 (2002).Article 

    Google Scholar 
    Laugen, A. T. et al. Quantitative genetics of larval life-history traits in Rana temporaria in different environmental conditions. Genet. Res. 86, 161–170 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brodie, E. D. & Formanowicz, D. R. Prey size preference of predators: Differential vulnerability of larval anurans. Herpetologica 39, 67–75 (1983).
    Google Scholar 
    Eklöv, P. & Werner, E. E. Multiple predator effects on size-dependent behavior and mortality of two species of anuran larvae. Oikos 88, 250–258 (2000).Article 

    Google Scholar 
    Urban, M. C. Predator size and phenology shape prey survival in temporary ponds. Oecologia 154, 571–580 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Jara, F. G. & Perotti, M. G. Risk of predation and behavioural response in three anuran species: influence of tadpole size and predator type. Hydrobiologia 644, 313–324 (2010).Article 

    Google Scholar 
    Wassersug, R. J. & Sperry, D. G. The relationships of locomotion to differential predation on Pseudacris triseriata (Anura: Hylidae). Ecology 58, 830–839 (1977).Article 

    Google Scholar 
    Huey, R. B. Sprint velocity of tadpoles (Bufo boreas) through metamorphosis. Copeia 1980, 537–540 (1980).Article 

    Google Scholar 
    Laurila, A. & Kujasalo, J. Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles. J. Anim. Ecol. 68, 1123–1132 (1999).Article 

    Google Scholar 
    Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: grow now, pay later?. Trends Ecol. Evol. 16, 254–260 (2001).PubMed 
    Article 

    Google Scholar 
    Downie, J. & Weir, A. Developmental arrest in Leptodactylus fuscus tadpoles (Anura: Leptodactylidae) III effect of length of arrest period on growth potential. Herpetol. J. 7, 85–92 (1997).
    Google Scholar 
    Smith, D. C. Adult recruitment in chorus frogs: Effects of size and date at metamorphosis. Ecology 68, 344–350 (1987).Article 

    Google Scholar 
    Altwegg, R. & Reyer, H. U. Patterns of natural selection on size at metamorphosis in water frogs. Evolution 57, 872–882 (2003).PubMed 
    Article 

    Google Scholar 
    Brunelli, E. et al. Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat. Toxicol. 91, 135–142 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Boone, M. D. Juvenile frogs compensate for small metamorph size with terrestrial growth: Overcoming the effects of larval density and insecticide exposure. J. Herpetol. 39, 416–423 (2005).Article 

    Google Scholar 
    Schmidt, B. R., Hödl, W. & Schaub, M. From metamorphosis to maturity in complex life cycles: Equal performance of different juvenile life history pathways. Ecology 93, 657–667 (2012).PubMed 
    Article 

    Google Scholar  More

  • in

    Meteorological and climatic variables predict the phenology of Ixodes ricinus nymph activity in France, accounting for habitat heterogeneity

    Sampling sitesLongitudinal observation campaigns for I. ricinus nymph activity were carried out at 11 sampling sites in forest areas from seven different tick observatories across France. Tick observatories are located at the following French municipal areas, where the coordinates of the centre of each municipal area and the climatic types29 are also provided as: (1) La Tour de Salvagny (45° 48′ 50.6″ N 4° 42′ 53.2″ E; Mixed climates); (2) Saint-Genès-Champanelle (45° 43′ 23.8″ N 3°01′ 08.0″ E; Mountain climate); (3) Etiolles (48° 37′ 59.9″ N 2° 28′ 00.1″ E; Degraded oceanic climate); (4) Carquefou (47° 17′ 58.5″ N 1° 29′ 26.0″ W; Oceanic climate); (5) Gardouch (43°23′ 25.7″ N 1° 41′ 02.1″ E; South-West Basin climate); (6) Velaine-en-Haye (48° 42′ 13.4″ N 6° 01′ 16.1″ E; Semi-continental climate); (7) Les Bordes (47° 48′ 47.3″ N 2° 24′ 01.3″ E; Degraded-oceanic climate) (Fig. 1). The observation campaigns were carried out from April/June 2014 to May/June 2021 in most observatories, except for Les Bordes, which began in April 2018.Figure 1The map was created using QGIS version 3.8, Zanzibar (https://www.qgis.org). The climatic region types were previously classified by Joly et al.29.The distribution of tick observatories according to the climatic region types of continental France: (1) Etiolles (degraded oceanic); (2) Velaine-en-Haye (semi-continental); (3) Les Bordes (degraded oceanic); (4) Carquefou (oceanic); (5) La Tour de Salvagny (mixed); (6) Saint-Genès-Champanelle (mountain); (7) Gardouch (south-west basin). Phenological patterns observed at each observatory were also indicated.Full size imageEach tick observatory corresponds to one sampling site except La Tour de Salvagny, Gardouch, and Les Bordes (Table S1). In La Tour de Salvagny, we had to withdraw the observations at the original site (La Tour de Salvagny A) in September 2016 because the site became no longer accessible. In April 2017, we continued our observations at a nearby site, approximately 2 km apart (La Tour de Salvagny B). In Gardouch, the activity of questing nymphs was observed both inside and outside the enclosed area of an experimental station on roe deer (Capreolus capreolus), referred to as Gardouch Inside and Gardouch Outside, respectively. The estimated population density of roe deer in Gardouch Inside (50 individuals per 100 ha) was higher than Gardouch Outside (less than 20 individuals per 100 ha) (H. Verheiden, personal communication, 15th October 2021). Furthermore, three sampling sites in Les Bordes, approximately 1.2 km apart, were referred to as Les Bordes A, B, and C, respectively. Additional sampling sites of these observatories were considered and reported as distinct sampling sites in further analyses, resulting in a total to 11 sampling sites from 7 observatories. Furthermore, due to their geographical proximity, meteorological/climatic factors of different sampling sites from the same observatories were considered identical in subsequent statistical analyses, whereas land cover and topography factors could be varied.Field observation campaigns were planned and carried out by local investigators who had been trained on the sampling protocol. The locations of forests, sampling sites, and passages were chosen where their biotopes are known to be suitable for I. ricinus tick populations around each observatory at the time the field observation campaigns started30. The observations were never carried out during the daytime when the weather was highly unfavourable to questing ticks, e.g., heavy rain, snow, or snow cover.Sampling protocol for questing Ixodes ricinus nymphsActivity of questing I. ricinus nymphs was observed by a cloth-dragging sampling technique31. Within a 1-km radius, a 1 m × 1 m white cloth was dragged over 10 observation units of 10 m short-grass vegetative forest floors, called transects. For each transect, a repeated removal sampling design was used27. The cloth-dragging sampling process was successively repeated three times per sampling. All nymphs found on white cloth in each campaign were removed and collected in a vial for subsequent morphological identification32 by the same acarologists at the corresponding laboratories. As a result, the questing nymph activity of each sampling site was monitored as a total number of confirmed I. ricinus nymphs collected from three repeated sampling on 10 transects, equivalent to a surface area of 100 m2. This measure was considered as an indicator for tick abundance on the day of sampling. The same transects were repeatedly sampled throughout the study period at approximately 1-month intervals.Environmental dataWe tested 28 environmental variables to explain the observed I. ricinus nymph activity (Table 1). These variables could be categorized as: (1) Daytime duration and meteorological variables (time-dependent, 9 variables); (2) Land cover, topography, and bioclimatic variables (time-independent, 19 variables).Table 1 Environmental variables (meteorological, land cover, topography, and bioclimatic variables) used to explain I. ricinus nymph counts per 100 m2 in regression analysis.Full size tableDaytime duration and meteorological variablesDaytime duration ((daytime)) from January 2013 to June 2021 at each sampling site was obtained from the corresponding latitude using geosphere package33. Hourly meteorological data (2-m temperature and relative humidity) were recorded locally at each forest. Subsequently, daily mean, minimum, and maximum values of temperature (({T}_{M}), ({T}_{N}), and ({T}_{X}); in °C) and relative humidity (({U}_{M}), ({U}_{N}), and ({U}_{X}); in %) were derived from these hourly records. The meteorological seasons of the temperate area in northern hemisphere are defined as: (1) Spring, 1st March to 31st May; (2) Summer, 1st June to 31st August; (3) Autumn, 1st September to 30th November; (4) Winter, 1st December to 28th or 29th February.Missing values found on these local daily-level variables were imputed by the random forest algorithm in mice package34. External daily meteorological data, i.e., daily average temperature and relative humidity, derived from neighbouring weather stations (Météo-France or INRAE), as well as month and year information, were used as auxiliary variables (Table S2). As a result, the imputation process creates a total of 500 iterated values for each variable. The median values of 500 imputations were used to replace the missing values.The imputed daily meteorological data were subsequently used to calculate the averaged values in different lagged time intervals for further analysis, called interval-average variables15. The interval-average variables were generated to reduce the uncertainty that might arise during the imputation process and to capture the cumulative effects of the meteorological variables, which were mean temperature ({T}_{M}) and minimum relative humidity ({U}_{N}). The interval-average variables were defined as the average values of a meteorological variable (Min) {({T}_{M}), ({U}_{N})} during a period between ({t}_{1}) to ({t}_{2}) month(s) before the sampling, denoted as ({M}^{{t}_{1}:{t}_{2}}), where 1 month consists of 28 days. As temperature conditions affect several ecological processes of tick populations, particularly developmental and questing rates3, the mean temperature ({T}_{M}) was selected for further analysis to reflect the overall temperature effects. While the minimum relative humidity ({U}_{N}) was chosen for the following reasons: (1) the survival of I. ricinus is highly sensitive to desiccation conditions6,7,8. As a result, when compared to mean or maximum relative humidity, minimum relative humidity is a relatively strong indicator of the effects of desiccation stress; (2) the variation of minimum relative humidity among all sites was higher than that of the mean and maximum relative humidity. This high variation allowed us to better describe meteorological characteristics of each sampling site.Here, we hypothesized that interval-average meteorological conditions influence the dynamics of observed nymph activity at different time lags in different manners. Short-term lags may have an impact on immediate responses, such as the probability of questing. At the same time, long-term lags may influence the dynamics of nymph abundance, which is associated with development and survival rates. Therefore, we explored the impact of each meteorological variable at following time lags on the observed nymphs activity in subsequent regression analysis: (1) 1-month moving average condition, ({M}^{0:1}); (2) previous 3-to-6-month moving average condition, ({M}^{3:6}); (3) 6-month moving average condition, ({M}^{0:6}); (4) 12-month moving average condition, ({M}^{0:12}). For instance, ({T}_{M}^{0:1}) denotes 1-month moving average temperature, representing an average of temperature between 0 and 1 months (0–28 days) before the day of sampling.In addition to the interval-average variables, monthly and seasonal average values of mean temperature and minimum relative humidity during the observation period were also calculated to describe the characteristics of meteorological conditions of each sampling site.Land cover, topography, and bioclimatic variablesWe obtained land cover, topography, and bioclimatic data from a 1-km radius buffer area around the center of each sampling site to capture habitat characteristics across all 10 transects. All the variables were handled and obtained by using QGIS version 3.8.035. The digital elevation model (DEM) data derived from the Shuttle Radar Topography Mission (SRTM) database36 was used to describe the topographic features of sampling sites, which included the mean (({mean}_{elv})) and standard deviation (({sd}_{elv})) of the elevation (in m above sea level), the proportion of flat area (({p}_{flat}); defined by the slope ≤ 2.5%37), the proportion of area facing north (({p}_{north})), east (({p}_{east})), west (({p}_{west})), and south (({p}_{south})), and the catchment area ((catchment)) as a proxy variable for moisture. Bioclimatic variables for each site (historical average conditions during 1970–2000) were derived from the WorldClim database38, including the annual mean temperature (({BIO1}_{Temp}); in °C), the mean diurnal range (({BIO2}_{Diur}); in °C), the maximum temperature of the warmest month (({BIO5}_{maxTemp}); in °C), and the annual precipitation (({BIO12}_{Prec}); in mm). The land cover features of each sampling site were described using the CORINE Land Cover (CLC) 201839, while the characteristics of forests were explained by the BD forêt version 2 data40. The forest fragmentation was characterized by the percentage of forest-covering area (({p}_{Forest})), the forest edge density (({ED}_{Forest}); in m/km2), and the number of forest patches (({n}_{Forest})). While the diversities of the land cover types (level-1 and level-2 CLC) and the forest types were calculated by using the Shannon’s diversity index41 ((H)) as (H=sum_{i=1}^{S}{p}_{i}mathrm{ln}{p}_{i}), where (S) is the total number of land cover/forest types and ({p}_{i}) is the proportion of land cover/forest type (i) within the 1-km radius buffer area. The Shannon’s diversity index for level-1 CLC, level-2 CLC, and forest types were denoted as ({H}_{CLC1}), ({H}_{CLC2}), and ({H}_{Forest}), respectively. Finally, the soil pH data (({pH}_{soil})) was retrieved from the European Soil Data Centre (ESDC) database42.Statistical analysisAll the statistical analyses were carried out using the programming language R version 3.6.043. The variations of questing nymph population of each site were described by using (1) baseline annual nymph counts (spatial variation); (2) phenological patterns (seasonal variation). A baseline annual nymph count of site (i) (({{N}_{base}}_{i})) was defined as a summation of monthly median nymph counts ({varvec{tilde{N}}}_{i}={{tilde{N }}_{i,t}}) across all 12 months (tin left{mathrm{1,2},dots ,12right}) and expressed as: ({{N}_{base}}_{i}=sum_{t=1}^{12}{tilde{N }}_{i,t}). Subsequently, the monthly median nymph counts of each site ({varvec{tilde{N}}}_{i}) were transformed into normalized monthly median nymph counts ({varvec{tilde{N}}}_{i}^{*}={{tilde{N }}_{i,t}^{*}}) following Eq. (1) to have a range value of 0 to 1, which allows us to compare phenological patterns among all sites that have different annual baseline nymph counts.$${tilde{N }}_{i,t}^{*}=frac{{tilde{N }}_{i,t}}{mathrm{max}({stackrel{sim }{{varvec{N}}}}_{i})}$$
    (1)
    The term (mathrm{max}({stackrel{sim }{{varvec{N}}}}_{i})) denoted the maximum monthly median nymph counts. The normalized median nymph count ({tilde{N }}_{i,t}^{*}) of 1 indicates the maximum nymph activity (peak), while the value ({tilde{N }}_{i,t}^{*}) of 0 designates the absence of nymph activity. Afterwards, the phenological patterns were descriptively classified using the following criteria: (1) the season which the peaks of activity arrive; (2) evidence of reduced activity during winter (November–January); (3) the number of activity waves in a year, whether the pattern is unimodal or bimodal. After assigning phenological patterns to each site, the overall trends of different patterns were derived from medians of the normalized monthly median nymph count ({tilde{N }}_{i,t}^{*}) from all sites that belonged to each pattern. Furthermore, the directional changes in the maximum nymph counts were tested using a Spearman’s rank correlation coefficient, a p-value More