More stories

  • in

    Global forest management data for 2015 at a 100 m resolution

    Reference data collectionIn February 2019, we involved forest experts from different regions around the world and organized a workshop to (1) discuss the variety of forest management practices that take place in various parts of the world; (2) explore what types of forest management information could be collected by visual interpretation of very high-resolution images from Google Maps and Microsoft Bing Maps, in combination with Sentinel time series and Normalized Difference Vegetation Index (NDVI) profiles derived from Google Earth Engine (GEE); (3) generalize and harmonize the definitions at global scale; (4) finalize the Geo-Wiki interface for the crowdsourcing campaigns; and (5) build a data set of control points (or the expert data set), which we used later to monitor the quality of the crowdsourced contributions by the participants. Based on the results of this analysis, we launched the crowdsourcing campaigns by involving a broader group of participants, which included people recruited from remote sensing, geography and forest research institutes and universities. After the crowdsourcing campaigns, we collected additional data with the help of experts. Hence, the final reference data consists of two parts: (1) a randomly stratified sample collected by crowdsourcing (49,982 locations); (2) a targeted sample collected by experts (176,340 locations, at those locations where the information collected from the crowdsourcing campaign was not large enough to ensure a robust classification).DefinitionsTable 1 contains the initial classification used for visual interpretation of the reference samples and the aggregated classes presented in the final reference data set. For the Geo-Wiki campaigns, we attempted to collect information (1) related to forest management practices and (2) recognizable from very high-resolution satellite imagery or time series of vegetation indices. The final reference data set and the final map contain an aggregation of classes, i.e., only those that were reliably distinguishable from visual interpretation of satellite imagery.Table 1 Forest management classes and definitions.Full size tableSampling design for the crowdsourcing campaignsInitially, we generated a random stratified sample of 110,000 sites globally. The total number of sample sites was chosen based on experiences from past Geo-Wiki campaigns12, a practical estimation of the potential number of volunteer participants that we could engage in the campaign, and the expected spatial variation in forest management. We used two spatial data sets for the stratification of the sample: World Wildlife Fund (WWF) Terrestrial Ecoregions13 and Global Forest Change14. The samples were stratified into three biomes, based on WWF Terrestrial Ecoregions (Fig. 2): boreal (25 000 sample sites), temperate (35,000 sample sites) and tropical (50,000 sample sites). Within each biome, we used Hansen’s14 Global Forest Change maps to derive areas with “forest remaining forest” 2000–2015, “forest loss or gain”, and “permanent non-forest” areas.Fig. 2Biomes for sampling stratification (1 – boreal, 2 – temperate, 3 – sub-tropical and tropical).Full size imageThe sample size was determined from previous experiences, taking into account the expected spatial variation in forest management within each biome. Tropical forests had the largest sample size because of increasing commodity-driven deforestation15, the wide spatial extent of plantations, and slash and burn agriculture. Temperate forests had a larger sample compared to boreal forests due to their higher fragmentation. Each sample site was classified by at least three different participants, thus accounting for human error and varying expertise16,17,18. At a later stage, following a preliminary analysis of the data collected, we increased the number of sample sites to meet certain accuracy thresholds for every mapped class (aiming to exceed 75% accuracy).The Geo‐Wiki applicationGeo‐Wiki.org is an online application for crowdsourcing and expert visual interpretation of satellite imagery, e.g., to classify land cover and land use. This application has been used in several data collection campaigns over the last decade16,19,20,21,22,23. Here, we implemented a new custom branch of Geo‐Wiki (‘Human impact on Forest’), which is devoted to the collection of forest management data (Fig. 3). Various map overlays (including satellite images from Google Maps, Microsoft Bing Maps and Sentinel 2), campaign statistics and tools to aid interpretation, such as time series profiles of NDVI, were provided as part of this Geo‐Wiki branch, giving users a range of options and choices to facilitate image classification and general data collection. Google Maps and Microsoft Bing Maps include mosaics of very high-resolution satellite and aerial imagery from different time periods and multiple image providers, including the Landsat satellites operated by NASA and USGS as base imagery to commercial image providers such as Digital Globe. More information on the spatial and temporal distribution of very high-resolution satellite imagery can be found in Lesiv et al.24. This collection of images was supplied as guidance for visual interpretation16,20. Participants could analyze time series profiles of NDVI from Landsat, Sentinel 2 and MODIS images, which were derived from Google Earth Engine (GEE). More information on tools can be found in Supplementary file 1.Fig. 3Screenshot of the Geo‐Wiki interface showing a very high-resolution image from Google Maps and a sample site as a 100 mx100 m blue square, which the participants classified based on the forest management classes on the right.Full size imageThe blue box in Fig. 3 corresponds to 100 m × 100 m pixels aligned with the Sentinel grid in UTM projection. It is the same geometry required for the classification workflow that is used to produce the Copernicus Land Cover product for 201511.Before starting the campaign, the participants were shown a series of slides designed to help them gain familiarity with the interface and to train them in how to visually determine and select the most appropriate type of land use and forest management classes at each given location, thereby increasing both consistency and accuracy of the labelling tasks among experts. Once completed, the participants were shown random locations (from the random stratified sample) on the Geo‐Wiki interface and were then asked to select one of the forest management classes outlined in the Definition section (see Table 1 above).Alternatively, if there was either insufficient quality in the available imagery, or if a participant was unable to determine the forest management type, they could skip such a site (Fig. 3). If a participant skipped a sample site because it was too difficult, other participants would then receive this sample site for classification, whereas in the case of the absence of high-resolution satellite imagery, i.e., Google Maps and Microsoft Bing Maps, this sample site was then removed from the pool of available sample sites. The skipped locations were less than 1% of the total amount of locations assigned for labeling. Table 2 shows the distribution of the skipped locations by countries, based on the subset of the crowdsourced data where all the participants agreed.Table 2 Distribution of the skipped locations by countries.Full size tableQuality assurance and data aggregation of the crowdsourced dataBased on the experience gained from previous crowdsourcing campaigns12,19, we invested in the training of the participants (130 persons in total) and overall quality assurance. Specifically, we provided initial guidelines for the participants in the form of a video and a presentation that were shown before the participants could start classifying in the forest management branch (Supplementary file 1). Additionally, the participants were asked to classify 20 training samples before contributing to the campaign. For each of these training samples, they received text‐based feedback regarding how each location should be classified. Summary information about the participants who filled in the survey at the end of the campaign (i.e., gender, age, level of education, and their country of residence) is provided in the Supplementary file 2. We would like to note that 130 participants is a high number, especially taking the complexity of the task into consideration.Furthermore, during the campaign, sample sites that were part of the “control” data set were randomly shown to the participants. The participants received text-based feedback regarding whether the classification had been made correctly or not, with additional information and guidance. By providing immediate feedback, our intention was that participants would learn from their mistakes, increasing the quality and classification accuracy over time. If the text‐based feedback was not sufficient to provide an understanding of the correct classification, the participants were able to submit a request (“Ask the expert”) for a more detailed explanation by email.The control set was independent of the main sample, and it was created using the same random stratified sampling procedure within each biome and the stratification by Global Forest Change maps14 (see “Sample design” section). To determine the size of the control sample, we considered two aspects: (a) the maximum number of sample sites that one person could classify during the entire campaign; (b) the frequency at which control sites would appear among the task sites (defined at 15%, which is a compromise between the classification of as many unknown locations as possible and a sufficient level of quality control, based on previous experience). Our control sample consisted of 5,000 sites. Each control sample site was classified twice by two different experts. When the two experts agreed, these sample sites were added to the final control sample. Where disagreement occurred (in 25% of cases), these sample sites were checked again by the experts and revised accordingly. During the campaign, participants had the option to disagree with the classification of the control site and submit a request with their opinion and arguments. They received an additional quality score in the situation when they were correct, but the experts were not. This procedure also ensured an increase in the quality of the control data set.To incentivize participation and high-quality classifications, we offered prizes as part of the campaign design. The ranking system for the prize competition considered both the quality of the classifications and the number of classifications provided by a participant. The quality measure was based on the control sample discussed above. The participants randomly received a control point, which was classified in advance by the experts. For every control point, a participant could receive a maximum of +30 points (fully correct classification) to a minimum of −30 points (incorrect classification). In the case where the answer was partly correct (e.g., the participant correctly classified that the forest is managed, but misclassified the regeneration type), they received points ranging from 5 to 25.The relative quality score for each participant was then calculated as the total sum of gained points divided by the maximum sum of points that this participant could have earned. For any subsequent data analysis, we excluded classifications from those participants whose relative quality score was less than 70%. This threshold corresponds to an average score of 10 points at each location (out of a maximum of 30 points), i.e., where participants were good at defining the aggregated forest management type but may have been less good at providing the more detailed classification.Unfortunately, we observed some imbalance in the proportion of participants coming from different countries, e.g. there were not so many participants from the tropics. This could have resulted in interpretation errors, even when all the participants agreed on a classification. To address this, we did an additional quality check. We selected only those sample sites where all the participants agreed and then randomly checked 100 sample sites from each class. Table 3 summarizes the results of this check and explains the selection of the final classes presented in Table 1.Table 3 Qualitative analysis of the reference sample sites with full agreement.Full size tableAs a result of the actions outlined in Table 3, we compiled the final reference data set, which consisted of 49,982 consistent sample sites.Additional expert data collectionWe used the reference data set to produce a test map of forest management (the classification algorithm used is described in the next section). By checking visually and comparing against the control data set, we found that the map was of insufficient quality for many locations, especially in the case of heterogeneous landscapes. While several reasons for such an unsatisfactory result are possible, the experts agreed that a larger sample size would likely increase the accuracy of the final map, especially in areas of high heterogeneity and for forest management classes that only cover a small spatial extent. To increase the amount of high-quality training data and hence to improve the map, we collected additional data using a targeted approach. In practice, the map was uploaded to Geo-Wiki, and using the embedded drawing tools, the experts randomly checked locations on the map, focusing on their region of expertise and added classified polygons in locations where the forest management was misclassified. To limit model overfitting and oversampling of certain classes, the experts also added points for correctly mapped classes to keep the density of the points the same. This process involved a few iterations of collecting additional points and training the classification algorithm until the map accuracy reached 75%. In total, we collected an additional 176,340 training points. With the 49,982 consistent training points from the Geo-Wiki campaigns, this resulted in 226,322 (Fig. 4). This two-pronged approach would not have been possible without the exhaustive knowledge obtained from running the initial Geo-Wiki campaigns, including numerous questions raised by the campaign participants. Figure 4 also highlights in yellow the areas of very high sampling density, I.e., those collected by the experts. The sampling intensity of these areas is much higher in comparison with the randomly distributed crowdsourced locations, and these are mainly areas with very mixed forest classes or small patches, in most cases, including plantations.Fig. 4Distribution of reference locations.Full size imageClassification algorithmTo produce the forest management map for the year 2015, we applied a workflow that was developed as part of the production of the Copernicus Global Land Services land cover at 100 m resolution (CGLS-LC100) collection 2 product11. A brief description of the workflow (Fig. 5), focusing on the implemented changes, is given below. A more thorough explanation, including detailed technical descriptions of the algorithms, the ancillary data used, and the intermediate products generated, can be found in the Algorithm Theoretical Basis Document (ATBD) of the CGLS-LC100 collection 2 product25.Fig. 5Workflow overview for the generation of the Copernicus Global Land Cover Layers. Adapted from the Algorithm Theoretical Basis Document25.Full size imageThe CGLS-LC100 collection 2 processing workflow can be applied to any satellite data, as it is unspecific to different sensors or resolutions. While the CGLS-LC100 Collection 2 product is based on PROBA-V sensor data, the workflow has already been tested with Sentinel 2 and Landsat data, thereby using it for regional/continental land cover (LC) mapping applications11,26. For generating the forest management layer, the main Earth Observation (EO) input was the PROBA-V UTM Analysis Ready Data (ARD) archive based on the complete PROBA-V L1C archive from 2014 to 2016. The ARD pre-processing included geometric transformation into a UTM coordinate system, which reduced distortions in high northern latitudes, as well as improved atmospheric correction, which converted the Top-of-Atmosphere reflectance to surface reflectance (Top-of-Canopy). In a further processing step, gaps in the 5-daily PROBA-V UTM multi-spectral image data with a Ground Sampling Distance (GSD) of ~0.001 degrees (~100 m) were filled using the PROBA-V UTM daily multi-spectral image data with a GSD of ~0.003 degrees (~300 m). This data fusion is based on a Kalman filtering approach, as in Sedano et al.27, but was further adapted to heterogonous surfaces25. Outputs from the EO pre-processing were temporally cleaned by using the internal quality flags of the PROBA-V UTM L3 data, a temporal cloud and outlier filter built on a Fourier transformation. This was done to produce consistent and dense 5-daily image stacks for all global land masses at 100 m resolution and a quality indicator, called the Data Density Indicator (DDI), used in the supervised learning process of the algorithm.Since the total time series stack for the epoch 2015 (a three-year period including the reference year 2015 +/− 1 year) would be composed of too many proxies for supervised learning, the time and spectral dimension of the data stack had to be condensed. The spectral domain was condensed by using Vegetation Indices (VIs) instead of the original reflectance values. Overall, ten VIs based on the four PROBA-V reflectance bands were generated, which included: Normalized Difference Vegetation Index (NDVI); Enhanced Vegetation Index (EVI); Structure Intensive Pigment Index (SIPI); Normalized Difference Moisture Index (NDMI); Near-Infrared reflectance of vegetation (NIRv); Angle at NIR; HUE and VALUE of the Hue Saturation Value (HSV) color system transformation. The temporal domain of the time series VI stacks was then condensed by extracting metrics, which are used as general descriptors to enable distinguishing between the different LC classes. Overall, we extracted 266 temporal, descriptive, and textual metrics from the VI times series stacks. The temporal descriptors were derived through a harmonic model, fitted through the time series of each of the VIs based on a Fourier transformation28,29. In addition to the seven parameters of the harmonic model that describe the overall level and seasonality of the VI time series, 11 descriptive statistics (mean, standard deviation, minimum, maximum, sum, median, 10th percentile, 90th percentile, 10th – 90th percentile range, time step of the first minimum appearance, and time step of the first maximum appearance) and one textural metric (median variation of the center pixel to median of the neighbours) were generated for each VI. Additionally, the elevation, slope, aspect, and purity derived at 100 m from a Digital Elevation Model (DEM) were added. Overall, 270 metrics were extracted from the PROBA-V UTM 2015 epoch.The main difference to the original CGLS-LC100 collection 2 algorithms is the use of forest management training data instead of the global LC reference data set, as well as only using the discrete classification branch of the algorithm. The dedicated regressor branch of the CGLS-LC100 collection 2 algorithm, i.e., outputting cover fraction maps for all LC classes, was not needed for generating the forest management layer.In order to adapt the classification algorithm to sub-continental and continental patterns, the classification of the data was carried out per biome cluster, with the 73 biome clusters defined by the combination of several global ecological layers, which include the ecoregions 2017 dataset30, the Geiger-Koeppen dataset31, the global FAO eco-regions dataset32, a global tree-line layer33, the Sentinel-2 tiling grid and the PROBA-V imaging extent;30,31 this, effectively, resulted in the creation of 73 classification models, each with its non-overlapping geographic extent and its own training dataset. Next, in preparation for the classification procedure, the metrics of all training points were analyzed for outliers, as well as screened via an all-relevant feature selection approach for the best metric combinations (i.e., best band selection) for each biome cluster in order to reduce redundancy between parameters used in the classification. The best metrics are defined as those that have the highest separability compared to other metrics. For each metric, the separability is calculated by comparing the metric values of one class to the metric values of another class; more details can be found in the ATBD25. The optimized training data set, together with the quality indicator of the input data (DDI data set) as a weight factor, were used in the training of the Random Forest classifier. Moreover, a 5-fold cross-validation was used to optimize the classifier parameters for each generated model (one per biome).Finally, the Random Forest classification was used to produce a hard classification, showing the discrete class for each pixel, as well as the predicted class probability. In the last step, the discrete classification results (now called the forest management map) are modified by the CGLS-LC100 collection 2 tree cover fraction layer29. Therefore, the tree cover fraction layer, showing the relative distribution of trees within one pixel, was used to remove areas with less than 10% tree cover fraction in the forest management layer, following the FAO definition of forest. Figure 6 shows the class probability layer that illustrates the model behavior, highlighting the areas of class confusion. This layer shows that there is high confusion between forest management classes in heterogeneous landscapes, e.g., in Europe and the Tropics while homogenous landscapes, such as Boreal forests, are mapped with high confidence. It is important to note that a low probability does not mean that the classification is wrong.Fig. 6The predicted class probability by the Random Forest classification.Full size image More

  • in

    The dynamical complexity of seasonal soundscapes is governed by fish chorusing

    Data collectionThe acoustic recordings were collected during 2017 off the Changhua coast (24° 4.283 N/120° 19.102 E) (Fig. 5) by deploying a passive acoustic monitoring (PAM) device from Wildlife Acoustics, which was an SM3M recorder moored at a depth of 18–20 m. The hydrophone recorded continuously with a sampling frequency of 48 kHz and a sensitivity of −164.2 dB re:1 v/µPa. The acoustic files were recorded in the.WAV format with a duration of 60 minutes. The hydrophone setup prior to deployment is shown in Fig. 6. Table 2 contains the details for the monitoring period with the corresponding season and the number of hours of recordings each season used in this study. Studies have shown that the presence of seasonal chorusing at this monitoring site in the frequency range of 500–2500 Hz is caused by two types of chorusing15,38, with chorusing starting in early spring, reaching a peak in summer, and starting to decline late autumn, and silencing in winter6. Previous studies6,15,38 at this monitoring site have derived the details of two types of fish calls responsible for chorusing (Type 1 and Type 2); Supplementary Fig. 1 shows the spectrogram, waveform, and power spectrum density of the individual calls. Supplementary Table 1 tabulated are the acoustic features of the two call types. The monitoring region, Changhua, lies in the Eastern Taiwan Strait (ETS). The ETS is ~350 km in length and ~180 km wide64. The ETS experiences diverse oceanographic and climatic variations influenced by monsoons in summer and winter65 and extreme events caused by tropical storms, typhoons in summer, and wind/cold bursts occurring in winter66,67,68.Fig. 5: Study area located off the Taiwan Strait.Map of the Changhua coast located in Taiwan Strait, Taiwan depicting the deployed passive acoustic monitoring recorder at site A1. The map was produced in Matlab 9.11 (The Mathworks, Natick, MA; http://www.mathworks.com/) using mapping toolbox function geobasemap(). Full global basemap composed of high-resolution satellite imagery hosted by Esri (https://www.esri.com/).Full size imageFig. 6: Setup of the SM3M submersible recorder.SM3M recorder fastened to the steel frame (length and breadth = 1.22 m, height = 0.52 m) with plastic cable zip ties prior to deployment.Full size imageTable 2 Passive acoustic monitoring device specifications and monitoring duration during different seasons.Full size tableAcoustic data analysisThe acoustic data were analyzed using the PAMGuide toolbox in Matlab60. The seasonal spectrograms were computed with an FFT size of 1024 points and a 1 s time segment averaged to a 60 s resolution. The sound pressure levels (SPL) were computed in the frequency band of 500–3500 Hz and programmed to provide a single value every hour, thus resulting in 984, 1344, and 1440 data points in spring, summer, and winter, respectively (Supplementary Data 1).Determining the regularity and complexity with the complexity-entropy planeThe complexity-entropy plane was utilized in this study to quantify the structural statistical complexity and the regularity in the hourly acoustical and seasonal SPL time series data. The C-H plane is a 2D plane representation of the permutation entropy on the horizontal axis that quantifies the regularity, and the vertical axis is represented by the statistical complexity quantifying the correlation structure in the temporal series.For a given time series ({{x(t)}}_{t=1}^{N}), the N’ ≡ N − (m − 1) the values of the vectors for the length m  > 1 are ranked as$${X}_{s}=left({x}_{s-(m-1)},{x}_{s-(m-2)},ldots ,{x}_{s}right),s=1,ldots ,,{N}^{{prime} }$$
    (1)
    Within each vector, the values are reordered in the ascending order of their amplitude, yielding the set of ordering symbols (patterns) ({r}_{0},{r}_{1},ldots ,{r}_{m-1}) such that$${x}_{s-{r}_{0}}le {x}_{s-{r}_{1}}le ..,..le {x}_{s-{r}_{(m-1)}}$$
    (2)
    This symbolization scheme was introduced by Bandt and Pompe69. The scheme performs the local ordering of a time series to construct a probability mass function (PMF) of the ordinal patterns of the vector. The corresponding vectors (pi ={r}_{0},{r}_{1},ldots ,{r}_{(m-1)}) may presume any of the m! possible permutations of the set ({{{{{mathrm{0,1}}}}},ldots ,m-1}) and symbolically represent the original vector. For instance, for a given time series {9, 4, 5, 6, 1,…} with length m = 3, provides 3! different order patterns with six mutually exclusive permutation symbols are considered. The first three-dimensional vector is (9, 4, 5), following the Eq. (1), this vector corresponds to ((,{x}_{s-2},{x}_{s-1},{x}_{s})). According to Eq. (2), it yields ({x}_{s-1}le {x}_{s}le {x}_{s-2}). Then, the ordinal pattern satisfying the Eq. (2) will be (1, 0, 2). The second 3-dimensional vector is (4, 5, 6), and (2, 1, 0) will be its associated permutation, and so on.The permutation entropy (H) of order m ≥ 2 is defined as the Shannon entropy of the Brandt-Pompe probability distribution p(π)69$$Hleft(mright)=,-{mathop{sum}limits _{{pi }}}pleft(pi right){{{log }}}_{2}p(pi )$$
    (3)
    where ({pi }) represents the summation over all possible m! permutations of order m, (p(pi )) is the relative frequency of each permutation (pi), and the binary logarithm (base of 2) is evaluated to quantify the entropy in bits. H(m) attains the maximum ({{log }}m!) for (p(pi )=1/m!). Then the normalized Shannon entropy is given by$$0le H(m)/{{{{{rm{ln}}}}}},m!le 1$$
    (4)
    where the lower bound H = 0 corresponds to more predictable signals with fewer fluctuations, an either strictly increasing or decreasing series (with a single permutation), and the upper bound H = 1 corresponds to an unpredictable random series for which all the m! possible permutations are equiprobable. Thus, H quantifies the degree of disorder inherent in the time series. The choice of the pattern length m is essential for calculating the appropriate probability distribution, particularly for m, which determines the number of accessible states given by m!70,71. As a rule of thumb, the length T of the time series must satisfy the condition T (gg) m! in order to obtain reliable statistics, and for practical purposes, Bandt and Pompe suggested choosing m = 3,…,7 69.The statistical complexity measure is defined with the product form as a function of the Bandt and Pompe probability distribution P associated with the time series. (Cleft[Pright]) is represented as33$$Cleft[Pright]=frac{J[P,U]}{{J}_{{max }}}{H}_{s}[P]$$
    (5)
    where ({H}_{s}left[Pright]=Hleft[Pright]/{{log }}m!) is the normalized permutation entropy. (J[P,U]) is the Jensen divergence$$Jleft[P,Uright]=left{Hleft[frac{P+U}{2}right]-frac{H[P]}{2}-frac{H[U]}{2}right}$$
    (6)
    which quantifies the difference between the uniform distributions U and P, and ({J}_{{max }})is the maximum possible value of (Jleft[P,Uright]) that is obtained from one of the components of P = 1, with all the other components being zero:$$Jleft[P,Uright]=-frac{1}{2}left[frac{m!+1}{m!}{{log }}left(m!+1right)-2{{log }}left(2m!right)+{{log }}(m!)right]$$
    (7)
    For each value of the normalized permutation entropy (0le {H}_{s}[P]le 1) there is a corresponding range of possible statistical complexity (Cleft[Pright]) values. Thus, the upper (({C}_{{max }})) and lower ((C_{{min }})) complexity bounds in the C-H plane are formed. The periodic sequences such as sine and series with increasing and decreasing (with ({H}_{s}[P]=0)) and completely random series such as white noise (for which (Jleft[P,Uright]=0) and ({H}_{s}[P]=1)) will have zero complexity. Furthermore, for each given value of the (0le {H}_{s}[P]le 1), there exists a range of possible values of the statistical complexity, ({C}_{{min }}le C[P]le {C}_{{max }}). The procedure for evaluating the complexity bounds ({C}_{{min }}) and ({C}_{{max }}) is given in Martin et al.72. We utilized the R package ‘statcomp’73 to evaluate the statistical complexity (C) and the permutation entropy (H) using the command global-complexity() for the order m = 6, and the command limit_curves(m, fun = ‘min/max’) was utilized to evaluate the complexity boundaries ({C}_{{min }}) and ({C}_{{max }}). In this study, we constructed two C-H planes: (1) C and H was computed for each hourly acoustic file during different seasons. The resulting lengths of C and H during spring, summer, and autumn-winter are similar to the number of hours in the particular season (Table 2). (2) C and H was computed every 4–5 days for the seasonal SPL. The resulting length of C and H obtained during spring was 9 points (each value of C and H for every 109 h), and in summer and autumn-winter was 12 points (each value of C and H for every 112 and 120 h).Determining predictability and dynamics (linear/nonlinear) using EDMIn this study, we utilized EDM to quantify the predictability (forecasting) and distinguish between the linear stochastic and nonlinear dynamics in the seasonal soundscape SPL. EDM involves phase-space reconstruction via delay coordinate embeddings to make forecasts and to determine the ‘predictability portrait’ of time series data40. The first step in EDM is to determine the optimal embedding dimension (E), and this is obtained using a method based on simplex projection41. The simplex projection is carried out by dividing the dataset into two equal parts, of which the first part is called the library and the other part is called the target. The library set is used to build a series of non-parametric models (known as predictors) for the one step ahead predictions for the E varying between 1 and 10. Then the model’s accuracies are determined when the model is applied to the target dataset and the prediction skill (⍴) for the actual and predicted datasets is measured. The embedding dimension with the highest predictive skill is the optimal E.For the appropriate optimal E chosen, the predictability profile of the time series data is obtained by evaluating ⍴ at Tp = 1, 2, 3, … steps ahead. The flat prediction profile of the ⍴–Tp curve indicates that the time series is purely random (low ⍴) or regularly oscillating (high ⍴). In contrast, a decreasing ⍴ as Tp increases may reject the possibility of an underlying uncorrelated stochastic process and indicate the presence of low-dimensional deterministic dynamics. However, the concern with the predictability profile is that it may exhibit predictability even if time series are purely stochastic (such as autocorrelated red noise). Hence, a nonlinear test can be performed by using S-maps (sequential locally weighted global linear maps) to distinguish between linear stochastic and nonlinear dynamics in the time series dataset by fitting a local linear map. S-maps similar to simplex projects provide the forecasts in phase-space by quantifying the degree to which points are weighted when fitting the local linear map, which is given by the nonlinear localization parameter θ. When θ = 0, the entire library set will exhibit equal weights regardless of the target prediction, which mathematically resembles the model of a linear autoregressive process. In contrast, if θ  > 0, the forecasts of the library provided by the S-map depend on the local state of the target prediction, thus producing large weights, and the unique local fittings can vary in phase-space to incorporate nonlinear behavior. Consequently, if the (⍴–θ) dynamics profile shows the highest ⍴ at θ = 0 that is reduced as θ increases, it represents linear stochastic dynamics. If the ⍴ achieves the highest value at θ  > 0, then the dynamics are represented by nonlinear dynamics.In this study, the R package “rEDM”74 was used to evaluate the optimal E, prediction profile (⍴–Tp), and dynamics profile (⍴–θ) for the seasonal SPL dataset. While evaluating these entities, the data points are equally into two parts, and sequentially the first half is chosen as the library set and the other as the target set. The length of the library and the target set for spring, summer, and autumn-winter are 492, 672, and 720. The command EmbedDimension() was used to determine the forecast skill for the E ranging from 1 to 10 and the optimal E with the highest forecast skill (Supplementary Fig. 2) was chosen. In this study, we found that for all seasons, the optimal E was 2. The (⍴–Tp) was evaluated for Tp varying between 1 and 100 using the command PredictInterval() and the (⍴–θ) was evaluated using the command PredictNonlinear() for θ = 0, 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 0.5,0.75, 1.0, 1.5, 2, and 3 to 20.StatisticsThe nonparametric Kruskal–Wallis test, followed by post hoc Bonferroni’s multiple comparisons, was used to test differences in the seasonal H and C that were obtained directly from the hourly acoustic data during chorusing hours, as well as the H and C obtained for the seasonal SPL and the seasonal forecast skill. The statistical calculations were performed using the R package “agricolae” 75. More

  • in

    Temporal patterns in the soundscape of a Norwegian gateway to the Arctic

    Ellison, W. T., Southall, B. L., Clark, C. W. & Frankel, A. S. A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conserv. Biol. 26, 21–28 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, R., Clark, C. W., Ponirakis, D. & Ashe, E. Acoustic quality of critical habitats for three threatened whale populations. Anim. Conserv. 17, 174–185 (2014).Article 

    Google Scholar 
    Halliday, W. D., Pine, M. K. & Insley, S. J. Underwater noise and arctic marine mammals: Review and policy recommendations. Environ. Rev. 28, 438–448 (2020).Article 

    Google Scholar 
    Kvadsheim, P. H. et al. Impact of Anthropogenic Noise on the Marine Environment: Status of Knowledge and Management (Springer, 2020).
    Google Scholar 
    Weilgart, L. S. & Whitehead, H. Distinctive vocalizations from mature male sperm whales (Physeter macrocephalus). Can. J. Zool. 66, 1931–1937 (1988).Article 

    Google Scholar 
    Simon, M., Stafford, K. M., Beedholm, K., Lee, C. M. & Madsen, P. T. Singing behavior of fin whales in the Davis Strait with implications for mating, migration and foraging. J. Acoust. Soc. Am. 128, 3200 (2010).ADS 
    PubMed 
    Article 

    Google Scholar 
    Alves, D., Amorim, M. C. P. & Fonseca, P. J. Assessing acoustic communication active space in the Lusitanian toadfish. J. Exp. Biol. 219, 1122–1129 (2016).PubMed 

    Google Scholar 
    Linnenschmidt, M., Teilmann, J., Akamatsu, T., Dietz, R. & Miller, L. A. Biosonar, dive, and foraging activity of satellite tracked harbor porpoises (Phocoena phocoena). Mar. Mamm. Sci. 29, E77–E97 (2013).Article 

    Google Scholar 
    Giorli, G. & Goetz, K. T. Foraging activity of sperm whales (Physeter macrocephalus) off the east coast of New Zealand. Sci. Rep. 9, 12182 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Baumgartner, M. F. & Fratantoni, D. M. Diel periodicity in both sei whale vocalization rates and the vertical migration of their copepod prey observed from ocean gliders. Limnol. Oceanogr. 53, 2197–2209 (2008).ADS 
    Article 

    Google Scholar 
    Urazghildiiev, I. R. & Van Parijs, S. M. Automatic grunt detector and recognizer for Atlantic cod (Gadus morhua). J. Acoust. Soc. Am. 139, 2532–2540 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Ladich, F. Ecology of sound communication in fishes. Fish Fish. 20, 552–563 (2019).Article 

    Google Scholar 
    Radford, C. A., Stanley, J. A., Simpson, S. D. & Jeffs, A. G. Juvenile coral reef fish use sound to locate habitats. Coral Reefs 30, 295–305 (2011).ADS 
    Article 

    Google Scholar 
    Pierpoint, C. Harbour porpoise (Phocoena phocoena) foraging strategy at a high energy, near-shore site in south-west Wales, UK. J. Mar. Biol. Assoc. UK 88, 1167–1173 (2008).Article 

    Google Scholar 
    Pijanowski, B. C. et al. Soundscape ecology: The science of sound in the landscape. Bioscience 61, 203–216 (2011).Article 

    Google Scholar 
    Stanley, J. A., Radford, C. A. & Jeffs, A. G. Location, location, location: Finding a suitable home among the noise. Proc. R. Soc. B Biol. Sci. 279, 3622–3631 (2012).Article 

    Google Scholar 
    Buscaino, G. et al. Temporal patterns in the soundscape of the shallow waters of a Mediterranean marine protected area. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    Gasc, A., Francomano, D., Dunning, J. B. & Pijanowski, B. C. Future directions for soundscape ecology: The importance of ornithological contributions. Auk 134, 215–228 (2017).Article 

    Google Scholar 
    Putland, R. L., Constantine, R. & Radford, C. A. Exploring spatial and temporal trends in the soundscape of an ecologically significant embayment. Sci. Rep. 7, 5713 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pieretti, N., LoMartire, M., Farina, A. & Danovaro, R. Marine soundscape as an additional biodiversity monitoring tool: A case study from the Adriatic Sea (Mediterranean Sea). Ecol. Indic. 83, 13–20 (2017).Article 

    Google Scholar 
    Gillespie, D., Palmer, L., Macaulay, J., Sparling, C. & Hastie, G. Passive acoustic methods for tracking the 3D movements of small cetaceans around marine structures. PLoS ONE 15, e0229058 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Parijs, S. et al. Management and research applications of real-time and archival passive acoustic sensors over varying temporal and spatial scales. Mar. Ecol. Prog. Ser. 395, 21–36 (2009).ADS 
    Article 

    Google Scholar 
    Warren, V. E., McPherson, C., Giorli, G., Goetz, K. T. & Radford, C. A. Marine soundscape variation reveals insights into baleen whales and their environment: a case study in central New Zealand. R. Soc. Open Sci. 8, 201503 (2021).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahonen, H. et al. The underwater soundscape in western Fram Strait: Breeding ground of Spitsbergen’s endangered bowhead whales. Mar. Pollut. Bull. 123, 97–112 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).ADS 
    Article 

    Google Scholar 
    Ross, D. Ship sources of ambient noise. IEEE J. Ocean. Eng. 30, 257–261 (2005).ADS 
    Article 

    Google Scholar 
    Popper, A. N. & Hawkins, A. The Effects of Noise on Aquatic Life Vol. 730 (Springer, 2012).Book 

    Google Scholar 
    Hubert, J. et al. Effects of broadband sound exposure on the interaction between foraging crab and shrimp: A field study. Environ. Pollut. 243, 1923–1929 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weilgart, L. The Impact of Ocean Noise Pollution on Fish and Invertebrates (Springer, 2018).
    Google Scholar 
    Kvadsheim, H., Sivle, L. D., Hansen, R. R. & Karlsen, H. E. Effekter av Menneskeskapt støy på Havmiljø Rapport til Miljødirektoratet om Kunnskapsstatus FFI-RAPPORT. (2017).Parks, S. E., Johnson, M., Nowacek, D. & Tyack, P. L. Individual right whales call louder in increased environmental noise. Biol. Lett. 7, 33–35 (2011).PubMed 
    Article 

    Google Scholar 
    Meh, F. et al. Humpback whales Megaptera novaeangliae alter calling behavior in response to natural sounds and vessel noise. Mar. Ecol. Prog. Ser. 607, 251–268 (2018).Article 

    Google Scholar 
    Leroy, E. C., Royer, J.-Y., Bonnel, J. & Samaran, F. Long-term and seasonal changes of large whale call frequency in the Southern Indian ocean. J. Geophys. Res. Ocean. 123, 8568–8580 (2018).ADS 
    Article 

    Google Scholar 
    Parks, S. E., Clark, C. W. & Tyack, P. L. Short- and long-term changes in right whale calling behavior: The potential effects of noise on acoustic communication. J. Acoust. Soc. Am. 122, 3725–3731 (2007).ADS 
    PubMed 
    Article 

    Google Scholar 
    Clark, C. et al. Acoustic masking in marine ecosystems: intuitions, analysis, and implication. Mar. Ecol. Prog. Ser. 395, 201–222 (2009).ADS 
    Article 

    Google Scholar 
    PAME. Underwater Noise in the Arctic: A State of Knowledge Report (PAME, 2019).
    Google Scholar 
    Beszczynska-Möller, A., Woodgate, R., Lee, C., Melling, H. & Karcher, M. A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography 24, 82–99 (2011).Article 

    Google Scholar 
    Ramm, T. Hungry During Migration? Humpback Whale Movement from the Barents Sea to a Feeding Stopover in Northern Norway Revealed by Photo-ID Analysis. (MSc thesis. UiT The Arctic University of Norway, 2020).Broms, F. et al. Recent research on the migratory destinations of humpback whales (Megaptera novaeangliae) from a mid-winter feeding stop-over area in Northern Norway. in Recent research on the migratory destinations of humpback whales (Megaptera novaeangliae) from a mid-winter feeding stop-over area in Northern Norway (ed. Wenzel, F. W.) (European Cetacean Society Special Publication Series, 2015).Aniceto, A. S. et al. Arctic marine data collection using oceanic gliders: Providing ecological context to cetacean vocalizations. Front. Mar. Sci. 7, 547 (2020).Article 

    Google Scholar 
    Jourdain, E. & Vongraven, D. Humpback whale (Megaptera novaeangliae) and killer whale (Orcinus orca) feeding aggregations for foraging on herring (Clupea harengus) in Northern Norway. Mamm. Biol. 86, 27–32 (2017).Article 

    Google Scholar 
    Christiansen, J. S., Mecklenburg, C. W. & Karamushko, O. V. Arctic marine fishes and their fisheries in light of global change. Glob. Chang. Biol. 20, 352–359 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    Rødland, E. S. & Bjørge, A. Residency and abundance of sperm whales (Physeter macrocephalus) in the Bleik Canyon, Norway. Mar. Biol. Res. 11, 974–982 (2015).Article 

    Google Scholar 
    Nøttestad, L. et al. Prey selection of offshore killer whales Orcinus orca in the Northeast Atlantic in late summer: spatial associations with mackerel. Mar. Ecol. Prog. Ser. 499, 275–283 (2014).ADS 
    Article 

    Google Scholar 
    Bjørge, A., Aarefjord, H., Kaarstad, S., Kleivane, L. & Øien, N. Harbour porpoise (Phocoena phocoena) in Norwegian waters (Springer, 1991).
    Google Scholar 
    Gjøseter, H. et al. Fisken og Havet. https://doi.org/10.1111/maec.12075 (2010).Article 

    Google Scholar 
    ICES. ICES Report on Ocean Climate 2009 No.304. (2010).ICES. Report of the Working Group on Widely Distributed Stocks (WGWIDE). (2010).Rey, F. Phytoplankton: The grass of the sea. In The Norwegian Sea Ecosystem (ed. Skjoldal, H. R.) 97–136 (Academic Press, 2004).
    Google Scholar 
    Huse, G. et al. Effects of interactions between fish populations on ecosystem dynamics in the Norwegian Sea : Results of the INFERNO project. Mar. Biol. Res. 8, 415–419 (2012).Article 

    Google Scholar 
    Godø, O. R., Johnsen, S. & Torkelsen, T. The LoVe ocean observatory is in operation. Mar. Technol. Soc. J. 48, 24–30 (2014).Article 

    Google Scholar 
    Cooke, J. G. Balaenoptera physalus. The IUCN Red List of Threatened Species: e.T2478A50349982 (2018).Leonard, D. & Øien, N. Estimated abundances of Cetacean species in the Northeast Atlantic from Norwegian Shipboard Surveys Conducted in 2014–2018. NAMMCO Sci. Publ. 11, 4694 (2020).
    Google Scholar 
    Øygard, S. H. Simulations of Acoustic Transmission Loss of Fin Whale Calls Reaching the LoVe Ocean Observatory. (MSc thesis. University of Bergen, 2018).Steiner, L. et al. A link between male sperm whales, Physeter macrocephalus, of the Azores and Norway. J. Mar. Biol. Assoc. UK 92, 1751–1756 (2012).Article 

    Google Scholar 
    Olafsen, T., Winther, U., Olsen, Y. & Skjermo, J. Verdiskaping Basert på Produktive hav i 2050 1–76 (Springer, 2012).
    Google Scholar 
    Wenz, G. M. Acoustic ambient noise in the ocean: Spectra and sources. J. Acoust. Soc. Am. 34, 1936–1956 (1962).ADS 
    Article 

    Google Scholar 
    Klinck, H. et al. Seasonal presence of cetaceans and ambient noise levels in polar waters of the North Atlantic. J. Acoust. Soc. Am. 132, 176–181 (2012).Article 

    Google Scholar 
    Burnham, R. E., Duffus, D. A. & Mouy, X. The presence of large whale species in Clayoquot Sound and its offshore waters. Cont. Shelf Res. 177, 15–23 (2019).ADS 
    Article 

    Google Scholar 
    Romagosa, M. et al. Baleen whale acoustic presence and behaviour at a Mid-Atlantic migratory habitat, the Azores Archipelago. Sci. Rep. 10, 61489 (2020).
    Google Scholar 
    Tervo, O. Acoustic Behaviour of Bowhead Whales Balaena mysticetus in Disko Bay, Western Greenland. PhD thesis. (2011).Magnúsdóttir, E. E. & Lim, R. Subarctic singers: Humpback whale (Megaptera novaeangliae) song structure and progression from an Icelandic feeding ground during winter. PLoS ONE 14, e0210057 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Samaran, F. et al. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean. PLoS ONE 8, e70 (2013).Article 

    Google Scholar 
    Norris, T. F., Dunleavy, K. J., Yack, T. M. & Ferguson, E. L. Estimation of minke whale abundance from an acoustic line transect survey of the Mariana Islands. Mar. Mammal Sci. 33, 574 (2017).Article 

    Google Scholar 
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. Camb. Philos. Soc. 88, 287–309 (2013).PubMed 
    Article 

    Google Scholar 
    Dunlop, R. A. The effects of vessel noise on the communication network of humpback whales. R. Soc. Open Sci. 6, 190967 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Christensen, I., Haug, T. & Øien, N. A review of feeding and reproduction in large baleen whales (Mysticeti) and sperm whales Physeter macrocephalus in Norwegian and adjacent waters. ICES J. Mar. Sci. 49, 341–355 (1992).Article 

    Google Scholar 
    Aniceto, A. S. et al. Monitoring marine mammals using unmanned aerial vehicles: quantifying detection certainty. Ecosphere 9, e02122 (2018).Article 

    Google Scholar 
    Pedersen, G., Storheim, E., Sivle, L. D., Godø, O. R. & Ødegaard, L. A. Concurrent passive and active acoustic observations of high-latitude shallow foraging sperm whales (Physeter macrocephalus) and mesopelagic prey layer. J. Acoust. Soc. Am. 141, 1–10 (2017).Article 

    Google Scholar 
    Vogel, E. F. The influence of herring (Clupea harengus) biomass and distribution on killer whale (Orcinus orca) movements on the Norwegian shelf (UiT The Arctic University of Norway, 2020).
    Google Scholar 
    Williams, R. et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean Coast. Manag. 115, 17–24 (2015).Article 

    Google Scholar 
    Garibbo, S. et al. Low-frequency ocean acoustics: Measurements from the Lofoten-Vesterålen Ocean Observatory, Norway. (2020). https://doi.org/10.1121/2.0001324.Dekeling, R. P. A. et al. Monitoring Guidance for Underwater Noise in European Seas, Part I: Executive Summary (Springer, 2014).
    Google Scholar 
    Erbe, C. International regulation of underwater noise. Acoust. Aust. 41, 1–10 (2013).
    Google Scholar 
    Halliday, W. D., Insley, S. J., Hilliard, R. C., de Jong, T. & Pine, M. K. Potential impacts of shipping noise on marine mammals in the western Canadian Arctic. Mar. Pollut. Bull. 123, 73–82 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Halliday, W. D. et al. Underwater sound levels in the Canadian Arctic, 2014–2019. Mar. Pollut. Bull. 168, 112437 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ødegaard, L., Pedersen, G. & Johnsen, E. Underwater Noise From Wind At the High North Love Ocean Observatory. UACE 2019 Conf. Proc. 359–366 (2019).Zhang, G., Forland, T. N., Johnsen, E., Pedersen, G. & Dong, H. Measurements of underwater noise radiated by commercial ships at a cabled ocean observatory. Mar. Pollut. Bull. 153, 110948 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Maystrenko, Y. P., Olesen, O., Gernigon, L. & Gradmann, S. Deep structure of the Lofoten–Vesterålen segment of the Mid-Norwegian continental margin and adjacent areas derived from 3-D density modeling. J. Geophys. Res. Solid Earth 122, 1402–1433 (2017).ADS 
    Article 

    Google Scholar 
    Gillespie, D. et al. PAMGUARD: Semiautomated, open source software for real-time acoustic detection and localization of cetaceans. J. Acoust. Soc. Am. 125, 2547–2547 (2009).ADS 
    Article 

    Google Scholar 
    Hollander, M. & Wolfe, D. A. Nonparametric Statistical Methods (Wiley, 1973).MATH 

    Google Scholar 
    Vogel, E. F. et al. Killer whale movements on the Norwegian shelf are associated with herring density. Mar. Ecol. Prog. Ser. 665, 217–231 (2021).ADS 
    Article 

    Google Scholar 
    Garcia, H. A. et al. Temporal-spatial, spectral, and source level distributions of fin whale vocalizations in the Norwegian Sea observed with a coherent hydrophone array. ICES J. Mar. Sci. 76, 268–283 (2019).Article 

    Google Scholar 
    Davis, G. E. et al. Exploring movement patterns and changing distributions of baleen whales in the western North Atlantic using a decade of passive acoustic data. Glob. Chang. Biol. 26, 4812–4840 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Risch, D. et al. Minke whale acoustic behavior and multi-year seasonal and diel vocalization patterns in Massachusetts Bay, USA. Mar. Ecol. Prog. Ser. 489, 279–295 (2013).ADS 
    Article 

    Google Scholar 
    Le Tixerant, M., Le Guyader, D., Gourmelon, F. & Queffelec, B. How can Automatic Identification System (AIS) data be used for maritime spatial planning?. Ocean Coast. Manag. 166, 18–30 (2018).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Sumner, M. D. The Tag Location Problem. 133 (2011).Sumner, M. D., Wotherspoon, S. J. & Hindell, M. A. Bayesian estimation of animal movement from archival and satellite tags. PLoS ONE 4, e7324 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Halliday, W. D. et al. The coastal Arctic marine soundscape near Ulukhaktok, Northwest Territories, Canada. Polar Biol. 43, 623–636 (2020).Article 

    Google Scholar 
    Ezzet, F. & Pinheiro, J. Linear, generalized linear, and nonlinear mixed effects models. Pharm. Sci. Quant. Pharmacol. 1, 103–135. https://doi.org/10.1002/9780470087978.ch4 (2006).Article 

    Google Scholar 
    Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c). (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wessel, P. & Walter, H. F. S. A global self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 101, 8741–8743 (1996).ADS 
    Article 

    Google Scholar 
    Sueur, J., Aubin, T. & Simonis, C. Equipment review: Seewave, a free modular tool for sound analysis and synthesis. Bioacoustics 18, 213–226 (2008).Article 

    Google Scholar 
    The Mathworks Inc. MATLAB (R2019a). (MathWorks Inc., 2019).Merchant, N. D. et al. Measuring acoustic habitats. Methods Ecol. Evol. 6, 257–265 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Effect of drought on root exudates from Quercus petraea and enzymatic activity of soil

    IPCC (2013) Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D Qin, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V & Midgley PM (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp (2013).Graham, L.P. Projections of Future Anthropogenic Climate Change [in:] Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Bolle H.J., Menenti M., Rasool I. Series Editors Springer-Verlag Berlin Heidelberg s.133–220 (2008).Früchtenich, E., Bock, J., Feucht, V., Früchtenich W. Reactions of three European oak species ( Q. robur, Q. petraea and Q. ilex ) to repetitive summer drought in sandy soil. Trees, Forests and People 5: 100093 (2021).Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419, 64–77 (2016).CAS 
    Article 

    Google Scholar 
    Willliams, A. & De Vries, F. T. Plant root exudation under drought: Implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2019).Article 

    Google Scholar 
    Canarini, A., Merchant, A. & Dijkstra, F. A. Drought effects on Helianthus annuus and Glycine max metabolites: From phloem to root exudates. Rhizosphere 2, 85–97 (2016).Article 

    Google Scholar 
    De Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 224, 132–145 (2019).Article 

    Google Scholar 
    Phillips, R. P., Finzi, A. C. & Bernhardt, E. S. Enhanced root exudation indu ces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecol. Lett. 14, 187–194 (2011).Article 

    Google Scholar 
    Meier, I. C. et al. Root exudation of mature beech forests across a nutrient availability gradient: The role of root morphology and fungal activity. New Phytol. 226, 583–594 (2020).CAS 
    Article 

    Google Scholar 
    Gianfreda, L. Enzymes of importance to rhizosphere processes. J. Soil Sci. Plant Nutr. 15, 283–306 (2015).
    Google Scholar 
    Małek, S., Ważny, R., Błońska, E., Jasik, M. & Lasota, J. Soil fungal diversity and biological activity as indicators of fertilization strategies in a forest ecosystem after spruce disintegration in the Karpaty Mountains. Sci. Total Environ. 751, 142335 (2021).ADS 
    Article 

    Google Scholar 
    Zuccarini, P., Asensio, D., Ogaya, R., Sardans, J. & Penuelas, J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland. Glob. Change Biol. 26, 3698–3714 (2019).ADS 
    Article 

    Google Scholar 
    Sing, S. et al. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions. Sci. Rep. 11, 10841 (2021).ADS 
    Article 

    Google Scholar 
    Sardans, J. & Penuelas, J. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol. Biochem. 37, 455–461 (2005).CAS 
    Article 

    Google Scholar 
    Czúcz, B., Gálhidy, L. & Mátyás, C. Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann. For. Sci. 68, 99–108. https://doi.org/10.1007/s13595-011-0011-4 (2011).Article 

    Google Scholar 
    Sáenz-Romero, C. et al. Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Glob. Change Biol. 23, 2831–2847 (2018).ADS 
    Article 

    Google Scholar 
    Regulation of the Minister of the Environment. Detailed requirements for the forest reprudactive material (Dz. U. Nr 31, poz. 272) (in Polish) (2004).Phillips, R. P., Erlitz, Y., Bier, R. & Bernhardt, E. S. New approach for capturing soluble root exudates in forest soils. Funct. Ecol. 22, 990–999. https://doi.org/10.1111/j.1365-2435.2008.01495.x (2008).Article 

    Google Scholar 
    Ostonen, I., Lõhmus, K. & Lasn, R. The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst.). Plant Soil 208, 283–292 (1999).CAS 
    Article 

    Google Scholar 
    Pritsch, K. et al. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microbiol. Methods 58, 233–241 (2004).CAS 
    Article 

    Google Scholar 
    Sanaullah, M., Razavi, B. S., Blagodatskaya, E. & Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fert. Soils 52, 505–514 (2016).CAS 
    Article 

    Google Scholar 
    R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.Hartmann, H. Will a 385million year-struggle for light become a struggle for water and for carbon?–how trees may cope with more frequent climate change-type drought events. Glob. Change Biol. 17, 642–655 (2011).ADS 
    Article 

    Google Scholar 
    Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci. 6, 547 (2015).Article 

    Google Scholar 
    Markesteijn, L. & Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 97, 311–325 (2009).Article 

    Google Scholar 
    Poorter, L. & Markesteijn, L. Seedling Traits Determine Drought Tolerance of Tropical Tree Species. Biotropica 40, 321–331 (2008).Article 

    Google Scholar 
    Ostonen, I. et al. Specific root length as an indicator of environmental change. Plant Biosyst. 141, 426–442 (2007).Article 

    Google Scholar 
    Lozano, Y. M., Aguilar-Triqueros, C. A., Flaig, I. C. & Rillig, M. C. Root trait responses to drought are more heterogeneous than leaf trait responses. Funct. Ecol. 34, 2224–2235 (2020).Article 

    Google Scholar 
    De Vries, F. T., Brown, C. & Stevens, C. J. Grassland species root response to drought: consequences for soil carbon and nitrogen availability. Plant Soil 409, 297–312 (2016).Article 

    Google Scholar 
    Sell, M. et al. Responses of fine root exudation, respiration and morphology in three early successional ree species to increased air humidity and different soil nitrogen sources. Tree Physiol. 42, 557–569. https://doi.org/10.1093/treephys/tpab118 (2021).Article 

    Google Scholar 
    Karlowsky, S. et al. Drought-induced accumulation of root exudates supports post-drought recovery of microbes in mountain grassland. Front. Plant Sci. 9, 1593. https://doi.org/10.3389/fpls.2018.01593 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R. & Richter, A. Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytol. 201, 916–927. https://doi.org/10.1111/nph.12569 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gargallo-Garriga, A. et al. Root exudate metabolomes change under drought and show limited capacity for recovery. Sci. Rep. 8, 12696. https://doi.org/10.1038/s41598-018-30150-0 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X., Dippold, M. A., Kuzyakov, Y. & Razavi, B. S. Spatial pattern of enzyme activities depends on root exudate composition. Soil Biol. Biochem. 133, 83–93. https://doi.org/10.1016/j.soilbio.2019.02.010 (2019).CAS 
    Article 

    Google Scholar 
    Hommel, R. et al. Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biol. 18, 785–796. https://doi.org/10.1111/plb.12461 (2016).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Fine-scale topographic influence on the spatial distribution of tree species diameter in old-growth beech (Fagus orientalis Lipsky.) forests, northern Iran

    Frelich, L. E. Forest Dynamics and Disturbance Regimes, Study from Every Green and Deciduous Temperate Forest 287 (Cambridge University Press, 2002).Book 

    Google Scholar 
    Hadley, K. S. The role of disturbance, topography, and forest structure in the development of a montane forest landscape. J. Torrey Bot. Soc. 121(1), 47–61 (1994).Article 

    Google Scholar 
    Gracia, M., Montane, F., Pique, J. & Retana, J. Overstory structure and topographic gradients determining diversity and abundance of understory shrub species in temperate forests in central Pyrenees (NE Spain). For. Ecol. Manag. 242, 391–397 (2007).Article 

    Google Scholar 
    Scheller, R. M. & Mladenoff, D. J. Understory species patterns and diversity in old-growth and managed northern hardwood forests. Ecol. Appl. 12(5), 1329–1343 (2002).Article 

    Google Scholar 
    Sagheb-Talebi, K., Sajedi, T. & Pourhashemi, M. Forest of Iran, a Treasure from the Past, a Hope for the Future 145 (Springer, 2014).
    Google Scholar 
    Homami Totmaj, L., Alizadeh, K., Giahchi, P., Darvishi Khatooni, J. & Behling, H. Late Holocene Hyrcanian forest and environmental dynamics in the mid-elevated highland of the Alborz Mountains, northern Iran. Rev. Palaeobot. Palynol. 295, 104507 (2021).Article 

    Google Scholar 
    Vakili, M. et al. Resistance and resilience of Hyrcanian mixed forests under natural and anthropogenic disturbances. Front. For. Glob. Change 4, 98 (2021).Article 

    Google Scholar 
    Aguirre, O., Hui, G., von Gadow, K. & Jiménez, J. An analysis of spatial forest structure using neighbourhood-based variables. For. Ecol. Manag. 183(1–3), 137–145 (2003).Article 

    Google Scholar 
    Li, Y., Hui, G., Zhao, Z., Hu, Y. & Ye, S. Spatial structural characteristics of three hardwood species in Korean pine broad-leaved forest—Validating the bivariate distribution of structural parameters from the point of tree population. For. Ecol. Manag. 314, 17–25 (2014).Article 

    Google Scholar 
    Condit, R. et al. Spatial patterns in the distribution of tropical tree species. Science 288(5470), 1414–8 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lü, C. et al. Population structure and spatial patterns of Haloxylon ammodendron population along the northwestern edge of Junggar basin. J. Desert Res. 32, 380–387 (2012).ADS 

    Google Scholar 
    Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Theodose, T. A. The influence of landform on the understory plant community in a temperate Beech forest in northern Iran. Ecol. Res. 30, 385–394 (2015).Article 

    Google Scholar 
    Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Said-Pullicino, D. Slope Gradient and Shape Effects on Soil Profiles in the Northern Mountainous Forests of Iran. Euras. Soil Sci. 49(12), 1366–1374 (2016).ADS 
    Article 

    Google Scholar 
    Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Said-Pullicino, D. The effect of landform on soil microbial activity and biomass in a Hyrcanian oriental beech stand. CATENA 149, 309–317 (2017).CAS 
    Article 

    Google Scholar 
    Fazlollahi Mohammadi, M., Jalali, S. G., Kooch, Y. & Theodose, T. A. Tree species composition biodiversity and regeneration in response to catena shape and position in a mountain forest. Scand. J. For. Res. 32(1), 80–90 (2017).Article 

    Google Scholar 
    Harms, K. E., Condit, R., Hubbell, S. P. & Foster, R. B. Habitat association of tree and shrubs in a 50-ha neotropical forest plot. J. Ecol. 89, 947–959 (2001).Article 

    Google Scholar 
    Gunatilleke, C. V. S. et al. Species-habitat associations in a Sri Lank and ipterocap forest. J. Trop. Ecol. 22, 371–378 (2006).Article 

    Google Scholar 
    Rubino, D. L. & McCarthy, B. C. Evaluation of coarse woody debris and forest vegetation across topographic gradients in a southern Ohio forest. For. Ecol. Manag. 183, 221–238 (2003).Article 

    Google Scholar 
    Mohsennezhad, M., Shokri, M., Zal, H. & Jafarian, Z. The effects of soil properties and physiographic factors on plant communities distribution in Behrestagh Rangeland. Rangeland 4(2), 262–275 (2010).
    Google Scholar 
    Sefidi, K., Esfandiary Darabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. IFOREST Biogeosci. For. 9, 658–665 (2016).Article 

    Google Scholar 
    Valipour, A. et al. Relationships between forest structure and tree’s dimensions with physiographical factors in Armardeh forests (Northern Zagros). Iran. J. For. Poplar Res. 21(1), 30–47 (2013).
    Google Scholar 
    Clark, P. J. & Evans, F. C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35, 445–453 (1954).Article 

    Google Scholar 
    Naqinezhad, A. et al. The combined effects of climate and canopy cover changes on understorey plants of the Hyrcanian forest biodiversity hotspot in northern Iran. Glob. Change Biol. 28(3), 1103–1118 (2022).Article 

    Google Scholar 
    Pelissaria, A. L. et al. Geostatistical modeling applied to spatiotemporal dynamics of successional tree species groups in a natural Mixed Tropical Forest. Ecol. Indic. 78, 1–7 (2017).Article 

    Google Scholar 
    Pretzsch, H. & Zenner, E. K. Toward managing mixed-species stands: From parametrization to prescription. For. Ecosyst. 4, 19 (2017).Article 

    Google Scholar 
    Yousefi, S. et al. Spatio-temporal variation of throughfall in a hyrcanian plain forest stand in Northern Iran. J. Hydrol. Hydromech. 66(1), 97–106 (2018).Article 

    Google Scholar 
    Soil Survey Staff. Keys to Soil Taxonomy 12th edn. (USDA-Natural Resources Conservation Service, 2014).
    Google Scholar 
    Land Info, L. L. C. http://www.landinfo.com/country-iran.html. Accessed (2013).Beven, K. J. & Kirkby, M. J. A. Physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du basin versant. Hydrol. Sci. J. 24(1), 43–69 (1979).Article 

    Google Scholar 
    Bourgeron, P. S. Spatial aspects of vegetation structure. In Ecosystems of the World 14A—Tropical Rain Forest Ecosystems, Structure and Function (ed. Golley, F. B.) 29–47 (Elsevier, 1983).
    Google Scholar 
    Moeur, M. Characterizing spatial patterns of trees using stem-mapped data. For. Sci. 39(4), 756–775 (1993).ADS 

    Google Scholar 
    Chokkalingam, U. & White, A. Structure and spatial patterns of trees in old-growth northern hardwood and mixed forests of northern Maine. Plant Ecol. 156(2), 139–160 (2001).Article 

    Google Scholar 
    Ferhat, K. A. R. A. Spatial patterns of longleaf pine (Pinus palustris Mill.): A case study. Euras. J. For. Sci. 9(3), 151–159 (2021).
    Google Scholar 
    Pommerening, A. Approaches to quantifying forest structures. Forestry 75(3), 305–324 (2002).Article 

    Google Scholar 
    Pommerening, A. & Särkkä, A. What mark variograms tell about spatial plant interactions. Ecol. Model. 251, 64–72 (2013).Article 

    Google Scholar 
    Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils. 27, 315–334 (1998).CAS 
    Article 

    Google Scholar 
    Landim, P. M. B. & Sturaro, J. R. Krigagem indicativa aplicada à elaboração de mapas probabilísticos de riscos. Geomatematica, Texto didático, 6. DGA, IGCE, Universidade Estadual de São Paulo (UNESP), Rio Claro, São Paulo, Brazil. Available at: http://www.rc.unesp.br/igce/aplicada/textodi.html. Accessed 25/05/13 (2002).Deutsch, C. V. & Journel, A. G. GSLIB: Geostatistical Software Library and User’s Guide 119 (Oxford University Press, 1992).
    Google Scholar 
    Oliver, M. A. & Webster, R. Combining nested and linear sampling for determining the scale and form of spatial variation of regionalized variables. Geogr. Anal. 18, 227–242 (1986).Article 

    Google Scholar 
    Zhao, Z., Ashraf, M. I. & Meng, F. R. Model prediction of soil drainage classes over a large area using a limited number of field samples: A case study in the province of Nova Scotia, Canada. Can. J. Soil Sci. 93(1), 73–83 (2013).Article 

    Google Scholar 
    Brubaker, S. C., Jones, A. J., Lewis, D. T. & Frank, K. Soil properties associated with landscape position. Soil Sci. Soc. Am. J. 57, 235–239 (1993).ADS 
    Article 

    Google Scholar 
    Bellingham, P. J. & Tanner, E. V. J. The influence of topography on tree growth, mortality, and recruitment in a tropical Montane Forest. Biotropica 32(3), 378–384 (2000).Article 

    Google Scholar 
    Luizao, R. C. C. et al. Variation of carbon and nitrogen cycling processes along a topographic gradient in a Central Amazonian forest. Glob. Change Biol. 10, 592–600 (2004).ADS 
    Article 

    Google Scholar 
    Beaty, R. M. & Taylor, A. H. Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, southern cascades, California, USA. J. Biogeogr. 28, 955–966 (2001).Article 

    Google Scholar 
    Castilho, C. V. et al. Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography. For. Ecol. Manag. 234, 85–96 (2006).Article 

    Google Scholar 
    Swanson, F. J., Kratz, T. K., Caine, N. & Woodmansee, R. G. Landform effects on eco-system patterns and processes. Biol. Sci. 38, 92–98 (1988).
    Google Scholar 
    Kooch, Y., Hosseini, S. M., Mohammadi, J. & Hojjati, S. M. Windthrow effects on biodiversity of natural forest ecosystem in local scale. Hum. Environ. 9(3), 65–72 (2011).
    Google Scholar 
    Köhl, M. & Gertner, G. Geostatistics in evaluating forest damage surveys: Considerations on methods for describing spatial distributions. For. Ecol. Manag. 95(2), 131–140 (1997).Article 

    Google Scholar 
    Habashi, H., Hosseini, S. M., Mohammadi, J. & Rahmani, R. Stand structure and spatial pattern of trees in mixed Hyrcanian beech forests of Iran. Iran. J. For. Poplar Res. 15(1), 64–55 (2007).
    Google Scholar 
    Von Oheimb, G., Westphal, C., Tempel, H. & Härdtle, W. Structural pattern of a near-natural beech forest (Fagus sylvatica) (Serrahn, North-east Germany). For. Ecol. Manag. 212, 253–263 (2005).Article 

    Google Scholar 
    Kunstler, G., Curt, T. & Lepart, J. Spatial pattern of beech (Fagus sylvatica L.) and oak (Quercus pubescens Mill.) seedlings in natural pine (Pinus sylvestris L.) woodlands. Eur. J. For. Res. 123(4), 331–337 (2004).Article 

    Google Scholar 
    Mosandl, R. & Kleinert, A. Development of oaks (Quercus petraea (Matt.) Liebl.) emerged from bird-dispersed seeds under old-growth pine (Pinus sylvestris L.) stands. For. Ecol. Manag. 106, 35–44 (1998).Article 

    Google Scholar 
    Hosseini, A., Jafari, M. R. & Askari, S. Investigation and recognition of ecological characteristics of sites of Persian oak and pistachio old trees in forests of Ilam province. Wood Sci. Technol. 26(4), 113–128 (2019).
    Google Scholar 
    Ghalandarayeshi, S., Nord-Larsen, T., Johannsen, V. K. & Larsen, J. B. Spatial patterns of tree species in Suserup Skov—A semi-natural forest in Denmark. For. Ecol. Manag. 406, 391–401 (2017).Article 

    Google Scholar 
    Petritan, I. C., Marzano, R., Petritan, A. M. & Lingua, E. Overstory succession in a mixed Quercus petraea-Fagus sylvatica old growth forest revealed through the spatial pattern of competition and mortality. For. Ecol. Manag. 326, 9–17 (2014).Article 

    Google Scholar 
    Watt, A. S. On the ecology of British Beech woods with special reference to their regeneration: Part II, sections II and III. The development and structure of beech communities on the Sussex downs. J. Ecol. 13, 27–73 (1925).Article 

    Google Scholar 
    Wiegand, T., Gunatilleke, S., Gunatilleke, N. & Okuda, T. Analyzing the spatial structure of a Sri Lankan tree species with multiple scales of clustering. Ecology 88, 3088–3102 (2007).PubMed 
    Article 

    Google Scholar 
    Moradi, M., Marvie Mohadjer, M. R., Sefidi, K., Zobiri, M. & Omidi, A. Over matured beech trees (Fagus orientalis Lipsky.) component of close to nature forestry in northern Iran. J. For. Res. 23(2), 289–294 (2012).Article 

    Google Scholar 
    Lan, G. Y. et al. Spatial dispersion patterns of trees in a tropical rainforest in Xishuangbanna, southwest China. Ecol. Res. 24, 1117–1124 (2009).ADS 
    Article 

    Google Scholar 
    Lan, G., Hu, Y., Cao, M. & Zhu, H. Topography related spatial distribution of dominant tree species in a tropical seasonal rain forest in China. For. Ecol. Manag. 262(8), 1507–1513 (2011).Article 

    Google Scholar 
    Menendez, I., Moreno, G., Fernando Gallardo Lancho, J. & Saavedra, J. Soil solution composition in forest soils of sierra de gata mountains, Central-Western Spain: Relationship with soil water content. Arid Land Res. Manag. 9(4), 495–502 (1995).
    Google Scholar 
    Kopecký, M., Macek, M. & Wild, J. Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition. Sci. Total Environ. 757, 143785 (2021).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Delfan Abazari, B., Sagheb-Talebi, K. & Namiranian, M. Development stages and dynamic of undisturbed Oriental beech (Fagus orientalis Lipsky) stands in Kelardasht region (Iran). Iran. J. For. Poplar Res. 12, 307–326 (2004) ((in Persian)).
    Google Scholar 
    Sagheb-Talebi K., Delfan Abazari B. & Namiranian M. Description of decay stage in a natural Oriental beech (Fagus orientalis Lipsky) forest in Iran, preliminary results. In Natural Forests in the Temperate Zone of Europe – Values and Utilization (eds. Commarmot, B. & Hamor, F.D.), Proceedings of conference in Mukachevo, Oct 13–17, 130–134 (2003).Christensen, M., Emborg, J. & Nielsen, A. B. The forest cycle of Suserup Skov: Revisited and revised. Ecol. Bull. 52, 33–42 (2007).
    Google Scholar 
    Dobrowolska, D. et al. A review of European ash (Fraxinus excelsior L.): Implications for silviculture. Forestry 84, 133–148 (2011).Article 

    Google Scholar 
    Akhani, H., Djamali, M., Ghorbanalizadeh, A. & Ramezani, E. Plant biodiversity of Hyrcanian relict forests, N Iran: An overview of the flora, vegetation, palaeoecology and conservation. Pak. J. Bot. 42(1), 231–258 (2010).
    Google Scholar 
    Pourmajidian, M. R. et al. Effect of shelterwood cutting method on forest regeneration and stand structure in a Hyrcanian forest ecosystem. J. For. Res. 21, 265–272 (2010).Article 

    Google Scholar 
    Szwagrzyk, J. & Szewczyk, J. Tree mortality and effects of release from competition in an old-growth Fagus-Abies-Picea stand. J. Veg. Sci. 12, 621–626 (2001).Article 

    Google Scholar 
    Janík, D. et al. Tree spatial patterns of Fagus sylvatica expansion over 37 years. For. Ecol. Manag. 375, 134–145 (2016).Article 

    Google Scholar 
    Amiri, M. Dynamics of Structural Characteristics of a Natural Unlogged Fagus orientalis Lipsky Stand during a 5-year’s Period in Shast-Kalate Forest, Gorgan, Iran, Ph.D. Dissertation, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan (2013) (in Persian).Soofi, M. Effects of anthropogenic pressure on large mammal species in the Hyrcanian forest, Iran: Effects of poaching, logging and livestock grazing on large mammals (Doctoral dissertation, Dissertation, Göttingen, Georg-August Universität, 2018). More

  • in

    Pollen-mediated transfer of herbicide resistance between johnsongrass (Sorghum halepense) biotypes

    Plant materialsAn ALS-inhibitor-resistant johnsongrass (resistant to nicosulfuron) obtained from the University of Nebraska-Lincoln (source credit: Dr. John Lindquist) was used as the pollen source (male parent), and the natural johnsongrass population present in the experimental field at the Texas A&M University Farm, Somerville (Burleson County), Texas (30° 32′ 15.4″ N 96° 25′ 49.2″ W) with no history of ALS-inhibitor resistance was used as the pollen recipient (female parent). Prior to the initiation of the field experiment, the susceptibility to nicosulfuron of the natural johnsongrass population was verified by spraying Accent Q at the labeled field rate of 63 g ai ha−1 [mixed with 0.25% v/v Crop Oil Concentrate (COC)] on 10 randomly selected 1 m2 johnsongrass patches across the field area at 15–30 cm tall seedling stage. For this purpose, a CO2 pressurized backpack sprayer was calibrated to deliver 140 L ha−1 of spray volume at an operating speed of 4.8 kmph. The natural johnsongrass population was determined to be completely susceptible to nicosulfuron.During spring 2018, the seeds of AR johnsongrass were planted in pots (14-cm diameter and 12-cm tall) filled with potting soil mixture (LC1 Potting Mix, Sungro Horticulture Inc., Agawam, MA, USA) at the Norman Borlaug Center for Southern Crop Improvement Greenhouse Research Facility at Texas A&M University. The environmental conditions were set at 26/22 °C day/night temperature regime and a 14-h photoperiod. In each pot, 5 seeds were planted and thinned to one healthy seedling at 1-leaf stage. Seedlings were supplied with sufficient water and nutrients (Miracle-Gro Water Soluble All Purpose Plant Food, Scotts Miracle-Gro Products Inc., 14111 Scottslawn Road, Marysville, OH 43041). A total of 50 seedlings were established in the greenhouse and were maintained until they reached about 10 cm tall, at which point they were sprayed with 2× the field rate of nicosulfuron (63 × 2 = 126 g ai ha−1) (mixed with 0.25% v/v COC). The herbicide was applied using a track-sprayer (Research Track Sprayer, DeVries, Hollandale, MN) fitted with a flat fan nozzle (TeeJet XR110015) that was calibrated to deliver a spray volume of 140 L ha−1 at 276 kPa pressure, and at an operating speed of 4.8 kmph. All treated seedlings that survived the herbicide application at 21 days after treatment (DAT) were then used as the pollen donor in the field gene flow experiment. All plant materials were handled in accordance with relevant guidelines and regulations. No permissions or licenses were required for collecting the johnsongrass samples from the experimental fields.Dose–response assaysThe degree of resistance/susceptibility to nicosulfuron of the AR and AS johnsongrass biotypes were determined using a classical dose–response experiment. The assay consisted of seven rates (0, 0.0625, 0.125, 0.25, 0.5, 1, and 2×) for the AS population and nine rates (0, 0.25, 0.5, 1, 2, 4, 8, 16, and 32×) for the AR population [1 × (field recommended rate) = 63 g ai ha−1 of Accent Q]. The experimental units were arranged in a completely randomized design with four replications. Seeds of AR and AS plants were planted in plastic trays (25 × 25 cm) filled with commercial potting-soil mix (LC1 Potting Mix, Sungro Horticulture Inc., Agawam, MA, USA) and maintained at 26/22 °C day/night cycle with a 14-h photoperiod in the greenhouse. Seedlings at 1–2 leaf stage were thinned to 20 seedlings per tray; four replications each of 20 seedlings per dose were considered. The seedlings were watered and fertilized as needed. The assay was conducted twice, thus a total of 160 seedlings were screened for each dose.The established seedlings were sprayed with the appropriate herbicide dose at the 10–15 cm tall seedling stage. The herbicide was applied using a track sprayer calibrated to deliver a spray volume of 140 L ha−1 at 4.8 kmph operating speed. Survival (%) and injury (%) were assessed at 28 DAT. Any plant that failed to grow out of the herbicide impact was considered dead. Plant injury was rated for each plot (i.e. on the 20 seedlings per rep) on a scale of 0–100%, where 0 indicates no visible impact compared to the nontreated control and 100 indicates complete death of all plants in the tray. Immediately after the visual ratings were completed, shoot biomass produced by the 20 plants from each tray was determined by harvesting all the tissues at the soil level and drying them in an oven at 60 °C for 72 h. Seedling mortality data were used for fitting dose–response curves that allowed for determining the lethal dose that caused 100% mortality of the susceptible biotype. This dose was used as a discriminant dose to distinguish between a hybrid (that confers resistance to nicosulfuron as a result of gene flow) and a selfed progeny (susceptible to nicosulfuron) in the field gene flow study.Field experimental location and set-upThe field experiment was conducted across two ENVs in 2018 (summer and fall) and one in 2019 (fall) at the Texas A&M University Farm, Somerville (Burleson County), Texas (30° 32′ 15.4″ N 96° 25′ 49.2″ W). The study site is characterized by silty clay loam soil with an average annual rainfall of 98.2 cm. The field experiment followed the Nelder-wheel design40, i.e. concentric donor-receptor design, a widely used method for gene flow studies, wherein the pollen-donors are surrounded by the pollen-receptors (Fig. 1). In this study, the AR plants (planted in the central block of the wheel) served as the pollen-donors, whereas the AS plants (present in the spokes) served as the pollen-receptors.Figure 1Aerial view of the experimental arrangement that was used to quantify pollen-mediated gene flow from ALS-inhibitor resistant (AR) to -susceptible (AS) johnsongrass at the Texas A&M University Research Farm near College Station, Texas. AR johnsongrass plants were transplanted in the pollen-donor block of 5 m diameter at the center of the field. The surrounding pollen-receptor area was divided into four cardinal (N, E, S, W) and four ordinal (NE, SE, SW, NW) directional blocks where naturally-existing AS johnsongrass plants were used as the pollen-recipients. AS panicles exhibiting flowering synchrony with AR plants were tagged at specific distances (5–50 m, at 5 m increments) along the eight directional arms. A tall-growing biomass sorghum border was established in the perimeter of the experimental site to prevent pollen inflow from outside areas.Full size imageThe center of the wheel was 5 m in diameter, and each spoke was 50 m long starting at the periphery of the central circular block. Thirty AR plants (pollen-donors) were transplanted in four concentric rings of 1, 5, 9, and 15 plants in the 5 m diameter central block, surrounded by the pollen-receptors (i.e. AS plants) (Fig. 1). The AR plants were contained within the central block during the 2 years of the field experiment by harvesting and removing all mature seeds and removing any expanding rhizomatous shoots. Further, field cultivation was completely avoided in the central block throughout the study period. Any newly emerging johnsongrass plants (seedling/rhizomatous) other than the transplanted AR plants in the central block were removed periodically by manual uprooting.The wheel consisted of eight spokes (i.e. directional blocks) arranged in four cardinal (N, E, S, W) and four ordinal (NE, SE, NW, SW) directions (Fig. 1). The plots to quantify gene flow frequency were arranged at 0 (border of the central block), 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 m distances from the central block in all eight directions (Fig. 1). Each plot measured 3 × 2 m and the area surrounding the plots was shredded prior to the booting stage with a Rhino® RC flail shredder (RHINOAG, INC., Gibson City, IL 60936).A tall-growing biomass sorghum border (6 m wide) was established surrounding the experimental area in all directions to prevent potential inflow of pollen from other Sorghum spp. in the nearby areas. Additionally, prevailing weather conditions, specifically wind direction, wind speed, relative humidity, and air temperature measured at 5-min intervals were obtained from a nearby weather station located within the Texas A&M research farm (http://afs102.tamu.edu/). The field did not require any specific agronomic management in terms of irrigation, fertilization, or pest management.Flowering synchrony, tagging, and seed harvestingAt peak flowering, when  > 50% of the plants in the AR block started anther dehiscence (i.e., pollen shedding), ten AS panicles (five random plants × 2 panicles per plant) that showed flowering synchrony with AR plants and displayed protruded, receptive stigma were tagged using colored ribbons at each distance and direction. At seed maturity, the tagged AS panicles were harvested separately for each distance and direction. Panicles were threshed, seeds were cleaned manually, and stored under room conditions until used in the herbicide resistance screening to facilitate after-ripening and dormancy release.Resistance screeningThe hybrid progeny produced on AS plants as a result of outcrossing with AR plants would be heterozygous for the allele harboring nicosulfuron resistance, and would exhibit survival upon exposure to the herbicide applied at the discriminant dose at which all wild type (AS) plants would die. The discriminant dose was determined using the dose–response study described above. Thus, the frequency of resistant plants in the progeny would represent outcrossing/gene flow (%).To effectively detect the levels of gene flow from AR to AS biotypes especially at low frequencies, the minimum sample size required for resistance screening was determined based on the following formula (Eq. 1)41:$${text{N }} = {text{ ln}}left( {{1} – P} right)/{text{ln}}left( {{1} – p} right),$$
    (1)
    where P is the probability of detecting a resistant progeny in the least frequent class and p is the probability of the least frequent class. Based on this formula, a minimum of 298 to as high as 916 plants were screened for each distance within each direction, allowing for a 1% detection level (p = 0.01) with a 95% (P = 0.95) confidence interval.Approximately one-year old progeny seeds harvested from the AS plants were scarified using a sandpaper for 15–20 s to release dormancy. The seeds for each distance within each direction were planted in four replicates of plastic trays (50 × 25 cm) filled with potting soil mixture (LC1 Potting Mix, Sungro Horticulture Inc., Agawam, MA, USA). The plants were raised at the Norman Borlaug Center for Southern Crop Improvement Greenhouse Research Facility at Texas A&M University. The greenhouse was maintained at 28/24 °C day/night temperature regime and a 14-h photoperiod. About 10–15 cm tall seedlings were sprayed with the discriminant dose of the ALS-inhibitor nicosulfuron (Accent Q, 95 g ai ha−1) using a spray chamber (Research Track Sprayer, DeVries, Hollandale, MN) fitted with a flat fan nozzle (TeeJet XR110015) that was calibrated to deliver a spray volume of 140 L ha−1 at 276 kPa pressure, operating at a speed of 4.8 kmph. At 28 DAT, percent seedling survival was determined based on the number of plants that survived the herbicide application out of the total number of plants sprayed. The number of plants in each tray was counted before spraying.Molecular confirmation of hybridsLeaf tissue samples were collected from thirty random surviving plants (putative resistant) in the herbicide resistance screening study for each of the three field ENVs, thus totaling 90 samples. Genomic DNA was extracted from 100 mg of young leaf tissue using the modified CTAB protocol42. The concentration of DNA was determined using a Nanodrop 1000 UV–Vis spectrophotometer (DeNovix DS-II spectrophotometer, DeNovix Inc., Wilmington, DE 19810, USA). DNA was then diluted to a concentration of 20 ng/µl for PCR assay. The nicosulfuron-resistant johnsongrass from Nebraska used in this study possessed the Trp574Leu mutation39. Hence, single nucleotide polymorphism (SNP) primers targeting a unique short-range haplotype of Inzen® sorghum (Val560Ile + Trp574Leu) were performed using the PCR Allele Competitive Extension (PACE) platform to confirm the resistant plants43. The SNP primers and the PACE genotyping master mix were obtained from Integrated DNA Technologies (IDT) Inc. (Coralville, IA) and 3CR Bioscience (Harlow CM20 2BU, United Kingdom), respectively. In addition to the two no-template controls (NTCs), two nicosulfuron-resistant johnsongrass, one wild-type johnsongrass, and one Inzen® sorghum were also used in the PCR.The PCR was performed according to the manufacturer’s protocol (Bio-Rad Laboratories, Inc., Hercules, CA), with denaturation for 15 min at 94 °C, followed by 10 cycles of denaturation at 94 °C for 20 s, annealing and extension at 65–57 °C for 60 s, 30 cycles of denaturation for 20 s at 94 °C, and annealing and extension for 60 s at 57 °C. Fluorescence of the reaction products were detected using a BMG PHERAStar plate reader that uses the FAM (fluorescein amidite) and HEX (hexachloro-fluorescein) fluorophores.Data analysisFor the dose–response assay, three-parameter sigmoidal curves (Eq. 2) were fit on the seedling mortality data for the AS and AR biotypes (with log of herbicide doses), using SigmaPlot version 14.0 (Systat Software Inc., San Jose, CA).$$y=b/[1+{exp}^{left(-(x-eright)/c)}],$$
    (2)
    where, y is the mortality (%), x is the herbicide dose (g ai ha−1), b is the slope around e, c is the lower limit (theoretical minimum for y normalized to 0%), and e = LD50 (inflection point, mid-point or estimated herbicide dose when y = 50%). Windrose plots that represented wind speed and frequency during the flowering window in each of the eight directions were created using a macro in Microsoft Excel. Progeny seedling survival (%) that represents gene flow (%) was determined using Eq. (3).$${text{PMGF }}left( {text{%}} right){ } = { }left( frac{X}{Y} right)_{{i,j{ }}} times { }100,$$
    (3)
    where, X is the number of plants that survived the herbicide application, Y is the total number of plants sprayed for ith distance in jth direction.To test whether gene flow frequencies varied among the directions, ANOVA was conducted using JMP PRO v.14 (SAS Institute, Cary, NC, USA), based on the average gene flow frequency values in each direction; ENVs were considered as replicates in this analysis. A non-linear regression analysis for gene flow rate, describing an exponential decay function (Eq. 4), was fit using SigmaPlot based on the gene flow frequencies observed at different distances pooled across the directions and ENVs.$$y=y0+left[atimes {exp}^{left(-btimes xright)}right],$$
    (4)
    where, y is the PMGF (%), x is the distance (m) from pollen source, y0 is the lower asymptote (theoretical minimum for y normalized to 0%), a is the inflection point, mid-point or estimated distance when y = 50%, and b is the slope around a.A Pearson correlation analysis was conducted to determine potential association between PMGF [overall PMGF, short-distance PMGF (5 m), and long-distance PMGF (50 m)] and the environmental parameters temperature, relative humidity, and dew point. Further, a correlation analysis was also conducted to understand the association between PMGF frequencies and specific wind parameters such as wind frequency, wind speed, and gust speed. The molecular data were analyzed using KlusterCaller 1.1 software (KBioscience). More

  • in

    My family and other parasites: more worm species are named for loved ones

    Diomedenema dinarctos, a parasitic worm that infests penguins, is named after the Greek deinos, meaning terrible, and arktos, or bear, because of its resemblance to a menacing teddy bear.Credit: Bronwen Presswell and Jerusha Bennett

    What scientists choose to name parasitic worms could say more about the researchers than the organism they are studying.A study1 examining the names of nearly 3,000 species of parasitic worm discovered in the past 20 years reveals a markedly higher proportion named after male scientists than after female scientists — and a growing appetite for immortalizing friends and family members in scientific names.The analysis uncovers ongoing biases in taxonomy — the classification of organisms — and could be used as a jumping-off point for rethinking how scientists name species, says study co-author Robert Poulin, an ecological parasitologist at the University of Otago in Dunedin, New Zealand.“When you name something, it is now named forever. I think it’s worth giving some thought to what names we choose,” he says. The research was published on 11 May in Proceedings of the Royal Society B.As the worm turnsSpecies names often describe how an organism looks or where it was found. But since the nineteenth century, they have also been used to immortalize scientists. The parasite that causes the intestinal disease giardiasis, for instance, was named after French zoologist Alfred Giard.Wondering how naming practices had changed, Poulin and his colleagues combed through papers published between 2000 and 2020 that describe roughly 2,900 new species of parasitic worm. The team found that well over 1,500 species were named after their host organism, where they were found or a prominent feature of their anatomy.Many others were named after people, ranging from technical assistants to prominent politicians (Baracktrema obamai, a species found in Malaysian freshwater turtles, was named after former US president Barack Obama). But just 19% of the 596 species named after eminent scientists were named after women, a percentage that essentially didn’t budge over the decades (see ‘Parasite name game’).

    Source: Ref. 1

    This could be because of a historical dearth of female figures in the field, says Janine Caira, a parasite taxonomist at the University of Connecticut in Storrs. But another possibility is that the work of past female scientists often goes unrecognized, says Tanapan Sukee, a parasitologist at the University of Melbourne in Australia.Sukee has named two species of parasitic worm after now-deceased Australian biologist Patricia Mawson, who was a key player in the characterization of marsupial parasites. For most of her career, Mawson worked part-time as a technician, and she was often designated second author on papers describing species she had discovered, Sukee says. Similar situations could explain why so few parasites are named after women.Poulin and his colleagues also noticed an upward trend in the number of parasites named after friends and family members of the scientists who formally described them. Some researchers even name species after pets: Rhinebothrium corbatai is a freshwater stingray parasite named after the first author’s Welsh terrier, Corbata.Poulin says this should be discouraged. Species are almost never named after the person who described them, and Poulin argues that names honouring parents, children or spouses could be seen as a way to get around this convention.And besides, “I don’t have any friends or family who want a parasite named after them!” says Sukee. More

  • in

    Crabs retreat from heat

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More