McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641. https://doi.org/10.1126/science.1255641 (2015).CAS
Article
PubMed
Google Scholar
Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).ADS
Article
Google Scholar
IPBES The global assessment report on biodiversity and ecosystem services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://ipbes.net/global-assessment (2019).Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596. https://doi.org/10.1038/nature09268 (2010).ADS
CAS
Article
PubMed
Google Scholar
Canonico, G. et al. Global observational needs and resources for marine biodiversity. Front. Mar. Sci. 6, 367. https://doi.org/10.3389/fmars.2019.00367 (2019).Article
Google Scholar
Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 211. https://doi.org/10.3389/fmars.2018.00211 (2018).Article
Google Scholar
Ehrnsten, E., Norkko, A., Timmermann, K. & Gustafsson, B. G. Benthic-pelagic coupling in coastal seas—Modelling macrofaunal biomass and carbon processing in response to organic matter supply. J. Mar. Sys. 196, 36–47. https://doi.org/10.1016/j.jmarsys.2019.04.003 (2019).Article
Google Scholar
Centurioni, L. R. et al. Global in situ observations of essential climate and ocean variables at the air-sea interface. Front. Mar. Sci. 6, 419. https://doi.org/10.3389/fmars.2019.00419 (2019).Article
Google Scholar
Murphy, S. E. et al. Fifteen years of lessons from the Seascape approach: A framework for improving ocean management at scale. Conserv. Sci. Pract. 3, e423. https://doi.org/10.1111/csp2.423 (2021).Article
Google Scholar
Pittman, S. J. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29. https://doi.org/10.3354/meps13661 (2021).ADS
Article
Google Scholar
Swanborn, D. J., Huvenne, V. A., Pittman, S. J. & Woodall, L. C. Bringing seascape ecology to the deep seabed: A review and framework for its application. Limnol. Oceanogr. 67, 66–88. https://doi.org/10.1002/lno.11976 (2022).ADS
Article
Google Scholar
Flint, L. E. & Flint, A. L. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol. Process 1, 2. https://doi.org/10.1186/2192-1709-1-2 (2012).Article
Google Scholar
Fagundes, M. et al. Downscaling global ocean climate models improves estimates of exposure regimes in coastal environments. Sci. Rep. 10, 14227. https://doi.org/10.1038/s41598-020-71169-6 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Zacarias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: A review and critique. Aquatic Conser: Mar. Freshw. Ecosyst. 11, 59–76. https://doi.org/10.1002/aqc.429 (2001).Article
Google Scholar
Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25(3155), 153–160. https://doi.org/10.1016/j.tree.2009.10.001 (2009).Article
PubMed
Google Scholar
Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81(8), 2250–2263. https://doi.org/10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2 (2000).Article
Google Scholar
Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3(5), 41. https://doi.org/10.1890/ES11-00366.1 (2012).Article
Google Scholar
Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500. https://doi.org/10.1146/annurev.ecolsys.27.1.477 (1996).Article
Google Scholar
Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine populations. Bull. Mar. Sci. 70(1), 377–396 (2002).
Google Scholar
Roughgarden, J., Gaines, S. & Iwasa, Y. Recruitment dynamics in complex life cycles. Science 241, 1460–1466. https://doi.org/10.1126/science.11538249 (1988).ADS
MathSciNet
CAS
Article
PubMed
MATH
Google Scholar
Gilg, M. R. & Hilbish, T. J. The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84(11), 2989–2998. https://doi.org/10.1890/02-0498 (2003).Article
Google Scholar
D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl. Acad. Sci. USA 112(45), 13940–13945. https://doi.org/10.1073/pnas.1513754112 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Fogarty, M. J., Sissenwine, M. P. & Cohen, E. B. Recruitment variability and the dynamics of exploited marine populations. Trends Ecol. Evol. 6(8), 241–246. https://doi.org/10.1016/0169-5347(91)90069-A (1991).CAS
Article
PubMed
Google Scholar
Wahle, R. A. Revealing stock–recruitment relationships in lobsters and crabs:is experimental ecology the key?. Fish. Res. 65, 3–32. https://doi.org/10.1016/j.fishres.2003.09.004 (2003).Article
Google Scholar
Gosselin, L. A. & Qian, P. Y. Early post-settlement mortality of an intertidal barnacle: a critical period for survival. Mar. Ecol. Prog. Ser. 135, 69–75. https://doi.org/10.3354/meps135069 (1996).ADS
Article
Google Scholar
Penin, L. et al. Early post-settlement mortality and the structure of coral assemblages. Mar. Ecol. Prog. Ser. 408, 55–64. https://doi.org/10.3354/meps08554 (2010).ADS
Article
Google Scholar
Broitman, B. R., Mieszkowaska, N., Helmuth, B. & Blanchette, C. A. Climate recruitment of rocky shore intertidal invertebrates in the eastern North Atlantic. Ecology 89(11), S81–S90. https://doi.org/10.1890/08-0635.1 (2008).Article
PubMed
Google Scholar
Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15. https://doi.org/10.3354/meps308001 (2006).ADS
Article
Google Scholar
Mazzuco, A. C. A., Christofoletti, R. A., Coutinho, R. & Ciotti, A. M. The influence of atmospheric cold fronts on larval supply and settlement of intertidal invertebrates: Case studies in the Cabo Frio coastal upwelling system (SE Brazil). J. Sea Res. 137, 47–56. https://doi.org/10.1016/j.seares.2018.02.010 (2018).Article
Google Scholar
Morgan, S. G., Fisher, J. L. & Mace, A. J. Larval recruitment in a region of strong, persistent upwelling and recruitment limitation. Mar. Ecol. Prog. Ser. 394, 79–99. https://doi.org/10.3354/meps08216 (2009).ADS
Article
Google Scholar
Pfaff, M. C., Branch, G. M., Wieters, E. A., Branch, R. A. & Broitman, B. R. Upwelling intensity and wave exposure determine recruitment of intertidal mussels and barnacles in the southern Benguela upwelling region. Mar. Ecol. Prog. Ser. 425, 141–152. https://doi.org/10.3354/meps09003 (2001).ADS
Article
Google Scholar
Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395. https://doi.org/10.1007/s00338-008-0461-9 (2009).ADS
Article
Google Scholar
Groom, S. et al. Satellite ocean colour: Current status and future perspective. Front. Mar. Sci. 6, 485. https://doi.org/10.3389/fmars.2019.00485 (2019).Article
Google Scholar
Moltmann, T. et al. A global ocean observing system (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies. Front. Mar. Sci. 6, 291. https://doi.org/10.3389/fmars.2019.00291 (2019).Article
Google Scholar
Kavanaugh, M. T. et al. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology. Prog. Oceanogr. 120, 291–304. https://doi.org/10.1016/j.pocean.2013.10.013 (2014).ADS
Article
Google Scholar
Kavanaugh, M. T. et al. Seascapes as a new vernacular for ocean monitoring, management and conservation. ICES J. Mar. Sci. 73(7), 1839–1850. https://doi.org/10.1093/icesjms/fsw086 (2016).Article
Google Scholar
Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/nclimate1627 (2013).ADS
Article
Google Scholar
Montes, E. et al. Dynamic satellite seascapes as a biogeographic framework for understanding phytoplankton assemblages in the Florida Keys National Marine Sanctuary United States. Front. Mar. Sci. 7, 575. https://doi.org/10.3389/fmars.2020.00575 (2020).Article
Google Scholar
Mazzuco, A. C. A. et al. Lower diversity of recruits in coastal reef assemblages are associated with higher sea temperatures in the tropical South Atlantic. Mar. Environ. Res. 148, 87–98. https://doi.org/10.1016/j.marenvres.2019.05.008 (2019).CAS
Article
PubMed
Google Scholar
Mazzuco, A. C. A., Stelzer, P. S. & Bernardino, A. F. Substrate rugosity and temperature matters: Patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic. PeerJ Life Environ. 8, e8289. https://doi.org/10.7717/peerj.8289 (2020).Article
Google Scholar
Stelzer, P. S. et al. Taxonomic and functional diversity of benthic macrofauna associated with rhodolith beds in SE Brazil. PeerJ 9, e11903. https://doi.org/10.7717/peerj.11903 (2021).Article
PubMed
PubMed Central
Google Scholar
Bernardino, A. F. et al. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions. Estuar. Coast. Shelf S. 166, 74–82. https://doi.org/10.1016/j.ecss.2015.05.021 (2015).ADS
Article
Google Scholar
Francini-Filho, R. B. et al. Dynamics of coral reef benthic assemblages of the Abrolhos bank, eastern Brazil: Inferences on natural and anthropogenic drivers. PLoS ONE 8(1), e54260. https://doi.org/10.1371/journal.pone.0054260 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Araújo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038. https://doi.org/10.1016/j.marenvres.2020.105038 (2020).CAS
Article
PubMed
Google Scholar
Fulton, E. A. et al. Modelling marine protected areas: insights and hurdles. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370(1681), 201. https://doi.org/10.1098/rstb.2014.0278 (2015).Article
Google Scholar
Carr, M. H. et al. The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquat. Conserv. Mar. Freshw. Ecosyst. 27(S1), 6–29. https://doi.org/10.1002/aqc.2800 (2017).Article
Google Scholar
Krueck, N. C. et al. Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol. Appl. 27, 925–941. https://doi.org/10.1002/eap.1495 (2017).Article
PubMed
Google Scholar
Ekau, W. & Knoppers, B. An introduction to the pelagic system of the Northeast and East Brazilian shelf. Arch. Fish. Mar. Res. 47(2/3), 5–24 (1999).
Google Scholar
Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57(7), 573–583. https://doi.org/10.1641/B570707 (2007).Article
Google Scholar
Vermeij, M. J. A., Fogarty, N. D. & Miller, M. W. Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 310, 119–128. https://doi.org/10.3354/meps310119 (2006).ADS
Article
Google Scholar
Gímenez, L. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology 91(5), 1401–1403. https://doi.org/10.1890/09-1028.1 (2010).Article
PubMed
Google Scholar
Jenkins, S. R., Marshall, D. & Fraschetti, S. Settlement and Recruitment. In Marine Hard Bottom Communities. Ecological Studies Analysis and Synthesis (ed. Wahl, M.) (Springer, 2009). https://doi.org/10.1007/b76710_12.Chapter
Google Scholar
von der Meden, C. E. O., Porri, F., Radloff, S. & McQuaid, C. D. Settlement intensification and coastline topography: Understanding the role of habitat availability in the pelagic–benthic transition. Mar. Ecol. Prog. Ser. 459, 63–71. https://doi.org/10.3354/meps09762 (2012).ADS
Article
Google Scholar
Gorman, D. et al. Decadal losses of canopy-forming algae along the warm temperate coastline of Brazil. Glob. Change Biol. 26, 1446–1457. https://doi.org/10.1111/gcb.14956 (2020).ADS
Article
Google Scholar
Pianca, C., Mazzini, P. L. F. & Siegle, E. Brazilian offshore wave climate based on NWW3 reanalysis. Braz. J. Oceanogr. 58(1), 53–70. https://doi.org/10.1590/S1679-87592010000100006 (2010).Article
Google Scholar
Muñiz, C., McQuaid, C. D. & Weidberg, N. Seasonality of primary productivity affects coastal species more than its magnitude. Sci. Total Environ. 757, 143740. https://doi.org/10.1016/j.scitotenv.2020.143740 (2021).ADS
CAS
Article
PubMed
Google Scholar
Edmunds, P. J. Finding signals in the noise of coral recruitment. Coral Reefs 41, 81–93. https://doi.org/10.1007/s00338-021-02204-9 (2022).Article
Google Scholar
Zuercher, R. Pelagic-benthic coupling in kelp forests of central California. Mar. Ecol. Prog. Ser. 682, 79–96. https://doi.org/10.3354/meps13937 (2022).ADS
Article
Google Scholar
Manríquez, P. H. & Castilla, J. C. Significance of marine protected areas in central Chile as seeding grounds for the gastropod Concholepas concholepas. Mar. Ecol. Prog. Ser. 215, 201–211. https://doi.org/10.3354/meps215201 (2001).ADS
Article
Google Scholar
Domingues, C. P., Nolasco, R., Dubert, J. & Queiroga, H. Model-derived dispersal pathways from multiple source populations explain variability of invertebrate larval supply. PLoS ONE 7(4), e35794. https://doi.org/10.1371/journal.pone.0035794 (2012).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Nickols, K. J., Miller, S. H., Gaylord, B., Morgan, S. G. & Largier, J. L. Spatial differences in larval abundance within the coastal boundary layer impact supply to shoreline habitats. Mar. Ecol. Prog. Ser. 494, 191–203. https://doi.org/10.3354/meps10572 (2013).ADS
Article
Google Scholar
Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 14999. https://doi.org/10.1038/s41598-017-14794-y (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Hughes, T. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS
CAS
Article
PubMed
Google Scholar
Meehl, G. A. & Tebaldi, C. More Intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).ADS
CAS
Article
PubMed
Google Scholar
Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Le, C., Lehrter, J. C., Hu, C. & Obenour, D. R. Satellite-based empirical models linking river plume dynamics with hypoxic area and volume. Geophys. Res. Lett. 43, 2693–2699. https://doi.org/10.1002/2015GL067521 (2016).ADS
CAS
Article
Google Scholar
Runge, J. et al. Inferring causation from time series in earth system sciences. Nat. Commun. 10, 2553. https://doi.org/10.1038/s41467-019-10105-3 (2019).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
Abbas, M. M., Melesse, A. M., Scinto, L. J. & Rehage, J. S. Satellite estimation of chlorophyll-a using moderate resolution imaging spectroradiometer (MODIS) sensor in shallow coastal water bodies: validation and improvement. Water 11, 1621. https://doi.org/10.3390/w11081621 (2019).CAS
Article
Google Scholar
Scrosati, R. A. & Ellrich, J. A. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005–2016): relationships with sea surface temperature and phytoplankton abundance. PeerJ Life Environ. 4, e2623. https://doi.org/10.7717/peerj.2623 (2016).Article
Google Scholar
Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24(6), 2416–2433. https://doi.org/10.1111/gcb.14108 (2018).ADS
Article
Google Scholar
Muelbert, J. H. et al. ILTER-the International long-term ecological research network as a platform for global coastal and ocean observation. Front. Mar. Sci. 6, 527. https://doi.org/10.3389/fmars.2019.00527 (2019).Article
Google Scholar
Pereira, A. F., Belém, A. L., Castro, B. M. & Geremias, R. G. Tide-topography interaction along the eastern Brazilian shelf. Cont. Shelf Res. 25, 1521–1539. https://doi.org/10.1016/j.csr.2005.04.008 (2005).ADS
Article
Google Scholar
Longo, P.A.S., Fernandes, M.C., Leite, F.P.P. & Passos, F.D. Gastropoda (Mollusca) associados a bancos de Sargassum sp. no Canal de São Sebastião–São Paulo, Brasil. Biota Neotropica 14(4), e20140115; doi: https://doi.org/10.1590/1676-06032014011514 (2014)Broitman, B. et al. Spatial and temporal patterns of invertebrate recruitment along the West coast of the United States. Ecol. Monogr. 78, S81–S90. https://doi.org/10.1890/06-1805.1 (2008).Article
Google Scholar
Todd, C. D. Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe?. Hydrobiologia 375, 1–21. https://doi.org/10.1023/A:1017007527490 (1998).Article
Google Scholar
Jenkins, S.R., Marshall, D. & Fraschetti, S. Settlement and Recruitment in Marine Hard Bottom Communities Ecological Studies (Analysis and Synthesis) (ed. Wahl, M.), vol 206; doi: https://doi.org/10.1007/b76710_12 (Springer, 2009)Shanks, A.L. An Identification Guide to the Larval Marine Invertebrates of the Pacific Northwest. Oregon State University Press, Corvallis, Oregon. 320 pages. ISBN 0–87071–531–3 (2001).Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Climate 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).ADS
Article
Google Scholar
Simons, R.A. ERDDAP. Monterey, CA: NOAA/NMFS/SWFSC/ERD; https://coastwatch.pfeg.noaa.gov/erddap . (2020).Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, John Wiley & Sons Ltd; doi: https://doi.org/10.1002/9781118445112.stat07841 (2017).Sokal, R. & Rohlf, F. J. Biometry: the principles and practice of statistics in biological research. (WH Freeman and Company, 2003).Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).Article
Google Scholar
Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5(1), 3–21. https://doi.org/10.1093/jpe/rtr044 (2012).Article
Google Scholar
Marshall, D. J. & Keough, M. J. The evolutionary ecology of offspring size in marine invertebrates. Adv. Mar. Biol. 53, 1–60. https://doi.org/10.1016/S0065-2881(07)53001-4 (2007).Article
PubMed
Google Scholar
Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525. https://doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 (2003).Article
Google Scholar
Quintana, C. O., Bernardino, A. F., Moraes, P. C., Valdemarsen, T. & Sumida, P. Y. G. Effects of coastal upwelling on the structure of macrofaunal communities in SE Brazil. J. Mar. Syst. 143, 120–129. https://doi.org/10.1016/j.jmarsys.2014.11.003 (2015).Article
Google Scholar
Hastie, T. & Tibshirani, R. Generalized Additive Models. (Chapman and Hall, 1990).Hastie, T. Generalized additive models in Statistical Models (eds. Chambers, J. M., Hastie, T.J.) (Wadsworth & Brooks, 1992).Garcia, L. Escaping the bonferroni iron claw in ecological studies. Oikos 105, 657–663. https://doi.org/10.1111/j.0030-1299.2004.13046.x (2004).Article
Google Scholar
Verhoeven, J. F., Simonsen, K. L. & McIntyre, L. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x (2005).Article
Google Scholar
Schmunk, R. B. Panoply 3.2.1. Available at http://www.giss.nasa.gov/ tools/panoply (2013).R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Sandrini-Neto, L. & Camargo, M.G. GAD: an R package for ANOVA designs from general principles. Available on CRAN (2020).Komsta, L. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).Oksanen J., et al. vegan: Community Ecology Package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan (2019).Rossi, J.-P. rich: an R package to analyse species richness. Diversity 3(1), 112–120 (2011).Article
Google Scholar
Hastie, T. gam: Generalized Additive Models. R package version 1.16.1. https://CRAN.R-project.org/package=gam (2019). More