More stories

  • in

    Gentle-giant sharks are on a collision course with mighty ships

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae)

    Spodek, M., Ben-Dov, Y., Protasov, A., Carvalho, C. J. & Mendel, Z. First record of Dactylopius opuntiae (Cockerell) (Hemiptera: Coccoidea: Dactylopiidae) from Israel. Phytoparasitica 42(3), 377–379. https://doi.org/10.1007/s12600-013-0373-2 (2014).Article 

    Google Scholar 
    García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y. & Hardy, N. B. ScaleNet: a literature-based model of scale insect biology and systematic (2016).Bouharroud, R., Amarraque, A. & Qessaoui, R. First report of the Opuntia cochineal scale Dactylopius opuntiae (Hemiptera: Dactylopiidae) in Morocco. EPPO Bull. 46(2), 308–310. https://doi.org/10.1111/epp.12298 (2016).Article 

    Google Scholar 
    Vanegas-Rico, J. M. et al. Biology and life history of Hyperaspis trifurcata feeding on Dactylopius opuntiae. Biocontrol 61(6), 691–701. https://doi.org/10.1007/s10526-016-9753-0 (2016).Article 

    Google Scholar 
    Mann, J. Cactus-feeding insects and mites. Bull. US. Nat. Mus. 256, 1–15 (1969).
    Google Scholar 
    Vanegas-Rico, J. M. et al. Hyperaspis trifurcata (Coleoptera: Coccinellidae) and its parasitoids in Central Mexico. Rev. Colomb. Entomol. 41(2), 194–199 (2015).
    Google Scholar 
    Lopes, E. B., Albuquerque, I. C., Brito, C. H. & Batista, J. D. L. Velocidade de dispersão de dactylopius opuntiae em palma gigante (opuntia fícus-indica). Rev. Bras. Eng. Agric. Ambient. 6(2), 644–649 (2009).
    Google Scholar 
    Badii, M. H. & Flores, A. E. Prickly pear cacti pests and their control in Mexico. Fla. Entomol. 84, 503–505. https://doi.org/10.2307/3496379 (2001).Article 

    Google Scholar 
    Sbaghi, M., Bouharroud, R., Boujghagh, M. & El Bouhssini, M. Sources de résistance d’Opuntia spp. contre la cochenille à carmin, Dactylopius opuntiae, au Maroc. EPPO Bull. 49(3), 585–592. https://doi.org/10.1111/epp.12606 (2019).Article 

    Google Scholar 
    Khan, H. A. A., Sayyed, A. H., Akram, W., Razald, S. & Ali, M. Predatory potential of Chrysoperla carnea and Cryptolaemus montrouzieri larvae on different stages of the mealybug, Phenacoccus solenopsis: A threat to cotton in South Asia. J. Insect. Sci. 12(1), 147. https://doi.org/10.1673/031.012.14701 (2012).Article 
    PubMed Central 

    Google Scholar 
    El Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Seasonal biology of Dactylopius opuntiae (Hemiptera: Dactylopiidae) on Opuntia ficus-indica (Caryophyllales: Cactaceae) under field and semi-field conditions in Morocco. Ponte. 1, 259–327. https://doi.org/10.21506/j.ponte.2020.1.17 (2020).Article 

    Google Scholar 
    Flores, A., Olvera, H., Rodríguez, S. & Barranco, J. Predation potential of Chilocorus cacti (Coleoptera: Coccinellidae) to the prickly pear cacti pest Dactylopius opuntiae (Hemiptera: Dactylopiidae). Neotrop. Entomol. 42(4), 407–411. https://doi.org/10.1007/s13744-013-0139-z (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Galloway, T. & Handy, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12(1), 345–363. https://doi.org/10.1023/A:1022579416322 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arias-Estévez, M. et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123(4), 247–260. https://doi.org/10.1016/j.agee.2007.07.011 (2008).CAS 
    Article 

    Google Scholar 
    Palacios-Mendoza, C., Nieto-Hernández, R., Llanderal-Cázares, C. & González-Hernández, H. Efectividad biológica de productos biodegradables para el control de la cochinilla silvestre Dactylopius opuntiae (Cockerell) (Homoptera: Dactylopiidae). Acta. Zool. Mex. 20(3), 99–106 (2004).
    Google Scholar 
    Borges, L. R. et al. Use of biodegradable products for the control of Dactylopius opuntiae (Hemiptera: Dactylopiidae) in cactus pear. Acta. Hortic. 995, 379–386. https://doi.org/10.17660/ActaHortic.2013.995.49 (2013).Article 

    Google Scholar 
    Carneiro-Leão, M. P., Tiago, P. V., Medeiros, L. V., da Costa, A. F. & de Oliveira, N. T. Dactylopius opuntiae: Control by the Fusarium incarnatum–equiseti species complex and confirmation of mortality by DNA fingerprinting. J. Pest. Sci. 90(3), 925–933. https://doi.org/10.1007/s10340-017-0841-4 (2017).Article 

    Google Scholar 
    da Silva Santos, A. C., Oliveira, R. L. S., da Costa, A. F., Tiago, P. V. & de Oliveira, N. T. Controlling Dactylopius opuntiae with Fusarium incarnatum–equiseti species complex and extracts of Ricinus communis and Poincianella pyramidalis. J. Pest. Sci. 89(2), 539–547. https://doi.org/10.1007/s10340-015-0689-4 (2016).Article 

    Google Scholar 
    Tiago, P. V. et al. Polymorphisms in entomopathogenic fusaria based on inter simple sequence repeats. Biocontrol Sci. Technol. 26(10), 1401–1410. https://doi.org/10.1080/09583157.2016.1210084 (2016).Article 

    Google Scholar 
    Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A. & El Bouhssini, M. Field and laboratory evaluations of different botanical insecticides for the control of Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Int. J. Trop. Insect. Sci. 41(2), 1623–1632. https://doi.org/10.1007/s42690-020-00363-w (2021).Article 

    Google Scholar 
    El-Aalaoui, M. et al. Comparative toxicity of different chemical and biological insecticides against the scale insect Dactylopius opuntiae and their side effects on the predator Cryptolaemus montrouzieri. Arch. Phytopathol. Plant. Prot. 52(1–2), 155–169. https://doi.org/10.1080/03235408.2019.1589909 (2019).CAS 
    Article 

    Google Scholar 
    El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Predatory potential of eleven native Moroccan adult ladybird species on different stages of Dactylopius opuntiae (Cockerell)(Hemiptera: Dactylopiidae). EPPO Bull. 49(2), 374–379. https://doi.org/10.1111/epp.12565 (2019).Article 

    Google Scholar 
    El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. First study of the biology of Cryptolaemus montrouzieri and its potential to feed on the mealybug Dactylopius opuntiae (Hemiptera: Dactylopiidae) under laboratory conditions in Morocco. Arch. Phytopathol. Plant. Prot. 52(13–14), 1112–1124. https://doi.org/10.1080/03235408.2019.1691904 (2019).CAS 
    Article 

    Google Scholar 
    Lester, P. J., Thistlewood, H. M. A. & Harmsen, R. Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24(1), 19–33. https://doi.org/10.1023/A:1006345119387 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poinar, G. O. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. Gen., n. Sp. (Rhabditida: Heterorhabditidae n. Fam.). Nematol. 21(4), 463–470. https://doi.org/10.1163/187529275X00239 (1976).Article 

    Google Scholar 
    Boemare, N., Akhurst, R. & Mourant, R. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen-nov.. Int. J. Syst. Bacteriol. 43(2), 249–255. https://doi.org/10.1099/00207713-43-2-249 (1993).CAS 
    Article 

    Google Scholar 
    Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Potential use of entomopathogenic nematodes against the soil dwelling stages of onion thrips, Thrips tabaci Lindeman: Laboratory, greenhouse and field trials. Biol. Control. 161, 104677. https://doi.org/10.1016/j.biocontrol.2021.104677 (2021).Article 

    Google Scholar 
    Adams, B. J. & Nguyen, K. B. Taxonomy and systematics. In Entomopathogenic Nematology (ed. Gaugler, R.) 1–34 (CABI Publishing, 2002).
    Google Scholar 
    Dowds, B. C. A. & Peters, A. Virulence mechanisms. In Entomopathogenic Nematology (ed. Gaugler, R.) 79–90 (CABI Publishing, 2003).
    Google Scholar 
    Bal, H. K. & Grewal, P. S. Lateral dispersal and foraging behavior of entomopathogenic nematodes in the absence and presence of mobile and non-mobile hosts. PLoS ONE 10(6), e0129887. https://doi.org/10.1371/journal.pone.0129887 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lewis, E. E., Gaugler, R. & Harrison, R. Entomopathogenic nematode host finding—response to host contact cues by cruise and ambush foragers. Parasitology 105, 309–315. https://doi.org/10.1017/S0031182000074230 (1992).Article 

    Google Scholar 
    Campbell, J. F. & Gaugler, R. Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155–169 (1993).Article 

    Google Scholar 
    Lewis, E. E., Gaugler, R. & Harrison, R. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool. 71, 765–769 (1993).Article 

    Google Scholar 
    Grewal, P. S., Lewis, E. E., Gaugler, R. & Campbell, J. F. Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108, 207–215 (1994).Article 

    Google Scholar 
    Poinar, G. O. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological cOntrol (eds Gaugler, R. & Kaya, H. K.) 23–62 (CRC Press, 1990).
    Google Scholar 
    De Waal, J. Y., Wolhlfarter, M. & Malan, A. P. Laboratory bioassays for the differential susceptibility of Planococcus ficus and Pseudococcus viburni (Hemiptera: Pseudococcidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). S. Afr. J. Plant. Soil. 24, 243–244 (2007).
    Google Scholar 
    Lacey, L. A. & Shapiro-Ilan, D. I. Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. Annu. Rev. Entomol. 53(1), 121–144. https://doi.org/10.1146/annurev.ento.53.103106.093419 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Potential of South African entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) for control of the citrus mealybug, Planococcus citri (Pseudococcidae). J. Invertebr. Pathol. 111(2), 166–174. https://doi.org/10.1016/j.jip.2012.07.023 (2012).Article 
    PubMed 

    Google Scholar 
    Půža, V. Control of insect pests by entomopathogenic nematodes. In Principles of Plant Microbe Interactions (ed. Lugtenberg, B.) 175–183 (Springer, 2015).
    Google Scholar 
    Gulzar, S. et al. Environmental tolerance of entomopathogenic nematodes differs among nematodes arising from host cadavers versus aqueous suspension. J. Invertebr. Pathol. 175, 107452. https://doi.org/10.1016/j.jip.2020.107452 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gulzar, S. et al. Virulence of entomopathogenic nematodes to pupae of Frankliniella fusca (Thysanoptera: Thripidae). J. Econ. Entomol. 114(5), 2018–2023. https://doi.org/10.1093/jee/toab132 (2021).Article 
    PubMed 

    Google Scholar 
    Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Combined effect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): laboratory, greenhouse and field trials. Insects 12(5), 456. https://doi.org/10.3390/insects12050456 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Usman, M. et al. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 113(6), 2627–2633. https://doi.org/10.1093/jee/toaa209 (2020).Article 
    PubMed 

    Google Scholar 
    Usman, M. et al. Potential of entomopathogenic nematodes against the pupal stage of the apple maggot Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J. Nematol. 52, e2020–e2079. https://doi.org/10.21307/jofnem-2020-079 (2020).Article 
    PubMed Central 

    Google Scholar 
    Usman, M., Wakil, W. & Shapiro-Ilan, D. I. Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae). Biol. Control. 163, 104706. https://doi.org/10.1016/j.biocontrol.2021.104706 (2021).Article 

    Google Scholar 
    Grewal, P. S., Wang, X. & Taylor, R. A. J. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: Is there a relationship?. Int. J. Parasitol. 32(6), 717–725. https://doi.org/10.1016/S0020-7519(02)00029-2 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Benseddik, Y. et al. Occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Morocco. Biocontrol. Sci. Technol. 30(10), 1060–1072. https://doi.org/10.1080/09583157.2020.1787344 (2020).Article 

    Google Scholar 
    Mokrini, F. et al. Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-76170-7 (2020).CAS 
    Article 

    Google Scholar 
    Gorgadze, O., Bakhtadze, G., Kereselidze, M. & Lortkipanidze, M. The efficacy of entomopathogenic agents against Halyomorpha halys. Int. J. Curr. Res. 9, 62177–62180 (2017).
    Google Scholar 
    Tarasco, E. & Triggiani, O. Use of Italian EPNs in controlling Rhytidoderes plicatus Oliv, (Coleoptera, Curculionidae) in potted savoy cabbages. IOBC. WPRS. Bull. OILBN. 28, 9–12 (2005).
    Google Scholar 
    Moreno Salguero, C. A., Bustillo Pardey, A. E., Lopez Nunez, J. C., Castro Valderrama, U. & Ramirez Sanchez, G. D. Virulence of entomopathogenic nematodes to control Aeneolamia varia (Hemiptera: Cercopidae) in sugarcane. Rev. Colomb. Entomol. 38(2), 260–265 (2012).
    Google Scholar 
    Julià, I., Morton, A., Roca, M. & Garcia-del-Pino, F. Evaluation of three entomopathogenic nematode species against nymphs and adults of the sycamore lace bug, Corythucha ciliata. Biocontrol 65(5), 623–633. https://doi.org/10.1007/s10526-020-10045-8 (2020).CAS 
    Article 

    Google Scholar 
    Sirjani, F. O., Lewis, E. E. & Kaya, H. K. Evaluation of entomopathogenic nematodes against the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Biol. Control. 48, 274–7280. https://doi.org/10.1016/j.biocontrol.2008.11.002 (2009).Article 

    Google Scholar 
    Guide, B. A., Soares, E. A., Itimura, C. R. & Alves, V. S. Entomopathogenic nematodes in the control of cassava root mealybug Dysmicoccus sp. (Hemiptera: Pseudococcidae). Rev. Colomb. Entomol. 42(1), 16–21. https://doi.org/10.25100/socolen.v42i1.6664 (2016).CAS 
    Article 

    Google Scholar 
    Le Vieux, P. D. & Malan, A. P. The potential use of entomopathogenic nematodes to control Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). S. J. Enol. Vitic. 34(2), 296–306. https://doi.org/10.21548/34-2-1108 (2013).Article 

    Google Scholar 
    Lewis, E. D., Campbell, J., Griffin, C., Kaya, H. & Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control. 38(1), 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007 (2006).Article 

    Google Scholar 
    Rahoo, A. M., Tariq Mukhta, T., Gowen, S. R., Rahoo, R. K. & Abro, S. A. Reproductive potential and host searching ability of entomopathogenic nematode Steinernema feltiae. Pak. J. Zool. 49(1), 229–234. https://doi.org/10.17582/journal.pjz/2017.49.1.229.234 (2017).Article 

    Google Scholar 
    Selvan, S., Campbell, J. F. & Gaugler, R. Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. J. Invertebr. Pathol. 62(3), 278–284. https://doi.org/10.1006/jipa.1993.1113 (1993).Article 

    Google Scholar 
    Gaugler, R., Wang, Y. & Campbell, J. F. Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defences against entomopathogenic nematode attack. J. Invertebr. Pathol. 64(3), 193–199. https://doi.org/10.1016/S00222011(94)90150-3 (1994).Article 

    Google Scholar 
    Burjanadze, M., Kharabadze, N. & Chkhidze, N. Testing local isolates of entomopathogenic microorganisms against brown marmorated stink Bug Halyomorpha halys in Georgia. BIO Web Conf. 18, 00006. https://doi.org/10.1051/bioconf/20201800006 (2020).Article 

    Google Scholar 
    Del Valle, E. E., Dolinski, C. & Souza, R. M. Dispersal of Heterorhabditis baujardi LPP7 (Nematoda: Rhabditida) applied to the soil as infected host cadavers. Int. J. Pest. Manag. 54(2), 115–122. https://doi.org/10.1080/09670870701660579 (2008).Article 

    Google Scholar 
    Griffin, C. T., Boemare, N. E. & Lewis, E. E. Biology and behavior. In Nematodes as Biocontrol Agents 1st edn (eds Grewal, P. S. et al.) 47–59 (CABI Publishing, 2005).Chapter 

    Google Scholar 
    Bastidas, B., Portillo, E. & San-Blas, E. Size does matter: The life cycle of Steinernema spp. in micro-insect hosts. J. Invertebr. Pathol. 121, 46–55. https://doi.org/10.1016/j.jip.2014.06.010 (2014).Article 
    PubMed 

    Google Scholar 
    Stokwe, N. F. & Malan, A. P. Susceptibility of the obscure mealybug, Pseudococcus viburni (Signoret) (Pseudococcidae), to South African isolates of entomopathogenic nematodes. Int. J. Pest. Manag. 62(2), 119–128. https://doi.org/10.1080/09670874.2015.1122250 (2016).Article 

    Google Scholar 
    Stokwe, N. F. & Malan, A. P. Laboratory bioassays to determine susceptibility of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae), to entomopathogenic nematodes. Afr. Entomol. 25(1), 123–136. https://doi.org/10.4001/003.025.0123 (2017).Article 

    Google Scholar 
    Cuthbertson, A. G. et al. Bemisia tabaci: The current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci. 18(1), 1–10. https://doi.org/10.1111/j.1744-7917.2010.01383.x (2011).Article 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Compatibility of Heterorhabditis zealandica and Steinernema yirgalemense with agrochemicals and biological control agents. Afr. Entomol. 22, 49–56 (2014).Article 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. J. Helminthol. 89(2), 189–195. https://doi.org/10.1017/S0022149X13000771 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aldama-Aguilera, C. & Llanderal-Cázares, C. Grana cochinilla: comparación de métodos de producción en penca cortada. Agrociencia 37(1), 11–19 (2003).
    Google Scholar 
    Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, Biological Techniques Series (ed. Lacey, L. A.) 281–324 (Academic Press, 1997).Chapter 

    Google Scholar 
    White, C. F. A method for obtaining infective larvae from culture. Science 66, 302–303. https://doi.org/10.1126/science.66.1709.302-a (1927).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro-Ilan, D. I., Morales-Ramos, J. A. & Rojas, M. G. In vivo production of entomopathogenic nematodes. In Microbial-Based Biopesticides 137–158 (Humana Press, 2016).Chapter 

    Google Scholar 
    Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS 
    Article 

    Google Scholar 
    Abbot, W. S. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a (1925).Article 

    Google Scholar 
    Finney, D. J. Probit analysis 3rd edn, 20–63 (Cambridge University Press, 1971).MATH 

    Google Scholar 
    Haye, T., Wyniger, D. & Gariepy, T. D. Recent range expansion of brown marmorated stink bug in Europe. In Proceedings of the Eighth International Conference on Urban Pests (eds Müller, G. et al.) 309–314 (OOK Press, 2014).
    Google Scholar 
    Carver, R. H. & Nash, J. G. Doing data analysis with SPSS: version 18.0. (Cengage Learning, 2011). More

  • in

    Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction

    Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).Article 

    Google Scholar 
    Campbell, I., Czamanske, G., Fedorenko, V., Hill, R. & Stepanov, V. Synchronism of the Siberian Traps and the Permian–Triassic boundary. Science 258, 1760–1763 (1992).Article 

    Google Scholar 
    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).Article 

    Google Scholar 
    Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).Article 

    Google Scholar 
    Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).Article 

    Google Scholar 
    Lee, C. & Lackey, J. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements 11, 125–130 (2015).Article 

    Google Scholar 
    McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).Article 

    Google Scholar 
    Ratschbacher, B. C., Paterson, S. R. & Fischer, T. P. Spatial and depth‐dependent variations in magma volume addition and addition rates to continental arcs: application to global CO2 fluxes since 750 Ma. Geochem. Geophys. Geosyst. 20, 2997–3018 (2019).Article 

    Google Scholar 
    Soreghan, G. S., Soreghan, M. J. & Heavens, N. G. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology 47, 600–604 (2019).Article 

    Google Scholar 
    Jones, M. T., Sparks, R. S. J. & Valdes, P. J. The climatic impact of supervolcanic ash blankets. Clim. Dyn. 29, 553–564 (2007).Article 

    Google Scholar 
    DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. Cyclicity in cordilleran orogenic systems. Nat. Geosci. 2, 251–257 (2009).Article 

    Google Scholar 
    Ducea, M. N., Paterson, S. R. & DeCelles, P. G. High-volume magmatic events in subduction systems. Elements 11, 99–104 (2015).Article 

    Google Scholar 
    Milan, L. A., Daczko, N. R. & Clarke, G. L. Cordillera Zealandia: a Mesozoic arc flare-up on the palaeo-Pacific Gondwana Margin. Sci. Rep. 7, 261 (2017).Article 

    Google Scholar 
    Gravley, D. M., Deering, C. D., Leonard, G. S. & Rowland, J. V. Ignimbrite flare-ups and their drivers: a New Zealand perspective. Earth Sci. Rev. 162, 65–82 (2016).Article 

    Google Scholar 
    de Silva, S. L., Riggs, N. R. & Barth, A. P. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11, 113–118 (2015).Article 

    Google Scholar 
    Attia, S., Cottle, J. M. & Paterson, S. R. Erupted zircon record of continental crust formation during mantle driven arc flare-ups. Geology 48, 446–451 (2020).Article 

    Google Scholar 
    Chisholm, E.-K. I., Simpson, C. & Blevin, P. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 (Geoscience Australia, 2014).McPhie, J. Evolution of a non-resurgent cauldron: the Late Permian Coombadjha volcanic complex, northeastern New South Wales, Australia. Geol. Mag. 123, 257–277 (1986).Article 

    Google Scholar 
    Lackie, M. The magnetic fabric of the Late Permian Dundee Ignimbrite, Dundee, NSW. Explor. Geophys. 19, 481–488 (1988).Article 

    Google Scholar 
    Stewart, A. Facies in an Upper Permian volcanic succession, Emmaville Volcanics, Deepwater, northeastern New South Wales. Aust. J. Earth Sci. 48, 929–942 (2001).Article 

    Google Scholar 
    Milan, L. A. et al. A new reconstruction for Permian East Gondwana based on zircon data from ophiolite of the East Australian Great Serpentinite Belt. Geophys. Res. Lett. 48, e2020GL090293 (2021).Article 

    Google Scholar 
    Rosenbaum, G. The Tasmanides: Phanerozoic tectonic evolution of eastern Australia. Annu. Rev. Earth Planet. Sci. 46, 291–325 (2018).Article 

    Google Scholar 
    Shaw, S., Flood, R. & Pearson, N. The New England Batholith of eastern Australia: evidence of silicic magma mixing from zircon 176Hf/177Hf ratios. Lithos 126, 115–126 (2011).Article 

    Google Scholar 
    Kohn, B. et al. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes. Aust. J. Earth Sci. 49, 697–717 (2002).Article 

    Google Scholar 
    Metcalfe, I., Crowley, J., Nicoll, R. & Schmitz, M. High-precision U–Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).Article 

    Google Scholar 
    Laurie, J. et al. Calibrating the Middle and Late Permian palynostratigraphy of Australia to the geologic time-scale via U–Pb zircon CA-IDTIMS dating. Aust. J. Earth Sci. 63, 701–730 (2016).Article 

    Google Scholar 
    Creech, M. Tuffaceous deposition in the Newcastle Coal Measures: challenging existing concepts of peat formation in the Sydney Basin, New South Wales, Australia. Int. J. Coal Geol. 51, 185–214 (2002).Article 

    Google Scholar 
    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).Article 

    Google Scholar 
    Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology, 49, 1089–1095 (2021).Grevenitz, P., Carr, P. & Hutton, A. Origin, alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney Basin, Australia. Int. J. Coal Geol. 55, 27–46 (2003).Article 

    Google Scholar 
    Phillips, L. et al. U–Pb geochronology and palynology from Lopingian (Upper Permian) coal measure strata of the Galilee Basin, Queensland, Australia. Aust. J. Earth Sci. 65, 153–173 (2018).Article 

    Google Scholar 
    Siégel, C., Bryan, S., Allen, C., Gust, D. & Purdy, D. Crustal evolution in the New England Orogen, Australia: repeated igneous activity and scale of magmatism govern the composition and isotopic character of the continental crust. J. Petrol., 61, 1–28 (2020).Wang, X. et al. Convergent continental margin volcanic source for ash beds at the Permian–Triassic boundary, South China: constraints from trace elements and Hf-isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 154–165 (2019).Article 

    Google Scholar 
    Nelson, D. & Cottle, J. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere 11, 386–398 (2019).Article 

    Google Scholar 
    He, B., Zhong, Y.-T., Xu, Y.-G. & Li, X.-H. Triggers of Permo-Triassic boundary mass extinction in South China: the Siberian Traps or Paleo-Tethys ignimbrite flare-up? Lithos 204, 258–267 (2014).Article 

    Google Scholar 
    Cope, T. Phanerozoic magmatic tempos of North China. Earth Planet. Sci. Lett. 468, 1–10 (2017).Article 

    Google Scholar 
    Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).Article 

    Google Scholar 
    Jin, Y. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289, 432–436 (2000).Article 

    Google Scholar 
    Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).Article 

    Google Scholar 
    Ramezani, J. & Bowring, S. A. Advances in numerical calibration of the Permian timescale based on radioisotopic geochronology. Geol. Soc. Spec. Publ. 450, 51–60 (2018).Article 

    Google Scholar 
    Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).Article 

    Google Scholar 
    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).Article 

    Google Scholar 
    Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. R. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763 (2004).Article 

    Google Scholar 
    Chen, B. et al. Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited. Gondwana Res. 24, 77–89 (2013).Article 

    Google Scholar 
    Shen, S. Z. et al. High‐resolution Lopingian (Late Permian) timescale of South China. Geol. J. 45, 122–134 (2010).Article 

    Google Scholar 
    Shellnutt, J. G., Denyszyn, S. W. & Mundil, R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 22, 118–126 (2012).Article 

    Google Scholar 
    Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).Article 

    Google Scholar 
    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 1–12 (2019).Article 

    Google Scholar 
    Liu, Z. et al. Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval. Chem. Geol. 529, 119313 (2019).Article 

    Google Scholar 
    Cheng, C. et al. Permian carbon isotope and clay mineral records from the Xikou section, Zhen’an, Shaanxi Province, central China: climatological implications for the easternmost Paleo-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 407–422 (2019).Article 

    Google Scholar 
    Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1–8 (2020).Article 

    Google Scholar 
    Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).Article 

    Google Scholar 
    Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).Article 

    Google Scholar 
    Yugan, J., Jing, Z. & Qinghua, S. Two Phases of the End-Permian Mass Extinction. In Pangea: Global Environments and Resources — Memoir, 17, 813-822 (1994).Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney Basin, Australia. Gondwana Res. 51, 149–169 (2017).Article 

    Google Scholar 
    van der Boon, A. et al. Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up. Clim. Past 17, 229–239 (2021).Article 

    Google Scholar 
    Metcalfe, I. Tectonic evolution of Sundaland. Bull. Geol. Soc. Malays. 63, 27–60 (2017).Article 

    Google Scholar 
    Maravelis, A. G. et al. Re-assessing the Upper Permian stratigraphic succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences 10, 474 (2020).Article 

    Google Scholar 
    Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109–126 (2011).Article 

    Google Scholar 
    Watson, E. B., Wark, D. A. & Thomas, J. B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433 (2006).Article 

    Google Scholar 
    Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).Article 

    Google Scholar 
    Wiedenbeck, M. et al. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (1995).Article 

    Google Scholar 
    Mattinson, J. M. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).Article 

    Google Scholar 
    Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta 37, 485–494 (1973).Article 

    Google Scholar 
    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).Article 

    Google Scholar 
    Schmitz, M. D. & Schoene, B. Derivation of isotope ratios, errors, and error correlations for U–Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem. Geophys. Geosyst. 8, https://doi.org/10.1029/2006gc001492 (2007).Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME tracer calibration part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).Article 

    Google Scholar 
    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).Article 

    Google Scholar 
    Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).Article 

    Google Scholar 
    Crowley, J. L., Schoene, B. & Bowring, S. A. U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35, 1123–1126 (2007).Article 

    Google Scholar 
    Ludwig, K. R. User’s manual for Isoplot 3.00 (Berkley Geochronology Center, 2003).Offenburg, A. C. & Pogson, D. J. Geological Map of New England 1:500,000 (Geological Survey of New South Wales, 1973).Cranfield, L. C., Hutton, L. J. & Green, P. M. Geological Map of Ipswich 1:100,000 (Geological Survey of Queensland, 1978).Shaw, S. E. & Flood, R. H. The New England Batholith, eastern Australia: geochemical variations in time and space. J. Geophys. Res. Solid Earth 86, 10530–10544 (1981).Article 

    Google Scholar 
    Barnes, R. G., Brown, R. E., Brownlow, J. W. & Stroud, W. J. Late Permian volcanics in New England. Q. Notes Geol. Surv. N. South Wales 84, 1–36 (1991).
    Google Scholar 
    Finlayson, D. M. & Collins, C. D. N. Lithospheric velocity structures under the southern New England Orogen: evidence for underplating at the Tasman Sea margin. Aust. J. Earth Sci. 40, 141–153 (1993).Article 

    Google Scholar 
    Timothy, C., Geoffrey, L. C., Nathan, R. D., Sandra, P. & Adrianna, R. Orthopyroxene–omphacite- and garnet–omphacite-bearing magmatic assemblages, Breaksea Orthogneiss, New Zealand: oxidation state controlled by high-P oxide fractionation. Lithos 216–217, 1–16 (2015).
    Google Scholar 
    Chapman, T., Clarke, G. L. & Daczko, N. R. Crustal differentiation in a thickened arc—evaluating depth dependences. J. Petrol. 57, 595–620 (2016).Article 

    Google Scholar 
    Jagoutz, O. & Behn, M. D. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).Article 

    Google Scholar 
    Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American Cordillera. Geology 43, 919–922 (2015).Article 

    Google Scholar 
    Bryant, C. J. A Compendium of Granites of the Southern New England Orogen, Eastern Australia (Geological Survey of New South Wales, 2017).Phillips, G., Landenberger, B. & Belousova, E. A. Building the New England Batholith, eastern Australia—linking granite petrogenesis with geodynamic setting using Hf isotopes in zircon. Lithos 122, 1–12 (2011).Article 

    Google Scholar 
    Kemp, A., Hawkesworth, C., Collins, W., Gray, C. & Blevin, P. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–466 (2009).Article 

    Google Scholar 
    Anderson, J. R., Fraser, G. L., McLennan, S. M. & Lewis, C. J. A U–Pb Geochronology Compilation for Northern Australia Report No. 2017/22 (Geoscience Australia, 2017).Belousova, E. A., Griffin, W. L. & O’Reilly, S. Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J. Petrol. 47, 329–353 (2005).Article 

    Google Scholar 
    Bodorkos, S. et al. U–Pb Ages from the Central Lachlan Orogen and New England Orogen, New South Wales Report No. 2016/21 (Geoscience Australia, 2016).Cawood, P. A., Pisarevsky, S. A. & Leitch, E. C. Unraveling the New England orocline, east Gondwana accretionary margin. Tectonics 30, 1–15 (2011).Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2012–June 2014 Report No. 2014/13 (Geoscience Australia, 2014).Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 Report No. 2014/13 (Geoscience Australia, 2014).Cross, A. & Blevin, P. L. Summary of Results for the Joint GSNSW–GA Geochronology Project Report No. GS2013/0426 (Geoscience Australia, 2013).Craven, S. J., Daczko, N. R. & Halpin, J. A. Thermal gradient and timing of high-T–low-P metamorphism in the Wongwibinda Metamorphic Complex, southern New England Orogen, Australia. J. Metamorph. Geol. 30, 3–20 (2012).Article 

    Google Scholar 
    Black, L. P. U–Pb Zircon Ages Obtained During 2006/07 for NSW Geological Survey Projects (Geoscience Australia, 2007).Rosenbaum, G., Li, P. & Rubatto, D. The contorted New England Orogen (eastern Australia): new evidence from U–Pb geochronology of early Permian granitoids. Tectonics 31, https://doi.org/10.1029/2011tc002960 (2012).Walthenberg, K., Blevin, P. L., Bull, K. F., Cronin, D. E. & Armistead, S. E. New SHRIMP U–Pb Zircon Ages from the Lachland Orogen and the New England Orogen, New South Wales: Mineral Systems Projects, July 2015–June 2016 Report No. 2016/28 (Geoscience Australia, 2016).Walthenberg, K., Blevin, P. L., Bodorkos, S. & Cronin, D. E. New SHRIMP U–Pb Ages from the New England Orogen, New South Wales: July 2014–June 2015 Report No. 2015/28 (Geoscience Australia, 2015).Jeon, H., Williams, I. S. & Chappell, B. W. Magma to mud to magma: rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet. Sci. Lett. 319, 104–117 (2012).Article 

    Google Scholar  More

  • in

    Crabs retreat from heat

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Phylotype diversity within soil fungal functional groups drives ecosystem stability

    Singh, B. K., Bardgett, R. D., Smith, P. & Reay, D. S. Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–790 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fanin, N. et al. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nat. Ecol. Evol. 2, 269–278 (2018).PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed 
    Article 

    Google Scholar 
    Chen, W. et al. Fertility-related interplay between fungal guilds underlies plant richness-productivity relationships in natural grasslands. New Phytol. 226, 1129–1143 (2020).PubMed 
    Article 

    Google Scholar 
    Semchenko, M. et al. Fungal diversity regulates plant–soil feedbacks in temperate grassland. Sci. Adv. 4, eaau4578 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohli, M. et al. Stability of grassland production is robust to changes in the consumer food web. Ecol. Lett. 22, 707–716 (2019).PubMed 
    Article 

    Google Scholar 
    Liang, M. et al. Soil microbes drive phylogenetic diversity–productivity relationships in a subtropical forest. Sci. Adv. 5, eaax5088 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Knops, J. M. H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441, 629–632 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, G. W., Wagg, C., Veresoglou, S. D., Hempel, S. & Rillig, M. C. How soil biota drive ecosystem stability. Trends Plant Sci. 23, 1057–1067 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pörtner, H.O. et al. Scientific outcome of the IPBES-IPCC co-sponsored workshop on biodiversity and climate change (IPBES, 2021).Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).PubMed 
    Article 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Anthony, M. A. et al. Forest tree growth is linked to mycorrhizal fungal composition and function across Europe. ISME J. https://doi.org/10.1038/s41396-021-01159-7 (2022).Jia, Y. Y., van der Heijden, M. G. A., Wagg, C., Feng, G. & Walder, F. Symbiotic soil fungi enhance resistance and resilience of an experimental grassland to drought and nitrogen deposition. J. Ecol. 109, 3171–3181 (2020).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 10, 550–554 (2020).Article 

    Google Scholar 
    Tedersoo, L., Bahram, M. & Zobel, M. How do mycorrhizal associations drive plant population and community biology? Science 367, eaba1223 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Change 8, 813–818 (2018).Article 

    Google Scholar 
    Põlme, S. et al. FungalTraits: a user-friendly traits database of fungi and fungus-like stramenopiles. Fungal Divers. 105, 1–16 (2020).Article 

    Google Scholar 
    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1078–1088 (2014).CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Isbell, F. et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagg, C. et al. Diversity and asynchrony in soil microbial communities stabilizes ecosystem functioning. Elife 10, 3207 (2021).Article 

    Google Scholar 
    Yang, G. W., Wagg, C., Veresoglou, S. D., Hempel, S. & Rillig, M. C. Plant and soil biodiversity have non-substitutable stabilizing effects on biomass production. Ecol. Lett. 24, 1582–1593 (2021).PubMed 
    Article 

    Google Scholar 
    Chen, L. T. et al. Above- and belowground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Glob. Ecol. Biogeogr. https://doi.org/10.1111/geb.13307 (2021).Garcia-Palacios, P., Gross, N., Gaitan, J. & Maestre, F. T. Climate mediates the biodiversity-ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Valencia, E. et al. Synchrony matters more than species richness in plant community stability at a global scale. Proc. Natl Acad. Sci. USA 117, 24345–24351 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Craven, D. et al. Multiple facets of biodiversity drive the diversity-stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).PubMed 
    Article 

    Google Scholar 
    Naeem, S. & Li, S. B. Biodiversity enhances ecosystem reliability. Nature 390, 507–509 (1997).CAS 
    Article 

    Google Scholar 
    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jousset, A., Schmid, B., Scheu, S. & Eisenhauer, N. Genotypic richness and dissimilarity opposingly affect ecosystem performance. Ecol. Lett. 14, 537–624 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, L., Pu, Z. & Nemergut, D. R. On the importance of the negative selection effect for the relationship between biodiversity and ecosystem functioning. Oikos 117, 488–493 (2008).Article 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evol. 4, 376–383 (2020).PubMed 
    Article 

    Google Scholar 
    Lekberg, Y. et al. Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils. Nat. Commun. 12, 3484 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bastida, F. et al. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 2081–2091 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paruelo, J., Epstein, H. E., Lauenroth, W. K. & Burke, I. C. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78, 953–958 (1997).Article 

    Google Scholar 
    Jobbágy, E. G., Sala, O. E. & Paruelo, J. M. Patterns and controls of primary production in the Patagonian steppe: a remote sensing approach. Ecology 83, 307–319 (2002).
    Google Scholar 
    Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl Acad. Sci. USA 114, 10160–10165 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bastos, A., Running, S. W., Gouveia, C. & Trigo, R. M. The global NPP dependence on ENSO: La Niña and the extraordinary year of 2011. J. Geophys. Res. Biogeosci. 118, 1247–1255 (2013).Article 

    Google Scholar 
    Orwin, K. H. & Wardle, D. A. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36, 1907–1912 (2004).CAS 
    Article 

    Google Scholar 
    Frankenberg, C. et al. Prospects for chlorophyll fluorescence remote sensing from the Orbiting Carbon Observatory-2. Remote Sens. Environ. 147, 1–12 (2014).Article 

    Google Scholar 
    Sun, Y. et al. Overview of solar-induced chlorophyll fluorescence (SIF) from the Orbiting Carbon Observatory-2: retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sens. Environ. 209, 808–823 (2018).Article 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).CAS 
    Article 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    Beguería, S. et al. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luo, H. et al. Contrasting responses of planted and natural forests to drought intensity in Yunnan, China. Remote Sens. 8, 635 (2016).Article 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    Allen, R. G. et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements (FAO, 1998); https://www.fao.org/3/x0490e/x0490e00.htmOksanen, J. et al. Vegan: Community Ecology Package (R Foundation for Statistical Computing, 2013).Legendre, P. et al. Studying beta diversity: ecological variation partitioning by multiple regression and canonical analysis. J. Plant Ecol. 1, 3–8 (2008).Article 

    Google Scholar 
    Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    Lefcheck., J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579.Bates, D. et al. lme4: linear mixed-effects models using Eigen and S4. J. Stat. Soft. 67, 1–48 (2014).
    Google Scholar  More

  • in

    Individualism versus collective movement during travel

    Study siteSocial hermit crabs (Coenobita compressus) were studied in Osa Peninsula, Costa Rica, at a long-term field site (Osa Conservation’s Piro Biological Station), where the population has been under study since 200817. Experiments were carried out from January to March 2019 at the beach-forest interface (Fig. 1A), an area where ‘fission–fusion’ social groupings30 continuously form and dissolve31 and where free-roaming individuals regularly travel17. All studies were undertaken during daylight hours (06:30–11:30 h) during periods of peak social activity.Figure 1Study site and experimental areas. (A) Satellite view of study site: a section of Piro beach, Osa Peninsula, Costa Rica. Dashed red squares indicate areas where experiments were carried out and schematic versions are shown below in (B) and (C) (Satellite image: created using Google Earth Version 9, https://earth.google.com/). (B) Overhead view of the section of the beach where free-roam experiments were carried out. Arrows denoting left and right correspond to stimulus directions during free-roam experiments. (C) Overhead view of the beach-forest interface where the handled experiments were carried out. Arrows denoting left, right, forest, and ocean correspond to stimulus directions during handled experiments. The solid red box represents the platform on which the artificial beach was created. For (B) and (C), environment is color coded: blue = ocean, yellow = beach sand, dark green = rainforest, light green = open grassy area with sparse trees. Compass in the bottom left of each panel shows cardinal directions.Full size imageWe conducted two separate sets of experiments, both involving a similar stimulus design (below). First, to determine whether free-roaming individuals were biased in their movement decisions by a collective, we performed a set of free-roam experiments (see “Experiment 1: Free-roam”). The free-roam experiments were conducted directly on the beach (Fig. 1B; 8° 23′ 39.5″ N, 83° 20′ 10.2″ W). Second, to determine whether an increase in danger influenced the relative independence versus social bias in individual movement, we performed a set of handled experiments (see “Experiment 2: Handled”). The handled experiments were conducted on a platform (Fig. 1C; 8° 23′ 33.2″ N, 83° 19′ 50.6″ W), which was immediately adjacent to the beach and situated within the range of the crabs’ normal daily movements. All reported compass bearings are relative to magnetic North (0°) unless otherwise specified.Stimulus designAs conspecific ‘stand-ins’, we used N = 60 Nerita scabricosta shells (C. compressus’ preferred shell species23), spanning a natural range of sizes (9–32 mm) within this population (Table S1; Fig. S1). To create a group of these stand-ins that we could manoeuvre as a collective, each shell was affixed using epoxy to one of four strands of clear fishing line, which were each 4 m long. These lines were spaced approximately 30 cm apart on a long wooden dowel (Figs. 2A,B, 3A,B). An equal number of shells (N = 15 shells per line) were distributed randomly along the 2 m of each fishing line furthest from the dowel. To allow the experimenter to manoeuvre the stimuli, without disturbing live crabs’ behaviour, another fishing line (4 m in length) was attached to the top of the dowel. With this line, the entire apparatus could be pulled by the experimenter from a distance, thereby simulating synchronised movement of the entire collective. To control for any influence the apparatus might have on focal individuals (other than that produced by the movement of the shell ‘stand-ins’), the entire apparatus—dowels and fishing lines—was replicated, just without any attached shells, for use as a control (Figs. 2C, 3C).Figure 2Free-roam experiments: stimuli and experimental design. (A) Photograph of a free-roam experiment in progress, with a drone hovering above and one of the authors (CD) pulling the simulated collective (Photo: Jakob Krieger). Schematics of stimuli are shown in B and C, with N = 3 free-roaming crabs also pictured. (B) Experimental stimuli: consisting of N = 60 shells arranged in four lines of fifteen shells each, attached to clear fishing line and fixed to a wooden dowel. (C) Control stimuli: four empty lines of clear fishing line, fixed to a wooden dowel. An experimenter moved the stimuli from a distance, by pulling another clear fishing line along an open strip of sandy beach in the presence of free roaming crabs. Each experiment was video recorded from above by an overhead drone.Full size imageFigure 3Handled experiments: stimuli and experimental design. (A) Photograph of the artificial beach created on a platform adjacent to the natural beach (Photo: Mark Laidre). Photo shows experimental stimulus and an opaque plastic cup in the center, under which a focal crab was placed prior to the start of each experiment. Schematics of stimuli are shown in (B) and (C). (B) Experimental stimuli: consisting of 60 shells arranged in four lines of fifteen, attached to clear fishing line and fixed to a wooden dowel. (C) Control stimuli: four empty lines of clear fishing line, fixed to a wooden dowel. The cup was removed by one experimenter from a distance via an attached clear fishing line on a pulley system; the stimulus was then maneuvered by a second experimenter, also from a distance, via another clear fishing line.Full size imageExperiment 1: Free-roamTo test whether the movement of the collective influenced free-roaming individuals’ travel direction, the stimuli were pulled across the beach at a uniform speed (1 m per min), within the natural range of the walking speed of social hermit crabs17,22,23. Each trial lasted 1 min. A total of N = 80 free-roam trials were conducted, N = 40 experimental (with the full collective, represented by all the shells) and N = 40 controls (with only the raw materials, but no shell collective). For each of the N = 80 trials, the movement of a single free-roaming focal individual was recorded.It is not uncommon to see multiple crabs moving parallel to (or perpendicular to) the shore, since many individuals will often be collectively attracted to eviction sites, injured conspecifics, or food items, with all the attracted individuals travelling in a roughly parallel formation16,17. For each trial in the free-roam experiments, the stimuli were pulled parallel to the shore (Fig. 1B), either to the right (116.1°) or to the left (296.1°). We did not pull the stimuli perpendicular to the shore, given the substantial slope from the forest down to the ocean, which would have confounded any such comparisons. Condition (experimental or control) and stimulus direction (right or left) were selected randomly, with balanced sample sizes (N = 20 for each). To ensure there was a free-roaming focal individual, whose movement we could measure in response to the stimulus, a trial was only carried out when at least one live crab was walking within approximately 30 cm of the stationary stimulus. Then pulling was initiated.To avoid disturbing live individuals by moving through or near the vicinity, we gathered overhead video footage of all experiments using a drone (Phantom advanced model GL300C). Drone video recorded all interactions between the focal individual and the simulated collective while the drone hovered at a height of approximately 2 m above the beach. At this height, there was no disturbance to natural behaviour or movement of the crabs, and the drone remained positioned overhead for at least 1 min prior to the start of a trial. Minor adjustments to position were then made between trials due to drone drift (i.e., slight movement of the drone due to wind).To randomly select focal individuals for video coding, we first split an image of the starting frame of each video file into a 4 × 4 matrix, with N = 16 equally-sized sections, and then used a random number generator to choose one section (repeating this step if no crabs were present in the selected section). Second, we numbered all individuals in the selected section and again used a random number generator to select the individual.To calculate bearings relative to magnetic North for the direction each focal crab moved, we first measured the angle of divergence (°) between the stimulus trajectory and the focal crabs’ trajectory. Focal crab trajectory—a proxy for the overall direction of the crab’s movement—was measured by drawing a straight line from the start-to-end position of that individual (see Fig. S2 and Vid. S1 for further explanation). Stimulus trajectory was measured in the same manner, using the shell closest to the focal at the beginning of the trial. Using Google Maps and the IGIS Map bearing angle calculator, we calculated the bearing of our stimuli (right and left) relative to true North (right: 114°, left: 294°). To determine bearings for our stimuli relative to magnetic North, we then used the Enhanced Magnetic Model (EMM) magnetic field calculator, provided by NOAA, to calculate the relevant declination (− 2.1°) for our coordinates on the dates the experiments were carried out, subtracting this value from true North. Thus, for the free-roam experiments, the bearing of a stimulus moving to the right, relative to magnetic North, was 116.1°, and the bearing of a stimulus moving to the left, relative to magnetic North, was 296.1°. Lastly, bearings for focal crabs’ directions, relative to magnetic North, could then be calculated using the new bearings of the stimuli and the angle of divergence between stimulus and crab trajectories.To gauge the level of interaction that focal individuals had with the collective, we recorded whether or not individuals initiated contact with shells in the experimental condition. An individual was classed as having initiated contact if it climbed onto a shell or touched a shell with its claws (Vid. S2). Additionally, we noted whether individuals were bumped by passing shells. An individual was classed as having been bumped if a moving shell hit it while the individual was withdrawn, stationary, or facing away from the moving shell (Vid. S3).To assess whether drone drift during experiments was a problem, we examined a random sample (N = 20) of the videos, both control (N = 10) and experimental (N = 10). We took N = 40 images from these 20 videos (i.e., two images from each video: one at the start of the 1-min trial and one at the end of the 1-min trial) and used a system wherein we marked the same two distinguishable fixed points on the landscape in each pair of images. We then overlaid the images in each pair, allowing us to see any longitudinal or latitudinal movement as well as any potential rotation of the drone. Nineteen of the N = 20 pairs of images showed virtually identical overlap of the markers, with just one image showing a minor gap between 1 of the 2 landmarks, suggesting slight rotation of the drone. We were therefore confident that drone drift was not an issue in our analyses.All videos were coded by CD. To measure inter-observer reliability for the angle of divergence (°) between stimulus trajectory and focal crabs’ trajectory (see Fig. S2), a random sample of videos (N = 41 total, N = 22 of experimental and N = 19 of control) were also coded by a second observer (MP) who was naïve to the competing hypotheses. There was strong inter-observer reliability in the measurements (F1,39 = 142.8, p  More

  • in

    Elemental analyses reveal distinct mineralization patterns in radular teeth of various molluscan taxa

    Runham, N. A study of the replacement mechanism of the pulmonate radula. J. Cell Sci. 3(66), 271–277 (1963).Article 

    Google Scholar 
    Runham, N. & Isarankura, K. Studies on radula replacement. Malacologia 5, 73 (1966).
    Google Scholar 
    Mackenstedt, U. & Märkel, K. Radular structure and function. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 213–236 (CABI Publishing, Oxon, United Kingdom, 2001).Chapter 

    Google Scholar 
    Crampton, D. M. Functional anatomy of the buccal apparatus of Onchidoris bilamellata (Mollusca: Opisthobranchia). Trans. Zool. Soc. Lond. 34(1), 45–86 (1977).Article 

    Google Scholar 
    Steneck, R. S. & Watling, L. Feeding capabilities and limitation of herbivorous molluscs: A functional group approach. Mar. Biol. 68(3), 299–319 (1982).Article 

    Google Scholar 
    Jensen, K. R. Evolution of the sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants. Evol. Ecol. 11, 301–335 (1997).Article 

    Google Scholar 
    Nishi, M. & Kohn, A. J. Radular teeth of Indo-Pacific molluscivorous species of Conus: A comparative analysis. J. Molluscan Stud. 65(4), 483–497 (1999).Article 

    Google Scholar 
    Duda, T. F., Kohn, A. J. & Palumbi, S. R. Origins of diverse feeding ecologies within Conus, a genus of venomous marine gastropods. Biol. J. Linn. Soc. Lond. 73, 391–409 (2001).Article 

    Google Scholar 
    von Rintelen, T., Wilson, A. B., Meyer, A. & Glaubrecht, M. Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proc. R. Soc. B 271, 2541–2549 (2004).Article 

    Google Scholar 
    Ekimova, I. et al. Diet-driven ecological radiation and allopatric speciation result in high species diversity in a temperate-cold water marine genus Dendronotus (Gastropoda: Nudibranchia). Mol. Phylogenet. Evol. 141, 106609 (2019).PubMed 
    Article 

    Google Scholar 
    Mikhlina, A., Ekimova, I. & Vortsepneva, E. Functional morphology and post-larval development of the buccal complex in Eubranchus rupium (Nudibranchia: Aeolidia: Fionidae). Zoology 143, 125850 (2020).PubMed 
    Article 

    Google Scholar 
    Krings, W. Trophic specialization of paludomid gastropods from ‘ancient’ Lake Tanganyika reflected by radular tooth morphologies and material properties, Thesis, Universität Hamburg (2020).Krings, W., Brütt, J.-O., Gorb, S. N. & Glaubrecht, M. Tightening it up: Diversity of the chitin anchorage of radular-teeth in paludomid freshwater-gastropods. Malacologia 63(1), 77–94 (2020).Article 

    Google Scholar 
    Bleakney, J. S. Indirect evidence of a morphological response in the radula of Placida dendritica (Alder & Hancock, 1843) (Opisthobranchia: Ascoglossa/ Sacoglossa) to different algae prey. Veliger 33(1), 111–115 (1990).
    Google Scholar 
    Jensen, K. R. Morphological adaptations and plasticity of radular teeth of the Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biol. J. Linn. Soc. Lond. 48, 135–155 (1993).Article 

    Google Scholar 
    Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littorina species (Gastropoda: Littorinidae). J. Molluscan Stud. 65, 355–370 (1999).Article 

    Google Scholar 
    Padilla, D. K., Dilger, E. K. & Dittmann, D. E. Phenotypic plasticity of feeding structures in species of Littorina. Am. Zool. 40, 1161 (2000).
    Google Scholar 
    Ito, A., Ilano, A. S., Goshima, S. & Nakao, S. Seasonal and tidal height variations in body weight and radular length in Nodilittorina radiata (Eydoux and Souleyet, 1852). J. Molluscan Stud. 68, 197–203 (2002).Article 

    Google Scholar 
    Padilla, D. K. Form and function of radular teeth of herbivorous molluscs: Focus on the future. Am. Malacol. Bull. 18(1/2), 163–168 (2003).
    Google Scholar 
    Krings, W. & Gorb, S. N. Substrate roughness induced wear pattern in gastropod radulae. Biotribology 26, 100164 (2021).Article 

    Google Scholar 
    Krings, W., Hempel, C., Siemers, L., Neiber, M. T. & Gorb, S. N. Feeding experiments on Vittina turrita (Mollusca, Gastropoda, Neritidae) reveal tooth contact areas and bent radular shape during foraging. Sci. Rep. 11, 9556 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lu, D. & Barber, A. H. Optimized nanoscale composite behaviour in limpet teeth. J. R. Soc. Interface 9(71), 1318–1324 (2012).PubMed 
    Article 

    Google Scholar 
    Grunenfelder, L. K. et al. Biomineralization: Stress and damage mitigation from oriented nanostructures within the radular teeth of Cryptochiton stelleri. Adv. Funct. Mater. 24(39), 6093–6104 (2014).CAS 
    Article 

    Google Scholar 
    Barber, A. H., Lu, D. & Pugno, N. M. Extreme strength observed in limpet teeth. J. R. Soc. Interface 12(105), 20141326 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Herrera, S. A., Grunenfelder, L., Escobar, E., Wang, Q., Salinas, C., Yaraghi, N., Geiger, J., Wuhrer, R., Zavattieri, P. & Kisailus, D. Stylus support structure and function of radular teeth. In Cryptochiton Stelleri, 20th International Conference on Composite Materials Copenhagen, 19–24th July, 2015.Ukmar-Godec, T. et al. Materials nanoarchitecturing via cation-mediated protein assembly: Making limpet teeth without mineral. Adv. Mater. 29(27), 1701171 (2017).Article 
    CAS 

    Google Scholar 
    Pohl, A. et al. Radular stylus of Cryptochiton stelleri: A multifunctional lightweight and flexible fiber-reinforced composite. J. Mech. Behav. Biomed. Mater. 111, 103991 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stegbauer, L. et al. Persistent polyamorphism in the chiton tooth: From a new biomineral to inks for additive manufacturing. PNAS 118(23), e2020160118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Weaver, J. C. et al. Analysis of an ultra hard magnetic biomineral in chiton radular teeth. Mater. Today 13(1–2), 42–52 (2010).CAS 
    Article 

    Google Scholar 
    Wang, Q. et al. Phase transformations and structural developments in the radular teeth of Cryptochiton stelleri. Adv. Fun. Mater. 23, 2908–2917 (2013).CAS 
    Article 

    Google Scholar 
    Ukmar-Godec, T. Mineralization of goethite in limpet radular teeth. In Iron Oxides: From Nature to Applications (eds Faivre, D. & Frankel, R. B.) 207–224 (Wiley-VCH, Weinheim, 2016).Chapter 

    Google Scholar 
    Krings, W., Brütt, J.-O. & Gorb, S. N. Ontogeny of the elemental composition and the biomechanics of radular teeth in the chiton Lepidochitona cinerea. Under review at Frontiers in Zoology (2022).Brooker, L. R. & Shaw, J. A. The chiton radula: A unique model for biomineralization studies. In Advanced Topics in Biomineralization (ed. Seto, J.) 65–84 (Intech Open, Rijeka, Croatia, 2012).
    Google Scholar 
    Joester, D. & Brooker, L. R. The chiton radula: A model system for versatile use of iron oxides. In Iron Oxides: From Nature to Applications (ed. Seto, J.) 177–205 (Wiley-VCH, Weinheim, 2016).Chapter 

    Google Scholar 
    Kisailus, D. & Nemoto, M. Structural and proteomic analyses of iron oxide biomineralization in chiton teeth. In Biological Magnetic Materials and Applications (eds Matsunaga, T. et al.) 53–73 (Springer, Singapore, 2018).Chapter 

    Google Scholar 
    Moura, H. M. & Unterlass, M. M. Biogenic metal oxides. Biomimetics 5(2), 29 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A., Glaubrecht, M. & Gorb, S. N. Differences in the Young modulus and hardness reflect different functions of teeth within the taenioglossan radula of gastropods. Zoology 137, 125713 (2019).PubMed 
    Article 

    Google Scholar 
    Krings, W., Neiber, M. T., Kovalev, A., Gorb, S. N. & Glaubrecht, M. Trophic specialisation reflected by radular tooth material properties in an ‘ancient’ Lake Tanganyikan gastropod species flock. BMC Ecol. Evol. 21, 35 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Marcé-Nogué, J. & Gorb, S. N. Finite element analysis relating shape, material properties, and dimensions of taenioglossan radular teeth with trophic specialisations in Paludomidae (Gastropoda). Sci. Rep. 11, 22775 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gorb, S. N. & Krings, W. Mechanical property gradients of taenioglossan radular teeth are associated with specific function and ecological niche in Paludomidae (Gastropoda: Mollusca). Acta Biomater. 134, 513–530 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Troschel, F. H. Das Gebiss Der Schnecken Zur Begründung Einer Natürlichen Classification (Nicolaische Verlagsbuchhandlung, Berlin, Germany, 1863).
    Google Scholar 
    Sollas, I. B. The molluscan radula: Its chemical composition, and some points in its development. Q. J. Microsc. Sci. 51, 115–136 (1907).
    Google Scholar 
    Jones, E., McCance, R. & Shackleton, L. The role of iron and silica in the structure of the radular teeth of certain marine molluscs. J. Exp. Biol. 12(1), 59–64 (1935).CAS 
    Article 

    Google Scholar 
    Tillier, S. & Cuif, J.-P. L’animal-conodonte est-il un Mollusque Aplacophore. C. R. Acad. Sci. Sér. 2 Méc. Phys. Chim. Sci. Univ. Sci. Terre 303(7), 627–632 (1986).Cruz, R., Lins, U. & Farina, M. Minerals of the radular apparatus of Falcidens sp. (Caudofoveata) and the evolutionary implications for the phylum mollusca. Biol. Bull. 194(2), 224–230 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, I. F. Lepidochitona cinerea, identification and biology, 2020. https://doi.org/10.13140/RG.2.2.28288.58889.Smith, I. F. Acanthochitona fascicularis (Linnaeus, 1767), identification and biology, 2020. https://doi.org/10.13140/RG.2.2.10640.64005.Quetglas, A., de Mesa, A., Ordines, F. & Grau, A. Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean. Deep Res. Part I Oceanogr. Res. Pap. 57, 999–1008 (2010).ADS 
    Article 

    Google Scholar 
    Coelho, M., Domingues, P., Balguerias, E., Fernandez, M. & Andrade, J. P. A comparative study of the diet of Loligo vulgaris (Lamarck, 1799) (Mollusca: Cephalopoda) from the south coast of Portugal and the Saharan Bank (Central-East Atlantic). Fish. Res. 29(3), 245–255 (1997).Article 

    Google Scholar 
    Notman, G. M., McGill, R. A., Hawkins, S. J. & Burrows, M. T. Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK. Mar. Ecol. Prog. Ser. 549, 113–123 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Marchais, V. et al. New tool to elucidate the diet of the ormer Haliotis tuberculata (L.): Digital shell color analysis. Mar. Biol. 164, 71 (2017).Article 

    Google Scholar 
    Eichhorst, T. E. Neritidae of the World: Volume 1 and 2 (ConchBooks, 2016).Bourguignat, M. J. R. Notice Prodromique sur les Mollusques Terrestres et Fluviatiles (Savy, Paris, 1885).
    Google Scholar 
    Bourguignat, M. J. R. Iconographie Malacologiques des Animaux Mollusques Fluviatiles du Lac Tanganika (Corbeil, Crété, 1888).Book 

    Google Scholar 
    West, K., Michel, E., Todd, J., Brown, D. & Clabaugh, J. The gastropods of Lake Tanganyika: Diagnostic key, classification and notes on the fauna (Special publications: Societas Internationalis Limnologiae – Int. Assoc. of Theoretical and Applied Limnology, 2003)Glaubrecht, M. Adaptive radiation of thalassoid gastropods in Lake Tanganyika, East Africa: Morphology and systematization of a paludomid species flock in an ancient lake. Zoosyst. Evol. 84, 71–122 (2008).Article 

    Google Scholar 
    Moore, J. E. S. The Tanganyika Problem (Burst and Blackett, London, 1903).Book 

    Google Scholar 
    Leloup, E. Exploration Hydrobiologique du Lac Tanganika (1946–1947) (Bruxelles, 1953).Brown, D. Freshwater Snails of Africa and their Medical Importance (Taylor and Francis, London, 1994).Book 

    Google Scholar 
    Germain, L. Mollusques du Lac Tanganyika et de ses environs. Extrait des resultats secientifiques des voyages en Afrique d’Edouard Foa. Bull. Mus. Natl. Hist. Nat. 14, 1–612 (1908).
    Google Scholar 
    Coulter, G. W. Lake Tanganyika and its Life (Oxford University Press, Oxford, 1991).
    Google Scholar 
    Bandel, K. Evolutionary history of East African fresh water gastropods interpreted from the fauna of Lake Tanganyika and Lake Malawi. Zent. Geol. Paläontol. Teil I, 233–292 (1997).
    Google Scholar 
    Pilsbry, H. A. & Bequaert, J. The aquatic mollusks of the Begian Congo. With a geographical and ecological account of Congo malacology. Bull. Am. Mus. Nat. Hist. 53, 69–602 (1927).
    Google Scholar 
    Lok, A. F. S. L., Ang, W. F., Ng, P. X., Ng, B. Y. Q. & Tan, S. K. Status and distribution of Faunus ater (Linnaeus, 1758) (Mollusca: Cerithioidea) in Singapore. NiS 4, 115–121 (2011).
    Google Scholar 
    Das, R. R. et al. Limited distribution of devil snail Faunus ater (Linnaeus, 1758) in tropical mangrove habitats of India. IJMS 47(10), 2002–2007 (2018).
    Google Scholar 
    Watson, D. C. & Norton, T. A. Dietary preferences of the common periwinkle, Littorina littorea (L.). J. Exp. Mar. Biol. Ecol. 88, 193–211 (1985).Article 

    Google Scholar 
    Imrie, D. W., McCrohan, C. R. & Hawkins, S. J. Feeding behaviour in Littorina littorea: A study of the effects of ingestive conditioning and previous dietary history on food preference and rates of consumption. Hydrobiologia 193, 191–198 (1990).Article 

    Google Scholar 
    Olsson, M., Svärdh, L. & Toth, G. B. Feeding behaviour in Littorina littorea: The red seaweed Osmundea ramosissima may not prevent trematode infection. Mar. Ecol. Prog. Ser. 348, 221–228 (2007).ADS 
    Article 

    Google Scholar 
    Lauzon-Guay, J. S. & Scheibling, R. E. Food-dependent movement of periwinkles (Littorina littorea) associated with feeding fronts. J. Shellfish Res. 28, 581–587 (2009).Article 

    Google Scholar 
    Bogan, A. E. & Hanneman, E. H. A carnivorous aquatic gastropod in the pet trade in North America: The next threat to freshwater gastropods?. Ellipsaria 15, 18–19 (2013).
    Google Scholar 
    Strong, E. E., Galindo, L. A. & Kantor, Y. I. Quid est Clea helena? Evidence for a previously unrecognized radiation of assassin snails (Gastropoda: Buccinoidea: Nassariidae). PeerJ 11(5), e3638 (2017).Article 

    Google Scholar 
    Himmelman, J. H. & Hamel, J. R. Diet behaviour and reproduction of the whelk Buccinum undatum in the northern Gulf of St Lawrence, eastern Canada. Mar. Biol. 116, 423–430 (1993).Article 

    Google Scholar 
    Barnes, H. & Powell, H. T. Onchidoris fusca (Müller); A predator of barnacles. J. Anim. Ecol. 23(2), 361–363 (1954).Article 

    Google Scholar 
    Waters, V. L. Food-preference of the nudibranch Aeolidia papillosa, and the effect of the defenses of the prey on predation. Veliger 15(3), 174–192 (1973).
    Google Scholar 
    Edmunds, M., Potts, G., Swinfen, R. & Waters, V. The feeding preferences of Aeolidia papillosa (L.) (Mollusca, Nudibranchia). J. Mar. Biol. Assoc. U. K. 54(4), 939–947 (1974).Article 

    Google Scholar 
    Edmunds, M. Advantages of food specificity in Aeolidia papillosa. J. Molluscan Stud. 49(1), 80–81 (1983).Article 

    Google Scholar 
    Sørensen, C. G., Rauch, C., Pola, M. & Malaquias, M. A. E. Integrative taxonomy reveals a cryptic species of the nudibranch genus Polycera (Polyceridae) in European waters. J. Mar. Biol. Assoc. U. K. 100(5), 733–752 (2020).Article 
    CAS 

    Google Scholar 
    Forrest, J. E. On the feeding habits and the morphology and mode of functioning of the alimentary canal in some littoral dorid nudibranchiate. Mollusca. Proc. Linn. Soc. Lond. 164(2), 225–235 (1953).Article 

    Google Scholar 
    Rose, R. M. Functional morphology of the buccal mass of the nudibranch Archidoris pseudoargus. J. Zool. 165(3), 317–336 (1971).Article 

    Google Scholar 
    Faivre, D. & Ukmar-Godec, T. From bacteria to mollusks: The principles underlying the biomineralization of iron oxide materials. Angew. Chem. Int. Ed. Engl. 54(16), 4728–4747 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Towe, K. M. & Lowenstam, H. A. Ultrastructure and development of iron mineralization in the radular teeth of Cryptochiton stelleri (Mollusca). J. Ultrastruct. Res. 17(1–2), 1–13 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Distribution and composition of the matrix protein in the radula teeth of the chiton Acanthopleura hirtosa. Mar. Biol. 109, 281–286 (1991).CAS 
    Article 

    Google Scholar 
    Macey, D. J. & Brooker, L. R. The junction zone: Initial site of mineralization in radula teeth of the chiton Cryptoplax striata (Mollusca: Polyplacophora). J. Morphol. 230, 33–42 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, A. P. et al. In situ Raman spectroscopic studies of the teeth of the chiton Acanthopleura hirtosa. J. Biol. Inorg. Chem. 3, 614–619 (1998).CAS 
    Article 

    Google Scholar 
    Brooker, L. R. & Macey, D. J. Biomineralization in chiton teeth and its usefulness as a taxonomic character in the genus Acanthopleura Guilding, 1829 (Mollusca: Polyplacophora). Am. Malacol. Bull. 16(1/2), 203–215 (2001).
    Google Scholar 
    Lee, A. P., Brooker, L. R., Macey, D. J., Webb, J. & van Bronswijk, W. A new biomineral identified in the cores of teeth from the chiton Plaxiphora albida. J. Biol. Inorg. Chem. 8(3), 256–262 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, J. A. et al. The chiton stylus canal: An element delivery pathway for tooth cusp biomineralization. J. Morphol. 270(5), 588–600 (2009).PubMed 
    Article 

    Google Scholar 
    Gordon, L. & Joester, D. Nanoscale chemical tomography of buried organic-inorganic interfaces in the chiton tooth. Nature 469, 194–198 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Emmanuel, S., Schuessler, J. A., Vinther, J., Matthews, A. & von Blanckenburg, F. A preliminary study of iron isotope fractionation in marine invertebrates (chitons, Mollusca) in near-shore environments. Biogeosciences 11(19), 5493–5502 (2014).ADS 
    Article 

    Google Scholar 
    Shaw, J. A., Macey, D. J. & Brooker, L. R. Radula synthesis by three species of iron mineralizing molluscs: Production rate and elemental demand. J. Mar. Biol. Assoc. U. K. 88(3), 597–601 (2008).CAS 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J., van Bronswijk, W. & Webb, J. Multiple-front iron-mineralisation in chiton teeth (Acanthopleura echinata: Mollusca: Polyplacophora). Mar. Biol. 142, 447–454 (2003).CAS 
    Article 

    Google Scholar 
    Lee, A. P., Brooker, L. R., Macey, D. J., van Bronswijk, W. & Webb, J. Apatite mineralization in teeth of the chiton Acanthopleura echinata. Calcif. Tissue Int. 67, 408–415 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J., Webb, J. & van Bronswijk, W. In situ studies of biomineral deposition in the radula teeth of chitons of the suborder Chitonina. Venus 65(1–2), 71–80 (2006).
    Google Scholar 
    van der Wal, P. Structure and formation of the magnetite-bearing cap of the polyplacophoran tricuspid radula teeth. In Iron Biominerals (eds Frankel, R. B. & Blakemore, R. P.) 221–229 (Plenum Press, New York, 1990).
    Google Scholar 
    Saunders, M., Kong, C., Shaw, J. A. & Clode, P. L. Matrix-mediated biomineralization in marine mollusks: A combined transmission electron microscopy and focused ion beam approach. Microsc. Microanal. 17, 220–225 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowenstam, H. A. Phosphatic hard tissues of marine invertebrates, their nature and mechanical function, and some fossil implications. Chem. Geol. 9, 153–166 (1972).ADS 
    CAS 
    Article 

    Google Scholar 
    Macey, D. J., Webb, J. & Brooker, L. R. The structure and synthesis of biominerals in chiton teeth. Bull. Inst. Océanogr. (Monaco) 4(1), 191–197 (1994).
    Google Scholar 
    Lowenstam, H. A. & Weiner, S. Transformation of amorphous calcium phosphate to crystalline dahllite in the radula teeth of chitons. Science 227, 51–52 (1985).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lowenstam, H. A. & Weiner, S. Mollusca. In On biomineralization (eds Lowenstam, H. A. & Weiner, S.) 88–305 (Oxford University Press, Oxford, 1989).Chapter 

    Google Scholar 
    Evans, L. A. & Alvarez, R. Characterization of the calcium biomineral in the radular teeth of Chiton pelliserpentis. J. Biol. Inorg. Chem. 4(2), 166–170 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Calcium biomineralization in the radula teeth of the chiton, Acanthopleura hirtosa. Calcif. Tissue Int. 51, 78–82 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kim, K. S., Webb, J., Macey, D. J. & Cohen, D. D. Compositional changes during biomineralization of the radula of the chiton Clavarizona hirtosa. J. Inorg. Biochem. 28(2–3), 337–345 (1986).CAS 
    Article 

    Google Scholar 
    Runham, N. W. The histochemistry of the radula of Patella vulgata. Q. J. Microsc. Sci. 102(3), 371–380 (1961).
    Google Scholar 
    Runham, N. W., Thronton, P. R., Shaw, D. A. & Wayte, R. C. The mineralization and hardness of the radular teeth of the limpet Patella vulgate L. Z. Zellforsch. 99, 608–626 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grime, G. et al. Biological applications of the Oxford scanning proton microprobe. Trends Biochem. Sci. 10(1), 6–10 (1985).CAS 
    Article 

    Google Scholar 
    St Pierre, T. G. et al. Iron oxide biomineralization in the radula teeth of the limpet Patella vulgata; Mössbauer spectroscopy and high resolution transmission electron microscopy studies. Proc. R. Soc. B 228, 31–42 (1986).ADS 
    CAS 

    Google Scholar 
    Mann, S., Perry, C. C., Webb, J., Luke, B. & Williams, R. J. P. Structure, morphology, composition and organization of biogenic minerals in limpet teeth. Proc. R. Soc. B 227(1247), 179–190 (1986).ADS 
    CAS 

    Google Scholar 
    van der Wal, P. Structural and material design of mature mineralized radula teeth of Patella vulgata (Gastropoda). J. Ultrastruct. Mol. Struct. Res. 102(2), 147–161 (1989).Article 

    Google Scholar 
    Huang, C., Li, C.-W., Deng, M. & Chin, T. Magnetic properties of goethite in radulae of limpets. IEEE Trans. Magn. 28(5), 2409–2411 (1992).ADS 
    CAS 
    Article 

    Google Scholar 
    Rinkevich, B. Major primary stages of biomineralization in radular teeth of the limpet Lottia gigantea. Mar. Biol. 117, 269–277 (1993).Article 

    Google Scholar 
    Liddiard, K. J., Hockridge, J. G., Macey, D. J., Webb, J. & van Bronswijk, W. Mineralisation in the teeth of the limpets Patelloida alticostata and Scutellastra laticostata (Mollusca: Patellogastropoda). Molluscan Res. 24, 21–31 (2004).CAS 
    Article 

    Google Scholar 
    Cruz, R. & Farina, M. Mineralization of major lateral teeth in the radula of a deep-sea hydrothermal vent limpet (Gastropoda: Neolepetopsidae). Mar. Biol. 147, 163–168 (2005).CAS 
    Article 

    Google Scholar 
    Davies, M. S., Proudlock, D. J. & Mistry, A. Metal concentrations in the radula of the common limpet, Patella vulgata L., from 10 sites in the UK. Ecotoxicology 14(4), 465–475 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sone, E. D., Weiner, S. & Addadi, L. Biomineralization of limpet teeth: A cryo-TEM study of the organic matrix and the onset of mineral deposition. J. Struct. Biol. 158, 428–444 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hua, T.-E. & Li, C.-W. Silica biomineralization in the radula of a limpet Notoacmea schrenckii (Gastropoda: Acmaeidae). Zool. Stud. 46(4), 379–388 (2007).CAS 

    Google Scholar 
    Krings, W. et al. In slow motion: Radula motion pattern and forces exerted to the substrate in the land snail Cornu aspersum (Mollusca, Gastropoda) during feeding. R. Soc. Open Sci. 6(7), 2054–5703 (2019).Article 
    CAS 

    Google Scholar 
    Mikovari, A. et al. Radula development in the giant key-hole limpet Megathura crenulate. J. Shellfish Res. 34(3), 893–902 (2015).Article 

    Google Scholar 
    Ukmar-Godec, T., Kapun, G., Zaslansky, P. & Faivre, D. The giant keyhole limpet radular teeth: A naturally-grown harvest machine. J. Struct. Biol. 192, 392–402 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Macey, D. J., Brooker, L. R. & Cameron, V. Mineralisation in the teeth of the gastropod mollusc Nerita atramentosa. Molluscan Res. 18(1), 33–41 (1997).Article 

    Google Scholar 
    Barkalova, V. O., Fedosov, A. E. & Kantor, Y. I. Morphology of the anterior digestive system of tonnoideans (Gastropoda: Caenogastropoda) with an emphasis on the foregut glands. Molluscan Res. 36, 54–73 (2016).Article 

    Google Scholar 
    Ponte, G. & Modica, M. V. Salivary glands in predatory mollusks: Evolutionary considerations. Front. Physiol. 8, 580 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haszprunar, G. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. J. Molluscan Stud. 54, 367–441 (1988).Article 

    Google Scholar 
    Sasaki, T. Comparative anatomy and phylogeny of the recent Archaeogastropoda (Mollusca: Gastropoda). Univ. Tokyo Bull. 38, 1–224 (1998).
    Google Scholar 
    Simone, L. R. L. Phylogeny of the Caenogastropoda (Mollusca), based on comparative morphology. Arq. Zool. 42(4), 161–323 (2011).Article 

    Google Scholar 
    Meirelles, C. A. & Matthews-Cascon, H. Relations between shell size and radula size in marine prosobranchs (Mollusca: Gastropoda). Thalassas 19(2), 45–53 (2003).
    Google Scholar 
    Peile, A. J. Some radula problems. J. Conchol. 20, 292–304 (1937).
    Google Scholar 
    Marcus, E. & Marcus, E. Mesogastropoden von der Küste São Paulos. Abh Math Naturwissenschaftlichen Kl Akad Wiss Lit Mainz 1963(1), 1–105 (1963).
    Google Scholar 
    Reid, D. G. The Littorinid Molluscs of Mangrove Forests in the Indo-Pacific Region: The Genus LITTORARIA (British Museum Natural History, London, 1986).
    Google Scholar 
    Reid, D. G. The comparative morphology, phylogeny and evolution of the gastropod family Littorinidae. Philos. Trans. R. Soc. Lond. B 324, 1–110 (1989).ADS 
    Article 

    Google Scholar 
    Reid, D. G. & Mak, Y.-M. Indirect evidence for ecophenotypic plasticity in radular dentition of Littoraria species (Gastropoda: Littorinidae). J. Molluscan Stud. 65(3), 355–370 (1999).Article 

    Google Scholar 
    Fretter, V. & Graham, A. British Prosobranch Molluscs (The Ray Society, London, 1994).
    Google Scholar 
    Cabral, J. P. Shape and growth in European Atlantic Patella limpets (Gastropoda, Mollusca). Ecological implications for survival. Web Ecol. 7, 11–21 (2007).Article 

    Google Scholar 
    Nesson, M. H. Studies on radula tooth mineralization in the Polyplacophora, thesis, California Institute of Technology, Pasadena, USA (1969).Shaw, J. A., Brooker, L. R. & Macey, D. J. Radular tooth turnover in the chiton Acanthopleura hirtosa (Blainville, 1825) (Mollusca: Polyplacophora). Molluscan Res. 22, 93–99 (2002).Article 

    Google Scholar 
    Isarankura, K. & Runham, N. Studies on the replacement of the gastropod radula. Malacologia 7(1), 71–91 (1968).
    Google Scholar 
    Padilla, D. K., Dittman, D. E., Franz, J. & Sladek, R. Radular production rates in two species of Lacuna Turton (Gastropoda: Littorinidae). J. Molluscan Stud. 62(3), 275–280 (1996).Article 

    Google Scholar 
    Runham, N. W. Rate of replacement of the molluscan radula. Nature 194, 992–993 (1962).ADS 
    Article 

    Google Scholar 
    Mackenstedt, U. & Märkel, K. Experimental and comparative morphology of radula renewal in pulmonates (Mollusca, Gastropoda). Zoomorphology 107(4), 209–239 (1987).Article 

    Google Scholar 
    Mischor, B. & Märkel, K. Histology and regeneration of the radula of Pomacea bridgesi (Gastropoda, Prosobranchia). Zoomorphology 104, 42–66 (1984).Article 

    Google Scholar 
    Fujioka, Y. Seasonal aberrant radular formation in Thais bronni (Dunker) and T. clavigera (Küster) (Gastropoda: Muricidae). J. Exp. Mar. Biol. Ecol. 90(1), 43–54 (1985).Article 

    Google Scholar 
    Liu, Z., Meyers, M. A., Zhang, Z. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progr. Mater. Sci. 88, 467–498 (2017).CAS 
    Article 

    Google Scholar 
    Vincent, J. F. V. The hardness of the tooth of Patella vulgata L. Radula: A Reappraisal. J. Molluscan Stud. 46, 129–133 (1980).
    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Characterization and structural organization of the organic matrix of radula teeth of the chiton Acanthopleura hirtosa. Philos. Trans. R. Soc. Lond. B 329, 87–96 (1990).ADS 
    Article 

    Google Scholar 
    Evans, L. A., Macey, D. J. & Webb, J. Matrix heterogeneity in the radular teeth of the chiton Acanthopleura hirtosa. Acta Zool. 75(1), 75–79 (1994).Article 

    Google Scholar 
    Wealthall, R. J., Brooker, L. R., Macey, D. J. & Griffin, B. J. Fine structure of the mineralized teeth of the chiton Acanthopleura echinata (Mollusca: Polyplacophora). J. Morphol. 265, 165–175 (2005).PubMed 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A. & Gorb, S. N. Influence of water content on mechanical behaviour of gastropod taenioglossan radulae. Proc. R. Soc. B 288, 20203173 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krings, W., Kovalev, A. & Gorb, S. N. Collective effect of damage prevention in taenioglossan radular teeth is related to the ecological niche in Paludomidae (Gastropoda: Cerithioidea). Acta Biomater. 135, 458–472 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Radwin, G. E. & Wells, H. W. Comparative radular morphology and feeding habits of muricid gastropods from the Gulf of Mexico. Bull. Mar. Sci. 18(1), 72–85 (1968).
    Google Scholar 
    Grünbaum, D. & Padilla, D. K. An integrated modeling approach to assessing linkages between environment, organism, and phenotypic plasticity. Integr. Comp. Biol. 54(2), 323–335 (2014).PubMed 
    Article 

    Google Scholar 
    Scheel, C., Gorb, S. N., Glaubrecht, M. & Krings, W. Not just scratching the surface: Distinct radular motion patterns in Mollusca. Biol. Open 9, bio055699 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, J. On the division of ctenobranchous gasteropodous Mollusca into larger groups and families. Ann. Mag. Nat. Hist. 11(2), 124–133 (1853).Article 

    Google Scholar 
    Hyman, L. H. Mollusca I. Aplacophora polyplacophora monoplacophora. Gastropoda, the coelomate bilateria. The invertebrates 6 (McGraw-Hill Book Company, New York, 1967).
    Google Scholar 
    Nixon, M. A nomenclature for the radula of the Cephalopoda (Mollusca) – living and fossil. J. Zool. 236, 73–81 (1995).Article 

    Google Scholar 
    Haszprunar, G. & Götting, K. J. Mollusca, Weichtiere. In Spezielle Zoologie Teil Einzeller und wirbellose Tiere (eds Westheide, W. & Rieger, R.) 305–362 (Springer, Berlin, Germany, 2007).
    Google Scholar 
    Lowenstam, H. A. Magnetite in denticle capping in recent chitons (Polyplacophora). Geol. Soc. Am. Bull. 73, 435–438 (1962).ADS 
    CAS 
    Article 

    Google Scholar 
    Kirschvink, J. L. & Lowenstam, H. A. Mineralization and magnetization of chiton teeth: Paleomagnetic, sedimentalogic and biologic implications of organic magnetite. EPSL 44, 193–204 (1979).ADS 
    Article 

    Google Scholar 
    Han, Y. et al. Magnetic and structural properties of magnetite in radular teeth of chiton Acanthochiton rubrolinestus. Bioelectromagnetics 32, 226–233 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nemoto, M. et al. Integrated transcriptomic and proteomic analyses of a molecular mechanism of radular teeth biomineralization in Cryptochiton stelleri. Sci. Rep. 9, 856 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    McCoey, J. M. et al. Quantum magnetic imaging of iron biomineralization in teeth of the chiton Acanthopleura hirtosa. Small Methods 4, 1900754 (2020).CAS 
    Article 

    Google Scholar 
    Lowenstam, H. A. Lepidocrocite, an apatite mineral, and magnetite in teeth of chitons (Polyplacophora). Science 56, 1373–1375 (1967).ADS 
    Article 

    Google Scholar 
    Brooker, L. R., Lee, A. P., Macey, D. J. & Webb, J. Molluscan and other marine teeth. In Encyclopedia of Materials: Science and Technology (eds Buschow, K. H. J. et al.) 5186–5189 (Elsevier Science Ltd., Oxford, 2001).Chapter 

    Google Scholar 
    Shaw, J. A. et al. Ultrastructure of the epithelial cells associated with tooth biomineralization in the chiton Acanthopleura hirtosa. Microsc. Microanal. 15(2), 154–165 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Creighton, T. E. Protein folding coupled to disulphide bond formation. Biol. Chem. 378(8), 731–744 (1997).CAS 
    PubMed 

    Google Scholar 
    Harding, M. M. Metal-ligand geometry relevant to proteins and in proteins: Sodium and potassium. Acta Cryst. D 58, 872–874 (2002).Article 
    CAS 

    Google Scholar 
    Hayes, T. The influence of diet on local distributions of Cypraea. Pac. Sci. 37(1), 27–36 (1983).
    Google Scholar 
    Padilla, D. K. The importance of form: Differences in competitive ability, resistance to consumers and environmental stress in an assemblage of coralline algae. J. Exp. Mar. Biol. Ecol. 79(2), 105–127 (1984).Article 

    Google Scholar 
    Kesler, D. H., Jokinen, E. H. & Munns, W. R. Jr. Trophic preferences and feeding morphology of two pulmonate snail species from a small New England pond, USA. Can. J. Zool. 64, 2570–2575 (1986).Article 

    Google Scholar 
    Blinn, W., Truitt, R. E. & Pickart, A. Feeding ecology and radular morphology of the freshwater limpet Ferrissia fragilis. J. N. Am. Benthol. Soc. 8(3), 237–242 (1989).Article 

    Google Scholar 
    Hawkins, S. J. et al. A comparison of feeding mechanisms in microphagous, herbivorous, intertidal, prosobranchs in relation to resource partitioning. J. Molluscan Stud. 55(2), 151–165 (1989).Article 

    Google Scholar 
    Franz, C. J. Feeding patterns of Fissurella species on Isla de Margarita, Venezuela: Use of radulae and food passage rates. J. Molluscan Stud. 56(1), 25–35 (1990).Article 

    Google Scholar 
    Thompson, R. C., Johnson, L. E. & Hawkins, S. J. A method for spatial and temporal assessment of gastropod grazing intensity in the field: The use of radula scrapes on wax surfaces. J. Exp. Mar. Biol. Ecol. 218(1), 63–76 (1997).Article 

    Google Scholar 
    Iken, K. Feeding ecology of the Antarctic herbivorous gastropod Laevilacunaria antarctica Martens. J. Exp. Mar. Biol. Ecol. 236(1), 133–148 (1999).Article 

    Google Scholar 
    Forrest, R. E., Chapman, M. G. & Underwood, A. J. Quantification of radular marks as a method for estimating grazing of intertidal gastropods on rocky shores. J. Exp. Mar. Biol. Ecol. 258(2), 155–171 (2001).PubMed 
    Article 

    Google Scholar 
    Dimitriadis, V. K. Structure and function of the digestive system in Stylommatophora. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 237–258 (CABI Publishing, Wallingford, UK, 2001).Chapter 

    Google Scholar 
    Speiser, B. Food and feeding behaviour. In The Biology of Terrestrial Molluscs (ed. Barker, G. M.) 259–288 (CABI Publishing, Wallingford, UK, 2001).Chapter 

    Google Scholar 
    Sitnikova, T. et al. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology. Hydrobiologia 682, 75–90 (2012).CAS 
    Article 

    Google Scholar 
    Bergmeier, F. S., Ostermair, L. & Jörger, K. M. Specialized predation by deep-sea Solenogastres revealed by sequencing of gut contents. Curr. Biol. 31(13), R836–R837 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goodheart, J. A., Bazinet, A. L., Valdés, Á., Collins, A. G. & Cummings, M. P. Prey preference follows phylogeny: Evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia). BMC Evol. Biol. 17, 221 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Padilla, D. K. Structural resistance of algae to herbivores. A biomechanical approach. Mar. Biol. 90, 103–109 (1985).Article 

    Google Scholar 
    Padilla, D. K. Algal structural defenses: Form and calcification in resistance to tropical limpets. Ecology 70(4), 835–842 (1989).Article 

    Google Scholar 
    Wilson, A. B., Glaubrecht, M. & Meyer, A. Ancient lakes as evolutionary reservoirs: Evidence from the thalassoid gastropods of Lake Tanganyika. Proc. R. Soc. B 271(1538), 529–536 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ponder, W. & Lindberg, D. R. Phylogeny and Evolution of the Mollusca (University of California Press, Berkeley, California, 2008).Book 

    Google Scholar 
    Jörger, K. M. et al. On the origin of Acochlidia and other enigmatic euthyneuran gastropods, with implications for the systematics of Heterobranchia. BMC Evol. Biol. 10, 323 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kocot, K. et al. Phylogenomics reveals deep molluscan relationships. Nature 477, 452–456 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kocot, K. M., Poustka, A. J., Stöger, I., Halanych, K. M. & Schrödl, M. New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships. Sci. Rep. 10, 101 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Smith, S. et al. Resolving the evolutionary relationships of molluscs with phylogenomic tools. Nature 480, 364–367 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Haszprunar, G. & Wanninger, A. Molluscs. Curr Biol. 22(13), R510-514 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wanninger, A. & Wollesen, T. The evolution of molluscs. Biol. Rev. 94, 102–115 (2019).Article 

    Google Scholar 
    Irisarri, I., Uribe, J. E., Eernisse, D. J. & Zardoya, R. A mitogenomic phylogeny of chitons (Mollusca: Polyplacophora). BMC Evol. Biol. 20, 22 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Arboreal camera trap reveals the frequent occurrence of a frugivore-carnivore in neotropical nutmeg trees

    Clark, D. A. & Clark, D. B. Spacing dynamics of a Tropical rain forest tree: Evaluation of the Janzen-Connell model. Am. Nat. 124, 769–788 (1984).Article 

    Google Scholar 
    Comita, L. S. et al. Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and dendity-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jansen, P. A. & Forget, P.-M. Scatterhoarding rodents and tree regeneration. in Nouragues (eds. Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M.) vol. 80 pp. 275–288 (Springer Netherlands, 2001).Janzen, D. H. Herbivores and the number of tree species in Tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    Hammond, D. S. Tropical forests of the Guiana shield: ancient forests in a modern world. (CABI Publishing, 2005).Forget, P.-M. et al. Frugivores and seed dispersal (1985–2010); the ‘seeds’ dispersed, established and matured. Acta Oecologica 37, 517–520 (2011).ADS 
    Article 

    Google Scholar 
    Levey, D. J., Silva, W. R. & Galetti, M. Seed dispersal and frugivory: Ecology, evolution and conservation. (CABI Publishing, 2002).Boissier, O., Feer, F., Henry, P. & Forget, P. Modifications of the rain forest frugivore community are associated with reduced seed removal at the community level. Ecol. Appl. 30, (2020).Ducrettet, M. et al. Monitoring canopy bird activity in disturbed landscapes with automatic recorders: A case study in the tropics. Biol. Conserv. 245, 108574 (2020).Article 

    Google Scholar 
    Holbrook, K. M. Home range and movement patterns of toucans: Implications for seed dispersal. Biotropica 43, 357–364 (2011).Article 

    Google Scholar 
    Holbrook, K. M. & Loiselle, B. A. Dispersal in a Neotropical tree, Virola flexuosa (Myristicaceae): Does hunting of large vertebrates limit seed removal?. Ecology 90, 1449–1455 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ratiarison, S. & Forget, P.-M. The role of frugivores in determining seed removal and dispersal in the neotropical nutmeg. Trop. Conserv. Sci. 6, 690–704 (2013).Article 

    Google Scholar 
    Ratiarison, S. & Forget, P.-M. Frugivores and seed removal at Tetragastris altissima (Burseraceae) in a fragmented forested landscape of French Guiana. J. Trop. Ecol. 21, 501–508 (2005).Article 

    Google Scholar 
    Stevenson, P. R., Link, A., González-Caro, S. & Torres-Jiménez, M. F. Frugivory in canopy plants in a western Amazonian forest: Dispersal systems, phylogenetic ensembles and keystone plants. PLoS ONE 10, e0140751 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Todeschini, F., de Toledo, J. J., Rosalino, L. M. & Hilário, R. R. Niche differentiation mechanisms among canopy frugivores and zoochoric trees in the northeastern extreme of the Amazon. Acta Amaz 50, 263–272 (2020).Article 

    Google Scholar 
    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. N. Y. Acad. Sci. 1223, 120–128 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Shanee, N. Trends in local wildlife hunting, trade and control in the Tropical Andes Biodiversity Hotspot, northeastern Peru. Endanger. Species Res. 19, 177–186 (2012).Article 

    Google Scholar 
    Muscarella, R. & Fleming, T. H. The role of frugivorous bats in Tropical forest succession. Biol. Rev. 82, 573–590 (2007).PubMed 
    Article 

    Google Scholar 
    Willig, M. R. et al. Phyllostomid bats of lowland Amazonia: Effects of habitat alteration on abundance. Biotropica 39, 737–746 (2007).Article 

    Google Scholar 
    Charles-Dominique, P. et al. Les mammifères frugivores arboricoles nocturnes d’une forêt guyanaise: Inter-relation plantes-animaux. Rev. Ecol. Terre Vie 35, (1981).Stevenson, P. R., Cardona, L., Cárdenas, S. & Link, A. Oilbirds disperse large seeds at longer distance than extinct megafauna. Sci. Rep. 11, 420 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colon, C. P. & Campos-Arceiz, A. The impact of gut passage by Binturongs (Arctictus binturong) on seed germination. Raffles Bull. Zool. 61, 417–421 (2013).
    Google Scholar 
    Nakashima, Y., Inoue, E., Inoue-Murayama, M. & Abd. Sukor, J. R. Functional uniqueness of a small carnivore as seed dispersal agents: A case study of the common palm civets in the Tabin Wildlife Reserve, Sabah, Malaysia. Oecologia 164, 721–730 (2010).Kays, R. W. Food preferences of kinkajous (Potos flavus): A frugivorous carnivore. J. Mammal. 80, 589–599 (1999).Article 

    Google Scholar 
    Julien-Laferrière, D. Frugivory and Seed Dispersal by Kinkajous. in Nouragues: Dynamics and Plant-Animal Interactions in a Neotropical Rainforest (eds. Bongers, F., Charles-Dominique, P., Forget, P.-M. & Théry, M.) 217–226 (Springer, 2001).Helgen, K. M. et al. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324, 1–83 (2013).Article 

    Google Scholar 
    Nascimento, F. F. et al. The evolutionary history and genetic diversity of kinkajous, Potos flavus (Carnivora, Procyonidae). J. Mamm. Evol. 24, 439–451 (2017).MathSciNet 
    Article 

    Google Scholar 
    Picart, L. et al. The CAFOTROP method: An improved rope-climbing method for access and movement in the canopy to study biodiversity. Ecotropica 20, 45–52 (2014).
    Google Scholar 
    Moore, J. F. et al. The potential and practice of arboreal camera trapping. Methods Ecol. Evol. 12, 1768–1779 (2021).Article 

    Google Scholar 
    Gregory, T., Carrasco-Rueda, F., Alonso, A., Kolowski, J. & Deichmann, J. L. Natural canopy bridges effectively mitigate Tropical forest fragmentation for arboreal mammals. Sci. Rep. 7, 3892 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Queenborough, S. A. & Forget, P. M. Adding spice to life: A special issue on the Myristicaceae. Trop. Conserv. Sci. 3 (2013).Farwig, N., Schabo, D. G. & Albrecht, J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J. Ecol. 105, 20–28 (2017).Article 

    Google Scholar 
    Russo, S. E. Responses of dispersal agents to tree and fruit traits in Virola calophylla (Myristicaceae): Implications for selection. Oecologia 136, 80–87 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Howe, H. F. & Vande Kerckhove, G. A. Removal of wild nutmeg (Virola Surinamensis) crops by birds. Ecology 62, 1093–1106 (1981).Laurance, W. F. et al. Averting biodiversity collapse in Tropical forest protected areas. Nature 489, 290–294 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    de Thoisy, B., Renoux, F. & Julliot, C. Hunting in northern French Guiana and its impact on primate communities. Oryx 39, 149–157 (2005).Article 

    Google Scholar 
    de Thoisy, B. et al. Rapid evaluation of threats to biodiversity: Human footprint score and large vertebrate species responses in French Guiana. Biodivers. Conserv. 19, 1567–1584 (2010).Article 

    Google Scholar 
    Peres, C. A. & Dolman, P. M. Density compensation in Neotropical primate communities: Evidence from 56 hunted and nonhunted Amazonian forests of varying productivity. Oecologia 122, 175–189 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hansen, D. M. & Galetti, M. The forgotten megafauna. Science 324, 42–43 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Whitworth, A. et al. Human disturbance impacts on rainforest mammals are most notable in the canopy, especially for larger-bodied species. Divers. Distrib. 25, 1166–1178 (2019).Article 

    Google Scholar 
    Harrison, R. D. et al. Consequences of defaunation for a Tropical tree community. Ecol. Lett. 16, 687–694 (2013).PubMed 
    Article 

    Google Scholar 
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768 (2008).PubMed 
    Article 

    Google Scholar 
    Boissier, O., Bouiges, A., Mendoza, I., Feer, F. & Forget, P.-M. Rapid assessment of seed removal and frugivore activity as a tool for monitoring the health status of Tropical forests. Biotropica 46, 633–641 (2014).Article 

    Google Scholar 
    Howe, H. F. Fruit production and animal activity at two Tropical trees. Ecol. Trop. For. Seas. Rhythms Long-Term Chang. 189–199 (1982).Julien-Laferriere, D. Foraging strategies and food partitioning in the Neotropical frugivorous mammals Caluromys philander and Potos flavus. J. Zool. 247, 71–80 (1999).Article 

    Google Scholar 
    Julien-Laferriere, D. Radio-tracking observations on ranging and foraging patterns by kinkajous (Potos flavus) in French Guiana. J. Trop. Ecol. 9, 19–32 (1993).Article 

    Google Scholar 
    Bowler, M. T., Tobler, M. W., Endress, B. A., Gilmore, M. P. & Anderson, M. J. Estimating mammalian species richness and occupancy in Tropical forest canopies with arboreal camera traps. Remote Sens. Ecol. Conserv. 3, 146–157 (2017).Article 

    Google Scholar 
    Debruille, A., Kayser, P., Veron, G., Vergniol, M. & Perrigon, M. Improving the detection rate of binturongs (Arctictis binturong) in Palawan Island, Philippines, through the use of arboreal camera-trapping. Mammalia 84, 563–567 (2020).Article 

    Google Scholar 
    Gregory, T., Carrasco Rueda, F., Deichmann, J., Kolowski, J. & Alonso, A. Arboreal camera trapping: taking a proven method to new heights. Methods Ecol. Evol. 5, 443–451 (2014).Article 

    Google Scholar 
    Whitworth, A., Braunholtz, L. D., Huarcaya, R. P., MacLeod, R. & Beirne, C. Out on a limb: Arboreal camera traps as an emerging methodology for inventorying elusive rainforest mammals. Trop. Conserv. Sci. 9, 675–698 (2016).Article 

    Google Scholar 
    Laughlin, M. M., Martin, J. G. & Olson, E. R. Arboreal camera trapping reveals seasonal behaviors of Peromyscus spp. in Pinus strobus canopies. 14 (2020).Thorn, M., Scott, D. M., Green, M., Bateman, P. W. & Cameron, E. Z. Estimating brown hyaena occupancy using baited camera traps. South Afr. J. Wildl. Res. 39, 1–10 (2009).Article 

    Google Scholar 
    Si, X., Kays, R. & Ding, P. How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps. PeerJ 2, e374 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Olson, E. R. et al. Arboreal camera trapping for the Critically Endangered greater bamboo lemur Prolemur simus. Oryx 46, 593–597 (2012).Article 

    Google Scholar 
    Mendoza, I. et al. Inter-annual variability of fruit timing and quantity at Nouragues (French Guiana): Insights from hierarchical Bayesian analyses. Biotropica 50, 431–441 (2018).Article 

    Google Scholar 
    Sabatier, D. Saisonnalité et déterminisme du pic de fructification en forêt guyanaise. Rev. Ecol. Terre Vie 40, 289–320 (1985).
    Google Scholar 
    Coutant, O. et al. Roads disrupt frugivory and seed removal in tropical animal-dispersed plants in French Guiana. Front. Ecol. Evol. 10, 805376 (2022)Article 

    Google Scholar 
    Chapman, C. A. & Russo, S. E. Primate seed dispersal: Linking behavioral ecology with forest community structure. in Primates in Perspective 510–525 (Oxford University Press, 2006).Zhang, S.-Y. Activity and ranging patterns in relation to fruit utilization by brown capuchins (Cebus apella) in French Guiana. Int. J. Primatol. 16, 489–507 (1995).Article 

    Google Scholar 
    Julliot, C. Seed dispersal by red howling monkeys (Alouatta seniculus) in the Tropical rain forest of French Guiana. Int. J. Primatol. 17, 239–258 (1996).Article 

    Google Scholar 
    Guillotin, M., Dubost, G. & Sabatier, D. Food choice and food competition among the three major primate species of French Guiana. J. Zool. 233, 551–579 (1994).Article 

    Google Scholar 
    Coutant, O. et al. Amazonian mammal monitoring using aquatic environmental DNA. Mol. Ecol. Resour. 21, 1875–1888 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lambert, J. E., Fellner, V., McKenney, E. & Hartstone-Rose, A. Binturong (Arctictis binturong) and Kinkajou (Potos flavus) Digestive Strategy: Implications for Interpreting Frugivory in Carnivora and Primates. PLoS ONE 9, e105415 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Youlatos, D. Osteological correlates of tail prehensility in carnivorans. J. Zool. 259, 423–430 (2003).Article 

    Google Scholar 
    Lemelin, P. & Cartmill, M. The effect of substrate size on the locomotion and gait patterns of the kinkajou (Potos flavus) – Lemelin – 2010 – Journal of Experimental Zoology Part A: Ecological Genetics and Physiology – Wiley Online Library. J. Exp. Zool. 313A, 157–168 (2010).
    Google Scholar 
    McClearn, D. Locomotion, posture, and feeding behavior of kinkajous, coatis, and raccoons. J. Mammal. 73, 245–261 (1992).Article 

    Google Scholar 
    Rensch, B. & Dücker, G. Manipulierfähigkeit eines Wickelbären bei längeren Handlungsketten. Z. Für Tierpsychol. 26, 104–112 (1969).
    Google Scholar 
    Kays, R. W. The behavior and ecology of olingos (Bassaricyon gabbii) and their competition with kinkajous (Potos flavus) in central Panama. 64, 1–10 (2000).Alves-Costa, C. P. & Eterovick, P. C. Seed dispersal services by coatis (Nasua nasua, Procyonidae) and their redundancy with other frugivores in southeastern Brazil. Acta Oecologica 32, 77–92 (2007).ADS 
    Article 

    Google Scholar 
    Bonaccorso, F. J., Glanz, W. E. & Sandford, C. M. Feeding assemblages of mammals at fruiting Dipteryx panamensis (Papilionaceae) trees in Panama: Seed predation, dispersal, and parasitism. Rev. Biol. Trop. 28, 61–72 (1980).
    Google Scholar 
    Julien-Laferrière, D. Organisation du peuplement de marsupiaux en Guyane française. Rev. Ecol. Terre Vie 46, 125–144 (1991).
    Google Scholar 
    Atramentowicz, M. The opportunistic frugivory of three Diphelphid marsupials of French Guiana. Rev. Ecol. Terre Vie 43, 47–57 (1988).
    Google Scholar 
    Carreira, D. C. et al. Small vertebrates are key elements in the frugivory networks of a hyperdiverse Tropical forest. Sci. Rep. 10, 10594 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Erard, C., Théry, M. & Sabatier, D. Fruit characters in the diet of syntopic large frugivorous forest bird species in French Guiana. Rev. Ecol. Terre Vie 62, 323–350 (2007).
    Google Scholar 
    Théry, M., Erard, C. & Sabatier, D. Les fruits dans le régime alimentaire de Penelope marail (Aves, Cracidae) en forêt guyanaise: Frufivorie stricte et sélective? Rev. Ecol. Terre Vie 47, (1992).Zhu, C. et al. Arboreal camera trapping: a reliable tool to monitor plant-frugivore interactions in the trees on large scales. Remote Sens. Ecol. Conserv.Schipper, J. Camera-trap avoidance by kinkajous Potos flavus: rethinking the “non-invasive” paradigm. 36, 5 (2007).Ratiarison, S. Frugivorie dans la canopée de la forêt guyanaise : conséquences pour la pluie de graines. (Paris 6, 2003).Sabatier, D. Fructification et dissémination en forêt guyanaise : l’exemple de quelques espèces ligneuses. (Université de Montpellier, 1983).Sabatier, D. Description et biologie d’une nouvelle espèce de Virola (Myristicaceae) de Guyane. Adansonia 19, 273–278 (1997).
    Google Scholar 
    Niedballa, J., Sollmann, R., Courtiol, A. & Wilting, A. camtrapR: An R package for efficient camera trap data management. Methods Ecol. Evol. 7, 1457–1462 (2016).Article 

    Google Scholar 
    Ridout, M. S. & Linkie, M. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337 (2009).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Bello, C. et al. Atlantic frugivory: a plant–frugivore interaction data set for the Atlantic forest. Ecology 98, 1729–1729 (2017).PubMed 
    Article 

    Google Scholar 
    Galetti, M., Laps, R. & Pizo, M. A. Frugivory by toucans (Ramphastidae) at two altitudes in the Atlantic forest of Brazil. Biotropica 32, 842–850 (2000).Article 

    Google Scholar 
    Kassambara, A. rstatix: Pipe-Friendly Framework for Basic Statistical Tests. R package version 0.7.0. https://CRAN.R-project.org/package=rstatix (2021). More